2 * linux/fs/ext2/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@dcs.ed.ac.uk), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
22 * Assorted race fixes, rewrite of ext2_get_block() by Al Viro, 2000
25 #include <linux/time.h>
26 #include <linux/highuid.h>
27 #include <linux/pagemap.h>
28 #include <linux/dax.h>
29 #include <linux/blkdev.h>
30 #include <linux/quotaops.h>
31 #include <linux/writeback.h>
32 #include <linux/buffer_head.h>
33 #include <linux/mpage.h>
34 #include <linux/fiemap.h>
35 #include <linux/namei.h>
36 #include <linux/uio.h>
41 static int __ext2_write_inode(struct inode
*inode
, int do_sync
);
44 * Test whether an inode is a fast symlink.
46 static inline int ext2_inode_is_fast_symlink(struct inode
*inode
)
48 int ea_blocks
= EXT2_I(inode
)->i_file_acl
?
49 (inode
->i_sb
->s_blocksize
>> 9) : 0;
51 return (S_ISLNK(inode
->i_mode
) &&
52 inode
->i_blocks
- ea_blocks
== 0);
55 static void ext2_truncate_blocks(struct inode
*inode
, loff_t offset
);
57 static void ext2_write_failed(struct address_space
*mapping
, loff_t to
)
59 struct inode
*inode
= mapping
->host
;
61 if (to
> inode
->i_size
) {
62 truncate_pagecache(inode
, inode
->i_size
);
63 ext2_truncate_blocks(inode
, inode
->i_size
);
68 * Called at the last iput() if i_nlink is zero.
70 void ext2_evict_inode(struct inode
* inode
)
72 struct ext2_block_alloc_info
*rsv
;
75 if (!inode
->i_nlink
&& !is_bad_inode(inode
)) {
77 dquot_initialize(inode
);
82 truncate_inode_pages_final(&inode
->i_data
);
85 sb_start_intwrite(inode
->i_sb
);
87 EXT2_I(inode
)->i_dtime
= get_seconds();
88 mark_inode_dirty(inode
);
89 __ext2_write_inode(inode
, inode_needs_sync(inode
));
93 ext2_truncate_blocks(inode
, 0);
94 ext2_xattr_delete_inode(inode
);
97 invalidate_inode_buffers(inode
);
100 ext2_discard_reservation(inode
);
101 rsv
= EXT2_I(inode
)->i_block_alloc_info
;
102 EXT2_I(inode
)->i_block_alloc_info
= NULL
;
107 ext2_free_inode(inode
);
108 sb_end_intwrite(inode
->i_sb
);
115 struct buffer_head
*bh
;
118 static inline void add_chain(Indirect
*p
, struct buffer_head
*bh
, __le32
*v
)
120 p
->key
= *(p
->p
= v
);
124 static inline int verify_chain(Indirect
*from
, Indirect
*to
)
126 while (from
<= to
&& from
->key
== *from
->p
)
132 * ext2_block_to_path - parse the block number into array of offsets
133 * @inode: inode in question (we are only interested in its superblock)
134 * @i_block: block number to be parsed
135 * @offsets: array to store the offsets in
136 * @boundary: set this non-zero if the referred-to block is likely to be
137 * followed (on disk) by an indirect block.
138 * To store the locations of file's data ext2 uses a data structure common
139 * for UNIX filesystems - tree of pointers anchored in the inode, with
140 * data blocks at leaves and indirect blocks in intermediate nodes.
141 * This function translates the block number into path in that tree -
142 * return value is the path length and @offsets[n] is the offset of
143 * pointer to (n+1)th node in the nth one. If @block is out of range
144 * (negative or too large) warning is printed and zero returned.
146 * Note: function doesn't find node addresses, so no IO is needed. All
147 * we need to know is the capacity of indirect blocks (taken from the
152 * Portability note: the last comparison (check that we fit into triple
153 * indirect block) is spelled differently, because otherwise on an
154 * architecture with 32-bit longs and 8Kb pages we might get into trouble
155 * if our filesystem had 8Kb blocks. We might use long long, but that would
156 * kill us on x86. Oh, well, at least the sign propagation does not matter -
157 * i_block would have to be negative in the very beginning, so we would not
161 static int ext2_block_to_path(struct inode
*inode
,
162 long i_block
, int offsets
[4], int *boundary
)
164 int ptrs
= EXT2_ADDR_PER_BLOCK(inode
->i_sb
);
165 int ptrs_bits
= EXT2_ADDR_PER_BLOCK_BITS(inode
->i_sb
);
166 const long direct_blocks
= EXT2_NDIR_BLOCKS
,
167 indirect_blocks
= ptrs
,
168 double_blocks
= (1 << (ptrs_bits
* 2));
173 ext2_msg(inode
->i_sb
, KERN_WARNING
,
174 "warning: %s: block < 0", __func__
);
175 } else if (i_block
< direct_blocks
) {
176 offsets
[n
++] = i_block
;
177 final
= direct_blocks
;
178 } else if ( (i_block
-= direct_blocks
) < indirect_blocks
) {
179 offsets
[n
++] = EXT2_IND_BLOCK
;
180 offsets
[n
++] = i_block
;
182 } else if ((i_block
-= indirect_blocks
) < double_blocks
) {
183 offsets
[n
++] = EXT2_DIND_BLOCK
;
184 offsets
[n
++] = i_block
>> ptrs_bits
;
185 offsets
[n
++] = i_block
& (ptrs
- 1);
187 } else if (((i_block
-= double_blocks
) >> (ptrs_bits
* 2)) < ptrs
) {
188 offsets
[n
++] = EXT2_TIND_BLOCK
;
189 offsets
[n
++] = i_block
>> (ptrs_bits
* 2);
190 offsets
[n
++] = (i_block
>> ptrs_bits
) & (ptrs
- 1);
191 offsets
[n
++] = i_block
& (ptrs
- 1);
194 ext2_msg(inode
->i_sb
, KERN_WARNING
,
195 "warning: %s: block is too big", __func__
);
198 *boundary
= final
- 1 - (i_block
& (ptrs
- 1));
204 * ext2_get_branch - read the chain of indirect blocks leading to data
205 * @inode: inode in question
206 * @depth: depth of the chain (1 - direct pointer, etc.)
207 * @offsets: offsets of pointers in inode/indirect blocks
208 * @chain: place to store the result
209 * @err: here we store the error value
211 * Function fills the array of triples <key, p, bh> and returns %NULL
212 * if everything went OK or the pointer to the last filled triple
213 * (incomplete one) otherwise. Upon the return chain[i].key contains
214 * the number of (i+1)-th block in the chain (as it is stored in memory,
215 * i.e. little-endian 32-bit), chain[i].p contains the address of that
216 * number (it points into struct inode for i==0 and into the bh->b_data
217 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
218 * block for i>0 and NULL for i==0. In other words, it holds the block
219 * numbers of the chain, addresses they were taken from (and where we can
220 * verify that chain did not change) and buffer_heads hosting these
223 * Function stops when it stumbles upon zero pointer (absent block)
224 * (pointer to last triple returned, *@err == 0)
225 * or when it gets an IO error reading an indirect block
226 * (ditto, *@err == -EIO)
227 * or when it notices that chain had been changed while it was reading
228 * (ditto, *@err == -EAGAIN)
229 * or when it reads all @depth-1 indirect blocks successfully and finds
230 * the whole chain, all way to the data (returns %NULL, *err == 0).
232 static Indirect
*ext2_get_branch(struct inode
*inode
,
238 struct super_block
*sb
= inode
->i_sb
;
240 struct buffer_head
*bh
;
243 /* i_data is not going away, no lock needed */
244 add_chain (chain
, NULL
, EXT2_I(inode
)->i_data
+ *offsets
);
248 bh
= sb_bread(sb
, le32_to_cpu(p
->key
));
251 read_lock(&EXT2_I(inode
)->i_meta_lock
);
252 if (!verify_chain(chain
, p
))
254 add_chain(++p
, bh
, (__le32
*)bh
->b_data
+ *++offsets
);
255 read_unlock(&EXT2_I(inode
)->i_meta_lock
);
262 read_unlock(&EXT2_I(inode
)->i_meta_lock
);
273 * ext2_find_near - find a place for allocation with sufficient locality
275 * @ind: descriptor of indirect block.
277 * This function returns the preferred place for block allocation.
278 * It is used when heuristic for sequential allocation fails.
280 * + if there is a block to the left of our position - allocate near it.
281 * + if pointer will live in indirect block - allocate near that block.
282 * + if pointer will live in inode - allocate in the same cylinder group.
284 * In the latter case we colour the starting block by the callers PID to
285 * prevent it from clashing with concurrent allocations for a different inode
286 * in the same block group. The PID is used here so that functionally related
287 * files will be close-by on-disk.
289 * Caller must make sure that @ind is valid and will stay that way.
292 static ext2_fsblk_t
ext2_find_near(struct inode
*inode
, Indirect
*ind
)
294 struct ext2_inode_info
*ei
= EXT2_I(inode
);
295 __le32
*start
= ind
->bh
? (__le32
*) ind
->bh
->b_data
: ei
->i_data
;
297 ext2_fsblk_t bg_start
;
300 /* Try to find previous block */
301 for (p
= ind
->p
- 1; p
>= start
; p
--)
303 return le32_to_cpu(*p
);
305 /* No such thing, so let's try location of indirect block */
307 return ind
->bh
->b_blocknr
;
310 * It is going to be referred from inode itself? OK, just put it into
311 * the same cylinder group then.
313 bg_start
= ext2_group_first_block_no(inode
->i_sb
, ei
->i_block_group
);
314 colour
= (current
->pid
% 16) *
315 (EXT2_BLOCKS_PER_GROUP(inode
->i_sb
) / 16);
316 return bg_start
+ colour
;
320 * ext2_find_goal - find a preferred place for allocation.
322 * @block: block we want
323 * @partial: pointer to the last triple within a chain
325 * Returns preferred place for a block (the goal).
328 static inline ext2_fsblk_t
ext2_find_goal(struct inode
*inode
, long block
,
331 struct ext2_block_alloc_info
*block_i
;
333 block_i
= EXT2_I(inode
)->i_block_alloc_info
;
336 * try the heuristic for sequential allocation,
337 * failing that at least try to get decent locality.
339 if (block_i
&& (block
== block_i
->last_alloc_logical_block
+ 1)
340 && (block_i
->last_alloc_physical_block
!= 0)) {
341 return block_i
->last_alloc_physical_block
+ 1;
344 return ext2_find_near(inode
, partial
);
348 * ext2_blks_to_allocate: Look up the block map and count the number
349 * of direct blocks need to be allocated for the given branch.
351 * @branch: chain of indirect blocks
352 * @k: number of blocks need for indirect blocks
353 * @blks: number of data blocks to be mapped.
354 * @blocks_to_boundary: the offset in the indirect block
356 * return the total number of blocks to be allocate, including the
357 * direct and indirect blocks.
360 ext2_blks_to_allocate(Indirect
* branch
, int k
, unsigned long blks
,
361 int blocks_to_boundary
)
363 unsigned long count
= 0;
366 * Simple case, [t,d]Indirect block(s) has not allocated yet
367 * then it's clear blocks on that path have not allocated
370 /* right now don't hanel cross boundary allocation */
371 if (blks
< blocks_to_boundary
+ 1)
374 count
+= blocks_to_boundary
+ 1;
379 while (count
< blks
&& count
<= blocks_to_boundary
380 && le32_to_cpu(*(branch
[0].p
+ count
)) == 0) {
387 * ext2_alloc_blocks: multiple allocate blocks needed for a branch
388 * @indirect_blks: the number of blocks need to allocate for indirect
391 * @new_blocks: on return it will store the new block numbers for
392 * the indirect blocks(if needed) and the first direct block,
393 * @blks: on return it will store the total number of allocated
396 static int ext2_alloc_blocks(struct inode
*inode
,
397 ext2_fsblk_t goal
, int indirect_blks
, int blks
,
398 ext2_fsblk_t new_blocks
[4], int *err
)
401 unsigned long count
= 0;
403 ext2_fsblk_t current_block
= 0;
407 * Here we try to allocate the requested multiple blocks at once,
408 * on a best-effort basis.
409 * To build a branch, we should allocate blocks for
410 * the indirect blocks(if not allocated yet), and at least
411 * the first direct block of this branch. That's the
412 * minimum number of blocks need to allocate(required)
414 target
= blks
+ indirect_blks
;
418 /* allocating blocks for indirect blocks and direct blocks */
419 current_block
= ext2_new_blocks(inode
,goal
,&count
,err
);
424 /* allocate blocks for indirect blocks */
425 while (index
< indirect_blks
&& count
) {
426 new_blocks
[index
++] = current_block
++;
434 /* save the new block number for the first direct block */
435 new_blocks
[index
] = current_block
;
437 /* total number of blocks allocated for direct blocks */
442 for (i
= 0; i
<index
; i
++)
443 ext2_free_blocks(inode
, new_blocks
[i
], 1);
445 mark_inode_dirty(inode
);
450 * ext2_alloc_branch - allocate and set up a chain of blocks.
452 * @num: depth of the chain (number of blocks to allocate)
453 * @offsets: offsets (in the blocks) to store the pointers to next.
454 * @branch: place to store the chain in.
456 * This function allocates @num blocks, zeroes out all but the last one,
457 * links them into chain and (if we are synchronous) writes them to disk.
458 * In other words, it prepares a branch that can be spliced onto the
459 * inode. It stores the information about that chain in the branch[], in
460 * the same format as ext2_get_branch() would do. We are calling it after
461 * we had read the existing part of chain and partial points to the last
462 * triple of that (one with zero ->key). Upon the exit we have the same
463 * picture as after the successful ext2_get_block(), except that in one
464 * place chain is disconnected - *branch->p is still zero (we did not
465 * set the last link), but branch->key contains the number that should
466 * be placed into *branch->p to fill that gap.
468 * If allocation fails we free all blocks we've allocated (and forget
469 * their buffer_heads) and return the error value the from failed
470 * ext2_alloc_block() (normally -ENOSPC). Otherwise we set the chain
471 * as described above and return 0.
474 static int ext2_alloc_branch(struct inode
*inode
,
475 int indirect_blks
, int *blks
, ext2_fsblk_t goal
,
476 int *offsets
, Indirect
*branch
)
478 int blocksize
= inode
->i_sb
->s_blocksize
;
481 struct buffer_head
*bh
;
483 ext2_fsblk_t new_blocks
[4];
484 ext2_fsblk_t current_block
;
486 num
= ext2_alloc_blocks(inode
, goal
, indirect_blks
,
487 *blks
, new_blocks
, &err
);
491 branch
[0].key
= cpu_to_le32(new_blocks
[0]);
493 * metadata blocks and data blocks are allocated.
495 for (n
= 1; n
<= indirect_blks
; n
++) {
497 * Get buffer_head for parent block, zero it out
498 * and set the pointer to new one, then send
501 bh
= sb_getblk(inode
->i_sb
, new_blocks
[n
-1]);
508 memset(bh
->b_data
, 0, blocksize
);
509 branch
[n
].p
= (__le32
*) bh
->b_data
+ offsets
[n
];
510 branch
[n
].key
= cpu_to_le32(new_blocks
[n
]);
511 *branch
[n
].p
= branch
[n
].key
;
512 if ( n
== indirect_blks
) {
513 current_block
= new_blocks
[n
];
515 * End of chain, update the last new metablock of
516 * the chain to point to the new allocated
517 * data blocks numbers
519 for (i
=1; i
< num
; i
++)
520 *(branch
[n
].p
+ i
) = cpu_to_le32(++current_block
);
522 set_buffer_uptodate(bh
);
524 mark_buffer_dirty_inode(bh
, inode
);
525 /* We used to sync bh here if IS_SYNC(inode).
526 * But we now rely upon generic_write_sync()
527 * and b_inode_buffers. But not for directories.
529 if (S_ISDIR(inode
->i_mode
) && IS_DIRSYNC(inode
))
530 sync_dirty_buffer(bh
);
536 for (i
= 1; i
< n
; i
++)
537 bforget(branch
[i
].bh
);
538 for (i
= 0; i
< indirect_blks
; i
++)
539 ext2_free_blocks(inode
, new_blocks
[i
], 1);
540 ext2_free_blocks(inode
, new_blocks
[i
], num
);
545 * ext2_splice_branch - splice the allocated branch onto inode.
547 * @block: (logical) number of block we are adding
548 * @where: location of missing link
549 * @num: number of indirect blocks we are adding
550 * @blks: number of direct blocks we are adding
552 * This function fills the missing link and does all housekeeping needed in
553 * inode (->i_blocks, etc.). In case of success we end up with the full
554 * chain to new block and return 0.
556 static void ext2_splice_branch(struct inode
*inode
,
557 long block
, Indirect
*where
, int num
, int blks
)
560 struct ext2_block_alloc_info
*block_i
;
561 ext2_fsblk_t current_block
;
563 block_i
= EXT2_I(inode
)->i_block_alloc_info
;
565 /* XXX LOCKING probably should have i_meta_lock ?*/
568 *where
->p
= where
->key
;
571 * Update the host buffer_head or inode to point to more just allocated
572 * direct blocks blocks
574 if (num
== 0 && blks
> 1) {
575 current_block
= le32_to_cpu(where
->key
) + 1;
576 for (i
= 1; i
< blks
; i
++)
577 *(where
->p
+ i
) = cpu_to_le32(current_block
++);
581 * update the most recently allocated logical & physical block
582 * in i_block_alloc_info, to assist find the proper goal block for next
586 block_i
->last_alloc_logical_block
= block
+ blks
- 1;
587 block_i
->last_alloc_physical_block
=
588 le32_to_cpu(where
[num
].key
) + blks
- 1;
591 /* We are done with atomic stuff, now do the rest of housekeeping */
593 /* had we spliced it onto indirect block? */
595 mark_buffer_dirty_inode(where
->bh
, inode
);
597 inode
->i_ctime
= CURRENT_TIME_SEC
;
598 mark_inode_dirty(inode
);
602 * Allocation strategy is simple: if we have to allocate something, we will
603 * have to go the whole way to leaf. So let's do it before attaching anything
604 * to tree, set linkage between the newborn blocks, write them if sync is
605 * required, recheck the path, free and repeat if check fails, otherwise
606 * set the last missing link (that will protect us from any truncate-generated
607 * removals - all blocks on the path are immune now) and possibly force the
608 * write on the parent block.
609 * That has a nice additional property: no special recovery from the failed
610 * allocations is needed - we simply release blocks and do not touch anything
611 * reachable from inode.
613 * `handle' can be NULL if create == 0.
615 * return > 0, # of blocks mapped or allocated.
616 * return = 0, if plain lookup failed.
617 * return < 0, error case.
619 static int ext2_get_blocks(struct inode
*inode
,
620 sector_t iblock
, unsigned long maxblocks
,
621 struct buffer_head
*bh_result
,
630 int blocks_to_boundary
= 0;
632 struct ext2_inode_info
*ei
= EXT2_I(inode
);
634 ext2_fsblk_t first_block
= 0;
636 BUG_ON(maxblocks
== 0);
638 depth
= ext2_block_to_path(inode
,iblock
,offsets
,&blocks_to_boundary
);
643 partial
= ext2_get_branch(inode
, depth
, offsets
, chain
, &err
);
644 /* Simplest case - block found, no allocation needed */
646 first_block
= le32_to_cpu(chain
[depth
- 1].key
);
647 clear_buffer_new(bh_result
); /* What's this do? */
650 while (count
< maxblocks
&& count
<= blocks_to_boundary
) {
653 if (!verify_chain(chain
, chain
+ depth
- 1)) {
655 * Indirect block might be removed by
656 * truncate while we were reading it.
657 * Handling of that case: forget what we've
658 * got now, go to reread.
664 blk
= le32_to_cpu(*(chain
[depth
-1].p
+ count
));
665 if (blk
== first_block
+ count
)
674 /* Next simple case - plain lookup or failed read of indirect block */
675 if (!create
|| err
== -EIO
)
678 mutex_lock(&ei
->truncate_mutex
);
680 * If the indirect block is missing while we are reading
681 * the chain(ext2_get_branch() returns -EAGAIN err), or
682 * if the chain has been changed after we grab the semaphore,
683 * (either because another process truncated this branch, or
684 * another get_block allocated this branch) re-grab the chain to see if
685 * the request block has been allocated or not.
687 * Since we already block the truncate/other get_block
688 * at this point, we will have the current copy of the chain when we
689 * splice the branch into the tree.
691 if (err
== -EAGAIN
|| !verify_chain(chain
, partial
)) {
692 while (partial
> chain
) {
696 partial
= ext2_get_branch(inode
, depth
, offsets
, chain
, &err
);
699 mutex_unlock(&ei
->truncate_mutex
);
702 clear_buffer_new(bh_result
);
708 * Okay, we need to do block allocation. Lazily initialize the block
709 * allocation info here if necessary
711 if (S_ISREG(inode
->i_mode
) && (!ei
->i_block_alloc_info
))
712 ext2_init_block_alloc_info(inode
);
714 goal
= ext2_find_goal(inode
, iblock
, partial
);
716 /* the number of blocks need to allocate for [d,t]indirect blocks */
717 indirect_blks
= (chain
+ depth
) - partial
- 1;
719 * Next look up the indirect map to count the totoal number of
720 * direct blocks to allocate for this branch.
722 count
= ext2_blks_to_allocate(partial
, indirect_blks
,
723 maxblocks
, blocks_to_boundary
);
725 * XXX ???? Block out ext2_truncate while we alter the tree
727 err
= ext2_alloc_branch(inode
, indirect_blks
, &count
, goal
,
728 offsets
+ (partial
- chain
), partial
);
731 mutex_unlock(&ei
->truncate_mutex
);
737 * block must be initialised before we put it in the tree
738 * so that it's not found by another thread before it's
741 err
= sb_issue_zeroout(inode
->i_sb
,
742 le32_to_cpu(chain
[depth
-1].key
), count
,
745 mutex_unlock(&ei
->truncate_mutex
);
749 set_buffer_new(bh_result
);
751 ext2_splice_branch(inode
, iblock
, partial
, indirect_blks
, count
);
752 mutex_unlock(&ei
->truncate_mutex
);
754 map_bh(bh_result
, inode
->i_sb
, le32_to_cpu(chain
[depth
-1].key
));
755 if (count
> blocks_to_boundary
)
756 set_buffer_boundary(bh_result
);
758 /* Clean up and exit */
759 partial
= chain
+ depth
- 1; /* the whole chain */
761 while (partial
> chain
) {
768 int ext2_get_block(struct inode
*inode
, sector_t iblock
, struct buffer_head
*bh_result
, int create
)
770 unsigned max_blocks
= bh_result
->b_size
>> inode
->i_blkbits
;
771 int ret
= ext2_get_blocks(inode
, iblock
, max_blocks
,
774 bh_result
->b_size
= (ret
<< inode
->i_blkbits
);
781 int ext2_fiemap(struct inode
*inode
, struct fiemap_extent_info
*fieinfo
,
784 return generic_block_fiemap(inode
, fieinfo
, start
, len
,
788 static int ext2_writepage(struct page
*page
, struct writeback_control
*wbc
)
790 return block_write_full_page(page
, ext2_get_block
, wbc
);
793 static int ext2_readpage(struct file
*file
, struct page
*page
)
795 return mpage_readpage(page
, ext2_get_block
);
799 ext2_readpages(struct file
*file
, struct address_space
*mapping
,
800 struct list_head
*pages
, unsigned nr_pages
)
802 return mpage_readpages(mapping
, pages
, nr_pages
, ext2_get_block
);
806 ext2_write_begin(struct file
*file
, struct address_space
*mapping
,
807 loff_t pos
, unsigned len
, unsigned flags
,
808 struct page
**pagep
, void **fsdata
)
812 ret
= block_write_begin(mapping
, pos
, len
, flags
, pagep
,
815 ext2_write_failed(mapping
, pos
+ len
);
819 static int ext2_write_end(struct file
*file
, struct address_space
*mapping
,
820 loff_t pos
, unsigned len
, unsigned copied
,
821 struct page
*page
, void *fsdata
)
825 ret
= generic_write_end(file
, mapping
, pos
, len
, copied
, page
, fsdata
);
827 ext2_write_failed(mapping
, pos
+ len
);
832 ext2_nobh_write_begin(struct file
*file
, struct address_space
*mapping
,
833 loff_t pos
, unsigned len
, unsigned flags
,
834 struct page
**pagep
, void **fsdata
)
838 ret
= nobh_write_begin(mapping
, pos
, len
, flags
, pagep
, fsdata
,
841 ext2_write_failed(mapping
, pos
+ len
);
845 static int ext2_nobh_writepage(struct page
*page
,
846 struct writeback_control
*wbc
)
848 return nobh_writepage(page
, ext2_get_block
, wbc
);
851 static sector_t
ext2_bmap(struct address_space
*mapping
, sector_t block
)
853 return generic_block_bmap(mapping
,block
,ext2_get_block
);
857 ext2_direct_IO(struct kiocb
*iocb
, struct iov_iter
*iter
)
859 struct file
*file
= iocb
->ki_filp
;
860 struct address_space
*mapping
= file
->f_mapping
;
861 struct inode
*inode
= mapping
->host
;
862 size_t count
= iov_iter_count(iter
);
863 loff_t offset
= iocb
->ki_pos
;
867 ret
= dax_do_io(iocb
, inode
, iter
, ext2_get_block
, NULL
,
870 ret
= blockdev_direct_IO(iocb
, inode
, iter
, ext2_get_block
);
871 if (ret
< 0 && iov_iter_rw(iter
) == WRITE
)
872 ext2_write_failed(mapping
, offset
+ count
);
877 ext2_writepages(struct address_space
*mapping
, struct writeback_control
*wbc
)
880 if (dax_mapping(mapping
)) {
881 return dax_writeback_mapping_range(mapping
,
882 mapping
->host
->i_sb
->s_bdev
,
887 return mpage_writepages(mapping
, wbc
, ext2_get_block
);
890 const struct address_space_operations ext2_aops
= {
891 .readpage
= ext2_readpage
,
892 .readpages
= ext2_readpages
,
893 .writepage
= ext2_writepage
,
894 .write_begin
= ext2_write_begin
,
895 .write_end
= ext2_write_end
,
897 .direct_IO
= ext2_direct_IO
,
898 .writepages
= ext2_writepages
,
899 .migratepage
= buffer_migrate_page
,
900 .is_partially_uptodate
= block_is_partially_uptodate
,
901 .error_remove_page
= generic_error_remove_page
,
904 const struct address_space_operations ext2_nobh_aops
= {
905 .readpage
= ext2_readpage
,
906 .readpages
= ext2_readpages
,
907 .writepage
= ext2_nobh_writepage
,
908 .write_begin
= ext2_nobh_write_begin
,
909 .write_end
= nobh_write_end
,
911 .direct_IO
= ext2_direct_IO
,
912 .writepages
= ext2_writepages
,
913 .migratepage
= buffer_migrate_page
,
914 .error_remove_page
= generic_error_remove_page
,
918 * Probably it should be a library function... search for first non-zero word
919 * or memcmp with zero_page, whatever is better for particular architecture.
922 static inline int all_zeroes(__le32
*p
, __le32
*q
)
931 * ext2_find_shared - find the indirect blocks for partial truncation.
932 * @inode: inode in question
933 * @depth: depth of the affected branch
934 * @offsets: offsets of pointers in that branch (see ext2_block_to_path)
935 * @chain: place to store the pointers to partial indirect blocks
936 * @top: place to the (detached) top of branch
938 * This is a helper function used by ext2_truncate().
940 * When we do truncate() we may have to clean the ends of several indirect
941 * blocks but leave the blocks themselves alive. Block is partially
942 * truncated if some data below the new i_size is referred from it (and
943 * it is on the path to the first completely truncated data block, indeed).
944 * We have to free the top of that path along with everything to the right
945 * of the path. Since no allocation past the truncation point is possible
946 * until ext2_truncate() finishes, we may safely do the latter, but top
947 * of branch may require special attention - pageout below the truncation
948 * point might try to populate it.
950 * We atomically detach the top of branch from the tree, store the block
951 * number of its root in *@top, pointers to buffer_heads of partially
952 * truncated blocks - in @chain[].bh and pointers to their last elements
953 * that should not be removed - in @chain[].p. Return value is the pointer
954 * to last filled element of @chain.
956 * The work left to caller to do the actual freeing of subtrees:
957 * a) free the subtree starting from *@top
958 * b) free the subtrees whose roots are stored in
959 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
960 * c) free the subtrees growing from the inode past the @chain[0].p
961 * (no partially truncated stuff there).
964 static Indirect
*ext2_find_shared(struct inode
*inode
,
970 Indirect
*partial
, *p
;
974 for (k
= depth
; k
> 1 && !offsets
[k
-1]; k
--)
976 partial
= ext2_get_branch(inode
, k
, offsets
, chain
, &err
);
978 partial
= chain
+ k
-1;
980 * If the branch acquired continuation since we've looked at it -
981 * fine, it should all survive and (new) top doesn't belong to us.
983 write_lock(&EXT2_I(inode
)->i_meta_lock
);
984 if (!partial
->key
&& *partial
->p
) {
985 write_unlock(&EXT2_I(inode
)->i_meta_lock
);
988 for (p
=partial
; p
>chain
&& all_zeroes((__le32
*)p
->bh
->b_data
,p
->p
); p
--)
991 * OK, we've found the last block that must survive. The rest of our
992 * branch should be detached before unlocking. However, if that rest
993 * of branch is all ours and does not grow immediately from the inode
994 * it's easier to cheat and just decrement partial->p.
996 if (p
== chain
+ k
- 1 && p
> chain
) {
1002 write_unlock(&EXT2_I(inode
)->i_meta_lock
);
1006 brelse(partial
->bh
);
1014 * ext2_free_data - free a list of data blocks
1015 * @inode: inode we are dealing with
1016 * @p: array of block numbers
1017 * @q: points immediately past the end of array
1019 * We are freeing all blocks referred from that array (numbers are
1020 * stored as little-endian 32-bit) and updating @inode->i_blocks
1023 static inline void ext2_free_data(struct inode
*inode
, __le32
*p
, __le32
*q
)
1025 unsigned long block_to_free
= 0, count
= 0;
1028 for ( ; p
< q
; p
++) {
1029 nr
= le32_to_cpu(*p
);
1032 /* accumulate blocks to free if they're contiguous */
1035 else if (block_to_free
== nr
- count
)
1038 ext2_free_blocks (inode
, block_to_free
, count
);
1039 mark_inode_dirty(inode
);
1047 ext2_free_blocks (inode
, block_to_free
, count
);
1048 mark_inode_dirty(inode
);
1053 * ext2_free_branches - free an array of branches
1054 * @inode: inode we are dealing with
1055 * @p: array of block numbers
1056 * @q: pointer immediately past the end of array
1057 * @depth: depth of the branches to free
1059 * We are freeing all blocks referred from these branches (numbers are
1060 * stored as little-endian 32-bit) and updating @inode->i_blocks
1063 static void ext2_free_branches(struct inode
*inode
, __le32
*p
, __le32
*q
, int depth
)
1065 struct buffer_head
* bh
;
1069 int addr_per_block
= EXT2_ADDR_PER_BLOCK(inode
->i_sb
);
1070 for ( ; p
< q
; p
++) {
1071 nr
= le32_to_cpu(*p
);
1075 bh
= sb_bread(inode
->i_sb
, nr
);
1077 * A read failure? Report error and clear slot
1081 ext2_error(inode
->i_sb
, "ext2_free_branches",
1082 "Read failure, inode=%ld, block=%ld",
1086 ext2_free_branches(inode
,
1087 (__le32
*)bh
->b_data
,
1088 (__le32
*)bh
->b_data
+ addr_per_block
,
1091 ext2_free_blocks(inode
, nr
, 1);
1092 mark_inode_dirty(inode
);
1095 ext2_free_data(inode
, p
, q
);
1098 /* dax_sem must be held when calling this function */
1099 static void __ext2_truncate_blocks(struct inode
*inode
, loff_t offset
)
1101 __le32
*i_data
= EXT2_I(inode
)->i_data
;
1102 struct ext2_inode_info
*ei
= EXT2_I(inode
);
1103 int addr_per_block
= EXT2_ADDR_PER_BLOCK(inode
->i_sb
);
1111 blocksize
= inode
->i_sb
->s_blocksize
;
1112 iblock
= (offset
+ blocksize
-1) >> EXT2_BLOCK_SIZE_BITS(inode
->i_sb
);
1114 #ifdef CONFIG_FS_DAX
1115 WARN_ON(!rwsem_is_locked(&ei
->dax_sem
));
1118 n
= ext2_block_to_path(inode
, iblock
, offsets
, NULL
);
1123 * From here we block out all ext2_get_block() callers who want to
1124 * modify the block allocation tree.
1126 mutex_lock(&ei
->truncate_mutex
);
1129 ext2_free_data(inode
, i_data
+offsets
[0],
1130 i_data
+ EXT2_NDIR_BLOCKS
);
1134 partial
= ext2_find_shared(inode
, n
, offsets
, chain
, &nr
);
1135 /* Kill the top of shared branch (already detached) */
1137 if (partial
== chain
)
1138 mark_inode_dirty(inode
);
1140 mark_buffer_dirty_inode(partial
->bh
, inode
);
1141 ext2_free_branches(inode
, &nr
, &nr
+1, (chain
+n
-1) - partial
);
1143 /* Clear the ends of indirect blocks on the shared branch */
1144 while (partial
> chain
) {
1145 ext2_free_branches(inode
,
1147 (__le32
*)partial
->bh
->b_data
+addr_per_block
,
1148 (chain
+n
-1) - partial
);
1149 mark_buffer_dirty_inode(partial
->bh
, inode
);
1150 brelse (partial
->bh
);
1154 /* Kill the remaining (whole) subtrees */
1155 switch (offsets
[0]) {
1157 nr
= i_data
[EXT2_IND_BLOCK
];
1159 i_data
[EXT2_IND_BLOCK
] = 0;
1160 mark_inode_dirty(inode
);
1161 ext2_free_branches(inode
, &nr
, &nr
+1, 1);
1163 case EXT2_IND_BLOCK
:
1164 nr
= i_data
[EXT2_DIND_BLOCK
];
1166 i_data
[EXT2_DIND_BLOCK
] = 0;
1167 mark_inode_dirty(inode
);
1168 ext2_free_branches(inode
, &nr
, &nr
+1, 2);
1170 case EXT2_DIND_BLOCK
:
1171 nr
= i_data
[EXT2_TIND_BLOCK
];
1173 i_data
[EXT2_TIND_BLOCK
] = 0;
1174 mark_inode_dirty(inode
);
1175 ext2_free_branches(inode
, &nr
, &nr
+1, 3);
1177 case EXT2_TIND_BLOCK
:
1181 ext2_discard_reservation(inode
);
1183 mutex_unlock(&ei
->truncate_mutex
);
1186 static void ext2_truncate_blocks(struct inode
*inode
, loff_t offset
)
1189 * XXX: it seems like a bug here that we don't allow
1190 * IS_APPEND inode to have blocks-past-i_size trimmed off.
1191 * review and fix this.
1193 * Also would be nice to be able to handle IO errors and such,
1194 * but that's probably too much to ask.
1196 if (!(S_ISREG(inode
->i_mode
) || S_ISDIR(inode
->i_mode
) ||
1197 S_ISLNK(inode
->i_mode
)))
1199 if (ext2_inode_is_fast_symlink(inode
))
1201 if (IS_APPEND(inode
) || IS_IMMUTABLE(inode
))
1204 dax_sem_down_write(EXT2_I(inode
));
1205 __ext2_truncate_blocks(inode
, offset
);
1206 dax_sem_up_write(EXT2_I(inode
));
1209 static int ext2_setsize(struct inode
*inode
, loff_t newsize
)
1213 if (!(S_ISREG(inode
->i_mode
) || S_ISDIR(inode
->i_mode
) ||
1214 S_ISLNK(inode
->i_mode
)))
1216 if (ext2_inode_is_fast_symlink(inode
))
1218 if (IS_APPEND(inode
) || IS_IMMUTABLE(inode
))
1221 inode_dio_wait(inode
);
1224 error
= dax_truncate_page(inode
, newsize
, ext2_get_block
);
1225 else if (test_opt(inode
->i_sb
, NOBH
))
1226 error
= nobh_truncate_page(inode
->i_mapping
,
1227 newsize
, ext2_get_block
);
1229 error
= block_truncate_page(inode
->i_mapping
,
1230 newsize
, ext2_get_block
);
1234 dax_sem_down_write(EXT2_I(inode
));
1235 truncate_setsize(inode
, newsize
);
1236 __ext2_truncate_blocks(inode
, newsize
);
1237 dax_sem_up_write(EXT2_I(inode
));
1239 inode
->i_mtime
= inode
->i_ctime
= CURRENT_TIME_SEC
;
1240 if (inode_needs_sync(inode
)) {
1241 sync_mapping_buffers(inode
->i_mapping
);
1242 sync_inode_metadata(inode
, 1);
1244 mark_inode_dirty(inode
);
1250 static struct ext2_inode
*ext2_get_inode(struct super_block
*sb
, ino_t ino
,
1251 struct buffer_head
**p
)
1253 struct buffer_head
* bh
;
1254 unsigned long block_group
;
1255 unsigned long block
;
1256 unsigned long offset
;
1257 struct ext2_group_desc
* gdp
;
1260 if ((ino
!= EXT2_ROOT_INO
&& ino
< EXT2_FIRST_INO(sb
)) ||
1261 ino
> le32_to_cpu(EXT2_SB(sb
)->s_es
->s_inodes_count
))
1264 block_group
= (ino
- 1) / EXT2_INODES_PER_GROUP(sb
);
1265 gdp
= ext2_get_group_desc(sb
, block_group
, NULL
);
1269 * Figure out the offset within the block group inode table
1271 offset
= ((ino
- 1) % EXT2_INODES_PER_GROUP(sb
)) * EXT2_INODE_SIZE(sb
);
1272 block
= le32_to_cpu(gdp
->bg_inode_table
) +
1273 (offset
>> EXT2_BLOCK_SIZE_BITS(sb
));
1274 if (!(bh
= sb_bread(sb
, block
)))
1278 offset
&= (EXT2_BLOCK_SIZE(sb
) - 1);
1279 return (struct ext2_inode
*) (bh
->b_data
+ offset
);
1282 ext2_error(sb
, "ext2_get_inode", "bad inode number: %lu",
1283 (unsigned long) ino
);
1284 return ERR_PTR(-EINVAL
);
1286 ext2_error(sb
, "ext2_get_inode",
1287 "unable to read inode block - inode=%lu, block=%lu",
1288 (unsigned long) ino
, block
);
1290 return ERR_PTR(-EIO
);
1293 void ext2_set_inode_flags(struct inode
*inode
)
1295 unsigned int flags
= EXT2_I(inode
)->i_flags
;
1297 inode
->i_flags
&= ~(S_SYNC
| S_APPEND
| S_IMMUTABLE
| S_NOATIME
|
1299 if (flags
& EXT2_SYNC_FL
)
1300 inode
->i_flags
|= S_SYNC
;
1301 if (flags
& EXT2_APPEND_FL
)
1302 inode
->i_flags
|= S_APPEND
;
1303 if (flags
& EXT2_IMMUTABLE_FL
)
1304 inode
->i_flags
|= S_IMMUTABLE
;
1305 if (flags
& EXT2_NOATIME_FL
)
1306 inode
->i_flags
|= S_NOATIME
;
1307 if (flags
& EXT2_DIRSYNC_FL
)
1308 inode
->i_flags
|= S_DIRSYNC
;
1309 if (test_opt(inode
->i_sb
, DAX
) && S_ISREG(inode
->i_mode
))
1310 inode
->i_flags
|= S_DAX
;
1313 /* Propagate flags from i_flags to EXT2_I(inode)->i_flags */
1314 void ext2_get_inode_flags(struct ext2_inode_info
*ei
)
1316 unsigned int flags
= ei
->vfs_inode
.i_flags
;
1318 ei
->i_flags
&= ~(EXT2_SYNC_FL
|EXT2_APPEND_FL
|
1319 EXT2_IMMUTABLE_FL
|EXT2_NOATIME_FL
|EXT2_DIRSYNC_FL
);
1321 ei
->i_flags
|= EXT2_SYNC_FL
;
1322 if (flags
& S_APPEND
)
1323 ei
->i_flags
|= EXT2_APPEND_FL
;
1324 if (flags
& S_IMMUTABLE
)
1325 ei
->i_flags
|= EXT2_IMMUTABLE_FL
;
1326 if (flags
& S_NOATIME
)
1327 ei
->i_flags
|= EXT2_NOATIME_FL
;
1328 if (flags
& S_DIRSYNC
)
1329 ei
->i_flags
|= EXT2_DIRSYNC_FL
;
1332 struct inode
*ext2_iget (struct super_block
*sb
, unsigned long ino
)
1334 struct ext2_inode_info
*ei
;
1335 struct buffer_head
* bh
;
1336 struct ext2_inode
*raw_inode
;
1337 struct inode
*inode
;
1343 inode
= iget_locked(sb
, ino
);
1345 return ERR_PTR(-ENOMEM
);
1346 if (!(inode
->i_state
& I_NEW
))
1350 ei
->i_block_alloc_info
= NULL
;
1352 raw_inode
= ext2_get_inode(inode
->i_sb
, ino
, &bh
);
1353 if (IS_ERR(raw_inode
)) {
1354 ret
= PTR_ERR(raw_inode
);
1358 inode
->i_mode
= le16_to_cpu(raw_inode
->i_mode
);
1359 i_uid
= (uid_t
)le16_to_cpu(raw_inode
->i_uid_low
);
1360 i_gid
= (gid_t
)le16_to_cpu(raw_inode
->i_gid_low
);
1361 if (!(test_opt (inode
->i_sb
, NO_UID32
))) {
1362 i_uid
|= le16_to_cpu(raw_inode
->i_uid_high
) << 16;
1363 i_gid
|= le16_to_cpu(raw_inode
->i_gid_high
) << 16;
1365 i_uid_write(inode
, i_uid
);
1366 i_gid_write(inode
, i_gid
);
1367 set_nlink(inode
, le16_to_cpu(raw_inode
->i_links_count
));
1368 inode
->i_size
= le32_to_cpu(raw_inode
->i_size
);
1369 inode
->i_atime
.tv_sec
= (signed)le32_to_cpu(raw_inode
->i_atime
);
1370 inode
->i_ctime
.tv_sec
= (signed)le32_to_cpu(raw_inode
->i_ctime
);
1371 inode
->i_mtime
.tv_sec
= (signed)le32_to_cpu(raw_inode
->i_mtime
);
1372 inode
->i_atime
.tv_nsec
= inode
->i_mtime
.tv_nsec
= inode
->i_ctime
.tv_nsec
= 0;
1373 ei
->i_dtime
= le32_to_cpu(raw_inode
->i_dtime
);
1374 /* We now have enough fields to check if the inode was active or not.
1375 * This is needed because nfsd might try to access dead inodes
1376 * the test is that same one that e2fsck uses
1377 * NeilBrown 1999oct15
1379 if (inode
->i_nlink
== 0 && (inode
->i_mode
== 0 || ei
->i_dtime
)) {
1380 /* this inode is deleted */
1385 inode
->i_blocks
= le32_to_cpu(raw_inode
->i_blocks
);
1386 ei
->i_flags
= le32_to_cpu(raw_inode
->i_flags
);
1387 ei
->i_faddr
= le32_to_cpu(raw_inode
->i_faddr
);
1388 ei
->i_frag_no
= raw_inode
->i_frag
;
1389 ei
->i_frag_size
= raw_inode
->i_fsize
;
1390 ei
->i_file_acl
= le32_to_cpu(raw_inode
->i_file_acl
);
1393 if (ei
->i_file_acl
&&
1394 !ext2_data_block_valid(EXT2_SB(sb
), ei
->i_file_acl
, 1)) {
1395 ext2_error(sb
, "ext2_iget", "bad extended attribute block %u",
1398 ret
= -EFSCORRUPTED
;
1402 if (S_ISREG(inode
->i_mode
))
1403 inode
->i_size
|= ((__u64
)le32_to_cpu(raw_inode
->i_size_high
)) << 32;
1405 ei
->i_dir_acl
= le32_to_cpu(raw_inode
->i_dir_acl
);
1407 inode
->i_generation
= le32_to_cpu(raw_inode
->i_generation
);
1409 ei
->i_block_group
= (ino
- 1) / EXT2_INODES_PER_GROUP(inode
->i_sb
);
1410 ei
->i_dir_start_lookup
= 0;
1413 * NOTE! The in-memory inode i_data array is in little-endian order
1414 * even on big-endian machines: we do NOT byteswap the block numbers!
1416 for (n
= 0; n
< EXT2_N_BLOCKS
; n
++)
1417 ei
->i_data
[n
] = raw_inode
->i_block
[n
];
1419 if (S_ISREG(inode
->i_mode
)) {
1420 inode
->i_op
= &ext2_file_inode_operations
;
1421 if (test_opt(inode
->i_sb
, NOBH
)) {
1422 inode
->i_mapping
->a_ops
= &ext2_nobh_aops
;
1423 inode
->i_fop
= &ext2_file_operations
;
1425 inode
->i_mapping
->a_ops
= &ext2_aops
;
1426 inode
->i_fop
= &ext2_file_operations
;
1428 } else if (S_ISDIR(inode
->i_mode
)) {
1429 inode
->i_op
= &ext2_dir_inode_operations
;
1430 inode
->i_fop
= &ext2_dir_operations
;
1431 if (test_opt(inode
->i_sb
, NOBH
))
1432 inode
->i_mapping
->a_ops
= &ext2_nobh_aops
;
1434 inode
->i_mapping
->a_ops
= &ext2_aops
;
1435 } else if (S_ISLNK(inode
->i_mode
)) {
1436 if (ext2_inode_is_fast_symlink(inode
)) {
1437 inode
->i_link
= (char *)ei
->i_data
;
1438 inode
->i_op
= &ext2_fast_symlink_inode_operations
;
1439 nd_terminate_link(ei
->i_data
, inode
->i_size
,
1440 sizeof(ei
->i_data
) - 1);
1442 inode
->i_op
= &ext2_symlink_inode_operations
;
1443 inode_nohighmem(inode
);
1444 if (test_opt(inode
->i_sb
, NOBH
))
1445 inode
->i_mapping
->a_ops
= &ext2_nobh_aops
;
1447 inode
->i_mapping
->a_ops
= &ext2_aops
;
1450 inode
->i_op
= &ext2_special_inode_operations
;
1451 if (raw_inode
->i_block
[0])
1452 init_special_inode(inode
, inode
->i_mode
,
1453 old_decode_dev(le32_to_cpu(raw_inode
->i_block
[0])));
1455 init_special_inode(inode
, inode
->i_mode
,
1456 new_decode_dev(le32_to_cpu(raw_inode
->i_block
[1])));
1459 ext2_set_inode_flags(inode
);
1460 unlock_new_inode(inode
);
1465 return ERR_PTR(ret
);
1468 static int __ext2_write_inode(struct inode
*inode
, int do_sync
)
1470 struct ext2_inode_info
*ei
= EXT2_I(inode
);
1471 struct super_block
*sb
= inode
->i_sb
;
1472 ino_t ino
= inode
->i_ino
;
1473 uid_t uid
= i_uid_read(inode
);
1474 gid_t gid
= i_gid_read(inode
);
1475 struct buffer_head
* bh
;
1476 struct ext2_inode
* raw_inode
= ext2_get_inode(sb
, ino
, &bh
);
1480 if (IS_ERR(raw_inode
))
1483 /* For fields not not tracking in the in-memory inode,
1484 * initialise them to zero for new inodes. */
1485 if (ei
->i_state
& EXT2_STATE_NEW
)
1486 memset(raw_inode
, 0, EXT2_SB(sb
)->s_inode_size
);
1488 ext2_get_inode_flags(ei
);
1489 raw_inode
->i_mode
= cpu_to_le16(inode
->i_mode
);
1490 if (!(test_opt(sb
, NO_UID32
))) {
1491 raw_inode
->i_uid_low
= cpu_to_le16(low_16_bits(uid
));
1492 raw_inode
->i_gid_low
= cpu_to_le16(low_16_bits(gid
));
1494 * Fix up interoperability with old kernels. Otherwise, old inodes get
1495 * re-used with the upper 16 bits of the uid/gid intact
1498 raw_inode
->i_uid_high
= cpu_to_le16(high_16_bits(uid
));
1499 raw_inode
->i_gid_high
= cpu_to_le16(high_16_bits(gid
));
1501 raw_inode
->i_uid_high
= 0;
1502 raw_inode
->i_gid_high
= 0;
1505 raw_inode
->i_uid_low
= cpu_to_le16(fs_high2lowuid(uid
));
1506 raw_inode
->i_gid_low
= cpu_to_le16(fs_high2lowgid(gid
));
1507 raw_inode
->i_uid_high
= 0;
1508 raw_inode
->i_gid_high
= 0;
1510 raw_inode
->i_links_count
= cpu_to_le16(inode
->i_nlink
);
1511 raw_inode
->i_size
= cpu_to_le32(inode
->i_size
);
1512 raw_inode
->i_atime
= cpu_to_le32(inode
->i_atime
.tv_sec
);
1513 raw_inode
->i_ctime
= cpu_to_le32(inode
->i_ctime
.tv_sec
);
1514 raw_inode
->i_mtime
= cpu_to_le32(inode
->i_mtime
.tv_sec
);
1516 raw_inode
->i_blocks
= cpu_to_le32(inode
->i_blocks
);
1517 raw_inode
->i_dtime
= cpu_to_le32(ei
->i_dtime
);
1518 raw_inode
->i_flags
= cpu_to_le32(ei
->i_flags
);
1519 raw_inode
->i_faddr
= cpu_to_le32(ei
->i_faddr
);
1520 raw_inode
->i_frag
= ei
->i_frag_no
;
1521 raw_inode
->i_fsize
= ei
->i_frag_size
;
1522 raw_inode
->i_file_acl
= cpu_to_le32(ei
->i_file_acl
);
1523 if (!S_ISREG(inode
->i_mode
))
1524 raw_inode
->i_dir_acl
= cpu_to_le32(ei
->i_dir_acl
);
1526 raw_inode
->i_size_high
= cpu_to_le32(inode
->i_size
>> 32);
1527 if (inode
->i_size
> 0x7fffffffULL
) {
1528 if (!EXT2_HAS_RO_COMPAT_FEATURE(sb
,
1529 EXT2_FEATURE_RO_COMPAT_LARGE_FILE
) ||
1530 EXT2_SB(sb
)->s_es
->s_rev_level
==
1531 cpu_to_le32(EXT2_GOOD_OLD_REV
)) {
1532 /* If this is the first large file
1533 * created, add a flag to the superblock.
1535 spin_lock(&EXT2_SB(sb
)->s_lock
);
1536 ext2_update_dynamic_rev(sb
);
1537 EXT2_SET_RO_COMPAT_FEATURE(sb
,
1538 EXT2_FEATURE_RO_COMPAT_LARGE_FILE
);
1539 spin_unlock(&EXT2_SB(sb
)->s_lock
);
1540 ext2_write_super(sb
);
1545 raw_inode
->i_generation
= cpu_to_le32(inode
->i_generation
);
1546 if (S_ISCHR(inode
->i_mode
) || S_ISBLK(inode
->i_mode
)) {
1547 if (old_valid_dev(inode
->i_rdev
)) {
1548 raw_inode
->i_block
[0] =
1549 cpu_to_le32(old_encode_dev(inode
->i_rdev
));
1550 raw_inode
->i_block
[1] = 0;
1552 raw_inode
->i_block
[0] = 0;
1553 raw_inode
->i_block
[1] =
1554 cpu_to_le32(new_encode_dev(inode
->i_rdev
));
1555 raw_inode
->i_block
[2] = 0;
1557 } else for (n
= 0; n
< EXT2_N_BLOCKS
; n
++)
1558 raw_inode
->i_block
[n
] = ei
->i_data
[n
];
1559 mark_buffer_dirty(bh
);
1561 sync_dirty_buffer(bh
);
1562 if (buffer_req(bh
) && !buffer_uptodate(bh
)) {
1563 printk ("IO error syncing ext2 inode [%s:%08lx]\n",
1564 sb
->s_id
, (unsigned long) ino
);
1568 ei
->i_state
&= ~EXT2_STATE_NEW
;
1573 int ext2_write_inode(struct inode
*inode
, struct writeback_control
*wbc
)
1575 return __ext2_write_inode(inode
, wbc
->sync_mode
== WB_SYNC_ALL
);
1578 int ext2_setattr(struct dentry
*dentry
, struct iattr
*iattr
)
1580 struct inode
*inode
= d_inode(dentry
);
1583 error
= inode_change_ok(inode
, iattr
);
1587 if (is_quota_modification(inode
, iattr
)) {
1588 error
= dquot_initialize(inode
);
1592 if ((iattr
->ia_valid
& ATTR_UID
&& !uid_eq(iattr
->ia_uid
, inode
->i_uid
)) ||
1593 (iattr
->ia_valid
& ATTR_GID
&& !gid_eq(iattr
->ia_gid
, inode
->i_gid
))) {
1594 error
= dquot_transfer(inode
, iattr
);
1598 if (iattr
->ia_valid
& ATTR_SIZE
&& iattr
->ia_size
!= inode
->i_size
) {
1599 error
= ext2_setsize(inode
, iattr
->ia_size
);
1603 setattr_copy(inode
, iattr
);
1604 if (iattr
->ia_valid
& ATTR_MODE
)
1605 error
= posix_acl_chmod(inode
, inode
->i_mode
);
1606 mark_inode_dirty(inode
);