2 * VFIO PCI config space virtualization
4 * Copyright (C) 2012 Red Hat, Inc. All rights reserved.
5 * Author: Alex Williamson <alex.williamson@redhat.com>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 * Derived from original vfio:
12 * Copyright 2010 Cisco Systems, Inc. All rights reserved.
13 * Author: Tom Lyon, pugs@cisco.com
17 * This code handles reading and writing of PCI configuration registers.
18 * This is hairy because we want to allow a lot of flexibility to the
19 * user driver, but cannot trust it with all of the config fields.
20 * Tables determine which fields can be read and written, as well as
21 * which fields are 'virtualized' - special actions and translations to
22 * make it appear to the user that he has control, when in fact things
23 * must be negotiated with the underlying OS.
27 #include <linux/pci.h>
28 #include <linux/uaccess.h>
29 #include <linux/vfio.h>
30 #include <linux/slab.h>
32 #include "vfio_pci_private.h"
34 #define PCI_CFG_SPACE_SIZE 256
36 /* Fake capability ID for standard config space */
37 #define PCI_CAP_ID_BASIC 0
39 #define is_bar(offset) \
40 ((offset >= PCI_BASE_ADDRESS_0 && offset < PCI_BASE_ADDRESS_5 + 4) || \
41 (offset >= PCI_ROM_ADDRESS && offset < PCI_ROM_ADDRESS + 4))
44 * Lengths of PCI Config Capabilities
45 * 0: Removed from the user visible capability list
48 static const u8 pci_cap_length
[PCI_CAP_ID_MAX
+ 1] = {
49 [PCI_CAP_ID_BASIC
] = PCI_STD_HEADER_SIZEOF
, /* pci config header */
50 [PCI_CAP_ID_PM
] = PCI_PM_SIZEOF
,
51 [PCI_CAP_ID_AGP
] = PCI_AGP_SIZEOF
,
52 [PCI_CAP_ID_VPD
] = PCI_CAP_VPD_SIZEOF
,
53 [PCI_CAP_ID_SLOTID
] = 0, /* bridge - don't care */
54 [PCI_CAP_ID_MSI
] = 0xFF, /* 10, 14, 20, or 24 */
55 [PCI_CAP_ID_CHSWP
] = 0, /* cpci - not yet */
56 [PCI_CAP_ID_PCIX
] = 0xFF, /* 8 or 24 */
57 [PCI_CAP_ID_HT
] = 0xFF, /* hypertransport */
58 [PCI_CAP_ID_VNDR
] = 0xFF, /* variable */
59 [PCI_CAP_ID_DBG
] = 0, /* debug - don't care */
60 [PCI_CAP_ID_CCRC
] = 0, /* cpci - not yet */
61 [PCI_CAP_ID_SHPC
] = 0, /* hotswap - not yet */
62 [PCI_CAP_ID_SSVID
] = 0, /* bridge - don't care */
63 [PCI_CAP_ID_AGP3
] = 0, /* AGP8x - not yet */
64 [PCI_CAP_ID_SECDEV
] = 0, /* secure device not yet */
65 [PCI_CAP_ID_EXP
] = 0xFF, /* 20 or 44 */
66 [PCI_CAP_ID_MSIX
] = PCI_CAP_MSIX_SIZEOF
,
67 [PCI_CAP_ID_SATA
] = 0xFF,
68 [PCI_CAP_ID_AF
] = PCI_CAP_AF_SIZEOF
,
72 * Lengths of PCIe/PCI-X Extended Config Capabilities
73 * 0: Removed or masked from the user visible capabilty list
76 static const u16 pci_ext_cap_length
[PCI_EXT_CAP_ID_MAX
+ 1] = {
77 [PCI_EXT_CAP_ID_ERR
] = PCI_ERR_ROOT_COMMAND
,
78 [PCI_EXT_CAP_ID_VC
] = 0xFF,
79 [PCI_EXT_CAP_ID_DSN
] = PCI_EXT_CAP_DSN_SIZEOF
,
80 [PCI_EXT_CAP_ID_PWR
] = PCI_EXT_CAP_PWR_SIZEOF
,
81 [PCI_EXT_CAP_ID_RCLD
] = 0, /* root only - don't care */
82 [PCI_EXT_CAP_ID_RCILC
] = 0, /* root only - don't care */
83 [PCI_EXT_CAP_ID_RCEC
] = 0, /* root only - don't care */
84 [PCI_EXT_CAP_ID_MFVC
] = 0xFF,
85 [PCI_EXT_CAP_ID_VC9
] = 0xFF, /* same as CAP_ID_VC */
86 [PCI_EXT_CAP_ID_RCRB
] = 0, /* root only - don't care */
87 [PCI_EXT_CAP_ID_VNDR
] = 0xFF,
88 [PCI_EXT_CAP_ID_CAC
] = 0, /* obsolete */
89 [PCI_EXT_CAP_ID_ACS
] = 0xFF,
90 [PCI_EXT_CAP_ID_ARI
] = PCI_EXT_CAP_ARI_SIZEOF
,
91 [PCI_EXT_CAP_ID_ATS
] = PCI_EXT_CAP_ATS_SIZEOF
,
92 [PCI_EXT_CAP_ID_SRIOV
] = PCI_EXT_CAP_SRIOV_SIZEOF
,
93 [PCI_EXT_CAP_ID_MRIOV
] = 0, /* not yet */
94 [PCI_EXT_CAP_ID_MCAST
] = PCI_EXT_CAP_MCAST_ENDPOINT_SIZEOF
,
95 [PCI_EXT_CAP_ID_PRI
] = PCI_EXT_CAP_PRI_SIZEOF
,
96 [PCI_EXT_CAP_ID_AMD_XXX
] = 0, /* not yet */
97 [PCI_EXT_CAP_ID_REBAR
] = 0xFF,
98 [PCI_EXT_CAP_ID_DPA
] = 0xFF,
99 [PCI_EXT_CAP_ID_TPH
] = 0xFF,
100 [PCI_EXT_CAP_ID_LTR
] = PCI_EXT_CAP_LTR_SIZEOF
,
101 [PCI_EXT_CAP_ID_SECPCI
] = 0, /* not yet */
102 [PCI_EXT_CAP_ID_PMUX
] = 0, /* not yet */
103 [PCI_EXT_CAP_ID_PASID
] = 0, /* not yet */
107 * Read/Write Permission Bits - one bit for each bit in capability
108 * Any field can be read if it exists, but what is read depends on
109 * whether the field is 'virtualized', or just pass thru to the
110 * hardware. Any virtualized field is also virtualized for writes.
111 * Writes are only permitted if they have a 1 bit here.
114 u8
*virt
; /* read/write virtual data, not hw */
115 u8
*write
; /* writeable bits */
116 int (*readfn
)(struct vfio_pci_device
*vdev
, int pos
, int count
,
117 struct perm_bits
*perm
, int offset
, __le32
*val
);
118 int (*writefn
)(struct vfio_pci_device
*vdev
, int pos
, int count
,
119 struct perm_bits
*perm
, int offset
, __le32 val
);
123 #define ALL_VIRT 0xFFFFFFFFU
125 #define ALL_WRITE 0xFFFFFFFFU
127 static int vfio_user_config_read(struct pci_dev
*pdev
, int offset
,
128 __le32
*val
, int count
)
137 ret
= pci_user_read_config_byte(pdev
, offset
, &tmp
);
144 ret
= pci_user_read_config_word(pdev
, offset
, &tmp
);
149 ret
= pci_user_read_config_dword(pdev
, offset
, &tmp_val
);
153 *val
= cpu_to_le32(tmp_val
);
155 return pcibios_err_to_errno(ret
);
158 static int vfio_user_config_write(struct pci_dev
*pdev
, int offset
,
159 __le32 val
, int count
)
162 u32 tmp_val
= le32_to_cpu(val
);
166 ret
= pci_user_write_config_byte(pdev
, offset
, tmp_val
);
169 ret
= pci_user_write_config_word(pdev
, offset
, tmp_val
);
172 ret
= pci_user_write_config_dword(pdev
, offset
, tmp_val
);
176 return pcibios_err_to_errno(ret
);
179 static int vfio_default_config_read(struct vfio_pci_device
*vdev
, int pos
,
180 int count
, struct perm_bits
*perm
,
181 int offset
, __le32
*val
)
185 memcpy(val
, vdev
->vconfig
+ pos
, count
);
187 memcpy(&virt
, perm
->virt
+ offset
, count
);
189 /* Any non-virtualized bits? */
190 if (cpu_to_le32(~0U >> (32 - (count
* 8))) != virt
) {
191 struct pci_dev
*pdev
= vdev
->pdev
;
195 ret
= vfio_user_config_read(pdev
, pos
, &phys_val
, count
);
199 *val
= (phys_val
& ~virt
) | (*val
& virt
);
205 static int vfio_default_config_write(struct vfio_pci_device
*vdev
, int pos
,
206 int count
, struct perm_bits
*perm
,
207 int offset
, __le32 val
)
209 __le32 virt
= 0, write
= 0;
211 memcpy(&write
, perm
->write
+ offset
, count
);
214 return count
; /* drop, no writable bits */
216 memcpy(&virt
, perm
->virt
+ offset
, count
);
218 /* Virtualized and writable bits go to vconfig */
222 memcpy(&virt_val
, vdev
->vconfig
+ pos
, count
);
224 virt_val
&= ~(write
& virt
);
225 virt_val
|= (val
& (write
& virt
));
227 memcpy(vdev
->vconfig
+ pos
, &virt_val
, count
);
230 /* Non-virtualzed and writable bits go to hardware */
232 struct pci_dev
*pdev
= vdev
->pdev
;
236 ret
= vfio_user_config_read(pdev
, pos
, &phys_val
, count
);
240 phys_val
&= ~(write
& ~virt
);
241 phys_val
|= (val
& (write
& ~virt
));
243 ret
= vfio_user_config_write(pdev
, pos
, phys_val
, count
);
251 /* Allow direct read from hardware, except for capability next pointer */
252 static int vfio_direct_config_read(struct vfio_pci_device
*vdev
, int pos
,
253 int count
, struct perm_bits
*perm
,
254 int offset
, __le32
*val
)
258 ret
= vfio_user_config_read(vdev
->pdev
, pos
, val
, count
);
260 return pcibios_err_to_errno(ret
);
262 if (pos
>= PCI_CFG_SPACE_SIZE
) { /* Extended cap header mangling */
264 memcpy(val
, vdev
->vconfig
+ pos
, count
);
265 } else if (pos
>= PCI_STD_HEADER_SIZEOF
) { /* Std cap mangling */
266 if (offset
== PCI_CAP_LIST_ID
&& count
> 1)
267 memcpy(val
, vdev
->vconfig
+ pos
,
268 min(PCI_CAP_FLAGS
, count
));
269 else if (offset
== PCI_CAP_LIST_NEXT
)
270 memcpy(val
, vdev
->vconfig
+ pos
, 1);
276 /* Raw access skips any kind of virtualization */
277 static int vfio_raw_config_write(struct vfio_pci_device
*vdev
, int pos
,
278 int count
, struct perm_bits
*perm
,
279 int offset
, __le32 val
)
283 ret
= vfio_user_config_write(vdev
->pdev
, pos
, val
, count
);
290 static int vfio_raw_config_read(struct vfio_pci_device
*vdev
, int pos
,
291 int count
, struct perm_bits
*perm
,
292 int offset
, __le32
*val
)
296 ret
= vfio_user_config_read(vdev
->pdev
, pos
, val
, count
);
298 return pcibios_err_to_errno(ret
);
303 /* Virt access uses only virtualization */
304 static int vfio_virt_config_write(struct vfio_pci_device
*vdev
, int pos
,
305 int count
, struct perm_bits
*perm
,
306 int offset
, __le32 val
)
308 memcpy(vdev
->vconfig
+ pos
, &val
, count
);
312 static int vfio_virt_config_read(struct vfio_pci_device
*vdev
, int pos
,
313 int count
, struct perm_bits
*perm
,
314 int offset
, __le32
*val
)
316 memcpy(val
, vdev
->vconfig
+ pos
, count
);
320 /* Default capability regions to read-only, no-virtualization */
321 static struct perm_bits cap_perms
[PCI_CAP_ID_MAX
+ 1] = {
322 [0 ... PCI_CAP_ID_MAX
] = { .readfn
= vfio_direct_config_read
}
324 static struct perm_bits ecap_perms
[PCI_EXT_CAP_ID_MAX
+ 1] = {
325 [0 ... PCI_EXT_CAP_ID_MAX
] = { .readfn
= vfio_direct_config_read
}
328 * Default unassigned regions to raw read-write access. Some devices
329 * require this to function as they hide registers between the gaps in
330 * config space (be2net). Like MMIO and I/O port registers, we have
331 * to trust the hardware isolation.
333 static struct perm_bits unassigned_perms
= {
334 .readfn
= vfio_raw_config_read
,
335 .writefn
= vfio_raw_config_write
338 static struct perm_bits virt_perms
= {
339 .readfn
= vfio_virt_config_read
,
340 .writefn
= vfio_virt_config_write
343 static void free_perm_bits(struct perm_bits
*perm
)
351 static int alloc_perm_bits(struct perm_bits
*perm
, int size
)
354 * Round up all permission bits to the next dword, this lets us
355 * ignore whether a read/write exceeds the defined capability
356 * structure. We can do this because:
357 * - Standard config space is already dword aligned
358 * - Capabilities are all dword alinged (bits 0:1 of next reserved)
359 * - Express capabilities defined as dword aligned
361 size
= round_up(size
, 4);
365 * - All Readable, None Writeable, None Virtualized
367 perm
->virt
= kzalloc(size
, GFP_KERNEL
);
368 perm
->write
= kzalloc(size
, GFP_KERNEL
);
369 if (!perm
->virt
|| !perm
->write
) {
370 free_perm_bits(perm
);
374 perm
->readfn
= vfio_default_config_read
;
375 perm
->writefn
= vfio_default_config_write
;
381 * Helper functions for filling in permission tables
383 static inline void p_setb(struct perm_bits
*p
, int off
, u8 virt
, u8 write
)
386 p
->write
[off
] = write
;
389 /* Handle endian-ness - pci and tables are little-endian */
390 static inline void p_setw(struct perm_bits
*p
, int off
, u16 virt
, u16 write
)
392 *(__le16
*)(&p
->virt
[off
]) = cpu_to_le16(virt
);
393 *(__le16
*)(&p
->write
[off
]) = cpu_to_le16(write
);
396 /* Handle endian-ness - pci and tables are little-endian */
397 static inline void p_setd(struct perm_bits
*p
, int off
, u32 virt
, u32 write
)
399 *(__le32
*)(&p
->virt
[off
]) = cpu_to_le32(virt
);
400 *(__le32
*)(&p
->write
[off
]) = cpu_to_le32(write
);
404 * Restore the *real* BARs after we detect a FLR or backdoor reset.
405 * (backdoor = some device specific technique that we didn't catch)
407 static void vfio_bar_restore(struct vfio_pci_device
*vdev
)
409 struct pci_dev
*pdev
= vdev
->pdev
;
410 u32
*rbar
= vdev
->rbar
;
417 pr_info("%s: %s reset recovery - restoring bars\n",
418 __func__
, dev_name(&pdev
->dev
));
420 for (i
= PCI_BASE_ADDRESS_0
; i
<= PCI_BASE_ADDRESS_5
; i
+= 4, rbar
++)
421 pci_user_write_config_dword(pdev
, i
, *rbar
);
423 pci_user_write_config_dword(pdev
, PCI_ROM_ADDRESS
, *rbar
);
426 pci_user_read_config_word(pdev
, PCI_COMMAND
, &cmd
);
427 cmd
|= PCI_COMMAND_INTX_DISABLE
;
428 pci_user_write_config_word(pdev
, PCI_COMMAND
, cmd
);
432 static __le32
vfio_generate_bar_flags(struct pci_dev
*pdev
, int bar
)
434 unsigned long flags
= pci_resource_flags(pdev
, bar
);
437 if (flags
& IORESOURCE_IO
)
438 return cpu_to_le32(PCI_BASE_ADDRESS_SPACE_IO
);
440 val
= PCI_BASE_ADDRESS_SPACE_MEMORY
;
442 if (flags
& IORESOURCE_PREFETCH
)
443 val
|= PCI_BASE_ADDRESS_MEM_PREFETCH
;
445 if (flags
& IORESOURCE_MEM_64
)
446 val
|= PCI_BASE_ADDRESS_MEM_TYPE_64
;
448 return cpu_to_le32(val
);
452 * Pretend we're hardware and tweak the values of the *virtual* PCI BARs
453 * to reflect the hardware capabilities. This implements BAR sizing.
455 static void vfio_bar_fixup(struct vfio_pci_device
*vdev
)
457 struct pci_dev
*pdev
= vdev
->pdev
;
462 bar
= (__le32
*)&vdev
->vconfig
[PCI_BASE_ADDRESS_0
];
464 for (i
= PCI_STD_RESOURCES
; i
<= PCI_STD_RESOURCE_END
; i
++, bar
++) {
465 if (!pci_resource_start(pdev
, i
)) {
466 *bar
= 0; /* Unmapped by host = unimplemented to user */
470 mask
= ~(pci_resource_len(pdev
, i
) - 1);
472 *bar
&= cpu_to_le32((u32
)mask
);
473 *bar
|= vfio_generate_bar_flags(pdev
, i
);
475 if (*bar
& cpu_to_le32(PCI_BASE_ADDRESS_MEM_TYPE_64
)) {
477 *bar
&= cpu_to_le32((u32
)(mask
>> 32));
482 bar
= (__le32
*)&vdev
->vconfig
[PCI_ROM_ADDRESS
];
485 * NB. REGION_INFO will have reported zero size if we weren't able
486 * to read the ROM, but we still return the actual BAR size here if
487 * it exists (or the shadow ROM space).
489 if (pci_resource_start(pdev
, PCI_ROM_RESOURCE
)) {
490 mask
= ~(pci_resource_len(pdev
, PCI_ROM_RESOURCE
) - 1);
491 mask
|= PCI_ROM_ADDRESS_ENABLE
;
492 *bar
&= cpu_to_le32((u32
)mask
);
493 } else if (pdev
->resource
[PCI_ROM_RESOURCE
].flags
&
494 IORESOURCE_ROM_SHADOW
) {
495 mask
= ~(0x20000 - 1);
496 mask
|= PCI_ROM_ADDRESS_ENABLE
;
497 *bar
&= cpu_to_le32((u32
)mask
);
501 vdev
->bardirty
= false;
504 static int vfio_basic_config_read(struct vfio_pci_device
*vdev
, int pos
,
505 int count
, struct perm_bits
*perm
,
506 int offset
, __le32
*val
)
508 if (is_bar(offset
)) /* pos == offset for basic config */
509 vfio_bar_fixup(vdev
);
511 count
= vfio_default_config_read(vdev
, pos
, count
, perm
, offset
, val
);
513 /* Mask in virtual memory enable for SR-IOV devices */
514 if (offset
== PCI_COMMAND
&& vdev
->pdev
->is_virtfn
) {
515 u16 cmd
= le16_to_cpu(*(__le16
*)&vdev
->vconfig
[PCI_COMMAND
]);
516 u32 tmp_val
= le32_to_cpu(*val
);
518 tmp_val
|= cmd
& PCI_COMMAND_MEMORY
;
519 *val
= cpu_to_le32(tmp_val
);
525 /* Test whether BARs match the value we think they should contain */
526 static bool vfio_need_bar_restore(struct vfio_pci_device
*vdev
)
528 int i
= 0, pos
= PCI_BASE_ADDRESS_0
, ret
;
531 for (; pos
<= PCI_BASE_ADDRESS_5
; i
++, pos
+= 4) {
533 ret
= pci_user_read_config_dword(vdev
->pdev
, pos
, &bar
);
534 if (ret
|| vdev
->rbar
[i
] != bar
)
542 static int vfio_basic_config_write(struct vfio_pci_device
*vdev
, int pos
,
543 int count
, struct perm_bits
*perm
,
544 int offset
, __le32 val
)
546 struct pci_dev
*pdev
= vdev
->pdev
;
551 virt_cmd
= (__le16
*)&vdev
->vconfig
[PCI_COMMAND
];
553 if (offset
== PCI_COMMAND
) {
554 bool phys_mem
, virt_mem
, new_mem
, phys_io
, virt_io
, new_io
;
557 ret
= pci_user_read_config_word(pdev
, PCI_COMMAND
, &phys_cmd
);
561 new_cmd
= le32_to_cpu(val
);
563 phys_mem
= !!(phys_cmd
& PCI_COMMAND_MEMORY
);
564 virt_mem
= !!(le16_to_cpu(*virt_cmd
) & PCI_COMMAND_MEMORY
);
565 new_mem
= !!(new_cmd
& PCI_COMMAND_MEMORY
);
567 phys_io
= !!(phys_cmd
& PCI_COMMAND_IO
);
568 virt_io
= !!(le16_to_cpu(*virt_cmd
) & PCI_COMMAND_IO
);
569 new_io
= !!(new_cmd
& PCI_COMMAND_IO
);
572 * If the user is writing mem/io enable (new_mem/io) and we
573 * think it's already enabled (virt_mem/io), but the hardware
574 * shows it disabled (phys_mem/io, then the device has
575 * undergone some kind of backdoor reset and needs to be
576 * restored before we allow it to enable the bars.
577 * SR-IOV devices will trigger this, but we catch them later
579 if ((new_mem
&& virt_mem
&& !phys_mem
) ||
580 (new_io
&& virt_io
&& !phys_io
) ||
581 vfio_need_bar_restore(vdev
))
582 vfio_bar_restore(vdev
);
585 count
= vfio_default_config_write(vdev
, pos
, count
, perm
, offset
, val
);
590 * Save current memory/io enable bits in vconfig to allow for
591 * the test above next time.
593 if (offset
== PCI_COMMAND
) {
594 u16 mask
= PCI_COMMAND_MEMORY
| PCI_COMMAND_IO
;
596 *virt_cmd
&= cpu_to_le16(~mask
);
597 *virt_cmd
|= cpu_to_le16(new_cmd
& mask
);
600 /* Emulate INTx disable */
601 if (offset
>= PCI_COMMAND
&& offset
<= PCI_COMMAND
+ 1) {
602 bool virt_intx_disable
;
604 virt_intx_disable
= !!(le16_to_cpu(*virt_cmd
) &
605 PCI_COMMAND_INTX_DISABLE
);
607 if (virt_intx_disable
&& !vdev
->virq_disabled
) {
608 vdev
->virq_disabled
= true;
609 vfio_pci_intx_mask(vdev
);
610 } else if (!virt_intx_disable
&& vdev
->virq_disabled
) {
611 vdev
->virq_disabled
= false;
612 vfio_pci_intx_unmask(vdev
);
617 vdev
->bardirty
= true;
622 /* Permissions for the Basic PCI Header */
623 static int __init
init_pci_cap_basic_perm(struct perm_bits
*perm
)
625 if (alloc_perm_bits(perm
, PCI_STD_HEADER_SIZEOF
))
628 perm
->readfn
= vfio_basic_config_read
;
629 perm
->writefn
= vfio_basic_config_write
;
631 /* Virtualized for SR-IOV functions, which just have FFFF */
632 p_setw(perm
, PCI_VENDOR_ID
, (u16
)ALL_VIRT
, NO_WRITE
);
633 p_setw(perm
, PCI_DEVICE_ID
, (u16
)ALL_VIRT
, NO_WRITE
);
636 * Virtualize INTx disable, we use it internally for interrupt
637 * control and can emulate it for non-PCI 2.3 devices.
639 p_setw(perm
, PCI_COMMAND
, PCI_COMMAND_INTX_DISABLE
, (u16
)ALL_WRITE
);
641 /* Virtualize capability list, we might want to skip/disable */
642 p_setw(perm
, PCI_STATUS
, PCI_STATUS_CAP_LIST
, NO_WRITE
);
644 /* No harm to write */
645 p_setb(perm
, PCI_CACHE_LINE_SIZE
, NO_VIRT
, (u8
)ALL_WRITE
);
646 p_setb(perm
, PCI_LATENCY_TIMER
, NO_VIRT
, (u8
)ALL_WRITE
);
647 p_setb(perm
, PCI_BIST
, NO_VIRT
, (u8
)ALL_WRITE
);
649 /* Virtualize all bars, can't touch the real ones */
650 p_setd(perm
, PCI_BASE_ADDRESS_0
, ALL_VIRT
, ALL_WRITE
);
651 p_setd(perm
, PCI_BASE_ADDRESS_1
, ALL_VIRT
, ALL_WRITE
);
652 p_setd(perm
, PCI_BASE_ADDRESS_2
, ALL_VIRT
, ALL_WRITE
);
653 p_setd(perm
, PCI_BASE_ADDRESS_3
, ALL_VIRT
, ALL_WRITE
);
654 p_setd(perm
, PCI_BASE_ADDRESS_4
, ALL_VIRT
, ALL_WRITE
);
655 p_setd(perm
, PCI_BASE_ADDRESS_5
, ALL_VIRT
, ALL_WRITE
);
656 p_setd(perm
, PCI_ROM_ADDRESS
, ALL_VIRT
, ALL_WRITE
);
658 /* Allow us to adjust capability chain */
659 p_setb(perm
, PCI_CAPABILITY_LIST
, (u8
)ALL_VIRT
, NO_WRITE
);
661 /* Sometimes used by sw, just virtualize */
662 p_setb(perm
, PCI_INTERRUPT_LINE
, (u8
)ALL_VIRT
, (u8
)ALL_WRITE
);
664 /* Virtualize interrupt pin to allow hiding INTx */
665 p_setb(perm
, PCI_INTERRUPT_PIN
, (u8
)ALL_VIRT
, (u8
)NO_WRITE
);
670 static int vfio_pm_config_write(struct vfio_pci_device
*vdev
, int pos
,
671 int count
, struct perm_bits
*perm
,
672 int offset
, __le32 val
)
674 count
= vfio_default_config_write(vdev
, pos
, count
, perm
, offset
, val
);
678 if (offset
== PCI_PM_CTRL
) {
681 switch (le32_to_cpu(val
) & PCI_PM_CTRL_STATE_MASK
) {
696 pci_set_power_state(vdev
->pdev
, state
);
702 /* Permissions for the Power Management capability */
703 static int __init
init_pci_cap_pm_perm(struct perm_bits
*perm
)
705 if (alloc_perm_bits(perm
, pci_cap_length
[PCI_CAP_ID_PM
]))
708 perm
->writefn
= vfio_pm_config_write
;
711 * We always virtualize the next field so we can remove
712 * capabilities from the chain if we want to.
714 p_setb(perm
, PCI_CAP_LIST_NEXT
, (u8
)ALL_VIRT
, NO_WRITE
);
717 * Power management is defined *per function*, so we can let
718 * the user change power state, but we trap and initiate the
719 * change ourselves, so the state bits are read-only.
721 p_setd(perm
, PCI_PM_CTRL
, NO_VIRT
, ~PCI_PM_CTRL_STATE_MASK
);
725 static int vfio_vpd_config_write(struct vfio_pci_device
*vdev
, int pos
,
726 int count
, struct perm_bits
*perm
,
727 int offset
, __le32 val
)
729 struct pci_dev
*pdev
= vdev
->pdev
;
730 __le16
*paddr
= (__le16
*)(vdev
->vconfig
+ pos
- offset
+ PCI_VPD_ADDR
);
731 __le32
*pdata
= (__le32
*)(vdev
->vconfig
+ pos
- offset
+ PCI_VPD_DATA
);
736 * Write through to emulation. If the write includes the upper byte
737 * of PCI_VPD_ADDR, then the PCI_VPD_ADDR_F bit is written and we
740 count
= vfio_default_config_write(vdev
, pos
, count
, perm
, offset
, val
);
741 if (count
< 0 || offset
> PCI_VPD_ADDR
+ 1 ||
742 offset
+ count
<= PCI_VPD_ADDR
+ 1)
745 addr
= le16_to_cpu(*paddr
);
747 if (addr
& PCI_VPD_ADDR_F
) {
748 data
= le32_to_cpu(*pdata
);
749 if (pci_write_vpd(pdev
, addr
& ~PCI_VPD_ADDR_F
, 4, &data
) != 4)
753 if (pci_read_vpd(pdev
, addr
, 4, &data
) < 0)
755 *pdata
= cpu_to_le32(data
);
759 * Toggle PCI_VPD_ADDR_F in the emulated PCI_VPD_ADDR register to
760 * signal completion. If an error occurs above, we assume that not
761 * toggling this bit will induce a driver timeout.
763 addr
^= PCI_VPD_ADDR_F
;
764 *paddr
= cpu_to_le16(addr
);
769 /* Permissions for Vital Product Data capability */
770 static int __init
init_pci_cap_vpd_perm(struct perm_bits
*perm
)
772 if (alloc_perm_bits(perm
, pci_cap_length
[PCI_CAP_ID_VPD
]))
775 perm
->writefn
= vfio_vpd_config_write
;
778 * We always virtualize the next field so we can remove
779 * capabilities from the chain if we want to.
781 p_setb(perm
, PCI_CAP_LIST_NEXT
, (u8
)ALL_VIRT
, NO_WRITE
);
784 * Both the address and data registers are virtualized to
785 * enable access through the pci_vpd_read/write functions
787 p_setw(perm
, PCI_VPD_ADDR
, (u16
)ALL_VIRT
, (u16
)ALL_WRITE
);
788 p_setd(perm
, PCI_VPD_DATA
, ALL_VIRT
, ALL_WRITE
);
793 /* Permissions for PCI-X capability */
794 static int __init
init_pci_cap_pcix_perm(struct perm_bits
*perm
)
796 /* Alloc 24, but only 8 are used in v0 */
797 if (alloc_perm_bits(perm
, PCI_CAP_PCIX_SIZEOF_V2
))
800 p_setb(perm
, PCI_CAP_LIST_NEXT
, (u8
)ALL_VIRT
, NO_WRITE
);
802 p_setw(perm
, PCI_X_CMD
, NO_VIRT
, (u16
)ALL_WRITE
);
803 p_setd(perm
, PCI_X_ECC_CSR
, NO_VIRT
, ALL_WRITE
);
807 /* Permissions for PCI Express capability */
808 static int __init
init_pci_cap_exp_perm(struct perm_bits
*perm
)
810 /* Alloc larger of two possible sizes */
811 if (alloc_perm_bits(perm
, PCI_CAP_EXP_ENDPOINT_SIZEOF_V2
))
814 p_setb(perm
, PCI_CAP_LIST_NEXT
, (u8
)ALL_VIRT
, NO_WRITE
);
817 * Allow writes to device control fields (includes FLR!)
818 * but not to devctl_phantom which could confuse IOMMU
819 * or to the ARI bit in devctl2 which is set at probe time
821 p_setw(perm
, PCI_EXP_DEVCTL
, NO_VIRT
, ~PCI_EXP_DEVCTL_PHANTOM
);
822 p_setw(perm
, PCI_EXP_DEVCTL2
, NO_VIRT
, ~PCI_EXP_DEVCTL2_ARI
);
826 /* Permissions for Advanced Function capability */
827 static int __init
init_pci_cap_af_perm(struct perm_bits
*perm
)
829 if (alloc_perm_bits(perm
, pci_cap_length
[PCI_CAP_ID_AF
]))
832 p_setb(perm
, PCI_CAP_LIST_NEXT
, (u8
)ALL_VIRT
, NO_WRITE
);
833 p_setb(perm
, PCI_AF_CTRL
, NO_VIRT
, PCI_AF_CTRL_FLR
);
837 /* Permissions for Advanced Error Reporting extended capability */
838 static int __init
init_pci_ext_cap_err_perm(struct perm_bits
*perm
)
842 if (alloc_perm_bits(perm
, pci_ext_cap_length
[PCI_EXT_CAP_ID_ERR
]))
846 * Virtualize the first dword of all express capabilities
847 * because it includes the next pointer. This lets us later
848 * remove capabilities from the chain if we need to.
850 p_setd(perm
, 0, ALL_VIRT
, NO_WRITE
);
852 /* Writable bits mask */
853 mask
= PCI_ERR_UNC_UND
| /* Undefined */
854 PCI_ERR_UNC_DLP
| /* Data Link Protocol */
855 PCI_ERR_UNC_SURPDN
| /* Surprise Down */
856 PCI_ERR_UNC_POISON_TLP
| /* Poisoned TLP */
857 PCI_ERR_UNC_FCP
| /* Flow Control Protocol */
858 PCI_ERR_UNC_COMP_TIME
| /* Completion Timeout */
859 PCI_ERR_UNC_COMP_ABORT
| /* Completer Abort */
860 PCI_ERR_UNC_UNX_COMP
| /* Unexpected Completion */
861 PCI_ERR_UNC_RX_OVER
| /* Receiver Overflow */
862 PCI_ERR_UNC_MALF_TLP
| /* Malformed TLP */
863 PCI_ERR_UNC_ECRC
| /* ECRC Error Status */
864 PCI_ERR_UNC_UNSUP
| /* Unsupported Request */
865 PCI_ERR_UNC_ACSV
| /* ACS Violation */
866 PCI_ERR_UNC_INTN
| /* internal error */
867 PCI_ERR_UNC_MCBTLP
| /* MC blocked TLP */
868 PCI_ERR_UNC_ATOMEG
| /* Atomic egress blocked */
869 PCI_ERR_UNC_TLPPRE
; /* TLP prefix blocked */
870 p_setd(perm
, PCI_ERR_UNCOR_STATUS
, NO_VIRT
, mask
);
871 p_setd(perm
, PCI_ERR_UNCOR_MASK
, NO_VIRT
, mask
);
872 p_setd(perm
, PCI_ERR_UNCOR_SEVER
, NO_VIRT
, mask
);
874 mask
= PCI_ERR_COR_RCVR
| /* Receiver Error Status */
875 PCI_ERR_COR_BAD_TLP
| /* Bad TLP Status */
876 PCI_ERR_COR_BAD_DLLP
| /* Bad DLLP Status */
877 PCI_ERR_COR_REP_ROLL
| /* REPLAY_NUM Rollover */
878 PCI_ERR_COR_REP_TIMER
| /* Replay Timer Timeout */
879 PCI_ERR_COR_ADV_NFAT
| /* Advisory Non-Fatal */
880 PCI_ERR_COR_INTERNAL
| /* Corrected Internal */
881 PCI_ERR_COR_LOG_OVER
; /* Header Log Overflow */
882 p_setd(perm
, PCI_ERR_COR_STATUS
, NO_VIRT
, mask
);
883 p_setd(perm
, PCI_ERR_COR_MASK
, NO_VIRT
, mask
);
885 mask
= PCI_ERR_CAP_ECRC_GENE
| /* ECRC Generation Enable */
886 PCI_ERR_CAP_ECRC_CHKE
; /* ECRC Check Enable */
887 p_setd(perm
, PCI_ERR_CAP
, NO_VIRT
, mask
);
891 /* Permissions for Power Budgeting extended capability */
892 static int __init
init_pci_ext_cap_pwr_perm(struct perm_bits
*perm
)
894 if (alloc_perm_bits(perm
, pci_ext_cap_length
[PCI_EXT_CAP_ID_PWR
]))
897 p_setd(perm
, 0, ALL_VIRT
, NO_WRITE
);
899 /* Writing the data selector is OK, the info is still read-only */
900 p_setb(perm
, PCI_PWR_DATA
, NO_VIRT
, (u8
)ALL_WRITE
);
905 * Initialize the shared permission tables
907 void vfio_pci_uninit_perm_bits(void)
909 free_perm_bits(&cap_perms
[PCI_CAP_ID_BASIC
]);
911 free_perm_bits(&cap_perms
[PCI_CAP_ID_PM
]);
912 free_perm_bits(&cap_perms
[PCI_CAP_ID_VPD
]);
913 free_perm_bits(&cap_perms
[PCI_CAP_ID_PCIX
]);
914 free_perm_bits(&cap_perms
[PCI_CAP_ID_EXP
]);
915 free_perm_bits(&cap_perms
[PCI_CAP_ID_AF
]);
917 free_perm_bits(&ecap_perms
[PCI_EXT_CAP_ID_ERR
]);
918 free_perm_bits(&ecap_perms
[PCI_EXT_CAP_ID_PWR
]);
921 int __init
vfio_pci_init_perm_bits(void)
925 /* Basic config space */
926 ret
= init_pci_cap_basic_perm(&cap_perms
[PCI_CAP_ID_BASIC
]);
929 ret
|= init_pci_cap_pm_perm(&cap_perms
[PCI_CAP_ID_PM
]);
930 ret
|= init_pci_cap_vpd_perm(&cap_perms
[PCI_CAP_ID_VPD
]);
931 ret
|= init_pci_cap_pcix_perm(&cap_perms
[PCI_CAP_ID_PCIX
]);
932 cap_perms
[PCI_CAP_ID_VNDR
].writefn
= vfio_raw_config_write
;
933 ret
|= init_pci_cap_exp_perm(&cap_perms
[PCI_CAP_ID_EXP
]);
934 ret
|= init_pci_cap_af_perm(&cap_perms
[PCI_CAP_ID_AF
]);
936 /* Extended capabilities */
937 ret
|= init_pci_ext_cap_err_perm(&ecap_perms
[PCI_EXT_CAP_ID_ERR
]);
938 ret
|= init_pci_ext_cap_pwr_perm(&ecap_perms
[PCI_EXT_CAP_ID_PWR
]);
939 ecap_perms
[PCI_EXT_CAP_ID_VNDR
].writefn
= vfio_raw_config_write
;
942 vfio_pci_uninit_perm_bits();
947 static int vfio_find_cap_start(struct vfio_pci_device
*vdev
, int pos
)
950 int base
= (pos
>= PCI_CFG_SPACE_SIZE
) ? PCI_CFG_SPACE_SIZE
:
951 PCI_STD_HEADER_SIZEOF
;
952 cap
= vdev
->pci_config_map
[pos
];
954 if (cap
== PCI_CAP_ID_BASIC
)
957 /* XXX Can we have to abutting capabilities of the same type? */
958 while (pos
- 1 >= base
&& vdev
->pci_config_map
[pos
- 1] == cap
)
964 static int vfio_msi_config_read(struct vfio_pci_device
*vdev
, int pos
,
965 int count
, struct perm_bits
*perm
,
966 int offset
, __le32
*val
)
968 /* Update max available queue size from msi_qmax */
969 if (offset
<= PCI_MSI_FLAGS
&& offset
+ count
>= PCI_MSI_FLAGS
) {
973 start
= vfio_find_cap_start(vdev
, pos
);
975 flags
= (__le16
*)&vdev
->vconfig
[start
];
977 *flags
&= cpu_to_le16(~PCI_MSI_FLAGS_QMASK
);
978 *flags
|= cpu_to_le16(vdev
->msi_qmax
<< 1);
981 return vfio_default_config_read(vdev
, pos
, count
, perm
, offset
, val
);
984 static int vfio_msi_config_write(struct vfio_pci_device
*vdev
, int pos
,
985 int count
, struct perm_bits
*perm
,
986 int offset
, __le32 val
)
988 count
= vfio_default_config_write(vdev
, pos
, count
, perm
, offset
, val
);
992 /* Fixup and write configured queue size and enable to hardware */
993 if (offset
<= PCI_MSI_FLAGS
&& offset
+ count
>= PCI_MSI_FLAGS
) {
998 start
= vfio_find_cap_start(vdev
, pos
);
1000 pflags
= (__le16
*)&vdev
->vconfig
[start
+ PCI_MSI_FLAGS
];
1002 flags
= le16_to_cpu(*pflags
);
1004 /* MSI is enabled via ioctl */
1006 flags
&= ~PCI_MSI_FLAGS_ENABLE
;
1008 /* Check queue size */
1009 if ((flags
& PCI_MSI_FLAGS_QSIZE
) >> 4 > vdev
->msi_qmax
) {
1010 flags
&= ~PCI_MSI_FLAGS_QSIZE
;
1011 flags
|= vdev
->msi_qmax
<< 4;
1014 /* Write back to virt and to hardware */
1015 *pflags
= cpu_to_le16(flags
);
1016 ret
= pci_user_write_config_word(vdev
->pdev
,
1017 start
+ PCI_MSI_FLAGS
,
1020 return pcibios_err_to_errno(ret
);
1027 * MSI determination is per-device, so this routine gets used beyond
1028 * initialization time. Don't add __init
1030 static int init_pci_cap_msi_perm(struct perm_bits
*perm
, int len
, u16 flags
)
1032 if (alloc_perm_bits(perm
, len
))
1035 perm
->readfn
= vfio_msi_config_read
;
1036 perm
->writefn
= vfio_msi_config_write
;
1038 p_setb(perm
, PCI_CAP_LIST_NEXT
, (u8
)ALL_VIRT
, NO_WRITE
);
1041 * The upper byte of the control register is reserved,
1042 * just setup the lower byte.
1044 p_setb(perm
, PCI_MSI_FLAGS
, (u8
)ALL_VIRT
, (u8
)ALL_WRITE
);
1045 p_setd(perm
, PCI_MSI_ADDRESS_LO
, ALL_VIRT
, ALL_WRITE
);
1046 if (flags
& PCI_MSI_FLAGS_64BIT
) {
1047 p_setd(perm
, PCI_MSI_ADDRESS_HI
, ALL_VIRT
, ALL_WRITE
);
1048 p_setw(perm
, PCI_MSI_DATA_64
, (u16
)ALL_VIRT
, (u16
)ALL_WRITE
);
1049 if (flags
& PCI_MSI_FLAGS_MASKBIT
) {
1050 p_setd(perm
, PCI_MSI_MASK_64
, NO_VIRT
, ALL_WRITE
);
1051 p_setd(perm
, PCI_MSI_PENDING_64
, NO_VIRT
, ALL_WRITE
);
1054 p_setw(perm
, PCI_MSI_DATA_32
, (u16
)ALL_VIRT
, (u16
)ALL_WRITE
);
1055 if (flags
& PCI_MSI_FLAGS_MASKBIT
) {
1056 p_setd(perm
, PCI_MSI_MASK_32
, NO_VIRT
, ALL_WRITE
);
1057 p_setd(perm
, PCI_MSI_PENDING_32
, NO_VIRT
, ALL_WRITE
);
1063 /* Determine MSI CAP field length; initialize msi_perms on 1st call per vdev */
1064 static int vfio_msi_cap_len(struct vfio_pci_device
*vdev
, u8 pos
)
1066 struct pci_dev
*pdev
= vdev
->pdev
;
1070 ret
= pci_read_config_word(pdev
, pos
+ PCI_MSI_FLAGS
, &flags
);
1072 return pcibios_err_to_errno(ret
);
1074 len
= 10; /* Minimum size */
1075 if (flags
& PCI_MSI_FLAGS_64BIT
)
1077 if (flags
& PCI_MSI_FLAGS_MASKBIT
)
1083 vdev
->msi_perm
= kmalloc(sizeof(struct perm_bits
), GFP_KERNEL
);
1084 if (!vdev
->msi_perm
)
1087 ret
= init_pci_cap_msi_perm(vdev
->msi_perm
, len
, flags
);
1094 /* Determine extended capability length for VC (2 & 9) and MFVC */
1095 static int vfio_vc_cap_len(struct vfio_pci_device
*vdev
, u16 pos
)
1097 struct pci_dev
*pdev
= vdev
->pdev
;
1099 int ret
, evcc
, phases
, vc_arb
;
1100 int len
= PCI_CAP_VC_BASE_SIZEOF
;
1102 ret
= pci_read_config_dword(pdev
, pos
+ PCI_VC_PORT_CAP1
, &tmp
);
1104 return pcibios_err_to_errno(ret
);
1106 evcc
= tmp
& PCI_VC_CAP1_EVCC
; /* extended vc count */
1107 ret
= pci_read_config_dword(pdev
, pos
+ PCI_VC_PORT_CAP2
, &tmp
);
1109 return pcibios_err_to_errno(ret
);
1111 if (tmp
& PCI_VC_CAP2_128_PHASE
)
1113 else if (tmp
& PCI_VC_CAP2_64_PHASE
)
1115 else if (tmp
& PCI_VC_CAP2_32_PHASE
)
1120 vc_arb
= phases
* 4;
1123 * Port arbitration tables are root & switch only;
1124 * function arbitration tables are function 0 only.
1125 * In either case, we'll never let user write them so
1126 * we don't care how big they are
1128 len
+= (1 + evcc
) * PCI_CAP_VC_PER_VC_SIZEOF
;
1130 len
= round_up(len
, 16);
1136 static int vfio_cap_len(struct vfio_pci_device
*vdev
, u8 cap
, u8 pos
)
1138 struct pci_dev
*pdev
= vdev
->pdev
;
1145 case PCI_CAP_ID_MSI
:
1146 return vfio_msi_cap_len(vdev
, pos
);
1147 case PCI_CAP_ID_PCIX
:
1148 ret
= pci_read_config_word(pdev
, pos
+ PCI_X_CMD
, &word
);
1150 return pcibios_err_to_errno(ret
);
1152 if (PCI_X_CMD_VERSION(word
)) {
1153 if (pdev
->cfg_size
> PCI_CFG_SPACE_SIZE
) {
1154 /* Test for extended capabilities */
1155 pci_read_config_dword(pdev
, PCI_CFG_SPACE_SIZE
,
1157 vdev
->extended_caps
= (dword
!= 0);
1159 return PCI_CAP_PCIX_SIZEOF_V2
;
1161 return PCI_CAP_PCIX_SIZEOF_V0
;
1162 case PCI_CAP_ID_VNDR
:
1163 /* length follows next field */
1164 ret
= pci_read_config_byte(pdev
, pos
+ PCI_CAP_FLAGS
, &byte
);
1166 return pcibios_err_to_errno(ret
);
1169 case PCI_CAP_ID_EXP
:
1170 if (pdev
->cfg_size
> PCI_CFG_SPACE_SIZE
) {
1171 /* Test for extended capabilities */
1172 pci_read_config_dword(pdev
, PCI_CFG_SPACE_SIZE
, &dword
);
1173 vdev
->extended_caps
= (dword
!= 0);
1176 /* length based on version */
1177 if ((pcie_caps_reg(pdev
) & PCI_EXP_FLAGS_VERS
) == 1)
1178 return PCI_CAP_EXP_ENDPOINT_SIZEOF_V1
;
1180 return PCI_CAP_EXP_ENDPOINT_SIZEOF_V2
;
1182 ret
= pci_read_config_byte(pdev
, pos
+ 3, &byte
);
1184 return pcibios_err_to_errno(ret
);
1186 return (byte
& HT_3BIT_CAP_MASK
) ?
1187 HT_CAP_SIZEOF_SHORT
: HT_CAP_SIZEOF_LONG
;
1188 case PCI_CAP_ID_SATA
:
1189 ret
= pci_read_config_byte(pdev
, pos
+ PCI_SATA_REGS
, &byte
);
1191 return pcibios_err_to_errno(ret
);
1193 byte
&= PCI_SATA_REGS_MASK
;
1194 if (byte
== PCI_SATA_REGS_INLINE
)
1195 return PCI_SATA_SIZEOF_LONG
;
1197 return PCI_SATA_SIZEOF_SHORT
;
1199 pr_warn("%s: %s unknown length for pci cap 0x%x@0x%x\n",
1200 dev_name(&pdev
->dev
), __func__
, cap
, pos
);
1206 static int vfio_ext_cap_len(struct vfio_pci_device
*vdev
, u16 ecap
, u16 epos
)
1208 struct pci_dev
*pdev
= vdev
->pdev
;
1214 case PCI_EXT_CAP_ID_VNDR
:
1215 ret
= pci_read_config_dword(pdev
, epos
+ PCI_VSEC_HDR
, &dword
);
1217 return pcibios_err_to_errno(ret
);
1219 return dword
>> PCI_VSEC_HDR_LEN_SHIFT
;
1220 case PCI_EXT_CAP_ID_VC
:
1221 case PCI_EXT_CAP_ID_VC9
:
1222 case PCI_EXT_CAP_ID_MFVC
:
1223 return vfio_vc_cap_len(vdev
, epos
);
1224 case PCI_EXT_CAP_ID_ACS
:
1225 ret
= pci_read_config_byte(pdev
, epos
+ PCI_ACS_CAP
, &byte
);
1227 return pcibios_err_to_errno(ret
);
1229 if (byte
& PCI_ACS_EC
) {
1232 ret
= pci_read_config_byte(pdev
,
1233 epos
+ PCI_ACS_EGRESS_BITS
,
1236 return pcibios_err_to_errno(ret
);
1238 bits
= byte
? round_up(byte
, 32) : 256;
1239 return 8 + (bits
/ 8);
1243 case PCI_EXT_CAP_ID_REBAR
:
1244 ret
= pci_read_config_byte(pdev
, epos
+ PCI_REBAR_CTRL
, &byte
);
1246 return pcibios_err_to_errno(ret
);
1248 byte
&= PCI_REBAR_CTRL_NBAR_MASK
;
1249 byte
>>= PCI_REBAR_CTRL_NBAR_SHIFT
;
1251 return 4 + (byte
* 8);
1252 case PCI_EXT_CAP_ID_DPA
:
1253 ret
= pci_read_config_byte(pdev
, epos
+ PCI_DPA_CAP
, &byte
);
1255 return pcibios_err_to_errno(ret
);
1257 byte
&= PCI_DPA_CAP_SUBSTATE_MASK
;
1258 return PCI_DPA_BASE_SIZEOF
+ byte
+ 1;
1259 case PCI_EXT_CAP_ID_TPH
:
1260 ret
= pci_read_config_dword(pdev
, epos
+ PCI_TPH_CAP
, &dword
);
1262 return pcibios_err_to_errno(ret
);
1264 if ((dword
& PCI_TPH_CAP_LOC_MASK
) == PCI_TPH_LOC_CAP
) {
1267 sts
= dword
& PCI_TPH_CAP_ST_MASK
;
1268 sts
>>= PCI_TPH_CAP_ST_SHIFT
;
1269 return PCI_TPH_BASE_SIZEOF
+ (sts
* 2) + 2;
1271 return PCI_TPH_BASE_SIZEOF
;
1273 pr_warn("%s: %s unknown length for pci ecap 0x%x@0x%x\n",
1274 dev_name(&pdev
->dev
), __func__
, ecap
, epos
);
1280 static int vfio_fill_vconfig_bytes(struct vfio_pci_device
*vdev
,
1281 int offset
, int size
)
1283 struct pci_dev
*pdev
= vdev
->pdev
;
1287 * We try to read physical config space in the largest chunks
1288 * we can, assuming that all of the fields support dword access.
1289 * pci_save_state() makes this same assumption and seems to do ok.
1294 if (size
>= 4 && !(offset
% 4)) {
1295 __le32
*dwordp
= (__le32
*)&vdev
->vconfig
[offset
];
1298 ret
= pci_read_config_dword(pdev
, offset
, &dword
);
1301 *dwordp
= cpu_to_le32(dword
);
1303 } else if (size
>= 2 && !(offset
% 2)) {
1304 __le16
*wordp
= (__le16
*)&vdev
->vconfig
[offset
];
1307 ret
= pci_read_config_word(pdev
, offset
, &word
);
1310 *wordp
= cpu_to_le16(word
);
1313 u8
*byte
= &vdev
->vconfig
[offset
];
1314 ret
= pci_read_config_byte(pdev
, offset
, byte
);
1327 static int vfio_cap_init(struct vfio_pci_device
*vdev
)
1329 struct pci_dev
*pdev
= vdev
->pdev
;
1330 u8
*map
= vdev
->pci_config_map
;
1333 int loops
, ret
, caps
= 0;
1335 /* Any capabilities? */
1336 ret
= pci_read_config_word(pdev
, PCI_STATUS
, &status
);
1340 if (!(status
& PCI_STATUS_CAP_LIST
))
1341 return 0; /* Done */
1343 ret
= pci_read_config_byte(pdev
, PCI_CAPABILITY_LIST
, &pos
);
1347 /* Mark the previous position in case we want to skip a capability */
1348 prev
= &vdev
->vconfig
[PCI_CAPABILITY_LIST
];
1350 /* We can bound our loop, capabilities are dword aligned */
1351 loops
= (PCI_CFG_SPACE_SIZE
- PCI_STD_HEADER_SIZEOF
) / PCI_CAP_SIZEOF
;
1352 while (pos
&& loops
--) {
1356 ret
= pci_read_config_byte(pdev
, pos
, &cap
);
1360 ret
= pci_read_config_byte(pdev
,
1361 pos
+ PCI_CAP_LIST_NEXT
, &next
);
1365 if (cap
<= PCI_CAP_ID_MAX
) {
1366 len
= pci_cap_length
[cap
];
1367 if (len
== 0xFF) { /* Variable length */
1368 len
= vfio_cap_len(vdev
, cap
, pos
);
1375 pr_info("%s: %s hiding cap 0x%x\n",
1376 __func__
, dev_name(&pdev
->dev
), cap
);
1382 /* Sanity check, do we overlap other capabilities? */
1383 for (i
= 0; i
< len
; i
++) {
1384 if (likely(map
[pos
+ i
] == PCI_CAP_ID_INVALID
))
1387 pr_warn("%s: %s pci config conflict @0x%x, was cap 0x%x now cap 0x%x\n",
1388 __func__
, dev_name(&pdev
->dev
),
1389 pos
+ i
, map
[pos
+ i
], cap
);
1392 BUILD_BUG_ON(PCI_CAP_ID_MAX
>= PCI_CAP_ID_INVALID_VIRT
);
1394 memset(map
+ pos
, cap
, len
);
1395 ret
= vfio_fill_vconfig_bytes(vdev
, pos
, len
);
1399 prev
= &vdev
->vconfig
[pos
+ PCI_CAP_LIST_NEXT
];
1404 /* If we didn't fill any capabilities, clear the status flag */
1406 __le16
*vstatus
= (__le16
*)&vdev
->vconfig
[PCI_STATUS
];
1407 *vstatus
&= ~cpu_to_le16(PCI_STATUS_CAP_LIST
);
1413 static int vfio_ecap_init(struct vfio_pci_device
*vdev
)
1415 struct pci_dev
*pdev
= vdev
->pdev
;
1416 u8
*map
= vdev
->pci_config_map
;
1418 __le32
*prev
= NULL
;
1419 int loops
, ret
, ecaps
= 0;
1421 if (!vdev
->extended_caps
)
1424 epos
= PCI_CFG_SPACE_SIZE
;
1426 loops
= (pdev
->cfg_size
- PCI_CFG_SPACE_SIZE
) / PCI_CAP_SIZEOF
;
1428 while (loops
-- && epos
>= PCI_CFG_SPACE_SIZE
) {
1432 bool hidden
= false;
1434 ret
= pci_read_config_dword(pdev
, epos
, &header
);
1438 ecap
= PCI_EXT_CAP_ID(header
);
1440 if (ecap
<= PCI_EXT_CAP_ID_MAX
) {
1441 len
= pci_ext_cap_length
[ecap
];
1443 len
= vfio_ext_cap_len(vdev
, ecap
, epos
);
1450 pr_info("%s: %s hiding ecap 0x%x@0x%x\n",
1451 __func__
, dev_name(&pdev
->dev
), ecap
, epos
);
1453 /* If not the first in the chain, we can skip over it */
1455 u32 val
= epos
= PCI_EXT_CAP_NEXT(header
);
1456 *prev
&= cpu_to_le32(~(0xffcU
<< 20));
1457 *prev
|= cpu_to_le32(val
<< 20);
1462 * Otherwise, fill in a placeholder, the direct
1463 * readfn will virtualize this automatically
1465 len
= PCI_CAP_SIZEOF
;
1469 for (i
= 0; i
< len
; i
++) {
1470 if (likely(map
[epos
+ i
] == PCI_CAP_ID_INVALID
))
1473 pr_warn("%s: %s pci config conflict @0x%x, was ecap 0x%x now ecap 0x%x\n",
1474 __func__
, dev_name(&pdev
->dev
),
1475 epos
+ i
, map
[epos
+ i
], ecap
);
1479 * Even though ecap is 2 bytes, we're currently a long way
1480 * from exceeding 1 byte capabilities. If we ever make it
1481 * up to 0xFE we'll need to up this to a two-byte, byte map.
1483 BUILD_BUG_ON(PCI_EXT_CAP_ID_MAX
>= PCI_CAP_ID_INVALID_VIRT
);
1485 memset(map
+ epos
, ecap
, len
);
1486 ret
= vfio_fill_vconfig_bytes(vdev
, epos
, len
);
1491 * If we're just using this capability to anchor the list,
1492 * hide the real ID. Only count real ecaps. XXX PCI spec
1493 * indicates to use cap id = 0, version = 0, next = 0 if
1494 * ecaps are absent, hope users check all the way to next.
1497 *(__le32
*)&vdev
->vconfig
[epos
] &=
1498 cpu_to_le32((0xffcU
<< 20));
1502 prev
= (__le32
*)&vdev
->vconfig
[epos
];
1503 epos
= PCI_EXT_CAP_NEXT(header
);
1507 *(u32
*)&vdev
->vconfig
[PCI_CFG_SPACE_SIZE
] = 0;
1513 * For each device we allocate a pci_config_map that indicates the
1514 * capability occupying each dword and thus the struct perm_bits we
1515 * use for read and write. We also allocate a virtualized config
1516 * space which tracks reads and writes to bits that we emulate for
1517 * the user. Initial values filled from device.
1519 * Using shared stuct perm_bits between all vfio-pci devices saves
1520 * us from allocating cfg_size buffers for virt and write for every
1521 * device. We could remove vconfig and allocate individual buffers
1522 * for each area requring emulated bits, but the array of pointers
1523 * would be comparable in size (at least for standard config space).
1525 int vfio_config_init(struct vfio_pci_device
*vdev
)
1527 struct pci_dev
*pdev
= vdev
->pdev
;
1532 * Config space, caps and ecaps are all dword aligned, so we could
1533 * use one byte per dword to record the type. However, there are
1534 * no requiremenst on the length of a capability, so the gap between
1535 * capabilities needs byte granularity.
1537 map
= kmalloc(pdev
->cfg_size
, GFP_KERNEL
);
1541 vconfig
= kmalloc(pdev
->cfg_size
, GFP_KERNEL
);
1547 vdev
->pci_config_map
= map
;
1548 vdev
->vconfig
= vconfig
;
1550 memset(map
, PCI_CAP_ID_BASIC
, PCI_STD_HEADER_SIZEOF
);
1551 memset(map
+ PCI_STD_HEADER_SIZEOF
, PCI_CAP_ID_INVALID
,
1552 pdev
->cfg_size
- PCI_STD_HEADER_SIZEOF
);
1554 ret
= vfio_fill_vconfig_bytes(vdev
, 0, PCI_STD_HEADER_SIZEOF
);
1558 vdev
->bardirty
= true;
1561 * XXX can we just pci_load_saved_state/pci_restore_state?
1562 * may need to rebuild vconfig after that
1565 /* For restore after reset */
1566 vdev
->rbar
[0] = le32_to_cpu(*(__le32
*)&vconfig
[PCI_BASE_ADDRESS_0
]);
1567 vdev
->rbar
[1] = le32_to_cpu(*(__le32
*)&vconfig
[PCI_BASE_ADDRESS_1
]);
1568 vdev
->rbar
[2] = le32_to_cpu(*(__le32
*)&vconfig
[PCI_BASE_ADDRESS_2
]);
1569 vdev
->rbar
[3] = le32_to_cpu(*(__le32
*)&vconfig
[PCI_BASE_ADDRESS_3
]);
1570 vdev
->rbar
[4] = le32_to_cpu(*(__le32
*)&vconfig
[PCI_BASE_ADDRESS_4
]);
1571 vdev
->rbar
[5] = le32_to_cpu(*(__le32
*)&vconfig
[PCI_BASE_ADDRESS_5
]);
1572 vdev
->rbar
[6] = le32_to_cpu(*(__le32
*)&vconfig
[PCI_ROM_ADDRESS
]);
1574 if (pdev
->is_virtfn
) {
1575 *(__le16
*)&vconfig
[PCI_VENDOR_ID
] = cpu_to_le16(pdev
->vendor
);
1576 *(__le16
*)&vconfig
[PCI_DEVICE_ID
] = cpu_to_le16(pdev
->device
);
1579 if (!IS_ENABLED(CONFIG_VFIO_PCI_INTX
) || vdev
->nointx
)
1580 vconfig
[PCI_INTERRUPT_PIN
] = 0;
1582 ret
= vfio_cap_init(vdev
);
1586 ret
= vfio_ecap_init(vdev
);
1594 vdev
->pci_config_map
= NULL
;
1596 vdev
->vconfig
= NULL
;
1597 return pcibios_err_to_errno(ret
);
1600 void vfio_config_free(struct vfio_pci_device
*vdev
)
1602 kfree(vdev
->vconfig
);
1603 vdev
->vconfig
= NULL
;
1604 kfree(vdev
->pci_config_map
);
1605 vdev
->pci_config_map
= NULL
;
1606 kfree(vdev
->msi_perm
);
1607 vdev
->msi_perm
= NULL
;
1611 * Find the remaining number of bytes in a dword that match the given
1612 * position. Stop at either the end of the capability or the dword boundary.
1614 static size_t vfio_pci_cap_remaining_dword(struct vfio_pci_device
*vdev
,
1617 u8 cap
= vdev
->pci_config_map
[pos
];
1620 for (i
= 1; (pos
+ i
) % 4 && vdev
->pci_config_map
[pos
+ i
] == cap
; i
++)
1626 static ssize_t
vfio_config_do_rw(struct vfio_pci_device
*vdev
, char __user
*buf
,
1627 size_t count
, loff_t
*ppos
, bool iswrite
)
1629 struct pci_dev
*pdev
= vdev
->pdev
;
1630 struct perm_bits
*perm
;
1632 int cap_start
= 0, offset
;
1636 if (*ppos
< 0 || *ppos
>= pdev
->cfg_size
||
1637 *ppos
+ count
> pdev
->cfg_size
)
1641 * Chop accesses into aligned chunks containing no more than a
1642 * single capability. Caller increments to the next chunk.
1644 count
= min(count
, vfio_pci_cap_remaining_dword(vdev
, *ppos
));
1645 if (count
>= 4 && !(*ppos
% 4))
1647 else if (count
>= 2 && !(*ppos
% 2))
1654 cap_id
= vdev
->pci_config_map
[*ppos
];
1656 if (cap_id
== PCI_CAP_ID_INVALID
) {
1657 perm
= &unassigned_perms
;
1659 } else if (cap_id
== PCI_CAP_ID_INVALID_VIRT
) {
1663 if (*ppos
>= PCI_CFG_SPACE_SIZE
) {
1664 WARN_ON(cap_id
> PCI_EXT_CAP_ID_MAX
);
1666 perm
= &ecap_perms
[cap_id
];
1667 cap_start
= vfio_find_cap_start(vdev
, *ppos
);
1669 WARN_ON(cap_id
> PCI_CAP_ID_MAX
);
1671 perm
= &cap_perms
[cap_id
];
1673 if (cap_id
== PCI_CAP_ID_MSI
)
1674 perm
= vdev
->msi_perm
;
1676 if (cap_id
> PCI_CAP_ID_BASIC
)
1677 cap_start
= vfio_find_cap_start(vdev
, *ppos
);
1681 WARN_ON(!cap_start
&& cap_id
!= PCI_CAP_ID_BASIC
);
1682 WARN_ON(cap_start
> *ppos
);
1684 offset
= *ppos
- cap_start
;
1690 if (copy_from_user(&val
, buf
, count
))
1693 ret
= perm
->writefn(vdev
, *ppos
, count
, perm
, offset
, val
);
1696 ret
= perm
->readfn(vdev
, *ppos
, count
,
1697 perm
, offset
, &val
);
1702 if (copy_to_user(buf
, &val
, count
))
1709 ssize_t
vfio_pci_config_rw(struct vfio_pci_device
*vdev
, char __user
*buf
,
1710 size_t count
, loff_t
*ppos
, bool iswrite
)
1716 pos
&= VFIO_PCI_OFFSET_MASK
;
1719 ret
= vfio_config_do_rw(vdev
, buf
, count
, &pos
, iswrite
);