2 * Driver for AMBA serial ports
4 * Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
6 * Copyright 1999 ARM Limited
7 * Copyright (C) 2000 Deep Blue Solutions Ltd.
8 * Copyright (C) 2010 ST-Ericsson SA
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
24 * This is a generic driver for ARM AMBA-type serial ports. They
25 * have a lot of 16550-like features, but are not register compatible.
26 * Note that although they do have CTS, DCD and DSR inputs, they do
27 * not have an RI input, nor do they have DTR or RTS outputs. If
28 * required, these have to be supplied via some other means (eg, GPIO)
29 * and hooked into this driver.
33 #if defined(CONFIG_SERIAL_AMBA_PL011_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
37 #include <linux/module.h>
38 #include <linux/ioport.h>
39 #include <linux/init.h>
40 #include <linux/console.h>
41 #include <linux/sysrq.h>
42 #include <linux/device.h>
43 #include <linux/tty.h>
44 #include <linux/tty_flip.h>
45 #include <linux/serial_core.h>
46 #include <linux/serial.h>
47 #include <linux/amba/bus.h>
48 #include <linux/amba/serial.h>
49 #include <linux/clk.h>
50 #include <linux/slab.h>
51 #include <linux/dmaengine.h>
52 #include <linux/dma-mapping.h>
53 #include <linux/scatterlist.h>
54 #include <linux/delay.h>
55 #include <linux/types.h>
57 #include <linux/of_device.h>
58 #include <linux/pinctrl/consumer.h>
59 #include <linux/sizes.h>
61 #include <linux/acpi.h>
63 #include "amba-pl011.h"
67 #define SERIAL_AMBA_MAJOR 204
68 #define SERIAL_AMBA_MINOR 64
69 #define SERIAL_AMBA_NR UART_NR
71 #define AMBA_ISR_PASS_LIMIT 256
73 #define UART_DR_ERROR (UART011_DR_OE|UART011_DR_BE|UART011_DR_PE|UART011_DR_FE)
74 #define UART_DUMMY_DR_RX (1 << 16)
76 static u16 pl011_std_offsets
[REG_ARRAY_SIZE
] = {
77 [REG_DR
] = UART01x_DR
,
78 [REG_FR
] = UART01x_FR
,
79 [REG_LCRH_RX
] = UART011_LCRH
,
80 [REG_LCRH_TX
] = UART011_LCRH
,
81 [REG_IBRD
] = UART011_IBRD
,
82 [REG_FBRD
] = UART011_FBRD
,
83 [REG_CR
] = UART011_CR
,
84 [REG_IFLS
] = UART011_IFLS
,
85 [REG_IMSC
] = UART011_IMSC
,
86 [REG_RIS
] = UART011_RIS
,
87 [REG_MIS
] = UART011_MIS
,
88 [REG_ICR
] = UART011_ICR
,
89 [REG_DMACR
] = UART011_DMACR
,
92 /* There is by now at least one vendor with differing details, so handle it */
94 const u16
*reg_offset
;
99 bool cts_event_workaround
;
103 unsigned int (*get_fifosize
)(struct amba_device
*dev
);
106 static unsigned int get_fifosize_arm(struct amba_device
*dev
)
108 return amba_rev(dev
) < 3 ? 16 : 32;
111 static struct vendor_data vendor_arm
= {
112 .reg_offset
= pl011_std_offsets
,
113 .ifls
= UART011_IFLS_RX4_8
|UART011_IFLS_TX4_8
,
114 .oversampling
= false,
115 .dma_threshold
= false,
116 .cts_event_workaround
= false,
117 .always_enabled
= false,
118 .fixed_options
= false,
119 .get_fifosize
= get_fifosize_arm
,
122 static struct vendor_data vendor_sbsa
= {
123 .reg_offset
= pl011_std_offsets
,
125 .oversampling
= false,
126 .dma_threshold
= false,
127 .cts_event_workaround
= false,
128 .always_enabled
= true,
129 .fixed_options
= true,
132 static u16 pl011_st_offsets
[REG_ARRAY_SIZE
] = {
133 [REG_DR
] = UART01x_DR
,
134 [REG_ST_DMAWM
] = ST_UART011_DMAWM
,
135 [REG_ST_TIMEOUT
] = ST_UART011_TIMEOUT
,
136 [REG_FR
] = UART01x_FR
,
137 [REG_LCRH_RX
] = ST_UART011_LCRH_RX
,
138 [REG_LCRH_TX
] = ST_UART011_LCRH_TX
,
139 [REG_IBRD
] = UART011_IBRD
,
140 [REG_FBRD
] = UART011_FBRD
,
141 [REG_CR
] = UART011_CR
,
142 [REG_IFLS
] = UART011_IFLS
,
143 [REG_IMSC
] = UART011_IMSC
,
144 [REG_RIS
] = UART011_RIS
,
145 [REG_MIS
] = UART011_MIS
,
146 [REG_ICR
] = UART011_ICR
,
147 [REG_DMACR
] = UART011_DMACR
,
148 [REG_ST_XFCR
] = ST_UART011_XFCR
,
149 [REG_ST_XON1
] = ST_UART011_XON1
,
150 [REG_ST_XON2
] = ST_UART011_XON2
,
151 [REG_ST_XOFF1
] = ST_UART011_XOFF1
,
152 [REG_ST_XOFF2
] = ST_UART011_XOFF2
,
153 [REG_ST_ITCR
] = ST_UART011_ITCR
,
154 [REG_ST_ITIP
] = ST_UART011_ITIP
,
155 [REG_ST_ABCR
] = ST_UART011_ABCR
,
156 [REG_ST_ABIMSC
] = ST_UART011_ABIMSC
,
159 static unsigned int get_fifosize_st(struct amba_device
*dev
)
164 static struct vendor_data vendor_st
= {
165 .reg_offset
= pl011_st_offsets
,
166 .ifls
= UART011_IFLS_RX_HALF
|UART011_IFLS_TX_HALF
,
167 .oversampling
= true,
168 .dma_threshold
= true,
169 .cts_event_workaround
= true,
170 .always_enabled
= false,
171 .fixed_options
= false,
172 .get_fifosize
= get_fifosize_st
,
175 static const u16 pl011_zte_offsets
[REG_ARRAY_SIZE
] = {
176 [REG_DR
] = ZX_UART011_DR
,
177 [REG_FR
] = ZX_UART011_FR
,
178 [REG_LCRH_RX
] = ZX_UART011_LCRH
,
179 [REG_LCRH_TX
] = ZX_UART011_LCRH
,
180 [REG_IBRD
] = ZX_UART011_IBRD
,
181 [REG_FBRD
] = ZX_UART011_FBRD
,
182 [REG_CR
] = ZX_UART011_CR
,
183 [REG_IFLS
] = ZX_UART011_IFLS
,
184 [REG_IMSC
] = ZX_UART011_IMSC
,
185 [REG_RIS
] = ZX_UART011_RIS
,
186 [REG_MIS
] = ZX_UART011_MIS
,
187 [REG_ICR
] = ZX_UART011_ICR
,
188 [REG_DMACR
] = ZX_UART011_DMACR
,
191 static struct vendor_data vendor_zte __maybe_unused
= {
192 .reg_offset
= pl011_zte_offsets
,
194 .ifls
= UART011_IFLS_RX4_8
|UART011_IFLS_TX4_8
,
195 .get_fifosize
= get_fifosize_arm
,
198 /* Deals with DMA transactions */
201 struct scatterlist sg
;
205 struct pl011_dmarx_data
{
206 struct dma_chan
*chan
;
207 struct completion complete
;
209 struct pl011_sgbuf sgbuf_a
;
210 struct pl011_sgbuf sgbuf_b
;
213 struct timer_list timer
;
214 unsigned int last_residue
;
215 unsigned long last_jiffies
;
217 unsigned int poll_rate
;
218 unsigned int poll_timeout
;
221 struct pl011_dmatx_data
{
222 struct dma_chan
*chan
;
223 struct scatterlist sg
;
229 * We wrap our port structure around the generic uart_port.
231 struct uart_amba_port
{
232 struct uart_port port
;
233 const u16
*reg_offset
;
235 const struct vendor_data
*vendor
;
236 unsigned int dmacr
; /* dma control reg */
237 unsigned int im
; /* interrupt mask */
238 unsigned int old_status
;
239 unsigned int fifosize
; /* vendor-specific */
240 unsigned int old_cr
; /* state during shutdown */
242 unsigned int fixed_baud
; /* vendor-set fixed baud rate */
244 #ifdef CONFIG_DMA_ENGINE
248 struct pl011_dmarx_data dmarx
;
249 struct pl011_dmatx_data dmatx
;
254 static unsigned int pl011_reg_to_offset(const struct uart_amba_port
*uap
,
257 return uap
->reg_offset
[reg
];
260 static unsigned int pl011_read(const struct uart_amba_port
*uap
,
263 void __iomem
*addr
= uap
->port
.membase
+ pl011_reg_to_offset(uap
, reg
);
265 return (uap
->port
.iotype
== UPIO_MEM32
) ?
266 readl_relaxed(addr
) : readw_relaxed(addr
);
269 static void pl011_write(unsigned int val
, const struct uart_amba_port
*uap
,
272 void __iomem
*addr
= uap
->port
.membase
+ pl011_reg_to_offset(uap
, reg
);
274 if (uap
->port
.iotype
== UPIO_MEM32
)
275 writel_relaxed(val
, addr
);
277 writew_relaxed(val
, addr
);
281 * Reads up to 256 characters from the FIFO or until it's empty and
282 * inserts them into the TTY layer. Returns the number of characters
283 * read from the FIFO.
285 static int pl011_fifo_to_tty(struct uart_amba_port
*uap
)
288 unsigned int ch
, flag
, max_count
= 256;
291 while (max_count
--) {
292 status
= pl011_read(uap
, REG_FR
);
293 if (status
& UART01x_FR_RXFE
)
296 /* Take chars from the FIFO and update status */
297 ch
= pl011_read(uap
, REG_DR
) | UART_DUMMY_DR_RX
;
299 uap
->port
.icount
.rx
++;
302 if (unlikely(ch
& UART_DR_ERROR
)) {
303 if (ch
& UART011_DR_BE
) {
304 ch
&= ~(UART011_DR_FE
| UART011_DR_PE
);
305 uap
->port
.icount
.brk
++;
306 if (uart_handle_break(&uap
->port
))
308 } else if (ch
& UART011_DR_PE
)
309 uap
->port
.icount
.parity
++;
310 else if (ch
& UART011_DR_FE
)
311 uap
->port
.icount
.frame
++;
312 if (ch
& UART011_DR_OE
)
313 uap
->port
.icount
.overrun
++;
315 ch
&= uap
->port
.read_status_mask
;
317 if (ch
& UART011_DR_BE
)
319 else if (ch
& UART011_DR_PE
)
321 else if (ch
& UART011_DR_FE
)
325 if (uart_handle_sysrq_char(&uap
->port
, ch
& 255))
328 uart_insert_char(&uap
->port
, ch
, UART011_DR_OE
, ch
, flag
);
336 * All the DMA operation mode stuff goes inside this ifdef.
337 * This assumes that you have a generic DMA device interface,
338 * no custom DMA interfaces are supported.
340 #ifdef CONFIG_DMA_ENGINE
342 #define PL011_DMA_BUFFER_SIZE PAGE_SIZE
344 static int pl011_sgbuf_init(struct dma_chan
*chan
, struct pl011_sgbuf
*sg
,
345 enum dma_data_direction dir
)
349 sg
->buf
= dma_alloc_coherent(chan
->device
->dev
,
350 PL011_DMA_BUFFER_SIZE
, &dma_addr
, GFP_KERNEL
);
354 sg_init_table(&sg
->sg
, 1);
355 sg_set_page(&sg
->sg
, phys_to_page(dma_addr
),
356 PL011_DMA_BUFFER_SIZE
, offset_in_page(dma_addr
));
357 sg_dma_address(&sg
->sg
) = dma_addr
;
358 sg_dma_len(&sg
->sg
) = PL011_DMA_BUFFER_SIZE
;
363 static void pl011_sgbuf_free(struct dma_chan
*chan
, struct pl011_sgbuf
*sg
,
364 enum dma_data_direction dir
)
367 dma_free_coherent(chan
->device
->dev
,
368 PL011_DMA_BUFFER_SIZE
, sg
->buf
,
369 sg_dma_address(&sg
->sg
));
373 static void pl011_dma_probe(struct uart_amba_port
*uap
)
375 /* DMA is the sole user of the platform data right now */
376 struct amba_pl011_data
*plat
= dev_get_platdata(uap
->port
.dev
);
377 struct device
*dev
= uap
->port
.dev
;
378 struct dma_slave_config tx_conf
= {
379 .dst_addr
= uap
->port
.mapbase
+
380 pl011_reg_to_offset(uap
, REG_DR
),
381 .dst_addr_width
= DMA_SLAVE_BUSWIDTH_1_BYTE
,
382 .direction
= DMA_MEM_TO_DEV
,
383 .dst_maxburst
= uap
->fifosize
>> 1,
386 struct dma_chan
*chan
;
389 uap
->dma_probed
= true;
390 chan
= dma_request_slave_channel_reason(dev
, "tx");
392 if (PTR_ERR(chan
) == -EPROBE_DEFER
) {
393 uap
->dma_probed
= false;
397 /* We need platform data */
398 if (!plat
|| !plat
->dma_filter
) {
399 dev_info(uap
->port
.dev
, "no DMA platform data\n");
403 /* Try to acquire a generic DMA engine slave TX channel */
405 dma_cap_set(DMA_SLAVE
, mask
);
407 chan
= dma_request_channel(mask
, plat
->dma_filter
,
410 dev_err(uap
->port
.dev
, "no TX DMA channel!\n");
415 dmaengine_slave_config(chan
, &tx_conf
);
416 uap
->dmatx
.chan
= chan
;
418 dev_info(uap
->port
.dev
, "DMA channel TX %s\n",
419 dma_chan_name(uap
->dmatx
.chan
));
421 /* Optionally make use of an RX channel as well */
422 chan
= dma_request_slave_channel(dev
, "rx");
424 if (!chan
&& plat
&& plat
->dma_rx_param
) {
425 chan
= dma_request_channel(mask
, plat
->dma_filter
, plat
->dma_rx_param
);
428 dev_err(uap
->port
.dev
, "no RX DMA channel!\n");
434 struct dma_slave_config rx_conf
= {
435 .src_addr
= uap
->port
.mapbase
+
436 pl011_reg_to_offset(uap
, REG_DR
),
437 .src_addr_width
= DMA_SLAVE_BUSWIDTH_1_BYTE
,
438 .direction
= DMA_DEV_TO_MEM
,
439 .src_maxburst
= uap
->fifosize
>> 2,
442 struct dma_slave_caps caps
;
445 * Some DMA controllers provide information on their capabilities.
446 * If the controller does, check for suitable residue processing
447 * otherwise assime all is well.
449 if (0 == dma_get_slave_caps(chan
, &caps
)) {
450 if (caps
.residue_granularity
==
451 DMA_RESIDUE_GRANULARITY_DESCRIPTOR
) {
452 dma_release_channel(chan
);
453 dev_info(uap
->port
.dev
,
454 "RX DMA disabled - no residue processing\n");
458 dmaengine_slave_config(chan
, &rx_conf
);
459 uap
->dmarx
.chan
= chan
;
461 uap
->dmarx
.auto_poll_rate
= false;
462 if (plat
&& plat
->dma_rx_poll_enable
) {
463 /* Set poll rate if specified. */
464 if (plat
->dma_rx_poll_rate
) {
465 uap
->dmarx
.auto_poll_rate
= false;
466 uap
->dmarx
.poll_rate
= plat
->dma_rx_poll_rate
;
469 * 100 ms defaults to poll rate if not
470 * specified. This will be adjusted with
471 * the baud rate at set_termios.
473 uap
->dmarx
.auto_poll_rate
= true;
474 uap
->dmarx
.poll_rate
= 100;
476 /* 3 secs defaults poll_timeout if not specified. */
477 if (plat
->dma_rx_poll_timeout
)
478 uap
->dmarx
.poll_timeout
=
479 plat
->dma_rx_poll_timeout
;
481 uap
->dmarx
.poll_timeout
= 3000;
482 } else if (!plat
&& dev
->of_node
) {
483 uap
->dmarx
.auto_poll_rate
= of_property_read_bool(
484 dev
->of_node
, "auto-poll");
485 if (uap
->dmarx
.auto_poll_rate
) {
488 if (0 == of_property_read_u32(dev
->of_node
,
490 uap
->dmarx
.poll_rate
= x
;
492 uap
->dmarx
.poll_rate
= 100;
493 if (0 == of_property_read_u32(dev
->of_node
,
494 "poll-timeout-ms", &x
))
495 uap
->dmarx
.poll_timeout
= x
;
497 uap
->dmarx
.poll_timeout
= 3000;
500 dev_info(uap
->port
.dev
, "DMA channel RX %s\n",
501 dma_chan_name(uap
->dmarx
.chan
));
505 static void pl011_dma_remove(struct uart_amba_port
*uap
)
508 dma_release_channel(uap
->dmatx
.chan
);
510 dma_release_channel(uap
->dmarx
.chan
);
513 /* Forward declare these for the refill routine */
514 static int pl011_dma_tx_refill(struct uart_amba_port
*uap
);
515 static void pl011_start_tx_pio(struct uart_amba_port
*uap
);
518 * The current DMA TX buffer has been sent.
519 * Try to queue up another DMA buffer.
521 static void pl011_dma_tx_callback(void *data
)
523 struct uart_amba_port
*uap
= data
;
524 struct pl011_dmatx_data
*dmatx
= &uap
->dmatx
;
528 spin_lock_irqsave(&uap
->port
.lock
, flags
);
529 if (uap
->dmatx
.queued
)
530 dma_unmap_sg(dmatx
->chan
->device
->dev
, &dmatx
->sg
, 1,
534 uap
->dmacr
= dmacr
& ~UART011_TXDMAE
;
535 pl011_write(uap
->dmacr
, uap
, REG_DMACR
);
538 * If TX DMA was disabled, it means that we've stopped the DMA for
539 * some reason (eg, XOFF received, or we want to send an X-char.)
541 * Note: we need to be careful here of a potential race between DMA
542 * and the rest of the driver - if the driver disables TX DMA while
543 * a TX buffer completing, we must update the tx queued status to
544 * get further refills (hence we check dmacr).
546 if (!(dmacr
& UART011_TXDMAE
) || uart_tx_stopped(&uap
->port
) ||
547 uart_circ_empty(&uap
->port
.state
->xmit
)) {
548 uap
->dmatx
.queued
= false;
549 spin_unlock_irqrestore(&uap
->port
.lock
, flags
);
553 if (pl011_dma_tx_refill(uap
) <= 0)
555 * We didn't queue a DMA buffer for some reason, but we
556 * have data pending to be sent. Re-enable the TX IRQ.
558 pl011_start_tx_pio(uap
);
560 spin_unlock_irqrestore(&uap
->port
.lock
, flags
);
564 * Try to refill the TX DMA buffer.
565 * Locking: called with port lock held and IRQs disabled.
567 * 1 if we queued up a TX DMA buffer.
568 * 0 if we didn't want to handle this by DMA
571 static int pl011_dma_tx_refill(struct uart_amba_port
*uap
)
573 struct pl011_dmatx_data
*dmatx
= &uap
->dmatx
;
574 struct dma_chan
*chan
= dmatx
->chan
;
575 struct dma_device
*dma_dev
= chan
->device
;
576 struct dma_async_tx_descriptor
*desc
;
577 struct circ_buf
*xmit
= &uap
->port
.state
->xmit
;
581 * Try to avoid the overhead involved in using DMA if the
582 * transaction fits in the first half of the FIFO, by using
583 * the standard interrupt handling. This ensures that we
584 * issue a uart_write_wakeup() at the appropriate time.
586 count
= uart_circ_chars_pending(xmit
);
587 if (count
< (uap
->fifosize
>> 1)) {
588 uap
->dmatx
.queued
= false;
593 * Bodge: don't send the last character by DMA, as this
594 * will prevent XON from notifying us to restart DMA.
598 /* Else proceed to copy the TX chars to the DMA buffer and fire DMA */
599 if (count
> PL011_DMA_BUFFER_SIZE
)
600 count
= PL011_DMA_BUFFER_SIZE
;
602 if (xmit
->tail
< xmit
->head
)
603 memcpy(&dmatx
->buf
[0], &xmit
->buf
[xmit
->tail
], count
);
605 size_t first
= UART_XMIT_SIZE
- xmit
->tail
;
610 second
= count
- first
;
612 memcpy(&dmatx
->buf
[0], &xmit
->buf
[xmit
->tail
], first
);
614 memcpy(&dmatx
->buf
[first
], &xmit
->buf
[0], second
);
617 dmatx
->sg
.length
= count
;
619 if (dma_map_sg(dma_dev
->dev
, &dmatx
->sg
, 1, DMA_TO_DEVICE
) != 1) {
620 uap
->dmatx
.queued
= false;
621 dev_dbg(uap
->port
.dev
, "unable to map TX DMA\n");
625 desc
= dmaengine_prep_slave_sg(chan
, &dmatx
->sg
, 1, DMA_MEM_TO_DEV
,
626 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
628 dma_unmap_sg(dma_dev
->dev
, &dmatx
->sg
, 1, DMA_TO_DEVICE
);
629 uap
->dmatx
.queued
= false;
631 * If DMA cannot be used right now, we complete this
632 * transaction via IRQ and let the TTY layer retry.
634 dev_dbg(uap
->port
.dev
, "TX DMA busy\n");
638 /* Some data to go along to the callback */
639 desc
->callback
= pl011_dma_tx_callback
;
640 desc
->callback_param
= uap
;
642 /* All errors should happen at prepare time */
643 dmaengine_submit(desc
);
645 /* Fire the DMA transaction */
646 dma_dev
->device_issue_pending(chan
);
648 uap
->dmacr
|= UART011_TXDMAE
;
649 pl011_write(uap
->dmacr
, uap
, REG_DMACR
);
650 uap
->dmatx
.queued
= true;
653 * Now we know that DMA will fire, so advance the ring buffer
654 * with the stuff we just dispatched.
656 xmit
->tail
= (xmit
->tail
+ count
) & (UART_XMIT_SIZE
- 1);
657 uap
->port
.icount
.tx
+= count
;
659 if (uart_circ_chars_pending(xmit
) < WAKEUP_CHARS
)
660 uart_write_wakeup(&uap
->port
);
666 * We received a transmit interrupt without a pending X-char but with
667 * pending characters.
668 * Locking: called with port lock held and IRQs disabled.
670 * false if we want to use PIO to transmit
671 * true if we queued a DMA buffer
673 static bool pl011_dma_tx_irq(struct uart_amba_port
*uap
)
675 if (!uap
->using_tx_dma
)
679 * If we already have a TX buffer queued, but received a
680 * TX interrupt, it will be because we've just sent an X-char.
681 * Ensure the TX DMA is enabled and the TX IRQ is disabled.
683 if (uap
->dmatx
.queued
) {
684 uap
->dmacr
|= UART011_TXDMAE
;
685 pl011_write(uap
->dmacr
, uap
, REG_DMACR
);
686 uap
->im
&= ~UART011_TXIM
;
687 pl011_write(uap
->im
, uap
, REG_IMSC
);
692 * We don't have a TX buffer queued, so try to queue one.
693 * If we successfully queued a buffer, mask the TX IRQ.
695 if (pl011_dma_tx_refill(uap
) > 0) {
696 uap
->im
&= ~UART011_TXIM
;
697 pl011_write(uap
->im
, uap
, REG_IMSC
);
704 * Stop the DMA transmit (eg, due to received XOFF).
705 * Locking: called with port lock held and IRQs disabled.
707 static inline void pl011_dma_tx_stop(struct uart_amba_port
*uap
)
709 if (uap
->dmatx
.queued
) {
710 uap
->dmacr
&= ~UART011_TXDMAE
;
711 pl011_write(uap
->dmacr
, uap
, REG_DMACR
);
716 * Try to start a DMA transmit, or in the case of an XON/OFF
717 * character queued for send, try to get that character out ASAP.
718 * Locking: called with port lock held and IRQs disabled.
720 * false if we want the TX IRQ to be enabled
721 * true if we have a buffer queued
723 static inline bool pl011_dma_tx_start(struct uart_amba_port
*uap
)
727 if (!uap
->using_tx_dma
)
730 if (!uap
->port
.x_char
) {
731 /* no X-char, try to push chars out in DMA mode */
734 if (!uap
->dmatx
.queued
) {
735 if (pl011_dma_tx_refill(uap
) > 0) {
736 uap
->im
&= ~UART011_TXIM
;
737 pl011_write(uap
->im
, uap
, REG_IMSC
);
740 } else if (!(uap
->dmacr
& UART011_TXDMAE
)) {
741 uap
->dmacr
|= UART011_TXDMAE
;
742 pl011_write(uap
->dmacr
, uap
, REG_DMACR
);
748 * We have an X-char to send. Disable DMA to prevent it loading
749 * the TX fifo, and then see if we can stuff it into the FIFO.
752 uap
->dmacr
&= ~UART011_TXDMAE
;
753 pl011_write(uap
->dmacr
, uap
, REG_DMACR
);
755 if (pl011_read(uap
, REG_FR
) & UART01x_FR_TXFF
) {
757 * No space in the FIFO, so enable the transmit interrupt
758 * so we know when there is space. Note that once we've
759 * loaded the character, we should just re-enable DMA.
764 pl011_write(uap
->port
.x_char
, uap
, REG_DR
);
765 uap
->port
.icount
.tx
++;
766 uap
->port
.x_char
= 0;
768 /* Success - restore the DMA state */
770 pl011_write(dmacr
, uap
, REG_DMACR
);
776 * Flush the transmit buffer.
777 * Locking: called with port lock held and IRQs disabled.
779 static void pl011_dma_flush_buffer(struct uart_port
*port
)
780 __releases(&uap
->port
.lock
)
781 __acquires(&uap
->port
.lock
)
783 struct uart_amba_port
*uap
=
784 container_of(port
, struct uart_amba_port
, port
);
786 if (!uap
->using_tx_dma
)
789 /* Avoid deadlock with the DMA engine callback */
790 spin_unlock(&uap
->port
.lock
);
791 dmaengine_terminate_all(uap
->dmatx
.chan
);
792 spin_lock(&uap
->port
.lock
);
793 if (uap
->dmatx
.queued
) {
794 dma_unmap_sg(uap
->dmatx
.chan
->device
->dev
, &uap
->dmatx
.sg
, 1,
796 uap
->dmatx
.queued
= false;
797 uap
->dmacr
&= ~UART011_TXDMAE
;
798 pl011_write(uap
->dmacr
, uap
, REG_DMACR
);
802 static void pl011_dma_rx_callback(void *data
);
804 static int pl011_dma_rx_trigger_dma(struct uart_amba_port
*uap
)
806 struct dma_chan
*rxchan
= uap
->dmarx
.chan
;
807 struct pl011_dmarx_data
*dmarx
= &uap
->dmarx
;
808 struct dma_async_tx_descriptor
*desc
;
809 struct pl011_sgbuf
*sgbuf
;
814 /* Start the RX DMA job */
815 sgbuf
= uap
->dmarx
.use_buf_b
?
816 &uap
->dmarx
.sgbuf_b
: &uap
->dmarx
.sgbuf_a
;
817 desc
= dmaengine_prep_slave_sg(rxchan
, &sgbuf
->sg
, 1,
819 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
821 * If the DMA engine is busy and cannot prepare a
822 * channel, no big deal, the driver will fall back
823 * to interrupt mode as a result of this error code.
826 uap
->dmarx
.running
= false;
827 dmaengine_terminate_all(rxchan
);
831 /* Some data to go along to the callback */
832 desc
->callback
= pl011_dma_rx_callback
;
833 desc
->callback_param
= uap
;
834 dmarx
->cookie
= dmaengine_submit(desc
);
835 dma_async_issue_pending(rxchan
);
837 uap
->dmacr
|= UART011_RXDMAE
;
838 pl011_write(uap
->dmacr
, uap
, REG_DMACR
);
839 uap
->dmarx
.running
= true;
841 uap
->im
&= ~UART011_RXIM
;
842 pl011_write(uap
->im
, uap
, REG_IMSC
);
848 * This is called when either the DMA job is complete, or
849 * the FIFO timeout interrupt occurred. This must be called
850 * with the port spinlock uap->port.lock held.
852 static void pl011_dma_rx_chars(struct uart_amba_port
*uap
,
853 u32 pending
, bool use_buf_b
,
856 struct tty_port
*port
= &uap
->port
.state
->port
;
857 struct pl011_sgbuf
*sgbuf
= use_buf_b
?
858 &uap
->dmarx
.sgbuf_b
: &uap
->dmarx
.sgbuf_a
;
860 u32 fifotaken
= 0; /* only used for vdbg() */
862 struct pl011_dmarx_data
*dmarx
= &uap
->dmarx
;
865 if (uap
->dmarx
.poll_rate
) {
866 /* The data can be taken by polling */
867 dmataken
= sgbuf
->sg
.length
- dmarx
->last_residue
;
868 /* Recalculate the pending size */
869 if (pending
>= dmataken
)
873 /* Pick the remain data from the DMA */
877 * First take all chars in the DMA pipe, then look in the FIFO.
878 * Note that tty_insert_flip_buf() tries to take as many chars
881 dma_count
= tty_insert_flip_string(port
, sgbuf
->buf
+ dmataken
,
884 uap
->port
.icount
.rx
+= dma_count
;
885 if (dma_count
< pending
)
886 dev_warn(uap
->port
.dev
,
887 "couldn't insert all characters (TTY is full?)\n");
890 /* Reset the last_residue for Rx DMA poll */
891 if (uap
->dmarx
.poll_rate
)
892 dmarx
->last_residue
= sgbuf
->sg
.length
;
895 * Only continue with trying to read the FIFO if all DMA chars have
898 if (dma_count
== pending
&& readfifo
) {
899 /* Clear any error flags */
900 pl011_write(UART011_OEIS
| UART011_BEIS
| UART011_PEIS
|
901 UART011_FEIS
, uap
, REG_ICR
);
904 * If we read all the DMA'd characters, and we had an
905 * incomplete buffer, that could be due to an rx error, or
906 * maybe we just timed out. Read any pending chars and check
909 * Error conditions will only occur in the FIFO, these will
910 * trigger an immediate interrupt and stop the DMA job, so we
911 * will always find the error in the FIFO, never in the DMA
914 fifotaken
= pl011_fifo_to_tty(uap
);
917 spin_unlock(&uap
->port
.lock
);
918 dev_vdbg(uap
->port
.dev
,
919 "Took %d chars from DMA buffer and %d chars from the FIFO\n",
920 dma_count
, fifotaken
);
921 tty_flip_buffer_push(port
);
922 spin_lock(&uap
->port
.lock
);
925 static void pl011_dma_rx_irq(struct uart_amba_port
*uap
)
927 struct pl011_dmarx_data
*dmarx
= &uap
->dmarx
;
928 struct dma_chan
*rxchan
= dmarx
->chan
;
929 struct pl011_sgbuf
*sgbuf
= dmarx
->use_buf_b
?
930 &dmarx
->sgbuf_b
: &dmarx
->sgbuf_a
;
932 struct dma_tx_state state
;
933 enum dma_status dmastat
;
936 * Pause the transfer so we can trust the current counter,
937 * do this before we pause the PL011 block, else we may
940 if (dmaengine_pause(rxchan
))
941 dev_err(uap
->port
.dev
, "unable to pause DMA transfer\n");
942 dmastat
= rxchan
->device
->device_tx_status(rxchan
,
943 dmarx
->cookie
, &state
);
944 if (dmastat
!= DMA_PAUSED
)
945 dev_err(uap
->port
.dev
, "unable to pause DMA transfer\n");
947 /* Disable RX DMA - incoming data will wait in the FIFO */
948 uap
->dmacr
&= ~UART011_RXDMAE
;
949 pl011_write(uap
->dmacr
, uap
, REG_DMACR
);
950 uap
->dmarx
.running
= false;
952 pending
= sgbuf
->sg
.length
- state
.residue
;
953 BUG_ON(pending
> PL011_DMA_BUFFER_SIZE
);
954 /* Then we terminate the transfer - we now know our residue */
955 dmaengine_terminate_all(rxchan
);
958 * This will take the chars we have so far and insert
959 * into the framework.
961 pl011_dma_rx_chars(uap
, pending
, dmarx
->use_buf_b
, true);
963 /* Switch buffer & re-trigger DMA job */
964 dmarx
->use_buf_b
= !dmarx
->use_buf_b
;
965 if (pl011_dma_rx_trigger_dma(uap
)) {
966 dev_dbg(uap
->port
.dev
, "could not retrigger RX DMA job "
967 "fall back to interrupt mode\n");
968 uap
->im
|= UART011_RXIM
;
969 pl011_write(uap
->im
, uap
, REG_IMSC
);
973 static void pl011_dma_rx_callback(void *data
)
975 struct uart_amba_port
*uap
= data
;
976 struct pl011_dmarx_data
*dmarx
= &uap
->dmarx
;
977 struct dma_chan
*rxchan
= dmarx
->chan
;
978 bool lastbuf
= dmarx
->use_buf_b
;
979 struct pl011_sgbuf
*sgbuf
= dmarx
->use_buf_b
?
980 &dmarx
->sgbuf_b
: &dmarx
->sgbuf_a
;
982 struct dma_tx_state state
;
986 * This completion interrupt occurs typically when the
987 * RX buffer is totally stuffed but no timeout has yet
988 * occurred. When that happens, we just want the RX
989 * routine to flush out the secondary DMA buffer while
990 * we immediately trigger the next DMA job.
992 spin_lock_irq(&uap
->port
.lock
);
994 * Rx data can be taken by the UART interrupts during
995 * the DMA irq handler. So we check the residue here.
997 rxchan
->device
->device_tx_status(rxchan
, dmarx
->cookie
, &state
);
998 pending
= sgbuf
->sg
.length
- state
.residue
;
999 BUG_ON(pending
> PL011_DMA_BUFFER_SIZE
);
1000 /* Then we terminate the transfer - we now know our residue */
1001 dmaengine_terminate_all(rxchan
);
1003 uap
->dmarx
.running
= false;
1004 dmarx
->use_buf_b
= !lastbuf
;
1005 ret
= pl011_dma_rx_trigger_dma(uap
);
1007 pl011_dma_rx_chars(uap
, pending
, lastbuf
, false);
1008 spin_unlock_irq(&uap
->port
.lock
);
1010 * Do this check after we picked the DMA chars so we don't
1011 * get some IRQ immediately from RX.
1014 dev_dbg(uap
->port
.dev
, "could not retrigger RX DMA job "
1015 "fall back to interrupt mode\n");
1016 uap
->im
|= UART011_RXIM
;
1017 pl011_write(uap
->im
, uap
, REG_IMSC
);
1022 * Stop accepting received characters, when we're shutting down or
1023 * suspending this port.
1024 * Locking: called with port lock held and IRQs disabled.
1026 static inline void pl011_dma_rx_stop(struct uart_amba_port
*uap
)
1028 /* FIXME. Just disable the DMA enable */
1029 uap
->dmacr
&= ~UART011_RXDMAE
;
1030 pl011_write(uap
->dmacr
, uap
, REG_DMACR
);
1034 * Timer handler for Rx DMA polling.
1035 * Every polling, It checks the residue in the dma buffer and transfer
1036 * data to the tty. Also, last_residue is updated for the next polling.
1038 static void pl011_dma_rx_poll(unsigned long args
)
1040 struct uart_amba_port
*uap
= (struct uart_amba_port
*)args
;
1041 struct tty_port
*port
= &uap
->port
.state
->port
;
1042 struct pl011_dmarx_data
*dmarx
= &uap
->dmarx
;
1043 struct dma_chan
*rxchan
= uap
->dmarx
.chan
;
1044 unsigned long flags
= 0;
1045 unsigned int dmataken
= 0;
1046 unsigned int size
= 0;
1047 struct pl011_sgbuf
*sgbuf
;
1049 struct dma_tx_state state
;
1051 sgbuf
= dmarx
->use_buf_b
? &uap
->dmarx
.sgbuf_b
: &uap
->dmarx
.sgbuf_a
;
1052 rxchan
->device
->device_tx_status(rxchan
, dmarx
->cookie
, &state
);
1053 if (likely(state
.residue
< dmarx
->last_residue
)) {
1054 dmataken
= sgbuf
->sg
.length
- dmarx
->last_residue
;
1055 size
= dmarx
->last_residue
- state
.residue
;
1056 dma_count
= tty_insert_flip_string(port
, sgbuf
->buf
+ dmataken
,
1058 if (dma_count
== size
)
1059 dmarx
->last_residue
= state
.residue
;
1060 dmarx
->last_jiffies
= jiffies
;
1062 tty_flip_buffer_push(port
);
1065 * If no data is received in poll_timeout, the driver will fall back
1066 * to interrupt mode. We will retrigger DMA at the first interrupt.
1068 if (jiffies_to_msecs(jiffies
- dmarx
->last_jiffies
)
1069 > uap
->dmarx
.poll_timeout
) {
1071 spin_lock_irqsave(&uap
->port
.lock
, flags
);
1072 pl011_dma_rx_stop(uap
);
1073 uap
->im
|= UART011_RXIM
;
1074 pl011_write(uap
->im
, uap
, REG_IMSC
);
1075 spin_unlock_irqrestore(&uap
->port
.lock
, flags
);
1077 uap
->dmarx
.running
= false;
1078 dmaengine_terminate_all(rxchan
);
1079 del_timer(&uap
->dmarx
.timer
);
1081 mod_timer(&uap
->dmarx
.timer
,
1082 jiffies
+ msecs_to_jiffies(uap
->dmarx
.poll_rate
));
1086 static void pl011_dma_startup(struct uart_amba_port
*uap
)
1090 if (!uap
->dma_probed
)
1091 pl011_dma_probe(uap
);
1093 if (!uap
->dmatx
.chan
)
1096 uap
->dmatx
.buf
= kmalloc(PL011_DMA_BUFFER_SIZE
, GFP_KERNEL
| __GFP_DMA
);
1097 if (!uap
->dmatx
.buf
) {
1098 dev_err(uap
->port
.dev
, "no memory for DMA TX buffer\n");
1099 uap
->port
.fifosize
= uap
->fifosize
;
1103 sg_init_one(&uap
->dmatx
.sg
, uap
->dmatx
.buf
, PL011_DMA_BUFFER_SIZE
);
1105 /* The DMA buffer is now the FIFO the TTY subsystem can use */
1106 uap
->port
.fifosize
= PL011_DMA_BUFFER_SIZE
;
1107 uap
->using_tx_dma
= true;
1109 if (!uap
->dmarx
.chan
)
1112 /* Allocate and map DMA RX buffers */
1113 ret
= pl011_sgbuf_init(uap
->dmarx
.chan
, &uap
->dmarx
.sgbuf_a
,
1116 dev_err(uap
->port
.dev
, "failed to init DMA %s: %d\n",
1117 "RX buffer A", ret
);
1121 ret
= pl011_sgbuf_init(uap
->dmarx
.chan
, &uap
->dmarx
.sgbuf_b
,
1124 dev_err(uap
->port
.dev
, "failed to init DMA %s: %d\n",
1125 "RX buffer B", ret
);
1126 pl011_sgbuf_free(uap
->dmarx
.chan
, &uap
->dmarx
.sgbuf_a
,
1131 uap
->using_rx_dma
= true;
1134 /* Turn on DMA error (RX/TX will be enabled on demand) */
1135 uap
->dmacr
|= UART011_DMAONERR
;
1136 pl011_write(uap
->dmacr
, uap
, REG_DMACR
);
1139 * ST Micro variants has some specific dma burst threshold
1140 * compensation. Set this to 16 bytes, so burst will only
1141 * be issued above/below 16 bytes.
1143 if (uap
->vendor
->dma_threshold
)
1144 pl011_write(ST_UART011_DMAWM_RX_16
| ST_UART011_DMAWM_TX_16
,
1147 if (uap
->using_rx_dma
) {
1148 if (pl011_dma_rx_trigger_dma(uap
))
1149 dev_dbg(uap
->port
.dev
, "could not trigger initial "
1150 "RX DMA job, fall back to interrupt mode\n");
1151 if (uap
->dmarx
.poll_rate
) {
1152 init_timer(&(uap
->dmarx
.timer
));
1153 uap
->dmarx
.timer
.function
= pl011_dma_rx_poll
;
1154 uap
->dmarx
.timer
.data
= (unsigned long)uap
;
1155 mod_timer(&uap
->dmarx
.timer
,
1157 msecs_to_jiffies(uap
->dmarx
.poll_rate
));
1158 uap
->dmarx
.last_residue
= PL011_DMA_BUFFER_SIZE
;
1159 uap
->dmarx
.last_jiffies
= jiffies
;
1164 static void pl011_dma_shutdown(struct uart_amba_port
*uap
)
1166 if (!(uap
->using_tx_dma
|| uap
->using_rx_dma
))
1169 /* Disable RX and TX DMA */
1170 while (pl011_read(uap
, REG_FR
) & UART01x_FR_BUSY
)
1173 spin_lock_irq(&uap
->port
.lock
);
1174 uap
->dmacr
&= ~(UART011_DMAONERR
| UART011_RXDMAE
| UART011_TXDMAE
);
1175 pl011_write(uap
->dmacr
, uap
, REG_DMACR
);
1176 spin_unlock_irq(&uap
->port
.lock
);
1178 if (uap
->using_tx_dma
) {
1179 /* In theory, this should already be done by pl011_dma_flush_buffer */
1180 dmaengine_terminate_all(uap
->dmatx
.chan
);
1181 if (uap
->dmatx
.queued
) {
1182 dma_unmap_sg(uap
->dmatx
.chan
->device
->dev
, &uap
->dmatx
.sg
, 1,
1184 uap
->dmatx
.queued
= false;
1187 kfree(uap
->dmatx
.buf
);
1188 uap
->using_tx_dma
= false;
1191 if (uap
->using_rx_dma
) {
1192 dmaengine_terminate_all(uap
->dmarx
.chan
);
1193 /* Clean up the RX DMA */
1194 pl011_sgbuf_free(uap
->dmarx
.chan
, &uap
->dmarx
.sgbuf_a
, DMA_FROM_DEVICE
);
1195 pl011_sgbuf_free(uap
->dmarx
.chan
, &uap
->dmarx
.sgbuf_b
, DMA_FROM_DEVICE
);
1196 if (uap
->dmarx
.poll_rate
)
1197 del_timer_sync(&uap
->dmarx
.timer
);
1198 uap
->using_rx_dma
= false;
1202 static inline bool pl011_dma_rx_available(struct uart_amba_port
*uap
)
1204 return uap
->using_rx_dma
;
1207 static inline bool pl011_dma_rx_running(struct uart_amba_port
*uap
)
1209 return uap
->using_rx_dma
&& uap
->dmarx
.running
;
1213 /* Blank functions if the DMA engine is not available */
1214 static inline void pl011_dma_probe(struct uart_amba_port
*uap
)
1218 static inline void pl011_dma_remove(struct uart_amba_port
*uap
)
1222 static inline void pl011_dma_startup(struct uart_amba_port
*uap
)
1226 static inline void pl011_dma_shutdown(struct uart_amba_port
*uap
)
1230 static inline bool pl011_dma_tx_irq(struct uart_amba_port
*uap
)
1235 static inline void pl011_dma_tx_stop(struct uart_amba_port
*uap
)
1239 static inline bool pl011_dma_tx_start(struct uart_amba_port
*uap
)
1244 static inline void pl011_dma_rx_irq(struct uart_amba_port
*uap
)
1248 static inline void pl011_dma_rx_stop(struct uart_amba_port
*uap
)
1252 static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port
*uap
)
1257 static inline bool pl011_dma_rx_available(struct uart_amba_port
*uap
)
1262 static inline bool pl011_dma_rx_running(struct uart_amba_port
*uap
)
1267 #define pl011_dma_flush_buffer NULL
1270 static void pl011_stop_tx(struct uart_port
*port
)
1272 struct uart_amba_port
*uap
=
1273 container_of(port
, struct uart_amba_port
, port
);
1275 uap
->im
&= ~UART011_TXIM
;
1276 pl011_write(uap
->im
, uap
, REG_IMSC
);
1277 pl011_dma_tx_stop(uap
);
1280 static void pl011_tx_chars(struct uart_amba_port
*uap
, bool from_irq
);
1282 /* Start TX with programmed I/O only (no DMA) */
1283 static void pl011_start_tx_pio(struct uart_amba_port
*uap
)
1285 uap
->im
|= UART011_TXIM
;
1286 pl011_write(uap
->im
, uap
, REG_IMSC
);
1287 pl011_tx_chars(uap
, false);
1290 static void pl011_start_tx(struct uart_port
*port
)
1292 struct uart_amba_port
*uap
=
1293 container_of(port
, struct uart_amba_port
, port
);
1295 if (!pl011_dma_tx_start(uap
))
1296 pl011_start_tx_pio(uap
);
1299 static void pl011_stop_rx(struct uart_port
*port
)
1301 struct uart_amba_port
*uap
=
1302 container_of(port
, struct uart_amba_port
, port
);
1304 uap
->im
&= ~(UART011_RXIM
|UART011_RTIM
|UART011_FEIM
|
1305 UART011_PEIM
|UART011_BEIM
|UART011_OEIM
);
1306 pl011_write(uap
->im
, uap
, REG_IMSC
);
1308 pl011_dma_rx_stop(uap
);
1311 static void pl011_enable_ms(struct uart_port
*port
)
1313 struct uart_amba_port
*uap
=
1314 container_of(port
, struct uart_amba_port
, port
);
1316 uap
->im
|= UART011_RIMIM
|UART011_CTSMIM
|UART011_DCDMIM
|UART011_DSRMIM
;
1317 pl011_write(uap
->im
, uap
, REG_IMSC
);
1320 static void pl011_rx_chars(struct uart_amba_port
*uap
)
1321 __releases(&uap
->port
.lock
)
1322 __acquires(&uap
->port
.lock
)
1324 pl011_fifo_to_tty(uap
);
1326 spin_unlock(&uap
->port
.lock
);
1327 tty_flip_buffer_push(&uap
->port
.state
->port
);
1329 * If we were temporarily out of DMA mode for a while,
1330 * attempt to switch back to DMA mode again.
1332 if (pl011_dma_rx_available(uap
)) {
1333 if (pl011_dma_rx_trigger_dma(uap
)) {
1334 dev_dbg(uap
->port
.dev
, "could not trigger RX DMA job "
1335 "fall back to interrupt mode again\n");
1336 uap
->im
|= UART011_RXIM
;
1337 pl011_write(uap
->im
, uap
, REG_IMSC
);
1339 #ifdef CONFIG_DMA_ENGINE
1340 /* Start Rx DMA poll */
1341 if (uap
->dmarx
.poll_rate
) {
1342 uap
->dmarx
.last_jiffies
= jiffies
;
1343 uap
->dmarx
.last_residue
= PL011_DMA_BUFFER_SIZE
;
1344 mod_timer(&uap
->dmarx
.timer
,
1346 msecs_to_jiffies(uap
->dmarx
.poll_rate
));
1351 spin_lock(&uap
->port
.lock
);
1354 static bool pl011_tx_char(struct uart_amba_port
*uap
, unsigned char c
,
1357 if (unlikely(!from_irq
) &&
1358 pl011_read(uap
, REG_FR
) & UART01x_FR_TXFF
)
1359 return false; /* unable to transmit character */
1361 pl011_write(c
, uap
, REG_DR
);
1362 uap
->port
.icount
.tx
++;
1367 static void pl011_tx_chars(struct uart_amba_port
*uap
, bool from_irq
)
1369 struct circ_buf
*xmit
= &uap
->port
.state
->xmit
;
1370 int count
= uap
->fifosize
>> 1;
1372 if (uap
->port
.x_char
) {
1373 if (!pl011_tx_char(uap
, uap
->port
.x_char
, from_irq
))
1375 uap
->port
.x_char
= 0;
1378 if (uart_circ_empty(xmit
) || uart_tx_stopped(&uap
->port
)) {
1379 pl011_stop_tx(&uap
->port
);
1383 /* If we are using DMA mode, try to send some characters. */
1384 if (pl011_dma_tx_irq(uap
))
1388 if (likely(from_irq
) && count
-- == 0)
1391 if (!pl011_tx_char(uap
, xmit
->buf
[xmit
->tail
], from_irq
))
1394 xmit
->tail
= (xmit
->tail
+ 1) & (UART_XMIT_SIZE
- 1);
1395 } while (!uart_circ_empty(xmit
));
1397 if (uart_circ_chars_pending(xmit
) < WAKEUP_CHARS
)
1398 uart_write_wakeup(&uap
->port
);
1400 if (uart_circ_empty(xmit
))
1401 pl011_stop_tx(&uap
->port
);
1404 static void pl011_modem_status(struct uart_amba_port
*uap
)
1406 unsigned int status
, delta
;
1408 status
= pl011_read(uap
, REG_FR
) & UART01x_FR_MODEM_ANY
;
1410 delta
= status
^ uap
->old_status
;
1411 uap
->old_status
= status
;
1416 if (delta
& UART01x_FR_DCD
)
1417 uart_handle_dcd_change(&uap
->port
, status
& UART01x_FR_DCD
);
1419 if (delta
& UART01x_FR_DSR
)
1420 uap
->port
.icount
.dsr
++;
1422 if (delta
& UART01x_FR_CTS
)
1423 uart_handle_cts_change(&uap
->port
, status
& UART01x_FR_CTS
);
1425 wake_up_interruptible(&uap
->port
.state
->port
.delta_msr_wait
);
1428 static void check_apply_cts_event_workaround(struct uart_amba_port
*uap
)
1430 unsigned int dummy_read
;
1432 if (!uap
->vendor
->cts_event_workaround
)
1435 /* workaround to make sure that all bits are unlocked.. */
1436 pl011_write(0x00, uap
, REG_ICR
);
1439 * WA: introduce 26ns(1 uart clk) delay before W1C;
1440 * single apb access will incur 2 pclk(133.12Mhz) delay,
1441 * so add 2 dummy reads
1443 dummy_read
= pl011_read(uap
, REG_ICR
);
1444 dummy_read
= pl011_read(uap
, REG_ICR
);
1447 static irqreturn_t
pl011_int(int irq
, void *dev_id
)
1449 struct uart_amba_port
*uap
= dev_id
;
1450 unsigned long flags
;
1451 unsigned int status
, pass_counter
= AMBA_ISR_PASS_LIMIT
;
1455 spin_lock_irqsave(&uap
->port
.lock
, flags
);
1456 imsc
= pl011_read(uap
, REG_IMSC
);
1457 status
= pl011_read(uap
, REG_RIS
) & imsc
;
1460 check_apply_cts_event_workaround(uap
);
1462 pl011_write(status
& ~(UART011_TXIS
|UART011_RTIS
|
1466 if (status
& (UART011_RTIS
|UART011_RXIS
)) {
1467 if (pl011_dma_rx_running(uap
))
1468 pl011_dma_rx_irq(uap
);
1470 pl011_rx_chars(uap
);
1472 if (status
& (UART011_DSRMIS
|UART011_DCDMIS
|
1473 UART011_CTSMIS
|UART011_RIMIS
))
1474 pl011_modem_status(uap
);
1475 if (status
& UART011_TXIS
)
1476 pl011_tx_chars(uap
, true);
1478 if (pass_counter
-- == 0)
1481 status
= pl011_read(uap
, REG_RIS
) & imsc
;
1482 } while (status
!= 0);
1486 spin_unlock_irqrestore(&uap
->port
.lock
, flags
);
1488 return IRQ_RETVAL(handled
);
1491 static unsigned int pl011_tx_empty(struct uart_port
*port
)
1493 struct uart_amba_port
*uap
=
1494 container_of(port
, struct uart_amba_port
, port
);
1495 unsigned int status
= pl011_read(uap
, REG_FR
);
1496 return status
& (UART01x_FR_BUSY
|UART01x_FR_TXFF
) ? 0 : TIOCSER_TEMT
;
1499 static unsigned int pl011_get_mctrl(struct uart_port
*port
)
1501 struct uart_amba_port
*uap
=
1502 container_of(port
, struct uart_amba_port
, port
);
1503 unsigned int result
= 0;
1504 unsigned int status
= pl011_read(uap
, REG_FR
);
1506 #define TIOCMBIT(uartbit, tiocmbit) \
1507 if (status & uartbit) \
1510 TIOCMBIT(UART01x_FR_DCD
, TIOCM_CAR
);
1511 TIOCMBIT(UART01x_FR_DSR
, TIOCM_DSR
);
1512 TIOCMBIT(UART01x_FR_CTS
, TIOCM_CTS
);
1513 TIOCMBIT(UART011_FR_RI
, TIOCM_RNG
);
1518 static void pl011_set_mctrl(struct uart_port
*port
, unsigned int mctrl
)
1520 struct uart_amba_port
*uap
=
1521 container_of(port
, struct uart_amba_port
, port
);
1524 cr
= pl011_read(uap
, REG_CR
);
1526 #define TIOCMBIT(tiocmbit, uartbit) \
1527 if (mctrl & tiocmbit) \
1532 TIOCMBIT(TIOCM_RTS
, UART011_CR_RTS
);
1533 TIOCMBIT(TIOCM_DTR
, UART011_CR_DTR
);
1534 TIOCMBIT(TIOCM_OUT1
, UART011_CR_OUT1
);
1535 TIOCMBIT(TIOCM_OUT2
, UART011_CR_OUT2
);
1536 TIOCMBIT(TIOCM_LOOP
, UART011_CR_LBE
);
1539 /* We need to disable auto-RTS if we want to turn RTS off */
1540 TIOCMBIT(TIOCM_RTS
, UART011_CR_RTSEN
);
1544 pl011_write(cr
, uap
, REG_CR
);
1547 static void pl011_break_ctl(struct uart_port
*port
, int break_state
)
1549 struct uart_amba_port
*uap
=
1550 container_of(port
, struct uart_amba_port
, port
);
1551 unsigned long flags
;
1554 spin_lock_irqsave(&uap
->port
.lock
, flags
);
1555 lcr_h
= pl011_read(uap
, REG_LCRH_TX
);
1556 if (break_state
== -1)
1557 lcr_h
|= UART01x_LCRH_BRK
;
1559 lcr_h
&= ~UART01x_LCRH_BRK
;
1560 pl011_write(lcr_h
, uap
, REG_LCRH_TX
);
1561 spin_unlock_irqrestore(&uap
->port
.lock
, flags
);
1564 #ifdef CONFIG_CONSOLE_POLL
1566 static void pl011_quiesce_irqs(struct uart_port
*port
)
1568 struct uart_amba_port
*uap
=
1569 container_of(port
, struct uart_amba_port
, port
);
1571 pl011_write(pl011_read(uap
, REG_MIS
), uap
, REG_ICR
);
1573 * There is no way to clear TXIM as this is "ready to transmit IRQ", so
1574 * we simply mask it. start_tx() will unmask it.
1576 * Note we can race with start_tx(), and if the race happens, the
1577 * polling user might get another interrupt just after we clear it.
1578 * But it should be OK and can happen even w/o the race, e.g.
1579 * controller immediately got some new data and raised the IRQ.
1581 * And whoever uses polling routines assumes that it manages the device
1582 * (including tx queue), so we're also fine with start_tx()'s caller
1585 pl011_write(pl011_read(uap
, REG_IMSC
) & ~UART011_TXIM
, uap
,
1589 static int pl011_get_poll_char(struct uart_port
*port
)
1591 struct uart_amba_port
*uap
=
1592 container_of(port
, struct uart_amba_port
, port
);
1593 unsigned int status
;
1596 * The caller might need IRQs lowered, e.g. if used with KDB NMI
1599 pl011_quiesce_irqs(port
);
1601 status
= pl011_read(uap
, REG_FR
);
1602 if (status
& UART01x_FR_RXFE
)
1603 return NO_POLL_CHAR
;
1605 return pl011_read(uap
, REG_DR
);
1608 static void pl011_put_poll_char(struct uart_port
*port
,
1611 struct uart_amba_port
*uap
=
1612 container_of(port
, struct uart_amba_port
, port
);
1614 while (pl011_read(uap
, REG_FR
) & UART01x_FR_TXFF
)
1617 pl011_write(ch
, uap
, REG_DR
);
1620 #endif /* CONFIG_CONSOLE_POLL */
1622 static int pl011_hwinit(struct uart_port
*port
)
1624 struct uart_amba_port
*uap
=
1625 container_of(port
, struct uart_amba_port
, port
);
1628 /* Optionaly enable pins to be muxed in and configured */
1629 pinctrl_pm_select_default_state(port
->dev
);
1632 * Try to enable the clock producer.
1634 retval
= clk_prepare_enable(uap
->clk
);
1638 uap
->port
.uartclk
= clk_get_rate(uap
->clk
);
1640 /* Clear pending error and receive interrupts */
1641 pl011_write(UART011_OEIS
| UART011_BEIS
| UART011_PEIS
|
1642 UART011_FEIS
| UART011_RTIS
| UART011_RXIS
,
1646 * Save interrupts enable mask, and enable RX interrupts in case if
1647 * the interrupt is used for NMI entry.
1649 uap
->im
= pl011_read(uap
, REG_IMSC
);
1650 pl011_write(UART011_RTIM
| UART011_RXIM
, uap
, REG_IMSC
);
1652 if (dev_get_platdata(uap
->port
.dev
)) {
1653 struct amba_pl011_data
*plat
;
1655 plat
= dev_get_platdata(uap
->port
.dev
);
1662 static bool pl011_split_lcrh(const struct uart_amba_port
*uap
)
1664 return pl011_reg_to_offset(uap
, REG_LCRH_RX
) !=
1665 pl011_reg_to_offset(uap
, REG_LCRH_TX
);
1668 static void pl011_write_lcr_h(struct uart_amba_port
*uap
, unsigned int lcr_h
)
1670 pl011_write(lcr_h
, uap
, REG_LCRH_RX
);
1671 if (pl011_split_lcrh(uap
)) {
1674 * Wait 10 PCLKs before writing LCRH_TX register,
1675 * to get this delay write read only register 10 times
1677 for (i
= 0; i
< 10; ++i
)
1678 pl011_write(0xff, uap
, REG_MIS
);
1679 pl011_write(lcr_h
, uap
, REG_LCRH_TX
);
1683 static int pl011_allocate_irq(struct uart_amba_port
*uap
)
1685 pl011_write(uap
->im
, uap
, REG_IMSC
);
1687 return request_irq(uap
->port
.irq
, pl011_int
, 0, "uart-pl011", uap
);
1691 * Enable interrupts, only timeouts when using DMA
1692 * if initial RX DMA job failed, start in interrupt mode
1695 static void pl011_enable_interrupts(struct uart_amba_port
*uap
)
1697 spin_lock_irq(&uap
->port
.lock
);
1699 /* Clear out any spuriously appearing RX interrupts */
1700 pl011_write(UART011_RTIS
| UART011_RXIS
, uap
, REG_ICR
);
1701 uap
->im
= UART011_RTIM
;
1702 if (!pl011_dma_rx_running(uap
))
1703 uap
->im
|= UART011_RXIM
;
1704 pl011_write(uap
->im
, uap
, REG_IMSC
);
1705 spin_unlock_irq(&uap
->port
.lock
);
1708 static int pl011_startup(struct uart_port
*port
)
1710 struct uart_amba_port
*uap
=
1711 container_of(port
, struct uart_amba_port
, port
);
1715 retval
= pl011_hwinit(port
);
1719 retval
= pl011_allocate_irq(uap
);
1723 pl011_write(uap
->vendor
->ifls
, uap
, REG_IFLS
);
1725 spin_lock_irq(&uap
->port
.lock
);
1727 /* restore RTS and DTR */
1728 cr
= uap
->old_cr
& (UART011_CR_RTS
| UART011_CR_DTR
);
1729 cr
|= UART01x_CR_UARTEN
| UART011_CR_RXE
| UART011_CR_TXE
;
1730 pl011_write(cr
, uap
, REG_CR
);
1732 spin_unlock_irq(&uap
->port
.lock
);
1735 * initialise the old status of the modem signals
1737 uap
->old_status
= pl011_read(uap
, REG_FR
) & UART01x_FR_MODEM_ANY
;
1740 pl011_dma_startup(uap
);
1742 pl011_enable_interrupts(uap
);
1747 clk_disable_unprepare(uap
->clk
);
1751 static int sbsa_uart_startup(struct uart_port
*port
)
1753 struct uart_amba_port
*uap
=
1754 container_of(port
, struct uart_amba_port
, port
);
1757 retval
= pl011_hwinit(port
);
1761 retval
= pl011_allocate_irq(uap
);
1765 /* The SBSA UART does not support any modem status lines. */
1766 uap
->old_status
= 0;
1768 pl011_enable_interrupts(uap
);
1773 static void pl011_shutdown_channel(struct uart_amba_port
*uap
,
1778 val
= pl011_read(uap
, lcrh
);
1779 val
&= ~(UART01x_LCRH_BRK
| UART01x_LCRH_FEN
);
1780 pl011_write(val
, uap
, lcrh
);
1784 * disable the port. It should not disable RTS and DTR.
1785 * Also RTS and DTR state should be preserved to restore
1786 * it during startup().
1788 static void pl011_disable_uart(struct uart_amba_port
*uap
)
1792 uap
->autorts
= false;
1793 spin_lock_irq(&uap
->port
.lock
);
1794 cr
= pl011_read(uap
, REG_CR
);
1796 cr
&= UART011_CR_RTS
| UART011_CR_DTR
;
1797 cr
|= UART01x_CR_UARTEN
| UART011_CR_TXE
;
1798 pl011_write(cr
, uap
, REG_CR
);
1799 spin_unlock_irq(&uap
->port
.lock
);
1802 * disable break condition and fifos
1804 pl011_shutdown_channel(uap
, REG_LCRH_RX
);
1805 if (pl011_split_lcrh(uap
))
1806 pl011_shutdown_channel(uap
, REG_LCRH_TX
);
1809 static void pl011_disable_interrupts(struct uart_amba_port
*uap
)
1811 spin_lock_irq(&uap
->port
.lock
);
1813 /* mask all interrupts and clear all pending ones */
1815 pl011_write(uap
->im
, uap
, REG_IMSC
);
1816 pl011_write(0xffff, uap
, REG_ICR
);
1818 spin_unlock_irq(&uap
->port
.lock
);
1821 static void pl011_shutdown(struct uart_port
*port
)
1823 struct uart_amba_port
*uap
=
1824 container_of(port
, struct uart_amba_port
, port
);
1826 pl011_disable_interrupts(uap
);
1828 pl011_dma_shutdown(uap
);
1830 free_irq(uap
->port
.irq
, uap
);
1832 pl011_disable_uart(uap
);
1835 * Shut down the clock producer
1837 clk_disable_unprepare(uap
->clk
);
1838 /* Optionally let pins go into sleep states */
1839 pinctrl_pm_select_sleep_state(port
->dev
);
1841 if (dev_get_platdata(uap
->port
.dev
)) {
1842 struct amba_pl011_data
*plat
;
1844 plat
= dev_get_platdata(uap
->port
.dev
);
1849 if (uap
->port
.ops
->flush_buffer
)
1850 uap
->port
.ops
->flush_buffer(port
);
1853 static void sbsa_uart_shutdown(struct uart_port
*port
)
1855 struct uart_amba_port
*uap
=
1856 container_of(port
, struct uart_amba_port
, port
);
1858 pl011_disable_interrupts(uap
);
1860 free_irq(uap
->port
.irq
, uap
);
1862 if (uap
->port
.ops
->flush_buffer
)
1863 uap
->port
.ops
->flush_buffer(port
);
1867 pl011_setup_status_masks(struct uart_port
*port
, struct ktermios
*termios
)
1869 port
->read_status_mask
= UART011_DR_OE
| 255;
1870 if (termios
->c_iflag
& INPCK
)
1871 port
->read_status_mask
|= UART011_DR_FE
| UART011_DR_PE
;
1872 if (termios
->c_iflag
& (IGNBRK
| BRKINT
| PARMRK
))
1873 port
->read_status_mask
|= UART011_DR_BE
;
1876 * Characters to ignore
1878 port
->ignore_status_mask
= 0;
1879 if (termios
->c_iflag
& IGNPAR
)
1880 port
->ignore_status_mask
|= UART011_DR_FE
| UART011_DR_PE
;
1881 if (termios
->c_iflag
& IGNBRK
) {
1882 port
->ignore_status_mask
|= UART011_DR_BE
;
1884 * If we're ignoring parity and break indicators,
1885 * ignore overruns too (for real raw support).
1887 if (termios
->c_iflag
& IGNPAR
)
1888 port
->ignore_status_mask
|= UART011_DR_OE
;
1892 * Ignore all characters if CREAD is not set.
1894 if ((termios
->c_cflag
& CREAD
) == 0)
1895 port
->ignore_status_mask
|= UART_DUMMY_DR_RX
;
1899 pl011_set_termios(struct uart_port
*port
, struct ktermios
*termios
,
1900 struct ktermios
*old
)
1902 struct uart_amba_port
*uap
=
1903 container_of(port
, struct uart_amba_port
, port
);
1904 unsigned int lcr_h
, old_cr
;
1905 unsigned long flags
;
1906 unsigned int baud
, quot
, clkdiv
;
1908 if (uap
->vendor
->oversampling
)
1914 * Ask the core to calculate the divisor for us.
1916 baud
= uart_get_baud_rate(port
, termios
, old
, 0,
1917 port
->uartclk
/ clkdiv
);
1918 #ifdef CONFIG_DMA_ENGINE
1920 * Adjust RX DMA polling rate with baud rate if not specified.
1922 if (uap
->dmarx
.auto_poll_rate
)
1923 uap
->dmarx
.poll_rate
= DIV_ROUND_UP(10000000, baud
);
1926 if (baud
> port
->uartclk
/16)
1927 quot
= DIV_ROUND_CLOSEST(port
->uartclk
* 8, baud
);
1929 quot
= DIV_ROUND_CLOSEST(port
->uartclk
* 4, baud
);
1931 switch (termios
->c_cflag
& CSIZE
) {
1933 lcr_h
= UART01x_LCRH_WLEN_5
;
1936 lcr_h
= UART01x_LCRH_WLEN_6
;
1939 lcr_h
= UART01x_LCRH_WLEN_7
;
1942 lcr_h
= UART01x_LCRH_WLEN_8
;
1945 if (termios
->c_cflag
& CSTOPB
)
1946 lcr_h
|= UART01x_LCRH_STP2
;
1947 if (termios
->c_cflag
& PARENB
) {
1948 lcr_h
|= UART01x_LCRH_PEN
;
1949 if (!(termios
->c_cflag
& PARODD
))
1950 lcr_h
|= UART01x_LCRH_EPS
;
1951 if (termios
->c_cflag
& CMSPAR
)
1952 lcr_h
|= UART011_LCRH_SPS
;
1954 if (uap
->fifosize
> 1)
1955 lcr_h
|= UART01x_LCRH_FEN
;
1957 spin_lock_irqsave(&port
->lock
, flags
);
1960 * Update the per-port timeout.
1962 uart_update_timeout(port
, termios
->c_cflag
, baud
);
1964 pl011_setup_status_masks(port
, termios
);
1966 if (UART_ENABLE_MS(port
, termios
->c_cflag
))
1967 pl011_enable_ms(port
);
1969 /* first, disable everything */
1970 old_cr
= pl011_read(uap
, REG_CR
);
1971 pl011_write(0, uap
, REG_CR
);
1973 if (termios
->c_cflag
& CRTSCTS
) {
1974 if (old_cr
& UART011_CR_RTS
)
1975 old_cr
|= UART011_CR_RTSEN
;
1977 old_cr
|= UART011_CR_CTSEN
;
1978 uap
->autorts
= true;
1980 old_cr
&= ~(UART011_CR_CTSEN
| UART011_CR_RTSEN
);
1981 uap
->autorts
= false;
1984 if (uap
->vendor
->oversampling
) {
1985 if (baud
> port
->uartclk
/ 16)
1986 old_cr
|= ST_UART011_CR_OVSFACT
;
1988 old_cr
&= ~ST_UART011_CR_OVSFACT
;
1992 * Workaround for the ST Micro oversampling variants to
1993 * increase the bitrate slightly, by lowering the divisor,
1994 * to avoid delayed sampling of start bit at high speeds,
1995 * else we see data corruption.
1997 if (uap
->vendor
->oversampling
) {
1998 if ((baud
>= 3000000) && (baud
< 3250000) && (quot
> 1))
2000 else if ((baud
> 3250000) && (quot
> 2))
2004 pl011_write(quot
& 0x3f, uap
, REG_FBRD
);
2005 pl011_write(quot
>> 6, uap
, REG_IBRD
);
2008 * ----------v----------v----------v----------v-----
2009 * NOTE: REG_LCRH_TX and REG_LCRH_RX MUST BE WRITTEN AFTER
2010 * REG_FBRD & REG_IBRD.
2011 * ----------^----------^----------^----------^-----
2013 pl011_write_lcr_h(uap
, lcr_h
);
2014 pl011_write(old_cr
, uap
, REG_CR
);
2016 spin_unlock_irqrestore(&port
->lock
, flags
);
2020 sbsa_uart_set_termios(struct uart_port
*port
, struct ktermios
*termios
,
2021 struct ktermios
*old
)
2023 struct uart_amba_port
*uap
=
2024 container_of(port
, struct uart_amba_port
, port
);
2025 unsigned long flags
;
2027 tty_termios_encode_baud_rate(termios
, uap
->fixed_baud
, uap
->fixed_baud
);
2029 /* The SBSA UART only supports 8n1 without hardware flow control. */
2030 termios
->c_cflag
&= ~(CSIZE
| CSTOPB
| PARENB
| PARODD
);
2031 termios
->c_cflag
&= ~(CMSPAR
| CRTSCTS
);
2032 termios
->c_cflag
|= CS8
| CLOCAL
;
2034 spin_lock_irqsave(&port
->lock
, flags
);
2035 uart_update_timeout(port
, CS8
, uap
->fixed_baud
);
2036 pl011_setup_status_masks(port
, termios
);
2037 spin_unlock_irqrestore(&port
->lock
, flags
);
2040 static const char *pl011_type(struct uart_port
*port
)
2042 struct uart_amba_port
*uap
=
2043 container_of(port
, struct uart_amba_port
, port
);
2044 return uap
->port
.type
== PORT_AMBA
? uap
->type
: NULL
;
2048 * Release the memory region(s) being used by 'port'
2050 static void pl011_release_port(struct uart_port
*port
)
2052 release_mem_region(port
->mapbase
, SZ_4K
);
2056 * Request the memory region(s) being used by 'port'
2058 static int pl011_request_port(struct uart_port
*port
)
2060 return request_mem_region(port
->mapbase
, SZ_4K
, "uart-pl011")
2061 != NULL
? 0 : -EBUSY
;
2065 * Configure/autoconfigure the port.
2067 static void pl011_config_port(struct uart_port
*port
, int flags
)
2069 if (flags
& UART_CONFIG_TYPE
) {
2070 port
->type
= PORT_AMBA
;
2071 pl011_request_port(port
);
2076 * verify the new serial_struct (for TIOCSSERIAL).
2078 static int pl011_verify_port(struct uart_port
*port
, struct serial_struct
*ser
)
2081 if (ser
->type
!= PORT_UNKNOWN
&& ser
->type
!= PORT_AMBA
)
2083 if (ser
->irq
< 0 || ser
->irq
>= nr_irqs
)
2085 if (ser
->baud_base
< 9600)
2090 static struct uart_ops amba_pl011_pops
= {
2091 .tx_empty
= pl011_tx_empty
,
2092 .set_mctrl
= pl011_set_mctrl
,
2093 .get_mctrl
= pl011_get_mctrl
,
2094 .stop_tx
= pl011_stop_tx
,
2095 .start_tx
= pl011_start_tx
,
2096 .stop_rx
= pl011_stop_rx
,
2097 .enable_ms
= pl011_enable_ms
,
2098 .break_ctl
= pl011_break_ctl
,
2099 .startup
= pl011_startup
,
2100 .shutdown
= pl011_shutdown
,
2101 .flush_buffer
= pl011_dma_flush_buffer
,
2102 .set_termios
= pl011_set_termios
,
2104 .release_port
= pl011_release_port
,
2105 .request_port
= pl011_request_port
,
2106 .config_port
= pl011_config_port
,
2107 .verify_port
= pl011_verify_port
,
2108 #ifdef CONFIG_CONSOLE_POLL
2109 .poll_init
= pl011_hwinit
,
2110 .poll_get_char
= pl011_get_poll_char
,
2111 .poll_put_char
= pl011_put_poll_char
,
2115 static void sbsa_uart_set_mctrl(struct uart_port
*port
, unsigned int mctrl
)
2119 static unsigned int sbsa_uart_get_mctrl(struct uart_port
*port
)
2124 static const struct uart_ops sbsa_uart_pops
= {
2125 .tx_empty
= pl011_tx_empty
,
2126 .set_mctrl
= sbsa_uart_set_mctrl
,
2127 .get_mctrl
= sbsa_uart_get_mctrl
,
2128 .stop_tx
= pl011_stop_tx
,
2129 .start_tx
= pl011_start_tx
,
2130 .stop_rx
= pl011_stop_rx
,
2131 .startup
= sbsa_uart_startup
,
2132 .shutdown
= sbsa_uart_shutdown
,
2133 .set_termios
= sbsa_uart_set_termios
,
2135 .release_port
= pl011_release_port
,
2136 .request_port
= pl011_request_port
,
2137 .config_port
= pl011_config_port
,
2138 .verify_port
= pl011_verify_port
,
2139 #ifdef CONFIG_CONSOLE_POLL
2140 .poll_init
= pl011_hwinit
,
2141 .poll_get_char
= pl011_get_poll_char
,
2142 .poll_put_char
= pl011_put_poll_char
,
2146 static struct uart_amba_port
*amba_ports
[UART_NR
];
2148 #ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE
2150 static void pl011_console_putchar(struct uart_port
*port
, int ch
)
2152 struct uart_amba_port
*uap
=
2153 container_of(port
, struct uart_amba_port
, port
);
2155 while (pl011_read(uap
, REG_FR
) & UART01x_FR_TXFF
)
2157 pl011_write(ch
, uap
, REG_DR
);
2161 pl011_console_write(struct console
*co
, const char *s
, unsigned int count
)
2163 struct uart_amba_port
*uap
= amba_ports
[co
->index
];
2164 unsigned int old_cr
= 0, new_cr
;
2165 unsigned long flags
;
2168 clk_enable(uap
->clk
);
2170 local_irq_save(flags
);
2171 if (uap
->port
.sysrq
)
2173 else if (oops_in_progress
)
2174 locked
= spin_trylock(&uap
->port
.lock
);
2176 spin_lock(&uap
->port
.lock
);
2179 * First save the CR then disable the interrupts
2181 if (!uap
->vendor
->always_enabled
) {
2182 old_cr
= pl011_read(uap
, REG_CR
);
2183 new_cr
= old_cr
& ~UART011_CR_CTSEN
;
2184 new_cr
|= UART01x_CR_UARTEN
| UART011_CR_TXE
;
2185 pl011_write(new_cr
, uap
, REG_CR
);
2188 uart_console_write(&uap
->port
, s
, count
, pl011_console_putchar
);
2191 * Finally, wait for transmitter to become empty
2192 * and restore the TCR
2194 while (pl011_read(uap
, REG_FR
) & UART01x_FR_BUSY
)
2196 if (!uap
->vendor
->always_enabled
)
2197 pl011_write(old_cr
, uap
, REG_CR
);
2200 spin_unlock(&uap
->port
.lock
);
2201 local_irq_restore(flags
);
2203 clk_disable(uap
->clk
);
2207 pl011_console_get_options(struct uart_amba_port
*uap
, int *baud
,
2208 int *parity
, int *bits
)
2210 if (pl011_read(uap
, REG_CR
) & UART01x_CR_UARTEN
) {
2211 unsigned int lcr_h
, ibrd
, fbrd
;
2213 lcr_h
= pl011_read(uap
, REG_LCRH_TX
);
2216 if (lcr_h
& UART01x_LCRH_PEN
) {
2217 if (lcr_h
& UART01x_LCRH_EPS
)
2223 if ((lcr_h
& 0x60) == UART01x_LCRH_WLEN_7
)
2228 ibrd
= pl011_read(uap
, REG_IBRD
);
2229 fbrd
= pl011_read(uap
, REG_FBRD
);
2231 *baud
= uap
->port
.uartclk
* 4 / (64 * ibrd
+ fbrd
);
2233 if (uap
->vendor
->oversampling
) {
2234 if (pl011_read(uap
, REG_CR
)
2235 & ST_UART011_CR_OVSFACT
)
2241 static int __init
pl011_console_setup(struct console
*co
, char *options
)
2243 struct uart_amba_port
*uap
;
2251 * Check whether an invalid uart number has been specified, and
2252 * if so, search for the first available port that does have
2255 if (co
->index
>= UART_NR
)
2257 uap
= amba_ports
[co
->index
];
2261 /* Allow pins to be muxed in and configured */
2262 pinctrl_pm_select_default_state(uap
->port
.dev
);
2264 ret
= clk_prepare(uap
->clk
);
2268 if (dev_get_platdata(uap
->port
.dev
)) {
2269 struct amba_pl011_data
*plat
;
2271 plat
= dev_get_platdata(uap
->port
.dev
);
2276 uap
->port
.uartclk
= clk_get_rate(uap
->clk
);
2278 if (uap
->vendor
->fixed_options
) {
2279 baud
= uap
->fixed_baud
;
2282 uart_parse_options(options
,
2283 &baud
, &parity
, &bits
, &flow
);
2285 pl011_console_get_options(uap
, &baud
, &parity
, &bits
);
2288 return uart_set_options(&uap
->port
, co
, baud
, parity
, bits
, flow
);
2291 static struct uart_driver amba_reg
;
2292 static struct console amba_console
= {
2294 .write
= pl011_console_write
,
2295 .device
= uart_console_device
,
2296 .setup
= pl011_console_setup
,
2297 .flags
= CON_PRINTBUFFER
,
2302 #define AMBA_CONSOLE (&amba_console)
2304 static void pl011_putc(struct uart_port
*port
, int c
)
2306 while (readl(port
->membase
+ UART01x_FR
) & UART01x_FR_TXFF
)
2308 if (port
->iotype
== UPIO_MEM32
)
2309 writel(c
, port
->membase
+ UART01x_DR
);
2311 writeb(c
, port
->membase
+ UART01x_DR
);
2312 while (readl(port
->membase
+ UART01x_FR
) & UART01x_FR_BUSY
)
2316 static void pl011_early_write(struct console
*con
, const char *s
, unsigned n
)
2318 struct earlycon_device
*dev
= con
->data
;
2320 uart_console_write(&dev
->port
, s
, n
, pl011_putc
);
2323 static int __init
pl011_early_console_setup(struct earlycon_device
*device
,
2326 if (!device
->port
.membase
)
2329 device
->con
->write
= pl011_early_write
;
2332 OF_EARLYCON_DECLARE(pl011
, "arm,pl011", pl011_early_console_setup
);
2335 #define AMBA_CONSOLE NULL
2338 static struct uart_driver amba_reg
= {
2339 .owner
= THIS_MODULE
,
2340 .driver_name
= "ttyAMA",
2341 .dev_name
= "ttyAMA",
2342 .major
= SERIAL_AMBA_MAJOR
,
2343 .minor
= SERIAL_AMBA_MINOR
,
2345 .cons
= AMBA_CONSOLE
,
2348 static int pl011_probe_dt_alias(int index
, struct device
*dev
)
2350 struct device_node
*np
;
2351 static bool seen_dev_with_alias
= false;
2352 static bool seen_dev_without_alias
= false;
2355 if (!IS_ENABLED(CONFIG_OF
))
2362 ret
= of_alias_get_id(np
, "serial");
2364 seen_dev_without_alias
= true;
2367 seen_dev_with_alias
= true;
2368 if (ret
>= ARRAY_SIZE(amba_ports
) || amba_ports
[ret
] != NULL
) {
2369 dev_warn(dev
, "requested serial port %d not available.\n", ret
);
2374 if (seen_dev_with_alias
&& seen_dev_without_alias
)
2375 dev_warn(dev
, "aliased and non-aliased serial devices found in device tree. Serial port enumeration may be unpredictable.\n");
2380 /* unregisters the driver also if no more ports are left */
2381 static void pl011_unregister_port(struct uart_amba_port
*uap
)
2386 for (i
= 0; i
< ARRAY_SIZE(amba_ports
); i
++) {
2387 if (amba_ports
[i
] == uap
)
2388 amba_ports
[i
] = NULL
;
2389 else if (amba_ports
[i
])
2392 pl011_dma_remove(uap
);
2394 uart_unregister_driver(&amba_reg
);
2397 static int pl011_find_free_port(void)
2401 for (i
= 0; i
< ARRAY_SIZE(amba_ports
); i
++)
2402 if (amba_ports
[i
] == NULL
)
2408 static int pl011_setup_port(struct device
*dev
, struct uart_amba_port
*uap
,
2409 struct resource
*mmiobase
, int index
)
2413 base
= devm_ioremap_resource(dev
, mmiobase
);
2415 return PTR_ERR(base
);
2417 index
= pl011_probe_dt_alias(index
, dev
);
2420 uap
->port
.dev
= dev
;
2421 uap
->port
.mapbase
= mmiobase
->start
;
2422 uap
->port
.membase
= base
;
2423 uap
->port
.fifosize
= uap
->fifosize
;
2424 uap
->port
.flags
= UPF_BOOT_AUTOCONF
;
2425 uap
->port
.line
= index
;
2427 amba_ports
[index
] = uap
;
2432 static int pl011_register_port(struct uart_amba_port
*uap
)
2436 /* Ensure interrupts from this UART are masked and cleared */
2437 pl011_write(0, uap
, REG_IMSC
);
2438 pl011_write(0xffff, uap
, REG_ICR
);
2440 if (!amba_reg
.state
) {
2441 ret
= uart_register_driver(&amba_reg
);
2443 dev_err(uap
->port
.dev
,
2444 "Failed to register AMBA-PL011 driver\n");
2449 ret
= uart_add_one_port(&amba_reg
, &uap
->port
);
2451 pl011_unregister_port(uap
);
2456 static int pl011_probe(struct amba_device
*dev
, const struct amba_id
*id
)
2458 struct uart_amba_port
*uap
;
2459 struct vendor_data
*vendor
= id
->data
;
2462 portnr
= pl011_find_free_port();
2466 uap
= devm_kzalloc(&dev
->dev
, sizeof(struct uart_amba_port
),
2471 uap
->clk
= devm_clk_get(&dev
->dev
, NULL
);
2472 if (IS_ERR(uap
->clk
))
2473 return PTR_ERR(uap
->clk
);
2475 uap
->reg_offset
= vendor
->reg_offset
;
2476 uap
->vendor
= vendor
;
2477 uap
->fifosize
= vendor
->get_fifosize(dev
);
2478 uap
->port
.iotype
= vendor
->access_32b
? UPIO_MEM32
: UPIO_MEM
;
2479 uap
->port
.irq
= dev
->irq
[0];
2480 uap
->port
.ops
= &amba_pl011_pops
;
2482 snprintf(uap
->type
, sizeof(uap
->type
), "PL011 rev%u", amba_rev(dev
));
2484 ret
= pl011_setup_port(&dev
->dev
, uap
, &dev
->res
, portnr
);
2488 amba_set_drvdata(dev
, uap
);
2490 return pl011_register_port(uap
);
2493 static int pl011_remove(struct amba_device
*dev
)
2495 struct uart_amba_port
*uap
= amba_get_drvdata(dev
);
2497 uart_remove_one_port(&amba_reg
, &uap
->port
);
2498 pl011_unregister_port(uap
);
2502 #ifdef CONFIG_PM_SLEEP
2503 static int pl011_suspend(struct device
*dev
)
2505 struct uart_amba_port
*uap
= dev_get_drvdata(dev
);
2510 return uart_suspend_port(&amba_reg
, &uap
->port
);
2513 static int pl011_resume(struct device
*dev
)
2515 struct uart_amba_port
*uap
= dev_get_drvdata(dev
);
2520 return uart_resume_port(&amba_reg
, &uap
->port
);
2524 static SIMPLE_DEV_PM_OPS(pl011_dev_pm_ops
, pl011_suspend
, pl011_resume
);
2526 static int sbsa_uart_probe(struct platform_device
*pdev
)
2528 struct uart_amba_port
*uap
;
2534 * Check the mandatory baud rate parameter in the DT node early
2535 * so that we can easily exit with the error.
2537 if (pdev
->dev
.of_node
) {
2538 struct device_node
*np
= pdev
->dev
.of_node
;
2540 ret
= of_property_read_u32(np
, "current-speed", &baudrate
);
2547 portnr
= pl011_find_free_port();
2551 uap
= devm_kzalloc(&pdev
->dev
, sizeof(struct uart_amba_port
),
2556 ret
= platform_get_irq(pdev
, 0);
2558 dev_err(&pdev
->dev
, "cannot obtain irq\n");
2561 uap
->port
.irq
= ret
;
2563 uap
->reg_offset
= vendor_sbsa
.reg_offset
;
2564 uap
->vendor
= &vendor_sbsa
;
2566 uap
->port
.iotype
= vendor_sbsa
.access_32b
? UPIO_MEM32
: UPIO_MEM
;
2567 uap
->port
.ops
= &sbsa_uart_pops
;
2568 uap
->fixed_baud
= baudrate
;
2570 snprintf(uap
->type
, sizeof(uap
->type
), "SBSA");
2572 r
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
2574 ret
= pl011_setup_port(&pdev
->dev
, uap
, r
, portnr
);
2578 platform_set_drvdata(pdev
, uap
);
2580 return pl011_register_port(uap
);
2583 static int sbsa_uart_remove(struct platform_device
*pdev
)
2585 struct uart_amba_port
*uap
= platform_get_drvdata(pdev
);
2587 uart_remove_one_port(&amba_reg
, &uap
->port
);
2588 pl011_unregister_port(uap
);
2592 static const struct of_device_id sbsa_uart_of_match
[] = {
2593 { .compatible
= "arm,sbsa-uart", },
2596 MODULE_DEVICE_TABLE(of
, sbsa_uart_of_match
);
2598 static const struct acpi_device_id sbsa_uart_acpi_match
[] = {
2602 MODULE_DEVICE_TABLE(acpi
, sbsa_uart_acpi_match
);
2604 static struct platform_driver arm_sbsa_uart_platform_driver
= {
2605 .probe
= sbsa_uart_probe
,
2606 .remove
= sbsa_uart_remove
,
2608 .name
= "sbsa-uart",
2609 .of_match_table
= of_match_ptr(sbsa_uart_of_match
),
2610 .acpi_match_table
= ACPI_PTR(sbsa_uart_acpi_match
),
2614 static struct amba_id pl011_ids
[] = {
2618 .data
= &vendor_arm
,
2628 MODULE_DEVICE_TABLE(amba
, pl011_ids
);
2630 static struct amba_driver pl011_driver
= {
2632 .name
= "uart-pl011",
2633 .pm
= &pl011_dev_pm_ops
,
2635 .id_table
= pl011_ids
,
2636 .probe
= pl011_probe
,
2637 .remove
= pl011_remove
,
2640 static int __init
pl011_init(void)
2642 printk(KERN_INFO
"Serial: AMBA PL011 UART driver\n");
2644 if (platform_driver_register(&arm_sbsa_uart_platform_driver
))
2645 pr_warn("could not register SBSA UART platform driver\n");
2646 return amba_driver_register(&pl011_driver
);
2649 static void __exit
pl011_exit(void)
2651 platform_driver_unregister(&arm_sbsa_uart_platform_driver
);
2652 amba_driver_unregister(&pl011_driver
);
2656 * While this can be a module, if builtin it's most likely the console
2657 * So let's leave module_exit but move module_init to an earlier place
2659 arch_initcall(pl011_init
);
2660 module_exit(pl011_exit
);
2662 MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd");
2663 MODULE_DESCRIPTION("ARM AMBA serial port driver");
2664 MODULE_LICENSE("GPL");