Linux 4.8-rc8
[linux/fpc-iii.git] / drivers / vfio / pci / vfio_pci_config.c
blob688691d9058dd98e134459fbaed507721ae507f8
1 /*
2 * VFIO PCI config space virtualization
4 * Copyright (C) 2012 Red Hat, Inc. All rights reserved.
5 * Author: Alex Williamson <alex.williamson@redhat.com>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 * Derived from original vfio:
12 * Copyright 2010 Cisco Systems, Inc. All rights reserved.
13 * Author: Tom Lyon, pugs@cisco.com
17 * This code handles reading and writing of PCI configuration registers.
18 * This is hairy because we want to allow a lot of flexibility to the
19 * user driver, but cannot trust it with all of the config fields.
20 * Tables determine which fields can be read and written, as well as
21 * which fields are 'virtualized' - special actions and translations to
22 * make it appear to the user that he has control, when in fact things
23 * must be negotiated with the underlying OS.
26 #include <linux/fs.h>
27 #include <linux/pci.h>
28 #include <linux/uaccess.h>
29 #include <linux/vfio.h>
30 #include <linux/slab.h>
32 #include "vfio_pci_private.h"
34 #define PCI_CFG_SPACE_SIZE 256
36 /* Fake capability ID for standard config space */
37 #define PCI_CAP_ID_BASIC 0
39 #define is_bar(offset) \
40 ((offset >= PCI_BASE_ADDRESS_0 && offset < PCI_BASE_ADDRESS_5 + 4) || \
41 (offset >= PCI_ROM_ADDRESS && offset < PCI_ROM_ADDRESS + 4))
44 * Lengths of PCI Config Capabilities
45 * 0: Removed from the user visible capability list
46 * FF: Variable length
48 static const u8 pci_cap_length[PCI_CAP_ID_MAX + 1] = {
49 [PCI_CAP_ID_BASIC] = PCI_STD_HEADER_SIZEOF, /* pci config header */
50 [PCI_CAP_ID_PM] = PCI_PM_SIZEOF,
51 [PCI_CAP_ID_AGP] = PCI_AGP_SIZEOF,
52 [PCI_CAP_ID_VPD] = PCI_CAP_VPD_SIZEOF,
53 [PCI_CAP_ID_SLOTID] = 0, /* bridge - don't care */
54 [PCI_CAP_ID_MSI] = 0xFF, /* 10, 14, 20, or 24 */
55 [PCI_CAP_ID_CHSWP] = 0, /* cpci - not yet */
56 [PCI_CAP_ID_PCIX] = 0xFF, /* 8 or 24 */
57 [PCI_CAP_ID_HT] = 0xFF, /* hypertransport */
58 [PCI_CAP_ID_VNDR] = 0xFF, /* variable */
59 [PCI_CAP_ID_DBG] = 0, /* debug - don't care */
60 [PCI_CAP_ID_CCRC] = 0, /* cpci - not yet */
61 [PCI_CAP_ID_SHPC] = 0, /* hotswap - not yet */
62 [PCI_CAP_ID_SSVID] = 0, /* bridge - don't care */
63 [PCI_CAP_ID_AGP3] = 0, /* AGP8x - not yet */
64 [PCI_CAP_ID_SECDEV] = 0, /* secure device not yet */
65 [PCI_CAP_ID_EXP] = 0xFF, /* 20 or 44 */
66 [PCI_CAP_ID_MSIX] = PCI_CAP_MSIX_SIZEOF,
67 [PCI_CAP_ID_SATA] = 0xFF,
68 [PCI_CAP_ID_AF] = PCI_CAP_AF_SIZEOF,
72 * Lengths of PCIe/PCI-X Extended Config Capabilities
73 * 0: Removed or masked from the user visible capabilty list
74 * FF: Variable length
76 static const u16 pci_ext_cap_length[PCI_EXT_CAP_ID_MAX + 1] = {
77 [PCI_EXT_CAP_ID_ERR] = PCI_ERR_ROOT_COMMAND,
78 [PCI_EXT_CAP_ID_VC] = 0xFF,
79 [PCI_EXT_CAP_ID_DSN] = PCI_EXT_CAP_DSN_SIZEOF,
80 [PCI_EXT_CAP_ID_PWR] = PCI_EXT_CAP_PWR_SIZEOF,
81 [PCI_EXT_CAP_ID_RCLD] = 0, /* root only - don't care */
82 [PCI_EXT_CAP_ID_RCILC] = 0, /* root only - don't care */
83 [PCI_EXT_CAP_ID_RCEC] = 0, /* root only - don't care */
84 [PCI_EXT_CAP_ID_MFVC] = 0xFF,
85 [PCI_EXT_CAP_ID_VC9] = 0xFF, /* same as CAP_ID_VC */
86 [PCI_EXT_CAP_ID_RCRB] = 0, /* root only - don't care */
87 [PCI_EXT_CAP_ID_VNDR] = 0xFF,
88 [PCI_EXT_CAP_ID_CAC] = 0, /* obsolete */
89 [PCI_EXT_CAP_ID_ACS] = 0xFF,
90 [PCI_EXT_CAP_ID_ARI] = PCI_EXT_CAP_ARI_SIZEOF,
91 [PCI_EXT_CAP_ID_ATS] = PCI_EXT_CAP_ATS_SIZEOF,
92 [PCI_EXT_CAP_ID_SRIOV] = PCI_EXT_CAP_SRIOV_SIZEOF,
93 [PCI_EXT_CAP_ID_MRIOV] = 0, /* not yet */
94 [PCI_EXT_CAP_ID_MCAST] = PCI_EXT_CAP_MCAST_ENDPOINT_SIZEOF,
95 [PCI_EXT_CAP_ID_PRI] = PCI_EXT_CAP_PRI_SIZEOF,
96 [PCI_EXT_CAP_ID_AMD_XXX] = 0, /* not yet */
97 [PCI_EXT_CAP_ID_REBAR] = 0xFF,
98 [PCI_EXT_CAP_ID_DPA] = 0xFF,
99 [PCI_EXT_CAP_ID_TPH] = 0xFF,
100 [PCI_EXT_CAP_ID_LTR] = PCI_EXT_CAP_LTR_SIZEOF,
101 [PCI_EXT_CAP_ID_SECPCI] = 0, /* not yet */
102 [PCI_EXT_CAP_ID_PMUX] = 0, /* not yet */
103 [PCI_EXT_CAP_ID_PASID] = 0, /* not yet */
107 * Read/Write Permission Bits - one bit for each bit in capability
108 * Any field can be read if it exists, but what is read depends on
109 * whether the field is 'virtualized', or just pass thru to the
110 * hardware. Any virtualized field is also virtualized for writes.
111 * Writes are only permitted if they have a 1 bit here.
113 struct perm_bits {
114 u8 *virt; /* read/write virtual data, not hw */
115 u8 *write; /* writeable bits */
116 int (*readfn)(struct vfio_pci_device *vdev, int pos, int count,
117 struct perm_bits *perm, int offset, __le32 *val);
118 int (*writefn)(struct vfio_pci_device *vdev, int pos, int count,
119 struct perm_bits *perm, int offset, __le32 val);
122 #define NO_VIRT 0
123 #define ALL_VIRT 0xFFFFFFFFU
124 #define NO_WRITE 0
125 #define ALL_WRITE 0xFFFFFFFFU
127 static int vfio_user_config_read(struct pci_dev *pdev, int offset,
128 __le32 *val, int count)
130 int ret = -EINVAL;
131 u32 tmp_val = 0;
133 switch (count) {
134 case 1:
136 u8 tmp;
137 ret = pci_user_read_config_byte(pdev, offset, &tmp);
138 tmp_val = tmp;
139 break;
141 case 2:
143 u16 tmp;
144 ret = pci_user_read_config_word(pdev, offset, &tmp);
145 tmp_val = tmp;
146 break;
148 case 4:
149 ret = pci_user_read_config_dword(pdev, offset, &tmp_val);
150 break;
153 *val = cpu_to_le32(tmp_val);
155 return pcibios_err_to_errno(ret);
158 static int vfio_user_config_write(struct pci_dev *pdev, int offset,
159 __le32 val, int count)
161 int ret = -EINVAL;
162 u32 tmp_val = le32_to_cpu(val);
164 switch (count) {
165 case 1:
166 ret = pci_user_write_config_byte(pdev, offset, tmp_val);
167 break;
168 case 2:
169 ret = pci_user_write_config_word(pdev, offset, tmp_val);
170 break;
171 case 4:
172 ret = pci_user_write_config_dword(pdev, offset, tmp_val);
173 break;
176 return pcibios_err_to_errno(ret);
179 static int vfio_default_config_read(struct vfio_pci_device *vdev, int pos,
180 int count, struct perm_bits *perm,
181 int offset, __le32 *val)
183 __le32 virt = 0;
185 memcpy(val, vdev->vconfig + pos, count);
187 memcpy(&virt, perm->virt + offset, count);
189 /* Any non-virtualized bits? */
190 if (cpu_to_le32(~0U >> (32 - (count * 8))) != virt) {
191 struct pci_dev *pdev = vdev->pdev;
192 __le32 phys_val = 0;
193 int ret;
195 ret = vfio_user_config_read(pdev, pos, &phys_val, count);
196 if (ret)
197 return ret;
199 *val = (phys_val & ~virt) | (*val & virt);
202 return count;
205 static int vfio_default_config_write(struct vfio_pci_device *vdev, int pos,
206 int count, struct perm_bits *perm,
207 int offset, __le32 val)
209 __le32 virt = 0, write = 0;
211 memcpy(&write, perm->write + offset, count);
213 if (!write)
214 return count; /* drop, no writable bits */
216 memcpy(&virt, perm->virt + offset, count);
218 /* Virtualized and writable bits go to vconfig */
219 if (write & virt) {
220 __le32 virt_val = 0;
222 memcpy(&virt_val, vdev->vconfig + pos, count);
224 virt_val &= ~(write & virt);
225 virt_val |= (val & (write & virt));
227 memcpy(vdev->vconfig + pos, &virt_val, count);
230 /* Non-virtualzed and writable bits go to hardware */
231 if (write & ~virt) {
232 struct pci_dev *pdev = vdev->pdev;
233 __le32 phys_val = 0;
234 int ret;
236 ret = vfio_user_config_read(pdev, pos, &phys_val, count);
237 if (ret)
238 return ret;
240 phys_val &= ~(write & ~virt);
241 phys_val |= (val & (write & ~virt));
243 ret = vfio_user_config_write(pdev, pos, phys_val, count);
244 if (ret)
245 return ret;
248 return count;
251 /* Allow direct read from hardware, except for capability next pointer */
252 static int vfio_direct_config_read(struct vfio_pci_device *vdev, int pos,
253 int count, struct perm_bits *perm,
254 int offset, __le32 *val)
256 int ret;
258 ret = vfio_user_config_read(vdev->pdev, pos, val, count);
259 if (ret)
260 return pcibios_err_to_errno(ret);
262 if (pos >= PCI_CFG_SPACE_SIZE) { /* Extended cap header mangling */
263 if (offset < 4)
264 memcpy(val, vdev->vconfig + pos, count);
265 } else if (pos >= PCI_STD_HEADER_SIZEOF) { /* Std cap mangling */
266 if (offset == PCI_CAP_LIST_ID && count > 1)
267 memcpy(val, vdev->vconfig + pos,
268 min(PCI_CAP_FLAGS, count));
269 else if (offset == PCI_CAP_LIST_NEXT)
270 memcpy(val, vdev->vconfig + pos, 1);
273 return count;
276 /* Raw access skips any kind of virtualization */
277 static int vfio_raw_config_write(struct vfio_pci_device *vdev, int pos,
278 int count, struct perm_bits *perm,
279 int offset, __le32 val)
281 int ret;
283 ret = vfio_user_config_write(vdev->pdev, pos, val, count);
284 if (ret)
285 return ret;
287 return count;
290 static int vfio_raw_config_read(struct vfio_pci_device *vdev, int pos,
291 int count, struct perm_bits *perm,
292 int offset, __le32 *val)
294 int ret;
296 ret = vfio_user_config_read(vdev->pdev, pos, val, count);
297 if (ret)
298 return pcibios_err_to_errno(ret);
300 return count;
303 /* Virt access uses only virtualization */
304 static int vfio_virt_config_write(struct vfio_pci_device *vdev, int pos,
305 int count, struct perm_bits *perm,
306 int offset, __le32 val)
308 memcpy(vdev->vconfig + pos, &val, count);
309 return count;
312 static int vfio_virt_config_read(struct vfio_pci_device *vdev, int pos,
313 int count, struct perm_bits *perm,
314 int offset, __le32 *val)
316 memcpy(val, vdev->vconfig + pos, count);
317 return count;
320 /* Default capability regions to read-only, no-virtualization */
321 static struct perm_bits cap_perms[PCI_CAP_ID_MAX + 1] = {
322 [0 ... PCI_CAP_ID_MAX] = { .readfn = vfio_direct_config_read }
324 static struct perm_bits ecap_perms[PCI_EXT_CAP_ID_MAX + 1] = {
325 [0 ... PCI_EXT_CAP_ID_MAX] = { .readfn = vfio_direct_config_read }
328 * Default unassigned regions to raw read-write access. Some devices
329 * require this to function as they hide registers between the gaps in
330 * config space (be2net). Like MMIO and I/O port registers, we have
331 * to trust the hardware isolation.
333 static struct perm_bits unassigned_perms = {
334 .readfn = vfio_raw_config_read,
335 .writefn = vfio_raw_config_write
338 static struct perm_bits virt_perms = {
339 .readfn = vfio_virt_config_read,
340 .writefn = vfio_virt_config_write
343 static void free_perm_bits(struct perm_bits *perm)
345 kfree(perm->virt);
346 kfree(perm->write);
347 perm->virt = NULL;
348 perm->write = NULL;
351 static int alloc_perm_bits(struct perm_bits *perm, int size)
354 * Round up all permission bits to the next dword, this lets us
355 * ignore whether a read/write exceeds the defined capability
356 * structure. We can do this because:
357 * - Standard config space is already dword aligned
358 * - Capabilities are all dword alinged (bits 0:1 of next reserved)
359 * - Express capabilities defined as dword aligned
361 size = round_up(size, 4);
364 * Zero state is
365 * - All Readable, None Writeable, None Virtualized
367 perm->virt = kzalloc(size, GFP_KERNEL);
368 perm->write = kzalloc(size, GFP_KERNEL);
369 if (!perm->virt || !perm->write) {
370 free_perm_bits(perm);
371 return -ENOMEM;
374 perm->readfn = vfio_default_config_read;
375 perm->writefn = vfio_default_config_write;
377 return 0;
381 * Helper functions for filling in permission tables
383 static inline void p_setb(struct perm_bits *p, int off, u8 virt, u8 write)
385 p->virt[off] = virt;
386 p->write[off] = write;
389 /* Handle endian-ness - pci and tables are little-endian */
390 static inline void p_setw(struct perm_bits *p, int off, u16 virt, u16 write)
392 *(__le16 *)(&p->virt[off]) = cpu_to_le16(virt);
393 *(__le16 *)(&p->write[off]) = cpu_to_le16(write);
396 /* Handle endian-ness - pci and tables are little-endian */
397 static inline void p_setd(struct perm_bits *p, int off, u32 virt, u32 write)
399 *(__le32 *)(&p->virt[off]) = cpu_to_le32(virt);
400 *(__le32 *)(&p->write[off]) = cpu_to_le32(write);
404 * Restore the *real* BARs after we detect a FLR or backdoor reset.
405 * (backdoor = some device specific technique that we didn't catch)
407 static void vfio_bar_restore(struct vfio_pci_device *vdev)
409 struct pci_dev *pdev = vdev->pdev;
410 u32 *rbar = vdev->rbar;
411 u16 cmd;
412 int i;
414 if (pdev->is_virtfn)
415 return;
417 pr_info("%s: %s reset recovery - restoring bars\n",
418 __func__, dev_name(&pdev->dev));
420 for (i = PCI_BASE_ADDRESS_0; i <= PCI_BASE_ADDRESS_5; i += 4, rbar++)
421 pci_user_write_config_dword(pdev, i, *rbar);
423 pci_user_write_config_dword(pdev, PCI_ROM_ADDRESS, *rbar);
425 if (vdev->nointx) {
426 pci_user_read_config_word(pdev, PCI_COMMAND, &cmd);
427 cmd |= PCI_COMMAND_INTX_DISABLE;
428 pci_user_write_config_word(pdev, PCI_COMMAND, cmd);
432 static __le32 vfio_generate_bar_flags(struct pci_dev *pdev, int bar)
434 unsigned long flags = pci_resource_flags(pdev, bar);
435 u32 val;
437 if (flags & IORESOURCE_IO)
438 return cpu_to_le32(PCI_BASE_ADDRESS_SPACE_IO);
440 val = PCI_BASE_ADDRESS_SPACE_MEMORY;
442 if (flags & IORESOURCE_PREFETCH)
443 val |= PCI_BASE_ADDRESS_MEM_PREFETCH;
445 if (flags & IORESOURCE_MEM_64)
446 val |= PCI_BASE_ADDRESS_MEM_TYPE_64;
448 return cpu_to_le32(val);
452 * Pretend we're hardware and tweak the values of the *virtual* PCI BARs
453 * to reflect the hardware capabilities. This implements BAR sizing.
455 static void vfio_bar_fixup(struct vfio_pci_device *vdev)
457 struct pci_dev *pdev = vdev->pdev;
458 int i;
459 __le32 *bar;
460 u64 mask;
462 bar = (__le32 *)&vdev->vconfig[PCI_BASE_ADDRESS_0];
464 for (i = PCI_STD_RESOURCES; i <= PCI_STD_RESOURCE_END; i++, bar++) {
465 if (!pci_resource_start(pdev, i)) {
466 *bar = 0; /* Unmapped by host = unimplemented to user */
467 continue;
470 mask = ~(pci_resource_len(pdev, i) - 1);
472 *bar &= cpu_to_le32((u32)mask);
473 *bar |= vfio_generate_bar_flags(pdev, i);
475 if (*bar & cpu_to_le32(PCI_BASE_ADDRESS_MEM_TYPE_64)) {
476 bar++;
477 *bar &= cpu_to_le32((u32)(mask >> 32));
478 i++;
482 bar = (__le32 *)&vdev->vconfig[PCI_ROM_ADDRESS];
485 * NB. REGION_INFO will have reported zero size if we weren't able
486 * to read the ROM, but we still return the actual BAR size here if
487 * it exists (or the shadow ROM space).
489 if (pci_resource_start(pdev, PCI_ROM_RESOURCE)) {
490 mask = ~(pci_resource_len(pdev, PCI_ROM_RESOURCE) - 1);
491 mask |= PCI_ROM_ADDRESS_ENABLE;
492 *bar &= cpu_to_le32((u32)mask);
493 } else if (pdev->resource[PCI_ROM_RESOURCE].flags &
494 IORESOURCE_ROM_SHADOW) {
495 mask = ~(0x20000 - 1);
496 mask |= PCI_ROM_ADDRESS_ENABLE;
497 *bar &= cpu_to_le32((u32)mask);
498 } else
499 *bar = 0;
501 vdev->bardirty = false;
504 static int vfio_basic_config_read(struct vfio_pci_device *vdev, int pos,
505 int count, struct perm_bits *perm,
506 int offset, __le32 *val)
508 if (is_bar(offset)) /* pos == offset for basic config */
509 vfio_bar_fixup(vdev);
511 count = vfio_default_config_read(vdev, pos, count, perm, offset, val);
513 /* Mask in virtual memory enable for SR-IOV devices */
514 if (offset == PCI_COMMAND && vdev->pdev->is_virtfn) {
515 u16 cmd = le16_to_cpu(*(__le16 *)&vdev->vconfig[PCI_COMMAND]);
516 u32 tmp_val = le32_to_cpu(*val);
518 tmp_val |= cmd & PCI_COMMAND_MEMORY;
519 *val = cpu_to_le32(tmp_val);
522 return count;
525 /* Test whether BARs match the value we think they should contain */
526 static bool vfio_need_bar_restore(struct vfio_pci_device *vdev)
528 int i = 0, pos = PCI_BASE_ADDRESS_0, ret;
529 u32 bar;
531 for (; pos <= PCI_BASE_ADDRESS_5; i++, pos += 4) {
532 if (vdev->rbar[i]) {
533 ret = pci_user_read_config_dword(vdev->pdev, pos, &bar);
534 if (ret || vdev->rbar[i] != bar)
535 return true;
539 return false;
542 static int vfio_basic_config_write(struct vfio_pci_device *vdev, int pos,
543 int count, struct perm_bits *perm,
544 int offset, __le32 val)
546 struct pci_dev *pdev = vdev->pdev;
547 __le16 *virt_cmd;
548 u16 new_cmd = 0;
549 int ret;
551 virt_cmd = (__le16 *)&vdev->vconfig[PCI_COMMAND];
553 if (offset == PCI_COMMAND) {
554 bool phys_mem, virt_mem, new_mem, phys_io, virt_io, new_io;
555 u16 phys_cmd;
557 ret = pci_user_read_config_word(pdev, PCI_COMMAND, &phys_cmd);
558 if (ret)
559 return ret;
561 new_cmd = le32_to_cpu(val);
563 phys_mem = !!(phys_cmd & PCI_COMMAND_MEMORY);
564 virt_mem = !!(le16_to_cpu(*virt_cmd) & PCI_COMMAND_MEMORY);
565 new_mem = !!(new_cmd & PCI_COMMAND_MEMORY);
567 phys_io = !!(phys_cmd & PCI_COMMAND_IO);
568 virt_io = !!(le16_to_cpu(*virt_cmd) & PCI_COMMAND_IO);
569 new_io = !!(new_cmd & PCI_COMMAND_IO);
572 * If the user is writing mem/io enable (new_mem/io) and we
573 * think it's already enabled (virt_mem/io), but the hardware
574 * shows it disabled (phys_mem/io, then the device has
575 * undergone some kind of backdoor reset and needs to be
576 * restored before we allow it to enable the bars.
577 * SR-IOV devices will trigger this, but we catch them later
579 if ((new_mem && virt_mem && !phys_mem) ||
580 (new_io && virt_io && !phys_io) ||
581 vfio_need_bar_restore(vdev))
582 vfio_bar_restore(vdev);
585 count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
586 if (count < 0)
587 return count;
590 * Save current memory/io enable bits in vconfig to allow for
591 * the test above next time.
593 if (offset == PCI_COMMAND) {
594 u16 mask = PCI_COMMAND_MEMORY | PCI_COMMAND_IO;
596 *virt_cmd &= cpu_to_le16(~mask);
597 *virt_cmd |= cpu_to_le16(new_cmd & mask);
600 /* Emulate INTx disable */
601 if (offset >= PCI_COMMAND && offset <= PCI_COMMAND + 1) {
602 bool virt_intx_disable;
604 virt_intx_disable = !!(le16_to_cpu(*virt_cmd) &
605 PCI_COMMAND_INTX_DISABLE);
607 if (virt_intx_disable && !vdev->virq_disabled) {
608 vdev->virq_disabled = true;
609 vfio_pci_intx_mask(vdev);
610 } else if (!virt_intx_disable && vdev->virq_disabled) {
611 vdev->virq_disabled = false;
612 vfio_pci_intx_unmask(vdev);
616 if (is_bar(offset))
617 vdev->bardirty = true;
619 return count;
622 /* Permissions for the Basic PCI Header */
623 static int __init init_pci_cap_basic_perm(struct perm_bits *perm)
625 if (alloc_perm_bits(perm, PCI_STD_HEADER_SIZEOF))
626 return -ENOMEM;
628 perm->readfn = vfio_basic_config_read;
629 perm->writefn = vfio_basic_config_write;
631 /* Virtualized for SR-IOV functions, which just have FFFF */
632 p_setw(perm, PCI_VENDOR_ID, (u16)ALL_VIRT, NO_WRITE);
633 p_setw(perm, PCI_DEVICE_ID, (u16)ALL_VIRT, NO_WRITE);
636 * Virtualize INTx disable, we use it internally for interrupt
637 * control and can emulate it for non-PCI 2.3 devices.
639 p_setw(perm, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE, (u16)ALL_WRITE);
641 /* Virtualize capability list, we might want to skip/disable */
642 p_setw(perm, PCI_STATUS, PCI_STATUS_CAP_LIST, NO_WRITE);
644 /* No harm to write */
645 p_setb(perm, PCI_CACHE_LINE_SIZE, NO_VIRT, (u8)ALL_WRITE);
646 p_setb(perm, PCI_LATENCY_TIMER, NO_VIRT, (u8)ALL_WRITE);
647 p_setb(perm, PCI_BIST, NO_VIRT, (u8)ALL_WRITE);
649 /* Virtualize all bars, can't touch the real ones */
650 p_setd(perm, PCI_BASE_ADDRESS_0, ALL_VIRT, ALL_WRITE);
651 p_setd(perm, PCI_BASE_ADDRESS_1, ALL_VIRT, ALL_WRITE);
652 p_setd(perm, PCI_BASE_ADDRESS_2, ALL_VIRT, ALL_WRITE);
653 p_setd(perm, PCI_BASE_ADDRESS_3, ALL_VIRT, ALL_WRITE);
654 p_setd(perm, PCI_BASE_ADDRESS_4, ALL_VIRT, ALL_WRITE);
655 p_setd(perm, PCI_BASE_ADDRESS_5, ALL_VIRT, ALL_WRITE);
656 p_setd(perm, PCI_ROM_ADDRESS, ALL_VIRT, ALL_WRITE);
658 /* Allow us to adjust capability chain */
659 p_setb(perm, PCI_CAPABILITY_LIST, (u8)ALL_VIRT, NO_WRITE);
661 /* Sometimes used by sw, just virtualize */
662 p_setb(perm, PCI_INTERRUPT_LINE, (u8)ALL_VIRT, (u8)ALL_WRITE);
664 /* Virtualize interrupt pin to allow hiding INTx */
665 p_setb(perm, PCI_INTERRUPT_PIN, (u8)ALL_VIRT, (u8)NO_WRITE);
667 return 0;
670 static int vfio_pm_config_write(struct vfio_pci_device *vdev, int pos,
671 int count, struct perm_bits *perm,
672 int offset, __le32 val)
674 count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
675 if (count < 0)
676 return count;
678 if (offset == PCI_PM_CTRL) {
679 pci_power_t state;
681 switch (le32_to_cpu(val) & PCI_PM_CTRL_STATE_MASK) {
682 case 0:
683 state = PCI_D0;
684 break;
685 case 1:
686 state = PCI_D1;
687 break;
688 case 2:
689 state = PCI_D2;
690 break;
691 case 3:
692 state = PCI_D3hot;
693 break;
696 pci_set_power_state(vdev->pdev, state);
699 return count;
702 /* Permissions for the Power Management capability */
703 static int __init init_pci_cap_pm_perm(struct perm_bits *perm)
705 if (alloc_perm_bits(perm, pci_cap_length[PCI_CAP_ID_PM]))
706 return -ENOMEM;
708 perm->writefn = vfio_pm_config_write;
711 * We always virtualize the next field so we can remove
712 * capabilities from the chain if we want to.
714 p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
717 * Power management is defined *per function*, so we can let
718 * the user change power state, but we trap and initiate the
719 * change ourselves, so the state bits are read-only.
721 p_setd(perm, PCI_PM_CTRL, NO_VIRT, ~PCI_PM_CTRL_STATE_MASK);
722 return 0;
725 static int vfio_vpd_config_write(struct vfio_pci_device *vdev, int pos,
726 int count, struct perm_bits *perm,
727 int offset, __le32 val)
729 struct pci_dev *pdev = vdev->pdev;
730 __le16 *paddr = (__le16 *)(vdev->vconfig + pos - offset + PCI_VPD_ADDR);
731 __le32 *pdata = (__le32 *)(vdev->vconfig + pos - offset + PCI_VPD_DATA);
732 u16 addr;
733 u32 data;
736 * Write through to emulation. If the write includes the upper byte
737 * of PCI_VPD_ADDR, then the PCI_VPD_ADDR_F bit is written and we
738 * have work to do.
740 count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
741 if (count < 0 || offset > PCI_VPD_ADDR + 1 ||
742 offset + count <= PCI_VPD_ADDR + 1)
743 return count;
745 addr = le16_to_cpu(*paddr);
747 if (addr & PCI_VPD_ADDR_F) {
748 data = le32_to_cpu(*pdata);
749 if (pci_write_vpd(pdev, addr & ~PCI_VPD_ADDR_F, 4, &data) != 4)
750 return count;
751 } else {
752 data = 0;
753 if (pci_read_vpd(pdev, addr, 4, &data) < 0)
754 return count;
755 *pdata = cpu_to_le32(data);
759 * Toggle PCI_VPD_ADDR_F in the emulated PCI_VPD_ADDR register to
760 * signal completion. If an error occurs above, we assume that not
761 * toggling this bit will induce a driver timeout.
763 addr ^= PCI_VPD_ADDR_F;
764 *paddr = cpu_to_le16(addr);
766 return count;
769 /* Permissions for Vital Product Data capability */
770 static int __init init_pci_cap_vpd_perm(struct perm_bits *perm)
772 if (alloc_perm_bits(perm, pci_cap_length[PCI_CAP_ID_VPD]))
773 return -ENOMEM;
775 perm->writefn = vfio_vpd_config_write;
778 * We always virtualize the next field so we can remove
779 * capabilities from the chain if we want to.
781 p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
784 * Both the address and data registers are virtualized to
785 * enable access through the pci_vpd_read/write functions
787 p_setw(perm, PCI_VPD_ADDR, (u16)ALL_VIRT, (u16)ALL_WRITE);
788 p_setd(perm, PCI_VPD_DATA, ALL_VIRT, ALL_WRITE);
790 return 0;
793 /* Permissions for PCI-X capability */
794 static int __init init_pci_cap_pcix_perm(struct perm_bits *perm)
796 /* Alloc 24, but only 8 are used in v0 */
797 if (alloc_perm_bits(perm, PCI_CAP_PCIX_SIZEOF_V2))
798 return -ENOMEM;
800 p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
802 p_setw(perm, PCI_X_CMD, NO_VIRT, (u16)ALL_WRITE);
803 p_setd(perm, PCI_X_ECC_CSR, NO_VIRT, ALL_WRITE);
804 return 0;
807 /* Permissions for PCI Express capability */
808 static int __init init_pci_cap_exp_perm(struct perm_bits *perm)
810 /* Alloc larger of two possible sizes */
811 if (alloc_perm_bits(perm, PCI_CAP_EXP_ENDPOINT_SIZEOF_V2))
812 return -ENOMEM;
814 p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
817 * Allow writes to device control fields (includes FLR!)
818 * but not to devctl_phantom which could confuse IOMMU
819 * or to the ARI bit in devctl2 which is set at probe time
821 p_setw(perm, PCI_EXP_DEVCTL, NO_VIRT, ~PCI_EXP_DEVCTL_PHANTOM);
822 p_setw(perm, PCI_EXP_DEVCTL2, NO_VIRT, ~PCI_EXP_DEVCTL2_ARI);
823 return 0;
826 /* Permissions for Advanced Function capability */
827 static int __init init_pci_cap_af_perm(struct perm_bits *perm)
829 if (alloc_perm_bits(perm, pci_cap_length[PCI_CAP_ID_AF]))
830 return -ENOMEM;
832 p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
833 p_setb(perm, PCI_AF_CTRL, NO_VIRT, PCI_AF_CTRL_FLR);
834 return 0;
837 /* Permissions for Advanced Error Reporting extended capability */
838 static int __init init_pci_ext_cap_err_perm(struct perm_bits *perm)
840 u32 mask;
842 if (alloc_perm_bits(perm, pci_ext_cap_length[PCI_EXT_CAP_ID_ERR]))
843 return -ENOMEM;
846 * Virtualize the first dword of all express capabilities
847 * because it includes the next pointer. This lets us later
848 * remove capabilities from the chain if we need to.
850 p_setd(perm, 0, ALL_VIRT, NO_WRITE);
852 /* Writable bits mask */
853 mask = PCI_ERR_UNC_UND | /* Undefined */
854 PCI_ERR_UNC_DLP | /* Data Link Protocol */
855 PCI_ERR_UNC_SURPDN | /* Surprise Down */
856 PCI_ERR_UNC_POISON_TLP | /* Poisoned TLP */
857 PCI_ERR_UNC_FCP | /* Flow Control Protocol */
858 PCI_ERR_UNC_COMP_TIME | /* Completion Timeout */
859 PCI_ERR_UNC_COMP_ABORT | /* Completer Abort */
860 PCI_ERR_UNC_UNX_COMP | /* Unexpected Completion */
861 PCI_ERR_UNC_RX_OVER | /* Receiver Overflow */
862 PCI_ERR_UNC_MALF_TLP | /* Malformed TLP */
863 PCI_ERR_UNC_ECRC | /* ECRC Error Status */
864 PCI_ERR_UNC_UNSUP | /* Unsupported Request */
865 PCI_ERR_UNC_ACSV | /* ACS Violation */
866 PCI_ERR_UNC_INTN | /* internal error */
867 PCI_ERR_UNC_MCBTLP | /* MC blocked TLP */
868 PCI_ERR_UNC_ATOMEG | /* Atomic egress blocked */
869 PCI_ERR_UNC_TLPPRE; /* TLP prefix blocked */
870 p_setd(perm, PCI_ERR_UNCOR_STATUS, NO_VIRT, mask);
871 p_setd(perm, PCI_ERR_UNCOR_MASK, NO_VIRT, mask);
872 p_setd(perm, PCI_ERR_UNCOR_SEVER, NO_VIRT, mask);
874 mask = PCI_ERR_COR_RCVR | /* Receiver Error Status */
875 PCI_ERR_COR_BAD_TLP | /* Bad TLP Status */
876 PCI_ERR_COR_BAD_DLLP | /* Bad DLLP Status */
877 PCI_ERR_COR_REP_ROLL | /* REPLAY_NUM Rollover */
878 PCI_ERR_COR_REP_TIMER | /* Replay Timer Timeout */
879 PCI_ERR_COR_ADV_NFAT | /* Advisory Non-Fatal */
880 PCI_ERR_COR_INTERNAL | /* Corrected Internal */
881 PCI_ERR_COR_LOG_OVER; /* Header Log Overflow */
882 p_setd(perm, PCI_ERR_COR_STATUS, NO_VIRT, mask);
883 p_setd(perm, PCI_ERR_COR_MASK, NO_VIRT, mask);
885 mask = PCI_ERR_CAP_ECRC_GENE | /* ECRC Generation Enable */
886 PCI_ERR_CAP_ECRC_CHKE; /* ECRC Check Enable */
887 p_setd(perm, PCI_ERR_CAP, NO_VIRT, mask);
888 return 0;
891 /* Permissions for Power Budgeting extended capability */
892 static int __init init_pci_ext_cap_pwr_perm(struct perm_bits *perm)
894 if (alloc_perm_bits(perm, pci_ext_cap_length[PCI_EXT_CAP_ID_PWR]))
895 return -ENOMEM;
897 p_setd(perm, 0, ALL_VIRT, NO_WRITE);
899 /* Writing the data selector is OK, the info is still read-only */
900 p_setb(perm, PCI_PWR_DATA, NO_VIRT, (u8)ALL_WRITE);
901 return 0;
905 * Initialize the shared permission tables
907 void vfio_pci_uninit_perm_bits(void)
909 free_perm_bits(&cap_perms[PCI_CAP_ID_BASIC]);
911 free_perm_bits(&cap_perms[PCI_CAP_ID_PM]);
912 free_perm_bits(&cap_perms[PCI_CAP_ID_VPD]);
913 free_perm_bits(&cap_perms[PCI_CAP_ID_PCIX]);
914 free_perm_bits(&cap_perms[PCI_CAP_ID_EXP]);
915 free_perm_bits(&cap_perms[PCI_CAP_ID_AF]);
917 free_perm_bits(&ecap_perms[PCI_EXT_CAP_ID_ERR]);
918 free_perm_bits(&ecap_perms[PCI_EXT_CAP_ID_PWR]);
921 int __init vfio_pci_init_perm_bits(void)
923 int ret;
925 /* Basic config space */
926 ret = init_pci_cap_basic_perm(&cap_perms[PCI_CAP_ID_BASIC]);
928 /* Capabilities */
929 ret |= init_pci_cap_pm_perm(&cap_perms[PCI_CAP_ID_PM]);
930 ret |= init_pci_cap_vpd_perm(&cap_perms[PCI_CAP_ID_VPD]);
931 ret |= init_pci_cap_pcix_perm(&cap_perms[PCI_CAP_ID_PCIX]);
932 cap_perms[PCI_CAP_ID_VNDR].writefn = vfio_raw_config_write;
933 ret |= init_pci_cap_exp_perm(&cap_perms[PCI_CAP_ID_EXP]);
934 ret |= init_pci_cap_af_perm(&cap_perms[PCI_CAP_ID_AF]);
936 /* Extended capabilities */
937 ret |= init_pci_ext_cap_err_perm(&ecap_perms[PCI_EXT_CAP_ID_ERR]);
938 ret |= init_pci_ext_cap_pwr_perm(&ecap_perms[PCI_EXT_CAP_ID_PWR]);
939 ecap_perms[PCI_EXT_CAP_ID_VNDR].writefn = vfio_raw_config_write;
941 if (ret)
942 vfio_pci_uninit_perm_bits();
944 return ret;
947 static int vfio_find_cap_start(struct vfio_pci_device *vdev, int pos)
949 u8 cap;
950 int base = (pos >= PCI_CFG_SPACE_SIZE) ? PCI_CFG_SPACE_SIZE :
951 PCI_STD_HEADER_SIZEOF;
952 cap = vdev->pci_config_map[pos];
954 if (cap == PCI_CAP_ID_BASIC)
955 return 0;
957 /* XXX Can we have to abutting capabilities of the same type? */
958 while (pos - 1 >= base && vdev->pci_config_map[pos - 1] == cap)
959 pos--;
961 return pos;
964 static int vfio_msi_config_read(struct vfio_pci_device *vdev, int pos,
965 int count, struct perm_bits *perm,
966 int offset, __le32 *val)
968 /* Update max available queue size from msi_qmax */
969 if (offset <= PCI_MSI_FLAGS && offset + count >= PCI_MSI_FLAGS) {
970 __le16 *flags;
971 int start;
973 start = vfio_find_cap_start(vdev, pos);
975 flags = (__le16 *)&vdev->vconfig[start];
977 *flags &= cpu_to_le16(~PCI_MSI_FLAGS_QMASK);
978 *flags |= cpu_to_le16(vdev->msi_qmax << 1);
981 return vfio_default_config_read(vdev, pos, count, perm, offset, val);
984 static int vfio_msi_config_write(struct vfio_pci_device *vdev, int pos,
985 int count, struct perm_bits *perm,
986 int offset, __le32 val)
988 count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
989 if (count < 0)
990 return count;
992 /* Fixup and write configured queue size and enable to hardware */
993 if (offset <= PCI_MSI_FLAGS && offset + count >= PCI_MSI_FLAGS) {
994 __le16 *pflags;
995 u16 flags;
996 int start, ret;
998 start = vfio_find_cap_start(vdev, pos);
1000 pflags = (__le16 *)&vdev->vconfig[start + PCI_MSI_FLAGS];
1002 flags = le16_to_cpu(*pflags);
1004 /* MSI is enabled via ioctl */
1005 if (!is_msi(vdev))
1006 flags &= ~PCI_MSI_FLAGS_ENABLE;
1008 /* Check queue size */
1009 if ((flags & PCI_MSI_FLAGS_QSIZE) >> 4 > vdev->msi_qmax) {
1010 flags &= ~PCI_MSI_FLAGS_QSIZE;
1011 flags |= vdev->msi_qmax << 4;
1014 /* Write back to virt and to hardware */
1015 *pflags = cpu_to_le16(flags);
1016 ret = pci_user_write_config_word(vdev->pdev,
1017 start + PCI_MSI_FLAGS,
1018 flags);
1019 if (ret)
1020 return pcibios_err_to_errno(ret);
1023 return count;
1027 * MSI determination is per-device, so this routine gets used beyond
1028 * initialization time. Don't add __init
1030 static int init_pci_cap_msi_perm(struct perm_bits *perm, int len, u16 flags)
1032 if (alloc_perm_bits(perm, len))
1033 return -ENOMEM;
1035 perm->readfn = vfio_msi_config_read;
1036 perm->writefn = vfio_msi_config_write;
1038 p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
1041 * The upper byte of the control register is reserved,
1042 * just setup the lower byte.
1044 p_setb(perm, PCI_MSI_FLAGS, (u8)ALL_VIRT, (u8)ALL_WRITE);
1045 p_setd(perm, PCI_MSI_ADDRESS_LO, ALL_VIRT, ALL_WRITE);
1046 if (flags & PCI_MSI_FLAGS_64BIT) {
1047 p_setd(perm, PCI_MSI_ADDRESS_HI, ALL_VIRT, ALL_WRITE);
1048 p_setw(perm, PCI_MSI_DATA_64, (u16)ALL_VIRT, (u16)ALL_WRITE);
1049 if (flags & PCI_MSI_FLAGS_MASKBIT) {
1050 p_setd(perm, PCI_MSI_MASK_64, NO_VIRT, ALL_WRITE);
1051 p_setd(perm, PCI_MSI_PENDING_64, NO_VIRT, ALL_WRITE);
1053 } else {
1054 p_setw(perm, PCI_MSI_DATA_32, (u16)ALL_VIRT, (u16)ALL_WRITE);
1055 if (flags & PCI_MSI_FLAGS_MASKBIT) {
1056 p_setd(perm, PCI_MSI_MASK_32, NO_VIRT, ALL_WRITE);
1057 p_setd(perm, PCI_MSI_PENDING_32, NO_VIRT, ALL_WRITE);
1060 return 0;
1063 /* Determine MSI CAP field length; initialize msi_perms on 1st call per vdev */
1064 static int vfio_msi_cap_len(struct vfio_pci_device *vdev, u8 pos)
1066 struct pci_dev *pdev = vdev->pdev;
1067 int len, ret;
1068 u16 flags;
1070 ret = pci_read_config_word(pdev, pos + PCI_MSI_FLAGS, &flags);
1071 if (ret)
1072 return pcibios_err_to_errno(ret);
1074 len = 10; /* Minimum size */
1075 if (flags & PCI_MSI_FLAGS_64BIT)
1076 len += 4;
1077 if (flags & PCI_MSI_FLAGS_MASKBIT)
1078 len += 10;
1080 if (vdev->msi_perm)
1081 return len;
1083 vdev->msi_perm = kmalloc(sizeof(struct perm_bits), GFP_KERNEL);
1084 if (!vdev->msi_perm)
1085 return -ENOMEM;
1087 ret = init_pci_cap_msi_perm(vdev->msi_perm, len, flags);
1088 if (ret)
1089 return ret;
1091 return len;
1094 /* Determine extended capability length for VC (2 & 9) and MFVC */
1095 static int vfio_vc_cap_len(struct vfio_pci_device *vdev, u16 pos)
1097 struct pci_dev *pdev = vdev->pdev;
1098 u32 tmp;
1099 int ret, evcc, phases, vc_arb;
1100 int len = PCI_CAP_VC_BASE_SIZEOF;
1102 ret = pci_read_config_dword(pdev, pos + PCI_VC_PORT_CAP1, &tmp);
1103 if (ret)
1104 return pcibios_err_to_errno(ret);
1106 evcc = tmp & PCI_VC_CAP1_EVCC; /* extended vc count */
1107 ret = pci_read_config_dword(pdev, pos + PCI_VC_PORT_CAP2, &tmp);
1108 if (ret)
1109 return pcibios_err_to_errno(ret);
1111 if (tmp & PCI_VC_CAP2_128_PHASE)
1112 phases = 128;
1113 else if (tmp & PCI_VC_CAP2_64_PHASE)
1114 phases = 64;
1115 else if (tmp & PCI_VC_CAP2_32_PHASE)
1116 phases = 32;
1117 else
1118 phases = 0;
1120 vc_arb = phases * 4;
1123 * Port arbitration tables are root & switch only;
1124 * function arbitration tables are function 0 only.
1125 * In either case, we'll never let user write them so
1126 * we don't care how big they are
1128 len += (1 + evcc) * PCI_CAP_VC_PER_VC_SIZEOF;
1129 if (vc_arb) {
1130 len = round_up(len, 16);
1131 len += vc_arb / 8;
1133 return len;
1136 static int vfio_cap_len(struct vfio_pci_device *vdev, u8 cap, u8 pos)
1138 struct pci_dev *pdev = vdev->pdev;
1139 u32 dword;
1140 u16 word;
1141 u8 byte;
1142 int ret;
1144 switch (cap) {
1145 case PCI_CAP_ID_MSI:
1146 return vfio_msi_cap_len(vdev, pos);
1147 case PCI_CAP_ID_PCIX:
1148 ret = pci_read_config_word(pdev, pos + PCI_X_CMD, &word);
1149 if (ret)
1150 return pcibios_err_to_errno(ret);
1152 if (PCI_X_CMD_VERSION(word)) {
1153 if (pdev->cfg_size > PCI_CFG_SPACE_SIZE) {
1154 /* Test for extended capabilities */
1155 pci_read_config_dword(pdev, PCI_CFG_SPACE_SIZE,
1156 &dword);
1157 vdev->extended_caps = (dword != 0);
1159 return PCI_CAP_PCIX_SIZEOF_V2;
1160 } else
1161 return PCI_CAP_PCIX_SIZEOF_V0;
1162 case PCI_CAP_ID_VNDR:
1163 /* length follows next field */
1164 ret = pci_read_config_byte(pdev, pos + PCI_CAP_FLAGS, &byte);
1165 if (ret)
1166 return pcibios_err_to_errno(ret);
1168 return byte;
1169 case PCI_CAP_ID_EXP:
1170 if (pdev->cfg_size > PCI_CFG_SPACE_SIZE) {
1171 /* Test for extended capabilities */
1172 pci_read_config_dword(pdev, PCI_CFG_SPACE_SIZE, &dword);
1173 vdev->extended_caps = (dword != 0);
1176 /* length based on version */
1177 if ((pcie_caps_reg(pdev) & PCI_EXP_FLAGS_VERS) == 1)
1178 return PCI_CAP_EXP_ENDPOINT_SIZEOF_V1;
1179 else
1180 return PCI_CAP_EXP_ENDPOINT_SIZEOF_V2;
1181 case PCI_CAP_ID_HT:
1182 ret = pci_read_config_byte(pdev, pos + 3, &byte);
1183 if (ret)
1184 return pcibios_err_to_errno(ret);
1186 return (byte & HT_3BIT_CAP_MASK) ?
1187 HT_CAP_SIZEOF_SHORT : HT_CAP_SIZEOF_LONG;
1188 case PCI_CAP_ID_SATA:
1189 ret = pci_read_config_byte(pdev, pos + PCI_SATA_REGS, &byte);
1190 if (ret)
1191 return pcibios_err_to_errno(ret);
1193 byte &= PCI_SATA_REGS_MASK;
1194 if (byte == PCI_SATA_REGS_INLINE)
1195 return PCI_SATA_SIZEOF_LONG;
1196 else
1197 return PCI_SATA_SIZEOF_SHORT;
1198 default:
1199 pr_warn("%s: %s unknown length for pci cap 0x%x@0x%x\n",
1200 dev_name(&pdev->dev), __func__, cap, pos);
1203 return 0;
1206 static int vfio_ext_cap_len(struct vfio_pci_device *vdev, u16 ecap, u16 epos)
1208 struct pci_dev *pdev = vdev->pdev;
1209 u8 byte;
1210 u32 dword;
1211 int ret;
1213 switch (ecap) {
1214 case PCI_EXT_CAP_ID_VNDR:
1215 ret = pci_read_config_dword(pdev, epos + PCI_VSEC_HDR, &dword);
1216 if (ret)
1217 return pcibios_err_to_errno(ret);
1219 return dword >> PCI_VSEC_HDR_LEN_SHIFT;
1220 case PCI_EXT_CAP_ID_VC:
1221 case PCI_EXT_CAP_ID_VC9:
1222 case PCI_EXT_CAP_ID_MFVC:
1223 return vfio_vc_cap_len(vdev, epos);
1224 case PCI_EXT_CAP_ID_ACS:
1225 ret = pci_read_config_byte(pdev, epos + PCI_ACS_CAP, &byte);
1226 if (ret)
1227 return pcibios_err_to_errno(ret);
1229 if (byte & PCI_ACS_EC) {
1230 int bits;
1232 ret = pci_read_config_byte(pdev,
1233 epos + PCI_ACS_EGRESS_BITS,
1234 &byte);
1235 if (ret)
1236 return pcibios_err_to_errno(ret);
1238 bits = byte ? round_up(byte, 32) : 256;
1239 return 8 + (bits / 8);
1241 return 8;
1243 case PCI_EXT_CAP_ID_REBAR:
1244 ret = pci_read_config_byte(pdev, epos + PCI_REBAR_CTRL, &byte);
1245 if (ret)
1246 return pcibios_err_to_errno(ret);
1248 byte &= PCI_REBAR_CTRL_NBAR_MASK;
1249 byte >>= PCI_REBAR_CTRL_NBAR_SHIFT;
1251 return 4 + (byte * 8);
1252 case PCI_EXT_CAP_ID_DPA:
1253 ret = pci_read_config_byte(pdev, epos + PCI_DPA_CAP, &byte);
1254 if (ret)
1255 return pcibios_err_to_errno(ret);
1257 byte &= PCI_DPA_CAP_SUBSTATE_MASK;
1258 return PCI_DPA_BASE_SIZEOF + byte + 1;
1259 case PCI_EXT_CAP_ID_TPH:
1260 ret = pci_read_config_dword(pdev, epos + PCI_TPH_CAP, &dword);
1261 if (ret)
1262 return pcibios_err_to_errno(ret);
1264 if ((dword & PCI_TPH_CAP_LOC_MASK) == PCI_TPH_LOC_CAP) {
1265 int sts;
1267 sts = dword & PCI_TPH_CAP_ST_MASK;
1268 sts >>= PCI_TPH_CAP_ST_SHIFT;
1269 return PCI_TPH_BASE_SIZEOF + (sts * 2) + 2;
1271 return PCI_TPH_BASE_SIZEOF;
1272 default:
1273 pr_warn("%s: %s unknown length for pci ecap 0x%x@0x%x\n",
1274 dev_name(&pdev->dev), __func__, ecap, epos);
1277 return 0;
1280 static int vfio_fill_vconfig_bytes(struct vfio_pci_device *vdev,
1281 int offset, int size)
1283 struct pci_dev *pdev = vdev->pdev;
1284 int ret = 0;
1287 * We try to read physical config space in the largest chunks
1288 * we can, assuming that all of the fields support dword access.
1289 * pci_save_state() makes this same assumption and seems to do ok.
1291 while (size) {
1292 int filled;
1294 if (size >= 4 && !(offset % 4)) {
1295 __le32 *dwordp = (__le32 *)&vdev->vconfig[offset];
1296 u32 dword;
1298 ret = pci_read_config_dword(pdev, offset, &dword);
1299 if (ret)
1300 return ret;
1301 *dwordp = cpu_to_le32(dword);
1302 filled = 4;
1303 } else if (size >= 2 && !(offset % 2)) {
1304 __le16 *wordp = (__le16 *)&vdev->vconfig[offset];
1305 u16 word;
1307 ret = pci_read_config_word(pdev, offset, &word);
1308 if (ret)
1309 return ret;
1310 *wordp = cpu_to_le16(word);
1311 filled = 2;
1312 } else {
1313 u8 *byte = &vdev->vconfig[offset];
1314 ret = pci_read_config_byte(pdev, offset, byte);
1315 if (ret)
1316 return ret;
1317 filled = 1;
1320 offset += filled;
1321 size -= filled;
1324 return ret;
1327 static int vfio_cap_init(struct vfio_pci_device *vdev)
1329 struct pci_dev *pdev = vdev->pdev;
1330 u8 *map = vdev->pci_config_map;
1331 u16 status;
1332 u8 pos, *prev, cap;
1333 int loops, ret, caps = 0;
1335 /* Any capabilities? */
1336 ret = pci_read_config_word(pdev, PCI_STATUS, &status);
1337 if (ret)
1338 return ret;
1340 if (!(status & PCI_STATUS_CAP_LIST))
1341 return 0; /* Done */
1343 ret = pci_read_config_byte(pdev, PCI_CAPABILITY_LIST, &pos);
1344 if (ret)
1345 return ret;
1347 /* Mark the previous position in case we want to skip a capability */
1348 prev = &vdev->vconfig[PCI_CAPABILITY_LIST];
1350 /* We can bound our loop, capabilities are dword aligned */
1351 loops = (PCI_CFG_SPACE_SIZE - PCI_STD_HEADER_SIZEOF) / PCI_CAP_SIZEOF;
1352 while (pos && loops--) {
1353 u8 next;
1354 int i, len = 0;
1356 ret = pci_read_config_byte(pdev, pos, &cap);
1357 if (ret)
1358 return ret;
1360 ret = pci_read_config_byte(pdev,
1361 pos + PCI_CAP_LIST_NEXT, &next);
1362 if (ret)
1363 return ret;
1365 if (cap <= PCI_CAP_ID_MAX) {
1366 len = pci_cap_length[cap];
1367 if (len == 0xFF) { /* Variable length */
1368 len = vfio_cap_len(vdev, cap, pos);
1369 if (len < 0)
1370 return len;
1374 if (!len) {
1375 pr_info("%s: %s hiding cap 0x%x\n",
1376 __func__, dev_name(&pdev->dev), cap);
1377 *prev = next;
1378 pos = next;
1379 continue;
1382 /* Sanity check, do we overlap other capabilities? */
1383 for (i = 0; i < len; i++) {
1384 if (likely(map[pos + i] == PCI_CAP_ID_INVALID))
1385 continue;
1387 pr_warn("%s: %s pci config conflict @0x%x, was cap 0x%x now cap 0x%x\n",
1388 __func__, dev_name(&pdev->dev),
1389 pos + i, map[pos + i], cap);
1392 BUILD_BUG_ON(PCI_CAP_ID_MAX >= PCI_CAP_ID_INVALID_VIRT);
1394 memset(map + pos, cap, len);
1395 ret = vfio_fill_vconfig_bytes(vdev, pos, len);
1396 if (ret)
1397 return ret;
1399 prev = &vdev->vconfig[pos + PCI_CAP_LIST_NEXT];
1400 pos = next;
1401 caps++;
1404 /* If we didn't fill any capabilities, clear the status flag */
1405 if (!caps) {
1406 __le16 *vstatus = (__le16 *)&vdev->vconfig[PCI_STATUS];
1407 *vstatus &= ~cpu_to_le16(PCI_STATUS_CAP_LIST);
1410 return 0;
1413 static int vfio_ecap_init(struct vfio_pci_device *vdev)
1415 struct pci_dev *pdev = vdev->pdev;
1416 u8 *map = vdev->pci_config_map;
1417 u16 epos;
1418 __le32 *prev = NULL;
1419 int loops, ret, ecaps = 0;
1421 if (!vdev->extended_caps)
1422 return 0;
1424 epos = PCI_CFG_SPACE_SIZE;
1426 loops = (pdev->cfg_size - PCI_CFG_SPACE_SIZE) / PCI_CAP_SIZEOF;
1428 while (loops-- && epos >= PCI_CFG_SPACE_SIZE) {
1429 u32 header;
1430 u16 ecap;
1431 int i, len = 0;
1432 bool hidden = false;
1434 ret = pci_read_config_dword(pdev, epos, &header);
1435 if (ret)
1436 return ret;
1438 ecap = PCI_EXT_CAP_ID(header);
1440 if (ecap <= PCI_EXT_CAP_ID_MAX) {
1441 len = pci_ext_cap_length[ecap];
1442 if (len == 0xFF) {
1443 len = vfio_ext_cap_len(vdev, ecap, epos);
1444 if (len < 0)
1445 return ret;
1449 if (!len) {
1450 pr_info("%s: %s hiding ecap 0x%x@0x%x\n",
1451 __func__, dev_name(&pdev->dev), ecap, epos);
1453 /* If not the first in the chain, we can skip over it */
1454 if (prev) {
1455 u32 val = epos = PCI_EXT_CAP_NEXT(header);
1456 *prev &= cpu_to_le32(~(0xffcU << 20));
1457 *prev |= cpu_to_le32(val << 20);
1458 continue;
1462 * Otherwise, fill in a placeholder, the direct
1463 * readfn will virtualize this automatically
1465 len = PCI_CAP_SIZEOF;
1466 hidden = true;
1469 for (i = 0; i < len; i++) {
1470 if (likely(map[epos + i] == PCI_CAP_ID_INVALID))
1471 continue;
1473 pr_warn("%s: %s pci config conflict @0x%x, was ecap 0x%x now ecap 0x%x\n",
1474 __func__, dev_name(&pdev->dev),
1475 epos + i, map[epos + i], ecap);
1479 * Even though ecap is 2 bytes, we're currently a long way
1480 * from exceeding 1 byte capabilities. If we ever make it
1481 * up to 0xFE we'll need to up this to a two-byte, byte map.
1483 BUILD_BUG_ON(PCI_EXT_CAP_ID_MAX >= PCI_CAP_ID_INVALID_VIRT);
1485 memset(map + epos, ecap, len);
1486 ret = vfio_fill_vconfig_bytes(vdev, epos, len);
1487 if (ret)
1488 return ret;
1491 * If we're just using this capability to anchor the list,
1492 * hide the real ID. Only count real ecaps. XXX PCI spec
1493 * indicates to use cap id = 0, version = 0, next = 0 if
1494 * ecaps are absent, hope users check all the way to next.
1496 if (hidden)
1497 *(__le32 *)&vdev->vconfig[epos] &=
1498 cpu_to_le32((0xffcU << 20));
1499 else
1500 ecaps++;
1502 prev = (__le32 *)&vdev->vconfig[epos];
1503 epos = PCI_EXT_CAP_NEXT(header);
1506 if (!ecaps)
1507 *(u32 *)&vdev->vconfig[PCI_CFG_SPACE_SIZE] = 0;
1509 return 0;
1513 * For each device we allocate a pci_config_map that indicates the
1514 * capability occupying each dword and thus the struct perm_bits we
1515 * use for read and write. We also allocate a virtualized config
1516 * space which tracks reads and writes to bits that we emulate for
1517 * the user. Initial values filled from device.
1519 * Using shared stuct perm_bits between all vfio-pci devices saves
1520 * us from allocating cfg_size buffers for virt and write for every
1521 * device. We could remove vconfig and allocate individual buffers
1522 * for each area requring emulated bits, but the array of pointers
1523 * would be comparable in size (at least for standard config space).
1525 int vfio_config_init(struct vfio_pci_device *vdev)
1527 struct pci_dev *pdev = vdev->pdev;
1528 u8 *map, *vconfig;
1529 int ret;
1532 * Config space, caps and ecaps are all dword aligned, so we could
1533 * use one byte per dword to record the type. However, there are
1534 * no requiremenst on the length of a capability, so the gap between
1535 * capabilities needs byte granularity.
1537 map = kmalloc(pdev->cfg_size, GFP_KERNEL);
1538 if (!map)
1539 return -ENOMEM;
1541 vconfig = kmalloc(pdev->cfg_size, GFP_KERNEL);
1542 if (!vconfig) {
1543 kfree(map);
1544 return -ENOMEM;
1547 vdev->pci_config_map = map;
1548 vdev->vconfig = vconfig;
1550 memset(map, PCI_CAP_ID_BASIC, PCI_STD_HEADER_SIZEOF);
1551 memset(map + PCI_STD_HEADER_SIZEOF, PCI_CAP_ID_INVALID,
1552 pdev->cfg_size - PCI_STD_HEADER_SIZEOF);
1554 ret = vfio_fill_vconfig_bytes(vdev, 0, PCI_STD_HEADER_SIZEOF);
1555 if (ret)
1556 goto out;
1558 vdev->bardirty = true;
1561 * XXX can we just pci_load_saved_state/pci_restore_state?
1562 * may need to rebuild vconfig after that
1565 /* For restore after reset */
1566 vdev->rbar[0] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_0]);
1567 vdev->rbar[1] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_1]);
1568 vdev->rbar[2] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_2]);
1569 vdev->rbar[3] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_3]);
1570 vdev->rbar[4] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_4]);
1571 vdev->rbar[5] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_5]);
1572 vdev->rbar[6] = le32_to_cpu(*(__le32 *)&vconfig[PCI_ROM_ADDRESS]);
1574 if (pdev->is_virtfn) {
1575 *(__le16 *)&vconfig[PCI_VENDOR_ID] = cpu_to_le16(pdev->vendor);
1576 *(__le16 *)&vconfig[PCI_DEVICE_ID] = cpu_to_le16(pdev->device);
1579 if (!IS_ENABLED(CONFIG_VFIO_PCI_INTX) || vdev->nointx)
1580 vconfig[PCI_INTERRUPT_PIN] = 0;
1582 ret = vfio_cap_init(vdev);
1583 if (ret)
1584 goto out;
1586 ret = vfio_ecap_init(vdev);
1587 if (ret)
1588 goto out;
1590 return 0;
1592 out:
1593 kfree(map);
1594 vdev->pci_config_map = NULL;
1595 kfree(vconfig);
1596 vdev->vconfig = NULL;
1597 return pcibios_err_to_errno(ret);
1600 void vfio_config_free(struct vfio_pci_device *vdev)
1602 kfree(vdev->vconfig);
1603 vdev->vconfig = NULL;
1604 kfree(vdev->pci_config_map);
1605 vdev->pci_config_map = NULL;
1606 kfree(vdev->msi_perm);
1607 vdev->msi_perm = NULL;
1611 * Find the remaining number of bytes in a dword that match the given
1612 * position. Stop at either the end of the capability or the dword boundary.
1614 static size_t vfio_pci_cap_remaining_dword(struct vfio_pci_device *vdev,
1615 loff_t pos)
1617 u8 cap = vdev->pci_config_map[pos];
1618 size_t i;
1620 for (i = 1; (pos + i) % 4 && vdev->pci_config_map[pos + i] == cap; i++)
1621 /* nop */;
1623 return i;
1626 static ssize_t vfio_config_do_rw(struct vfio_pci_device *vdev, char __user *buf,
1627 size_t count, loff_t *ppos, bool iswrite)
1629 struct pci_dev *pdev = vdev->pdev;
1630 struct perm_bits *perm;
1631 __le32 val = 0;
1632 int cap_start = 0, offset;
1633 u8 cap_id;
1634 ssize_t ret;
1636 if (*ppos < 0 || *ppos >= pdev->cfg_size ||
1637 *ppos + count > pdev->cfg_size)
1638 return -EFAULT;
1641 * Chop accesses into aligned chunks containing no more than a
1642 * single capability. Caller increments to the next chunk.
1644 count = min(count, vfio_pci_cap_remaining_dword(vdev, *ppos));
1645 if (count >= 4 && !(*ppos % 4))
1646 count = 4;
1647 else if (count >= 2 && !(*ppos % 2))
1648 count = 2;
1649 else
1650 count = 1;
1652 ret = count;
1654 cap_id = vdev->pci_config_map[*ppos];
1656 if (cap_id == PCI_CAP_ID_INVALID) {
1657 perm = &unassigned_perms;
1658 cap_start = *ppos;
1659 } else if (cap_id == PCI_CAP_ID_INVALID_VIRT) {
1660 perm = &virt_perms;
1661 cap_start = *ppos;
1662 } else {
1663 if (*ppos >= PCI_CFG_SPACE_SIZE) {
1664 WARN_ON(cap_id > PCI_EXT_CAP_ID_MAX);
1666 perm = &ecap_perms[cap_id];
1667 cap_start = vfio_find_cap_start(vdev, *ppos);
1668 } else {
1669 WARN_ON(cap_id > PCI_CAP_ID_MAX);
1671 perm = &cap_perms[cap_id];
1673 if (cap_id == PCI_CAP_ID_MSI)
1674 perm = vdev->msi_perm;
1676 if (cap_id > PCI_CAP_ID_BASIC)
1677 cap_start = vfio_find_cap_start(vdev, *ppos);
1681 WARN_ON(!cap_start && cap_id != PCI_CAP_ID_BASIC);
1682 WARN_ON(cap_start > *ppos);
1684 offset = *ppos - cap_start;
1686 if (iswrite) {
1687 if (!perm->writefn)
1688 return ret;
1690 if (copy_from_user(&val, buf, count))
1691 return -EFAULT;
1693 ret = perm->writefn(vdev, *ppos, count, perm, offset, val);
1694 } else {
1695 if (perm->readfn) {
1696 ret = perm->readfn(vdev, *ppos, count,
1697 perm, offset, &val);
1698 if (ret < 0)
1699 return ret;
1702 if (copy_to_user(buf, &val, count))
1703 return -EFAULT;
1706 return ret;
1709 ssize_t vfio_pci_config_rw(struct vfio_pci_device *vdev, char __user *buf,
1710 size_t count, loff_t *ppos, bool iswrite)
1712 size_t done = 0;
1713 int ret = 0;
1714 loff_t pos = *ppos;
1716 pos &= VFIO_PCI_OFFSET_MASK;
1718 while (count) {
1719 ret = vfio_config_do_rw(vdev, buf, count, &pos, iswrite);
1720 if (ret < 0)
1721 return ret;
1723 count -= ret;
1724 done += ret;
1725 buf += ret;
1726 pos += ret;
1729 *ppos += done;
1731 return done;