2 * Copyright (C) 2011 Fujitsu. All rights reserved.
3 * Written by Miao Xie <miaox@cn.fujitsu.com>
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public
7 * License v2 as published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
14 * You should have received a copy of the GNU General Public
15 * License along with this program; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 021110-1307, USA.
20 #include <linux/slab.h>
21 #include "delayed-inode.h"
23 #include "transaction.h"
26 #define BTRFS_DELAYED_WRITEBACK 512
27 #define BTRFS_DELAYED_BACKGROUND 128
28 #define BTRFS_DELAYED_BATCH 16
30 static struct kmem_cache
*delayed_node_cache
;
32 int __init
btrfs_delayed_inode_init(void)
34 delayed_node_cache
= kmem_cache_create("btrfs_delayed_node",
35 sizeof(struct btrfs_delayed_node
),
39 if (!delayed_node_cache
)
44 void btrfs_delayed_inode_exit(void)
46 kmem_cache_destroy(delayed_node_cache
);
49 static inline void btrfs_init_delayed_node(
50 struct btrfs_delayed_node
*delayed_node
,
51 struct btrfs_root
*root
, u64 inode_id
)
53 delayed_node
->root
= root
;
54 delayed_node
->inode_id
= inode_id
;
55 atomic_set(&delayed_node
->refs
, 0);
56 delayed_node
->ins_root
= RB_ROOT
;
57 delayed_node
->del_root
= RB_ROOT
;
58 mutex_init(&delayed_node
->mutex
);
59 INIT_LIST_HEAD(&delayed_node
->n_list
);
60 INIT_LIST_HEAD(&delayed_node
->p_list
);
63 static inline int btrfs_is_continuous_delayed_item(
64 struct btrfs_delayed_item
*item1
,
65 struct btrfs_delayed_item
*item2
)
67 if (item1
->key
.type
== BTRFS_DIR_INDEX_KEY
&&
68 item1
->key
.objectid
== item2
->key
.objectid
&&
69 item1
->key
.type
== item2
->key
.type
&&
70 item1
->key
.offset
+ 1 == item2
->key
.offset
)
75 static inline struct btrfs_delayed_root
*btrfs_get_delayed_root(
76 struct btrfs_root
*root
)
78 return root
->fs_info
->delayed_root
;
81 static struct btrfs_delayed_node
*btrfs_get_delayed_node(struct inode
*inode
)
83 struct btrfs_inode
*btrfs_inode
= BTRFS_I(inode
);
84 struct btrfs_root
*root
= btrfs_inode
->root
;
85 u64 ino
= btrfs_ino(inode
);
86 struct btrfs_delayed_node
*node
;
88 node
= ACCESS_ONCE(btrfs_inode
->delayed_node
);
90 atomic_inc(&node
->refs
);
94 spin_lock(&root
->inode_lock
);
95 node
= radix_tree_lookup(&root
->delayed_nodes_tree
, ino
);
97 if (btrfs_inode
->delayed_node
) {
98 atomic_inc(&node
->refs
); /* can be accessed */
99 BUG_ON(btrfs_inode
->delayed_node
!= node
);
100 spin_unlock(&root
->inode_lock
);
103 btrfs_inode
->delayed_node
= node
;
104 /* can be accessed and cached in the inode */
105 atomic_add(2, &node
->refs
);
106 spin_unlock(&root
->inode_lock
);
109 spin_unlock(&root
->inode_lock
);
114 /* Will return either the node or PTR_ERR(-ENOMEM) */
115 static struct btrfs_delayed_node
*btrfs_get_or_create_delayed_node(
118 struct btrfs_delayed_node
*node
;
119 struct btrfs_inode
*btrfs_inode
= BTRFS_I(inode
);
120 struct btrfs_root
*root
= btrfs_inode
->root
;
121 u64 ino
= btrfs_ino(inode
);
125 node
= btrfs_get_delayed_node(inode
);
129 node
= kmem_cache_zalloc(delayed_node_cache
, GFP_NOFS
);
131 return ERR_PTR(-ENOMEM
);
132 btrfs_init_delayed_node(node
, root
, ino
);
134 /* cached in the btrfs inode and can be accessed */
135 atomic_add(2, &node
->refs
);
137 ret
= radix_tree_preload(GFP_NOFS
);
139 kmem_cache_free(delayed_node_cache
, node
);
143 spin_lock(&root
->inode_lock
);
144 ret
= radix_tree_insert(&root
->delayed_nodes_tree
, ino
, node
);
145 if (ret
== -EEXIST
) {
146 spin_unlock(&root
->inode_lock
);
147 kmem_cache_free(delayed_node_cache
, node
);
148 radix_tree_preload_end();
151 btrfs_inode
->delayed_node
= node
;
152 spin_unlock(&root
->inode_lock
);
153 radix_tree_preload_end();
159 * Call it when holding delayed_node->mutex
161 * If mod = 1, add this node into the prepared list.
163 static void btrfs_queue_delayed_node(struct btrfs_delayed_root
*root
,
164 struct btrfs_delayed_node
*node
,
167 spin_lock(&root
->lock
);
168 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST
, &node
->flags
)) {
169 if (!list_empty(&node
->p_list
))
170 list_move_tail(&node
->p_list
, &root
->prepare_list
);
172 list_add_tail(&node
->p_list
, &root
->prepare_list
);
174 list_add_tail(&node
->n_list
, &root
->node_list
);
175 list_add_tail(&node
->p_list
, &root
->prepare_list
);
176 atomic_inc(&node
->refs
); /* inserted into list */
178 set_bit(BTRFS_DELAYED_NODE_IN_LIST
, &node
->flags
);
180 spin_unlock(&root
->lock
);
183 /* Call it when holding delayed_node->mutex */
184 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root
*root
,
185 struct btrfs_delayed_node
*node
)
187 spin_lock(&root
->lock
);
188 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST
, &node
->flags
)) {
190 atomic_dec(&node
->refs
); /* not in the list */
191 list_del_init(&node
->n_list
);
192 if (!list_empty(&node
->p_list
))
193 list_del_init(&node
->p_list
);
194 clear_bit(BTRFS_DELAYED_NODE_IN_LIST
, &node
->flags
);
196 spin_unlock(&root
->lock
);
199 static struct btrfs_delayed_node
*btrfs_first_delayed_node(
200 struct btrfs_delayed_root
*delayed_root
)
203 struct btrfs_delayed_node
*node
= NULL
;
205 spin_lock(&delayed_root
->lock
);
206 if (list_empty(&delayed_root
->node_list
))
209 p
= delayed_root
->node_list
.next
;
210 node
= list_entry(p
, struct btrfs_delayed_node
, n_list
);
211 atomic_inc(&node
->refs
);
213 spin_unlock(&delayed_root
->lock
);
218 static struct btrfs_delayed_node
*btrfs_next_delayed_node(
219 struct btrfs_delayed_node
*node
)
221 struct btrfs_delayed_root
*delayed_root
;
223 struct btrfs_delayed_node
*next
= NULL
;
225 delayed_root
= node
->root
->fs_info
->delayed_root
;
226 spin_lock(&delayed_root
->lock
);
227 if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST
, &node
->flags
)) {
228 /* not in the list */
229 if (list_empty(&delayed_root
->node_list
))
231 p
= delayed_root
->node_list
.next
;
232 } else if (list_is_last(&node
->n_list
, &delayed_root
->node_list
))
235 p
= node
->n_list
.next
;
237 next
= list_entry(p
, struct btrfs_delayed_node
, n_list
);
238 atomic_inc(&next
->refs
);
240 spin_unlock(&delayed_root
->lock
);
245 static void __btrfs_release_delayed_node(
246 struct btrfs_delayed_node
*delayed_node
,
249 struct btrfs_delayed_root
*delayed_root
;
254 delayed_root
= delayed_node
->root
->fs_info
->delayed_root
;
256 mutex_lock(&delayed_node
->mutex
);
257 if (delayed_node
->count
)
258 btrfs_queue_delayed_node(delayed_root
, delayed_node
, mod
);
260 btrfs_dequeue_delayed_node(delayed_root
, delayed_node
);
261 mutex_unlock(&delayed_node
->mutex
);
263 if (atomic_dec_and_test(&delayed_node
->refs
)) {
265 struct btrfs_root
*root
= delayed_node
->root
;
266 spin_lock(&root
->inode_lock
);
267 if (atomic_read(&delayed_node
->refs
) == 0) {
268 radix_tree_delete(&root
->delayed_nodes_tree
,
269 delayed_node
->inode_id
);
272 spin_unlock(&root
->inode_lock
);
274 kmem_cache_free(delayed_node_cache
, delayed_node
);
278 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node
*node
)
280 __btrfs_release_delayed_node(node
, 0);
283 static struct btrfs_delayed_node
*btrfs_first_prepared_delayed_node(
284 struct btrfs_delayed_root
*delayed_root
)
287 struct btrfs_delayed_node
*node
= NULL
;
289 spin_lock(&delayed_root
->lock
);
290 if (list_empty(&delayed_root
->prepare_list
))
293 p
= delayed_root
->prepare_list
.next
;
295 node
= list_entry(p
, struct btrfs_delayed_node
, p_list
);
296 atomic_inc(&node
->refs
);
298 spin_unlock(&delayed_root
->lock
);
303 static inline void btrfs_release_prepared_delayed_node(
304 struct btrfs_delayed_node
*node
)
306 __btrfs_release_delayed_node(node
, 1);
309 static struct btrfs_delayed_item
*btrfs_alloc_delayed_item(u32 data_len
)
311 struct btrfs_delayed_item
*item
;
312 item
= kmalloc(sizeof(*item
) + data_len
, GFP_NOFS
);
314 item
->data_len
= data_len
;
315 item
->ins_or_del
= 0;
316 item
->bytes_reserved
= 0;
317 item
->delayed_node
= NULL
;
318 atomic_set(&item
->refs
, 1);
324 * __btrfs_lookup_delayed_item - look up the delayed item by key
325 * @delayed_node: pointer to the delayed node
326 * @key: the key to look up
327 * @prev: used to store the prev item if the right item isn't found
328 * @next: used to store the next item if the right item isn't found
330 * Note: if we don't find the right item, we will return the prev item and
333 static struct btrfs_delayed_item
*__btrfs_lookup_delayed_item(
334 struct rb_root
*root
,
335 struct btrfs_key
*key
,
336 struct btrfs_delayed_item
**prev
,
337 struct btrfs_delayed_item
**next
)
339 struct rb_node
*node
, *prev_node
= NULL
;
340 struct btrfs_delayed_item
*delayed_item
= NULL
;
343 node
= root
->rb_node
;
346 delayed_item
= rb_entry(node
, struct btrfs_delayed_item
,
349 ret
= btrfs_comp_cpu_keys(&delayed_item
->key
, key
);
351 node
= node
->rb_right
;
353 node
= node
->rb_left
;
362 *prev
= delayed_item
;
363 else if ((node
= rb_prev(prev_node
)) != NULL
) {
364 *prev
= rb_entry(node
, struct btrfs_delayed_item
,
374 *next
= delayed_item
;
375 else if ((node
= rb_next(prev_node
)) != NULL
) {
376 *next
= rb_entry(node
, struct btrfs_delayed_item
,
384 static struct btrfs_delayed_item
*__btrfs_lookup_delayed_insertion_item(
385 struct btrfs_delayed_node
*delayed_node
,
386 struct btrfs_key
*key
)
388 struct btrfs_delayed_item
*item
;
390 item
= __btrfs_lookup_delayed_item(&delayed_node
->ins_root
, key
,
395 static int __btrfs_add_delayed_item(struct btrfs_delayed_node
*delayed_node
,
396 struct btrfs_delayed_item
*ins
,
399 struct rb_node
**p
, *node
;
400 struct rb_node
*parent_node
= NULL
;
401 struct rb_root
*root
;
402 struct btrfs_delayed_item
*item
;
405 if (action
== BTRFS_DELAYED_INSERTION_ITEM
)
406 root
= &delayed_node
->ins_root
;
407 else if (action
== BTRFS_DELAYED_DELETION_ITEM
)
408 root
= &delayed_node
->del_root
;
412 node
= &ins
->rb_node
;
416 item
= rb_entry(parent_node
, struct btrfs_delayed_item
,
419 cmp
= btrfs_comp_cpu_keys(&item
->key
, &ins
->key
);
428 rb_link_node(node
, parent_node
, p
);
429 rb_insert_color(node
, root
);
430 ins
->delayed_node
= delayed_node
;
431 ins
->ins_or_del
= action
;
433 if (ins
->key
.type
== BTRFS_DIR_INDEX_KEY
&&
434 action
== BTRFS_DELAYED_INSERTION_ITEM
&&
435 ins
->key
.offset
>= delayed_node
->index_cnt
)
436 delayed_node
->index_cnt
= ins
->key
.offset
+ 1;
438 delayed_node
->count
++;
439 atomic_inc(&delayed_node
->root
->fs_info
->delayed_root
->items
);
443 static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node
*node
,
444 struct btrfs_delayed_item
*item
)
446 return __btrfs_add_delayed_item(node
, item
,
447 BTRFS_DELAYED_INSERTION_ITEM
);
450 static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node
*node
,
451 struct btrfs_delayed_item
*item
)
453 return __btrfs_add_delayed_item(node
, item
,
454 BTRFS_DELAYED_DELETION_ITEM
);
457 static void finish_one_item(struct btrfs_delayed_root
*delayed_root
)
459 int seq
= atomic_inc_return(&delayed_root
->items_seq
);
462 * atomic_dec_return implies a barrier for waitqueue_active
464 if ((atomic_dec_return(&delayed_root
->items
) <
465 BTRFS_DELAYED_BACKGROUND
|| seq
% BTRFS_DELAYED_BATCH
== 0) &&
466 waitqueue_active(&delayed_root
->wait
))
467 wake_up(&delayed_root
->wait
);
470 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item
*delayed_item
)
472 struct rb_root
*root
;
473 struct btrfs_delayed_root
*delayed_root
;
475 delayed_root
= delayed_item
->delayed_node
->root
->fs_info
->delayed_root
;
477 BUG_ON(!delayed_root
);
478 BUG_ON(delayed_item
->ins_or_del
!= BTRFS_DELAYED_DELETION_ITEM
&&
479 delayed_item
->ins_or_del
!= BTRFS_DELAYED_INSERTION_ITEM
);
481 if (delayed_item
->ins_or_del
== BTRFS_DELAYED_INSERTION_ITEM
)
482 root
= &delayed_item
->delayed_node
->ins_root
;
484 root
= &delayed_item
->delayed_node
->del_root
;
486 rb_erase(&delayed_item
->rb_node
, root
);
487 delayed_item
->delayed_node
->count
--;
489 finish_one_item(delayed_root
);
492 static void btrfs_release_delayed_item(struct btrfs_delayed_item
*item
)
495 __btrfs_remove_delayed_item(item
);
496 if (atomic_dec_and_test(&item
->refs
))
501 static struct btrfs_delayed_item
*__btrfs_first_delayed_insertion_item(
502 struct btrfs_delayed_node
*delayed_node
)
505 struct btrfs_delayed_item
*item
= NULL
;
507 p
= rb_first(&delayed_node
->ins_root
);
509 item
= rb_entry(p
, struct btrfs_delayed_item
, rb_node
);
514 static struct btrfs_delayed_item
*__btrfs_first_delayed_deletion_item(
515 struct btrfs_delayed_node
*delayed_node
)
518 struct btrfs_delayed_item
*item
= NULL
;
520 p
= rb_first(&delayed_node
->del_root
);
522 item
= rb_entry(p
, struct btrfs_delayed_item
, rb_node
);
527 static struct btrfs_delayed_item
*__btrfs_next_delayed_item(
528 struct btrfs_delayed_item
*item
)
531 struct btrfs_delayed_item
*next
= NULL
;
533 p
= rb_next(&item
->rb_node
);
535 next
= rb_entry(p
, struct btrfs_delayed_item
, rb_node
);
540 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle
*trans
,
541 struct btrfs_root
*root
,
542 struct btrfs_delayed_item
*item
)
544 struct btrfs_block_rsv
*src_rsv
;
545 struct btrfs_block_rsv
*dst_rsv
;
549 if (!trans
->bytes_reserved
)
552 src_rsv
= trans
->block_rsv
;
553 dst_rsv
= &root
->fs_info
->delayed_block_rsv
;
555 num_bytes
= btrfs_calc_trans_metadata_size(root
, 1);
556 ret
= btrfs_block_rsv_migrate(src_rsv
, dst_rsv
, num_bytes
, 1);
558 trace_btrfs_space_reservation(root
->fs_info
, "delayed_item",
561 item
->bytes_reserved
= num_bytes
;
567 static void btrfs_delayed_item_release_metadata(struct btrfs_root
*root
,
568 struct btrfs_delayed_item
*item
)
570 struct btrfs_block_rsv
*rsv
;
572 if (!item
->bytes_reserved
)
575 rsv
= &root
->fs_info
->delayed_block_rsv
;
576 trace_btrfs_space_reservation(root
->fs_info
, "delayed_item",
577 item
->key
.objectid
, item
->bytes_reserved
,
579 btrfs_block_rsv_release(root
, rsv
,
580 item
->bytes_reserved
);
583 static int btrfs_delayed_inode_reserve_metadata(
584 struct btrfs_trans_handle
*trans
,
585 struct btrfs_root
*root
,
587 struct btrfs_delayed_node
*node
)
589 struct btrfs_block_rsv
*src_rsv
;
590 struct btrfs_block_rsv
*dst_rsv
;
593 bool release
= false;
595 src_rsv
= trans
->block_rsv
;
596 dst_rsv
= &root
->fs_info
->delayed_block_rsv
;
598 num_bytes
= btrfs_calc_trans_metadata_size(root
, 1);
601 * If our block_rsv is the delalloc block reserve then check and see if
602 * we have our extra reservation for updating the inode. If not fall
603 * through and try to reserve space quickly.
605 * We used to try and steal from the delalloc block rsv or the global
606 * reserve, but we'd steal a full reservation, which isn't kind. We are
607 * here through delalloc which means we've likely just cowed down close
608 * to the leaf that contains the inode, so we would steal less just
609 * doing the fallback inode update, so if we do end up having to steal
610 * from the global block rsv we hopefully only steal one or two blocks
611 * worth which is less likely to hurt us.
613 if (src_rsv
&& src_rsv
->type
== BTRFS_BLOCK_RSV_DELALLOC
) {
614 spin_lock(&BTRFS_I(inode
)->lock
);
615 if (test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED
,
616 &BTRFS_I(inode
)->runtime_flags
))
620 spin_unlock(&BTRFS_I(inode
)->lock
);
624 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
625 * which doesn't reserve space for speed. This is a problem since we
626 * still need to reserve space for this update, so try to reserve the
629 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
630 * we're accounted for.
632 if (!src_rsv
|| (!trans
->bytes_reserved
&&
633 src_rsv
->type
!= BTRFS_BLOCK_RSV_DELALLOC
)) {
634 ret
= btrfs_block_rsv_add(root
, dst_rsv
, num_bytes
,
635 BTRFS_RESERVE_NO_FLUSH
);
637 * Since we're under a transaction reserve_metadata_bytes could
638 * try to commit the transaction which will make it return
639 * EAGAIN to make us stop the transaction we have, so return
640 * ENOSPC instead so that btrfs_dirty_inode knows what to do.
645 node
->bytes_reserved
= num_bytes
;
646 trace_btrfs_space_reservation(root
->fs_info
,
654 ret
= btrfs_block_rsv_migrate(src_rsv
, dst_rsv
, num_bytes
, 1);
657 * Migrate only takes a reservation, it doesn't touch the size of the
658 * block_rsv. This is to simplify people who don't normally have things
659 * migrated from their block rsv. If they go to release their
660 * reservation, that will decrease the size as well, so if migrate
661 * reduced size we'd end up with a negative size. But for the
662 * delalloc_meta_reserved stuff we will only know to drop 1 reservation,
663 * but we could in fact do this reserve/migrate dance several times
664 * between the time we did the original reservation and we'd clean it
665 * up. So to take care of this, release the space for the meta
666 * reservation here. I think it may be time for a documentation page on
667 * how block rsvs. work.
670 trace_btrfs_space_reservation(root
->fs_info
, "delayed_inode",
671 btrfs_ino(inode
), num_bytes
, 1);
672 node
->bytes_reserved
= num_bytes
;
676 trace_btrfs_space_reservation(root
->fs_info
, "delalloc",
677 btrfs_ino(inode
), num_bytes
, 0);
678 btrfs_block_rsv_release(root
, src_rsv
, num_bytes
);
684 static void btrfs_delayed_inode_release_metadata(struct btrfs_root
*root
,
685 struct btrfs_delayed_node
*node
)
687 struct btrfs_block_rsv
*rsv
;
689 if (!node
->bytes_reserved
)
692 rsv
= &root
->fs_info
->delayed_block_rsv
;
693 trace_btrfs_space_reservation(root
->fs_info
, "delayed_inode",
694 node
->inode_id
, node
->bytes_reserved
, 0);
695 btrfs_block_rsv_release(root
, rsv
,
696 node
->bytes_reserved
);
697 node
->bytes_reserved
= 0;
701 * This helper will insert some continuous items into the same leaf according
702 * to the free space of the leaf.
704 static int btrfs_batch_insert_items(struct btrfs_root
*root
,
705 struct btrfs_path
*path
,
706 struct btrfs_delayed_item
*item
)
708 struct btrfs_delayed_item
*curr
, *next
;
710 int total_data_size
= 0, total_size
= 0;
711 struct extent_buffer
*leaf
;
713 struct btrfs_key
*keys
;
715 struct list_head head
;
721 BUG_ON(!path
->nodes
[0]);
723 leaf
= path
->nodes
[0];
724 free_space
= btrfs_leaf_free_space(root
, leaf
);
725 INIT_LIST_HEAD(&head
);
731 * count the number of the continuous items that we can insert in batch
733 while (total_size
+ next
->data_len
+ sizeof(struct btrfs_item
) <=
735 total_data_size
+= next
->data_len
;
736 total_size
+= next
->data_len
+ sizeof(struct btrfs_item
);
737 list_add_tail(&next
->tree_list
, &head
);
741 next
= __btrfs_next_delayed_item(curr
);
745 if (!btrfs_is_continuous_delayed_item(curr
, next
))
755 * we need allocate some memory space, but it might cause the task
756 * to sleep, so we set all locked nodes in the path to blocking locks
759 btrfs_set_path_blocking(path
);
761 keys
= kmalloc_array(nitems
, sizeof(struct btrfs_key
), GFP_NOFS
);
767 data_size
= kmalloc_array(nitems
, sizeof(u32
), GFP_NOFS
);
773 /* get keys of all the delayed items */
775 list_for_each_entry(next
, &head
, tree_list
) {
777 data_size
[i
] = next
->data_len
;
781 /* reset all the locked nodes in the patch to spinning locks. */
782 btrfs_clear_path_blocking(path
, NULL
, 0);
784 /* insert the keys of the items */
785 setup_items_for_insert(root
, path
, keys
, data_size
,
786 total_data_size
, total_size
, nitems
);
788 /* insert the dir index items */
789 slot
= path
->slots
[0];
790 list_for_each_entry_safe(curr
, next
, &head
, tree_list
) {
791 data_ptr
= btrfs_item_ptr(leaf
, slot
, char);
792 write_extent_buffer(leaf
, &curr
->data
,
793 (unsigned long)data_ptr
,
797 btrfs_delayed_item_release_metadata(root
, curr
);
799 list_del(&curr
->tree_list
);
800 btrfs_release_delayed_item(curr
);
811 * This helper can just do simple insertion that needn't extend item for new
812 * data, such as directory name index insertion, inode insertion.
814 static int btrfs_insert_delayed_item(struct btrfs_trans_handle
*trans
,
815 struct btrfs_root
*root
,
816 struct btrfs_path
*path
,
817 struct btrfs_delayed_item
*delayed_item
)
819 struct extent_buffer
*leaf
;
823 ret
= btrfs_insert_empty_item(trans
, root
, path
, &delayed_item
->key
,
824 delayed_item
->data_len
);
825 if (ret
< 0 && ret
!= -EEXIST
)
828 leaf
= path
->nodes
[0];
830 ptr
= btrfs_item_ptr(leaf
, path
->slots
[0], char);
832 write_extent_buffer(leaf
, delayed_item
->data
, (unsigned long)ptr
,
833 delayed_item
->data_len
);
834 btrfs_mark_buffer_dirty(leaf
);
836 btrfs_delayed_item_release_metadata(root
, delayed_item
);
841 * we insert an item first, then if there are some continuous items, we try
842 * to insert those items into the same leaf.
844 static int btrfs_insert_delayed_items(struct btrfs_trans_handle
*trans
,
845 struct btrfs_path
*path
,
846 struct btrfs_root
*root
,
847 struct btrfs_delayed_node
*node
)
849 struct btrfs_delayed_item
*curr
, *prev
;
853 mutex_lock(&node
->mutex
);
854 curr
= __btrfs_first_delayed_insertion_item(node
);
858 ret
= btrfs_insert_delayed_item(trans
, root
, path
, curr
);
860 btrfs_release_path(path
);
865 curr
= __btrfs_next_delayed_item(prev
);
866 if (curr
&& btrfs_is_continuous_delayed_item(prev
, curr
)) {
867 /* insert the continuous items into the same leaf */
869 btrfs_batch_insert_items(root
, path
, curr
);
871 btrfs_release_delayed_item(prev
);
872 btrfs_mark_buffer_dirty(path
->nodes
[0]);
874 btrfs_release_path(path
);
875 mutex_unlock(&node
->mutex
);
879 mutex_unlock(&node
->mutex
);
883 static int btrfs_batch_delete_items(struct btrfs_trans_handle
*trans
,
884 struct btrfs_root
*root
,
885 struct btrfs_path
*path
,
886 struct btrfs_delayed_item
*item
)
888 struct btrfs_delayed_item
*curr
, *next
;
889 struct extent_buffer
*leaf
;
890 struct btrfs_key key
;
891 struct list_head head
;
892 int nitems
, i
, last_item
;
895 BUG_ON(!path
->nodes
[0]);
897 leaf
= path
->nodes
[0];
900 last_item
= btrfs_header_nritems(leaf
) - 1;
902 return -ENOENT
; /* FIXME: Is errno suitable? */
905 INIT_LIST_HEAD(&head
);
906 btrfs_item_key_to_cpu(leaf
, &key
, i
);
909 * count the number of the dir index items that we can delete in batch
911 while (btrfs_comp_cpu_keys(&next
->key
, &key
) == 0) {
912 list_add_tail(&next
->tree_list
, &head
);
916 next
= __btrfs_next_delayed_item(curr
);
920 if (!btrfs_is_continuous_delayed_item(curr
, next
))
926 btrfs_item_key_to_cpu(leaf
, &key
, i
);
932 ret
= btrfs_del_items(trans
, root
, path
, path
->slots
[0], nitems
);
936 list_for_each_entry_safe(curr
, next
, &head
, tree_list
) {
937 btrfs_delayed_item_release_metadata(root
, curr
);
938 list_del(&curr
->tree_list
);
939 btrfs_release_delayed_item(curr
);
946 static int btrfs_delete_delayed_items(struct btrfs_trans_handle
*trans
,
947 struct btrfs_path
*path
,
948 struct btrfs_root
*root
,
949 struct btrfs_delayed_node
*node
)
951 struct btrfs_delayed_item
*curr
, *prev
;
955 mutex_lock(&node
->mutex
);
956 curr
= __btrfs_first_delayed_deletion_item(node
);
960 ret
= btrfs_search_slot(trans
, root
, &curr
->key
, path
, -1, 1);
965 * can't find the item which the node points to, so this node
966 * is invalid, just drop it.
969 curr
= __btrfs_next_delayed_item(prev
);
970 btrfs_release_delayed_item(prev
);
972 btrfs_release_path(path
);
974 mutex_unlock(&node
->mutex
);
980 btrfs_batch_delete_items(trans
, root
, path
, curr
);
981 btrfs_release_path(path
);
982 mutex_unlock(&node
->mutex
);
986 btrfs_release_path(path
);
987 mutex_unlock(&node
->mutex
);
991 static void btrfs_release_delayed_inode(struct btrfs_delayed_node
*delayed_node
)
993 struct btrfs_delayed_root
*delayed_root
;
996 test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY
, &delayed_node
->flags
)) {
997 BUG_ON(!delayed_node
->root
);
998 clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY
, &delayed_node
->flags
);
999 delayed_node
->count
--;
1001 delayed_root
= delayed_node
->root
->fs_info
->delayed_root
;
1002 finish_one_item(delayed_root
);
1006 static void btrfs_release_delayed_iref(struct btrfs_delayed_node
*delayed_node
)
1008 struct btrfs_delayed_root
*delayed_root
;
1010 ASSERT(delayed_node
->root
);
1011 clear_bit(BTRFS_DELAYED_NODE_DEL_IREF
, &delayed_node
->flags
);
1012 delayed_node
->count
--;
1014 delayed_root
= delayed_node
->root
->fs_info
->delayed_root
;
1015 finish_one_item(delayed_root
);
1018 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle
*trans
,
1019 struct btrfs_root
*root
,
1020 struct btrfs_path
*path
,
1021 struct btrfs_delayed_node
*node
)
1023 struct btrfs_key key
;
1024 struct btrfs_inode_item
*inode_item
;
1025 struct extent_buffer
*leaf
;
1029 key
.objectid
= node
->inode_id
;
1030 key
.type
= BTRFS_INODE_ITEM_KEY
;
1033 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF
, &node
->flags
))
1038 ret
= btrfs_lookup_inode(trans
, root
, path
, &key
, mod
);
1040 btrfs_release_path(path
);
1042 } else if (ret
< 0) {
1046 leaf
= path
->nodes
[0];
1047 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
1048 struct btrfs_inode_item
);
1049 write_extent_buffer(leaf
, &node
->inode_item
, (unsigned long)inode_item
,
1050 sizeof(struct btrfs_inode_item
));
1051 btrfs_mark_buffer_dirty(leaf
);
1053 if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF
, &node
->flags
))
1057 if (path
->slots
[0] >= btrfs_header_nritems(leaf
))
1060 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1061 if (key
.objectid
!= node
->inode_id
)
1064 if (key
.type
!= BTRFS_INODE_REF_KEY
&&
1065 key
.type
!= BTRFS_INODE_EXTREF_KEY
)
1069 * Delayed iref deletion is for the inode who has only one link,
1070 * so there is only one iref. The case that several irefs are
1071 * in the same item doesn't exist.
1073 btrfs_del_item(trans
, root
, path
);
1075 btrfs_release_delayed_iref(node
);
1077 btrfs_release_path(path
);
1079 btrfs_delayed_inode_release_metadata(root
, node
);
1080 btrfs_release_delayed_inode(node
);
1085 btrfs_release_path(path
);
1087 key
.type
= BTRFS_INODE_EXTREF_KEY
;
1089 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1095 leaf
= path
->nodes
[0];
1100 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle
*trans
,
1101 struct btrfs_root
*root
,
1102 struct btrfs_path
*path
,
1103 struct btrfs_delayed_node
*node
)
1107 mutex_lock(&node
->mutex
);
1108 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY
, &node
->flags
)) {
1109 mutex_unlock(&node
->mutex
);
1113 ret
= __btrfs_update_delayed_inode(trans
, root
, path
, node
);
1114 mutex_unlock(&node
->mutex
);
1119 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle
*trans
,
1120 struct btrfs_path
*path
,
1121 struct btrfs_delayed_node
*node
)
1125 ret
= btrfs_insert_delayed_items(trans
, path
, node
->root
, node
);
1129 ret
= btrfs_delete_delayed_items(trans
, path
, node
->root
, node
);
1133 ret
= btrfs_update_delayed_inode(trans
, node
->root
, path
, node
);
1138 * Called when committing the transaction.
1139 * Returns 0 on success.
1140 * Returns < 0 on error and returns with an aborted transaction with any
1141 * outstanding delayed items cleaned up.
1143 static int __btrfs_run_delayed_items(struct btrfs_trans_handle
*trans
,
1144 struct btrfs_root
*root
, int nr
)
1146 struct btrfs_delayed_root
*delayed_root
;
1147 struct btrfs_delayed_node
*curr_node
, *prev_node
;
1148 struct btrfs_path
*path
;
1149 struct btrfs_block_rsv
*block_rsv
;
1151 bool count
= (nr
> 0);
1156 path
= btrfs_alloc_path();
1159 path
->leave_spinning
= 1;
1161 block_rsv
= trans
->block_rsv
;
1162 trans
->block_rsv
= &root
->fs_info
->delayed_block_rsv
;
1164 delayed_root
= btrfs_get_delayed_root(root
);
1166 curr_node
= btrfs_first_delayed_node(delayed_root
);
1167 while (curr_node
&& (!count
|| (count
&& nr
--))) {
1168 ret
= __btrfs_commit_inode_delayed_items(trans
, path
,
1171 btrfs_release_delayed_node(curr_node
);
1173 btrfs_abort_transaction(trans
, ret
);
1177 prev_node
= curr_node
;
1178 curr_node
= btrfs_next_delayed_node(curr_node
);
1179 btrfs_release_delayed_node(prev_node
);
1183 btrfs_release_delayed_node(curr_node
);
1184 btrfs_free_path(path
);
1185 trans
->block_rsv
= block_rsv
;
1190 int btrfs_run_delayed_items(struct btrfs_trans_handle
*trans
,
1191 struct btrfs_root
*root
)
1193 return __btrfs_run_delayed_items(trans
, root
, -1);
1196 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle
*trans
,
1197 struct btrfs_root
*root
, int nr
)
1199 return __btrfs_run_delayed_items(trans
, root
, nr
);
1202 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle
*trans
,
1203 struct inode
*inode
)
1205 struct btrfs_delayed_node
*delayed_node
= btrfs_get_delayed_node(inode
);
1206 struct btrfs_path
*path
;
1207 struct btrfs_block_rsv
*block_rsv
;
1213 mutex_lock(&delayed_node
->mutex
);
1214 if (!delayed_node
->count
) {
1215 mutex_unlock(&delayed_node
->mutex
);
1216 btrfs_release_delayed_node(delayed_node
);
1219 mutex_unlock(&delayed_node
->mutex
);
1221 path
= btrfs_alloc_path();
1223 btrfs_release_delayed_node(delayed_node
);
1226 path
->leave_spinning
= 1;
1228 block_rsv
= trans
->block_rsv
;
1229 trans
->block_rsv
= &delayed_node
->root
->fs_info
->delayed_block_rsv
;
1231 ret
= __btrfs_commit_inode_delayed_items(trans
, path
, delayed_node
);
1233 btrfs_release_delayed_node(delayed_node
);
1234 btrfs_free_path(path
);
1235 trans
->block_rsv
= block_rsv
;
1240 int btrfs_commit_inode_delayed_inode(struct inode
*inode
)
1242 struct btrfs_trans_handle
*trans
;
1243 struct btrfs_delayed_node
*delayed_node
= btrfs_get_delayed_node(inode
);
1244 struct btrfs_path
*path
;
1245 struct btrfs_block_rsv
*block_rsv
;
1251 mutex_lock(&delayed_node
->mutex
);
1252 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY
, &delayed_node
->flags
)) {
1253 mutex_unlock(&delayed_node
->mutex
);
1254 btrfs_release_delayed_node(delayed_node
);
1257 mutex_unlock(&delayed_node
->mutex
);
1259 trans
= btrfs_join_transaction(delayed_node
->root
);
1260 if (IS_ERR(trans
)) {
1261 ret
= PTR_ERR(trans
);
1265 path
= btrfs_alloc_path();
1270 path
->leave_spinning
= 1;
1272 block_rsv
= trans
->block_rsv
;
1273 trans
->block_rsv
= &delayed_node
->root
->fs_info
->delayed_block_rsv
;
1275 mutex_lock(&delayed_node
->mutex
);
1276 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY
, &delayed_node
->flags
))
1277 ret
= __btrfs_update_delayed_inode(trans
, delayed_node
->root
,
1278 path
, delayed_node
);
1281 mutex_unlock(&delayed_node
->mutex
);
1283 btrfs_free_path(path
);
1284 trans
->block_rsv
= block_rsv
;
1286 btrfs_end_transaction(trans
, delayed_node
->root
);
1287 btrfs_btree_balance_dirty(delayed_node
->root
);
1289 btrfs_release_delayed_node(delayed_node
);
1294 void btrfs_remove_delayed_node(struct inode
*inode
)
1296 struct btrfs_delayed_node
*delayed_node
;
1298 delayed_node
= ACCESS_ONCE(BTRFS_I(inode
)->delayed_node
);
1302 BTRFS_I(inode
)->delayed_node
= NULL
;
1303 btrfs_release_delayed_node(delayed_node
);
1306 struct btrfs_async_delayed_work
{
1307 struct btrfs_delayed_root
*delayed_root
;
1309 struct btrfs_work work
;
1312 static void btrfs_async_run_delayed_root(struct btrfs_work
*work
)
1314 struct btrfs_async_delayed_work
*async_work
;
1315 struct btrfs_delayed_root
*delayed_root
;
1316 struct btrfs_trans_handle
*trans
;
1317 struct btrfs_path
*path
;
1318 struct btrfs_delayed_node
*delayed_node
= NULL
;
1319 struct btrfs_root
*root
;
1320 struct btrfs_block_rsv
*block_rsv
;
1323 async_work
= container_of(work
, struct btrfs_async_delayed_work
, work
);
1324 delayed_root
= async_work
->delayed_root
;
1326 path
= btrfs_alloc_path();
1331 if (atomic_read(&delayed_root
->items
) < BTRFS_DELAYED_BACKGROUND
/ 2)
1334 delayed_node
= btrfs_first_prepared_delayed_node(delayed_root
);
1338 path
->leave_spinning
= 1;
1339 root
= delayed_node
->root
;
1341 trans
= btrfs_join_transaction(root
);
1345 block_rsv
= trans
->block_rsv
;
1346 trans
->block_rsv
= &root
->fs_info
->delayed_block_rsv
;
1348 __btrfs_commit_inode_delayed_items(trans
, path
, delayed_node
);
1350 trans
->block_rsv
= block_rsv
;
1351 btrfs_end_transaction(trans
, root
);
1352 btrfs_btree_balance_dirty_nodelay(root
);
1355 btrfs_release_path(path
);
1358 btrfs_release_prepared_delayed_node(delayed_node
);
1359 if (async_work
->nr
== 0 || total_done
< async_work
->nr
)
1363 btrfs_free_path(path
);
1365 wake_up(&delayed_root
->wait
);
1370 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root
*delayed_root
,
1371 struct btrfs_fs_info
*fs_info
, int nr
)
1373 struct btrfs_async_delayed_work
*async_work
;
1375 if (atomic_read(&delayed_root
->items
) < BTRFS_DELAYED_BACKGROUND
)
1378 async_work
= kmalloc(sizeof(*async_work
), GFP_NOFS
);
1382 async_work
->delayed_root
= delayed_root
;
1383 btrfs_init_work(&async_work
->work
, btrfs_delayed_meta_helper
,
1384 btrfs_async_run_delayed_root
, NULL
, NULL
);
1385 async_work
->nr
= nr
;
1387 btrfs_queue_work(fs_info
->delayed_workers
, &async_work
->work
);
1391 void btrfs_assert_delayed_root_empty(struct btrfs_root
*root
)
1393 struct btrfs_delayed_root
*delayed_root
;
1394 delayed_root
= btrfs_get_delayed_root(root
);
1395 WARN_ON(btrfs_first_delayed_node(delayed_root
));
1398 static int could_end_wait(struct btrfs_delayed_root
*delayed_root
, int seq
)
1400 int val
= atomic_read(&delayed_root
->items_seq
);
1402 if (val
< seq
|| val
>= seq
+ BTRFS_DELAYED_BATCH
)
1405 if (atomic_read(&delayed_root
->items
) < BTRFS_DELAYED_BACKGROUND
)
1411 void btrfs_balance_delayed_items(struct btrfs_root
*root
)
1413 struct btrfs_delayed_root
*delayed_root
;
1414 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1416 delayed_root
= btrfs_get_delayed_root(root
);
1418 if (atomic_read(&delayed_root
->items
) < BTRFS_DELAYED_BACKGROUND
)
1421 if (atomic_read(&delayed_root
->items
) >= BTRFS_DELAYED_WRITEBACK
) {
1425 seq
= atomic_read(&delayed_root
->items_seq
);
1427 ret
= btrfs_wq_run_delayed_node(delayed_root
, fs_info
, 0);
1431 wait_event_interruptible(delayed_root
->wait
,
1432 could_end_wait(delayed_root
, seq
));
1436 btrfs_wq_run_delayed_node(delayed_root
, fs_info
, BTRFS_DELAYED_BATCH
);
1439 /* Will return 0 or -ENOMEM */
1440 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle
*trans
,
1441 struct btrfs_root
*root
, const char *name
,
1442 int name_len
, struct inode
*dir
,
1443 struct btrfs_disk_key
*disk_key
, u8 type
,
1446 struct btrfs_delayed_node
*delayed_node
;
1447 struct btrfs_delayed_item
*delayed_item
;
1448 struct btrfs_dir_item
*dir_item
;
1451 delayed_node
= btrfs_get_or_create_delayed_node(dir
);
1452 if (IS_ERR(delayed_node
))
1453 return PTR_ERR(delayed_node
);
1455 delayed_item
= btrfs_alloc_delayed_item(sizeof(*dir_item
) + name_len
);
1456 if (!delayed_item
) {
1461 delayed_item
->key
.objectid
= btrfs_ino(dir
);
1462 delayed_item
->key
.type
= BTRFS_DIR_INDEX_KEY
;
1463 delayed_item
->key
.offset
= index
;
1465 dir_item
= (struct btrfs_dir_item
*)delayed_item
->data
;
1466 dir_item
->location
= *disk_key
;
1467 btrfs_set_stack_dir_transid(dir_item
, trans
->transid
);
1468 btrfs_set_stack_dir_data_len(dir_item
, 0);
1469 btrfs_set_stack_dir_name_len(dir_item
, name_len
);
1470 btrfs_set_stack_dir_type(dir_item
, type
);
1471 memcpy((char *)(dir_item
+ 1), name
, name_len
);
1473 ret
= btrfs_delayed_item_reserve_metadata(trans
, root
, delayed_item
);
1475 * we have reserved enough space when we start a new transaction,
1476 * so reserving metadata failure is impossible
1481 mutex_lock(&delayed_node
->mutex
);
1482 ret
= __btrfs_add_delayed_insertion_item(delayed_node
, delayed_item
);
1483 if (unlikely(ret
)) {
1484 btrfs_err(root
->fs_info
, "err add delayed dir index item(name: %.*s) "
1485 "into the insertion tree of the delayed node"
1486 "(root id: %llu, inode id: %llu, errno: %d)",
1487 name_len
, name
, delayed_node
->root
->objectid
,
1488 delayed_node
->inode_id
, ret
);
1491 mutex_unlock(&delayed_node
->mutex
);
1494 btrfs_release_delayed_node(delayed_node
);
1498 static int btrfs_delete_delayed_insertion_item(struct btrfs_root
*root
,
1499 struct btrfs_delayed_node
*node
,
1500 struct btrfs_key
*key
)
1502 struct btrfs_delayed_item
*item
;
1504 mutex_lock(&node
->mutex
);
1505 item
= __btrfs_lookup_delayed_insertion_item(node
, key
);
1507 mutex_unlock(&node
->mutex
);
1511 btrfs_delayed_item_release_metadata(root
, item
);
1512 btrfs_release_delayed_item(item
);
1513 mutex_unlock(&node
->mutex
);
1517 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle
*trans
,
1518 struct btrfs_root
*root
, struct inode
*dir
,
1521 struct btrfs_delayed_node
*node
;
1522 struct btrfs_delayed_item
*item
;
1523 struct btrfs_key item_key
;
1526 node
= btrfs_get_or_create_delayed_node(dir
);
1528 return PTR_ERR(node
);
1530 item_key
.objectid
= btrfs_ino(dir
);
1531 item_key
.type
= BTRFS_DIR_INDEX_KEY
;
1532 item_key
.offset
= index
;
1534 ret
= btrfs_delete_delayed_insertion_item(root
, node
, &item_key
);
1538 item
= btrfs_alloc_delayed_item(0);
1544 item
->key
= item_key
;
1546 ret
= btrfs_delayed_item_reserve_metadata(trans
, root
, item
);
1548 * we have reserved enough space when we start a new transaction,
1549 * so reserving metadata failure is impossible.
1553 mutex_lock(&node
->mutex
);
1554 ret
= __btrfs_add_delayed_deletion_item(node
, item
);
1555 if (unlikely(ret
)) {
1556 btrfs_err(root
->fs_info
, "err add delayed dir index item(index: %llu) "
1557 "into the deletion tree of the delayed node"
1558 "(root id: %llu, inode id: %llu, errno: %d)",
1559 index
, node
->root
->objectid
, node
->inode_id
,
1563 mutex_unlock(&node
->mutex
);
1565 btrfs_release_delayed_node(node
);
1569 int btrfs_inode_delayed_dir_index_count(struct inode
*inode
)
1571 struct btrfs_delayed_node
*delayed_node
= btrfs_get_delayed_node(inode
);
1577 * Since we have held i_mutex of this directory, it is impossible that
1578 * a new directory index is added into the delayed node and index_cnt
1579 * is updated now. So we needn't lock the delayed node.
1581 if (!delayed_node
->index_cnt
) {
1582 btrfs_release_delayed_node(delayed_node
);
1586 BTRFS_I(inode
)->index_cnt
= delayed_node
->index_cnt
;
1587 btrfs_release_delayed_node(delayed_node
);
1591 bool btrfs_readdir_get_delayed_items(struct inode
*inode
,
1592 struct list_head
*ins_list
,
1593 struct list_head
*del_list
)
1595 struct btrfs_delayed_node
*delayed_node
;
1596 struct btrfs_delayed_item
*item
;
1598 delayed_node
= btrfs_get_delayed_node(inode
);
1603 * We can only do one readdir with delayed items at a time because of
1604 * item->readdir_list.
1606 inode_unlock_shared(inode
);
1609 mutex_lock(&delayed_node
->mutex
);
1610 item
= __btrfs_first_delayed_insertion_item(delayed_node
);
1612 atomic_inc(&item
->refs
);
1613 list_add_tail(&item
->readdir_list
, ins_list
);
1614 item
= __btrfs_next_delayed_item(item
);
1617 item
= __btrfs_first_delayed_deletion_item(delayed_node
);
1619 atomic_inc(&item
->refs
);
1620 list_add_tail(&item
->readdir_list
, del_list
);
1621 item
= __btrfs_next_delayed_item(item
);
1623 mutex_unlock(&delayed_node
->mutex
);
1625 * This delayed node is still cached in the btrfs inode, so refs
1626 * must be > 1 now, and we needn't check it is going to be freed
1629 * Besides that, this function is used to read dir, we do not
1630 * insert/delete delayed items in this period. So we also needn't
1631 * requeue or dequeue this delayed node.
1633 atomic_dec(&delayed_node
->refs
);
1638 void btrfs_readdir_put_delayed_items(struct inode
*inode
,
1639 struct list_head
*ins_list
,
1640 struct list_head
*del_list
)
1642 struct btrfs_delayed_item
*curr
, *next
;
1644 list_for_each_entry_safe(curr
, next
, ins_list
, readdir_list
) {
1645 list_del(&curr
->readdir_list
);
1646 if (atomic_dec_and_test(&curr
->refs
))
1650 list_for_each_entry_safe(curr
, next
, del_list
, readdir_list
) {
1651 list_del(&curr
->readdir_list
);
1652 if (atomic_dec_and_test(&curr
->refs
))
1657 * The VFS is going to do up_read(), so we need to downgrade back to a
1660 downgrade_write(&inode
->i_rwsem
);
1663 int btrfs_should_delete_dir_index(struct list_head
*del_list
,
1666 struct btrfs_delayed_item
*curr
, *next
;
1669 if (list_empty(del_list
))
1672 list_for_each_entry_safe(curr
, next
, del_list
, readdir_list
) {
1673 if (curr
->key
.offset
> index
)
1676 list_del(&curr
->readdir_list
);
1677 ret
= (curr
->key
.offset
== index
);
1679 if (atomic_dec_and_test(&curr
->refs
))
1691 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1694 int btrfs_readdir_delayed_dir_index(struct dir_context
*ctx
,
1695 struct list_head
*ins_list
, bool *emitted
)
1697 struct btrfs_dir_item
*di
;
1698 struct btrfs_delayed_item
*curr
, *next
;
1699 struct btrfs_key location
;
1703 unsigned char d_type
;
1705 if (list_empty(ins_list
))
1709 * Changing the data of the delayed item is impossible. So
1710 * we needn't lock them. And we have held i_mutex of the
1711 * directory, nobody can delete any directory indexes now.
1713 list_for_each_entry_safe(curr
, next
, ins_list
, readdir_list
) {
1714 list_del(&curr
->readdir_list
);
1716 if (curr
->key
.offset
< ctx
->pos
) {
1717 if (atomic_dec_and_test(&curr
->refs
))
1722 ctx
->pos
= curr
->key
.offset
;
1724 di
= (struct btrfs_dir_item
*)curr
->data
;
1725 name
= (char *)(di
+ 1);
1726 name_len
= btrfs_stack_dir_name_len(di
);
1728 d_type
= btrfs_filetype_table
[di
->type
];
1729 btrfs_disk_key_to_cpu(&location
, &di
->location
);
1731 over
= !dir_emit(ctx
, name
, name_len
,
1732 location
.objectid
, d_type
);
1734 if (atomic_dec_and_test(&curr
->refs
))
1744 static void fill_stack_inode_item(struct btrfs_trans_handle
*trans
,
1745 struct btrfs_inode_item
*inode_item
,
1746 struct inode
*inode
)
1748 btrfs_set_stack_inode_uid(inode_item
, i_uid_read(inode
));
1749 btrfs_set_stack_inode_gid(inode_item
, i_gid_read(inode
));
1750 btrfs_set_stack_inode_size(inode_item
, BTRFS_I(inode
)->disk_i_size
);
1751 btrfs_set_stack_inode_mode(inode_item
, inode
->i_mode
);
1752 btrfs_set_stack_inode_nlink(inode_item
, inode
->i_nlink
);
1753 btrfs_set_stack_inode_nbytes(inode_item
, inode_get_bytes(inode
));
1754 btrfs_set_stack_inode_generation(inode_item
,
1755 BTRFS_I(inode
)->generation
);
1756 btrfs_set_stack_inode_sequence(inode_item
, inode
->i_version
);
1757 btrfs_set_stack_inode_transid(inode_item
, trans
->transid
);
1758 btrfs_set_stack_inode_rdev(inode_item
, inode
->i_rdev
);
1759 btrfs_set_stack_inode_flags(inode_item
, BTRFS_I(inode
)->flags
);
1760 btrfs_set_stack_inode_block_group(inode_item
, 0);
1762 btrfs_set_stack_timespec_sec(&inode_item
->atime
,
1763 inode
->i_atime
.tv_sec
);
1764 btrfs_set_stack_timespec_nsec(&inode_item
->atime
,
1765 inode
->i_atime
.tv_nsec
);
1767 btrfs_set_stack_timespec_sec(&inode_item
->mtime
,
1768 inode
->i_mtime
.tv_sec
);
1769 btrfs_set_stack_timespec_nsec(&inode_item
->mtime
,
1770 inode
->i_mtime
.tv_nsec
);
1772 btrfs_set_stack_timespec_sec(&inode_item
->ctime
,
1773 inode
->i_ctime
.tv_sec
);
1774 btrfs_set_stack_timespec_nsec(&inode_item
->ctime
,
1775 inode
->i_ctime
.tv_nsec
);
1777 btrfs_set_stack_timespec_sec(&inode_item
->otime
,
1778 BTRFS_I(inode
)->i_otime
.tv_sec
);
1779 btrfs_set_stack_timespec_nsec(&inode_item
->otime
,
1780 BTRFS_I(inode
)->i_otime
.tv_nsec
);
1783 int btrfs_fill_inode(struct inode
*inode
, u32
*rdev
)
1785 struct btrfs_delayed_node
*delayed_node
;
1786 struct btrfs_inode_item
*inode_item
;
1788 delayed_node
= btrfs_get_delayed_node(inode
);
1792 mutex_lock(&delayed_node
->mutex
);
1793 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY
, &delayed_node
->flags
)) {
1794 mutex_unlock(&delayed_node
->mutex
);
1795 btrfs_release_delayed_node(delayed_node
);
1799 inode_item
= &delayed_node
->inode_item
;
1801 i_uid_write(inode
, btrfs_stack_inode_uid(inode_item
));
1802 i_gid_write(inode
, btrfs_stack_inode_gid(inode_item
));
1803 btrfs_i_size_write(inode
, btrfs_stack_inode_size(inode_item
));
1804 inode
->i_mode
= btrfs_stack_inode_mode(inode_item
);
1805 set_nlink(inode
, btrfs_stack_inode_nlink(inode_item
));
1806 inode_set_bytes(inode
, btrfs_stack_inode_nbytes(inode_item
));
1807 BTRFS_I(inode
)->generation
= btrfs_stack_inode_generation(inode_item
);
1808 BTRFS_I(inode
)->last_trans
= btrfs_stack_inode_transid(inode_item
);
1810 inode
->i_version
= btrfs_stack_inode_sequence(inode_item
);
1812 *rdev
= btrfs_stack_inode_rdev(inode_item
);
1813 BTRFS_I(inode
)->flags
= btrfs_stack_inode_flags(inode_item
);
1815 inode
->i_atime
.tv_sec
= btrfs_stack_timespec_sec(&inode_item
->atime
);
1816 inode
->i_atime
.tv_nsec
= btrfs_stack_timespec_nsec(&inode_item
->atime
);
1818 inode
->i_mtime
.tv_sec
= btrfs_stack_timespec_sec(&inode_item
->mtime
);
1819 inode
->i_mtime
.tv_nsec
= btrfs_stack_timespec_nsec(&inode_item
->mtime
);
1821 inode
->i_ctime
.tv_sec
= btrfs_stack_timespec_sec(&inode_item
->ctime
);
1822 inode
->i_ctime
.tv_nsec
= btrfs_stack_timespec_nsec(&inode_item
->ctime
);
1824 BTRFS_I(inode
)->i_otime
.tv_sec
=
1825 btrfs_stack_timespec_sec(&inode_item
->otime
);
1826 BTRFS_I(inode
)->i_otime
.tv_nsec
=
1827 btrfs_stack_timespec_nsec(&inode_item
->otime
);
1829 inode
->i_generation
= BTRFS_I(inode
)->generation
;
1830 BTRFS_I(inode
)->index_cnt
= (u64
)-1;
1832 mutex_unlock(&delayed_node
->mutex
);
1833 btrfs_release_delayed_node(delayed_node
);
1837 int btrfs_delayed_update_inode(struct btrfs_trans_handle
*trans
,
1838 struct btrfs_root
*root
, struct inode
*inode
)
1840 struct btrfs_delayed_node
*delayed_node
;
1843 delayed_node
= btrfs_get_or_create_delayed_node(inode
);
1844 if (IS_ERR(delayed_node
))
1845 return PTR_ERR(delayed_node
);
1847 mutex_lock(&delayed_node
->mutex
);
1848 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY
, &delayed_node
->flags
)) {
1849 fill_stack_inode_item(trans
, &delayed_node
->inode_item
, inode
);
1853 ret
= btrfs_delayed_inode_reserve_metadata(trans
, root
, inode
,
1858 fill_stack_inode_item(trans
, &delayed_node
->inode_item
, inode
);
1859 set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY
, &delayed_node
->flags
);
1860 delayed_node
->count
++;
1861 atomic_inc(&root
->fs_info
->delayed_root
->items
);
1863 mutex_unlock(&delayed_node
->mutex
);
1864 btrfs_release_delayed_node(delayed_node
);
1868 int btrfs_delayed_delete_inode_ref(struct inode
*inode
)
1870 struct btrfs_delayed_node
*delayed_node
;
1873 * we don't do delayed inode updates during log recovery because it
1874 * leads to enospc problems. This means we also can't do
1875 * delayed inode refs
1877 if (BTRFS_I(inode
)->root
->fs_info
->log_root_recovering
)
1880 delayed_node
= btrfs_get_or_create_delayed_node(inode
);
1881 if (IS_ERR(delayed_node
))
1882 return PTR_ERR(delayed_node
);
1885 * We don't reserve space for inode ref deletion is because:
1886 * - We ONLY do async inode ref deletion for the inode who has only
1887 * one link(i_nlink == 1), it means there is only one inode ref.
1888 * And in most case, the inode ref and the inode item are in the
1889 * same leaf, and we will deal with them at the same time.
1890 * Since we are sure we will reserve the space for the inode item,
1891 * it is unnecessary to reserve space for inode ref deletion.
1892 * - If the inode ref and the inode item are not in the same leaf,
1893 * We also needn't worry about enospc problem, because we reserve
1894 * much more space for the inode update than it needs.
1895 * - At the worst, we can steal some space from the global reservation.
1898 mutex_lock(&delayed_node
->mutex
);
1899 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF
, &delayed_node
->flags
))
1902 set_bit(BTRFS_DELAYED_NODE_DEL_IREF
, &delayed_node
->flags
);
1903 delayed_node
->count
++;
1904 atomic_inc(&BTRFS_I(inode
)->root
->fs_info
->delayed_root
->items
);
1906 mutex_unlock(&delayed_node
->mutex
);
1907 btrfs_release_delayed_node(delayed_node
);
1911 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node
*delayed_node
)
1913 struct btrfs_root
*root
= delayed_node
->root
;
1914 struct btrfs_delayed_item
*curr_item
, *prev_item
;
1916 mutex_lock(&delayed_node
->mutex
);
1917 curr_item
= __btrfs_first_delayed_insertion_item(delayed_node
);
1919 btrfs_delayed_item_release_metadata(root
, curr_item
);
1920 prev_item
= curr_item
;
1921 curr_item
= __btrfs_next_delayed_item(prev_item
);
1922 btrfs_release_delayed_item(prev_item
);
1925 curr_item
= __btrfs_first_delayed_deletion_item(delayed_node
);
1927 btrfs_delayed_item_release_metadata(root
, curr_item
);
1928 prev_item
= curr_item
;
1929 curr_item
= __btrfs_next_delayed_item(prev_item
);
1930 btrfs_release_delayed_item(prev_item
);
1933 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF
, &delayed_node
->flags
))
1934 btrfs_release_delayed_iref(delayed_node
);
1936 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY
, &delayed_node
->flags
)) {
1937 btrfs_delayed_inode_release_metadata(root
, delayed_node
);
1938 btrfs_release_delayed_inode(delayed_node
);
1940 mutex_unlock(&delayed_node
->mutex
);
1943 void btrfs_kill_delayed_inode_items(struct inode
*inode
)
1945 struct btrfs_delayed_node
*delayed_node
;
1947 delayed_node
= btrfs_get_delayed_node(inode
);
1951 __btrfs_kill_delayed_node(delayed_node
);
1952 btrfs_release_delayed_node(delayed_node
);
1955 void btrfs_kill_all_delayed_nodes(struct btrfs_root
*root
)
1958 struct btrfs_delayed_node
*delayed_nodes
[8];
1962 spin_lock(&root
->inode_lock
);
1963 n
= radix_tree_gang_lookup(&root
->delayed_nodes_tree
,
1964 (void **)delayed_nodes
, inode_id
,
1965 ARRAY_SIZE(delayed_nodes
));
1967 spin_unlock(&root
->inode_lock
);
1971 inode_id
= delayed_nodes
[n
- 1]->inode_id
+ 1;
1973 for (i
= 0; i
< n
; i
++)
1974 atomic_inc(&delayed_nodes
[i
]->refs
);
1975 spin_unlock(&root
->inode_lock
);
1977 for (i
= 0; i
< n
; i
++) {
1978 __btrfs_kill_delayed_node(delayed_nodes
[i
]);
1979 btrfs_release_delayed_node(delayed_nodes
[i
]);
1984 void btrfs_destroy_delayed_inodes(struct btrfs_root
*root
)
1986 struct btrfs_delayed_root
*delayed_root
;
1987 struct btrfs_delayed_node
*curr_node
, *prev_node
;
1989 delayed_root
= btrfs_get_delayed_root(root
);
1991 curr_node
= btrfs_first_delayed_node(delayed_root
);
1993 __btrfs_kill_delayed_node(curr_node
);
1995 prev_node
= curr_node
;
1996 curr_node
= btrfs_next_delayed_node(curr_node
);
1997 btrfs_release_delayed_node(prev_node
);