2 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
3 * Author: Joerg Roedel <jroedel@suse.de>
4 * Leo Duran <leo.duran@amd.com>
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 #include <linux/ratelimit.h>
21 #include <linux/pci.h>
22 #include <linux/acpi.h>
23 #include <linux/amba/bus.h>
24 #include <linux/platform_device.h>
25 #include <linux/pci-ats.h>
26 #include <linux/bitmap.h>
27 #include <linux/slab.h>
28 #include <linux/debugfs.h>
29 #include <linux/scatterlist.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/iommu-helper.h>
32 #include <linux/iommu.h>
33 #include <linux/delay.h>
34 #include <linux/amd-iommu.h>
35 #include <linux/notifier.h>
36 #include <linux/export.h>
37 #include <linux/irq.h>
38 #include <linux/msi.h>
39 #include <linux/dma-contiguous.h>
40 #include <linux/irqdomain.h>
41 #include <linux/percpu.h>
42 #include <linux/iova.h>
43 #include <asm/irq_remapping.h>
44 #include <asm/io_apic.h>
46 #include <asm/hw_irq.h>
47 #include <asm/msidef.h>
48 #include <asm/proto.h>
49 #include <asm/iommu.h>
53 #include "amd_iommu_proto.h"
54 #include "amd_iommu_types.h"
55 #include "irq_remapping.h"
57 #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
59 #define LOOP_TIMEOUT 100000
61 /* IO virtual address start page frame number */
62 #define IOVA_START_PFN (1)
63 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
64 #define DMA_32BIT_PFN IOVA_PFN(DMA_BIT_MASK(32))
66 /* Reserved IOVA ranges */
67 #define MSI_RANGE_START (0xfee00000)
68 #define MSI_RANGE_END (0xfeefffff)
69 #define HT_RANGE_START (0xfd00000000ULL)
70 #define HT_RANGE_END (0xffffffffffULL)
73 * This bitmap is used to advertise the page sizes our hardware support
74 * to the IOMMU core, which will then use this information to split
75 * physically contiguous memory regions it is mapping into page sizes
78 * 512GB Pages are not supported due to a hardware bug
80 #define AMD_IOMMU_PGSIZES ((~0xFFFUL) & ~(2ULL << 38))
82 static DEFINE_RWLOCK(amd_iommu_devtable_lock
);
84 /* List of all available dev_data structures */
85 static LIST_HEAD(dev_data_list
);
86 static DEFINE_SPINLOCK(dev_data_list_lock
);
88 LIST_HEAD(ioapic_map
);
90 LIST_HEAD(acpihid_map
);
92 #define FLUSH_QUEUE_SIZE 256
94 struct flush_queue_entry
{
95 unsigned long iova_pfn
;
97 struct dma_ops_domain
*dma_dom
;
103 struct flush_queue_entry
*entries
;
106 DEFINE_PER_CPU(struct flush_queue
, flush_queue
);
108 static atomic_t queue_timer_on
;
109 static struct timer_list queue_timer
;
112 * Domain for untranslated devices - only allocated
113 * if iommu=pt passed on kernel cmd line.
115 static const struct iommu_ops amd_iommu_ops
;
117 static ATOMIC_NOTIFIER_HEAD(ppr_notifier
);
118 int amd_iommu_max_glx_val
= -1;
120 static struct dma_map_ops amd_iommu_dma_ops
;
123 * This struct contains device specific data for the IOMMU
125 struct iommu_dev_data
{
126 struct list_head list
; /* For domain->dev_list */
127 struct list_head dev_data_list
; /* For global dev_data_list */
128 struct protection_domain
*domain
; /* Domain the device is bound to */
129 u16 devid
; /* PCI Device ID */
130 u16 alias
; /* Alias Device ID */
131 bool iommu_v2
; /* Device can make use of IOMMUv2 */
132 bool passthrough
; /* Device is identity mapped */
136 } ats
; /* ATS state */
137 bool pri_tlp
; /* PASID TLB required for
139 u32 errata
; /* Bitmap for errata to apply */
143 * general struct to manage commands send to an IOMMU
149 struct kmem_cache
*amd_iommu_irq_cache
;
151 static void update_domain(struct protection_domain
*domain
);
152 static int protection_domain_init(struct protection_domain
*domain
);
153 static void detach_device(struct device
*dev
);
156 * Data container for a dma_ops specific protection domain
158 struct dma_ops_domain
{
159 /* generic protection domain information */
160 struct protection_domain domain
;
163 struct iova_domain iovad
;
166 static struct iova_domain reserved_iova_ranges
;
167 static struct lock_class_key reserved_rbtree_key
;
169 /****************************************************************************
173 ****************************************************************************/
175 static inline int match_hid_uid(struct device
*dev
,
176 struct acpihid_map_entry
*entry
)
178 const char *hid
, *uid
;
180 hid
= acpi_device_hid(ACPI_COMPANION(dev
));
181 uid
= acpi_device_uid(ACPI_COMPANION(dev
));
187 return strcmp(hid
, entry
->hid
);
190 return strcmp(hid
, entry
->hid
);
192 return (strcmp(hid
, entry
->hid
) || strcmp(uid
, entry
->uid
));
195 static inline u16
get_pci_device_id(struct device
*dev
)
197 struct pci_dev
*pdev
= to_pci_dev(dev
);
199 return PCI_DEVID(pdev
->bus
->number
, pdev
->devfn
);
202 static inline int get_acpihid_device_id(struct device
*dev
,
203 struct acpihid_map_entry
**entry
)
205 struct acpihid_map_entry
*p
;
207 list_for_each_entry(p
, &acpihid_map
, list
) {
208 if (!match_hid_uid(dev
, p
)) {
217 static inline int get_device_id(struct device
*dev
)
222 devid
= get_pci_device_id(dev
);
224 devid
= get_acpihid_device_id(dev
, NULL
);
229 static struct protection_domain
*to_pdomain(struct iommu_domain
*dom
)
231 return container_of(dom
, struct protection_domain
, domain
);
234 static struct dma_ops_domain
* to_dma_ops_domain(struct protection_domain
*domain
)
236 BUG_ON(domain
->flags
!= PD_DMA_OPS_MASK
);
237 return container_of(domain
, struct dma_ops_domain
, domain
);
240 static struct iommu_dev_data
*alloc_dev_data(u16 devid
)
242 struct iommu_dev_data
*dev_data
;
245 dev_data
= kzalloc(sizeof(*dev_data
), GFP_KERNEL
);
249 dev_data
->devid
= devid
;
251 spin_lock_irqsave(&dev_data_list_lock
, flags
);
252 list_add_tail(&dev_data
->dev_data_list
, &dev_data_list
);
253 spin_unlock_irqrestore(&dev_data_list_lock
, flags
);
258 static struct iommu_dev_data
*search_dev_data(u16 devid
)
260 struct iommu_dev_data
*dev_data
;
263 spin_lock_irqsave(&dev_data_list_lock
, flags
);
264 list_for_each_entry(dev_data
, &dev_data_list
, dev_data_list
) {
265 if (dev_data
->devid
== devid
)
272 spin_unlock_irqrestore(&dev_data_list_lock
, flags
);
277 static int __last_alias(struct pci_dev
*pdev
, u16 alias
, void *data
)
279 *(u16
*)data
= alias
;
283 static u16
get_alias(struct device
*dev
)
285 struct pci_dev
*pdev
= to_pci_dev(dev
);
286 u16 devid
, ivrs_alias
, pci_alias
;
288 /* The callers make sure that get_device_id() does not fail here */
289 devid
= get_device_id(dev
);
290 ivrs_alias
= amd_iommu_alias_table
[devid
];
291 pci_for_each_dma_alias(pdev
, __last_alias
, &pci_alias
);
293 if (ivrs_alias
== pci_alias
)
299 * The IVRS is fairly reliable in telling us about aliases, but it
300 * can't know about every screwy device. If we don't have an IVRS
301 * reported alias, use the PCI reported alias. In that case we may
302 * still need to initialize the rlookup and dev_table entries if the
303 * alias is to a non-existent device.
305 if (ivrs_alias
== devid
) {
306 if (!amd_iommu_rlookup_table
[pci_alias
]) {
307 amd_iommu_rlookup_table
[pci_alias
] =
308 amd_iommu_rlookup_table
[devid
];
309 memcpy(amd_iommu_dev_table
[pci_alias
].data
,
310 amd_iommu_dev_table
[devid
].data
,
311 sizeof(amd_iommu_dev_table
[pci_alias
].data
));
317 pr_info("AMD-Vi: Using IVRS reported alias %02x:%02x.%d "
318 "for device %s[%04x:%04x], kernel reported alias "
319 "%02x:%02x.%d\n", PCI_BUS_NUM(ivrs_alias
), PCI_SLOT(ivrs_alias
),
320 PCI_FUNC(ivrs_alias
), dev_name(dev
), pdev
->vendor
, pdev
->device
,
321 PCI_BUS_NUM(pci_alias
), PCI_SLOT(pci_alias
),
322 PCI_FUNC(pci_alias
));
325 * If we don't have a PCI DMA alias and the IVRS alias is on the same
326 * bus, then the IVRS table may know about a quirk that we don't.
328 if (pci_alias
== devid
&&
329 PCI_BUS_NUM(ivrs_alias
) == pdev
->bus
->number
) {
330 pci_add_dma_alias(pdev
, ivrs_alias
& 0xff);
331 pr_info("AMD-Vi: Added PCI DMA alias %02x.%d for %s\n",
332 PCI_SLOT(ivrs_alias
), PCI_FUNC(ivrs_alias
),
339 static struct iommu_dev_data
*find_dev_data(u16 devid
)
341 struct iommu_dev_data
*dev_data
;
343 dev_data
= search_dev_data(devid
);
345 if (dev_data
== NULL
)
346 dev_data
= alloc_dev_data(devid
);
351 static struct iommu_dev_data
*get_dev_data(struct device
*dev
)
353 return dev
->archdata
.iommu
;
357 * Find or create an IOMMU group for a acpihid device.
359 static struct iommu_group
*acpihid_device_group(struct device
*dev
)
361 struct acpihid_map_entry
*p
, *entry
= NULL
;
364 devid
= get_acpihid_device_id(dev
, &entry
);
366 return ERR_PTR(devid
);
368 list_for_each_entry(p
, &acpihid_map
, list
) {
369 if ((devid
== p
->devid
) && p
->group
)
370 entry
->group
= p
->group
;
374 entry
->group
= generic_device_group(dev
);
379 static bool pci_iommuv2_capable(struct pci_dev
*pdev
)
381 static const int caps
[] = {
384 PCI_EXT_CAP_ID_PASID
,
388 for (i
= 0; i
< 3; ++i
) {
389 pos
= pci_find_ext_capability(pdev
, caps
[i
]);
397 static bool pdev_pri_erratum(struct pci_dev
*pdev
, u32 erratum
)
399 struct iommu_dev_data
*dev_data
;
401 dev_data
= get_dev_data(&pdev
->dev
);
403 return dev_data
->errata
& (1 << erratum
) ? true : false;
407 * This function checks if the driver got a valid device from the caller to
408 * avoid dereferencing invalid pointers.
410 static bool check_device(struct device
*dev
)
414 if (!dev
|| !dev
->dma_mask
)
417 devid
= get_device_id(dev
);
421 /* Out of our scope? */
422 if (devid
> amd_iommu_last_bdf
)
425 if (amd_iommu_rlookup_table
[devid
] == NULL
)
431 static void init_iommu_group(struct device
*dev
)
433 struct iommu_group
*group
;
435 group
= iommu_group_get_for_dev(dev
);
439 iommu_group_put(group
);
442 static int iommu_init_device(struct device
*dev
)
444 struct iommu_dev_data
*dev_data
;
447 if (dev
->archdata
.iommu
)
450 devid
= get_device_id(dev
);
454 dev_data
= find_dev_data(devid
);
458 dev_data
->alias
= get_alias(dev
);
460 if (dev_is_pci(dev
) && pci_iommuv2_capable(to_pci_dev(dev
))) {
461 struct amd_iommu
*iommu
;
463 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
464 dev_data
->iommu_v2
= iommu
->is_iommu_v2
;
467 dev
->archdata
.iommu
= dev_data
;
469 iommu_device_link(amd_iommu_rlookup_table
[dev_data
->devid
]->iommu_dev
,
475 static void iommu_ignore_device(struct device
*dev
)
480 devid
= get_device_id(dev
);
484 alias
= get_alias(dev
);
486 memset(&amd_iommu_dev_table
[devid
], 0, sizeof(struct dev_table_entry
));
487 memset(&amd_iommu_dev_table
[alias
], 0, sizeof(struct dev_table_entry
));
489 amd_iommu_rlookup_table
[devid
] = NULL
;
490 amd_iommu_rlookup_table
[alias
] = NULL
;
493 static void iommu_uninit_device(struct device
*dev
)
496 struct iommu_dev_data
*dev_data
;
498 devid
= get_device_id(dev
);
502 dev_data
= search_dev_data(devid
);
506 if (dev_data
->domain
)
509 iommu_device_unlink(amd_iommu_rlookup_table
[dev_data
->devid
]->iommu_dev
,
512 iommu_group_remove_device(dev
);
515 dev
->archdata
.dma_ops
= NULL
;
518 * We keep dev_data around for unplugged devices and reuse it when the
519 * device is re-plugged - not doing so would introduce a ton of races.
523 /****************************************************************************
525 * Interrupt handling functions
527 ****************************************************************************/
529 static void dump_dte_entry(u16 devid
)
533 for (i
= 0; i
< 4; ++i
)
534 pr_err("AMD-Vi: DTE[%d]: %016llx\n", i
,
535 amd_iommu_dev_table
[devid
].data
[i
]);
538 static void dump_command(unsigned long phys_addr
)
540 struct iommu_cmd
*cmd
= phys_to_virt(phys_addr
);
543 for (i
= 0; i
< 4; ++i
)
544 pr_err("AMD-Vi: CMD[%d]: %08x\n", i
, cmd
->data
[i
]);
547 static void iommu_print_event(struct amd_iommu
*iommu
, void *__evt
)
549 int type
, devid
, domid
, flags
;
550 volatile u32
*event
= __evt
;
555 type
= (event
[1] >> EVENT_TYPE_SHIFT
) & EVENT_TYPE_MASK
;
556 devid
= (event
[0] >> EVENT_DEVID_SHIFT
) & EVENT_DEVID_MASK
;
557 domid
= (event
[1] >> EVENT_DOMID_SHIFT
) & EVENT_DOMID_MASK
;
558 flags
= (event
[1] >> EVENT_FLAGS_SHIFT
) & EVENT_FLAGS_MASK
;
559 address
= (u64
)(((u64
)event
[3]) << 32) | event
[2];
562 /* Did we hit the erratum? */
563 if (++count
== LOOP_TIMEOUT
) {
564 pr_err("AMD-Vi: No event written to event log\n");
571 printk(KERN_ERR
"AMD-Vi: Event logged [");
574 case EVENT_TYPE_ILL_DEV
:
575 printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
576 "address=0x%016llx flags=0x%04x]\n",
577 PCI_BUS_NUM(devid
), PCI_SLOT(devid
), PCI_FUNC(devid
),
579 dump_dte_entry(devid
);
581 case EVENT_TYPE_IO_FAULT
:
582 printk("IO_PAGE_FAULT device=%02x:%02x.%x "
583 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
584 PCI_BUS_NUM(devid
), PCI_SLOT(devid
), PCI_FUNC(devid
),
585 domid
, address
, flags
);
587 case EVENT_TYPE_DEV_TAB_ERR
:
588 printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
589 "address=0x%016llx flags=0x%04x]\n",
590 PCI_BUS_NUM(devid
), PCI_SLOT(devid
), PCI_FUNC(devid
),
593 case EVENT_TYPE_PAGE_TAB_ERR
:
594 printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
595 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
596 PCI_BUS_NUM(devid
), PCI_SLOT(devid
), PCI_FUNC(devid
),
597 domid
, address
, flags
);
599 case EVENT_TYPE_ILL_CMD
:
600 printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address
);
601 dump_command(address
);
603 case EVENT_TYPE_CMD_HARD_ERR
:
604 printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
605 "flags=0x%04x]\n", address
, flags
);
607 case EVENT_TYPE_IOTLB_INV_TO
:
608 printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
609 "address=0x%016llx]\n",
610 PCI_BUS_NUM(devid
), PCI_SLOT(devid
), PCI_FUNC(devid
),
613 case EVENT_TYPE_INV_DEV_REQ
:
614 printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
615 "address=0x%016llx flags=0x%04x]\n",
616 PCI_BUS_NUM(devid
), PCI_SLOT(devid
), PCI_FUNC(devid
),
620 printk(KERN_ERR
"UNKNOWN type=0x%02x]\n", type
);
623 memset(__evt
, 0, 4 * sizeof(u32
));
626 static void iommu_poll_events(struct amd_iommu
*iommu
)
630 head
= readl(iommu
->mmio_base
+ MMIO_EVT_HEAD_OFFSET
);
631 tail
= readl(iommu
->mmio_base
+ MMIO_EVT_TAIL_OFFSET
);
633 while (head
!= tail
) {
634 iommu_print_event(iommu
, iommu
->evt_buf
+ head
);
635 head
= (head
+ EVENT_ENTRY_SIZE
) % EVT_BUFFER_SIZE
;
638 writel(head
, iommu
->mmio_base
+ MMIO_EVT_HEAD_OFFSET
);
641 static void iommu_handle_ppr_entry(struct amd_iommu
*iommu
, u64
*raw
)
643 struct amd_iommu_fault fault
;
645 if (PPR_REQ_TYPE(raw
[0]) != PPR_REQ_FAULT
) {
646 pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
650 fault
.address
= raw
[1];
651 fault
.pasid
= PPR_PASID(raw
[0]);
652 fault
.device_id
= PPR_DEVID(raw
[0]);
653 fault
.tag
= PPR_TAG(raw
[0]);
654 fault
.flags
= PPR_FLAGS(raw
[0]);
656 atomic_notifier_call_chain(&ppr_notifier
, 0, &fault
);
659 static void iommu_poll_ppr_log(struct amd_iommu
*iommu
)
663 if (iommu
->ppr_log
== NULL
)
666 head
= readl(iommu
->mmio_base
+ MMIO_PPR_HEAD_OFFSET
);
667 tail
= readl(iommu
->mmio_base
+ MMIO_PPR_TAIL_OFFSET
);
669 while (head
!= tail
) {
674 raw
= (u64
*)(iommu
->ppr_log
+ head
);
677 * Hardware bug: Interrupt may arrive before the entry is
678 * written to memory. If this happens we need to wait for the
681 for (i
= 0; i
< LOOP_TIMEOUT
; ++i
) {
682 if (PPR_REQ_TYPE(raw
[0]) != 0)
687 /* Avoid memcpy function-call overhead */
692 * To detect the hardware bug we need to clear the entry
695 raw
[0] = raw
[1] = 0UL;
697 /* Update head pointer of hardware ring-buffer */
698 head
= (head
+ PPR_ENTRY_SIZE
) % PPR_LOG_SIZE
;
699 writel(head
, iommu
->mmio_base
+ MMIO_PPR_HEAD_OFFSET
);
701 /* Handle PPR entry */
702 iommu_handle_ppr_entry(iommu
, entry
);
704 /* Refresh ring-buffer information */
705 head
= readl(iommu
->mmio_base
+ MMIO_PPR_HEAD_OFFSET
);
706 tail
= readl(iommu
->mmio_base
+ MMIO_PPR_TAIL_OFFSET
);
710 irqreturn_t
amd_iommu_int_thread(int irq
, void *data
)
712 struct amd_iommu
*iommu
= (struct amd_iommu
*) data
;
713 u32 status
= readl(iommu
->mmio_base
+ MMIO_STATUS_OFFSET
);
715 while (status
& (MMIO_STATUS_EVT_INT_MASK
| MMIO_STATUS_PPR_INT_MASK
)) {
716 /* Enable EVT and PPR interrupts again */
717 writel((MMIO_STATUS_EVT_INT_MASK
| MMIO_STATUS_PPR_INT_MASK
),
718 iommu
->mmio_base
+ MMIO_STATUS_OFFSET
);
720 if (status
& MMIO_STATUS_EVT_INT_MASK
) {
721 pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
722 iommu_poll_events(iommu
);
725 if (status
& MMIO_STATUS_PPR_INT_MASK
) {
726 pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
727 iommu_poll_ppr_log(iommu
);
731 * Hardware bug: ERBT1312
732 * When re-enabling interrupt (by writing 1
733 * to clear the bit), the hardware might also try to set
734 * the interrupt bit in the event status register.
735 * In this scenario, the bit will be set, and disable
736 * subsequent interrupts.
738 * Workaround: The IOMMU driver should read back the
739 * status register and check if the interrupt bits are cleared.
740 * If not, driver will need to go through the interrupt handler
741 * again and re-clear the bits
743 status
= readl(iommu
->mmio_base
+ MMIO_STATUS_OFFSET
);
748 irqreturn_t
amd_iommu_int_handler(int irq
, void *data
)
750 return IRQ_WAKE_THREAD
;
753 /****************************************************************************
755 * IOMMU command queuing functions
757 ****************************************************************************/
759 static int wait_on_sem(volatile u64
*sem
)
763 while (*sem
== 0 && i
< LOOP_TIMEOUT
) {
768 if (i
== LOOP_TIMEOUT
) {
769 pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
776 static void copy_cmd_to_buffer(struct amd_iommu
*iommu
,
777 struct iommu_cmd
*cmd
,
782 target
= iommu
->cmd_buf
+ tail
;
783 tail
= (tail
+ sizeof(*cmd
)) % CMD_BUFFER_SIZE
;
785 /* Copy command to buffer */
786 memcpy(target
, cmd
, sizeof(*cmd
));
788 /* Tell the IOMMU about it */
789 writel(tail
, iommu
->mmio_base
+ MMIO_CMD_TAIL_OFFSET
);
792 static void build_completion_wait(struct iommu_cmd
*cmd
, u64 address
)
794 WARN_ON(address
& 0x7ULL
);
796 memset(cmd
, 0, sizeof(*cmd
));
797 cmd
->data
[0] = lower_32_bits(__pa(address
)) | CMD_COMPL_WAIT_STORE_MASK
;
798 cmd
->data
[1] = upper_32_bits(__pa(address
));
800 CMD_SET_TYPE(cmd
, CMD_COMPL_WAIT
);
803 static void build_inv_dte(struct iommu_cmd
*cmd
, u16 devid
)
805 memset(cmd
, 0, sizeof(*cmd
));
806 cmd
->data
[0] = devid
;
807 CMD_SET_TYPE(cmd
, CMD_INV_DEV_ENTRY
);
810 static void build_inv_iommu_pages(struct iommu_cmd
*cmd
, u64 address
,
811 size_t size
, u16 domid
, int pde
)
816 pages
= iommu_num_pages(address
, size
, PAGE_SIZE
);
821 * If we have to flush more than one page, flush all
822 * TLB entries for this domain
824 address
= CMD_INV_IOMMU_ALL_PAGES_ADDRESS
;
828 address
&= PAGE_MASK
;
830 memset(cmd
, 0, sizeof(*cmd
));
831 cmd
->data
[1] |= domid
;
832 cmd
->data
[2] = lower_32_bits(address
);
833 cmd
->data
[3] = upper_32_bits(address
);
834 CMD_SET_TYPE(cmd
, CMD_INV_IOMMU_PAGES
);
835 if (s
) /* size bit - we flush more than one 4kb page */
836 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK
;
837 if (pde
) /* PDE bit - we want to flush everything, not only the PTEs */
838 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK
;
841 static void build_inv_iotlb_pages(struct iommu_cmd
*cmd
, u16 devid
, int qdep
,
842 u64 address
, size_t size
)
847 pages
= iommu_num_pages(address
, size
, PAGE_SIZE
);
852 * If we have to flush more than one page, flush all
853 * TLB entries for this domain
855 address
= CMD_INV_IOMMU_ALL_PAGES_ADDRESS
;
859 address
&= PAGE_MASK
;
861 memset(cmd
, 0, sizeof(*cmd
));
862 cmd
->data
[0] = devid
;
863 cmd
->data
[0] |= (qdep
& 0xff) << 24;
864 cmd
->data
[1] = devid
;
865 cmd
->data
[2] = lower_32_bits(address
);
866 cmd
->data
[3] = upper_32_bits(address
);
867 CMD_SET_TYPE(cmd
, CMD_INV_IOTLB_PAGES
);
869 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK
;
872 static void build_inv_iommu_pasid(struct iommu_cmd
*cmd
, u16 domid
, int pasid
,
873 u64 address
, bool size
)
875 memset(cmd
, 0, sizeof(*cmd
));
877 address
&= ~(0xfffULL
);
879 cmd
->data
[0] = pasid
;
880 cmd
->data
[1] = domid
;
881 cmd
->data
[2] = lower_32_bits(address
);
882 cmd
->data
[3] = upper_32_bits(address
);
883 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK
;
884 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_GN_MASK
;
886 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK
;
887 CMD_SET_TYPE(cmd
, CMD_INV_IOMMU_PAGES
);
890 static void build_inv_iotlb_pasid(struct iommu_cmd
*cmd
, u16 devid
, int pasid
,
891 int qdep
, u64 address
, bool size
)
893 memset(cmd
, 0, sizeof(*cmd
));
895 address
&= ~(0xfffULL
);
897 cmd
->data
[0] = devid
;
898 cmd
->data
[0] |= ((pasid
>> 8) & 0xff) << 16;
899 cmd
->data
[0] |= (qdep
& 0xff) << 24;
900 cmd
->data
[1] = devid
;
901 cmd
->data
[1] |= (pasid
& 0xff) << 16;
902 cmd
->data
[2] = lower_32_bits(address
);
903 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_GN_MASK
;
904 cmd
->data
[3] = upper_32_bits(address
);
906 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK
;
907 CMD_SET_TYPE(cmd
, CMD_INV_IOTLB_PAGES
);
910 static void build_complete_ppr(struct iommu_cmd
*cmd
, u16 devid
, int pasid
,
911 int status
, int tag
, bool gn
)
913 memset(cmd
, 0, sizeof(*cmd
));
915 cmd
->data
[0] = devid
;
917 cmd
->data
[1] = pasid
;
918 cmd
->data
[2] = CMD_INV_IOMMU_PAGES_GN_MASK
;
920 cmd
->data
[3] = tag
& 0x1ff;
921 cmd
->data
[3] |= (status
& PPR_STATUS_MASK
) << PPR_STATUS_SHIFT
;
923 CMD_SET_TYPE(cmd
, CMD_COMPLETE_PPR
);
926 static void build_inv_all(struct iommu_cmd
*cmd
)
928 memset(cmd
, 0, sizeof(*cmd
));
929 CMD_SET_TYPE(cmd
, CMD_INV_ALL
);
932 static void build_inv_irt(struct iommu_cmd
*cmd
, u16 devid
)
934 memset(cmd
, 0, sizeof(*cmd
));
935 cmd
->data
[0] = devid
;
936 CMD_SET_TYPE(cmd
, CMD_INV_IRT
);
940 * Writes the command to the IOMMUs command buffer and informs the
941 * hardware about the new command.
943 static int iommu_queue_command_sync(struct amd_iommu
*iommu
,
944 struct iommu_cmd
*cmd
,
947 u32 left
, tail
, head
, next_tail
;
951 spin_lock_irqsave(&iommu
->lock
, flags
);
953 head
= readl(iommu
->mmio_base
+ MMIO_CMD_HEAD_OFFSET
);
954 tail
= readl(iommu
->mmio_base
+ MMIO_CMD_TAIL_OFFSET
);
955 next_tail
= (tail
+ sizeof(*cmd
)) % CMD_BUFFER_SIZE
;
956 left
= (head
- next_tail
) % CMD_BUFFER_SIZE
;
959 struct iommu_cmd sync_cmd
;
960 volatile u64 sem
= 0;
963 build_completion_wait(&sync_cmd
, (u64
)&sem
);
964 copy_cmd_to_buffer(iommu
, &sync_cmd
, tail
);
966 spin_unlock_irqrestore(&iommu
->lock
, flags
);
968 if ((ret
= wait_on_sem(&sem
)) != 0)
974 copy_cmd_to_buffer(iommu
, cmd
, tail
);
976 /* We need to sync now to make sure all commands are processed */
977 iommu
->need_sync
= sync
;
979 spin_unlock_irqrestore(&iommu
->lock
, flags
);
984 static int iommu_queue_command(struct amd_iommu
*iommu
, struct iommu_cmd
*cmd
)
986 return iommu_queue_command_sync(iommu
, cmd
, true);
990 * This function queues a completion wait command into the command
993 static int iommu_completion_wait(struct amd_iommu
*iommu
)
995 struct iommu_cmd cmd
;
996 volatile u64 sem
= 0;
999 if (!iommu
->need_sync
)
1002 build_completion_wait(&cmd
, (u64
)&sem
);
1004 ret
= iommu_queue_command_sync(iommu
, &cmd
, false);
1008 return wait_on_sem(&sem
);
1011 static int iommu_flush_dte(struct amd_iommu
*iommu
, u16 devid
)
1013 struct iommu_cmd cmd
;
1015 build_inv_dte(&cmd
, devid
);
1017 return iommu_queue_command(iommu
, &cmd
);
1020 static void iommu_flush_dte_all(struct amd_iommu
*iommu
)
1024 for (devid
= 0; devid
<= 0xffff; ++devid
)
1025 iommu_flush_dte(iommu
, devid
);
1027 iommu_completion_wait(iommu
);
1031 * This function uses heavy locking and may disable irqs for some time. But
1032 * this is no issue because it is only called during resume.
1034 static void iommu_flush_tlb_all(struct amd_iommu
*iommu
)
1038 for (dom_id
= 0; dom_id
<= 0xffff; ++dom_id
) {
1039 struct iommu_cmd cmd
;
1040 build_inv_iommu_pages(&cmd
, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS
,
1042 iommu_queue_command(iommu
, &cmd
);
1045 iommu_completion_wait(iommu
);
1048 static void iommu_flush_all(struct amd_iommu
*iommu
)
1050 struct iommu_cmd cmd
;
1052 build_inv_all(&cmd
);
1054 iommu_queue_command(iommu
, &cmd
);
1055 iommu_completion_wait(iommu
);
1058 static void iommu_flush_irt(struct amd_iommu
*iommu
, u16 devid
)
1060 struct iommu_cmd cmd
;
1062 build_inv_irt(&cmd
, devid
);
1064 iommu_queue_command(iommu
, &cmd
);
1067 static void iommu_flush_irt_all(struct amd_iommu
*iommu
)
1071 for (devid
= 0; devid
<= MAX_DEV_TABLE_ENTRIES
; devid
++)
1072 iommu_flush_irt(iommu
, devid
);
1074 iommu_completion_wait(iommu
);
1077 void iommu_flush_all_caches(struct amd_iommu
*iommu
)
1079 if (iommu_feature(iommu
, FEATURE_IA
)) {
1080 iommu_flush_all(iommu
);
1082 iommu_flush_dte_all(iommu
);
1083 iommu_flush_irt_all(iommu
);
1084 iommu_flush_tlb_all(iommu
);
1089 * Command send function for flushing on-device TLB
1091 static int device_flush_iotlb(struct iommu_dev_data
*dev_data
,
1092 u64 address
, size_t size
)
1094 struct amd_iommu
*iommu
;
1095 struct iommu_cmd cmd
;
1098 qdep
= dev_data
->ats
.qdep
;
1099 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
1101 build_inv_iotlb_pages(&cmd
, dev_data
->devid
, qdep
, address
, size
);
1103 return iommu_queue_command(iommu
, &cmd
);
1107 * Command send function for invalidating a device table entry
1109 static int device_flush_dte(struct iommu_dev_data
*dev_data
)
1111 struct amd_iommu
*iommu
;
1115 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
1116 alias
= dev_data
->alias
;
1118 ret
= iommu_flush_dte(iommu
, dev_data
->devid
);
1119 if (!ret
&& alias
!= dev_data
->devid
)
1120 ret
= iommu_flush_dte(iommu
, alias
);
1124 if (dev_data
->ats
.enabled
)
1125 ret
= device_flush_iotlb(dev_data
, 0, ~0UL);
1131 * TLB invalidation function which is called from the mapping functions.
1132 * It invalidates a single PTE if the range to flush is within a single
1133 * page. Otherwise it flushes the whole TLB of the IOMMU.
1135 static void __domain_flush_pages(struct protection_domain
*domain
,
1136 u64 address
, size_t size
, int pde
)
1138 struct iommu_dev_data
*dev_data
;
1139 struct iommu_cmd cmd
;
1142 build_inv_iommu_pages(&cmd
, address
, size
, domain
->id
, pde
);
1144 for (i
= 0; i
< amd_iommus_present
; ++i
) {
1145 if (!domain
->dev_iommu
[i
])
1149 * Devices of this domain are behind this IOMMU
1150 * We need a TLB flush
1152 ret
|= iommu_queue_command(amd_iommus
[i
], &cmd
);
1155 list_for_each_entry(dev_data
, &domain
->dev_list
, list
) {
1157 if (!dev_data
->ats
.enabled
)
1160 ret
|= device_flush_iotlb(dev_data
, address
, size
);
1166 static void domain_flush_pages(struct protection_domain
*domain
,
1167 u64 address
, size_t size
)
1169 __domain_flush_pages(domain
, address
, size
, 0);
1172 /* Flush the whole IO/TLB for a given protection domain */
1173 static void domain_flush_tlb(struct protection_domain
*domain
)
1175 __domain_flush_pages(domain
, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS
, 0);
1178 /* Flush the whole IO/TLB for a given protection domain - including PDE */
1179 static void domain_flush_tlb_pde(struct protection_domain
*domain
)
1181 __domain_flush_pages(domain
, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS
, 1);
1184 static void domain_flush_complete(struct protection_domain
*domain
)
1188 for (i
= 0; i
< amd_iommus_present
; ++i
) {
1189 if (domain
&& !domain
->dev_iommu
[i
])
1193 * Devices of this domain are behind this IOMMU
1194 * We need to wait for completion of all commands.
1196 iommu_completion_wait(amd_iommus
[i
]);
1202 * This function flushes the DTEs for all devices in domain
1204 static void domain_flush_devices(struct protection_domain
*domain
)
1206 struct iommu_dev_data
*dev_data
;
1208 list_for_each_entry(dev_data
, &domain
->dev_list
, list
)
1209 device_flush_dte(dev_data
);
1212 /****************************************************************************
1214 * The functions below are used the create the page table mappings for
1215 * unity mapped regions.
1217 ****************************************************************************/
1220 * This function is used to add another level to an IO page table. Adding
1221 * another level increases the size of the address space by 9 bits to a size up
1224 static bool increase_address_space(struct protection_domain
*domain
,
1229 if (domain
->mode
== PAGE_MODE_6_LEVEL
)
1230 /* address space already 64 bit large */
1233 pte
= (void *)get_zeroed_page(gfp
);
1237 *pte
= PM_LEVEL_PDE(domain
->mode
,
1238 virt_to_phys(domain
->pt_root
));
1239 domain
->pt_root
= pte
;
1241 domain
->updated
= true;
1246 static u64
*alloc_pte(struct protection_domain
*domain
,
1247 unsigned long address
,
1248 unsigned long page_size
,
1255 BUG_ON(!is_power_of_2(page_size
));
1257 while (address
> PM_LEVEL_SIZE(domain
->mode
))
1258 increase_address_space(domain
, gfp
);
1260 level
= domain
->mode
- 1;
1261 pte
= &domain
->pt_root
[PM_LEVEL_INDEX(level
, address
)];
1262 address
= PAGE_SIZE_ALIGN(address
, page_size
);
1263 end_lvl
= PAGE_SIZE_LEVEL(page_size
);
1265 while (level
> end_lvl
) {
1270 if (!IOMMU_PTE_PRESENT(__pte
)) {
1271 page
= (u64
*)get_zeroed_page(gfp
);
1275 __npte
= PM_LEVEL_PDE(level
, virt_to_phys(page
));
1277 if (cmpxchg64(pte
, __pte
, __npte
)) {
1278 free_page((unsigned long)page
);
1283 /* No level skipping support yet */
1284 if (PM_PTE_LEVEL(*pte
) != level
)
1289 pte
= IOMMU_PTE_PAGE(*pte
);
1291 if (pte_page
&& level
== end_lvl
)
1294 pte
= &pte
[PM_LEVEL_INDEX(level
, address
)];
1301 * This function checks if there is a PTE for a given dma address. If
1302 * there is one, it returns the pointer to it.
1304 static u64
*fetch_pte(struct protection_domain
*domain
,
1305 unsigned long address
,
1306 unsigned long *page_size
)
1311 if (address
> PM_LEVEL_SIZE(domain
->mode
))
1314 level
= domain
->mode
- 1;
1315 pte
= &domain
->pt_root
[PM_LEVEL_INDEX(level
, address
)];
1316 *page_size
= PTE_LEVEL_PAGE_SIZE(level
);
1321 if (!IOMMU_PTE_PRESENT(*pte
))
1325 if (PM_PTE_LEVEL(*pte
) == 7 ||
1326 PM_PTE_LEVEL(*pte
) == 0)
1329 /* No level skipping support yet */
1330 if (PM_PTE_LEVEL(*pte
) != level
)
1335 /* Walk to the next level */
1336 pte
= IOMMU_PTE_PAGE(*pte
);
1337 pte
= &pte
[PM_LEVEL_INDEX(level
, address
)];
1338 *page_size
= PTE_LEVEL_PAGE_SIZE(level
);
1341 if (PM_PTE_LEVEL(*pte
) == 0x07) {
1342 unsigned long pte_mask
;
1345 * If we have a series of large PTEs, make
1346 * sure to return a pointer to the first one.
1348 *page_size
= pte_mask
= PTE_PAGE_SIZE(*pte
);
1349 pte_mask
= ~((PAGE_SIZE_PTE_COUNT(pte_mask
) << 3) - 1);
1350 pte
= (u64
*)(((unsigned long)pte
) & pte_mask
);
1357 * Generic mapping functions. It maps a physical address into a DMA
1358 * address space. It allocates the page table pages if necessary.
1359 * In the future it can be extended to a generic mapping function
1360 * supporting all features of AMD IOMMU page tables like level skipping
1361 * and full 64 bit address spaces.
1363 static int iommu_map_page(struct protection_domain
*dom
,
1364 unsigned long bus_addr
,
1365 unsigned long phys_addr
,
1366 unsigned long page_size
,
1373 BUG_ON(!IS_ALIGNED(bus_addr
, page_size
));
1374 BUG_ON(!IS_ALIGNED(phys_addr
, page_size
));
1376 if (!(prot
& IOMMU_PROT_MASK
))
1379 count
= PAGE_SIZE_PTE_COUNT(page_size
);
1380 pte
= alloc_pte(dom
, bus_addr
, page_size
, NULL
, gfp
);
1385 for (i
= 0; i
< count
; ++i
)
1386 if (IOMMU_PTE_PRESENT(pte
[i
]))
1390 __pte
= PAGE_SIZE_PTE(phys_addr
, page_size
);
1391 __pte
|= PM_LEVEL_ENC(7) | IOMMU_PTE_P
| IOMMU_PTE_FC
;
1393 __pte
= phys_addr
| IOMMU_PTE_P
| IOMMU_PTE_FC
;
1395 if (prot
& IOMMU_PROT_IR
)
1396 __pte
|= IOMMU_PTE_IR
;
1397 if (prot
& IOMMU_PROT_IW
)
1398 __pte
|= IOMMU_PTE_IW
;
1400 for (i
= 0; i
< count
; ++i
)
1408 static unsigned long iommu_unmap_page(struct protection_domain
*dom
,
1409 unsigned long bus_addr
,
1410 unsigned long page_size
)
1412 unsigned long long unmapped
;
1413 unsigned long unmap_size
;
1416 BUG_ON(!is_power_of_2(page_size
));
1420 while (unmapped
< page_size
) {
1422 pte
= fetch_pte(dom
, bus_addr
, &unmap_size
);
1427 count
= PAGE_SIZE_PTE_COUNT(unmap_size
);
1428 for (i
= 0; i
< count
; i
++)
1432 bus_addr
= (bus_addr
& ~(unmap_size
- 1)) + unmap_size
;
1433 unmapped
+= unmap_size
;
1436 BUG_ON(unmapped
&& !is_power_of_2(unmapped
));
1441 /****************************************************************************
1443 * The next functions belong to the address allocator for the dma_ops
1444 * interface functions.
1446 ****************************************************************************/
1449 static unsigned long dma_ops_alloc_iova(struct device
*dev
,
1450 struct dma_ops_domain
*dma_dom
,
1451 unsigned int pages
, u64 dma_mask
)
1453 unsigned long pfn
= 0;
1455 pages
= __roundup_pow_of_two(pages
);
1457 if (dma_mask
> DMA_BIT_MASK(32))
1458 pfn
= alloc_iova_fast(&dma_dom
->iovad
, pages
,
1459 IOVA_PFN(DMA_BIT_MASK(32)));
1462 pfn
= alloc_iova_fast(&dma_dom
->iovad
, pages
, IOVA_PFN(dma_mask
));
1464 return (pfn
<< PAGE_SHIFT
);
1467 static void dma_ops_free_iova(struct dma_ops_domain
*dma_dom
,
1468 unsigned long address
,
1471 pages
= __roundup_pow_of_two(pages
);
1472 address
>>= PAGE_SHIFT
;
1474 free_iova_fast(&dma_dom
->iovad
, address
, pages
);
1477 /****************************************************************************
1479 * The next functions belong to the domain allocation. A domain is
1480 * allocated for every IOMMU as the default domain. If device isolation
1481 * is enabled, every device get its own domain. The most important thing
1482 * about domains is the page table mapping the DMA address space they
1485 ****************************************************************************/
1488 * This function adds a protection domain to the global protection domain list
1490 static void add_domain_to_list(struct protection_domain
*domain
)
1492 unsigned long flags
;
1494 spin_lock_irqsave(&amd_iommu_pd_lock
, flags
);
1495 list_add(&domain
->list
, &amd_iommu_pd_list
);
1496 spin_unlock_irqrestore(&amd_iommu_pd_lock
, flags
);
1500 * This function removes a protection domain to the global
1501 * protection domain list
1503 static void del_domain_from_list(struct protection_domain
*domain
)
1505 unsigned long flags
;
1507 spin_lock_irqsave(&amd_iommu_pd_lock
, flags
);
1508 list_del(&domain
->list
);
1509 spin_unlock_irqrestore(&amd_iommu_pd_lock
, flags
);
1512 static u16
domain_id_alloc(void)
1514 unsigned long flags
;
1517 write_lock_irqsave(&amd_iommu_devtable_lock
, flags
);
1518 id
= find_first_zero_bit(amd_iommu_pd_alloc_bitmap
, MAX_DOMAIN_ID
);
1520 if (id
> 0 && id
< MAX_DOMAIN_ID
)
1521 __set_bit(id
, amd_iommu_pd_alloc_bitmap
);
1524 write_unlock_irqrestore(&amd_iommu_devtable_lock
, flags
);
1529 static void domain_id_free(int id
)
1531 unsigned long flags
;
1533 write_lock_irqsave(&amd_iommu_devtable_lock
, flags
);
1534 if (id
> 0 && id
< MAX_DOMAIN_ID
)
1535 __clear_bit(id
, amd_iommu_pd_alloc_bitmap
);
1536 write_unlock_irqrestore(&amd_iommu_devtable_lock
, flags
);
1539 #define DEFINE_FREE_PT_FN(LVL, FN) \
1540 static void free_pt_##LVL (unsigned long __pt) \
1548 for (i = 0; i < 512; ++i) { \
1549 /* PTE present? */ \
1550 if (!IOMMU_PTE_PRESENT(pt[i])) \
1554 if (PM_PTE_LEVEL(pt[i]) == 0 || \
1555 PM_PTE_LEVEL(pt[i]) == 7) \
1558 p = (unsigned long)IOMMU_PTE_PAGE(pt[i]); \
1561 free_page((unsigned long)pt); \
1564 DEFINE_FREE_PT_FN(l2
, free_page
)
1565 DEFINE_FREE_PT_FN(l3
, free_pt_l2
)
1566 DEFINE_FREE_PT_FN(l4
, free_pt_l3
)
1567 DEFINE_FREE_PT_FN(l5
, free_pt_l4
)
1568 DEFINE_FREE_PT_FN(l6
, free_pt_l5
)
1570 static void free_pagetable(struct protection_domain
*domain
)
1572 unsigned long root
= (unsigned long)domain
->pt_root
;
1574 switch (domain
->mode
) {
1575 case PAGE_MODE_NONE
:
1577 case PAGE_MODE_1_LEVEL
:
1580 case PAGE_MODE_2_LEVEL
:
1583 case PAGE_MODE_3_LEVEL
:
1586 case PAGE_MODE_4_LEVEL
:
1589 case PAGE_MODE_5_LEVEL
:
1592 case PAGE_MODE_6_LEVEL
:
1600 static void free_gcr3_tbl_level1(u64
*tbl
)
1605 for (i
= 0; i
< 512; ++i
) {
1606 if (!(tbl
[i
] & GCR3_VALID
))
1609 ptr
= __va(tbl
[i
] & PAGE_MASK
);
1611 free_page((unsigned long)ptr
);
1615 static void free_gcr3_tbl_level2(u64
*tbl
)
1620 for (i
= 0; i
< 512; ++i
) {
1621 if (!(tbl
[i
] & GCR3_VALID
))
1624 ptr
= __va(tbl
[i
] & PAGE_MASK
);
1626 free_gcr3_tbl_level1(ptr
);
1630 static void free_gcr3_table(struct protection_domain
*domain
)
1632 if (domain
->glx
== 2)
1633 free_gcr3_tbl_level2(domain
->gcr3_tbl
);
1634 else if (domain
->glx
== 1)
1635 free_gcr3_tbl_level1(domain
->gcr3_tbl
);
1637 BUG_ON(domain
->glx
!= 0);
1639 free_page((unsigned long)domain
->gcr3_tbl
);
1643 * Free a domain, only used if something went wrong in the
1644 * allocation path and we need to free an already allocated page table
1646 static void dma_ops_domain_free(struct dma_ops_domain
*dom
)
1651 del_domain_from_list(&dom
->domain
);
1653 put_iova_domain(&dom
->iovad
);
1655 free_pagetable(&dom
->domain
);
1661 * Allocates a new protection domain usable for the dma_ops functions.
1662 * It also initializes the page table and the address allocator data
1663 * structures required for the dma_ops interface
1665 static struct dma_ops_domain
*dma_ops_domain_alloc(void)
1667 struct dma_ops_domain
*dma_dom
;
1669 dma_dom
= kzalloc(sizeof(struct dma_ops_domain
), GFP_KERNEL
);
1673 if (protection_domain_init(&dma_dom
->domain
))
1676 dma_dom
->domain
.mode
= PAGE_MODE_3_LEVEL
;
1677 dma_dom
->domain
.pt_root
= (void *)get_zeroed_page(GFP_KERNEL
);
1678 dma_dom
->domain
.flags
= PD_DMA_OPS_MASK
;
1679 if (!dma_dom
->domain
.pt_root
)
1682 init_iova_domain(&dma_dom
->iovad
, PAGE_SIZE
,
1683 IOVA_START_PFN
, DMA_32BIT_PFN
);
1685 /* Initialize reserved ranges */
1686 copy_reserved_iova(&reserved_iova_ranges
, &dma_dom
->iovad
);
1688 add_domain_to_list(&dma_dom
->domain
);
1693 dma_ops_domain_free(dma_dom
);
1699 * little helper function to check whether a given protection domain is a
1702 static bool dma_ops_domain(struct protection_domain
*domain
)
1704 return domain
->flags
& PD_DMA_OPS_MASK
;
1707 static void set_dte_entry(u16 devid
, struct protection_domain
*domain
, bool ats
)
1712 if (domain
->mode
!= PAGE_MODE_NONE
)
1713 pte_root
= virt_to_phys(domain
->pt_root
);
1715 pte_root
|= (domain
->mode
& DEV_ENTRY_MODE_MASK
)
1716 << DEV_ENTRY_MODE_SHIFT
;
1717 pte_root
|= IOMMU_PTE_IR
| IOMMU_PTE_IW
| IOMMU_PTE_P
| IOMMU_PTE_TV
;
1719 flags
= amd_iommu_dev_table
[devid
].data
[1];
1722 flags
|= DTE_FLAG_IOTLB
;
1724 if (domain
->flags
& PD_IOMMUV2_MASK
) {
1725 u64 gcr3
= __pa(domain
->gcr3_tbl
);
1726 u64 glx
= domain
->glx
;
1729 pte_root
|= DTE_FLAG_GV
;
1730 pte_root
|= (glx
& DTE_GLX_MASK
) << DTE_GLX_SHIFT
;
1732 /* First mask out possible old values for GCR3 table */
1733 tmp
= DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B
;
1736 tmp
= DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C
;
1739 /* Encode GCR3 table into DTE */
1740 tmp
= DTE_GCR3_VAL_A(gcr3
) << DTE_GCR3_SHIFT_A
;
1743 tmp
= DTE_GCR3_VAL_B(gcr3
) << DTE_GCR3_SHIFT_B
;
1746 tmp
= DTE_GCR3_VAL_C(gcr3
) << DTE_GCR3_SHIFT_C
;
1750 flags
&= ~(0xffffUL
);
1751 flags
|= domain
->id
;
1753 amd_iommu_dev_table
[devid
].data
[1] = flags
;
1754 amd_iommu_dev_table
[devid
].data
[0] = pte_root
;
1757 static void clear_dte_entry(u16 devid
)
1759 /* remove entry from the device table seen by the hardware */
1760 amd_iommu_dev_table
[devid
].data
[0] = IOMMU_PTE_P
| IOMMU_PTE_TV
;
1761 amd_iommu_dev_table
[devid
].data
[1] &= DTE_FLAG_MASK
;
1763 amd_iommu_apply_erratum_63(devid
);
1766 static void do_attach(struct iommu_dev_data
*dev_data
,
1767 struct protection_domain
*domain
)
1769 struct amd_iommu
*iommu
;
1773 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
1774 alias
= dev_data
->alias
;
1775 ats
= dev_data
->ats
.enabled
;
1777 /* Update data structures */
1778 dev_data
->domain
= domain
;
1779 list_add(&dev_data
->list
, &domain
->dev_list
);
1781 /* Do reference counting */
1782 domain
->dev_iommu
[iommu
->index
] += 1;
1783 domain
->dev_cnt
+= 1;
1785 /* Update device table */
1786 set_dte_entry(dev_data
->devid
, domain
, ats
);
1787 if (alias
!= dev_data
->devid
)
1788 set_dte_entry(alias
, domain
, ats
);
1790 device_flush_dte(dev_data
);
1793 static void do_detach(struct iommu_dev_data
*dev_data
)
1795 struct amd_iommu
*iommu
;
1799 * First check if the device is still attached. It might already
1800 * be detached from its domain because the generic
1801 * iommu_detach_group code detached it and we try again here in
1802 * our alias handling.
1804 if (!dev_data
->domain
)
1807 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
1808 alias
= dev_data
->alias
;
1810 /* decrease reference counters */
1811 dev_data
->domain
->dev_iommu
[iommu
->index
] -= 1;
1812 dev_data
->domain
->dev_cnt
-= 1;
1814 /* Update data structures */
1815 dev_data
->domain
= NULL
;
1816 list_del(&dev_data
->list
);
1817 clear_dte_entry(dev_data
->devid
);
1818 if (alias
!= dev_data
->devid
)
1819 clear_dte_entry(alias
);
1821 /* Flush the DTE entry */
1822 device_flush_dte(dev_data
);
1826 * If a device is not yet associated with a domain, this function does
1827 * assigns it visible for the hardware
1829 static int __attach_device(struct iommu_dev_data
*dev_data
,
1830 struct protection_domain
*domain
)
1835 * Must be called with IRQs disabled. Warn here to detect early
1838 WARN_ON(!irqs_disabled());
1841 spin_lock(&domain
->lock
);
1844 if (dev_data
->domain
!= NULL
)
1847 /* Attach alias group root */
1848 do_attach(dev_data
, domain
);
1855 spin_unlock(&domain
->lock
);
1861 static void pdev_iommuv2_disable(struct pci_dev
*pdev
)
1863 pci_disable_ats(pdev
);
1864 pci_disable_pri(pdev
);
1865 pci_disable_pasid(pdev
);
1868 /* FIXME: Change generic reset-function to do the same */
1869 static int pri_reset_while_enabled(struct pci_dev
*pdev
)
1874 pos
= pci_find_ext_capability(pdev
, PCI_EXT_CAP_ID_PRI
);
1878 pci_read_config_word(pdev
, pos
+ PCI_PRI_CTRL
, &control
);
1879 control
|= PCI_PRI_CTRL_RESET
;
1880 pci_write_config_word(pdev
, pos
+ PCI_PRI_CTRL
, control
);
1885 static int pdev_iommuv2_enable(struct pci_dev
*pdev
)
1890 /* FIXME: Hardcode number of outstanding requests for now */
1892 if (pdev_pri_erratum(pdev
, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE
))
1894 reset_enable
= pdev_pri_erratum(pdev
, AMD_PRI_DEV_ERRATUM_ENABLE_RESET
);
1896 /* Only allow access to user-accessible pages */
1897 ret
= pci_enable_pasid(pdev
, 0);
1901 /* First reset the PRI state of the device */
1902 ret
= pci_reset_pri(pdev
);
1907 ret
= pci_enable_pri(pdev
, reqs
);
1912 ret
= pri_reset_while_enabled(pdev
);
1917 ret
= pci_enable_ats(pdev
, PAGE_SHIFT
);
1924 pci_disable_pri(pdev
);
1925 pci_disable_pasid(pdev
);
1930 /* FIXME: Move this to PCI code */
1931 #define PCI_PRI_TLP_OFF (1 << 15)
1933 static bool pci_pri_tlp_required(struct pci_dev
*pdev
)
1938 pos
= pci_find_ext_capability(pdev
, PCI_EXT_CAP_ID_PRI
);
1942 pci_read_config_word(pdev
, pos
+ PCI_PRI_STATUS
, &status
);
1944 return (status
& PCI_PRI_TLP_OFF
) ? true : false;
1948 * If a device is not yet associated with a domain, this function
1949 * assigns it visible for the hardware
1951 static int attach_device(struct device
*dev
,
1952 struct protection_domain
*domain
)
1954 struct pci_dev
*pdev
;
1955 struct iommu_dev_data
*dev_data
;
1956 unsigned long flags
;
1959 dev_data
= get_dev_data(dev
);
1961 if (!dev_is_pci(dev
))
1962 goto skip_ats_check
;
1964 pdev
= to_pci_dev(dev
);
1965 if (domain
->flags
& PD_IOMMUV2_MASK
) {
1966 if (!dev_data
->passthrough
)
1969 if (dev_data
->iommu_v2
) {
1970 if (pdev_iommuv2_enable(pdev
) != 0)
1973 dev_data
->ats
.enabled
= true;
1974 dev_data
->ats
.qdep
= pci_ats_queue_depth(pdev
);
1975 dev_data
->pri_tlp
= pci_pri_tlp_required(pdev
);
1977 } else if (amd_iommu_iotlb_sup
&&
1978 pci_enable_ats(pdev
, PAGE_SHIFT
) == 0) {
1979 dev_data
->ats
.enabled
= true;
1980 dev_data
->ats
.qdep
= pci_ats_queue_depth(pdev
);
1984 write_lock_irqsave(&amd_iommu_devtable_lock
, flags
);
1985 ret
= __attach_device(dev_data
, domain
);
1986 write_unlock_irqrestore(&amd_iommu_devtable_lock
, flags
);
1989 * We might boot into a crash-kernel here. The crashed kernel
1990 * left the caches in the IOMMU dirty. So we have to flush
1991 * here to evict all dirty stuff.
1993 domain_flush_tlb_pde(domain
);
1999 * Removes a device from a protection domain (unlocked)
2001 static void __detach_device(struct iommu_dev_data
*dev_data
)
2003 struct protection_domain
*domain
;
2006 * Must be called with IRQs disabled. Warn here to detect early
2009 WARN_ON(!irqs_disabled());
2011 if (WARN_ON(!dev_data
->domain
))
2014 domain
= dev_data
->domain
;
2016 spin_lock(&domain
->lock
);
2018 do_detach(dev_data
);
2020 spin_unlock(&domain
->lock
);
2024 * Removes a device from a protection domain (with devtable_lock held)
2026 static void detach_device(struct device
*dev
)
2028 struct protection_domain
*domain
;
2029 struct iommu_dev_data
*dev_data
;
2030 unsigned long flags
;
2032 dev_data
= get_dev_data(dev
);
2033 domain
= dev_data
->domain
;
2035 /* lock device table */
2036 write_lock_irqsave(&amd_iommu_devtable_lock
, flags
);
2037 __detach_device(dev_data
);
2038 write_unlock_irqrestore(&amd_iommu_devtable_lock
, flags
);
2040 if (!dev_is_pci(dev
))
2043 if (domain
->flags
& PD_IOMMUV2_MASK
&& dev_data
->iommu_v2
)
2044 pdev_iommuv2_disable(to_pci_dev(dev
));
2045 else if (dev_data
->ats
.enabled
)
2046 pci_disable_ats(to_pci_dev(dev
));
2048 dev_data
->ats
.enabled
= false;
2051 static int amd_iommu_add_device(struct device
*dev
)
2053 struct iommu_dev_data
*dev_data
;
2054 struct iommu_domain
*domain
;
2055 struct amd_iommu
*iommu
;
2058 if (!check_device(dev
) || get_dev_data(dev
))
2061 devid
= get_device_id(dev
);
2065 iommu
= amd_iommu_rlookup_table
[devid
];
2067 ret
= iommu_init_device(dev
);
2069 if (ret
!= -ENOTSUPP
)
2070 pr_err("Failed to initialize device %s - trying to proceed anyway\n",
2073 iommu_ignore_device(dev
);
2074 dev
->archdata
.dma_ops
= &nommu_dma_ops
;
2077 init_iommu_group(dev
);
2079 dev_data
= get_dev_data(dev
);
2083 if (iommu_pass_through
|| dev_data
->iommu_v2
)
2084 iommu_request_dm_for_dev(dev
);
2086 /* Domains are initialized for this device - have a look what we ended up with */
2087 domain
= iommu_get_domain_for_dev(dev
);
2088 if (domain
->type
== IOMMU_DOMAIN_IDENTITY
)
2089 dev_data
->passthrough
= true;
2091 dev
->archdata
.dma_ops
= &amd_iommu_dma_ops
;
2094 iommu_completion_wait(iommu
);
2099 static void amd_iommu_remove_device(struct device
*dev
)
2101 struct amd_iommu
*iommu
;
2104 if (!check_device(dev
))
2107 devid
= get_device_id(dev
);
2111 iommu
= amd_iommu_rlookup_table
[devid
];
2113 iommu_uninit_device(dev
);
2114 iommu_completion_wait(iommu
);
2117 static struct iommu_group
*amd_iommu_device_group(struct device
*dev
)
2119 if (dev_is_pci(dev
))
2120 return pci_device_group(dev
);
2122 return acpihid_device_group(dev
);
2125 /*****************************************************************************
2127 * The next functions belong to the dma_ops mapping/unmapping code.
2129 *****************************************************************************/
2131 static void __queue_flush(struct flush_queue
*queue
)
2133 struct protection_domain
*domain
;
2134 unsigned long flags
;
2137 /* First flush TLB of all known domains */
2138 spin_lock_irqsave(&amd_iommu_pd_lock
, flags
);
2139 list_for_each_entry(domain
, &amd_iommu_pd_list
, list
)
2140 domain_flush_tlb(domain
);
2141 spin_unlock_irqrestore(&amd_iommu_pd_lock
, flags
);
2143 /* Wait until flushes have completed */
2144 domain_flush_complete(NULL
);
2146 for (idx
= 0; idx
< queue
->next
; ++idx
) {
2147 struct flush_queue_entry
*entry
;
2149 entry
= queue
->entries
+ idx
;
2151 free_iova_fast(&entry
->dma_dom
->iovad
,
2155 /* Not really necessary, just to make sure we catch any bugs */
2156 entry
->dma_dom
= NULL
;
2162 static void queue_flush_all(void)
2166 for_each_possible_cpu(cpu
) {
2167 struct flush_queue
*queue
;
2168 unsigned long flags
;
2170 queue
= per_cpu_ptr(&flush_queue
, cpu
);
2171 spin_lock_irqsave(&queue
->lock
, flags
);
2172 if (queue
->next
> 0)
2173 __queue_flush(queue
);
2174 spin_unlock_irqrestore(&queue
->lock
, flags
);
2178 static void queue_flush_timeout(unsigned long unsused
)
2180 atomic_set(&queue_timer_on
, 0);
2184 static void queue_add(struct dma_ops_domain
*dma_dom
,
2185 unsigned long address
, unsigned long pages
)
2187 struct flush_queue_entry
*entry
;
2188 struct flush_queue
*queue
;
2189 unsigned long flags
;
2192 pages
= __roundup_pow_of_two(pages
);
2193 address
>>= PAGE_SHIFT
;
2195 queue
= get_cpu_ptr(&flush_queue
);
2196 spin_lock_irqsave(&queue
->lock
, flags
);
2198 if (queue
->next
== FLUSH_QUEUE_SIZE
)
2199 __queue_flush(queue
);
2201 idx
= queue
->next
++;
2202 entry
= queue
->entries
+ idx
;
2204 entry
->iova_pfn
= address
;
2205 entry
->pages
= pages
;
2206 entry
->dma_dom
= dma_dom
;
2208 spin_unlock_irqrestore(&queue
->lock
, flags
);
2210 if (atomic_cmpxchg(&queue_timer_on
, 0, 1) == 0)
2211 mod_timer(&queue_timer
, jiffies
+ msecs_to_jiffies(10));
2213 put_cpu_ptr(&flush_queue
);
2218 * In the dma_ops path we only have the struct device. This function
2219 * finds the corresponding IOMMU, the protection domain and the
2220 * requestor id for a given device.
2221 * If the device is not yet associated with a domain this is also done
2224 static struct protection_domain
*get_domain(struct device
*dev
)
2226 struct protection_domain
*domain
;
2228 if (!check_device(dev
))
2229 return ERR_PTR(-EINVAL
);
2231 domain
= get_dev_data(dev
)->domain
;
2232 if (!dma_ops_domain(domain
))
2233 return ERR_PTR(-EBUSY
);
2238 static void update_device_table(struct protection_domain
*domain
)
2240 struct iommu_dev_data
*dev_data
;
2242 list_for_each_entry(dev_data
, &domain
->dev_list
, list
) {
2243 set_dte_entry(dev_data
->devid
, domain
, dev_data
->ats
.enabled
);
2245 if (dev_data
->devid
== dev_data
->alias
)
2248 /* There is an alias, update device table entry for it */
2249 set_dte_entry(dev_data
->alias
, domain
, dev_data
->ats
.enabled
);
2253 static void update_domain(struct protection_domain
*domain
)
2255 if (!domain
->updated
)
2258 update_device_table(domain
);
2260 domain_flush_devices(domain
);
2261 domain_flush_tlb_pde(domain
);
2263 domain
->updated
= false;
2266 static int dir2prot(enum dma_data_direction direction
)
2268 if (direction
== DMA_TO_DEVICE
)
2269 return IOMMU_PROT_IR
;
2270 else if (direction
== DMA_FROM_DEVICE
)
2271 return IOMMU_PROT_IW
;
2272 else if (direction
== DMA_BIDIRECTIONAL
)
2273 return IOMMU_PROT_IW
| IOMMU_PROT_IR
;
2278 * This function contains common code for mapping of a physically
2279 * contiguous memory region into DMA address space. It is used by all
2280 * mapping functions provided with this IOMMU driver.
2281 * Must be called with the domain lock held.
2283 static dma_addr_t
__map_single(struct device
*dev
,
2284 struct dma_ops_domain
*dma_dom
,
2287 enum dma_data_direction direction
,
2290 dma_addr_t offset
= paddr
& ~PAGE_MASK
;
2291 dma_addr_t address
, start
, ret
;
2296 pages
= iommu_num_pages(paddr
, size
, PAGE_SIZE
);
2299 address
= dma_ops_alloc_iova(dev
, dma_dom
, pages
, dma_mask
);
2300 if (address
== DMA_ERROR_CODE
)
2303 prot
= dir2prot(direction
);
2306 for (i
= 0; i
< pages
; ++i
) {
2307 ret
= iommu_map_page(&dma_dom
->domain
, start
, paddr
,
2308 PAGE_SIZE
, prot
, GFP_ATOMIC
);
2317 if (unlikely(amd_iommu_np_cache
)) {
2318 domain_flush_pages(&dma_dom
->domain
, address
, size
);
2319 domain_flush_complete(&dma_dom
->domain
);
2327 for (--i
; i
>= 0; --i
) {
2329 iommu_unmap_page(&dma_dom
->domain
, start
, PAGE_SIZE
);
2332 domain_flush_tlb(&dma_dom
->domain
);
2333 domain_flush_complete(&dma_dom
->domain
);
2335 dma_ops_free_iova(dma_dom
, address
, pages
);
2337 return DMA_ERROR_CODE
;
2341 * Does the reverse of the __map_single function. Must be called with
2342 * the domain lock held too
2344 static void __unmap_single(struct dma_ops_domain
*dma_dom
,
2345 dma_addr_t dma_addr
,
2349 dma_addr_t flush_addr
;
2350 dma_addr_t i
, start
;
2353 flush_addr
= dma_addr
;
2354 pages
= iommu_num_pages(dma_addr
, size
, PAGE_SIZE
);
2355 dma_addr
&= PAGE_MASK
;
2358 for (i
= 0; i
< pages
; ++i
) {
2359 iommu_unmap_page(&dma_dom
->domain
, start
, PAGE_SIZE
);
2363 if (amd_iommu_unmap_flush
) {
2364 dma_ops_free_iova(dma_dom
, dma_addr
, pages
);
2365 domain_flush_tlb(&dma_dom
->domain
);
2366 domain_flush_complete(&dma_dom
->domain
);
2368 queue_add(dma_dom
, dma_addr
, pages
);
2373 * The exported map_single function for dma_ops.
2375 static dma_addr_t
map_page(struct device
*dev
, struct page
*page
,
2376 unsigned long offset
, size_t size
,
2377 enum dma_data_direction dir
,
2378 unsigned long attrs
)
2380 phys_addr_t paddr
= page_to_phys(page
) + offset
;
2381 struct protection_domain
*domain
;
2382 struct dma_ops_domain
*dma_dom
;
2385 domain
= get_domain(dev
);
2386 if (PTR_ERR(domain
) == -EINVAL
)
2387 return (dma_addr_t
)paddr
;
2388 else if (IS_ERR(domain
))
2389 return DMA_ERROR_CODE
;
2391 dma_mask
= *dev
->dma_mask
;
2392 dma_dom
= to_dma_ops_domain(domain
);
2394 return __map_single(dev
, dma_dom
, paddr
, size
, dir
, dma_mask
);
2398 * The exported unmap_single function for dma_ops.
2400 static void unmap_page(struct device
*dev
, dma_addr_t dma_addr
, size_t size
,
2401 enum dma_data_direction dir
, unsigned long attrs
)
2403 struct protection_domain
*domain
;
2404 struct dma_ops_domain
*dma_dom
;
2406 domain
= get_domain(dev
);
2410 dma_dom
= to_dma_ops_domain(domain
);
2412 __unmap_single(dma_dom
, dma_addr
, size
, dir
);
2415 static int sg_num_pages(struct device
*dev
,
2416 struct scatterlist
*sglist
,
2419 unsigned long mask
, boundary_size
;
2420 struct scatterlist
*s
;
2423 mask
= dma_get_seg_boundary(dev
);
2424 boundary_size
= mask
+ 1 ? ALIGN(mask
+ 1, PAGE_SIZE
) >> PAGE_SHIFT
:
2425 1UL << (BITS_PER_LONG
- PAGE_SHIFT
);
2427 for_each_sg(sglist
, s
, nelems
, i
) {
2430 s
->dma_address
= npages
<< PAGE_SHIFT
;
2431 p
= npages
% boundary_size
;
2432 n
= iommu_num_pages(sg_phys(s
), s
->length
, PAGE_SIZE
);
2433 if (p
+ n
> boundary_size
)
2434 npages
+= boundary_size
- p
;
2442 * The exported map_sg function for dma_ops (handles scatter-gather
2445 static int map_sg(struct device
*dev
, struct scatterlist
*sglist
,
2446 int nelems
, enum dma_data_direction direction
,
2447 unsigned long attrs
)
2449 int mapped_pages
= 0, npages
= 0, prot
= 0, i
;
2450 struct protection_domain
*domain
;
2451 struct dma_ops_domain
*dma_dom
;
2452 struct scatterlist
*s
;
2453 unsigned long address
;
2456 domain
= get_domain(dev
);
2460 dma_dom
= to_dma_ops_domain(domain
);
2461 dma_mask
= *dev
->dma_mask
;
2463 npages
= sg_num_pages(dev
, sglist
, nelems
);
2465 address
= dma_ops_alloc_iova(dev
, dma_dom
, npages
, dma_mask
);
2466 if (address
== DMA_ERROR_CODE
)
2469 prot
= dir2prot(direction
);
2471 /* Map all sg entries */
2472 for_each_sg(sglist
, s
, nelems
, i
) {
2473 int j
, pages
= iommu_num_pages(sg_phys(s
), s
->length
, PAGE_SIZE
);
2475 for (j
= 0; j
< pages
; ++j
) {
2476 unsigned long bus_addr
, phys_addr
;
2479 bus_addr
= address
+ s
->dma_address
+ (j
<< PAGE_SHIFT
);
2480 phys_addr
= (sg_phys(s
) & PAGE_MASK
) + (j
<< PAGE_SHIFT
);
2481 ret
= iommu_map_page(domain
, bus_addr
, phys_addr
, PAGE_SIZE
, prot
, GFP_ATOMIC
);
2489 /* Everything is mapped - write the right values into s->dma_address */
2490 for_each_sg(sglist
, s
, nelems
, i
) {
2491 s
->dma_address
+= address
+ s
->offset
;
2492 s
->dma_length
= s
->length
;
2498 pr_err("%s: IOMMU mapping error in map_sg (io-pages: %d)\n",
2499 dev_name(dev
), npages
);
2501 for_each_sg(sglist
, s
, nelems
, i
) {
2502 int j
, pages
= iommu_num_pages(sg_phys(s
), s
->length
, PAGE_SIZE
);
2504 for (j
= 0; j
< pages
; ++j
) {
2505 unsigned long bus_addr
;
2507 bus_addr
= address
+ s
->dma_address
+ (j
<< PAGE_SHIFT
);
2508 iommu_unmap_page(domain
, bus_addr
, PAGE_SIZE
);
2516 free_iova_fast(&dma_dom
->iovad
, address
, npages
);
2523 * The exported map_sg function for dma_ops (handles scatter-gather
2526 static void unmap_sg(struct device
*dev
, struct scatterlist
*sglist
,
2527 int nelems
, enum dma_data_direction dir
,
2528 unsigned long attrs
)
2530 struct protection_domain
*domain
;
2531 struct dma_ops_domain
*dma_dom
;
2532 unsigned long startaddr
;
2535 domain
= get_domain(dev
);
2539 startaddr
= sg_dma_address(sglist
) & PAGE_MASK
;
2540 dma_dom
= to_dma_ops_domain(domain
);
2541 npages
= sg_num_pages(dev
, sglist
, nelems
);
2543 __unmap_single(dma_dom
, startaddr
, npages
<< PAGE_SHIFT
, dir
);
2547 * The exported alloc_coherent function for dma_ops.
2549 static void *alloc_coherent(struct device
*dev
, size_t size
,
2550 dma_addr_t
*dma_addr
, gfp_t flag
,
2551 unsigned long attrs
)
2553 u64 dma_mask
= dev
->coherent_dma_mask
;
2554 struct protection_domain
*domain
;
2555 struct dma_ops_domain
*dma_dom
;
2558 domain
= get_domain(dev
);
2559 if (PTR_ERR(domain
) == -EINVAL
) {
2560 page
= alloc_pages(flag
, get_order(size
));
2561 *dma_addr
= page_to_phys(page
);
2562 return page_address(page
);
2563 } else if (IS_ERR(domain
))
2566 dma_dom
= to_dma_ops_domain(domain
);
2567 size
= PAGE_ALIGN(size
);
2568 dma_mask
= dev
->coherent_dma_mask
;
2569 flag
&= ~(__GFP_DMA
| __GFP_HIGHMEM
| __GFP_DMA32
);
2572 page
= alloc_pages(flag
| __GFP_NOWARN
, get_order(size
));
2574 if (!gfpflags_allow_blocking(flag
))
2577 page
= dma_alloc_from_contiguous(dev
, size
>> PAGE_SHIFT
,
2584 dma_mask
= *dev
->dma_mask
;
2586 *dma_addr
= __map_single(dev
, dma_dom
, page_to_phys(page
),
2587 size
, DMA_BIDIRECTIONAL
, dma_mask
);
2589 if (*dma_addr
== DMA_ERROR_CODE
)
2592 return page_address(page
);
2596 if (!dma_release_from_contiguous(dev
, page
, size
>> PAGE_SHIFT
))
2597 __free_pages(page
, get_order(size
));
2603 * The exported free_coherent function for dma_ops.
2605 static void free_coherent(struct device
*dev
, size_t size
,
2606 void *virt_addr
, dma_addr_t dma_addr
,
2607 unsigned long attrs
)
2609 struct protection_domain
*domain
;
2610 struct dma_ops_domain
*dma_dom
;
2613 page
= virt_to_page(virt_addr
);
2614 size
= PAGE_ALIGN(size
);
2616 domain
= get_domain(dev
);
2620 dma_dom
= to_dma_ops_domain(domain
);
2622 __unmap_single(dma_dom
, dma_addr
, size
, DMA_BIDIRECTIONAL
);
2625 if (!dma_release_from_contiguous(dev
, page
, size
>> PAGE_SHIFT
))
2626 __free_pages(page
, get_order(size
));
2630 * This function is called by the DMA layer to find out if we can handle a
2631 * particular device. It is part of the dma_ops.
2633 static int amd_iommu_dma_supported(struct device
*dev
, u64 mask
)
2635 return check_device(dev
);
2638 static struct dma_map_ops amd_iommu_dma_ops
= {
2639 .alloc
= alloc_coherent
,
2640 .free
= free_coherent
,
2641 .map_page
= map_page
,
2642 .unmap_page
= unmap_page
,
2644 .unmap_sg
= unmap_sg
,
2645 .dma_supported
= amd_iommu_dma_supported
,
2648 static int init_reserved_iova_ranges(void)
2650 struct pci_dev
*pdev
= NULL
;
2653 init_iova_domain(&reserved_iova_ranges
, PAGE_SIZE
,
2654 IOVA_START_PFN
, DMA_32BIT_PFN
);
2656 lockdep_set_class(&reserved_iova_ranges
.iova_rbtree_lock
,
2657 &reserved_rbtree_key
);
2659 /* MSI memory range */
2660 val
= reserve_iova(&reserved_iova_ranges
,
2661 IOVA_PFN(MSI_RANGE_START
), IOVA_PFN(MSI_RANGE_END
));
2663 pr_err("Reserving MSI range failed\n");
2667 /* HT memory range */
2668 val
= reserve_iova(&reserved_iova_ranges
,
2669 IOVA_PFN(HT_RANGE_START
), IOVA_PFN(HT_RANGE_END
));
2671 pr_err("Reserving HT range failed\n");
2676 * Memory used for PCI resources
2677 * FIXME: Check whether we can reserve the PCI-hole completly
2679 for_each_pci_dev(pdev
) {
2682 for (i
= 0; i
< PCI_NUM_RESOURCES
; ++i
) {
2683 struct resource
*r
= &pdev
->resource
[i
];
2685 if (!(r
->flags
& IORESOURCE_MEM
))
2688 val
= reserve_iova(&reserved_iova_ranges
,
2692 pr_err("Reserve pci-resource range failed\n");
2701 int __init
amd_iommu_init_api(void)
2703 int ret
, cpu
, err
= 0;
2705 ret
= iova_cache_get();
2709 ret
= init_reserved_iova_ranges();
2713 for_each_possible_cpu(cpu
) {
2714 struct flush_queue
*queue
= per_cpu_ptr(&flush_queue
, cpu
);
2716 queue
->entries
= kzalloc(FLUSH_QUEUE_SIZE
*
2717 sizeof(*queue
->entries
),
2719 if (!queue
->entries
)
2722 spin_lock_init(&queue
->lock
);
2725 err
= bus_set_iommu(&pci_bus_type
, &amd_iommu_ops
);
2728 #ifdef CONFIG_ARM_AMBA
2729 err
= bus_set_iommu(&amba_bustype
, &amd_iommu_ops
);
2733 err
= bus_set_iommu(&platform_bus_type
, &amd_iommu_ops
);
2739 for_each_possible_cpu(cpu
) {
2740 struct flush_queue
*queue
= per_cpu_ptr(&flush_queue
, cpu
);
2742 kfree(queue
->entries
);
2748 int __init
amd_iommu_init_dma_ops(void)
2750 setup_timer(&queue_timer
, queue_flush_timeout
, 0);
2751 atomic_set(&queue_timer_on
, 0);
2753 swiotlb
= iommu_pass_through
? 1 : 0;
2757 * In case we don't initialize SWIOTLB (actually the common case
2758 * when AMD IOMMU is enabled), make sure there are global
2759 * dma_ops set as a fall-back for devices not handled by this
2760 * driver (for example non-PCI devices).
2763 dma_ops
= &nommu_dma_ops
;
2765 if (amd_iommu_unmap_flush
)
2766 pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
2768 pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");
2774 /*****************************************************************************
2776 * The following functions belong to the exported interface of AMD IOMMU
2778 * This interface allows access to lower level functions of the IOMMU
2779 * like protection domain handling and assignement of devices to domains
2780 * which is not possible with the dma_ops interface.
2782 *****************************************************************************/
2784 static void cleanup_domain(struct protection_domain
*domain
)
2786 struct iommu_dev_data
*entry
;
2787 unsigned long flags
;
2789 write_lock_irqsave(&amd_iommu_devtable_lock
, flags
);
2791 while (!list_empty(&domain
->dev_list
)) {
2792 entry
= list_first_entry(&domain
->dev_list
,
2793 struct iommu_dev_data
, list
);
2794 __detach_device(entry
);
2797 write_unlock_irqrestore(&amd_iommu_devtable_lock
, flags
);
2800 static void protection_domain_free(struct protection_domain
*domain
)
2805 del_domain_from_list(domain
);
2808 domain_id_free(domain
->id
);
2813 static int protection_domain_init(struct protection_domain
*domain
)
2815 spin_lock_init(&domain
->lock
);
2816 mutex_init(&domain
->api_lock
);
2817 domain
->id
= domain_id_alloc();
2820 INIT_LIST_HEAD(&domain
->dev_list
);
2825 static struct protection_domain
*protection_domain_alloc(void)
2827 struct protection_domain
*domain
;
2829 domain
= kzalloc(sizeof(*domain
), GFP_KERNEL
);
2833 if (protection_domain_init(domain
))
2836 add_domain_to_list(domain
);
2846 static struct iommu_domain
*amd_iommu_domain_alloc(unsigned type
)
2848 struct protection_domain
*pdomain
;
2849 struct dma_ops_domain
*dma_domain
;
2852 case IOMMU_DOMAIN_UNMANAGED
:
2853 pdomain
= protection_domain_alloc();
2857 pdomain
->mode
= PAGE_MODE_3_LEVEL
;
2858 pdomain
->pt_root
= (void *)get_zeroed_page(GFP_KERNEL
);
2859 if (!pdomain
->pt_root
) {
2860 protection_domain_free(pdomain
);
2864 pdomain
->domain
.geometry
.aperture_start
= 0;
2865 pdomain
->domain
.geometry
.aperture_end
= ~0ULL;
2866 pdomain
->domain
.geometry
.force_aperture
= true;
2869 case IOMMU_DOMAIN_DMA
:
2870 dma_domain
= dma_ops_domain_alloc();
2872 pr_err("AMD-Vi: Failed to allocate\n");
2875 pdomain
= &dma_domain
->domain
;
2877 case IOMMU_DOMAIN_IDENTITY
:
2878 pdomain
= protection_domain_alloc();
2882 pdomain
->mode
= PAGE_MODE_NONE
;
2888 return &pdomain
->domain
;
2891 static void amd_iommu_domain_free(struct iommu_domain
*dom
)
2893 struct protection_domain
*domain
;
2894 struct dma_ops_domain
*dma_dom
;
2896 domain
= to_pdomain(dom
);
2898 if (domain
->dev_cnt
> 0)
2899 cleanup_domain(domain
);
2901 BUG_ON(domain
->dev_cnt
!= 0);
2906 switch (dom
->type
) {
2907 case IOMMU_DOMAIN_DMA
:
2909 * First make sure the domain is no longer referenced from the
2914 /* Now release the domain */
2915 dma_dom
= to_dma_ops_domain(domain
);
2916 dma_ops_domain_free(dma_dom
);
2919 if (domain
->mode
!= PAGE_MODE_NONE
)
2920 free_pagetable(domain
);
2922 if (domain
->flags
& PD_IOMMUV2_MASK
)
2923 free_gcr3_table(domain
);
2925 protection_domain_free(domain
);
2930 static void amd_iommu_detach_device(struct iommu_domain
*dom
,
2933 struct iommu_dev_data
*dev_data
= dev
->archdata
.iommu
;
2934 struct amd_iommu
*iommu
;
2937 if (!check_device(dev
))
2940 devid
= get_device_id(dev
);
2944 if (dev_data
->domain
!= NULL
)
2947 iommu
= amd_iommu_rlookup_table
[devid
];
2951 iommu_completion_wait(iommu
);
2954 static int amd_iommu_attach_device(struct iommu_domain
*dom
,
2957 struct protection_domain
*domain
= to_pdomain(dom
);
2958 struct iommu_dev_data
*dev_data
;
2959 struct amd_iommu
*iommu
;
2962 if (!check_device(dev
))
2965 dev_data
= dev
->archdata
.iommu
;
2967 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
2971 if (dev_data
->domain
)
2974 ret
= attach_device(dev
, domain
);
2976 iommu_completion_wait(iommu
);
2981 static int amd_iommu_map(struct iommu_domain
*dom
, unsigned long iova
,
2982 phys_addr_t paddr
, size_t page_size
, int iommu_prot
)
2984 struct protection_domain
*domain
= to_pdomain(dom
);
2988 if (domain
->mode
== PAGE_MODE_NONE
)
2991 if (iommu_prot
& IOMMU_READ
)
2992 prot
|= IOMMU_PROT_IR
;
2993 if (iommu_prot
& IOMMU_WRITE
)
2994 prot
|= IOMMU_PROT_IW
;
2996 mutex_lock(&domain
->api_lock
);
2997 ret
= iommu_map_page(domain
, iova
, paddr
, page_size
, prot
, GFP_KERNEL
);
2998 mutex_unlock(&domain
->api_lock
);
3003 static size_t amd_iommu_unmap(struct iommu_domain
*dom
, unsigned long iova
,
3006 struct protection_domain
*domain
= to_pdomain(dom
);
3009 if (domain
->mode
== PAGE_MODE_NONE
)
3012 mutex_lock(&domain
->api_lock
);
3013 unmap_size
= iommu_unmap_page(domain
, iova
, page_size
);
3014 mutex_unlock(&domain
->api_lock
);
3016 domain_flush_tlb_pde(domain
);
3021 static phys_addr_t
amd_iommu_iova_to_phys(struct iommu_domain
*dom
,
3024 struct protection_domain
*domain
= to_pdomain(dom
);
3025 unsigned long offset_mask
, pte_pgsize
;
3028 if (domain
->mode
== PAGE_MODE_NONE
)
3031 pte
= fetch_pte(domain
, iova
, &pte_pgsize
);
3033 if (!pte
|| !IOMMU_PTE_PRESENT(*pte
))
3036 offset_mask
= pte_pgsize
- 1;
3037 __pte
= *pte
& PM_ADDR_MASK
;
3039 return (__pte
& ~offset_mask
) | (iova
& offset_mask
);
3042 static bool amd_iommu_capable(enum iommu_cap cap
)
3045 case IOMMU_CAP_CACHE_COHERENCY
:
3047 case IOMMU_CAP_INTR_REMAP
:
3048 return (irq_remapping_enabled
== 1);
3049 case IOMMU_CAP_NOEXEC
:
3056 static void amd_iommu_get_dm_regions(struct device
*dev
,
3057 struct list_head
*head
)
3059 struct unity_map_entry
*entry
;
3062 devid
= get_device_id(dev
);
3066 list_for_each_entry(entry
, &amd_iommu_unity_map
, list
) {
3067 struct iommu_dm_region
*region
;
3069 if (devid
< entry
->devid_start
|| devid
> entry
->devid_end
)
3072 region
= kzalloc(sizeof(*region
), GFP_KERNEL
);
3074 pr_err("Out of memory allocating dm-regions for %s\n",
3079 region
->start
= entry
->address_start
;
3080 region
->length
= entry
->address_end
- entry
->address_start
;
3081 if (entry
->prot
& IOMMU_PROT_IR
)
3082 region
->prot
|= IOMMU_READ
;
3083 if (entry
->prot
& IOMMU_PROT_IW
)
3084 region
->prot
|= IOMMU_WRITE
;
3086 list_add_tail(®ion
->list
, head
);
3090 static void amd_iommu_put_dm_regions(struct device
*dev
,
3091 struct list_head
*head
)
3093 struct iommu_dm_region
*entry
, *next
;
3095 list_for_each_entry_safe(entry
, next
, head
, list
)
3099 static void amd_iommu_apply_dm_region(struct device
*dev
,
3100 struct iommu_domain
*domain
,
3101 struct iommu_dm_region
*region
)
3103 struct dma_ops_domain
*dma_dom
= to_dma_ops_domain(to_pdomain(domain
));
3104 unsigned long start
, end
;
3106 start
= IOVA_PFN(region
->start
);
3107 end
= IOVA_PFN(region
->start
+ region
->length
);
3109 WARN_ON_ONCE(reserve_iova(&dma_dom
->iovad
, start
, end
) == NULL
);
3112 static const struct iommu_ops amd_iommu_ops
= {
3113 .capable
= amd_iommu_capable
,
3114 .domain_alloc
= amd_iommu_domain_alloc
,
3115 .domain_free
= amd_iommu_domain_free
,
3116 .attach_dev
= amd_iommu_attach_device
,
3117 .detach_dev
= amd_iommu_detach_device
,
3118 .map
= amd_iommu_map
,
3119 .unmap
= amd_iommu_unmap
,
3120 .map_sg
= default_iommu_map_sg
,
3121 .iova_to_phys
= amd_iommu_iova_to_phys
,
3122 .add_device
= amd_iommu_add_device
,
3123 .remove_device
= amd_iommu_remove_device
,
3124 .device_group
= amd_iommu_device_group
,
3125 .get_dm_regions
= amd_iommu_get_dm_regions
,
3126 .put_dm_regions
= amd_iommu_put_dm_regions
,
3127 .apply_dm_region
= amd_iommu_apply_dm_region
,
3128 .pgsize_bitmap
= AMD_IOMMU_PGSIZES
,
3131 /*****************************************************************************
3133 * The next functions do a basic initialization of IOMMU for pass through
3136 * In passthrough mode the IOMMU is initialized and enabled but not used for
3137 * DMA-API translation.
3139 *****************************************************************************/
3141 /* IOMMUv2 specific functions */
3142 int amd_iommu_register_ppr_notifier(struct notifier_block
*nb
)
3144 return atomic_notifier_chain_register(&ppr_notifier
, nb
);
3146 EXPORT_SYMBOL(amd_iommu_register_ppr_notifier
);
3148 int amd_iommu_unregister_ppr_notifier(struct notifier_block
*nb
)
3150 return atomic_notifier_chain_unregister(&ppr_notifier
, nb
);
3152 EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier
);
3154 void amd_iommu_domain_direct_map(struct iommu_domain
*dom
)
3156 struct protection_domain
*domain
= to_pdomain(dom
);
3157 unsigned long flags
;
3159 spin_lock_irqsave(&domain
->lock
, flags
);
3161 /* Update data structure */
3162 domain
->mode
= PAGE_MODE_NONE
;
3163 domain
->updated
= true;
3165 /* Make changes visible to IOMMUs */
3166 update_domain(domain
);
3168 /* Page-table is not visible to IOMMU anymore, so free it */
3169 free_pagetable(domain
);
3171 spin_unlock_irqrestore(&domain
->lock
, flags
);
3173 EXPORT_SYMBOL(amd_iommu_domain_direct_map
);
3175 int amd_iommu_domain_enable_v2(struct iommu_domain
*dom
, int pasids
)
3177 struct protection_domain
*domain
= to_pdomain(dom
);
3178 unsigned long flags
;
3181 if (pasids
<= 0 || pasids
> (PASID_MASK
+ 1))
3184 /* Number of GCR3 table levels required */
3185 for (levels
= 0; (pasids
- 1) & ~0x1ff; pasids
>>= 9)
3188 if (levels
> amd_iommu_max_glx_val
)
3191 spin_lock_irqsave(&domain
->lock
, flags
);
3194 * Save us all sanity checks whether devices already in the
3195 * domain support IOMMUv2. Just force that the domain has no
3196 * devices attached when it is switched into IOMMUv2 mode.
3199 if (domain
->dev_cnt
> 0 || domain
->flags
& PD_IOMMUV2_MASK
)
3203 domain
->gcr3_tbl
= (void *)get_zeroed_page(GFP_ATOMIC
);
3204 if (domain
->gcr3_tbl
== NULL
)
3207 domain
->glx
= levels
;
3208 domain
->flags
|= PD_IOMMUV2_MASK
;
3209 domain
->updated
= true;
3211 update_domain(domain
);
3216 spin_unlock_irqrestore(&domain
->lock
, flags
);
3220 EXPORT_SYMBOL(amd_iommu_domain_enable_v2
);
3222 static int __flush_pasid(struct protection_domain
*domain
, int pasid
,
3223 u64 address
, bool size
)
3225 struct iommu_dev_data
*dev_data
;
3226 struct iommu_cmd cmd
;
3229 if (!(domain
->flags
& PD_IOMMUV2_MASK
))
3232 build_inv_iommu_pasid(&cmd
, domain
->id
, pasid
, address
, size
);
3235 * IOMMU TLB needs to be flushed before Device TLB to
3236 * prevent device TLB refill from IOMMU TLB
3238 for (i
= 0; i
< amd_iommus_present
; ++i
) {
3239 if (domain
->dev_iommu
[i
] == 0)
3242 ret
= iommu_queue_command(amd_iommus
[i
], &cmd
);
3247 /* Wait until IOMMU TLB flushes are complete */
3248 domain_flush_complete(domain
);
3250 /* Now flush device TLBs */
3251 list_for_each_entry(dev_data
, &domain
->dev_list
, list
) {
3252 struct amd_iommu
*iommu
;
3256 There might be non-IOMMUv2 capable devices in an IOMMUv2
3259 if (!dev_data
->ats
.enabled
)
3262 qdep
= dev_data
->ats
.qdep
;
3263 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
3265 build_inv_iotlb_pasid(&cmd
, dev_data
->devid
, pasid
,
3266 qdep
, address
, size
);
3268 ret
= iommu_queue_command(iommu
, &cmd
);
3273 /* Wait until all device TLBs are flushed */
3274 domain_flush_complete(domain
);
3283 static int __amd_iommu_flush_page(struct protection_domain
*domain
, int pasid
,
3286 return __flush_pasid(domain
, pasid
, address
, false);
3289 int amd_iommu_flush_page(struct iommu_domain
*dom
, int pasid
,
3292 struct protection_domain
*domain
= to_pdomain(dom
);
3293 unsigned long flags
;
3296 spin_lock_irqsave(&domain
->lock
, flags
);
3297 ret
= __amd_iommu_flush_page(domain
, pasid
, address
);
3298 spin_unlock_irqrestore(&domain
->lock
, flags
);
3302 EXPORT_SYMBOL(amd_iommu_flush_page
);
3304 static int __amd_iommu_flush_tlb(struct protection_domain
*domain
, int pasid
)
3306 return __flush_pasid(domain
, pasid
, CMD_INV_IOMMU_ALL_PAGES_ADDRESS
,
3310 int amd_iommu_flush_tlb(struct iommu_domain
*dom
, int pasid
)
3312 struct protection_domain
*domain
= to_pdomain(dom
);
3313 unsigned long flags
;
3316 spin_lock_irqsave(&domain
->lock
, flags
);
3317 ret
= __amd_iommu_flush_tlb(domain
, pasid
);
3318 spin_unlock_irqrestore(&domain
->lock
, flags
);
3322 EXPORT_SYMBOL(amd_iommu_flush_tlb
);
3324 static u64
*__get_gcr3_pte(u64
*root
, int level
, int pasid
, bool alloc
)
3331 index
= (pasid
>> (9 * level
)) & 0x1ff;
3337 if (!(*pte
& GCR3_VALID
)) {
3341 root
= (void *)get_zeroed_page(GFP_ATOMIC
);
3345 *pte
= __pa(root
) | GCR3_VALID
;
3348 root
= __va(*pte
& PAGE_MASK
);
3356 static int __set_gcr3(struct protection_domain
*domain
, int pasid
,
3361 if (domain
->mode
!= PAGE_MODE_NONE
)
3364 pte
= __get_gcr3_pte(domain
->gcr3_tbl
, domain
->glx
, pasid
, true);
3368 *pte
= (cr3
& PAGE_MASK
) | GCR3_VALID
;
3370 return __amd_iommu_flush_tlb(domain
, pasid
);
3373 static int __clear_gcr3(struct protection_domain
*domain
, int pasid
)
3377 if (domain
->mode
!= PAGE_MODE_NONE
)
3380 pte
= __get_gcr3_pte(domain
->gcr3_tbl
, domain
->glx
, pasid
, false);
3386 return __amd_iommu_flush_tlb(domain
, pasid
);
3389 int amd_iommu_domain_set_gcr3(struct iommu_domain
*dom
, int pasid
,
3392 struct protection_domain
*domain
= to_pdomain(dom
);
3393 unsigned long flags
;
3396 spin_lock_irqsave(&domain
->lock
, flags
);
3397 ret
= __set_gcr3(domain
, pasid
, cr3
);
3398 spin_unlock_irqrestore(&domain
->lock
, flags
);
3402 EXPORT_SYMBOL(amd_iommu_domain_set_gcr3
);
3404 int amd_iommu_domain_clear_gcr3(struct iommu_domain
*dom
, int pasid
)
3406 struct protection_domain
*domain
= to_pdomain(dom
);
3407 unsigned long flags
;
3410 spin_lock_irqsave(&domain
->lock
, flags
);
3411 ret
= __clear_gcr3(domain
, pasid
);
3412 spin_unlock_irqrestore(&domain
->lock
, flags
);
3416 EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3
);
3418 int amd_iommu_complete_ppr(struct pci_dev
*pdev
, int pasid
,
3419 int status
, int tag
)
3421 struct iommu_dev_data
*dev_data
;
3422 struct amd_iommu
*iommu
;
3423 struct iommu_cmd cmd
;
3425 dev_data
= get_dev_data(&pdev
->dev
);
3426 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
3428 build_complete_ppr(&cmd
, dev_data
->devid
, pasid
, status
,
3429 tag
, dev_data
->pri_tlp
);
3431 return iommu_queue_command(iommu
, &cmd
);
3433 EXPORT_SYMBOL(amd_iommu_complete_ppr
);
3435 struct iommu_domain
*amd_iommu_get_v2_domain(struct pci_dev
*pdev
)
3437 struct protection_domain
*pdomain
;
3439 pdomain
= get_domain(&pdev
->dev
);
3440 if (IS_ERR(pdomain
))
3443 /* Only return IOMMUv2 domains */
3444 if (!(pdomain
->flags
& PD_IOMMUV2_MASK
))
3447 return &pdomain
->domain
;
3449 EXPORT_SYMBOL(amd_iommu_get_v2_domain
);
3451 void amd_iommu_enable_device_erratum(struct pci_dev
*pdev
, u32 erratum
)
3453 struct iommu_dev_data
*dev_data
;
3455 if (!amd_iommu_v2_supported())
3458 dev_data
= get_dev_data(&pdev
->dev
);
3459 dev_data
->errata
|= (1 << erratum
);
3461 EXPORT_SYMBOL(amd_iommu_enable_device_erratum
);
3463 int amd_iommu_device_info(struct pci_dev
*pdev
,
3464 struct amd_iommu_device_info
*info
)
3469 if (pdev
== NULL
|| info
== NULL
)
3472 if (!amd_iommu_v2_supported())
3475 memset(info
, 0, sizeof(*info
));
3477 pos
= pci_find_ext_capability(pdev
, PCI_EXT_CAP_ID_ATS
);
3479 info
->flags
|= AMD_IOMMU_DEVICE_FLAG_ATS_SUP
;
3481 pos
= pci_find_ext_capability(pdev
, PCI_EXT_CAP_ID_PRI
);
3483 info
->flags
|= AMD_IOMMU_DEVICE_FLAG_PRI_SUP
;
3485 pos
= pci_find_ext_capability(pdev
, PCI_EXT_CAP_ID_PASID
);
3489 max_pasids
= 1 << (9 * (amd_iommu_max_glx_val
+ 1));
3490 max_pasids
= min(max_pasids
, (1 << 20));
3492 info
->flags
|= AMD_IOMMU_DEVICE_FLAG_PASID_SUP
;
3493 info
->max_pasids
= min(pci_max_pasids(pdev
), max_pasids
);
3495 features
= pci_pasid_features(pdev
);
3496 if (features
& PCI_PASID_CAP_EXEC
)
3497 info
->flags
|= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP
;
3498 if (features
& PCI_PASID_CAP_PRIV
)
3499 info
->flags
|= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP
;
3504 EXPORT_SYMBOL(amd_iommu_device_info
);
3506 #ifdef CONFIG_IRQ_REMAP
3508 /*****************************************************************************
3510 * Interrupt Remapping Implementation
3512 *****************************************************************************/
3530 u16 devid
; /* Device ID for IRTE table */
3531 u16 index
; /* Index into IRTE table*/
3534 struct amd_ir_data
{
3535 struct irq_2_irte irq_2_irte
;
3536 union irte irte_entry
;
3538 struct msi_msg msi_entry
;
3542 static struct irq_chip amd_ir_chip
;
3544 #define DTE_IRQ_PHYS_ADDR_MASK (((1ULL << 45)-1) << 6)
3545 #define DTE_IRQ_REMAP_INTCTL (2ULL << 60)
3546 #define DTE_IRQ_TABLE_LEN (8ULL << 1)
3547 #define DTE_IRQ_REMAP_ENABLE 1ULL
3549 static void set_dte_irq_entry(u16 devid
, struct irq_remap_table
*table
)
3553 dte
= amd_iommu_dev_table
[devid
].data
[2];
3554 dte
&= ~DTE_IRQ_PHYS_ADDR_MASK
;
3555 dte
|= virt_to_phys(table
->table
);
3556 dte
|= DTE_IRQ_REMAP_INTCTL
;
3557 dte
|= DTE_IRQ_TABLE_LEN
;
3558 dte
|= DTE_IRQ_REMAP_ENABLE
;
3560 amd_iommu_dev_table
[devid
].data
[2] = dte
;
3563 #define IRTE_ALLOCATED (~1U)
3565 static struct irq_remap_table
*get_irq_table(u16 devid
, bool ioapic
)
3567 struct irq_remap_table
*table
= NULL
;
3568 struct amd_iommu
*iommu
;
3569 unsigned long flags
;
3572 write_lock_irqsave(&amd_iommu_devtable_lock
, flags
);
3574 iommu
= amd_iommu_rlookup_table
[devid
];
3578 table
= irq_lookup_table
[devid
];
3582 alias
= amd_iommu_alias_table
[devid
];
3583 table
= irq_lookup_table
[alias
];
3585 irq_lookup_table
[devid
] = table
;
3586 set_dte_irq_entry(devid
, table
);
3587 iommu_flush_dte(iommu
, devid
);
3591 /* Nothing there yet, allocate new irq remapping table */
3592 table
= kzalloc(sizeof(*table
), GFP_ATOMIC
);
3596 /* Initialize table spin-lock */
3597 spin_lock_init(&table
->lock
);
3600 /* Keep the first 32 indexes free for IOAPIC interrupts */
3601 table
->min_index
= 32;
3603 table
->table
= kmem_cache_alloc(amd_iommu_irq_cache
, GFP_ATOMIC
);
3604 if (!table
->table
) {
3610 memset(table
->table
, 0, MAX_IRQS_PER_TABLE
* sizeof(u32
));
3615 for (i
= 0; i
< 32; ++i
)
3616 table
->table
[i
] = IRTE_ALLOCATED
;
3619 irq_lookup_table
[devid
] = table
;
3620 set_dte_irq_entry(devid
, table
);
3621 iommu_flush_dte(iommu
, devid
);
3622 if (devid
!= alias
) {
3623 irq_lookup_table
[alias
] = table
;
3624 set_dte_irq_entry(alias
, table
);
3625 iommu_flush_dte(iommu
, alias
);
3629 iommu_completion_wait(iommu
);
3632 write_unlock_irqrestore(&amd_iommu_devtable_lock
, flags
);
3637 static int alloc_irq_index(u16 devid
, int count
)
3639 struct irq_remap_table
*table
;
3640 unsigned long flags
;
3643 table
= get_irq_table(devid
, false);
3647 spin_lock_irqsave(&table
->lock
, flags
);
3649 /* Scan table for free entries */
3650 for (c
= 0, index
= table
->min_index
;
3651 index
< MAX_IRQS_PER_TABLE
;
3653 if (table
->table
[index
] == 0)
3660 table
->table
[index
- c
+ 1] = IRTE_ALLOCATED
;
3670 spin_unlock_irqrestore(&table
->lock
, flags
);
3675 static int modify_irte(u16 devid
, int index
, union irte irte
)
3677 struct irq_remap_table
*table
;
3678 struct amd_iommu
*iommu
;
3679 unsigned long flags
;
3681 iommu
= amd_iommu_rlookup_table
[devid
];
3685 table
= get_irq_table(devid
, false);
3689 spin_lock_irqsave(&table
->lock
, flags
);
3690 table
->table
[index
] = irte
.val
;
3691 spin_unlock_irqrestore(&table
->lock
, flags
);
3693 iommu_flush_irt(iommu
, devid
);
3694 iommu_completion_wait(iommu
);
3699 static void free_irte(u16 devid
, int index
)
3701 struct irq_remap_table
*table
;
3702 struct amd_iommu
*iommu
;
3703 unsigned long flags
;
3705 iommu
= amd_iommu_rlookup_table
[devid
];
3709 table
= get_irq_table(devid
, false);
3713 spin_lock_irqsave(&table
->lock
, flags
);
3714 table
->table
[index
] = 0;
3715 spin_unlock_irqrestore(&table
->lock
, flags
);
3717 iommu_flush_irt(iommu
, devid
);
3718 iommu_completion_wait(iommu
);
3721 static int get_devid(struct irq_alloc_info
*info
)
3725 switch (info
->type
) {
3726 case X86_IRQ_ALLOC_TYPE_IOAPIC
:
3727 devid
= get_ioapic_devid(info
->ioapic_id
);
3729 case X86_IRQ_ALLOC_TYPE_HPET
:
3730 devid
= get_hpet_devid(info
->hpet_id
);
3732 case X86_IRQ_ALLOC_TYPE_MSI
:
3733 case X86_IRQ_ALLOC_TYPE_MSIX
:
3734 devid
= get_device_id(&info
->msi_dev
->dev
);
3744 static struct irq_domain
*get_ir_irq_domain(struct irq_alloc_info
*info
)
3746 struct amd_iommu
*iommu
;
3752 devid
= get_devid(info
);
3754 iommu
= amd_iommu_rlookup_table
[devid
];
3756 return iommu
->ir_domain
;
3762 static struct irq_domain
*get_irq_domain(struct irq_alloc_info
*info
)
3764 struct amd_iommu
*iommu
;
3770 switch (info
->type
) {
3771 case X86_IRQ_ALLOC_TYPE_MSI
:
3772 case X86_IRQ_ALLOC_TYPE_MSIX
:
3773 devid
= get_device_id(&info
->msi_dev
->dev
);
3777 iommu
= amd_iommu_rlookup_table
[devid
];
3779 return iommu
->msi_domain
;
3788 struct irq_remap_ops amd_iommu_irq_ops
= {
3789 .prepare
= amd_iommu_prepare
,
3790 .enable
= amd_iommu_enable
,
3791 .disable
= amd_iommu_disable
,
3792 .reenable
= amd_iommu_reenable
,
3793 .enable_faulting
= amd_iommu_enable_faulting
,
3794 .get_ir_irq_domain
= get_ir_irq_domain
,
3795 .get_irq_domain
= get_irq_domain
,
3798 static void irq_remapping_prepare_irte(struct amd_ir_data
*data
,
3799 struct irq_cfg
*irq_cfg
,
3800 struct irq_alloc_info
*info
,
3801 int devid
, int index
, int sub_handle
)
3803 struct irq_2_irte
*irte_info
= &data
->irq_2_irte
;
3804 struct msi_msg
*msg
= &data
->msi_entry
;
3805 union irte
*irte
= &data
->irte_entry
;
3806 struct IO_APIC_route_entry
*entry
;
3808 data
->irq_2_irte
.devid
= devid
;
3809 data
->irq_2_irte
.index
= index
+ sub_handle
;
3811 /* Setup IRTE for IOMMU */
3813 irte
->fields
.vector
= irq_cfg
->vector
;
3814 irte
->fields
.int_type
= apic
->irq_delivery_mode
;
3815 irte
->fields
.destination
= irq_cfg
->dest_apicid
;
3816 irte
->fields
.dm
= apic
->irq_dest_mode
;
3817 irte
->fields
.valid
= 1;
3819 switch (info
->type
) {
3820 case X86_IRQ_ALLOC_TYPE_IOAPIC
:
3821 /* Setup IOAPIC entry */
3822 entry
= info
->ioapic_entry
;
3823 info
->ioapic_entry
= NULL
;
3824 memset(entry
, 0, sizeof(*entry
));
3825 entry
->vector
= index
;
3827 entry
->trigger
= info
->ioapic_trigger
;
3828 entry
->polarity
= info
->ioapic_polarity
;
3829 /* Mask level triggered irqs. */
3830 if (info
->ioapic_trigger
)
3834 case X86_IRQ_ALLOC_TYPE_HPET
:
3835 case X86_IRQ_ALLOC_TYPE_MSI
:
3836 case X86_IRQ_ALLOC_TYPE_MSIX
:
3837 msg
->address_hi
= MSI_ADDR_BASE_HI
;
3838 msg
->address_lo
= MSI_ADDR_BASE_LO
;
3839 msg
->data
= irte_info
->index
;
3848 static int irq_remapping_alloc(struct irq_domain
*domain
, unsigned int virq
,
3849 unsigned int nr_irqs
, void *arg
)
3851 struct irq_alloc_info
*info
= arg
;
3852 struct irq_data
*irq_data
;
3853 struct amd_ir_data
*data
;
3854 struct irq_cfg
*cfg
;
3860 if (nr_irqs
> 1 && info
->type
!= X86_IRQ_ALLOC_TYPE_MSI
&&
3861 info
->type
!= X86_IRQ_ALLOC_TYPE_MSIX
)
3865 * With IRQ remapping enabled, don't need contiguous CPU vectors
3866 * to support multiple MSI interrupts.
3868 if (info
->type
== X86_IRQ_ALLOC_TYPE_MSI
)
3869 info
->flags
&= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS
;
3871 devid
= get_devid(info
);
3875 ret
= irq_domain_alloc_irqs_parent(domain
, virq
, nr_irqs
, arg
);
3879 if (info
->type
== X86_IRQ_ALLOC_TYPE_IOAPIC
) {
3880 if (get_irq_table(devid
, true))
3881 index
= info
->ioapic_pin
;
3885 index
= alloc_irq_index(devid
, nr_irqs
);
3888 pr_warn("Failed to allocate IRTE\n");
3889 goto out_free_parent
;
3892 for (i
= 0; i
< nr_irqs
; i
++) {
3893 irq_data
= irq_domain_get_irq_data(domain
, virq
+ i
);
3894 cfg
= irqd_cfg(irq_data
);
3895 if (!irq_data
|| !cfg
) {
3901 data
= kzalloc(sizeof(*data
), GFP_KERNEL
);
3905 irq_data
->hwirq
= (devid
<< 16) + i
;
3906 irq_data
->chip_data
= data
;
3907 irq_data
->chip
= &amd_ir_chip
;
3908 irq_remapping_prepare_irte(data
, cfg
, info
, devid
, index
, i
);
3909 irq_set_status_flags(virq
+ i
, IRQ_MOVE_PCNTXT
);
3915 for (i
--; i
>= 0; i
--) {
3916 irq_data
= irq_domain_get_irq_data(domain
, virq
+ i
);
3918 kfree(irq_data
->chip_data
);
3920 for (i
= 0; i
< nr_irqs
; i
++)
3921 free_irte(devid
, index
+ i
);
3923 irq_domain_free_irqs_common(domain
, virq
, nr_irqs
);
3927 static void irq_remapping_free(struct irq_domain
*domain
, unsigned int virq
,
3928 unsigned int nr_irqs
)
3930 struct irq_2_irte
*irte_info
;
3931 struct irq_data
*irq_data
;
3932 struct amd_ir_data
*data
;
3935 for (i
= 0; i
< nr_irqs
; i
++) {
3936 irq_data
= irq_domain_get_irq_data(domain
, virq
+ i
);
3937 if (irq_data
&& irq_data
->chip_data
) {
3938 data
= irq_data
->chip_data
;
3939 irte_info
= &data
->irq_2_irte
;
3940 free_irte(irte_info
->devid
, irte_info
->index
);
3944 irq_domain_free_irqs_common(domain
, virq
, nr_irqs
);
3947 static void irq_remapping_activate(struct irq_domain
*domain
,
3948 struct irq_data
*irq_data
)
3950 struct amd_ir_data
*data
= irq_data
->chip_data
;
3951 struct irq_2_irte
*irte_info
= &data
->irq_2_irte
;
3953 modify_irte(irte_info
->devid
, irte_info
->index
, data
->irte_entry
);
3956 static void irq_remapping_deactivate(struct irq_domain
*domain
,
3957 struct irq_data
*irq_data
)
3959 struct amd_ir_data
*data
= irq_data
->chip_data
;
3960 struct irq_2_irte
*irte_info
= &data
->irq_2_irte
;
3964 modify_irte(irte_info
->devid
, irte_info
->index
, data
->irte_entry
);
3967 static struct irq_domain_ops amd_ir_domain_ops
= {
3968 .alloc
= irq_remapping_alloc
,
3969 .free
= irq_remapping_free
,
3970 .activate
= irq_remapping_activate
,
3971 .deactivate
= irq_remapping_deactivate
,
3974 static int amd_ir_set_affinity(struct irq_data
*data
,
3975 const struct cpumask
*mask
, bool force
)
3977 struct amd_ir_data
*ir_data
= data
->chip_data
;
3978 struct irq_2_irte
*irte_info
= &ir_data
->irq_2_irte
;
3979 struct irq_cfg
*cfg
= irqd_cfg(data
);
3980 struct irq_data
*parent
= data
->parent_data
;
3983 ret
= parent
->chip
->irq_set_affinity(parent
, mask
, force
);
3984 if (ret
< 0 || ret
== IRQ_SET_MASK_OK_DONE
)
3988 * Atomically updates the IRTE with the new destination, vector
3989 * and flushes the interrupt entry cache.
3991 ir_data
->irte_entry
.fields
.vector
= cfg
->vector
;
3992 ir_data
->irte_entry
.fields
.destination
= cfg
->dest_apicid
;
3993 modify_irte(irte_info
->devid
, irte_info
->index
, ir_data
->irte_entry
);
3996 * After this point, all the interrupts will start arriving
3997 * at the new destination. So, time to cleanup the previous
3998 * vector allocation.
4000 send_cleanup_vector(cfg
);
4002 return IRQ_SET_MASK_OK_DONE
;
4005 static void ir_compose_msi_msg(struct irq_data
*irq_data
, struct msi_msg
*msg
)
4007 struct amd_ir_data
*ir_data
= irq_data
->chip_data
;
4009 *msg
= ir_data
->msi_entry
;
4012 static struct irq_chip amd_ir_chip
= {
4013 .irq_ack
= ir_ack_apic_edge
,
4014 .irq_set_affinity
= amd_ir_set_affinity
,
4015 .irq_compose_msi_msg
= ir_compose_msi_msg
,
4018 int amd_iommu_create_irq_domain(struct amd_iommu
*iommu
)
4020 iommu
->ir_domain
= irq_domain_add_tree(NULL
, &amd_ir_domain_ops
, iommu
);
4021 if (!iommu
->ir_domain
)
4024 iommu
->ir_domain
->parent
= arch_get_ir_parent_domain();
4025 iommu
->msi_domain
= arch_create_msi_irq_domain(iommu
->ir_domain
);