2 * Copyright (C) 2007,2008 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/rbtree.h>
22 #include <linux/vmalloc.h>
25 #include "transaction.h"
26 #include "print-tree.h"
29 static int split_node(struct btrfs_trans_handle
*trans
, struct btrfs_root
30 *root
, struct btrfs_path
*path
, int level
);
31 static int split_leaf(struct btrfs_trans_handle
*trans
, struct btrfs_root
32 *root
, struct btrfs_key
*ins_key
,
33 struct btrfs_path
*path
, int data_size
, int extend
);
34 static int push_node_left(struct btrfs_trans_handle
*trans
,
35 struct btrfs_root
*root
, struct extent_buffer
*dst
,
36 struct extent_buffer
*src
, int empty
);
37 static int balance_node_right(struct btrfs_trans_handle
*trans
,
38 struct btrfs_root
*root
,
39 struct extent_buffer
*dst_buf
,
40 struct extent_buffer
*src_buf
);
41 static void del_ptr(struct btrfs_root
*root
, struct btrfs_path
*path
,
43 static int tree_mod_log_free_eb(struct btrfs_fs_info
*fs_info
,
44 struct extent_buffer
*eb
);
46 struct btrfs_path
*btrfs_alloc_path(void)
48 struct btrfs_path
*path
;
49 path
= kmem_cache_zalloc(btrfs_path_cachep
, GFP_NOFS
);
54 * set all locked nodes in the path to blocking locks. This should
55 * be done before scheduling
57 noinline
void btrfs_set_path_blocking(struct btrfs_path
*p
)
60 for (i
= 0; i
< BTRFS_MAX_LEVEL
; i
++) {
61 if (!p
->nodes
[i
] || !p
->locks
[i
])
63 btrfs_set_lock_blocking_rw(p
->nodes
[i
], p
->locks
[i
]);
64 if (p
->locks
[i
] == BTRFS_READ_LOCK
)
65 p
->locks
[i
] = BTRFS_READ_LOCK_BLOCKING
;
66 else if (p
->locks
[i
] == BTRFS_WRITE_LOCK
)
67 p
->locks
[i
] = BTRFS_WRITE_LOCK_BLOCKING
;
72 * reset all the locked nodes in the patch to spinning locks.
74 * held is used to keep lockdep happy, when lockdep is enabled
75 * we set held to a blocking lock before we go around and
76 * retake all the spinlocks in the path. You can safely use NULL
79 noinline
void btrfs_clear_path_blocking(struct btrfs_path
*p
,
80 struct extent_buffer
*held
, int held_rw
)
85 btrfs_set_lock_blocking_rw(held
, held_rw
);
86 if (held_rw
== BTRFS_WRITE_LOCK
)
87 held_rw
= BTRFS_WRITE_LOCK_BLOCKING
;
88 else if (held_rw
== BTRFS_READ_LOCK
)
89 held_rw
= BTRFS_READ_LOCK_BLOCKING
;
91 btrfs_set_path_blocking(p
);
93 for (i
= BTRFS_MAX_LEVEL
- 1; i
>= 0; i
--) {
94 if (p
->nodes
[i
] && p
->locks
[i
]) {
95 btrfs_clear_lock_blocking_rw(p
->nodes
[i
], p
->locks
[i
]);
96 if (p
->locks
[i
] == BTRFS_WRITE_LOCK_BLOCKING
)
97 p
->locks
[i
] = BTRFS_WRITE_LOCK
;
98 else if (p
->locks
[i
] == BTRFS_READ_LOCK_BLOCKING
)
99 p
->locks
[i
] = BTRFS_READ_LOCK
;
104 btrfs_clear_lock_blocking_rw(held
, held_rw
);
107 /* this also releases the path */
108 void btrfs_free_path(struct btrfs_path
*p
)
112 btrfs_release_path(p
);
113 kmem_cache_free(btrfs_path_cachep
, p
);
117 * path release drops references on the extent buffers in the path
118 * and it drops any locks held by this path
120 * It is safe to call this on paths that no locks or extent buffers held.
122 noinline
void btrfs_release_path(struct btrfs_path
*p
)
126 for (i
= 0; i
< BTRFS_MAX_LEVEL
; i
++) {
131 btrfs_tree_unlock_rw(p
->nodes
[i
], p
->locks
[i
]);
134 free_extent_buffer(p
->nodes
[i
]);
140 * safely gets a reference on the root node of a tree. A lock
141 * is not taken, so a concurrent writer may put a different node
142 * at the root of the tree. See btrfs_lock_root_node for the
145 * The extent buffer returned by this has a reference taken, so
146 * it won't disappear. It may stop being the root of the tree
147 * at any time because there are no locks held.
149 struct extent_buffer
*btrfs_root_node(struct btrfs_root
*root
)
151 struct extent_buffer
*eb
;
155 eb
= rcu_dereference(root
->node
);
158 * RCU really hurts here, we could free up the root node because
159 * it was COWed but we may not get the new root node yet so do
160 * the inc_not_zero dance and if it doesn't work then
161 * synchronize_rcu and try again.
163 if (atomic_inc_not_zero(&eb
->refs
)) {
173 /* loop around taking references on and locking the root node of the
174 * tree until you end up with a lock on the root. A locked buffer
175 * is returned, with a reference held.
177 struct extent_buffer
*btrfs_lock_root_node(struct btrfs_root
*root
)
179 struct extent_buffer
*eb
;
182 eb
= btrfs_root_node(root
);
184 if (eb
== root
->node
)
186 btrfs_tree_unlock(eb
);
187 free_extent_buffer(eb
);
192 /* loop around taking references on and locking the root node of the
193 * tree until you end up with a lock on the root. A locked buffer
194 * is returned, with a reference held.
196 static struct extent_buffer
*btrfs_read_lock_root_node(struct btrfs_root
*root
)
198 struct extent_buffer
*eb
;
201 eb
= btrfs_root_node(root
);
202 btrfs_tree_read_lock(eb
);
203 if (eb
== root
->node
)
205 btrfs_tree_read_unlock(eb
);
206 free_extent_buffer(eb
);
211 /* cowonly root (everything not a reference counted cow subvolume), just get
212 * put onto a simple dirty list. transaction.c walks this to make sure they
213 * get properly updated on disk.
215 static void add_root_to_dirty_list(struct btrfs_root
*root
)
217 if (test_bit(BTRFS_ROOT_DIRTY
, &root
->state
) ||
218 !test_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
))
221 spin_lock(&root
->fs_info
->trans_lock
);
222 if (!test_and_set_bit(BTRFS_ROOT_DIRTY
, &root
->state
)) {
223 /* Want the extent tree to be the last on the list */
224 if (root
->objectid
== BTRFS_EXTENT_TREE_OBJECTID
)
225 list_move_tail(&root
->dirty_list
,
226 &root
->fs_info
->dirty_cowonly_roots
);
228 list_move(&root
->dirty_list
,
229 &root
->fs_info
->dirty_cowonly_roots
);
231 spin_unlock(&root
->fs_info
->trans_lock
);
235 * used by snapshot creation to make a copy of a root for a tree with
236 * a given objectid. The buffer with the new root node is returned in
237 * cow_ret, and this func returns zero on success or a negative error code.
239 int btrfs_copy_root(struct btrfs_trans_handle
*trans
,
240 struct btrfs_root
*root
,
241 struct extent_buffer
*buf
,
242 struct extent_buffer
**cow_ret
, u64 new_root_objectid
)
244 struct extent_buffer
*cow
;
247 struct btrfs_disk_key disk_key
;
249 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) &&
250 trans
->transid
!= root
->fs_info
->running_transaction
->transid
);
251 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) &&
252 trans
->transid
!= root
->last_trans
);
254 level
= btrfs_header_level(buf
);
256 btrfs_item_key(buf
, &disk_key
, 0);
258 btrfs_node_key(buf
, &disk_key
, 0);
260 cow
= btrfs_alloc_tree_block(trans
, root
, 0, new_root_objectid
,
261 &disk_key
, level
, buf
->start
, 0);
265 copy_extent_buffer(cow
, buf
, 0, 0, cow
->len
);
266 btrfs_set_header_bytenr(cow
, cow
->start
);
267 btrfs_set_header_generation(cow
, trans
->transid
);
268 btrfs_set_header_backref_rev(cow
, BTRFS_MIXED_BACKREF_REV
);
269 btrfs_clear_header_flag(cow
, BTRFS_HEADER_FLAG_WRITTEN
|
270 BTRFS_HEADER_FLAG_RELOC
);
271 if (new_root_objectid
== BTRFS_TREE_RELOC_OBJECTID
)
272 btrfs_set_header_flag(cow
, BTRFS_HEADER_FLAG_RELOC
);
274 btrfs_set_header_owner(cow
, new_root_objectid
);
276 write_extent_buffer(cow
, root
->fs_info
->fsid
, btrfs_header_fsid(),
279 WARN_ON(btrfs_header_generation(buf
) > trans
->transid
);
280 if (new_root_objectid
== BTRFS_TREE_RELOC_OBJECTID
)
281 ret
= btrfs_inc_ref(trans
, root
, cow
, 1);
283 ret
= btrfs_inc_ref(trans
, root
, cow
, 0);
288 btrfs_mark_buffer_dirty(cow
);
297 MOD_LOG_KEY_REMOVE_WHILE_FREEING
,
298 MOD_LOG_KEY_REMOVE_WHILE_MOVING
,
300 MOD_LOG_ROOT_REPLACE
,
303 struct tree_mod_move
{
308 struct tree_mod_root
{
313 struct tree_mod_elem
{
319 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
322 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
325 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
326 struct btrfs_disk_key key
;
329 /* this is used for op == MOD_LOG_MOVE_KEYS */
330 struct tree_mod_move move
;
332 /* this is used for op == MOD_LOG_ROOT_REPLACE */
333 struct tree_mod_root old_root
;
336 static inline void tree_mod_log_read_lock(struct btrfs_fs_info
*fs_info
)
338 read_lock(&fs_info
->tree_mod_log_lock
);
341 static inline void tree_mod_log_read_unlock(struct btrfs_fs_info
*fs_info
)
343 read_unlock(&fs_info
->tree_mod_log_lock
);
346 static inline void tree_mod_log_write_lock(struct btrfs_fs_info
*fs_info
)
348 write_lock(&fs_info
->tree_mod_log_lock
);
351 static inline void tree_mod_log_write_unlock(struct btrfs_fs_info
*fs_info
)
353 write_unlock(&fs_info
->tree_mod_log_lock
);
357 * Pull a new tree mod seq number for our operation.
359 static inline u64
btrfs_inc_tree_mod_seq(struct btrfs_fs_info
*fs_info
)
361 return atomic64_inc_return(&fs_info
->tree_mod_seq
);
365 * This adds a new blocker to the tree mod log's blocker list if the @elem
366 * passed does not already have a sequence number set. So when a caller expects
367 * to record tree modifications, it should ensure to set elem->seq to zero
368 * before calling btrfs_get_tree_mod_seq.
369 * Returns a fresh, unused tree log modification sequence number, even if no new
372 u64
btrfs_get_tree_mod_seq(struct btrfs_fs_info
*fs_info
,
373 struct seq_list
*elem
)
375 tree_mod_log_write_lock(fs_info
);
376 spin_lock(&fs_info
->tree_mod_seq_lock
);
378 elem
->seq
= btrfs_inc_tree_mod_seq(fs_info
);
379 list_add_tail(&elem
->list
, &fs_info
->tree_mod_seq_list
);
381 spin_unlock(&fs_info
->tree_mod_seq_lock
);
382 tree_mod_log_write_unlock(fs_info
);
387 void btrfs_put_tree_mod_seq(struct btrfs_fs_info
*fs_info
,
388 struct seq_list
*elem
)
390 struct rb_root
*tm_root
;
391 struct rb_node
*node
;
392 struct rb_node
*next
;
393 struct seq_list
*cur_elem
;
394 struct tree_mod_elem
*tm
;
395 u64 min_seq
= (u64
)-1;
396 u64 seq_putting
= elem
->seq
;
401 spin_lock(&fs_info
->tree_mod_seq_lock
);
402 list_del(&elem
->list
);
405 list_for_each_entry(cur_elem
, &fs_info
->tree_mod_seq_list
, list
) {
406 if (cur_elem
->seq
< min_seq
) {
407 if (seq_putting
> cur_elem
->seq
) {
409 * blocker with lower sequence number exists, we
410 * cannot remove anything from the log
412 spin_unlock(&fs_info
->tree_mod_seq_lock
);
415 min_seq
= cur_elem
->seq
;
418 spin_unlock(&fs_info
->tree_mod_seq_lock
);
421 * anything that's lower than the lowest existing (read: blocked)
422 * sequence number can be removed from the tree.
424 tree_mod_log_write_lock(fs_info
);
425 tm_root
= &fs_info
->tree_mod_log
;
426 for (node
= rb_first(tm_root
); node
; node
= next
) {
427 next
= rb_next(node
);
428 tm
= container_of(node
, struct tree_mod_elem
, node
);
429 if (tm
->seq
> min_seq
)
431 rb_erase(node
, tm_root
);
434 tree_mod_log_write_unlock(fs_info
);
438 * key order of the log:
439 * node/leaf start address -> sequence
441 * The 'start address' is the logical address of the *new* root node
442 * for root replace operations, or the logical address of the affected
443 * block for all other operations.
445 * Note: must be called with write lock (tree_mod_log_write_lock).
448 __tree_mod_log_insert(struct btrfs_fs_info
*fs_info
, struct tree_mod_elem
*tm
)
450 struct rb_root
*tm_root
;
451 struct rb_node
**new;
452 struct rb_node
*parent
= NULL
;
453 struct tree_mod_elem
*cur
;
457 tm
->seq
= btrfs_inc_tree_mod_seq(fs_info
);
459 tm_root
= &fs_info
->tree_mod_log
;
460 new = &tm_root
->rb_node
;
462 cur
= container_of(*new, struct tree_mod_elem
, node
);
464 if (cur
->logical
< tm
->logical
)
465 new = &((*new)->rb_left
);
466 else if (cur
->logical
> tm
->logical
)
467 new = &((*new)->rb_right
);
468 else if (cur
->seq
< tm
->seq
)
469 new = &((*new)->rb_left
);
470 else if (cur
->seq
> tm
->seq
)
471 new = &((*new)->rb_right
);
476 rb_link_node(&tm
->node
, parent
, new);
477 rb_insert_color(&tm
->node
, tm_root
);
482 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
483 * returns zero with the tree_mod_log_lock acquired. The caller must hold
484 * this until all tree mod log insertions are recorded in the rb tree and then
485 * call tree_mod_log_write_unlock() to release.
487 static inline int tree_mod_dont_log(struct btrfs_fs_info
*fs_info
,
488 struct extent_buffer
*eb
) {
490 if (list_empty(&(fs_info
)->tree_mod_seq_list
))
492 if (eb
&& btrfs_header_level(eb
) == 0)
495 tree_mod_log_write_lock(fs_info
);
496 if (list_empty(&(fs_info
)->tree_mod_seq_list
)) {
497 tree_mod_log_write_unlock(fs_info
);
504 /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
505 static inline int tree_mod_need_log(const struct btrfs_fs_info
*fs_info
,
506 struct extent_buffer
*eb
)
509 if (list_empty(&(fs_info
)->tree_mod_seq_list
))
511 if (eb
&& btrfs_header_level(eb
) == 0)
517 static struct tree_mod_elem
*
518 alloc_tree_mod_elem(struct extent_buffer
*eb
, int slot
,
519 enum mod_log_op op
, gfp_t flags
)
521 struct tree_mod_elem
*tm
;
523 tm
= kzalloc(sizeof(*tm
), flags
);
527 tm
->logical
= eb
->start
;
528 if (op
!= MOD_LOG_KEY_ADD
) {
529 btrfs_node_key(eb
, &tm
->key
, slot
);
530 tm
->blockptr
= btrfs_node_blockptr(eb
, slot
);
534 tm
->generation
= btrfs_node_ptr_generation(eb
, slot
);
535 RB_CLEAR_NODE(&tm
->node
);
541 tree_mod_log_insert_key(struct btrfs_fs_info
*fs_info
,
542 struct extent_buffer
*eb
, int slot
,
543 enum mod_log_op op
, gfp_t flags
)
545 struct tree_mod_elem
*tm
;
548 if (!tree_mod_need_log(fs_info
, eb
))
551 tm
= alloc_tree_mod_elem(eb
, slot
, op
, flags
);
555 if (tree_mod_dont_log(fs_info
, eb
)) {
560 ret
= __tree_mod_log_insert(fs_info
, tm
);
561 tree_mod_log_write_unlock(fs_info
);
569 tree_mod_log_insert_move(struct btrfs_fs_info
*fs_info
,
570 struct extent_buffer
*eb
, int dst_slot
, int src_slot
,
571 int nr_items
, gfp_t flags
)
573 struct tree_mod_elem
*tm
= NULL
;
574 struct tree_mod_elem
**tm_list
= NULL
;
579 if (!tree_mod_need_log(fs_info
, eb
))
582 tm_list
= kcalloc(nr_items
, sizeof(struct tree_mod_elem
*), flags
);
586 tm
= kzalloc(sizeof(*tm
), flags
);
592 tm
->logical
= eb
->start
;
594 tm
->move
.dst_slot
= dst_slot
;
595 tm
->move
.nr_items
= nr_items
;
596 tm
->op
= MOD_LOG_MOVE_KEYS
;
598 for (i
= 0; i
+ dst_slot
< src_slot
&& i
< nr_items
; i
++) {
599 tm_list
[i
] = alloc_tree_mod_elem(eb
, i
+ dst_slot
,
600 MOD_LOG_KEY_REMOVE_WHILE_MOVING
, flags
);
607 if (tree_mod_dont_log(fs_info
, eb
))
612 * When we override something during the move, we log these removals.
613 * This can only happen when we move towards the beginning of the
614 * buffer, i.e. dst_slot < src_slot.
616 for (i
= 0; i
+ dst_slot
< src_slot
&& i
< nr_items
; i
++) {
617 ret
= __tree_mod_log_insert(fs_info
, tm_list
[i
]);
622 ret
= __tree_mod_log_insert(fs_info
, tm
);
625 tree_mod_log_write_unlock(fs_info
);
630 for (i
= 0; i
< nr_items
; i
++) {
631 if (tm_list
[i
] && !RB_EMPTY_NODE(&tm_list
[i
]->node
))
632 rb_erase(&tm_list
[i
]->node
, &fs_info
->tree_mod_log
);
636 tree_mod_log_write_unlock(fs_info
);
644 __tree_mod_log_free_eb(struct btrfs_fs_info
*fs_info
,
645 struct tree_mod_elem
**tm_list
,
651 for (i
= nritems
- 1; i
>= 0; i
--) {
652 ret
= __tree_mod_log_insert(fs_info
, tm_list
[i
]);
654 for (j
= nritems
- 1; j
> i
; j
--)
655 rb_erase(&tm_list
[j
]->node
,
656 &fs_info
->tree_mod_log
);
665 tree_mod_log_insert_root(struct btrfs_fs_info
*fs_info
,
666 struct extent_buffer
*old_root
,
667 struct extent_buffer
*new_root
, gfp_t flags
,
670 struct tree_mod_elem
*tm
= NULL
;
671 struct tree_mod_elem
**tm_list
= NULL
;
676 if (!tree_mod_need_log(fs_info
, NULL
))
679 if (log_removal
&& btrfs_header_level(old_root
) > 0) {
680 nritems
= btrfs_header_nritems(old_root
);
681 tm_list
= kcalloc(nritems
, sizeof(struct tree_mod_elem
*),
687 for (i
= 0; i
< nritems
; i
++) {
688 tm_list
[i
] = alloc_tree_mod_elem(old_root
, i
,
689 MOD_LOG_KEY_REMOVE_WHILE_FREEING
, flags
);
697 tm
= kzalloc(sizeof(*tm
), flags
);
703 tm
->logical
= new_root
->start
;
704 tm
->old_root
.logical
= old_root
->start
;
705 tm
->old_root
.level
= btrfs_header_level(old_root
);
706 tm
->generation
= btrfs_header_generation(old_root
);
707 tm
->op
= MOD_LOG_ROOT_REPLACE
;
709 if (tree_mod_dont_log(fs_info
, NULL
))
713 ret
= __tree_mod_log_free_eb(fs_info
, tm_list
, nritems
);
715 ret
= __tree_mod_log_insert(fs_info
, tm
);
717 tree_mod_log_write_unlock(fs_info
);
726 for (i
= 0; i
< nritems
; i
++)
735 static struct tree_mod_elem
*
736 __tree_mod_log_search(struct btrfs_fs_info
*fs_info
, u64 start
, u64 min_seq
,
739 struct rb_root
*tm_root
;
740 struct rb_node
*node
;
741 struct tree_mod_elem
*cur
= NULL
;
742 struct tree_mod_elem
*found
= NULL
;
744 tree_mod_log_read_lock(fs_info
);
745 tm_root
= &fs_info
->tree_mod_log
;
746 node
= tm_root
->rb_node
;
748 cur
= container_of(node
, struct tree_mod_elem
, node
);
749 if (cur
->logical
< start
) {
750 node
= node
->rb_left
;
751 } else if (cur
->logical
> start
) {
752 node
= node
->rb_right
;
753 } else if (cur
->seq
< min_seq
) {
754 node
= node
->rb_left
;
755 } else if (!smallest
) {
756 /* we want the node with the highest seq */
758 BUG_ON(found
->seq
> cur
->seq
);
760 node
= node
->rb_left
;
761 } else if (cur
->seq
> min_seq
) {
762 /* we want the node with the smallest seq */
764 BUG_ON(found
->seq
< cur
->seq
);
766 node
= node
->rb_right
;
772 tree_mod_log_read_unlock(fs_info
);
778 * this returns the element from the log with the smallest time sequence
779 * value that's in the log (the oldest log item). any element with a time
780 * sequence lower than min_seq will be ignored.
782 static struct tree_mod_elem
*
783 tree_mod_log_search_oldest(struct btrfs_fs_info
*fs_info
, u64 start
,
786 return __tree_mod_log_search(fs_info
, start
, min_seq
, 1);
790 * this returns the element from the log with the largest time sequence
791 * value that's in the log (the most recent log item). any element with
792 * a time sequence lower than min_seq will be ignored.
794 static struct tree_mod_elem
*
795 tree_mod_log_search(struct btrfs_fs_info
*fs_info
, u64 start
, u64 min_seq
)
797 return __tree_mod_log_search(fs_info
, start
, min_seq
, 0);
801 tree_mod_log_eb_copy(struct btrfs_fs_info
*fs_info
, struct extent_buffer
*dst
,
802 struct extent_buffer
*src
, unsigned long dst_offset
,
803 unsigned long src_offset
, int nr_items
)
806 struct tree_mod_elem
**tm_list
= NULL
;
807 struct tree_mod_elem
**tm_list_add
, **tm_list_rem
;
811 if (!tree_mod_need_log(fs_info
, NULL
))
814 if (btrfs_header_level(dst
) == 0 && btrfs_header_level(src
) == 0)
817 tm_list
= kcalloc(nr_items
* 2, sizeof(struct tree_mod_elem
*),
822 tm_list_add
= tm_list
;
823 tm_list_rem
= tm_list
+ nr_items
;
824 for (i
= 0; i
< nr_items
; i
++) {
825 tm_list_rem
[i
] = alloc_tree_mod_elem(src
, i
+ src_offset
,
826 MOD_LOG_KEY_REMOVE
, GFP_NOFS
);
827 if (!tm_list_rem
[i
]) {
832 tm_list_add
[i
] = alloc_tree_mod_elem(dst
, i
+ dst_offset
,
833 MOD_LOG_KEY_ADD
, GFP_NOFS
);
834 if (!tm_list_add
[i
]) {
840 if (tree_mod_dont_log(fs_info
, NULL
))
844 for (i
= 0; i
< nr_items
; i
++) {
845 ret
= __tree_mod_log_insert(fs_info
, tm_list_rem
[i
]);
848 ret
= __tree_mod_log_insert(fs_info
, tm_list_add
[i
]);
853 tree_mod_log_write_unlock(fs_info
);
859 for (i
= 0; i
< nr_items
* 2; i
++) {
860 if (tm_list
[i
] && !RB_EMPTY_NODE(&tm_list
[i
]->node
))
861 rb_erase(&tm_list
[i
]->node
, &fs_info
->tree_mod_log
);
865 tree_mod_log_write_unlock(fs_info
);
872 tree_mod_log_eb_move(struct btrfs_fs_info
*fs_info
, struct extent_buffer
*dst
,
873 int dst_offset
, int src_offset
, int nr_items
)
876 ret
= tree_mod_log_insert_move(fs_info
, dst
, dst_offset
, src_offset
,
882 tree_mod_log_set_node_key(struct btrfs_fs_info
*fs_info
,
883 struct extent_buffer
*eb
, int slot
, int atomic
)
887 ret
= tree_mod_log_insert_key(fs_info
, eb
, slot
,
889 atomic
? GFP_ATOMIC
: GFP_NOFS
);
894 tree_mod_log_free_eb(struct btrfs_fs_info
*fs_info
, struct extent_buffer
*eb
)
896 struct tree_mod_elem
**tm_list
= NULL
;
901 if (btrfs_header_level(eb
) == 0)
904 if (!tree_mod_need_log(fs_info
, NULL
))
907 nritems
= btrfs_header_nritems(eb
);
908 tm_list
= kcalloc(nritems
, sizeof(struct tree_mod_elem
*), GFP_NOFS
);
912 for (i
= 0; i
< nritems
; i
++) {
913 tm_list
[i
] = alloc_tree_mod_elem(eb
, i
,
914 MOD_LOG_KEY_REMOVE_WHILE_FREEING
, GFP_NOFS
);
921 if (tree_mod_dont_log(fs_info
, eb
))
924 ret
= __tree_mod_log_free_eb(fs_info
, tm_list
, nritems
);
925 tree_mod_log_write_unlock(fs_info
);
933 for (i
= 0; i
< nritems
; i
++)
941 tree_mod_log_set_root_pointer(struct btrfs_root
*root
,
942 struct extent_buffer
*new_root_node
,
946 ret
= tree_mod_log_insert_root(root
->fs_info
, root
->node
,
947 new_root_node
, GFP_NOFS
, log_removal
);
952 * check if the tree block can be shared by multiple trees
954 int btrfs_block_can_be_shared(struct btrfs_root
*root
,
955 struct extent_buffer
*buf
)
958 * Tree blocks not in reference counted trees and tree roots
959 * are never shared. If a block was allocated after the last
960 * snapshot and the block was not allocated by tree relocation,
961 * we know the block is not shared.
963 if (test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) &&
964 buf
!= root
->node
&& buf
!= root
->commit_root
&&
965 (btrfs_header_generation(buf
) <=
966 btrfs_root_last_snapshot(&root
->root_item
) ||
967 btrfs_header_flag(buf
, BTRFS_HEADER_FLAG_RELOC
)))
969 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
970 if (test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) &&
971 btrfs_header_backref_rev(buf
) < BTRFS_MIXED_BACKREF_REV
)
977 static noinline
int update_ref_for_cow(struct btrfs_trans_handle
*trans
,
978 struct btrfs_root
*root
,
979 struct extent_buffer
*buf
,
980 struct extent_buffer
*cow
,
990 * Backrefs update rules:
992 * Always use full backrefs for extent pointers in tree block
993 * allocated by tree relocation.
995 * If a shared tree block is no longer referenced by its owner
996 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
997 * use full backrefs for extent pointers in tree block.
999 * If a tree block is been relocating
1000 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
1001 * use full backrefs for extent pointers in tree block.
1002 * The reason for this is some operations (such as drop tree)
1003 * are only allowed for blocks use full backrefs.
1006 if (btrfs_block_can_be_shared(root
, buf
)) {
1007 ret
= btrfs_lookup_extent_info(trans
, root
, buf
->start
,
1008 btrfs_header_level(buf
), 1,
1014 btrfs_handle_fs_error(root
->fs_info
, ret
, NULL
);
1019 if (root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
||
1020 btrfs_header_backref_rev(buf
) < BTRFS_MIXED_BACKREF_REV
)
1021 flags
= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
1026 owner
= btrfs_header_owner(buf
);
1027 BUG_ON(owner
== BTRFS_TREE_RELOC_OBJECTID
&&
1028 !(flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
));
1031 if ((owner
== root
->root_key
.objectid
||
1032 root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
) &&
1033 !(flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
)) {
1034 ret
= btrfs_inc_ref(trans
, root
, buf
, 1);
1035 BUG_ON(ret
); /* -ENOMEM */
1037 if (root
->root_key
.objectid
==
1038 BTRFS_TREE_RELOC_OBJECTID
) {
1039 ret
= btrfs_dec_ref(trans
, root
, buf
, 0);
1040 BUG_ON(ret
); /* -ENOMEM */
1041 ret
= btrfs_inc_ref(trans
, root
, cow
, 1);
1042 BUG_ON(ret
); /* -ENOMEM */
1044 new_flags
|= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
1047 if (root
->root_key
.objectid
==
1048 BTRFS_TREE_RELOC_OBJECTID
)
1049 ret
= btrfs_inc_ref(trans
, root
, cow
, 1);
1051 ret
= btrfs_inc_ref(trans
, root
, cow
, 0);
1052 BUG_ON(ret
); /* -ENOMEM */
1054 if (new_flags
!= 0) {
1055 int level
= btrfs_header_level(buf
);
1057 ret
= btrfs_set_disk_extent_flags(trans
, root
,
1060 new_flags
, level
, 0);
1065 if (flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
) {
1066 if (root
->root_key
.objectid
==
1067 BTRFS_TREE_RELOC_OBJECTID
)
1068 ret
= btrfs_inc_ref(trans
, root
, cow
, 1);
1070 ret
= btrfs_inc_ref(trans
, root
, cow
, 0);
1071 BUG_ON(ret
); /* -ENOMEM */
1072 ret
= btrfs_dec_ref(trans
, root
, buf
, 1);
1073 BUG_ON(ret
); /* -ENOMEM */
1075 clean_tree_block(trans
, root
->fs_info
, buf
);
1082 * does the dirty work in cow of a single block. The parent block (if
1083 * supplied) is updated to point to the new cow copy. The new buffer is marked
1084 * dirty and returned locked. If you modify the block it needs to be marked
1087 * search_start -- an allocation hint for the new block
1089 * empty_size -- a hint that you plan on doing more cow. This is the size in
1090 * bytes the allocator should try to find free next to the block it returns.
1091 * This is just a hint and may be ignored by the allocator.
1093 static noinline
int __btrfs_cow_block(struct btrfs_trans_handle
*trans
,
1094 struct btrfs_root
*root
,
1095 struct extent_buffer
*buf
,
1096 struct extent_buffer
*parent
, int parent_slot
,
1097 struct extent_buffer
**cow_ret
,
1098 u64 search_start
, u64 empty_size
)
1100 struct btrfs_disk_key disk_key
;
1101 struct extent_buffer
*cow
;
1104 int unlock_orig
= 0;
1107 if (*cow_ret
== buf
)
1110 btrfs_assert_tree_locked(buf
);
1112 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) &&
1113 trans
->transid
!= root
->fs_info
->running_transaction
->transid
);
1114 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) &&
1115 trans
->transid
!= root
->last_trans
);
1117 level
= btrfs_header_level(buf
);
1120 btrfs_item_key(buf
, &disk_key
, 0);
1122 btrfs_node_key(buf
, &disk_key
, 0);
1124 if (root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
) {
1126 parent_start
= parent
->start
;
1132 cow
= btrfs_alloc_tree_block(trans
, root
, parent_start
,
1133 root
->root_key
.objectid
, &disk_key
, level
,
1134 search_start
, empty_size
);
1136 return PTR_ERR(cow
);
1138 /* cow is set to blocking by btrfs_init_new_buffer */
1140 copy_extent_buffer(cow
, buf
, 0, 0, cow
->len
);
1141 btrfs_set_header_bytenr(cow
, cow
->start
);
1142 btrfs_set_header_generation(cow
, trans
->transid
);
1143 btrfs_set_header_backref_rev(cow
, BTRFS_MIXED_BACKREF_REV
);
1144 btrfs_clear_header_flag(cow
, BTRFS_HEADER_FLAG_WRITTEN
|
1145 BTRFS_HEADER_FLAG_RELOC
);
1146 if (root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
)
1147 btrfs_set_header_flag(cow
, BTRFS_HEADER_FLAG_RELOC
);
1149 btrfs_set_header_owner(cow
, root
->root_key
.objectid
);
1151 write_extent_buffer(cow
, root
->fs_info
->fsid
, btrfs_header_fsid(),
1154 ret
= update_ref_for_cow(trans
, root
, buf
, cow
, &last_ref
);
1156 btrfs_abort_transaction(trans
, ret
);
1160 if (test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
)) {
1161 ret
= btrfs_reloc_cow_block(trans
, root
, buf
, cow
);
1163 btrfs_abort_transaction(trans
, ret
);
1168 if (buf
== root
->node
) {
1169 WARN_ON(parent
&& parent
!= buf
);
1170 if (root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
||
1171 btrfs_header_backref_rev(buf
) < BTRFS_MIXED_BACKREF_REV
)
1172 parent_start
= buf
->start
;
1176 extent_buffer_get(cow
);
1177 tree_mod_log_set_root_pointer(root
, cow
, 1);
1178 rcu_assign_pointer(root
->node
, cow
);
1180 btrfs_free_tree_block(trans
, root
, buf
, parent_start
,
1182 free_extent_buffer(buf
);
1183 add_root_to_dirty_list(root
);
1185 if (root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
)
1186 parent_start
= parent
->start
;
1190 WARN_ON(trans
->transid
!= btrfs_header_generation(parent
));
1191 tree_mod_log_insert_key(root
->fs_info
, parent
, parent_slot
,
1192 MOD_LOG_KEY_REPLACE
, GFP_NOFS
);
1193 btrfs_set_node_blockptr(parent
, parent_slot
,
1195 btrfs_set_node_ptr_generation(parent
, parent_slot
,
1197 btrfs_mark_buffer_dirty(parent
);
1199 ret
= tree_mod_log_free_eb(root
->fs_info
, buf
);
1201 btrfs_abort_transaction(trans
, ret
);
1205 btrfs_free_tree_block(trans
, root
, buf
, parent_start
,
1209 btrfs_tree_unlock(buf
);
1210 free_extent_buffer_stale(buf
);
1211 btrfs_mark_buffer_dirty(cow
);
1217 * returns the logical address of the oldest predecessor of the given root.
1218 * entries older than time_seq are ignored.
1220 static struct tree_mod_elem
*
1221 __tree_mod_log_oldest_root(struct btrfs_fs_info
*fs_info
,
1222 struct extent_buffer
*eb_root
, u64 time_seq
)
1224 struct tree_mod_elem
*tm
;
1225 struct tree_mod_elem
*found
= NULL
;
1226 u64 root_logical
= eb_root
->start
;
1233 * the very last operation that's logged for a root is the
1234 * replacement operation (if it is replaced at all). this has
1235 * the logical address of the *new* root, making it the very
1236 * first operation that's logged for this root.
1239 tm
= tree_mod_log_search_oldest(fs_info
, root_logical
,
1244 * if there are no tree operation for the oldest root, we simply
1245 * return it. this should only happen if that (old) root is at
1252 * if there's an operation that's not a root replacement, we
1253 * found the oldest version of our root. normally, we'll find a
1254 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1256 if (tm
->op
!= MOD_LOG_ROOT_REPLACE
)
1260 root_logical
= tm
->old_root
.logical
;
1264 /* if there's no old root to return, return what we found instead */
1272 * tm is a pointer to the first operation to rewind within eb. then, all
1273 * previous operations will be rewound (until we reach something older than
1277 __tree_mod_log_rewind(struct btrfs_fs_info
*fs_info
, struct extent_buffer
*eb
,
1278 u64 time_seq
, struct tree_mod_elem
*first_tm
)
1281 struct rb_node
*next
;
1282 struct tree_mod_elem
*tm
= first_tm
;
1283 unsigned long o_dst
;
1284 unsigned long o_src
;
1285 unsigned long p_size
= sizeof(struct btrfs_key_ptr
);
1287 n
= btrfs_header_nritems(eb
);
1288 tree_mod_log_read_lock(fs_info
);
1289 while (tm
&& tm
->seq
>= time_seq
) {
1291 * all the operations are recorded with the operator used for
1292 * the modification. as we're going backwards, we do the
1293 * opposite of each operation here.
1296 case MOD_LOG_KEY_REMOVE_WHILE_FREEING
:
1297 BUG_ON(tm
->slot
< n
);
1299 case MOD_LOG_KEY_REMOVE_WHILE_MOVING
:
1300 case MOD_LOG_KEY_REMOVE
:
1301 btrfs_set_node_key(eb
, &tm
->key
, tm
->slot
);
1302 btrfs_set_node_blockptr(eb
, tm
->slot
, tm
->blockptr
);
1303 btrfs_set_node_ptr_generation(eb
, tm
->slot
,
1307 case MOD_LOG_KEY_REPLACE
:
1308 BUG_ON(tm
->slot
>= n
);
1309 btrfs_set_node_key(eb
, &tm
->key
, tm
->slot
);
1310 btrfs_set_node_blockptr(eb
, tm
->slot
, tm
->blockptr
);
1311 btrfs_set_node_ptr_generation(eb
, tm
->slot
,
1314 case MOD_LOG_KEY_ADD
:
1315 /* if a move operation is needed it's in the log */
1318 case MOD_LOG_MOVE_KEYS
:
1319 o_dst
= btrfs_node_key_ptr_offset(tm
->slot
);
1320 o_src
= btrfs_node_key_ptr_offset(tm
->move
.dst_slot
);
1321 memmove_extent_buffer(eb
, o_dst
, o_src
,
1322 tm
->move
.nr_items
* p_size
);
1324 case MOD_LOG_ROOT_REPLACE
:
1326 * this operation is special. for roots, this must be
1327 * handled explicitly before rewinding.
1328 * for non-roots, this operation may exist if the node
1329 * was a root: root A -> child B; then A gets empty and
1330 * B is promoted to the new root. in the mod log, we'll
1331 * have a root-replace operation for B, a tree block
1332 * that is no root. we simply ignore that operation.
1336 next
= rb_next(&tm
->node
);
1339 tm
= container_of(next
, struct tree_mod_elem
, node
);
1340 if (tm
->logical
!= first_tm
->logical
)
1343 tree_mod_log_read_unlock(fs_info
);
1344 btrfs_set_header_nritems(eb
, n
);
1348 * Called with eb read locked. If the buffer cannot be rewound, the same buffer
1349 * is returned. If rewind operations happen, a fresh buffer is returned. The
1350 * returned buffer is always read-locked. If the returned buffer is not the
1351 * input buffer, the lock on the input buffer is released and the input buffer
1352 * is freed (its refcount is decremented).
1354 static struct extent_buffer
*
1355 tree_mod_log_rewind(struct btrfs_fs_info
*fs_info
, struct btrfs_path
*path
,
1356 struct extent_buffer
*eb
, u64 time_seq
)
1358 struct extent_buffer
*eb_rewin
;
1359 struct tree_mod_elem
*tm
;
1364 if (btrfs_header_level(eb
) == 0)
1367 tm
= tree_mod_log_search(fs_info
, eb
->start
, time_seq
);
1371 btrfs_set_path_blocking(path
);
1372 btrfs_set_lock_blocking_rw(eb
, BTRFS_READ_LOCK
);
1374 if (tm
->op
== MOD_LOG_KEY_REMOVE_WHILE_FREEING
) {
1375 BUG_ON(tm
->slot
!= 0);
1376 eb_rewin
= alloc_dummy_extent_buffer(fs_info
, eb
->start
,
1379 btrfs_tree_read_unlock_blocking(eb
);
1380 free_extent_buffer(eb
);
1383 btrfs_set_header_bytenr(eb_rewin
, eb
->start
);
1384 btrfs_set_header_backref_rev(eb_rewin
,
1385 btrfs_header_backref_rev(eb
));
1386 btrfs_set_header_owner(eb_rewin
, btrfs_header_owner(eb
));
1387 btrfs_set_header_level(eb_rewin
, btrfs_header_level(eb
));
1389 eb_rewin
= btrfs_clone_extent_buffer(eb
);
1391 btrfs_tree_read_unlock_blocking(eb
);
1392 free_extent_buffer(eb
);
1397 btrfs_clear_path_blocking(path
, NULL
, BTRFS_READ_LOCK
);
1398 btrfs_tree_read_unlock_blocking(eb
);
1399 free_extent_buffer(eb
);
1401 extent_buffer_get(eb_rewin
);
1402 btrfs_tree_read_lock(eb_rewin
);
1403 __tree_mod_log_rewind(fs_info
, eb_rewin
, time_seq
, tm
);
1404 WARN_ON(btrfs_header_nritems(eb_rewin
) >
1405 BTRFS_NODEPTRS_PER_BLOCK(fs_info
->tree_root
));
1411 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1412 * value. If there are no changes, the current root->root_node is returned. If
1413 * anything changed in between, there's a fresh buffer allocated on which the
1414 * rewind operations are done. In any case, the returned buffer is read locked.
1415 * Returns NULL on error (with no locks held).
1417 static inline struct extent_buffer
*
1418 get_old_root(struct btrfs_root
*root
, u64 time_seq
)
1420 struct tree_mod_elem
*tm
;
1421 struct extent_buffer
*eb
= NULL
;
1422 struct extent_buffer
*eb_root
;
1423 struct extent_buffer
*old
;
1424 struct tree_mod_root
*old_root
= NULL
;
1425 u64 old_generation
= 0;
1428 eb_root
= btrfs_read_lock_root_node(root
);
1429 tm
= __tree_mod_log_oldest_root(root
->fs_info
, eb_root
, time_seq
);
1433 if (tm
->op
== MOD_LOG_ROOT_REPLACE
) {
1434 old_root
= &tm
->old_root
;
1435 old_generation
= tm
->generation
;
1436 logical
= old_root
->logical
;
1438 logical
= eb_root
->start
;
1441 tm
= tree_mod_log_search(root
->fs_info
, logical
, time_seq
);
1442 if (old_root
&& tm
&& tm
->op
!= MOD_LOG_KEY_REMOVE_WHILE_FREEING
) {
1443 btrfs_tree_read_unlock(eb_root
);
1444 free_extent_buffer(eb_root
);
1445 old
= read_tree_block(root
, logical
, 0);
1446 if (WARN_ON(IS_ERR(old
) || !extent_buffer_uptodate(old
))) {
1448 free_extent_buffer(old
);
1449 btrfs_warn(root
->fs_info
,
1450 "failed to read tree block %llu from get_old_root", logical
);
1452 eb
= btrfs_clone_extent_buffer(old
);
1453 free_extent_buffer(old
);
1455 } else if (old_root
) {
1456 btrfs_tree_read_unlock(eb_root
);
1457 free_extent_buffer(eb_root
);
1458 eb
= alloc_dummy_extent_buffer(root
->fs_info
, logical
,
1461 btrfs_set_lock_blocking_rw(eb_root
, BTRFS_READ_LOCK
);
1462 eb
= btrfs_clone_extent_buffer(eb_root
);
1463 btrfs_tree_read_unlock_blocking(eb_root
);
1464 free_extent_buffer(eb_root
);
1469 extent_buffer_get(eb
);
1470 btrfs_tree_read_lock(eb
);
1472 btrfs_set_header_bytenr(eb
, eb
->start
);
1473 btrfs_set_header_backref_rev(eb
, BTRFS_MIXED_BACKREF_REV
);
1474 btrfs_set_header_owner(eb
, btrfs_header_owner(eb_root
));
1475 btrfs_set_header_level(eb
, old_root
->level
);
1476 btrfs_set_header_generation(eb
, old_generation
);
1479 __tree_mod_log_rewind(root
->fs_info
, eb
, time_seq
, tm
);
1481 WARN_ON(btrfs_header_level(eb
) != 0);
1482 WARN_ON(btrfs_header_nritems(eb
) > BTRFS_NODEPTRS_PER_BLOCK(root
));
1487 int btrfs_old_root_level(struct btrfs_root
*root
, u64 time_seq
)
1489 struct tree_mod_elem
*tm
;
1491 struct extent_buffer
*eb_root
= btrfs_root_node(root
);
1493 tm
= __tree_mod_log_oldest_root(root
->fs_info
, eb_root
, time_seq
);
1494 if (tm
&& tm
->op
== MOD_LOG_ROOT_REPLACE
) {
1495 level
= tm
->old_root
.level
;
1497 level
= btrfs_header_level(eb_root
);
1499 free_extent_buffer(eb_root
);
1504 static inline int should_cow_block(struct btrfs_trans_handle
*trans
,
1505 struct btrfs_root
*root
,
1506 struct extent_buffer
*buf
)
1508 if (btrfs_is_testing(root
->fs_info
))
1511 /* ensure we can see the force_cow */
1515 * We do not need to cow a block if
1516 * 1) this block is not created or changed in this transaction;
1517 * 2) this block does not belong to TREE_RELOC tree;
1518 * 3) the root is not forced COW.
1520 * What is forced COW:
1521 * when we create snapshot during committing the transaction,
1522 * after we've finished coping src root, we must COW the shared
1523 * block to ensure the metadata consistency.
1525 if (btrfs_header_generation(buf
) == trans
->transid
&&
1526 !btrfs_header_flag(buf
, BTRFS_HEADER_FLAG_WRITTEN
) &&
1527 !(root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
&&
1528 btrfs_header_flag(buf
, BTRFS_HEADER_FLAG_RELOC
)) &&
1529 !test_bit(BTRFS_ROOT_FORCE_COW
, &root
->state
))
1535 * cows a single block, see __btrfs_cow_block for the real work.
1536 * This version of it has extra checks so that a block isn't COWed more than
1537 * once per transaction, as long as it hasn't been written yet
1539 noinline
int btrfs_cow_block(struct btrfs_trans_handle
*trans
,
1540 struct btrfs_root
*root
, struct extent_buffer
*buf
,
1541 struct extent_buffer
*parent
, int parent_slot
,
1542 struct extent_buffer
**cow_ret
)
1547 if (trans
->transaction
!= root
->fs_info
->running_transaction
)
1548 WARN(1, KERN_CRIT
"trans %llu running %llu\n",
1550 root
->fs_info
->running_transaction
->transid
);
1552 if (trans
->transid
!= root
->fs_info
->generation
)
1553 WARN(1, KERN_CRIT
"trans %llu running %llu\n",
1554 trans
->transid
, root
->fs_info
->generation
);
1556 if (!should_cow_block(trans
, root
, buf
)) {
1557 trans
->dirty
= true;
1562 search_start
= buf
->start
& ~((u64
)SZ_1G
- 1);
1565 btrfs_set_lock_blocking(parent
);
1566 btrfs_set_lock_blocking(buf
);
1568 ret
= __btrfs_cow_block(trans
, root
, buf
, parent
,
1569 parent_slot
, cow_ret
, search_start
, 0);
1571 trace_btrfs_cow_block(root
, buf
, *cow_ret
);
1577 * helper function for defrag to decide if two blocks pointed to by a
1578 * node are actually close by
1580 static int close_blocks(u64 blocknr
, u64 other
, u32 blocksize
)
1582 if (blocknr
< other
&& other
- (blocknr
+ blocksize
) < 32768)
1584 if (blocknr
> other
&& blocknr
- (other
+ blocksize
) < 32768)
1590 * compare two keys in a memcmp fashion
1592 static int comp_keys(struct btrfs_disk_key
*disk
, struct btrfs_key
*k2
)
1594 struct btrfs_key k1
;
1596 btrfs_disk_key_to_cpu(&k1
, disk
);
1598 return btrfs_comp_cpu_keys(&k1
, k2
);
1602 * same as comp_keys only with two btrfs_key's
1604 int btrfs_comp_cpu_keys(struct btrfs_key
*k1
, struct btrfs_key
*k2
)
1606 if (k1
->objectid
> k2
->objectid
)
1608 if (k1
->objectid
< k2
->objectid
)
1610 if (k1
->type
> k2
->type
)
1612 if (k1
->type
< k2
->type
)
1614 if (k1
->offset
> k2
->offset
)
1616 if (k1
->offset
< k2
->offset
)
1622 * this is used by the defrag code to go through all the
1623 * leaves pointed to by a node and reallocate them so that
1624 * disk order is close to key order
1626 int btrfs_realloc_node(struct btrfs_trans_handle
*trans
,
1627 struct btrfs_root
*root
, struct extent_buffer
*parent
,
1628 int start_slot
, u64
*last_ret
,
1629 struct btrfs_key
*progress
)
1631 struct extent_buffer
*cur
;
1634 u64 search_start
= *last_ret
;
1644 int progress_passed
= 0;
1645 struct btrfs_disk_key disk_key
;
1647 parent_level
= btrfs_header_level(parent
);
1649 WARN_ON(trans
->transaction
!= root
->fs_info
->running_transaction
);
1650 WARN_ON(trans
->transid
!= root
->fs_info
->generation
);
1652 parent_nritems
= btrfs_header_nritems(parent
);
1653 blocksize
= root
->nodesize
;
1654 end_slot
= parent_nritems
- 1;
1656 if (parent_nritems
<= 1)
1659 btrfs_set_lock_blocking(parent
);
1661 for (i
= start_slot
; i
<= end_slot
; i
++) {
1664 btrfs_node_key(parent
, &disk_key
, i
);
1665 if (!progress_passed
&& comp_keys(&disk_key
, progress
) < 0)
1668 progress_passed
= 1;
1669 blocknr
= btrfs_node_blockptr(parent
, i
);
1670 gen
= btrfs_node_ptr_generation(parent
, i
);
1671 if (last_block
== 0)
1672 last_block
= blocknr
;
1675 other
= btrfs_node_blockptr(parent
, i
- 1);
1676 close
= close_blocks(blocknr
, other
, blocksize
);
1678 if (!close
&& i
< end_slot
) {
1679 other
= btrfs_node_blockptr(parent
, i
+ 1);
1680 close
= close_blocks(blocknr
, other
, blocksize
);
1683 last_block
= blocknr
;
1687 cur
= btrfs_find_tree_block(root
->fs_info
, blocknr
);
1689 uptodate
= btrfs_buffer_uptodate(cur
, gen
, 0);
1692 if (!cur
|| !uptodate
) {
1694 cur
= read_tree_block(root
, blocknr
, gen
);
1696 return PTR_ERR(cur
);
1697 } else if (!extent_buffer_uptodate(cur
)) {
1698 free_extent_buffer(cur
);
1701 } else if (!uptodate
) {
1702 err
= btrfs_read_buffer(cur
, gen
);
1704 free_extent_buffer(cur
);
1709 if (search_start
== 0)
1710 search_start
= last_block
;
1712 btrfs_tree_lock(cur
);
1713 btrfs_set_lock_blocking(cur
);
1714 err
= __btrfs_cow_block(trans
, root
, cur
, parent
, i
,
1717 (end_slot
- i
) * blocksize
));
1719 btrfs_tree_unlock(cur
);
1720 free_extent_buffer(cur
);
1723 search_start
= cur
->start
;
1724 last_block
= cur
->start
;
1725 *last_ret
= search_start
;
1726 btrfs_tree_unlock(cur
);
1727 free_extent_buffer(cur
);
1733 * The leaf data grows from end-to-front in the node.
1734 * this returns the address of the start of the last item,
1735 * which is the stop of the leaf data stack
1737 static inline unsigned int leaf_data_end(struct btrfs_root
*root
,
1738 struct extent_buffer
*leaf
)
1740 u32 nr
= btrfs_header_nritems(leaf
);
1742 return BTRFS_LEAF_DATA_SIZE(root
);
1743 return btrfs_item_offset_nr(leaf
, nr
- 1);
1748 * search for key in the extent_buffer. The items start at offset p,
1749 * and they are item_size apart. There are 'max' items in p.
1751 * the slot in the array is returned via slot, and it points to
1752 * the place where you would insert key if it is not found in
1755 * slot may point to max if the key is bigger than all of the keys
1757 static noinline
int generic_bin_search(struct extent_buffer
*eb
,
1759 int item_size
, struct btrfs_key
*key
,
1766 struct btrfs_disk_key
*tmp
= NULL
;
1767 struct btrfs_disk_key unaligned
;
1768 unsigned long offset
;
1770 unsigned long map_start
= 0;
1771 unsigned long map_len
= 0;
1775 btrfs_err(eb
->fs_info
,
1776 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
1777 __func__
, low
, high
, eb
->start
,
1778 btrfs_header_owner(eb
), btrfs_header_level(eb
));
1782 while (low
< high
) {
1783 mid
= (low
+ high
) / 2;
1784 offset
= p
+ mid
* item_size
;
1786 if (!kaddr
|| offset
< map_start
||
1787 (offset
+ sizeof(struct btrfs_disk_key
)) >
1788 map_start
+ map_len
) {
1790 err
= map_private_extent_buffer(eb
, offset
,
1791 sizeof(struct btrfs_disk_key
),
1792 &kaddr
, &map_start
, &map_len
);
1795 tmp
= (struct btrfs_disk_key
*)(kaddr
+ offset
-
1797 } else if (err
== 1) {
1798 read_extent_buffer(eb
, &unaligned
,
1799 offset
, sizeof(unaligned
));
1806 tmp
= (struct btrfs_disk_key
*)(kaddr
+ offset
-
1809 ret
= comp_keys(tmp
, key
);
1825 * simple bin_search frontend that does the right thing for
1828 static int bin_search(struct extent_buffer
*eb
, struct btrfs_key
*key
,
1829 int level
, int *slot
)
1832 return generic_bin_search(eb
,
1833 offsetof(struct btrfs_leaf
, items
),
1834 sizeof(struct btrfs_item
),
1835 key
, btrfs_header_nritems(eb
),
1838 return generic_bin_search(eb
,
1839 offsetof(struct btrfs_node
, ptrs
),
1840 sizeof(struct btrfs_key_ptr
),
1841 key
, btrfs_header_nritems(eb
),
1845 int btrfs_bin_search(struct extent_buffer
*eb
, struct btrfs_key
*key
,
1846 int level
, int *slot
)
1848 return bin_search(eb
, key
, level
, slot
);
1851 static void root_add_used(struct btrfs_root
*root
, u32 size
)
1853 spin_lock(&root
->accounting_lock
);
1854 btrfs_set_root_used(&root
->root_item
,
1855 btrfs_root_used(&root
->root_item
) + size
);
1856 spin_unlock(&root
->accounting_lock
);
1859 static void root_sub_used(struct btrfs_root
*root
, u32 size
)
1861 spin_lock(&root
->accounting_lock
);
1862 btrfs_set_root_used(&root
->root_item
,
1863 btrfs_root_used(&root
->root_item
) - size
);
1864 spin_unlock(&root
->accounting_lock
);
1867 /* given a node and slot number, this reads the blocks it points to. The
1868 * extent buffer is returned with a reference taken (but unlocked).
1870 static noinline
struct extent_buffer
*read_node_slot(struct btrfs_root
*root
,
1871 struct extent_buffer
*parent
, int slot
)
1873 int level
= btrfs_header_level(parent
);
1874 struct extent_buffer
*eb
;
1876 if (slot
< 0 || slot
>= btrfs_header_nritems(parent
))
1877 return ERR_PTR(-ENOENT
);
1881 eb
= read_tree_block(root
, btrfs_node_blockptr(parent
, slot
),
1882 btrfs_node_ptr_generation(parent
, slot
));
1883 if (!IS_ERR(eb
) && !extent_buffer_uptodate(eb
)) {
1884 free_extent_buffer(eb
);
1892 * node level balancing, used to make sure nodes are in proper order for
1893 * item deletion. We balance from the top down, so we have to make sure
1894 * that a deletion won't leave an node completely empty later on.
1896 static noinline
int balance_level(struct btrfs_trans_handle
*trans
,
1897 struct btrfs_root
*root
,
1898 struct btrfs_path
*path
, int level
)
1900 struct extent_buffer
*right
= NULL
;
1901 struct extent_buffer
*mid
;
1902 struct extent_buffer
*left
= NULL
;
1903 struct extent_buffer
*parent
= NULL
;
1907 int orig_slot
= path
->slots
[level
];
1913 mid
= path
->nodes
[level
];
1915 WARN_ON(path
->locks
[level
] != BTRFS_WRITE_LOCK
&&
1916 path
->locks
[level
] != BTRFS_WRITE_LOCK_BLOCKING
);
1917 WARN_ON(btrfs_header_generation(mid
) != trans
->transid
);
1919 orig_ptr
= btrfs_node_blockptr(mid
, orig_slot
);
1921 if (level
< BTRFS_MAX_LEVEL
- 1) {
1922 parent
= path
->nodes
[level
+ 1];
1923 pslot
= path
->slots
[level
+ 1];
1927 * deal with the case where there is only one pointer in the root
1928 * by promoting the node below to a root
1931 struct extent_buffer
*child
;
1933 if (btrfs_header_nritems(mid
) != 1)
1936 /* promote the child to a root */
1937 child
= read_node_slot(root
, mid
, 0);
1938 if (IS_ERR(child
)) {
1939 ret
= PTR_ERR(child
);
1940 btrfs_handle_fs_error(root
->fs_info
, ret
, NULL
);
1944 btrfs_tree_lock(child
);
1945 btrfs_set_lock_blocking(child
);
1946 ret
= btrfs_cow_block(trans
, root
, child
, mid
, 0, &child
);
1948 btrfs_tree_unlock(child
);
1949 free_extent_buffer(child
);
1953 tree_mod_log_set_root_pointer(root
, child
, 1);
1954 rcu_assign_pointer(root
->node
, child
);
1956 add_root_to_dirty_list(root
);
1957 btrfs_tree_unlock(child
);
1959 path
->locks
[level
] = 0;
1960 path
->nodes
[level
] = NULL
;
1961 clean_tree_block(trans
, root
->fs_info
, mid
);
1962 btrfs_tree_unlock(mid
);
1963 /* once for the path */
1964 free_extent_buffer(mid
);
1966 root_sub_used(root
, mid
->len
);
1967 btrfs_free_tree_block(trans
, root
, mid
, 0, 1);
1968 /* once for the root ptr */
1969 free_extent_buffer_stale(mid
);
1972 if (btrfs_header_nritems(mid
) >
1973 BTRFS_NODEPTRS_PER_BLOCK(root
) / 4)
1976 left
= read_node_slot(root
, parent
, pslot
- 1);
1981 btrfs_tree_lock(left
);
1982 btrfs_set_lock_blocking(left
);
1983 wret
= btrfs_cow_block(trans
, root
, left
,
1984 parent
, pslot
- 1, &left
);
1991 right
= read_node_slot(root
, parent
, pslot
+ 1);
1996 btrfs_tree_lock(right
);
1997 btrfs_set_lock_blocking(right
);
1998 wret
= btrfs_cow_block(trans
, root
, right
,
1999 parent
, pslot
+ 1, &right
);
2006 /* first, try to make some room in the middle buffer */
2008 orig_slot
+= btrfs_header_nritems(left
);
2009 wret
= push_node_left(trans
, root
, left
, mid
, 1);
2015 * then try to empty the right most buffer into the middle
2018 wret
= push_node_left(trans
, root
, mid
, right
, 1);
2019 if (wret
< 0 && wret
!= -ENOSPC
)
2021 if (btrfs_header_nritems(right
) == 0) {
2022 clean_tree_block(trans
, root
->fs_info
, right
);
2023 btrfs_tree_unlock(right
);
2024 del_ptr(root
, path
, level
+ 1, pslot
+ 1);
2025 root_sub_used(root
, right
->len
);
2026 btrfs_free_tree_block(trans
, root
, right
, 0, 1);
2027 free_extent_buffer_stale(right
);
2030 struct btrfs_disk_key right_key
;
2031 btrfs_node_key(right
, &right_key
, 0);
2032 tree_mod_log_set_node_key(root
->fs_info
, parent
,
2034 btrfs_set_node_key(parent
, &right_key
, pslot
+ 1);
2035 btrfs_mark_buffer_dirty(parent
);
2038 if (btrfs_header_nritems(mid
) == 1) {
2040 * we're not allowed to leave a node with one item in the
2041 * tree during a delete. A deletion from lower in the tree
2042 * could try to delete the only pointer in this node.
2043 * So, pull some keys from the left.
2044 * There has to be a left pointer at this point because
2045 * otherwise we would have pulled some pointers from the
2050 btrfs_handle_fs_error(root
->fs_info
, ret
, NULL
);
2053 wret
= balance_node_right(trans
, root
, mid
, left
);
2059 wret
= push_node_left(trans
, root
, left
, mid
, 1);
2065 if (btrfs_header_nritems(mid
) == 0) {
2066 clean_tree_block(trans
, root
->fs_info
, mid
);
2067 btrfs_tree_unlock(mid
);
2068 del_ptr(root
, path
, level
+ 1, pslot
);
2069 root_sub_used(root
, mid
->len
);
2070 btrfs_free_tree_block(trans
, root
, mid
, 0, 1);
2071 free_extent_buffer_stale(mid
);
2074 /* update the parent key to reflect our changes */
2075 struct btrfs_disk_key mid_key
;
2076 btrfs_node_key(mid
, &mid_key
, 0);
2077 tree_mod_log_set_node_key(root
->fs_info
, parent
,
2079 btrfs_set_node_key(parent
, &mid_key
, pslot
);
2080 btrfs_mark_buffer_dirty(parent
);
2083 /* update the path */
2085 if (btrfs_header_nritems(left
) > orig_slot
) {
2086 extent_buffer_get(left
);
2087 /* left was locked after cow */
2088 path
->nodes
[level
] = left
;
2089 path
->slots
[level
+ 1] -= 1;
2090 path
->slots
[level
] = orig_slot
;
2092 btrfs_tree_unlock(mid
);
2093 free_extent_buffer(mid
);
2096 orig_slot
-= btrfs_header_nritems(left
);
2097 path
->slots
[level
] = orig_slot
;
2100 /* double check we haven't messed things up */
2102 btrfs_node_blockptr(path
->nodes
[level
], path
->slots
[level
]))
2106 btrfs_tree_unlock(right
);
2107 free_extent_buffer(right
);
2110 if (path
->nodes
[level
] != left
)
2111 btrfs_tree_unlock(left
);
2112 free_extent_buffer(left
);
2117 /* Node balancing for insertion. Here we only split or push nodes around
2118 * when they are completely full. This is also done top down, so we
2119 * have to be pessimistic.
2121 static noinline
int push_nodes_for_insert(struct btrfs_trans_handle
*trans
,
2122 struct btrfs_root
*root
,
2123 struct btrfs_path
*path
, int level
)
2125 struct extent_buffer
*right
= NULL
;
2126 struct extent_buffer
*mid
;
2127 struct extent_buffer
*left
= NULL
;
2128 struct extent_buffer
*parent
= NULL
;
2132 int orig_slot
= path
->slots
[level
];
2137 mid
= path
->nodes
[level
];
2138 WARN_ON(btrfs_header_generation(mid
) != trans
->transid
);
2140 if (level
< BTRFS_MAX_LEVEL
- 1) {
2141 parent
= path
->nodes
[level
+ 1];
2142 pslot
= path
->slots
[level
+ 1];
2148 left
= read_node_slot(root
, parent
, pslot
- 1);
2152 /* first, try to make some room in the middle buffer */
2156 btrfs_tree_lock(left
);
2157 btrfs_set_lock_blocking(left
);
2159 left_nr
= btrfs_header_nritems(left
);
2160 if (left_nr
>= BTRFS_NODEPTRS_PER_BLOCK(root
) - 1) {
2163 ret
= btrfs_cow_block(trans
, root
, left
, parent
,
2168 wret
= push_node_left(trans
, root
,
2175 struct btrfs_disk_key disk_key
;
2176 orig_slot
+= left_nr
;
2177 btrfs_node_key(mid
, &disk_key
, 0);
2178 tree_mod_log_set_node_key(root
->fs_info
, parent
,
2180 btrfs_set_node_key(parent
, &disk_key
, pslot
);
2181 btrfs_mark_buffer_dirty(parent
);
2182 if (btrfs_header_nritems(left
) > orig_slot
) {
2183 path
->nodes
[level
] = left
;
2184 path
->slots
[level
+ 1] -= 1;
2185 path
->slots
[level
] = orig_slot
;
2186 btrfs_tree_unlock(mid
);
2187 free_extent_buffer(mid
);
2190 btrfs_header_nritems(left
);
2191 path
->slots
[level
] = orig_slot
;
2192 btrfs_tree_unlock(left
);
2193 free_extent_buffer(left
);
2197 btrfs_tree_unlock(left
);
2198 free_extent_buffer(left
);
2200 right
= read_node_slot(root
, parent
, pslot
+ 1);
2205 * then try to empty the right most buffer into the middle
2210 btrfs_tree_lock(right
);
2211 btrfs_set_lock_blocking(right
);
2213 right_nr
= btrfs_header_nritems(right
);
2214 if (right_nr
>= BTRFS_NODEPTRS_PER_BLOCK(root
) - 1) {
2217 ret
= btrfs_cow_block(trans
, root
, right
,
2223 wret
= balance_node_right(trans
, root
,
2230 struct btrfs_disk_key disk_key
;
2232 btrfs_node_key(right
, &disk_key
, 0);
2233 tree_mod_log_set_node_key(root
->fs_info
, parent
,
2235 btrfs_set_node_key(parent
, &disk_key
, pslot
+ 1);
2236 btrfs_mark_buffer_dirty(parent
);
2238 if (btrfs_header_nritems(mid
) <= orig_slot
) {
2239 path
->nodes
[level
] = right
;
2240 path
->slots
[level
+ 1] += 1;
2241 path
->slots
[level
] = orig_slot
-
2242 btrfs_header_nritems(mid
);
2243 btrfs_tree_unlock(mid
);
2244 free_extent_buffer(mid
);
2246 btrfs_tree_unlock(right
);
2247 free_extent_buffer(right
);
2251 btrfs_tree_unlock(right
);
2252 free_extent_buffer(right
);
2258 * readahead one full node of leaves, finding things that are close
2259 * to the block in 'slot', and triggering ra on them.
2261 static void reada_for_search(struct btrfs_root
*root
,
2262 struct btrfs_path
*path
,
2263 int level
, int slot
, u64 objectid
)
2265 struct extent_buffer
*node
;
2266 struct btrfs_disk_key disk_key
;
2272 struct extent_buffer
*eb
;
2280 if (!path
->nodes
[level
])
2283 node
= path
->nodes
[level
];
2285 search
= btrfs_node_blockptr(node
, slot
);
2286 blocksize
= root
->nodesize
;
2287 eb
= btrfs_find_tree_block(root
->fs_info
, search
);
2289 free_extent_buffer(eb
);
2295 nritems
= btrfs_header_nritems(node
);
2299 if (path
->reada
== READA_BACK
) {
2303 } else if (path
->reada
== READA_FORWARD
) {
2308 if (path
->reada
== READA_BACK
&& objectid
) {
2309 btrfs_node_key(node
, &disk_key
, nr
);
2310 if (btrfs_disk_key_objectid(&disk_key
) != objectid
)
2313 search
= btrfs_node_blockptr(node
, nr
);
2314 if ((search
<= target
&& target
- search
<= 65536) ||
2315 (search
> target
&& search
- target
<= 65536)) {
2316 gen
= btrfs_node_ptr_generation(node
, nr
);
2317 readahead_tree_block(root
, search
);
2321 if ((nread
> 65536 || nscan
> 32))
2326 static noinline
void reada_for_balance(struct btrfs_root
*root
,
2327 struct btrfs_path
*path
, int level
)
2331 struct extent_buffer
*parent
;
2332 struct extent_buffer
*eb
;
2337 parent
= path
->nodes
[level
+ 1];
2341 nritems
= btrfs_header_nritems(parent
);
2342 slot
= path
->slots
[level
+ 1];
2345 block1
= btrfs_node_blockptr(parent
, slot
- 1);
2346 gen
= btrfs_node_ptr_generation(parent
, slot
- 1);
2347 eb
= btrfs_find_tree_block(root
->fs_info
, block1
);
2349 * if we get -eagain from btrfs_buffer_uptodate, we
2350 * don't want to return eagain here. That will loop
2353 if (eb
&& btrfs_buffer_uptodate(eb
, gen
, 1) != 0)
2355 free_extent_buffer(eb
);
2357 if (slot
+ 1 < nritems
) {
2358 block2
= btrfs_node_blockptr(parent
, slot
+ 1);
2359 gen
= btrfs_node_ptr_generation(parent
, slot
+ 1);
2360 eb
= btrfs_find_tree_block(root
->fs_info
, block2
);
2361 if (eb
&& btrfs_buffer_uptodate(eb
, gen
, 1) != 0)
2363 free_extent_buffer(eb
);
2367 readahead_tree_block(root
, block1
);
2369 readahead_tree_block(root
, block2
);
2374 * when we walk down the tree, it is usually safe to unlock the higher layers
2375 * in the tree. The exceptions are when our path goes through slot 0, because
2376 * operations on the tree might require changing key pointers higher up in the
2379 * callers might also have set path->keep_locks, which tells this code to keep
2380 * the lock if the path points to the last slot in the block. This is part of
2381 * walking through the tree, and selecting the next slot in the higher block.
2383 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
2384 * if lowest_unlock is 1, level 0 won't be unlocked
2386 static noinline
void unlock_up(struct btrfs_path
*path
, int level
,
2387 int lowest_unlock
, int min_write_lock_level
,
2388 int *write_lock_level
)
2391 int skip_level
= level
;
2393 struct extent_buffer
*t
;
2395 for (i
= level
; i
< BTRFS_MAX_LEVEL
; i
++) {
2396 if (!path
->nodes
[i
])
2398 if (!path
->locks
[i
])
2400 if (!no_skips
&& path
->slots
[i
] == 0) {
2404 if (!no_skips
&& path
->keep_locks
) {
2407 nritems
= btrfs_header_nritems(t
);
2408 if (nritems
< 1 || path
->slots
[i
] >= nritems
- 1) {
2413 if (skip_level
< i
&& i
>= lowest_unlock
)
2417 if (i
>= lowest_unlock
&& i
> skip_level
&& path
->locks
[i
]) {
2418 btrfs_tree_unlock_rw(t
, path
->locks
[i
]);
2420 if (write_lock_level
&&
2421 i
> min_write_lock_level
&&
2422 i
<= *write_lock_level
) {
2423 *write_lock_level
= i
- 1;
2430 * This releases any locks held in the path starting at level and
2431 * going all the way up to the root.
2433 * btrfs_search_slot will keep the lock held on higher nodes in a few
2434 * corner cases, such as COW of the block at slot zero in the node. This
2435 * ignores those rules, and it should only be called when there are no
2436 * more updates to be done higher up in the tree.
2438 noinline
void btrfs_unlock_up_safe(struct btrfs_path
*path
, int level
)
2442 if (path
->keep_locks
)
2445 for (i
= level
; i
< BTRFS_MAX_LEVEL
; i
++) {
2446 if (!path
->nodes
[i
])
2448 if (!path
->locks
[i
])
2450 btrfs_tree_unlock_rw(path
->nodes
[i
], path
->locks
[i
]);
2456 * helper function for btrfs_search_slot. The goal is to find a block
2457 * in cache without setting the path to blocking. If we find the block
2458 * we return zero and the path is unchanged.
2460 * If we can't find the block, we set the path blocking and do some
2461 * reada. -EAGAIN is returned and the search must be repeated.
2464 read_block_for_search(struct btrfs_trans_handle
*trans
,
2465 struct btrfs_root
*root
, struct btrfs_path
*p
,
2466 struct extent_buffer
**eb_ret
, int level
, int slot
,
2467 struct btrfs_key
*key
, u64 time_seq
)
2471 struct extent_buffer
*b
= *eb_ret
;
2472 struct extent_buffer
*tmp
;
2475 blocknr
= btrfs_node_blockptr(b
, slot
);
2476 gen
= btrfs_node_ptr_generation(b
, slot
);
2478 tmp
= btrfs_find_tree_block(root
->fs_info
, blocknr
);
2480 /* first we do an atomic uptodate check */
2481 if (btrfs_buffer_uptodate(tmp
, gen
, 1) > 0) {
2486 /* the pages were up to date, but we failed
2487 * the generation number check. Do a full
2488 * read for the generation number that is correct.
2489 * We must do this without dropping locks so
2490 * we can trust our generation number
2492 btrfs_set_path_blocking(p
);
2494 /* now we're allowed to do a blocking uptodate check */
2495 ret
= btrfs_read_buffer(tmp
, gen
);
2500 free_extent_buffer(tmp
);
2501 btrfs_release_path(p
);
2506 * reduce lock contention at high levels
2507 * of the btree by dropping locks before
2508 * we read. Don't release the lock on the current
2509 * level because we need to walk this node to figure
2510 * out which blocks to read.
2512 btrfs_unlock_up_safe(p
, level
+ 1);
2513 btrfs_set_path_blocking(p
);
2515 free_extent_buffer(tmp
);
2516 if (p
->reada
!= READA_NONE
)
2517 reada_for_search(root
, p
, level
, slot
, key
->objectid
);
2519 btrfs_release_path(p
);
2522 tmp
= read_tree_block(root
, blocknr
, 0);
2525 * If the read above didn't mark this buffer up to date,
2526 * it will never end up being up to date. Set ret to EIO now
2527 * and give up so that our caller doesn't loop forever
2530 if (!btrfs_buffer_uptodate(tmp
, 0, 0))
2532 free_extent_buffer(tmp
);
2540 * helper function for btrfs_search_slot. This does all of the checks
2541 * for node-level blocks and does any balancing required based on
2544 * If no extra work was required, zero is returned. If we had to
2545 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2549 setup_nodes_for_search(struct btrfs_trans_handle
*trans
,
2550 struct btrfs_root
*root
, struct btrfs_path
*p
,
2551 struct extent_buffer
*b
, int level
, int ins_len
,
2552 int *write_lock_level
)
2555 if ((p
->search_for_split
|| ins_len
> 0) && btrfs_header_nritems(b
) >=
2556 BTRFS_NODEPTRS_PER_BLOCK(root
) - 3) {
2559 if (*write_lock_level
< level
+ 1) {
2560 *write_lock_level
= level
+ 1;
2561 btrfs_release_path(p
);
2565 btrfs_set_path_blocking(p
);
2566 reada_for_balance(root
, p
, level
);
2567 sret
= split_node(trans
, root
, p
, level
);
2568 btrfs_clear_path_blocking(p
, NULL
, 0);
2575 b
= p
->nodes
[level
];
2576 } else if (ins_len
< 0 && btrfs_header_nritems(b
) <
2577 BTRFS_NODEPTRS_PER_BLOCK(root
) / 2) {
2580 if (*write_lock_level
< level
+ 1) {
2581 *write_lock_level
= level
+ 1;
2582 btrfs_release_path(p
);
2586 btrfs_set_path_blocking(p
);
2587 reada_for_balance(root
, p
, level
);
2588 sret
= balance_level(trans
, root
, p
, level
);
2589 btrfs_clear_path_blocking(p
, NULL
, 0);
2595 b
= p
->nodes
[level
];
2597 btrfs_release_path(p
);
2600 BUG_ON(btrfs_header_nritems(b
) == 1);
2610 static void key_search_validate(struct extent_buffer
*b
,
2611 struct btrfs_key
*key
,
2614 #ifdef CONFIG_BTRFS_ASSERT
2615 struct btrfs_disk_key disk_key
;
2617 btrfs_cpu_key_to_disk(&disk_key
, key
);
2620 ASSERT(!memcmp_extent_buffer(b
, &disk_key
,
2621 offsetof(struct btrfs_leaf
, items
[0].key
),
2624 ASSERT(!memcmp_extent_buffer(b
, &disk_key
,
2625 offsetof(struct btrfs_node
, ptrs
[0].key
),
2630 static int key_search(struct extent_buffer
*b
, struct btrfs_key
*key
,
2631 int level
, int *prev_cmp
, int *slot
)
2633 if (*prev_cmp
!= 0) {
2634 *prev_cmp
= bin_search(b
, key
, level
, slot
);
2638 key_search_validate(b
, key
, level
);
2644 int btrfs_find_item(struct btrfs_root
*fs_root
, struct btrfs_path
*path
,
2645 u64 iobjectid
, u64 ioff
, u8 key_type
,
2646 struct btrfs_key
*found_key
)
2649 struct btrfs_key key
;
2650 struct extent_buffer
*eb
;
2655 key
.type
= key_type
;
2656 key
.objectid
= iobjectid
;
2659 ret
= btrfs_search_slot(NULL
, fs_root
, &key
, path
, 0, 0);
2663 eb
= path
->nodes
[0];
2664 if (ret
&& path
->slots
[0] >= btrfs_header_nritems(eb
)) {
2665 ret
= btrfs_next_leaf(fs_root
, path
);
2668 eb
= path
->nodes
[0];
2671 btrfs_item_key_to_cpu(eb
, found_key
, path
->slots
[0]);
2672 if (found_key
->type
!= key
.type
||
2673 found_key
->objectid
!= key
.objectid
)
2680 * look for key in the tree. path is filled in with nodes along the way
2681 * if key is found, we return zero and you can find the item in the leaf
2682 * level of the path (level 0)
2684 * If the key isn't found, the path points to the slot where it should
2685 * be inserted, and 1 is returned. If there are other errors during the
2686 * search a negative error number is returned.
2688 * if ins_len > 0, nodes and leaves will be split as we walk down the
2689 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
2692 int btrfs_search_slot(struct btrfs_trans_handle
*trans
, struct btrfs_root
2693 *root
, struct btrfs_key
*key
, struct btrfs_path
*p
, int
2696 struct extent_buffer
*b
;
2701 int lowest_unlock
= 1;
2703 /* everything at write_lock_level or lower must be write locked */
2704 int write_lock_level
= 0;
2705 u8 lowest_level
= 0;
2706 int min_write_lock_level
;
2709 lowest_level
= p
->lowest_level
;
2710 WARN_ON(lowest_level
&& ins_len
> 0);
2711 WARN_ON(p
->nodes
[0] != NULL
);
2712 BUG_ON(!cow
&& ins_len
);
2717 /* when we are removing items, we might have to go up to level
2718 * two as we update tree pointers Make sure we keep write
2719 * for those levels as well
2721 write_lock_level
= 2;
2722 } else if (ins_len
> 0) {
2724 * for inserting items, make sure we have a write lock on
2725 * level 1 so we can update keys
2727 write_lock_level
= 1;
2731 write_lock_level
= -1;
2733 if (cow
&& (p
->keep_locks
|| p
->lowest_level
))
2734 write_lock_level
= BTRFS_MAX_LEVEL
;
2736 min_write_lock_level
= write_lock_level
;
2741 * we try very hard to do read locks on the root
2743 root_lock
= BTRFS_READ_LOCK
;
2745 if (p
->search_commit_root
) {
2747 * the commit roots are read only
2748 * so we always do read locks
2750 if (p
->need_commit_sem
)
2751 down_read(&root
->fs_info
->commit_root_sem
);
2752 b
= root
->commit_root
;
2753 extent_buffer_get(b
);
2754 level
= btrfs_header_level(b
);
2755 if (p
->need_commit_sem
)
2756 up_read(&root
->fs_info
->commit_root_sem
);
2757 if (!p
->skip_locking
)
2758 btrfs_tree_read_lock(b
);
2760 if (p
->skip_locking
) {
2761 b
= btrfs_root_node(root
);
2762 level
= btrfs_header_level(b
);
2764 /* we don't know the level of the root node
2765 * until we actually have it read locked
2767 b
= btrfs_read_lock_root_node(root
);
2768 level
= btrfs_header_level(b
);
2769 if (level
<= write_lock_level
) {
2770 /* whoops, must trade for write lock */
2771 btrfs_tree_read_unlock(b
);
2772 free_extent_buffer(b
);
2773 b
= btrfs_lock_root_node(root
);
2774 root_lock
= BTRFS_WRITE_LOCK
;
2776 /* the level might have changed, check again */
2777 level
= btrfs_header_level(b
);
2781 p
->nodes
[level
] = b
;
2782 if (!p
->skip_locking
)
2783 p
->locks
[level
] = root_lock
;
2786 level
= btrfs_header_level(b
);
2789 * setup the path here so we can release it under lock
2790 * contention with the cow code
2794 * if we don't really need to cow this block
2795 * then we don't want to set the path blocking,
2796 * so we test it here
2798 if (!should_cow_block(trans
, root
, b
)) {
2799 trans
->dirty
= true;
2804 * must have write locks on this node and the
2807 if (level
> write_lock_level
||
2808 (level
+ 1 > write_lock_level
&&
2809 level
+ 1 < BTRFS_MAX_LEVEL
&&
2810 p
->nodes
[level
+ 1])) {
2811 write_lock_level
= level
+ 1;
2812 btrfs_release_path(p
);
2816 btrfs_set_path_blocking(p
);
2817 err
= btrfs_cow_block(trans
, root
, b
,
2818 p
->nodes
[level
+ 1],
2819 p
->slots
[level
+ 1], &b
);
2826 p
->nodes
[level
] = b
;
2827 btrfs_clear_path_blocking(p
, NULL
, 0);
2830 * we have a lock on b and as long as we aren't changing
2831 * the tree, there is no way to for the items in b to change.
2832 * It is safe to drop the lock on our parent before we
2833 * go through the expensive btree search on b.
2835 * If we're inserting or deleting (ins_len != 0), then we might
2836 * be changing slot zero, which may require changing the parent.
2837 * So, we can't drop the lock until after we know which slot
2838 * we're operating on.
2840 if (!ins_len
&& !p
->keep_locks
) {
2843 if (u
< BTRFS_MAX_LEVEL
&& p
->locks
[u
]) {
2844 btrfs_tree_unlock_rw(p
->nodes
[u
], p
->locks
[u
]);
2849 ret
= key_search(b
, key
, level
, &prev_cmp
, &slot
);
2855 if (ret
&& slot
> 0) {
2859 p
->slots
[level
] = slot
;
2860 err
= setup_nodes_for_search(trans
, root
, p
, b
, level
,
2861 ins_len
, &write_lock_level
);
2868 b
= p
->nodes
[level
];
2869 slot
= p
->slots
[level
];
2872 * slot 0 is special, if we change the key
2873 * we have to update the parent pointer
2874 * which means we must have a write lock
2877 if (slot
== 0 && ins_len
&&
2878 write_lock_level
< level
+ 1) {
2879 write_lock_level
= level
+ 1;
2880 btrfs_release_path(p
);
2884 unlock_up(p
, level
, lowest_unlock
,
2885 min_write_lock_level
, &write_lock_level
);
2887 if (level
== lowest_level
) {
2893 err
= read_block_for_search(trans
, root
, p
,
2894 &b
, level
, slot
, key
, 0);
2902 if (!p
->skip_locking
) {
2903 level
= btrfs_header_level(b
);
2904 if (level
<= write_lock_level
) {
2905 err
= btrfs_try_tree_write_lock(b
);
2907 btrfs_set_path_blocking(p
);
2909 btrfs_clear_path_blocking(p
, b
,
2912 p
->locks
[level
] = BTRFS_WRITE_LOCK
;
2914 err
= btrfs_tree_read_lock_atomic(b
);
2916 btrfs_set_path_blocking(p
);
2917 btrfs_tree_read_lock(b
);
2918 btrfs_clear_path_blocking(p
, b
,
2921 p
->locks
[level
] = BTRFS_READ_LOCK
;
2923 p
->nodes
[level
] = b
;
2926 p
->slots
[level
] = slot
;
2928 btrfs_leaf_free_space(root
, b
) < ins_len
) {
2929 if (write_lock_level
< 1) {
2930 write_lock_level
= 1;
2931 btrfs_release_path(p
);
2935 btrfs_set_path_blocking(p
);
2936 err
= split_leaf(trans
, root
, key
,
2937 p
, ins_len
, ret
== 0);
2938 btrfs_clear_path_blocking(p
, NULL
, 0);
2946 if (!p
->search_for_split
)
2947 unlock_up(p
, level
, lowest_unlock
,
2948 min_write_lock_level
, &write_lock_level
);
2955 * we don't really know what they plan on doing with the path
2956 * from here on, so for now just mark it as blocking
2958 if (!p
->leave_spinning
)
2959 btrfs_set_path_blocking(p
);
2960 if (ret
< 0 && !p
->skip_release_on_error
)
2961 btrfs_release_path(p
);
2966 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2967 * current state of the tree together with the operations recorded in the tree
2968 * modification log to search for the key in a previous version of this tree, as
2969 * denoted by the time_seq parameter.
2971 * Naturally, there is no support for insert, delete or cow operations.
2973 * The resulting path and return value will be set up as if we called
2974 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2976 int btrfs_search_old_slot(struct btrfs_root
*root
, struct btrfs_key
*key
,
2977 struct btrfs_path
*p
, u64 time_seq
)
2979 struct extent_buffer
*b
;
2984 int lowest_unlock
= 1;
2985 u8 lowest_level
= 0;
2988 lowest_level
= p
->lowest_level
;
2989 WARN_ON(p
->nodes
[0] != NULL
);
2991 if (p
->search_commit_root
) {
2993 return btrfs_search_slot(NULL
, root
, key
, p
, 0, 0);
2997 b
= get_old_root(root
, time_seq
);
2998 level
= btrfs_header_level(b
);
2999 p
->locks
[level
] = BTRFS_READ_LOCK
;
3002 level
= btrfs_header_level(b
);
3003 p
->nodes
[level
] = b
;
3004 btrfs_clear_path_blocking(p
, NULL
, 0);
3007 * we have a lock on b and as long as we aren't changing
3008 * the tree, there is no way to for the items in b to change.
3009 * It is safe to drop the lock on our parent before we
3010 * go through the expensive btree search on b.
3012 btrfs_unlock_up_safe(p
, level
+ 1);
3015 * Since we can unwind ebs we want to do a real search every
3019 ret
= key_search(b
, key
, level
, &prev_cmp
, &slot
);
3023 if (ret
&& slot
> 0) {
3027 p
->slots
[level
] = slot
;
3028 unlock_up(p
, level
, lowest_unlock
, 0, NULL
);
3030 if (level
== lowest_level
) {
3036 err
= read_block_for_search(NULL
, root
, p
, &b
, level
,
3037 slot
, key
, time_seq
);
3045 level
= btrfs_header_level(b
);
3046 err
= btrfs_tree_read_lock_atomic(b
);
3048 btrfs_set_path_blocking(p
);
3049 btrfs_tree_read_lock(b
);
3050 btrfs_clear_path_blocking(p
, b
,
3053 b
= tree_mod_log_rewind(root
->fs_info
, p
, b
, time_seq
);
3058 p
->locks
[level
] = BTRFS_READ_LOCK
;
3059 p
->nodes
[level
] = b
;
3061 p
->slots
[level
] = slot
;
3062 unlock_up(p
, level
, lowest_unlock
, 0, NULL
);
3068 if (!p
->leave_spinning
)
3069 btrfs_set_path_blocking(p
);
3071 btrfs_release_path(p
);
3077 * helper to use instead of search slot if no exact match is needed but
3078 * instead the next or previous item should be returned.
3079 * When find_higher is true, the next higher item is returned, the next lower
3081 * When return_any and find_higher are both true, and no higher item is found,
3082 * return the next lower instead.
3083 * When return_any is true and find_higher is false, and no lower item is found,
3084 * return the next higher instead.
3085 * It returns 0 if any item is found, 1 if none is found (tree empty), and
3088 int btrfs_search_slot_for_read(struct btrfs_root
*root
,
3089 struct btrfs_key
*key
, struct btrfs_path
*p
,
3090 int find_higher
, int return_any
)
3093 struct extent_buffer
*leaf
;
3096 ret
= btrfs_search_slot(NULL
, root
, key
, p
, 0, 0);
3100 * a return value of 1 means the path is at the position where the
3101 * item should be inserted. Normally this is the next bigger item,
3102 * but in case the previous item is the last in a leaf, path points
3103 * to the first free slot in the previous leaf, i.e. at an invalid
3109 if (p
->slots
[0] >= btrfs_header_nritems(leaf
)) {
3110 ret
= btrfs_next_leaf(root
, p
);
3116 * no higher item found, return the next
3121 btrfs_release_path(p
);
3125 if (p
->slots
[0] == 0) {
3126 ret
= btrfs_prev_leaf(root
, p
);
3131 if (p
->slots
[0] == btrfs_header_nritems(leaf
))
3138 * no lower item found, return the next
3143 btrfs_release_path(p
);
3153 * adjust the pointers going up the tree, starting at level
3154 * making sure the right key of each node is points to 'key'.
3155 * This is used after shifting pointers to the left, so it stops
3156 * fixing up pointers when a given leaf/node is not in slot 0 of the
3160 static void fixup_low_keys(struct btrfs_fs_info
*fs_info
,
3161 struct btrfs_path
*path
,
3162 struct btrfs_disk_key
*key
, int level
)
3165 struct extent_buffer
*t
;
3167 for (i
= level
; i
< BTRFS_MAX_LEVEL
; i
++) {
3168 int tslot
= path
->slots
[i
];
3169 if (!path
->nodes
[i
])
3172 tree_mod_log_set_node_key(fs_info
, t
, tslot
, 1);
3173 btrfs_set_node_key(t
, key
, tslot
);
3174 btrfs_mark_buffer_dirty(path
->nodes
[i
]);
3183 * This function isn't completely safe. It's the caller's responsibility
3184 * that the new key won't break the order
3186 void btrfs_set_item_key_safe(struct btrfs_fs_info
*fs_info
,
3187 struct btrfs_path
*path
,
3188 struct btrfs_key
*new_key
)
3190 struct btrfs_disk_key disk_key
;
3191 struct extent_buffer
*eb
;
3194 eb
= path
->nodes
[0];
3195 slot
= path
->slots
[0];
3197 btrfs_item_key(eb
, &disk_key
, slot
- 1);
3198 BUG_ON(comp_keys(&disk_key
, new_key
) >= 0);
3200 if (slot
< btrfs_header_nritems(eb
) - 1) {
3201 btrfs_item_key(eb
, &disk_key
, slot
+ 1);
3202 BUG_ON(comp_keys(&disk_key
, new_key
) <= 0);
3205 btrfs_cpu_key_to_disk(&disk_key
, new_key
);
3206 btrfs_set_item_key(eb
, &disk_key
, slot
);
3207 btrfs_mark_buffer_dirty(eb
);
3209 fixup_low_keys(fs_info
, path
, &disk_key
, 1);
3213 * try to push data from one node into the next node left in the
3216 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3217 * error, and > 0 if there was no room in the left hand block.
3219 static int push_node_left(struct btrfs_trans_handle
*trans
,
3220 struct btrfs_root
*root
, struct extent_buffer
*dst
,
3221 struct extent_buffer
*src
, int empty
)
3228 src_nritems
= btrfs_header_nritems(src
);
3229 dst_nritems
= btrfs_header_nritems(dst
);
3230 push_items
= BTRFS_NODEPTRS_PER_BLOCK(root
) - dst_nritems
;
3231 WARN_ON(btrfs_header_generation(src
) != trans
->transid
);
3232 WARN_ON(btrfs_header_generation(dst
) != trans
->transid
);
3234 if (!empty
&& src_nritems
<= 8)
3237 if (push_items
<= 0)
3241 push_items
= min(src_nritems
, push_items
);
3242 if (push_items
< src_nritems
) {
3243 /* leave at least 8 pointers in the node if
3244 * we aren't going to empty it
3246 if (src_nritems
- push_items
< 8) {
3247 if (push_items
<= 8)
3253 push_items
= min(src_nritems
- 8, push_items
);
3255 ret
= tree_mod_log_eb_copy(root
->fs_info
, dst
, src
, dst_nritems
, 0,
3258 btrfs_abort_transaction(trans
, ret
);
3261 copy_extent_buffer(dst
, src
,
3262 btrfs_node_key_ptr_offset(dst_nritems
),
3263 btrfs_node_key_ptr_offset(0),
3264 push_items
* sizeof(struct btrfs_key_ptr
));
3266 if (push_items
< src_nritems
) {
3268 * don't call tree_mod_log_eb_move here, key removal was already
3269 * fully logged by tree_mod_log_eb_copy above.
3271 memmove_extent_buffer(src
, btrfs_node_key_ptr_offset(0),
3272 btrfs_node_key_ptr_offset(push_items
),
3273 (src_nritems
- push_items
) *
3274 sizeof(struct btrfs_key_ptr
));
3276 btrfs_set_header_nritems(src
, src_nritems
- push_items
);
3277 btrfs_set_header_nritems(dst
, dst_nritems
+ push_items
);
3278 btrfs_mark_buffer_dirty(src
);
3279 btrfs_mark_buffer_dirty(dst
);
3285 * try to push data from one node into the next node right in the
3288 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3289 * error, and > 0 if there was no room in the right hand block.
3291 * this will only push up to 1/2 the contents of the left node over
3293 static int balance_node_right(struct btrfs_trans_handle
*trans
,
3294 struct btrfs_root
*root
,
3295 struct extent_buffer
*dst
,
3296 struct extent_buffer
*src
)
3304 WARN_ON(btrfs_header_generation(src
) != trans
->transid
);
3305 WARN_ON(btrfs_header_generation(dst
) != trans
->transid
);
3307 src_nritems
= btrfs_header_nritems(src
);
3308 dst_nritems
= btrfs_header_nritems(dst
);
3309 push_items
= BTRFS_NODEPTRS_PER_BLOCK(root
) - dst_nritems
;
3310 if (push_items
<= 0)
3313 if (src_nritems
< 4)
3316 max_push
= src_nritems
/ 2 + 1;
3317 /* don't try to empty the node */
3318 if (max_push
>= src_nritems
)
3321 if (max_push
< push_items
)
3322 push_items
= max_push
;
3324 tree_mod_log_eb_move(root
->fs_info
, dst
, push_items
, 0, dst_nritems
);
3325 memmove_extent_buffer(dst
, btrfs_node_key_ptr_offset(push_items
),
3326 btrfs_node_key_ptr_offset(0),
3328 sizeof(struct btrfs_key_ptr
));
3330 ret
= tree_mod_log_eb_copy(root
->fs_info
, dst
, src
, 0,
3331 src_nritems
- push_items
, push_items
);
3333 btrfs_abort_transaction(trans
, ret
);
3336 copy_extent_buffer(dst
, src
,
3337 btrfs_node_key_ptr_offset(0),
3338 btrfs_node_key_ptr_offset(src_nritems
- push_items
),
3339 push_items
* sizeof(struct btrfs_key_ptr
));
3341 btrfs_set_header_nritems(src
, src_nritems
- push_items
);
3342 btrfs_set_header_nritems(dst
, dst_nritems
+ push_items
);
3344 btrfs_mark_buffer_dirty(src
);
3345 btrfs_mark_buffer_dirty(dst
);
3351 * helper function to insert a new root level in the tree.
3352 * A new node is allocated, and a single item is inserted to
3353 * point to the existing root
3355 * returns zero on success or < 0 on failure.
3357 static noinline
int insert_new_root(struct btrfs_trans_handle
*trans
,
3358 struct btrfs_root
*root
,
3359 struct btrfs_path
*path
, int level
)
3362 struct extent_buffer
*lower
;
3363 struct extent_buffer
*c
;
3364 struct extent_buffer
*old
;
3365 struct btrfs_disk_key lower_key
;
3367 BUG_ON(path
->nodes
[level
]);
3368 BUG_ON(path
->nodes
[level
-1] != root
->node
);
3370 lower
= path
->nodes
[level
-1];
3372 btrfs_item_key(lower
, &lower_key
, 0);
3374 btrfs_node_key(lower
, &lower_key
, 0);
3376 c
= btrfs_alloc_tree_block(trans
, root
, 0, root
->root_key
.objectid
,
3377 &lower_key
, level
, root
->node
->start
, 0);
3381 root_add_used(root
, root
->nodesize
);
3383 memset_extent_buffer(c
, 0, 0, sizeof(struct btrfs_header
));
3384 btrfs_set_header_nritems(c
, 1);
3385 btrfs_set_header_level(c
, level
);
3386 btrfs_set_header_bytenr(c
, c
->start
);
3387 btrfs_set_header_generation(c
, trans
->transid
);
3388 btrfs_set_header_backref_rev(c
, BTRFS_MIXED_BACKREF_REV
);
3389 btrfs_set_header_owner(c
, root
->root_key
.objectid
);
3391 write_extent_buffer(c
, root
->fs_info
->fsid
, btrfs_header_fsid(),
3394 write_extent_buffer(c
, root
->fs_info
->chunk_tree_uuid
,
3395 btrfs_header_chunk_tree_uuid(c
), BTRFS_UUID_SIZE
);
3397 btrfs_set_node_key(c
, &lower_key
, 0);
3398 btrfs_set_node_blockptr(c
, 0, lower
->start
);
3399 lower_gen
= btrfs_header_generation(lower
);
3400 WARN_ON(lower_gen
!= trans
->transid
);
3402 btrfs_set_node_ptr_generation(c
, 0, lower_gen
);
3404 btrfs_mark_buffer_dirty(c
);
3407 tree_mod_log_set_root_pointer(root
, c
, 0);
3408 rcu_assign_pointer(root
->node
, c
);
3410 /* the super has an extra ref to root->node */
3411 free_extent_buffer(old
);
3413 add_root_to_dirty_list(root
);
3414 extent_buffer_get(c
);
3415 path
->nodes
[level
] = c
;
3416 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
3417 path
->slots
[level
] = 0;
3422 * worker function to insert a single pointer in a node.
3423 * the node should have enough room for the pointer already
3425 * slot and level indicate where you want the key to go, and
3426 * blocknr is the block the key points to.
3428 static void insert_ptr(struct btrfs_trans_handle
*trans
,
3429 struct btrfs_root
*root
, struct btrfs_path
*path
,
3430 struct btrfs_disk_key
*key
, u64 bytenr
,
3431 int slot
, int level
)
3433 struct extent_buffer
*lower
;
3437 BUG_ON(!path
->nodes
[level
]);
3438 btrfs_assert_tree_locked(path
->nodes
[level
]);
3439 lower
= path
->nodes
[level
];
3440 nritems
= btrfs_header_nritems(lower
);
3441 BUG_ON(slot
> nritems
);
3442 BUG_ON(nritems
== BTRFS_NODEPTRS_PER_BLOCK(root
));
3443 if (slot
!= nritems
) {
3445 tree_mod_log_eb_move(root
->fs_info
, lower
, slot
+ 1,
3446 slot
, nritems
- slot
);
3447 memmove_extent_buffer(lower
,
3448 btrfs_node_key_ptr_offset(slot
+ 1),
3449 btrfs_node_key_ptr_offset(slot
),
3450 (nritems
- slot
) * sizeof(struct btrfs_key_ptr
));
3453 ret
= tree_mod_log_insert_key(root
->fs_info
, lower
, slot
,
3454 MOD_LOG_KEY_ADD
, GFP_NOFS
);
3457 btrfs_set_node_key(lower
, key
, slot
);
3458 btrfs_set_node_blockptr(lower
, slot
, bytenr
);
3459 WARN_ON(trans
->transid
== 0);
3460 btrfs_set_node_ptr_generation(lower
, slot
, trans
->transid
);
3461 btrfs_set_header_nritems(lower
, nritems
+ 1);
3462 btrfs_mark_buffer_dirty(lower
);
3466 * split the node at the specified level in path in two.
3467 * The path is corrected to point to the appropriate node after the split
3469 * Before splitting this tries to make some room in the node by pushing
3470 * left and right, if either one works, it returns right away.
3472 * returns 0 on success and < 0 on failure
3474 static noinline
int split_node(struct btrfs_trans_handle
*trans
,
3475 struct btrfs_root
*root
,
3476 struct btrfs_path
*path
, int level
)
3478 struct extent_buffer
*c
;
3479 struct extent_buffer
*split
;
3480 struct btrfs_disk_key disk_key
;
3485 c
= path
->nodes
[level
];
3486 WARN_ON(btrfs_header_generation(c
) != trans
->transid
);
3487 if (c
== root
->node
) {
3489 * trying to split the root, lets make a new one
3491 * tree mod log: We don't log_removal old root in
3492 * insert_new_root, because that root buffer will be kept as a
3493 * normal node. We are going to log removal of half of the
3494 * elements below with tree_mod_log_eb_copy. We're holding a
3495 * tree lock on the buffer, which is why we cannot race with
3496 * other tree_mod_log users.
3498 ret
= insert_new_root(trans
, root
, path
, level
+ 1);
3502 ret
= push_nodes_for_insert(trans
, root
, path
, level
);
3503 c
= path
->nodes
[level
];
3504 if (!ret
&& btrfs_header_nritems(c
) <
3505 BTRFS_NODEPTRS_PER_BLOCK(root
) - 3)
3511 c_nritems
= btrfs_header_nritems(c
);
3512 mid
= (c_nritems
+ 1) / 2;
3513 btrfs_node_key(c
, &disk_key
, mid
);
3515 split
= btrfs_alloc_tree_block(trans
, root
, 0, root
->root_key
.objectid
,
3516 &disk_key
, level
, c
->start
, 0);
3518 return PTR_ERR(split
);
3520 root_add_used(root
, root
->nodesize
);
3522 memset_extent_buffer(split
, 0, 0, sizeof(struct btrfs_header
));
3523 btrfs_set_header_level(split
, btrfs_header_level(c
));
3524 btrfs_set_header_bytenr(split
, split
->start
);
3525 btrfs_set_header_generation(split
, trans
->transid
);
3526 btrfs_set_header_backref_rev(split
, BTRFS_MIXED_BACKREF_REV
);
3527 btrfs_set_header_owner(split
, root
->root_key
.objectid
);
3528 write_extent_buffer(split
, root
->fs_info
->fsid
,
3529 btrfs_header_fsid(), BTRFS_FSID_SIZE
);
3530 write_extent_buffer(split
, root
->fs_info
->chunk_tree_uuid
,
3531 btrfs_header_chunk_tree_uuid(split
),
3534 ret
= tree_mod_log_eb_copy(root
->fs_info
, split
, c
, 0,
3535 mid
, c_nritems
- mid
);
3537 btrfs_abort_transaction(trans
, ret
);
3540 copy_extent_buffer(split
, c
,
3541 btrfs_node_key_ptr_offset(0),
3542 btrfs_node_key_ptr_offset(mid
),
3543 (c_nritems
- mid
) * sizeof(struct btrfs_key_ptr
));
3544 btrfs_set_header_nritems(split
, c_nritems
- mid
);
3545 btrfs_set_header_nritems(c
, mid
);
3548 btrfs_mark_buffer_dirty(c
);
3549 btrfs_mark_buffer_dirty(split
);
3551 insert_ptr(trans
, root
, path
, &disk_key
, split
->start
,
3552 path
->slots
[level
+ 1] + 1, level
+ 1);
3554 if (path
->slots
[level
] >= mid
) {
3555 path
->slots
[level
] -= mid
;
3556 btrfs_tree_unlock(c
);
3557 free_extent_buffer(c
);
3558 path
->nodes
[level
] = split
;
3559 path
->slots
[level
+ 1] += 1;
3561 btrfs_tree_unlock(split
);
3562 free_extent_buffer(split
);
3568 * how many bytes are required to store the items in a leaf. start
3569 * and nr indicate which items in the leaf to check. This totals up the
3570 * space used both by the item structs and the item data
3572 static int leaf_space_used(struct extent_buffer
*l
, int start
, int nr
)
3574 struct btrfs_item
*start_item
;
3575 struct btrfs_item
*end_item
;
3576 struct btrfs_map_token token
;
3578 int nritems
= btrfs_header_nritems(l
);
3579 int end
= min(nritems
, start
+ nr
) - 1;
3583 btrfs_init_map_token(&token
);
3584 start_item
= btrfs_item_nr(start
);
3585 end_item
= btrfs_item_nr(end
);
3586 data_len
= btrfs_token_item_offset(l
, start_item
, &token
) +
3587 btrfs_token_item_size(l
, start_item
, &token
);
3588 data_len
= data_len
- btrfs_token_item_offset(l
, end_item
, &token
);
3589 data_len
+= sizeof(struct btrfs_item
) * nr
;
3590 WARN_ON(data_len
< 0);
3595 * The space between the end of the leaf items and
3596 * the start of the leaf data. IOW, how much room
3597 * the leaf has left for both items and data
3599 noinline
int btrfs_leaf_free_space(struct btrfs_root
*root
,
3600 struct extent_buffer
*leaf
)
3602 int nritems
= btrfs_header_nritems(leaf
);
3604 ret
= BTRFS_LEAF_DATA_SIZE(root
) - leaf_space_used(leaf
, 0, nritems
);
3606 btrfs_crit(root
->fs_info
,
3607 "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3608 ret
, (unsigned long) BTRFS_LEAF_DATA_SIZE(root
),
3609 leaf_space_used(leaf
, 0, nritems
), nritems
);
3615 * min slot controls the lowest index we're willing to push to the
3616 * right. We'll push up to and including min_slot, but no lower
3618 static noinline
int __push_leaf_right(struct btrfs_trans_handle
*trans
,
3619 struct btrfs_root
*root
,
3620 struct btrfs_path
*path
,
3621 int data_size
, int empty
,
3622 struct extent_buffer
*right
,
3623 int free_space
, u32 left_nritems
,
3626 struct extent_buffer
*left
= path
->nodes
[0];
3627 struct extent_buffer
*upper
= path
->nodes
[1];
3628 struct btrfs_map_token token
;
3629 struct btrfs_disk_key disk_key
;
3634 struct btrfs_item
*item
;
3640 btrfs_init_map_token(&token
);
3645 nr
= max_t(u32
, 1, min_slot
);
3647 if (path
->slots
[0] >= left_nritems
)
3648 push_space
+= data_size
;
3650 slot
= path
->slots
[1];
3651 i
= left_nritems
- 1;
3653 item
= btrfs_item_nr(i
);
3655 if (!empty
&& push_items
> 0) {
3656 if (path
->slots
[0] > i
)
3658 if (path
->slots
[0] == i
) {
3659 int space
= btrfs_leaf_free_space(root
, left
);
3660 if (space
+ push_space
* 2 > free_space
)
3665 if (path
->slots
[0] == i
)
3666 push_space
+= data_size
;
3668 this_item_size
= btrfs_item_size(left
, item
);
3669 if (this_item_size
+ sizeof(*item
) + push_space
> free_space
)
3673 push_space
+= this_item_size
+ sizeof(*item
);
3679 if (push_items
== 0)
3682 WARN_ON(!empty
&& push_items
== left_nritems
);
3684 /* push left to right */
3685 right_nritems
= btrfs_header_nritems(right
);
3687 push_space
= btrfs_item_end_nr(left
, left_nritems
- push_items
);
3688 push_space
-= leaf_data_end(root
, left
);
3690 /* make room in the right data area */
3691 data_end
= leaf_data_end(root
, right
);
3692 memmove_extent_buffer(right
,
3693 btrfs_leaf_data(right
) + data_end
- push_space
,
3694 btrfs_leaf_data(right
) + data_end
,
3695 BTRFS_LEAF_DATA_SIZE(root
) - data_end
);
3697 /* copy from the left data area */
3698 copy_extent_buffer(right
, left
, btrfs_leaf_data(right
) +
3699 BTRFS_LEAF_DATA_SIZE(root
) - push_space
,
3700 btrfs_leaf_data(left
) + leaf_data_end(root
, left
),
3703 memmove_extent_buffer(right
, btrfs_item_nr_offset(push_items
),
3704 btrfs_item_nr_offset(0),
3705 right_nritems
* sizeof(struct btrfs_item
));
3707 /* copy the items from left to right */
3708 copy_extent_buffer(right
, left
, btrfs_item_nr_offset(0),
3709 btrfs_item_nr_offset(left_nritems
- push_items
),
3710 push_items
* sizeof(struct btrfs_item
));
3712 /* update the item pointers */
3713 right_nritems
+= push_items
;
3714 btrfs_set_header_nritems(right
, right_nritems
);
3715 push_space
= BTRFS_LEAF_DATA_SIZE(root
);
3716 for (i
= 0; i
< right_nritems
; i
++) {
3717 item
= btrfs_item_nr(i
);
3718 push_space
-= btrfs_token_item_size(right
, item
, &token
);
3719 btrfs_set_token_item_offset(right
, item
, push_space
, &token
);
3722 left_nritems
-= push_items
;
3723 btrfs_set_header_nritems(left
, left_nritems
);
3726 btrfs_mark_buffer_dirty(left
);
3728 clean_tree_block(trans
, root
->fs_info
, left
);
3730 btrfs_mark_buffer_dirty(right
);
3732 btrfs_item_key(right
, &disk_key
, 0);
3733 btrfs_set_node_key(upper
, &disk_key
, slot
+ 1);
3734 btrfs_mark_buffer_dirty(upper
);
3736 /* then fixup the leaf pointer in the path */
3737 if (path
->slots
[0] >= left_nritems
) {
3738 path
->slots
[0] -= left_nritems
;
3739 if (btrfs_header_nritems(path
->nodes
[0]) == 0)
3740 clean_tree_block(trans
, root
->fs_info
, path
->nodes
[0]);
3741 btrfs_tree_unlock(path
->nodes
[0]);
3742 free_extent_buffer(path
->nodes
[0]);
3743 path
->nodes
[0] = right
;
3744 path
->slots
[1] += 1;
3746 btrfs_tree_unlock(right
);
3747 free_extent_buffer(right
);
3752 btrfs_tree_unlock(right
);
3753 free_extent_buffer(right
);
3758 * push some data in the path leaf to the right, trying to free up at
3759 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3761 * returns 1 if the push failed because the other node didn't have enough
3762 * room, 0 if everything worked out and < 0 if there were major errors.
3764 * this will push starting from min_slot to the end of the leaf. It won't
3765 * push any slot lower than min_slot
3767 static int push_leaf_right(struct btrfs_trans_handle
*trans
, struct btrfs_root
3768 *root
, struct btrfs_path
*path
,
3769 int min_data_size
, int data_size
,
3770 int empty
, u32 min_slot
)
3772 struct extent_buffer
*left
= path
->nodes
[0];
3773 struct extent_buffer
*right
;
3774 struct extent_buffer
*upper
;
3780 if (!path
->nodes
[1])
3783 slot
= path
->slots
[1];
3784 upper
= path
->nodes
[1];
3785 if (slot
>= btrfs_header_nritems(upper
) - 1)
3788 btrfs_assert_tree_locked(path
->nodes
[1]);
3790 right
= read_node_slot(root
, upper
, slot
+ 1);
3792 * slot + 1 is not valid or we fail to read the right node,
3793 * no big deal, just return.
3798 btrfs_tree_lock(right
);
3799 btrfs_set_lock_blocking(right
);
3801 free_space
= btrfs_leaf_free_space(root
, right
);
3802 if (free_space
< data_size
)
3805 /* cow and double check */
3806 ret
= btrfs_cow_block(trans
, root
, right
, upper
,
3811 free_space
= btrfs_leaf_free_space(root
, right
);
3812 if (free_space
< data_size
)
3815 left_nritems
= btrfs_header_nritems(left
);
3816 if (left_nritems
== 0)
3819 if (path
->slots
[0] == left_nritems
&& !empty
) {
3820 /* Key greater than all keys in the leaf, right neighbor has
3821 * enough room for it and we're not emptying our leaf to delete
3822 * it, therefore use right neighbor to insert the new item and
3823 * no need to touch/dirty our left leaft. */
3824 btrfs_tree_unlock(left
);
3825 free_extent_buffer(left
);
3826 path
->nodes
[0] = right
;
3832 return __push_leaf_right(trans
, root
, path
, min_data_size
, empty
,
3833 right
, free_space
, left_nritems
, min_slot
);
3835 btrfs_tree_unlock(right
);
3836 free_extent_buffer(right
);
3841 * push some data in the path leaf to the left, trying to free up at
3842 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3844 * max_slot can put a limit on how far into the leaf we'll push items. The
3845 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
3848 static noinline
int __push_leaf_left(struct btrfs_trans_handle
*trans
,
3849 struct btrfs_root
*root
,
3850 struct btrfs_path
*path
, int data_size
,
3851 int empty
, struct extent_buffer
*left
,
3852 int free_space
, u32 right_nritems
,
3855 struct btrfs_disk_key disk_key
;
3856 struct extent_buffer
*right
= path
->nodes
[0];
3860 struct btrfs_item
*item
;
3861 u32 old_left_nritems
;
3865 u32 old_left_item_size
;
3866 struct btrfs_map_token token
;
3868 btrfs_init_map_token(&token
);
3871 nr
= min(right_nritems
, max_slot
);
3873 nr
= min(right_nritems
- 1, max_slot
);
3875 for (i
= 0; i
< nr
; i
++) {
3876 item
= btrfs_item_nr(i
);
3878 if (!empty
&& push_items
> 0) {
3879 if (path
->slots
[0] < i
)
3881 if (path
->slots
[0] == i
) {
3882 int space
= btrfs_leaf_free_space(root
, right
);
3883 if (space
+ push_space
* 2 > free_space
)
3888 if (path
->slots
[0] == i
)
3889 push_space
+= data_size
;
3891 this_item_size
= btrfs_item_size(right
, item
);
3892 if (this_item_size
+ sizeof(*item
) + push_space
> free_space
)
3896 push_space
+= this_item_size
+ sizeof(*item
);
3899 if (push_items
== 0) {
3903 WARN_ON(!empty
&& push_items
== btrfs_header_nritems(right
));
3905 /* push data from right to left */
3906 copy_extent_buffer(left
, right
,
3907 btrfs_item_nr_offset(btrfs_header_nritems(left
)),
3908 btrfs_item_nr_offset(0),
3909 push_items
* sizeof(struct btrfs_item
));
3911 push_space
= BTRFS_LEAF_DATA_SIZE(root
) -
3912 btrfs_item_offset_nr(right
, push_items
- 1);
3914 copy_extent_buffer(left
, right
, btrfs_leaf_data(left
) +
3915 leaf_data_end(root
, left
) - push_space
,
3916 btrfs_leaf_data(right
) +
3917 btrfs_item_offset_nr(right
, push_items
- 1),
3919 old_left_nritems
= btrfs_header_nritems(left
);
3920 BUG_ON(old_left_nritems
<= 0);
3922 old_left_item_size
= btrfs_item_offset_nr(left
, old_left_nritems
- 1);
3923 for (i
= old_left_nritems
; i
< old_left_nritems
+ push_items
; i
++) {
3926 item
= btrfs_item_nr(i
);
3928 ioff
= btrfs_token_item_offset(left
, item
, &token
);
3929 btrfs_set_token_item_offset(left
, item
,
3930 ioff
- (BTRFS_LEAF_DATA_SIZE(root
) - old_left_item_size
),
3933 btrfs_set_header_nritems(left
, old_left_nritems
+ push_items
);
3935 /* fixup right node */
3936 if (push_items
> right_nritems
)
3937 WARN(1, KERN_CRIT
"push items %d nr %u\n", push_items
,
3940 if (push_items
< right_nritems
) {
3941 push_space
= btrfs_item_offset_nr(right
, push_items
- 1) -
3942 leaf_data_end(root
, right
);
3943 memmove_extent_buffer(right
, btrfs_leaf_data(right
) +
3944 BTRFS_LEAF_DATA_SIZE(root
) - push_space
,
3945 btrfs_leaf_data(right
) +
3946 leaf_data_end(root
, right
), push_space
);
3948 memmove_extent_buffer(right
, btrfs_item_nr_offset(0),
3949 btrfs_item_nr_offset(push_items
),
3950 (btrfs_header_nritems(right
) - push_items
) *
3951 sizeof(struct btrfs_item
));
3953 right_nritems
-= push_items
;
3954 btrfs_set_header_nritems(right
, right_nritems
);
3955 push_space
= BTRFS_LEAF_DATA_SIZE(root
);
3956 for (i
= 0; i
< right_nritems
; i
++) {
3957 item
= btrfs_item_nr(i
);
3959 push_space
= push_space
- btrfs_token_item_size(right
,
3961 btrfs_set_token_item_offset(right
, item
, push_space
, &token
);
3964 btrfs_mark_buffer_dirty(left
);
3966 btrfs_mark_buffer_dirty(right
);
3968 clean_tree_block(trans
, root
->fs_info
, right
);
3970 btrfs_item_key(right
, &disk_key
, 0);
3971 fixup_low_keys(root
->fs_info
, path
, &disk_key
, 1);
3973 /* then fixup the leaf pointer in the path */
3974 if (path
->slots
[0] < push_items
) {
3975 path
->slots
[0] += old_left_nritems
;
3976 btrfs_tree_unlock(path
->nodes
[0]);
3977 free_extent_buffer(path
->nodes
[0]);
3978 path
->nodes
[0] = left
;
3979 path
->slots
[1] -= 1;
3981 btrfs_tree_unlock(left
);
3982 free_extent_buffer(left
);
3983 path
->slots
[0] -= push_items
;
3985 BUG_ON(path
->slots
[0] < 0);
3988 btrfs_tree_unlock(left
);
3989 free_extent_buffer(left
);
3994 * push some data in the path leaf to the left, trying to free up at
3995 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3997 * max_slot can put a limit on how far into the leaf we'll push items. The
3998 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
4001 static int push_leaf_left(struct btrfs_trans_handle
*trans
, struct btrfs_root
4002 *root
, struct btrfs_path
*path
, int min_data_size
,
4003 int data_size
, int empty
, u32 max_slot
)
4005 struct extent_buffer
*right
= path
->nodes
[0];
4006 struct extent_buffer
*left
;
4012 slot
= path
->slots
[1];
4015 if (!path
->nodes
[1])
4018 right_nritems
= btrfs_header_nritems(right
);
4019 if (right_nritems
== 0)
4022 btrfs_assert_tree_locked(path
->nodes
[1]);
4024 left
= read_node_slot(root
, path
->nodes
[1], slot
- 1);
4026 * slot - 1 is not valid or we fail to read the left node,
4027 * no big deal, just return.
4032 btrfs_tree_lock(left
);
4033 btrfs_set_lock_blocking(left
);
4035 free_space
= btrfs_leaf_free_space(root
, left
);
4036 if (free_space
< data_size
) {
4041 /* cow and double check */
4042 ret
= btrfs_cow_block(trans
, root
, left
,
4043 path
->nodes
[1], slot
- 1, &left
);
4045 /* we hit -ENOSPC, but it isn't fatal here */
4051 free_space
= btrfs_leaf_free_space(root
, left
);
4052 if (free_space
< data_size
) {
4057 return __push_leaf_left(trans
, root
, path
, min_data_size
,
4058 empty
, left
, free_space
, right_nritems
,
4061 btrfs_tree_unlock(left
);
4062 free_extent_buffer(left
);
4067 * split the path's leaf in two, making sure there is at least data_size
4068 * available for the resulting leaf level of the path.
4070 static noinline
void copy_for_split(struct btrfs_trans_handle
*trans
,
4071 struct btrfs_root
*root
,
4072 struct btrfs_path
*path
,
4073 struct extent_buffer
*l
,
4074 struct extent_buffer
*right
,
4075 int slot
, int mid
, int nritems
)
4080 struct btrfs_disk_key disk_key
;
4081 struct btrfs_map_token token
;
4083 btrfs_init_map_token(&token
);
4085 nritems
= nritems
- mid
;
4086 btrfs_set_header_nritems(right
, nritems
);
4087 data_copy_size
= btrfs_item_end_nr(l
, mid
) - leaf_data_end(root
, l
);
4089 copy_extent_buffer(right
, l
, btrfs_item_nr_offset(0),
4090 btrfs_item_nr_offset(mid
),
4091 nritems
* sizeof(struct btrfs_item
));
4093 copy_extent_buffer(right
, l
,
4094 btrfs_leaf_data(right
) + BTRFS_LEAF_DATA_SIZE(root
) -
4095 data_copy_size
, btrfs_leaf_data(l
) +
4096 leaf_data_end(root
, l
), data_copy_size
);
4098 rt_data_off
= BTRFS_LEAF_DATA_SIZE(root
) -
4099 btrfs_item_end_nr(l
, mid
);
4101 for (i
= 0; i
< nritems
; i
++) {
4102 struct btrfs_item
*item
= btrfs_item_nr(i
);
4105 ioff
= btrfs_token_item_offset(right
, item
, &token
);
4106 btrfs_set_token_item_offset(right
, item
,
4107 ioff
+ rt_data_off
, &token
);
4110 btrfs_set_header_nritems(l
, mid
);
4111 btrfs_item_key(right
, &disk_key
, 0);
4112 insert_ptr(trans
, root
, path
, &disk_key
, right
->start
,
4113 path
->slots
[1] + 1, 1);
4115 btrfs_mark_buffer_dirty(right
);
4116 btrfs_mark_buffer_dirty(l
);
4117 BUG_ON(path
->slots
[0] != slot
);
4120 btrfs_tree_unlock(path
->nodes
[0]);
4121 free_extent_buffer(path
->nodes
[0]);
4122 path
->nodes
[0] = right
;
4123 path
->slots
[0] -= mid
;
4124 path
->slots
[1] += 1;
4126 btrfs_tree_unlock(right
);
4127 free_extent_buffer(right
);
4130 BUG_ON(path
->slots
[0] < 0);
4134 * double splits happen when we need to insert a big item in the middle
4135 * of a leaf. A double split can leave us with 3 mostly empty leaves:
4136 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4139 * We avoid this by trying to push the items on either side of our target
4140 * into the adjacent leaves. If all goes well we can avoid the double split
4143 static noinline
int push_for_double_split(struct btrfs_trans_handle
*trans
,
4144 struct btrfs_root
*root
,
4145 struct btrfs_path
*path
,
4152 int space_needed
= data_size
;
4154 slot
= path
->slots
[0];
4155 if (slot
< btrfs_header_nritems(path
->nodes
[0]))
4156 space_needed
-= btrfs_leaf_free_space(root
, path
->nodes
[0]);
4159 * try to push all the items after our slot into the
4162 ret
= push_leaf_right(trans
, root
, path
, 1, space_needed
, 0, slot
);
4169 nritems
= btrfs_header_nritems(path
->nodes
[0]);
4171 * our goal is to get our slot at the start or end of a leaf. If
4172 * we've done so we're done
4174 if (path
->slots
[0] == 0 || path
->slots
[0] == nritems
)
4177 if (btrfs_leaf_free_space(root
, path
->nodes
[0]) >= data_size
)
4180 /* try to push all the items before our slot into the next leaf */
4181 slot
= path
->slots
[0];
4182 ret
= push_leaf_left(trans
, root
, path
, 1, space_needed
, 0, slot
);
4195 * split the path's leaf in two, making sure there is at least data_size
4196 * available for the resulting leaf level of the path.
4198 * returns 0 if all went well and < 0 on failure.
4200 static noinline
int split_leaf(struct btrfs_trans_handle
*trans
,
4201 struct btrfs_root
*root
,
4202 struct btrfs_key
*ins_key
,
4203 struct btrfs_path
*path
, int data_size
,
4206 struct btrfs_disk_key disk_key
;
4207 struct extent_buffer
*l
;
4211 struct extent_buffer
*right
;
4212 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4216 int num_doubles
= 0;
4217 int tried_avoid_double
= 0;
4220 slot
= path
->slots
[0];
4221 if (extend
&& data_size
+ btrfs_item_size_nr(l
, slot
) +
4222 sizeof(struct btrfs_item
) > BTRFS_LEAF_DATA_SIZE(root
))
4225 /* first try to make some room by pushing left and right */
4226 if (data_size
&& path
->nodes
[1]) {
4227 int space_needed
= data_size
;
4229 if (slot
< btrfs_header_nritems(l
))
4230 space_needed
-= btrfs_leaf_free_space(root
, l
);
4232 wret
= push_leaf_right(trans
, root
, path
, space_needed
,
4233 space_needed
, 0, 0);
4237 wret
= push_leaf_left(trans
, root
, path
, space_needed
,
4238 space_needed
, 0, (u32
)-1);
4244 /* did the pushes work? */
4245 if (btrfs_leaf_free_space(root
, l
) >= data_size
)
4249 if (!path
->nodes
[1]) {
4250 ret
= insert_new_root(trans
, root
, path
, 1);
4257 slot
= path
->slots
[0];
4258 nritems
= btrfs_header_nritems(l
);
4259 mid
= (nritems
+ 1) / 2;
4263 leaf_space_used(l
, mid
, nritems
- mid
) + data_size
>
4264 BTRFS_LEAF_DATA_SIZE(root
)) {
4265 if (slot
>= nritems
) {
4269 if (mid
!= nritems
&&
4270 leaf_space_used(l
, mid
, nritems
- mid
) +
4271 data_size
> BTRFS_LEAF_DATA_SIZE(root
)) {
4272 if (data_size
&& !tried_avoid_double
)
4273 goto push_for_double
;
4279 if (leaf_space_used(l
, 0, mid
) + data_size
>
4280 BTRFS_LEAF_DATA_SIZE(root
)) {
4281 if (!extend
&& data_size
&& slot
== 0) {
4283 } else if ((extend
|| !data_size
) && slot
== 0) {
4287 if (mid
!= nritems
&&
4288 leaf_space_used(l
, mid
, nritems
- mid
) +
4289 data_size
> BTRFS_LEAF_DATA_SIZE(root
)) {
4290 if (data_size
&& !tried_avoid_double
)
4291 goto push_for_double
;
4299 btrfs_cpu_key_to_disk(&disk_key
, ins_key
);
4301 btrfs_item_key(l
, &disk_key
, mid
);
4303 right
= btrfs_alloc_tree_block(trans
, root
, 0, root
->root_key
.objectid
,
4304 &disk_key
, 0, l
->start
, 0);
4306 return PTR_ERR(right
);
4308 root_add_used(root
, root
->nodesize
);
4310 memset_extent_buffer(right
, 0, 0, sizeof(struct btrfs_header
));
4311 btrfs_set_header_bytenr(right
, right
->start
);
4312 btrfs_set_header_generation(right
, trans
->transid
);
4313 btrfs_set_header_backref_rev(right
, BTRFS_MIXED_BACKREF_REV
);
4314 btrfs_set_header_owner(right
, root
->root_key
.objectid
);
4315 btrfs_set_header_level(right
, 0);
4316 write_extent_buffer(right
, fs_info
->fsid
,
4317 btrfs_header_fsid(), BTRFS_FSID_SIZE
);
4319 write_extent_buffer(right
, fs_info
->chunk_tree_uuid
,
4320 btrfs_header_chunk_tree_uuid(right
),
4325 btrfs_set_header_nritems(right
, 0);
4326 insert_ptr(trans
, root
, path
, &disk_key
, right
->start
,
4327 path
->slots
[1] + 1, 1);
4328 btrfs_tree_unlock(path
->nodes
[0]);
4329 free_extent_buffer(path
->nodes
[0]);
4330 path
->nodes
[0] = right
;
4332 path
->slots
[1] += 1;
4334 btrfs_set_header_nritems(right
, 0);
4335 insert_ptr(trans
, root
, path
, &disk_key
, right
->start
,
4337 btrfs_tree_unlock(path
->nodes
[0]);
4338 free_extent_buffer(path
->nodes
[0]);
4339 path
->nodes
[0] = right
;
4341 if (path
->slots
[1] == 0)
4342 fixup_low_keys(fs_info
, path
, &disk_key
, 1);
4344 btrfs_mark_buffer_dirty(right
);
4348 copy_for_split(trans
, root
, path
, l
, right
, slot
, mid
, nritems
);
4351 BUG_ON(num_doubles
!= 0);
4359 push_for_double_split(trans
, root
, path
, data_size
);
4360 tried_avoid_double
= 1;
4361 if (btrfs_leaf_free_space(root
, path
->nodes
[0]) >= data_size
)
4366 static noinline
int setup_leaf_for_split(struct btrfs_trans_handle
*trans
,
4367 struct btrfs_root
*root
,
4368 struct btrfs_path
*path
, int ins_len
)
4370 struct btrfs_key key
;
4371 struct extent_buffer
*leaf
;
4372 struct btrfs_file_extent_item
*fi
;
4377 leaf
= path
->nodes
[0];
4378 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
4380 BUG_ON(key
.type
!= BTRFS_EXTENT_DATA_KEY
&&
4381 key
.type
!= BTRFS_EXTENT_CSUM_KEY
);
4383 if (btrfs_leaf_free_space(root
, leaf
) >= ins_len
)
4386 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
4387 if (key
.type
== BTRFS_EXTENT_DATA_KEY
) {
4388 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
4389 struct btrfs_file_extent_item
);
4390 extent_len
= btrfs_file_extent_num_bytes(leaf
, fi
);
4392 btrfs_release_path(path
);
4394 path
->keep_locks
= 1;
4395 path
->search_for_split
= 1;
4396 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
4397 path
->search_for_split
= 0;
4404 leaf
= path
->nodes
[0];
4405 /* if our item isn't there, return now */
4406 if (item_size
!= btrfs_item_size_nr(leaf
, path
->slots
[0]))
4409 /* the leaf has changed, it now has room. return now */
4410 if (btrfs_leaf_free_space(root
, path
->nodes
[0]) >= ins_len
)
4413 if (key
.type
== BTRFS_EXTENT_DATA_KEY
) {
4414 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
4415 struct btrfs_file_extent_item
);
4416 if (extent_len
!= btrfs_file_extent_num_bytes(leaf
, fi
))
4420 btrfs_set_path_blocking(path
);
4421 ret
= split_leaf(trans
, root
, &key
, path
, ins_len
, 1);
4425 path
->keep_locks
= 0;
4426 btrfs_unlock_up_safe(path
, 1);
4429 path
->keep_locks
= 0;
4433 static noinline
int split_item(struct btrfs_trans_handle
*trans
,
4434 struct btrfs_root
*root
,
4435 struct btrfs_path
*path
,
4436 struct btrfs_key
*new_key
,
4437 unsigned long split_offset
)
4439 struct extent_buffer
*leaf
;
4440 struct btrfs_item
*item
;
4441 struct btrfs_item
*new_item
;
4447 struct btrfs_disk_key disk_key
;
4449 leaf
= path
->nodes
[0];
4450 BUG_ON(btrfs_leaf_free_space(root
, leaf
) < sizeof(struct btrfs_item
));
4452 btrfs_set_path_blocking(path
);
4454 item
= btrfs_item_nr(path
->slots
[0]);
4455 orig_offset
= btrfs_item_offset(leaf
, item
);
4456 item_size
= btrfs_item_size(leaf
, item
);
4458 buf
= kmalloc(item_size
, GFP_NOFS
);
4462 read_extent_buffer(leaf
, buf
, btrfs_item_ptr_offset(leaf
,
4463 path
->slots
[0]), item_size
);
4465 slot
= path
->slots
[0] + 1;
4466 nritems
= btrfs_header_nritems(leaf
);
4467 if (slot
!= nritems
) {
4468 /* shift the items */
4469 memmove_extent_buffer(leaf
, btrfs_item_nr_offset(slot
+ 1),
4470 btrfs_item_nr_offset(slot
),
4471 (nritems
- slot
) * sizeof(struct btrfs_item
));
4474 btrfs_cpu_key_to_disk(&disk_key
, new_key
);
4475 btrfs_set_item_key(leaf
, &disk_key
, slot
);
4477 new_item
= btrfs_item_nr(slot
);
4479 btrfs_set_item_offset(leaf
, new_item
, orig_offset
);
4480 btrfs_set_item_size(leaf
, new_item
, item_size
- split_offset
);
4482 btrfs_set_item_offset(leaf
, item
,
4483 orig_offset
+ item_size
- split_offset
);
4484 btrfs_set_item_size(leaf
, item
, split_offset
);
4486 btrfs_set_header_nritems(leaf
, nritems
+ 1);
4488 /* write the data for the start of the original item */
4489 write_extent_buffer(leaf
, buf
,
4490 btrfs_item_ptr_offset(leaf
, path
->slots
[0]),
4493 /* write the data for the new item */
4494 write_extent_buffer(leaf
, buf
+ split_offset
,
4495 btrfs_item_ptr_offset(leaf
, slot
),
4496 item_size
- split_offset
);
4497 btrfs_mark_buffer_dirty(leaf
);
4499 BUG_ON(btrfs_leaf_free_space(root
, leaf
) < 0);
4505 * This function splits a single item into two items,
4506 * giving 'new_key' to the new item and splitting the
4507 * old one at split_offset (from the start of the item).
4509 * The path may be released by this operation. After
4510 * the split, the path is pointing to the old item. The
4511 * new item is going to be in the same node as the old one.
4513 * Note, the item being split must be smaller enough to live alone on
4514 * a tree block with room for one extra struct btrfs_item
4516 * This allows us to split the item in place, keeping a lock on the
4517 * leaf the entire time.
4519 int btrfs_split_item(struct btrfs_trans_handle
*trans
,
4520 struct btrfs_root
*root
,
4521 struct btrfs_path
*path
,
4522 struct btrfs_key
*new_key
,
4523 unsigned long split_offset
)
4526 ret
= setup_leaf_for_split(trans
, root
, path
,
4527 sizeof(struct btrfs_item
));
4531 ret
= split_item(trans
, root
, path
, new_key
, split_offset
);
4536 * This function duplicate a item, giving 'new_key' to the new item.
4537 * It guarantees both items live in the same tree leaf and the new item
4538 * is contiguous with the original item.
4540 * This allows us to split file extent in place, keeping a lock on the
4541 * leaf the entire time.
4543 int btrfs_duplicate_item(struct btrfs_trans_handle
*trans
,
4544 struct btrfs_root
*root
,
4545 struct btrfs_path
*path
,
4546 struct btrfs_key
*new_key
)
4548 struct extent_buffer
*leaf
;
4552 leaf
= path
->nodes
[0];
4553 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
4554 ret
= setup_leaf_for_split(trans
, root
, path
,
4555 item_size
+ sizeof(struct btrfs_item
));
4560 setup_items_for_insert(root
, path
, new_key
, &item_size
,
4561 item_size
, item_size
+
4562 sizeof(struct btrfs_item
), 1);
4563 leaf
= path
->nodes
[0];
4564 memcpy_extent_buffer(leaf
,
4565 btrfs_item_ptr_offset(leaf
, path
->slots
[0]),
4566 btrfs_item_ptr_offset(leaf
, path
->slots
[0] - 1),
4572 * make the item pointed to by the path smaller. new_size indicates
4573 * how small to make it, and from_end tells us if we just chop bytes
4574 * off the end of the item or if we shift the item to chop bytes off
4577 void btrfs_truncate_item(struct btrfs_root
*root
, struct btrfs_path
*path
,
4578 u32 new_size
, int from_end
)
4581 struct extent_buffer
*leaf
;
4582 struct btrfs_item
*item
;
4584 unsigned int data_end
;
4585 unsigned int old_data_start
;
4586 unsigned int old_size
;
4587 unsigned int size_diff
;
4589 struct btrfs_map_token token
;
4591 btrfs_init_map_token(&token
);
4593 leaf
= path
->nodes
[0];
4594 slot
= path
->slots
[0];
4596 old_size
= btrfs_item_size_nr(leaf
, slot
);
4597 if (old_size
== new_size
)
4600 nritems
= btrfs_header_nritems(leaf
);
4601 data_end
= leaf_data_end(root
, leaf
);
4603 old_data_start
= btrfs_item_offset_nr(leaf
, slot
);
4605 size_diff
= old_size
- new_size
;
4608 BUG_ON(slot
>= nritems
);
4611 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4613 /* first correct the data pointers */
4614 for (i
= slot
; i
< nritems
; i
++) {
4616 item
= btrfs_item_nr(i
);
4618 ioff
= btrfs_token_item_offset(leaf
, item
, &token
);
4619 btrfs_set_token_item_offset(leaf
, item
,
4620 ioff
+ size_diff
, &token
);
4623 /* shift the data */
4625 memmove_extent_buffer(leaf
, btrfs_leaf_data(leaf
) +
4626 data_end
+ size_diff
, btrfs_leaf_data(leaf
) +
4627 data_end
, old_data_start
+ new_size
- data_end
);
4629 struct btrfs_disk_key disk_key
;
4632 btrfs_item_key(leaf
, &disk_key
, slot
);
4634 if (btrfs_disk_key_type(&disk_key
) == BTRFS_EXTENT_DATA_KEY
) {
4636 struct btrfs_file_extent_item
*fi
;
4638 fi
= btrfs_item_ptr(leaf
, slot
,
4639 struct btrfs_file_extent_item
);
4640 fi
= (struct btrfs_file_extent_item
*)(
4641 (unsigned long)fi
- size_diff
);
4643 if (btrfs_file_extent_type(leaf
, fi
) ==
4644 BTRFS_FILE_EXTENT_INLINE
) {
4645 ptr
= btrfs_item_ptr_offset(leaf
, slot
);
4646 memmove_extent_buffer(leaf
, ptr
,
4648 BTRFS_FILE_EXTENT_INLINE_DATA_START
);
4652 memmove_extent_buffer(leaf
, btrfs_leaf_data(leaf
) +
4653 data_end
+ size_diff
, btrfs_leaf_data(leaf
) +
4654 data_end
, old_data_start
- data_end
);
4656 offset
= btrfs_disk_key_offset(&disk_key
);
4657 btrfs_set_disk_key_offset(&disk_key
, offset
+ size_diff
);
4658 btrfs_set_item_key(leaf
, &disk_key
, slot
);
4660 fixup_low_keys(root
->fs_info
, path
, &disk_key
, 1);
4663 item
= btrfs_item_nr(slot
);
4664 btrfs_set_item_size(leaf
, item
, new_size
);
4665 btrfs_mark_buffer_dirty(leaf
);
4667 if (btrfs_leaf_free_space(root
, leaf
) < 0) {
4668 btrfs_print_leaf(root
, leaf
);
4674 * make the item pointed to by the path bigger, data_size is the added size.
4676 void btrfs_extend_item(struct btrfs_root
*root
, struct btrfs_path
*path
,
4680 struct extent_buffer
*leaf
;
4681 struct btrfs_item
*item
;
4683 unsigned int data_end
;
4684 unsigned int old_data
;
4685 unsigned int old_size
;
4687 struct btrfs_map_token token
;
4689 btrfs_init_map_token(&token
);
4691 leaf
= path
->nodes
[0];
4693 nritems
= btrfs_header_nritems(leaf
);
4694 data_end
= leaf_data_end(root
, leaf
);
4696 if (btrfs_leaf_free_space(root
, leaf
) < data_size
) {
4697 btrfs_print_leaf(root
, leaf
);
4700 slot
= path
->slots
[0];
4701 old_data
= btrfs_item_end_nr(leaf
, slot
);
4704 if (slot
>= nritems
) {
4705 btrfs_print_leaf(root
, leaf
);
4706 btrfs_crit(root
->fs_info
, "slot %d too large, nritems %d",
4712 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4714 /* first correct the data pointers */
4715 for (i
= slot
; i
< nritems
; i
++) {
4717 item
= btrfs_item_nr(i
);
4719 ioff
= btrfs_token_item_offset(leaf
, item
, &token
);
4720 btrfs_set_token_item_offset(leaf
, item
,
4721 ioff
- data_size
, &token
);
4724 /* shift the data */
4725 memmove_extent_buffer(leaf
, btrfs_leaf_data(leaf
) +
4726 data_end
- data_size
, btrfs_leaf_data(leaf
) +
4727 data_end
, old_data
- data_end
);
4729 data_end
= old_data
;
4730 old_size
= btrfs_item_size_nr(leaf
, slot
);
4731 item
= btrfs_item_nr(slot
);
4732 btrfs_set_item_size(leaf
, item
, old_size
+ data_size
);
4733 btrfs_mark_buffer_dirty(leaf
);
4735 if (btrfs_leaf_free_space(root
, leaf
) < 0) {
4736 btrfs_print_leaf(root
, leaf
);
4742 * this is a helper for btrfs_insert_empty_items, the main goal here is
4743 * to save stack depth by doing the bulk of the work in a function
4744 * that doesn't call btrfs_search_slot
4746 void setup_items_for_insert(struct btrfs_root
*root
, struct btrfs_path
*path
,
4747 struct btrfs_key
*cpu_key
, u32
*data_size
,
4748 u32 total_data
, u32 total_size
, int nr
)
4750 struct btrfs_item
*item
;
4753 unsigned int data_end
;
4754 struct btrfs_disk_key disk_key
;
4755 struct extent_buffer
*leaf
;
4757 struct btrfs_map_token token
;
4759 if (path
->slots
[0] == 0) {
4760 btrfs_cpu_key_to_disk(&disk_key
, cpu_key
);
4761 fixup_low_keys(root
->fs_info
, path
, &disk_key
, 1);
4763 btrfs_unlock_up_safe(path
, 1);
4765 btrfs_init_map_token(&token
);
4767 leaf
= path
->nodes
[0];
4768 slot
= path
->slots
[0];
4770 nritems
= btrfs_header_nritems(leaf
);
4771 data_end
= leaf_data_end(root
, leaf
);
4773 if (btrfs_leaf_free_space(root
, leaf
) < total_size
) {
4774 btrfs_print_leaf(root
, leaf
);
4775 btrfs_crit(root
->fs_info
, "not enough freespace need %u have %d",
4776 total_size
, btrfs_leaf_free_space(root
, leaf
));
4780 if (slot
!= nritems
) {
4781 unsigned int old_data
= btrfs_item_end_nr(leaf
, slot
);
4783 if (old_data
< data_end
) {
4784 btrfs_print_leaf(root
, leaf
);
4785 btrfs_crit(root
->fs_info
, "slot %d old_data %d data_end %d",
4786 slot
, old_data
, data_end
);
4790 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4792 /* first correct the data pointers */
4793 for (i
= slot
; i
< nritems
; i
++) {
4796 item
= btrfs_item_nr( i
);
4797 ioff
= btrfs_token_item_offset(leaf
, item
, &token
);
4798 btrfs_set_token_item_offset(leaf
, item
,
4799 ioff
- total_data
, &token
);
4801 /* shift the items */
4802 memmove_extent_buffer(leaf
, btrfs_item_nr_offset(slot
+ nr
),
4803 btrfs_item_nr_offset(slot
),
4804 (nritems
- slot
) * sizeof(struct btrfs_item
));
4806 /* shift the data */
4807 memmove_extent_buffer(leaf
, btrfs_leaf_data(leaf
) +
4808 data_end
- total_data
, btrfs_leaf_data(leaf
) +
4809 data_end
, old_data
- data_end
);
4810 data_end
= old_data
;
4813 /* setup the item for the new data */
4814 for (i
= 0; i
< nr
; i
++) {
4815 btrfs_cpu_key_to_disk(&disk_key
, cpu_key
+ i
);
4816 btrfs_set_item_key(leaf
, &disk_key
, slot
+ i
);
4817 item
= btrfs_item_nr(slot
+ i
);
4818 btrfs_set_token_item_offset(leaf
, item
,
4819 data_end
- data_size
[i
], &token
);
4820 data_end
-= data_size
[i
];
4821 btrfs_set_token_item_size(leaf
, item
, data_size
[i
], &token
);
4824 btrfs_set_header_nritems(leaf
, nritems
+ nr
);
4825 btrfs_mark_buffer_dirty(leaf
);
4827 if (btrfs_leaf_free_space(root
, leaf
) < 0) {
4828 btrfs_print_leaf(root
, leaf
);
4834 * Given a key and some data, insert items into the tree.
4835 * This does all the path init required, making room in the tree if needed.
4837 int btrfs_insert_empty_items(struct btrfs_trans_handle
*trans
,
4838 struct btrfs_root
*root
,
4839 struct btrfs_path
*path
,
4840 struct btrfs_key
*cpu_key
, u32
*data_size
,
4849 for (i
= 0; i
< nr
; i
++)
4850 total_data
+= data_size
[i
];
4852 total_size
= total_data
+ (nr
* sizeof(struct btrfs_item
));
4853 ret
= btrfs_search_slot(trans
, root
, cpu_key
, path
, total_size
, 1);
4859 slot
= path
->slots
[0];
4862 setup_items_for_insert(root
, path
, cpu_key
, data_size
,
4863 total_data
, total_size
, nr
);
4868 * Given a key and some data, insert an item into the tree.
4869 * This does all the path init required, making room in the tree if needed.
4871 int btrfs_insert_item(struct btrfs_trans_handle
*trans
, struct btrfs_root
4872 *root
, struct btrfs_key
*cpu_key
, void *data
, u32
4876 struct btrfs_path
*path
;
4877 struct extent_buffer
*leaf
;
4880 path
= btrfs_alloc_path();
4883 ret
= btrfs_insert_empty_item(trans
, root
, path
, cpu_key
, data_size
);
4885 leaf
= path
->nodes
[0];
4886 ptr
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
4887 write_extent_buffer(leaf
, data
, ptr
, data_size
);
4888 btrfs_mark_buffer_dirty(leaf
);
4890 btrfs_free_path(path
);
4895 * delete the pointer from a given node.
4897 * the tree should have been previously balanced so the deletion does not
4900 static void del_ptr(struct btrfs_root
*root
, struct btrfs_path
*path
,
4901 int level
, int slot
)
4903 struct extent_buffer
*parent
= path
->nodes
[level
];
4907 nritems
= btrfs_header_nritems(parent
);
4908 if (slot
!= nritems
- 1) {
4910 tree_mod_log_eb_move(root
->fs_info
, parent
, slot
,
4911 slot
+ 1, nritems
- slot
- 1);
4912 memmove_extent_buffer(parent
,
4913 btrfs_node_key_ptr_offset(slot
),
4914 btrfs_node_key_ptr_offset(slot
+ 1),
4915 sizeof(struct btrfs_key_ptr
) *
4916 (nritems
- slot
- 1));
4918 ret
= tree_mod_log_insert_key(root
->fs_info
, parent
, slot
,
4919 MOD_LOG_KEY_REMOVE
, GFP_NOFS
);
4924 btrfs_set_header_nritems(parent
, nritems
);
4925 if (nritems
== 0 && parent
== root
->node
) {
4926 BUG_ON(btrfs_header_level(root
->node
) != 1);
4927 /* just turn the root into a leaf and break */
4928 btrfs_set_header_level(root
->node
, 0);
4929 } else if (slot
== 0) {
4930 struct btrfs_disk_key disk_key
;
4932 btrfs_node_key(parent
, &disk_key
, 0);
4933 fixup_low_keys(root
->fs_info
, path
, &disk_key
, level
+ 1);
4935 btrfs_mark_buffer_dirty(parent
);
4939 * a helper function to delete the leaf pointed to by path->slots[1] and
4942 * This deletes the pointer in path->nodes[1] and frees the leaf
4943 * block extent. zero is returned if it all worked out, < 0 otherwise.
4945 * The path must have already been setup for deleting the leaf, including
4946 * all the proper balancing. path->nodes[1] must be locked.
4948 static noinline
void btrfs_del_leaf(struct btrfs_trans_handle
*trans
,
4949 struct btrfs_root
*root
,
4950 struct btrfs_path
*path
,
4951 struct extent_buffer
*leaf
)
4953 WARN_ON(btrfs_header_generation(leaf
) != trans
->transid
);
4954 del_ptr(root
, path
, 1, path
->slots
[1]);
4957 * btrfs_free_extent is expensive, we want to make sure we
4958 * aren't holding any locks when we call it
4960 btrfs_unlock_up_safe(path
, 0);
4962 root_sub_used(root
, leaf
->len
);
4964 extent_buffer_get(leaf
);
4965 btrfs_free_tree_block(trans
, root
, leaf
, 0, 1);
4966 free_extent_buffer_stale(leaf
);
4969 * delete the item at the leaf level in path. If that empties
4970 * the leaf, remove it from the tree
4972 int btrfs_del_items(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
4973 struct btrfs_path
*path
, int slot
, int nr
)
4975 struct extent_buffer
*leaf
;
4976 struct btrfs_item
*item
;
4983 struct btrfs_map_token token
;
4985 btrfs_init_map_token(&token
);
4987 leaf
= path
->nodes
[0];
4988 last_off
= btrfs_item_offset_nr(leaf
, slot
+ nr
- 1);
4990 for (i
= 0; i
< nr
; i
++)
4991 dsize
+= btrfs_item_size_nr(leaf
, slot
+ i
);
4993 nritems
= btrfs_header_nritems(leaf
);
4995 if (slot
+ nr
!= nritems
) {
4996 int data_end
= leaf_data_end(root
, leaf
);
4998 memmove_extent_buffer(leaf
, btrfs_leaf_data(leaf
) +
5000 btrfs_leaf_data(leaf
) + data_end
,
5001 last_off
- data_end
);
5003 for (i
= slot
+ nr
; i
< nritems
; i
++) {
5006 item
= btrfs_item_nr(i
);
5007 ioff
= btrfs_token_item_offset(leaf
, item
, &token
);
5008 btrfs_set_token_item_offset(leaf
, item
,
5009 ioff
+ dsize
, &token
);
5012 memmove_extent_buffer(leaf
, btrfs_item_nr_offset(slot
),
5013 btrfs_item_nr_offset(slot
+ nr
),
5014 sizeof(struct btrfs_item
) *
5015 (nritems
- slot
- nr
));
5017 btrfs_set_header_nritems(leaf
, nritems
- nr
);
5020 /* delete the leaf if we've emptied it */
5022 if (leaf
== root
->node
) {
5023 btrfs_set_header_level(leaf
, 0);
5025 btrfs_set_path_blocking(path
);
5026 clean_tree_block(trans
, root
->fs_info
, leaf
);
5027 btrfs_del_leaf(trans
, root
, path
, leaf
);
5030 int used
= leaf_space_used(leaf
, 0, nritems
);
5032 struct btrfs_disk_key disk_key
;
5034 btrfs_item_key(leaf
, &disk_key
, 0);
5035 fixup_low_keys(root
->fs_info
, path
, &disk_key
, 1);
5038 /* delete the leaf if it is mostly empty */
5039 if (used
< BTRFS_LEAF_DATA_SIZE(root
) / 3) {
5040 /* push_leaf_left fixes the path.
5041 * make sure the path still points to our leaf
5042 * for possible call to del_ptr below
5044 slot
= path
->slots
[1];
5045 extent_buffer_get(leaf
);
5047 btrfs_set_path_blocking(path
);
5048 wret
= push_leaf_left(trans
, root
, path
, 1, 1,
5050 if (wret
< 0 && wret
!= -ENOSPC
)
5053 if (path
->nodes
[0] == leaf
&&
5054 btrfs_header_nritems(leaf
)) {
5055 wret
= push_leaf_right(trans
, root
, path
, 1,
5057 if (wret
< 0 && wret
!= -ENOSPC
)
5061 if (btrfs_header_nritems(leaf
) == 0) {
5062 path
->slots
[1] = slot
;
5063 btrfs_del_leaf(trans
, root
, path
, leaf
);
5064 free_extent_buffer(leaf
);
5067 /* if we're still in the path, make sure
5068 * we're dirty. Otherwise, one of the
5069 * push_leaf functions must have already
5070 * dirtied this buffer
5072 if (path
->nodes
[0] == leaf
)
5073 btrfs_mark_buffer_dirty(leaf
);
5074 free_extent_buffer(leaf
);
5077 btrfs_mark_buffer_dirty(leaf
);
5084 * search the tree again to find a leaf with lesser keys
5085 * returns 0 if it found something or 1 if there are no lesser leaves.
5086 * returns < 0 on io errors.
5088 * This may release the path, and so you may lose any locks held at the
5091 int btrfs_prev_leaf(struct btrfs_root
*root
, struct btrfs_path
*path
)
5093 struct btrfs_key key
;
5094 struct btrfs_disk_key found_key
;
5097 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, 0);
5099 if (key
.offset
> 0) {
5101 } else if (key
.type
> 0) {
5103 key
.offset
= (u64
)-1;
5104 } else if (key
.objectid
> 0) {
5107 key
.offset
= (u64
)-1;
5112 btrfs_release_path(path
);
5113 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
5116 btrfs_item_key(path
->nodes
[0], &found_key
, 0);
5117 ret
= comp_keys(&found_key
, &key
);
5119 * We might have had an item with the previous key in the tree right
5120 * before we released our path. And after we released our path, that
5121 * item might have been pushed to the first slot (0) of the leaf we
5122 * were holding due to a tree balance. Alternatively, an item with the
5123 * previous key can exist as the only element of a leaf (big fat item).
5124 * Therefore account for these 2 cases, so that our callers (like
5125 * btrfs_previous_item) don't miss an existing item with a key matching
5126 * the previous key we computed above.
5134 * A helper function to walk down the tree starting at min_key, and looking
5135 * for nodes or leaves that are have a minimum transaction id.
5136 * This is used by the btree defrag code, and tree logging
5138 * This does not cow, but it does stuff the starting key it finds back
5139 * into min_key, so you can call btrfs_search_slot with cow=1 on the
5140 * key and get a writable path.
5142 * This does lock as it descends, and path->keep_locks should be set
5143 * to 1 by the caller.
5145 * This honors path->lowest_level to prevent descent past a given level
5148 * min_trans indicates the oldest transaction that you are interested
5149 * in walking through. Any nodes or leaves older than min_trans are
5150 * skipped over (without reading them).
5152 * returns zero if something useful was found, < 0 on error and 1 if there
5153 * was nothing in the tree that matched the search criteria.
5155 int btrfs_search_forward(struct btrfs_root
*root
, struct btrfs_key
*min_key
,
5156 struct btrfs_path
*path
,
5159 struct extent_buffer
*cur
;
5160 struct btrfs_key found_key
;
5166 int keep_locks
= path
->keep_locks
;
5168 path
->keep_locks
= 1;
5170 cur
= btrfs_read_lock_root_node(root
);
5171 level
= btrfs_header_level(cur
);
5172 WARN_ON(path
->nodes
[level
]);
5173 path
->nodes
[level
] = cur
;
5174 path
->locks
[level
] = BTRFS_READ_LOCK
;
5176 if (btrfs_header_generation(cur
) < min_trans
) {
5181 nritems
= btrfs_header_nritems(cur
);
5182 level
= btrfs_header_level(cur
);
5183 sret
= bin_search(cur
, min_key
, level
, &slot
);
5185 /* at the lowest level, we're done, setup the path and exit */
5186 if (level
== path
->lowest_level
) {
5187 if (slot
>= nritems
)
5190 path
->slots
[level
] = slot
;
5191 btrfs_item_key_to_cpu(cur
, &found_key
, slot
);
5194 if (sret
&& slot
> 0)
5197 * check this node pointer against the min_trans parameters.
5198 * If it is too old, old, skip to the next one.
5200 while (slot
< nritems
) {
5203 gen
= btrfs_node_ptr_generation(cur
, slot
);
5204 if (gen
< min_trans
) {
5212 * we didn't find a candidate key in this node, walk forward
5213 * and find another one
5215 if (slot
>= nritems
) {
5216 path
->slots
[level
] = slot
;
5217 btrfs_set_path_blocking(path
);
5218 sret
= btrfs_find_next_key(root
, path
, min_key
, level
,
5221 btrfs_release_path(path
);
5227 /* save our key for returning back */
5228 btrfs_node_key_to_cpu(cur
, &found_key
, slot
);
5229 path
->slots
[level
] = slot
;
5230 if (level
== path
->lowest_level
) {
5234 btrfs_set_path_blocking(path
);
5235 cur
= read_node_slot(root
, cur
, slot
);
5241 btrfs_tree_read_lock(cur
);
5243 path
->locks
[level
- 1] = BTRFS_READ_LOCK
;
5244 path
->nodes
[level
- 1] = cur
;
5245 unlock_up(path
, level
, 1, 0, NULL
);
5246 btrfs_clear_path_blocking(path
, NULL
, 0);
5249 path
->keep_locks
= keep_locks
;
5251 btrfs_unlock_up_safe(path
, path
->lowest_level
+ 1);
5252 btrfs_set_path_blocking(path
);
5253 memcpy(min_key
, &found_key
, sizeof(found_key
));
5258 static int tree_move_down(struct btrfs_root
*root
,
5259 struct btrfs_path
*path
,
5260 int *level
, int root_level
)
5262 struct extent_buffer
*eb
;
5264 BUG_ON(*level
== 0);
5265 eb
= read_node_slot(root
, path
->nodes
[*level
], path
->slots
[*level
]);
5269 path
->nodes
[*level
- 1] = eb
;
5270 path
->slots
[*level
- 1] = 0;
5275 static int tree_move_next_or_upnext(struct btrfs_root
*root
,
5276 struct btrfs_path
*path
,
5277 int *level
, int root_level
)
5281 nritems
= btrfs_header_nritems(path
->nodes
[*level
]);
5283 path
->slots
[*level
]++;
5285 while (path
->slots
[*level
] >= nritems
) {
5286 if (*level
== root_level
)
5290 path
->slots
[*level
] = 0;
5291 free_extent_buffer(path
->nodes
[*level
]);
5292 path
->nodes
[*level
] = NULL
;
5294 path
->slots
[*level
]++;
5296 nritems
= btrfs_header_nritems(path
->nodes
[*level
]);
5303 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5306 static int tree_advance(struct btrfs_root
*root
,
5307 struct btrfs_path
*path
,
5308 int *level
, int root_level
,
5310 struct btrfs_key
*key
)
5314 if (*level
== 0 || !allow_down
) {
5315 ret
= tree_move_next_or_upnext(root
, path
, level
, root_level
);
5317 ret
= tree_move_down(root
, path
, level
, root_level
);
5321 btrfs_item_key_to_cpu(path
->nodes
[*level
], key
,
5322 path
->slots
[*level
]);
5324 btrfs_node_key_to_cpu(path
->nodes
[*level
], key
,
5325 path
->slots
[*level
]);
5330 static int tree_compare_item(struct btrfs_root
*left_root
,
5331 struct btrfs_path
*left_path
,
5332 struct btrfs_path
*right_path
,
5337 unsigned long off1
, off2
;
5339 len1
= btrfs_item_size_nr(left_path
->nodes
[0], left_path
->slots
[0]);
5340 len2
= btrfs_item_size_nr(right_path
->nodes
[0], right_path
->slots
[0]);
5344 off1
= btrfs_item_ptr_offset(left_path
->nodes
[0], left_path
->slots
[0]);
5345 off2
= btrfs_item_ptr_offset(right_path
->nodes
[0],
5346 right_path
->slots
[0]);
5348 read_extent_buffer(left_path
->nodes
[0], tmp_buf
, off1
, len1
);
5350 cmp
= memcmp_extent_buffer(right_path
->nodes
[0], tmp_buf
, off2
, len1
);
5357 #define ADVANCE_ONLY_NEXT -1
5360 * This function compares two trees and calls the provided callback for
5361 * every changed/new/deleted item it finds.
5362 * If shared tree blocks are encountered, whole subtrees are skipped, making
5363 * the compare pretty fast on snapshotted subvolumes.
5365 * This currently works on commit roots only. As commit roots are read only,
5366 * we don't do any locking. The commit roots are protected with transactions.
5367 * Transactions are ended and rejoined when a commit is tried in between.
5369 * This function checks for modifications done to the trees while comparing.
5370 * If it detects a change, it aborts immediately.
5372 int btrfs_compare_trees(struct btrfs_root
*left_root
,
5373 struct btrfs_root
*right_root
,
5374 btrfs_changed_cb_t changed_cb
, void *ctx
)
5378 struct btrfs_path
*left_path
= NULL
;
5379 struct btrfs_path
*right_path
= NULL
;
5380 struct btrfs_key left_key
;
5381 struct btrfs_key right_key
;
5382 char *tmp_buf
= NULL
;
5383 int left_root_level
;
5384 int right_root_level
;
5387 int left_end_reached
;
5388 int right_end_reached
;
5396 left_path
= btrfs_alloc_path();
5401 right_path
= btrfs_alloc_path();
5407 tmp_buf
= kmalloc(left_root
->nodesize
, GFP_KERNEL
| __GFP_NOWARN
);
5409 tmp_buf
= vmalloc(left_root
->nodesize
);
5416 left_path
->search_commit_root
= 1;
5417 left_path
->skip_locking
= 1;
5418 right_path
->search_commit_root
= 1;
5419 right_path
->skip_locking
= 1;
5422 * Strategy: Go to the first items of both trees. Then do
5424 * If both trees are at level 0
5425 * Compare keys of current items
5426 * If left < right treat left item as new, advance left tree
5428 * If left > right treat right item as deleted, advance right tree
5430 * If left == right do deep compare of items, treat as changed if
5431 * needed, advance both trees and repeat
5432 * If both trees are at the same level but not at level 0
5433 * Compare keys of current nodes/leafs
5434 * If left < right advance left tree and repeat
5435 * If left > right advance right tree and repeat
5436 * If left == right compare blockptrs of the next nodes/leafs
5437 * If they match advance both trees but stay at the same level
5439 * If they don't match advance both trees while allowing to go
5441 * If tree levels are different
5442 * Advance the tree that needs it and repeat
5444 * Advancing a tree means:
5445 * If we are at level 0, try to go to the next slot. If that's not
5446 * possible, go one level up and repeat. Stop when we found a level
5447 * where we could go to the next slot. We may at this point be on a
5450 * If we are not at level 0 and not on shared tree blocks, go one
5453 * If we are not at level 0 and on shared tree blocks, go one slot to
5454 * the right if possible or go up and right.
5457 down_read(&left_root
->fs_info
->commit_root_sem
);
5458 left_level
= btrfs_header_level(left_root
->commit_root
);
5459 left_root_level
= left_level
;
5460 left_path
->nodes
[left_level
] = left_root
->commit_root
;
5461 extent_buffer_get(left_path
->nodes
[left_level
]);
5463 right_level
= btrfs_header_level(right_root
->commit_root
);
5464 right_root_level
= right_level
;
5465 right_path
->nodes
[right_level
] = right_root
->commit_root
;
5466 extent_buffer_get(right_path
->nodes
[right_level
]);
5467 up_read(&left_root
->fs_info
->commit_root_sem
);
5469 if (left_level
== 0)
5470 btrfs_item_key_to_cpu(left_path
->nodes
[left_level
],
5471 &left_key
, left_path
->slots
[left_level
]);
5473 btrfs_node_key_to_cpu(left_path
->nodes
[left_level
],
5474 &left_key
, left_path
->slots
[left_level
]);
5475 if (right_level
== 0)
5476 btrfs_item_key_to_cpu(right_path
->nodes
[right_level
],
5477 &right_key
, right_path
->slots
[right_level
]);
5479 btrfs_node_key_to_cpu(right_path
->nodes
[right_level
],
5480 &right_key
, right_path
->slots
[right_level
]);
5482 left_end_reached
= right_end_reached
= 0;
5483 advance_left
= advance_right
= 0;
5486 if (advance_left
&& !left_end_reached
) {
5487 ret
= tree_advance(left_root
, left_path
, &left_level
,
5489 advance_left
!= ADVANCE_ONLY_NEXT
,
5492 left_end_reached
= ADVANCE
;
5497 if (advance_right
&& !right_end_reached
) {
5498 ret
= tree_advance(right_root
, right_path
, &right_level
,
5500 advance_right
!= ADVANCE_ONLY_NEXT
,
5503 right_end_reached
= ADVANCE
;
5509 if (left_end_reached
&& right_end_reached
) {
5512 } else if (left_end_reached
) {
5513 if (right_level
== 0) {
5514 ret
= changed_cb(left_root
, right_root
,
5515 left_path
, right_path
,
5517 BTRFS_COMPARE_TREE_DELETED
,
5522 advance_right
= ADVANCE
;
5524 } else if (right_end_reached
) {
5525 if (left_level
== 0) {
5526 ret
= changed_cb(left_root
, right_root
,
5527 left_path
, right_path
,
5529 BTRFS_COMPARE_TREE_NEW
,
5534 advance_left
= ADVANCE
;
5538 if (left_level
== 0 && right_level
== 0) {
5539 cmp
= btrfs_comp_cpu_keys(&left_key
, &right_key
);
5541 ret
= changed_cb(left_root
, right_root
,
5542 left_path
, right_path
,
5544 BTRFS_COMPARE_TREE_NEW
,
5548 advance_left
= ADVANCE
;
5549 } else if (cmp
> 0) {
5550 ret
= changed_cb(left_root
, right_root
,
5551 left_path
, right_path
,
5553 BTRFS_COMPARE_TREE_DELETED
,
5557 advance_right
= ADVANCE
;
5559 enum btrfs_compare_tree_result result
;
5561 WARN_ON(!extent_buffer_uptodate(left_path
->nodes
[0]));
5562 ret
= tree_compare_item(left_root
, left_path
,
5563 right_path
, tmp_buf
);
5565 result
= BTRFS_COMPARE_TREE_CHANGED
;
5567 result
= BTRFS_COMPARE_TREE_SAME
;
5568 ret
= changed_cb(left_root
, right_root
,
5569 left_path
, right_path
,
5570 &left_key
, result
, ctx
);
5573 advance_left
= ADVANCE
;
5574 advance_right
= ADVANCE
;
5576 } else if (left_level
== right_level
) {
5577 cmp
= btrfs_comp_cpu_keys(&left_key
, &right_key
);
5579 advance_left
= ADVANCE
;
5580 } else if (cmp
> 0) {
5581 advance_right
= ADVANCE
;
5583 left_blockptr
= btrfs_node_blockptr(
5584 left_path
->nodes
[left_level
],
5585 left_path
->slots
[left_level
]);
5586 right_blockptr
= btrfs_node_blockptr(
5587 right_path
->nodes
[right_level
],
5588 right_path
->slots
[right_level
]);
5589 left_gen
= btrfs_node_ptr_generation(
5590 left_path
->nodes
[left_level
],
5591 left_path
->slots
[left_level
]);
5592 right_gen
= btrfs_node_ptr_generation(
5593 right_path
->nodes
[right_level
],
5594 right_path
->slots
[right_level
]);
5595 if (left_blockptr
== right_blockptr
&&
5596 left_gen
== right_gen
) {
5598 * As we're on a shared block, don't
5599 * allow to go deeper.
5601 advance_left
= ADVANCE_ONLY_NEXT
;
5602 advance_right
= ADVANCE_ONLY_NEXT
;
5604 advance_left
= ADVANCE
;
5605 advance_right
= ADVANCE
;
5608 } else if (left_level
< right_level
) {
5609 advance_right
= ADVANCE
;
5611 advance_left
= ADVANCE
;
5616 btrfs_free_path(left_path
);
5617 btrfs_free_path(right_path
);
5623 * this is similar to btrfs_next_leaf, but does not try to preserve
5624 * and fixup the path. It looks for and returns the next key in the
5625 * tree based on the current path and the min_trans parameters.
5627 * 0 is returned if another key is found, < 0 if there are any errors
5628 * and 1 is returned if there are no higher keys in the tree
5630 * path->keep_locks should be set to 1 on the search made before
5631 * calling this function.
5633 int btrfs_find_next_key(struct btrfs_root
*root
, struct btrfs_path
*path
,
5634 struct btrfs_key
*key
, int level
, u64 min_trans
)
5637 struct extent_buffer
*c
;
5639 WARN_ON(!path
->keep_locks
);
5640 while (level
< BTRFS_MAX_LEVEL
) {
5641 if (!path
->nodes
[level
])
5644 slot
= path
->slots
[level
] + 1;
5645 c
= path
->nodes
[level
];
5647 if (slot
>= btrfs_header_nritems(c
)) {
5650 struct btrfs_key cur_key
;
5651 if (level
+ 1 >= BTRFS_MAX_LEVEL
||
5652 !path
->nodes
[level
+ 1])
5655 if (path
->locks
[level
+ 1]) {
5660 slot
= btrfs_header_nritems(c
) - 1;
5662 btrfs_item_key_to_cpu(c
, &cur_key
, slot
);
5664 btrfs_node_key_to_cpu(c
, &cur_key
, slot
);
5666 orig_lowest
= path
->lowest_level
;
5667 btrfs_release_path(path
);
5668 path
->lowest_level
= level
;
5669 ret
= btrfs_search_slot(NULL
, root
, &cur_key
, path
,
5671 path
->lowest_level
= orig_lowest
;
5675 c
= path
->nodes
[level
];
5676 slot
= path
->slots
[level
];
5683 btrfs_item_key_to_cpu(c
, key
, slot
);
5685 u64 gen
= btrfs_node_ptr_generation(c
, slot
);
5687 if (gen
< min_trans
) {
5691 btrfs_node_key_to_cpu(c
, key
, slot
);
5699 * search the tree again to find a leaf with greater keys
5700 * returns 0 if it found something or 1 if there are no greater leaves.
5701 * returns < 0 on io errors.
5703 int btrfs_next_leaf(struct btrfs_root
*root
, struct btrfs_path
*path
)
5705 return btrfs_next_old_leaf(root
, path
, 0);
5708 int btrfs_next_old_leaf(struct btrfs_root
*root
, struct btrfs_path
*path
,
5713 struct extent_buffer
*c
;
5714 struct extent_buffer
*next
;
5715 struct btrfs_key key
;
5718 int old_spinning
= path
->leave_spinning
;
5719 int next_rw_lock
= 0;
5721 nritems
= btrfs_header_nritems(path
->nodes
[0]);
5725 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, nritems
- 1);
5730 btrfs_release_path(path
);
5732 path
->keep_locks
= 1;
5733 path
->leave_spinning
= 1;
5736 ret
= btrfs_search_old_slot(root
, &key
, path
, time_seq
);
5738 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
5739 path
->keep_locks
= 0;
5744 nritems
= btrfs_header_nritems(path
->nodes
[0]);
5746 * by releasing the path above we dropped all our locks. A balance
5747 * could have added more items next to the key that used to be
5748 * at the very end of the block. So, check again here and
5749 * advance the path if there are now more items available.
5751 if (nritems
> 0 && path
->slots
[0] < nritems
- 1) {
5758 * So the above check misses one case:
5759 * - after releasing the path above, someone has removed the item that
5760 * used to be at the very end of the block, and balance between leafs
5761 * gets another one with bigger key.offset to replace it.
5763 * This one should be returned as well, or we can get leaf corruption
5764 * later(esp. in __btrfs_drop_extents()).
5766 * And a bit more explanation about this check,
5767 * with ret > 0, the key isn't found, the path points to the slot
5768 * where it should be inserted, so the path->slots[0] item must be the
5771 if (nritems
> 0 && ret
> 0 && path
->slots
[0] == nritems
- 1) {
5776 while (level
< BTRFS_MAX_LEVEL
) {
5777 if (!path
->nodes
[level
]) {
5782 slot
= path
->slots
[level
] + 1;
5783 c
= path
->nodes
[level
];
5784 if (slot
>= btrfs_header_nritems(c
)) {
5786 if (level
== BTRFS_MAX_LEVEL
) {
5794 btrfs_tree_unlock_rw(next
, next_rw_lock
);
5795 free_extent_buffer(next
);
5799 next_rw_lock
= path
->locks
[level
];
5800 ret
= read_block_for_search(NULL
, root
, path
, &next
, level
,
5806 btrfs_release_path(path
);
5810 if (!path
->skip_locking
) {
5811 ret
= btrfs_try_tree_read_lock(next
);
5812 if (!ret
&& time_seq
) {
5814 * If we don't get the lock, we may be racing
5815 * with push_leaf_left, holding that lock while
5816 * itself waiting for the leaf we've currently
5817 * locked. To solve this situation, we give up
5818 * on our lock and cycle.
5820 free_extent_buffer(next
);
5821 btrfs_release_path(path
);
5826 btrfs_set_path_blocking(path
);
5827 btrfs_tree_read_lock(next
);
5828 btrfs_clear_path_blocking(path
, next
,
5831 next_rw_lock
= BTRFS_READ_LOCK
;
5835 path
->slots
[level
] = slot
;
5838 c
= path
->nodes
[level
];
5839 if (path
->locks
[level
])
5840 btrfs_tree_unlock_rw(c
, path
->locks
[level
]);
5842 free_extent_buffer(c
);
5843 path
->nodes
[level
] = next
;
5844 path
->slots
[level
] = 0;
5845 if (!path
->skip_locking
)
5846 path
->locks
[level
] = next_rw_lock
;
5850 ret
= read_block_for_search(NULL
, root
, path
, &next
, level
,
5856 btrfs_release_path(path
);
5860 if (!path
->skip_locking
) {
5861 ret
= btrfs_try_tree_read_lock(next
);
5863 btrfs_set_path_blocking(path
);
5864 btrfs_tree_read_lock(next
);
5865 btrfs_clear_path_blocking(path
, next
,
5868 next_rw_lock
= BTRFS_READ_LOCK
;
5873 unlock_up(path
, 0, 1, 0, NULL
);
5874 path
->leave_spinning
= old_spinning
;
5876 btrfs_set_path_blocking(path
);
5882 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5883 * searching until it gets past min_objectid or finds an item of 'type'
5885 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5887 int btrfs_previous_item(struct btrfs_root
*root
,
5888 struct btrfs_path
*path
, u64 min_objectid
,
5891 struct btrfs_key found_key
;
5892 struct extent_buffer
*leaf
;
5897 if (path
->slots
[0] == 0) {
5898 btrfs_set_path_blocking(path
);
5899 ret
= btrfs_prev_leaf(root
, path
);
5905 leaf
= path
->nodes
[0];
5906 nritems
= btrfs_header_nritems(leaf
);
5909 if (path
->slots
[0] == nritems
)
5912 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
5913 if (found_key
.objectid
< min_objectid
)
5915 if (found_key
.type
== type
)
5917 if (found_key
.objectid
== min_objectid
&&
5918 found_key
.type
< type
)
5925 * search in extent tree to find a previous Metadata/Data extent item with
5928 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5930 int btrfs_previous_extent_item(struct btrfs_root
*root
,
5931 struct btrfs_path
*path
, u64 min_objectid
)
5933 struct btrfs_key found_key
;
5934 struct extent_buffer
*leaf
;
5939 if (path
->slots
[0] == 0) {
5940 btrfs_set_path_blocking(path
);
5941 ret
= btrfs_prev_leaf(root
, path
);
5947 leaf
= path
->nodes
[0];
5948 nritems
= btrfs_header_nritems(leaf
);
5951 if (path
->slots
[0] == nritems
)
5954 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
5955 if (found_key
.objectid
< min_objectid
)
5957 if (found_key
.type
== BTRFS_EXTENT_ITEM_KEY
||
5958 found_key
.type
== BTRFS_METADATA_ITEM_KEY
)
5960 if (found_key
.objectid
== min_objectid
&&
5961 found_key
.type
< BTRFS_EXTENT_ITEM_KEY
)