4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
24 #include <trace/events/f2fs.h>
26 static struct kmem_cache
*ino_entry_slab
;
27 struct kmem_cache
*inode_entry_slab
;
29 void f2fs_stop_checkpoint(struct f2fs_sb_info
*sbi
, bool end_io
)
31 set_ckpt_flags(sbi
->ckpt
, CP_ERROR_FLAG
);
32 sbi
->sb
->s_flags
|= MS_RDONLY
;
34 f2fs_flush_merged_bios(sbi
);
38 * We guarantee no failure on the returned page.
40 struct page
*grab_meta_page(struct f2fs_sb_info
*sbi
, pgoff_t index
)
42 struct address_space
*mapping
= META_MAPPING(sbi
);
43 struct page
*page
= NULL
;
45 page
= f2fs_grab_cache_page(mapping
, index
, false);
50 f2fs_wait_on_page_writeback(page
, META
, true);
51 if (!PageUptodate(page
))
52 SetPageUptodate(page
);
57 * We guarantee no failure on the returned page.
59 static struct page
*__get_meta_page(struct f2fs_sb_info
*sbi
, pgoff_t index
,
62 struct address_space
*mapping
= META_MAPPING(sbi
);
64 struct f2fs_io_info fio
= {
68 .op_flags
= READ_SYNC
| REQ_META
| REQ_PRIO
,
71 .encrypted_page
= NULL
,
74 if (unlikely(!is_meta
))
75 fio
.op_flags
&= ~REQ_META
;
77 page
= f2fs_grab_cache_page(mapping
, index
, false);
82 if (PageUptodate(page
))
87 if (f2fs_submit_page_bio(&fio
)) {
88 f2fs_put_page(page
, 1);
93 if (unlikely(page
->mapping
!= mapping
)) {
94 f2fs_put_page(page
, 1);
99 * if there is any IO error when accessing device, make our filesystem
100 * readonly and make sure do not write checkpoint with non-uptodate
103 if (unlikely(!PageUptodate(page
)))
104 f2fs_stop_checkpoint(sbi
, false);
109 struct page
*get_meta_page(struct f2fs_sb_info
*sbi
, pgoff_t index
)
111 return __get_meta_page(sbi
, index
, true);
115 struct page
*get_tmp_page(struct f2fs_sb_info
*sbi
, pgoff_t index
)
117 return __get_meta_page(sbi
, index
, false);
120 bool is_valid_blkaddr(struct f2fs_sb_info
*sbi
, block_t blkaddr
, int type
)
126 if (unlikely(blkaddr
>= SIT_BLK_CNT(sbi
)))
130 if (unlikely(blkaddr
>= MAIN_BLKADDR(sbi
) ||
131 blkaddr
< SM_I(sbi
)->ssa_blkaddr
))
135 if (unlikely(blkaddr
>= SIT_I(sbi
)->sit_base_addr
||
136 blkaddr
< __start_cp_addr(sbi
)))
140 if (unlikely(blkaddr
>= MAX_BLKADDR(sbi
) ||
141 blkaddr
< MAIN_BLKADDR(sbi
)))
152 * Readahead CP/NAT/SIT/SSA pages
154 int ra_meta_pages(struct f2fs_sb_info
*sbi
, block_t start
, int nrpages
,
158 block_t blkno
= start
;
159 struct f2fs_io_info fio
= {
163 .op_flags
= sync
? (READ_SYNC
| REQ_META
| REQ_PRIO
) : REQ_RAHEAD
,
164 .encrypted_page
= NULL
,
166 struct blk_plug plug
;
168 if (unlikely(type
== META_POR
))
169 fio
.op_flags
&= ~REQ_META
;
171 blk_start_plug(&plug
);
172 for (; nrpages
-- > 0; blkno
++) {
174 if (!is_valid_blkaddr(sbi
, blkno
, type
))
179 if (unlikely(blkno
>=
180 NAT_BLOCK_OFFSET(NM_I(sbi
)->max_nid
)))
182 /* get nat block addr */
183 fio
.new_blkaddr
= current_nat_addr(sbi
,
184 blkno
* NAT_ENTRY_PER_BLOCK
);
187 /* get sit block addr */
188 fio
.new_blkaddr
= current_sit_addr(sbi
,
189 blkno
* SIT_ENTRY_PER_BLOCK
);
194 fio
.new_blkaddr
= blkno
;
200 page
= f2fs_grab_cache_page(META_MAPPING(sbi
),
201 fio
.new_blkaddr
, false);
204 if (PageUptodate(page
)) {
205 f2fs_put_page(page
, 1);
210 fio
.old_blkaddr
= fio
.new_blkaddr
;
211 f2fs_submit_page_mbio(&fio
);
212 f2fs_put_page(page
, 0);
215 f2fs_submit_merged_bio(sbi
, META
, READ
);
216 blk_finish_plug(&plug
);
217 return blkno
- start
;
220 void ra_meta_pages_cond(struct f2fs_sb_info
*sbi
, pgoff_t index
)
223 bool readahead
= false;
225 page
= find_get_page(META_MAPPING(sbi
), index
);
226 if (!page
|| !PageUptodate(page
))
228 f2fs_put_page(page
, 0);
231 ra_meta_pages(sbi
, index
, MAX_BIO_BLOCKS(sbi
), META_POR
, true);
234 static int f2fs_write_meta_page(struct page
*page
,
235 struct writeback_control
*wbc
)
237 struct f2fs_sb_info
*sbi
= F2FS_P_SB(page
);
239 trace_f2fs_writepage(page
, META
);
241 if (unlikely(is_sbi_flag_set(sbi
, SBI_POR_DOING
)))
243 if (wbc
->for_reclaim
&& page
->index
< GET_SUM_BLOCK(sbi
, 0))
245 if (unlikely(f2fs_cp_error(sbi
)))
248 write_meta_page(sbi
, page
);
249 dec_page_count(sbi
, F2FS_DIRTY_META
);
251 if (wbc
->for_reclaim
)
252 f2fs_submit_merged_bio_cond(sbi
, NULL
, page
, 0, META
, WRITE
);
256 if (unlikely(f2fs_cp_error(sbi
)))
257 f2fs_submit_merged_bio(sbi
, META
, WRITE
);
262 redirty_page_for_writepage(wbc
, page
);
263 return AOP_WRITEPAGE_ACTIVATE
;
266 static int f2fs_write_meta_pages(struct address_space
*mapping
,
267 struct writeback_control
*wbc
)
269 struct f2fs_sb_info
*sbi
= F2FS_M_SB(mapping
);
270 struct blk_plug plug
;
273 /* collect a number of dirty meta pages and write together */
274 if (wbc
->for_kupdate
||
275 get_pages(sbi
, F2FS_DIRTY_META
) < nr_pages_to_skip(sbi
, META
))
278 trace_f2fs_writepages(mapping
->host
, wbc
, META
);
280 /* if mounting is failed, skip writing node pages */
281 mutex_lock(&sbi
->cp_mutex
);
282 diff
= nr_pages_to_write(sbi
, META
, wbc
);
283 blk_start_plug(&plug
);
284 written
= sync_meta_pages(sbi
, META
, wbc
->nr_to_write
);
285 blk_finish_plug(&plug
);
286 mutex_unlock(&sbi
->cp_mutex
);
287 wbc
->nr_to_write
= max((long)0, wbc
->nr_to_write
- written
- diff
);
291 wbc
->pages_skipped
+= get_pages(sbi
, F2FS_DIRTY_META
);
292 trace_f2fs_writepages(mapping
->host
, wbc
, META
);
296 long sync_meta_pages(struct f2fs_sb_info
*sbi
, enum page_type type
,
299 struct address_space
*mapping
= META_MAPPING(sbi
);
300 pgoff_t index
= 0, end
= ULONG_MAX
, prev
= ULONG_MAX
;
303 struct writeback_control wbc
= {
306 struct blk_plug plug
;
308 pagevec_init(&pvec
, 0);
310 blk_start_plug(&plug
);
312 while (index
<= end
) {
314 nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
,
316 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1);
317 if (unlikely(nr_pages
== 0))
320 for (i
= 0; i
< nr_pages
; i
++) {
321 struct page
*page
= pvec
.pages
[i
];
323 if (prev
== ULONG_MAX
)
324 prev
= page
->index
- 1;
325 if (nr_to_write
!= LONG_MAX
&& page
->index
!= prev
+ 1) {
326 pagevec_release(&pvec
);
332 if (unlikely(page
->mapping
!= mapping
)) {
337 if (!PageDirty(page
)) {
338 /* someone wrote it for us */
339 goto continue_unlock
;
342 f2fs_wait_on_page_writeback(page
, META
, true);
344 BUG_ON(PageWriteback(page
));
345 if (!clear_page_dirty_for_io(page
))
346 goto continue_unlock
;
348 if (mapping
->a_ops
->writepage(page
, &wbc
)) {
354 if (unlikely(nwritten
>= nr_to_write
))
357 pagevec_release(&pvec
);
362 f2fs_submit_merged_bio(sbi
, type
, WRITE
);
364 blk_finish_plug(&plug
);
369 static int f2fs_set_meta_page_dirty(struct page
*page
)
371 trace_f2fs_set_page_dirty(page
, META
);
373 if (!PageUptodate(page
))
374 SetPageUptodate(page
);
375 if (!PageDirty(page
)) {
376 f2fs_set_page_dirty_nobuffers(page
);
377 inc_page_count(F2FS_P_SB(page
), F2FS_DIRTY_META
);
378 SetPagePrivate(page
);
379 f2fs_trace_pid(page
);
385 const struct address_space_operations f2fs_meta_aops
= {
386 .writepage
= f2fs_write_meta_page
,
387 .writepages
= f2fs_write_meta_pages
,
388 .set_page_dirty
= f2fs_set_meta_page_dirty
,
389 .invalidatepage
= f2fs_invalidate_page
,
390 .releasepage
= f2fs_release_page
,
393 static void __add_ino_entry(struct f2fs_sb_info
*sbi
, nid_t ino
, int type
)
395 struct inode_management
*im
= &sbi
->im
[type
];
396 struct ino_entry
*e
, *tmp
;
398 tmp
= f2fs_kmem_cache_alloc(ino_entry_slab
, GFP_NOFS
);
400 radix_tree_preload(GFP_NOFS
| __GFP_NOFAIL
);
402 spin_lock(&im
->ino_lock
);
403 e
= radix_tree_lookup(&im
->ino_root
, ino
);
406 if (radix_tree_insert(&im
->ino_root
, ino
, e
)) {
407 spin_unlock(&im
->ino_lock
);
408 radix_tree_preload_end();
411 memset(e
, 0, sizeof(struct ino_entry
));
414 list_add_tail(&e
->list
, &im
->ino_list
);
415 if (type
!= ORPHAN_INO
)
418 spin_unlock(&im
->ino_lock
);
419 radix_tree_preload_end();
422 kmem_cache_free(ino_entry_slab
, tmp
);
425 static void __remove_ino_entry(struct f2fs_sb_info
*sbi
, nid_t ino
, int type
)
427 struct inode_management
*im
= &sbi
->im
[type
];
430 spin_lock(&im
->ino_lock
);
431 e
= radix_tree_lookup(&im
->ino_root
, ino
);
434 radix_tree_delete(&im
->ino_root
, ino
);
436 spin_unlock(&im
->ino_lock
);
437 kmem_cache_free(ino_entry_slab
, e
);
440 spin_unlock(&im
->ino_lock
);
443 void add_ino_entry(struct f2fs_sb_info
*sbi
, nid_t ino
, int type
)
445 /* add new dirty ino entry into list */
446 __add_ino_entry(sbi
, ino
, type
);
449 void remove_ino_entry(struct f2fs_sb_info
*sbi
, nid_t ino
, int type
)
451 /* remove dirty ino entry from list */
452 __remove_ino_entry(sbi
, ino
, type
);
455 /* mode should be APPEND_INO or UPDATE_INO */
456 bool exist_written_data(struct f2fs_sb_info
*sbi
, nid_t ino
, int mode
)
458 struct inode_management
*im
= &sbi
->im
[mode
];
461 spin_lock(&im
->ino_lock
);
462 e
= radix_tree_lookup(&im
->ino_root
, ino
);
463 spin_unlock(&im
->ino_lock
);
464 return e
? true : false;
467 void release_ino_entry(struct f2fs_sb_info
*sbi
, bool all
)
469 struct ino_entry
*e
, *tmp
;
472 for (i
= all
? ORPHAN_INO
: APPEND_INO
; i
<= UPDATE_INO
; i
++) {
473 struct inode_management
*im
= &sbi
->im
[i
];
475 spin_lock(&im
->ino_lock
);
476 list_for_each_entry_safe(e
, tmp
, &im
->ino_list
, list
) {
478 radix_tree_delete(&im
->ino_root
, e
->ino
);
479 kmem_cache_free(ino_entry_slab
, e
);
482 spin_unlock(&im
->ino_lock
);
486 int acquire_orphan_inode(struct f2fs_sb_info
*sbi
)
488 struct inode_management
*im
= &sbi
->im
[ORPHAN_INO
];
491 spin_lock(&im
->ino_lock
);
493 #ifdef CONFIG_F2FS_FAULT_INJECTION
494 if (time_to_inject(FAULT_ORPHAN
)) {
495 spin_unlock(&im
->ino_lock
);
499 if (unlikely(im
->ino_num
>= sbi
->max_orphans
))
503 spin_unlock(&im
->ino_lock
);
508 void release_orphan_inode(struct f2fs_sb_info
*sbi
)
510 struct inode_management
*im
= &sbi
->im
[ORPHAN_INO
];
512 spin_lock(&im
->ino_lock
);
513 f2fs_bug_on(sbi
, im
->ino_num
== 0);
515 spin_unlock(&im
->ino_lock
);
518 void add_orphan_inode(struct inode
*inode
)
520 /* add new orphan ino entry into list */
521 __add_ino_entry(F2FS_I_SB(inode
), inode
->i_ino
, ORPHAN_INO
);
522 update_inode_page(inode
);
525 void remove_orphan_inode(struct f2fs_sb_info
*sbi
, nid_t ino
)
527 /* remove orphan entry from orphan list */
528 __remove_ino_entry(sbi
, ino
, ORPHAN_INO
);
531 static int recover_orphan_inode(struct f2fs_sb_info
*sbi
, nid_t ino
)
535 inode
= f2fs_iget(sbi
->sb
, ino
);
538 * there should be a bug that we can't find the entry
541 f2fs_bug_on(sbi
, PTR_ERR(inode
) == -ENOENT
);
542 return PTR_ERR(inode
);
547 /* truncate all the data during iput */
552 int recover_orphan_inodes(struct f2fs_sb_info
*sbi
)
554 block_t start_blk
, orphan_blocks
, i
, j
;
557 if (!is_set_ckpt_flags(F2FS_CKPT(sbi
), CP_ORPHAN_PRESENT_FLAG
))
560 start_blk
= __start_cp_addr(sbi
) + 1 + __cp_payload(sbi
);
561 orphan_blocks
= __start_sum_addr(sbi
) - 1 - __cp_payload(sbi
);
563 ra_meta_pages(sbi
, start_blk
, orphan_blocks
, META_CP
, true);
565 for (i
= 0; i
< orphan_blocks
; i
++) {
566 struct page
*page
= get_meta_page(sbi
, start_blk
+ i
);
567 struct f2fs_orphan_block
*orphan_blk
;
569 orphan_blk
= (struct f2fs_orphan_block
*)page_address(page
);
570 for (j
= 0; j
< le32_to_cpu(orphan_blk
->entry_count
); j
++) {
571 nid_t ino
= le32_to_cpu(orphan_blk
->ino
[j
]);
572 err
= recover_orphan_inode(sbi
, ino
);
574 f2fs_put_page(page
, 1);
578 f2fs_put_page(page
, 1);
580 /* clear Orphan Flag */
581 clear_ckpt_flags(F2FS_CKPT(sbi
), CP_ORPHAN_PRESENT_FLAG
);
585 static void write_orphan_inodes(struct f2fs_sb_info
*sbi
, block_t start_blk
)
587 struct list_head
*head
;
588 struct f2fs_orphan_block
*orphan_blk
= NULL
;
589 unsigned int nentries
= 0;
590 unsigned short index
= 1;
591 unsigned short orphan_blocks
;
592 struct page
*page
= NULL
;
593 struct ino_entry
*orphan
= NULL
;
594 struct inode_management
*im
= &sbi
->im
[ORPHAN_INO
];
596 orphan_blocks
= GET_ORPHAN_BLOCKS(im
->ino_num
);
599 * we don't need to do spin_lock(&im->ino_lock) here, since all the
600 * orphan inode operations are covered under f2fs_lock_op().
601 * And, spin_lock should be avoided due to page operations below.
603 head
= &im
->ino_list
;
605 /* loop for each orphan inode entry and write them in Jornal block */
606 list_for_each_entry(orphan
, head
, list
) {
608 page
= grab_meta_page(sbi
, start_blk
++);
610 (struct f2fs_orphan_block
*)page_address(page
);
611 memset(orphan_blk
, 0, sizeof(*orphan_blk
));
614 orphan_blk
->ino
[nentries
++] = cpu_to_le32(orphan
->ino
);
616 if (nentries
== F2FS_ORPHANS_PER_BLOCK
) {
618 * an orphan block is full of 1020 entries,
619 * then we need to flush current orphan blocks
620 * and bring another one in memory
622 orphan_blk
->blk_addr
= cpu_to_le16(index
);
623 orphan_blk
->blk_count
= cpu_to_le16(orphan_blocks
);
624 orphan_blk
->entry_count
= cpu_to_le32(nentries
);
625 set_page_dirty(page
);
626 f2fs_put_page(page
, 1);
634 orphan_blk
->blk_addr
= cpu_to_le16(index
);
635 orphan_blk
->blk_count
= cpu_to_le16(orphan_blocks
);
636 orphan_blk
->entry_count
= cpu_to_le32(nentries
);
637 set_page_dirty(page
);
638 f2fs_put_page(page
, 1);
642 static struct page
*validate_checkpoint(struct f2fs_sb_info
*sbi
,
643 block_t cp_addr
, unsigned long long *version
)
645 struct page
*cp_page_1
, *cp_page_2
= NULL
;
646 unsigned long blk_size
= sbi
->blocksize
;
647 struct f2fs_checkpoint
*cp_block
;
648 unsigned long long cur_version
= 0, pre_version
= 0;
652 /* Read the 1st cp block in this CP pack */
653 cp_page_1
= get_meta_page(sbi
, cp_addr
);
655 /* get the version number */
656 cp_block
= (struct f2fs_checkpoint
*)page_address(cp_page_1
);
657 crc_offset
= le32_to_cpu(cp_block
->checksum_offset
);
658 if (crc_offset
>= blk_size
)
661 crc
= le32_to_cpu(*((__le32
*)((unsigned char *)cp_block
+ crc_offset
)));
662 if (!f2fs_crc_valid(sbi
, crc
, cp_block
, crc_offset
))
665 pre_version
= cur_cp_version(cp_block
);
667 /* Read the 2nd cp block in this CP pack */
668 cp_addr
+= le32_to_cpu(cp_block
->cp_pack_total_block_count
) - 1;
669 cp_page_2
= get_meta_page(sbi
, cp_addr
);
671 cp_block
= (struct f2fs_checkpoint
*)page_address(cp_page_2
);
672 crc_offset
= le32_to_cpu(cp_block
->checksum_offset
);
673 if (crc_offset
>= blk_size
)
676 crc
= le32_to_cpu(*((__le32
*)((unsigned char *)cp_block
+ crc_offset
)));
677 if (!f2fs_crc_valid(sbi
, crc
, cp_block
, crc_offset
))
680 cur_version
= cur_cp_version(cp_block
);
682 if (cur_version
== pre_version
) {
683 *version
= cur_version
;
684 f2fs_put_page(cp_page_2
, 1);
688 f2fs_put_page(cp_page_2
, 1);
690 f2fs_put_page(cp_page_1
, 1);
694 int get_valid_checkpoint(struct f2fs_sb_info
*sbi
)
696 struct f2fs_checkpoint
*cp_block
;
697 struct f2fs_super_block
*fsb
= sbi
->raw_super
;
698 struct page
*cp1
, *cp2
, *cur_page
;
699 unsigned long blk_size
= sbi
->blocksize
;
700 unsigned long long cp1_version
= 0, cp2_version
= 0;
701 unsigned long long cp_start_blk_no
;
702 unsigned int cp_blks
= 1 + __cp_payload(sbi
);
706 sbi
->ckpt
= kzalloc(cp_blks
* blk_size
, GFP_KERNEL
);
710 * Finding out valid cp block involves read both
711 * sets( cp pack1 and cp pack 2)
713 cp_start_blk_no
= le32_to_cpu(fsb
->cp_blkaddr
);
714 cp1
= validate_checkpoint(sbi
, cp_start_blk_no
, &cp1_version
);
716 /* The second checkpoint pack should start at the next segment */
717 cp_start_blk_no
+= ((unsigned long long)1) <<
718 le32_to_cpu(fsb
->log_blocks_per_seg
);
719 cp2
= validate_checkpoint(sbi
, cp_start_blk_no
, &cp2_version
);
722 if (ver_after(cp2_version
, cp1_version
))
734 cp_block
= (struct f2fs_checkpoint
*)page_address(cur_page
);
735 memcpy(sbi
->ckpt
, cp_block
, blk_size
);
737 /* Sanity checking of checkpoint */
738 if (sanity_check_ckpt(sbi
))
744 cp_blk_no
= le32_to_cpu(fsb
->cp_blkaddr
);
746 cp_blk_no
+= 1 << le32_to_cpu(fsb
->log_blocks_per_seg
);
748 for (i
= 1; i
< cp_blks
; i
++) {
749 void *sit_bitmap_ptr
;
750 unsigned char *ckpt
= (unsigned char *)sbi
->ckpt
;
752 cur_page
= get_meta_page(sbi
, cp_blk_no
+ i
);
753 sit_bitmap_ptr
= page_address(cur_page
);
754 memcpy(ckpt
+ i
* blk_size
, sit_bitmap_ptr
, blk_size
);
755 f2fs_put_page(cur_page
, 1);
758 f2fs_put_page(cp1
, 1);
759 f2fs_put_page(cp2
, 1);
767 static void __add_dirty_inode(struct inode
*inode
, enum inode_type type
)
769 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
770 int flag
= (type
== DIR_INODE
) ? FI_DIRTY_DIR
: FI_DIRTY_FILE
;
772 if (is_inode_flag_set(inode
, flag
))
775 set_inode_flag(inode
, flag
);
776 list_add_tail(&F2FS_I(inode
)->dirty_list
, &sbi
->inode_list
[type
]);
777 stat_inc_dirty_inode(sbi
, type
);
780 static void __remove_dirty_inode(struct inode
*inode
, enum inode_type type
)
782 int flag
= (type
== DIR_INODE
) ? FI_DIRTY_DIR
: FI_DIRTY_FILE
;
784 if (get_dirty_pages(inode
) || !is_inode_flag_set(inode
, flag
))
787 list_del_init(&F2FS_I(inode
)->dirty_list
);
788 clear_inode_flag(inode
, flag
);
789 stat_dec_dirty_inode(F2FS_I_SB(inode
), type
);
792 void update_dirty_page(struct inode
*inode
, struct page
*page
)
794 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
795 enum inode_type type
= S_ISDIR(inode
->i_mode
) ? DIR_INODE
: FILE_INODE
;
797 if (!S_ISDIR(inode
->i_mode
) && !S_ISREG(inode
->i_mode
) &&
798 !S_ISLNK(inode
->i_mode
))
801 spin_lock(&sbi
->inode_lock
[type
]);
802 if (type
!= FILE_INODE
|| test_opt(sbi
, DATA_FLUSH
))
803 __add_dirty_inode(inode
, type
);
804 inode_inc_dirty_pages(inode
);
805 spin_unlock(&sbi
->inode_lock
[type
]);
807 SetPagePrivate(page
);
808 f2fs_trace_pid(page
);
811 void remove_dirty_inode(struct inode
*inode
)
813 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
814 enum inode_type type
= S_ISDIR(inode
->i_mode
) ? DIR_INODE
: FILE_INODE
;
816 if (!S_ISDIR(inode
->i_mode
) && !S_ISREG(inode
->i_mode
) &&
817 !S_ISLNK(inode
->i_mode
))
820 if (type
== FILE_INODE
&& !test_opt(sbi
, DATA_FLUSH
))
823 spin_lock(&sbi
->inode_lock
[type
]);
824 __remove_dirty_inode(inode
, type
);
825 spin_unlock(&sbi
->inode_lock
[type
]);
828 int sync_dirty_inodes(struct f2fs_sb_info
*sbi
, enum inode_type type
)
830 struct list_head
*head
;
832 struct f2fs_inode_info
*fi
;
833 bool is_dir
= (type
== DIR_INODE
);
835 trace_f2fs_sync_dirty_inodes_enter(sbi
->sb
, is_dir
,
836 get_pages(sbi
, is_dir
?
837 F2FS_DIRTY_DENTS
: F2FS_DIRTY_DATA
));
839 if (unlikely(f2fs_cp_error(sbi
)))
842 spin_lock(&sbi
->inode_lock
[type
]);
844 head
= &sbi
->inode_list
[type
];
845 if (list_empty(head
)) {
846 spin_unlock(&sbi
->inode_lock
[type
]);
847 trace_f2fs_sync_dirty_inodes_exit(sbi
->sb
, is_dir
,
848 get_pages(sbi
, is_dir
?
849 F2FS_DIRTY_DENTS
: F2FS_DIRTY_DATA
));
852 fi
= list_entry(head
->next
, struct f2fs_inode_info
, dirty_list
);
853 inode
= igrab(&fi
->vfs_inode
);
854 spin_unlock(&sbi
->inode_lock
[type
]);
856 filemap_fdatawrite(inode
->i_mapping
);
860 * We should submit bio, since it exists several
861 * wribacking dentry pages in the freeing inode.
863 f2fs_submit_merged_bio(sbi
, DATA
, WRITE
);
869 int f2fs_sync_inode_meta(struct f2fs_sb_info
*sbi
)
871 struct list_head
*head
= &sbi
->inode_list
[DIRTY_META
];
873 struct f2fs_inode_info
*fi
;
874 s64 total
= get_pages(sbi
, F2FS_DIRTY_IMETA
);
877 if (unlikely(f2fs_cp_error(sbi
)))
880 spin_lock(&sbi
->inode_lock
[DIRTY_META
]);
881 if (list_empty(head
)) {
882 spin_unlock(&sbi
->inode_lock
[DIRTY_META
]);
885 fi
= list_entry(head
->next
, struct f2fs_inode_info
,
887 inode
= igrab(&fi
->vfs_inode
);
888 spin_unlock(&sbi
->inode_lock
[DIRTY_META
]);
890 update_inode_page(inode
);
898 * Freeze all the FS-operations for checkpoint.
900 static int block_operations(struct f2fs_sb_info
*sbi
)
902 struct writeback_control wbc
= {
903 .sync_mode
= WB_SYNC_ALL
,
904 .nr_to_write
= LONG_MAX
,
907 struct blk_plug plug
;
910 blk_start_plug(&plug
);
914 /* write all the dirty dentry pages */
915 if (get_pages(sbi
, F2FS_DIRTY_DENTS
)) {
916 f2fs_unlock_all(sbi
);
917 err
= sync_dirty_inodes(sbi
, DIR_INODE
);
920 goto retry_flush_dents
;
923 if (get_pages(sbi
, F2FS_DIRTY_IMETA
)) {
924 f2fs_unlock_all(sbi
);
925 err
= f2fs_sync_inode_meta(sbi
);
928 goto retry_flush_dents
;
932 * POR: we should ensure that there are no dirty node pages
933 * until finishing nat/sit flush.
936 down_write(&sbi
->node_write
);
938 if (get_pages(sbi
, F2FS_DIRTY_NODES
)) {
939 up_write(&sbi
->node_write
);
940 err
= sync_node_pages(sbi
, &wbc
);
942 f2fs_unlock_all(sbi
);
945 goto retry_flush_nodes
;
948 blk_finish_plug(&plug
);
952 static void unblock_operations(struct f2fs_sb_info
*sbi
)
954 up_write(&sbi
->node_write
);
956 build_free_nids(sbi
);
957 f2fs_unlock_all(sbi
);
960 static void wait_on_all_pages_writeback(struct f2fs_sb_info
*sbi
)
965 prepare_to_wait(&sbi
->cp_wait
, &wait
, TASK_UNINTERRUPTIBLE
);
967 if (!atomic_read(&sbi
->nr_wb_bios
))
970 io_schedule_timeout(5*HZ
);
972 finish_wait(&sbi
->cp_wait
, &wait
);
975 static int do_checkpoint(struct f2fs_sb_info
*sbi
, struct cp_control
*cpc
)
977 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
978 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_WARM_NODE
);
979 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
980 unsigned long orphan_num
= sbi
->im
[ORPHAN_INO
].ino_num
;
981 nid_t last_nid
= nm_i
->next_scan_nid
;
983 unsigned int data_sum_blocks
, orphan_blocks
;
986 int cp_payload_blks
= __cp_payload(sbi
);
987 block_t discard_blk
= NEXT_FREE_BLKADDR(sbi
, curseg
);
988 bool invalidate
= false;
989 struct super_block
*sb
= sbi
->sb
;
990 struct curseg_info
*seg_i
= CURSEG_I(sbi
, CURSEG_HOT_NODE
);
994 * This avoids to conduct wrong roll-forward operations and uses
995 * metapages, so should be called prior to sync_meta_pages below.
997 if (!test_opt(sbi
, LFS
) && discard_next_dnode(sbi
, discard_blk
))
1000 /* Flush all the NAT/SIT pages */
1001 while (get_pages(sbi
, F2FS_DIRTY_META
)) {
1002 sync_meta_pages(sbi
, META
, LONG_MAX
);
1003 if (unlikely(f2fs_cp_error(sbi
)))
1007 next_free_nid(sbi
, &last_nid
);
1011 * version number is already updated
1013 ckpt
->elapsed_time
= cpu_to_le64(get_mtime(sbi
));
1014 ckpt
->valid_block_count
= cpu_to_le64(valid_user_blocks(sbi
));
1015 ckpt
->free_segment_count
= cpu_to_le32(free_segments(sbi
));
1016 for (i
= 0; i
< NR_CURSEG_NODE_TYPE
; i
++) {
1017 ckpt
->cur_node_segno
[i
] =
1018 cpu_to_le32(curseg_segno(sbi
, i
+ CURSEG_HOT_NODE
));
1019 ckpt
->cur_node_blkoff
[i
] =
1020 cpu_to_le16(curseg_blkoff(sbi
, i
+ CURSEG_HOT_NODE
));
1021 ckpt
->alloc_type
[i
+ CURSEG_HOT_NODE
] =
1022 curseg_alloc_type(sbi
, i
+ CURSEG_HOT_NODE
);
1024 for (i
= 0; i
< NR_CURSEG_DATA_TYPE
; i
++) {
1025 ckpt
->cur_data_segno
[i
] =
1026 cpu_to_le32(curseg_segno(sbi
, i
+ CURSEG_HOT_DATA
));
1027 ckpt
->cur_data_blkoff
[i
] =
1028 cpu_to_le16(curseg_blkoff(sbi
, i
+ CURSEG_HOT_DATA
));
1029 ckpt
->alloc_type
[i
+ CURSEG_HOT_DATA
] =
1030 curseg_alloc_type(sbi
, i
+ CURSEG_HOT_DATA
);
1033 ckpt
->valid_node_count
= cpu_to_le32(valid_node_count(sbi
));
1034 ckpt
->valid_inode_count
= cpu_to_le32(valid_inode_count(sbi
));
1035 ckpt
->next_free_nid
= cpu_to_le32(last_nid
);
1037 /* 2 cp + n data seg summary + orphan inode blocks */
1038 data_sum_blocks
= npages_for_summary_flush(sbi
, false);
1039 if (data_sum_blocks
< NR_CURSEG_DATA_TYPE
)
1040 set_ckpt_flags(ckpt
, CP_COMPACT_SUM_FLAG
);
1042 clear_ckpt_flags(ckpt
, CP_COMPACT_SUM_FLAG
);
1044 orphan_blocks
= GET_ORPHAN_BLOCKS(orphan_num
);
1045 ckpt
->cp_pack_start_sum
= cpu_to_le32(1 + cp_payload_blks
+
1048 if (__remain_node_summaries(cpc
->reason
))
1049 ckpt
->cp_pack_total_block_count
= cpu_to_le32(F2FS_CP_PACKS
+
1050 cp_payload_blks
+ data_sum_blocks
+
1051 orphan_blocks
+ NR_CURSEG_NODE_TYPE
);
1053 ckpt
->cp_pack_total_block_count
= cpu_to_le32(F2FS_CP_PACKS
+
1054 cp_payload_blks
+ data_sum_blocks
+
1057 if (cpc
->reason
== CP_UMOUNT
)
1058 set_ckpt_flags(ckpt
, CP_UMOUNT_FLAG
);
1060 clear_ckpt_flags(ckpt
, CP_UMOUNT_FLAG
);
1062 if (cpc
->reason
== CP_FASTBOOT
)
1063 set_ckpt_flags(ckpt
, CP_FASTBOOT_FLAG
);
1065 clear_ckpt_flags(ckpt
, CP_FASTBOOT_FLAG
);
1068 set_ckpt_flags(ckpt
, CP_ORPHAN_PRESENT_FLAG
);
1070 clear_ckpt_flags(ckpt
, CP_ORPHAN_PRESENT_FLAG
);
1072 if (is_sbi_flag_set(sbi
, SBI_NEED_FSCK
))
1073 set_ckpt_flags(ckpt
, CP_FSCK_FLAG
);
1075 /* update SIT/NAT bitmap */
1076 get_sit_bitmap(sbi
, __bitmap_ptr(sbi
, SIT_BITMAP
));
1077 get_nat_bitmap(sbi
, __bitmap_ptr(sbi
, NAT_BITMAP
));
1079 crc32
= f2fs_crc32(sbi
, ckpt
, le32_to_cpu(ckpt
->checksum_offset
));
1080 *((__le32
*)((unsigned char *)ckpt
+
1081 le32_to_cpu(ckpt
->checksum_offset
)))
1082 = cpu_to_le32(crc32
);
1084 start_blk
= __start_cp_addr(sbi
);
1086 /* need to wait for end_io results */
1087 wait_on_all_pages_writeback(sbi
);
1088 if (unlikely(f2fs_cp_error(sbi
)))
1091 /* write out checkpoint buffer at block 0 */
1092 update_meta_page(sbi
, ckpt
, start_blk
++);
1094 for (i
= 1; i
< 1 + cp_payload_blks
; i
++)
1095 update_meta_page(sbi
, (char *)ckpt
+ i
* F2FS_BLKSIZE
,
1099 write_orphan_inodes(sbi
, start_blk
);
1100 start_blk
+= orphan_blocks
;
1103 write_data_summaries(sbi
, start_blk
);
1104 start_blk
+= data_sum_blocks
;
1106 /* Record write statistics in the hot node summary */
1107 kbytes_written
= sbi
->kbytes_written
;
1108 if (sb
->s_bdev
->bd_part
)
1109 kbytes_written
+= BD_PART_WRITTEN(sbi
);
1111 seg_i
->journal
->info
.kbytes_written
= cpu_to_le64(kbytes_written
);
1113 if (__remain_node_summaries(cpc
->reason
)) {
1114 write_node_summaries(sbi
, start_blk
);
1115 start_blk
+= NR_CURSEG_NODE_TYPE
;
1118 /* writeout checkpoint block */
1119 update_meta_page(sbi
, ckpt
, start_blk
);
1121 /* wait for previous submitted node/meta pages writeback */
1122 wait_on_all_pages_writeback(sbi
);
1124 if (unlikely(f2fs_cp_error(sbi
)))
1127 filemap_fdatawait_range(NODE_MAPPING(sbi
), 0, LLONG_MAX
);
1128 filemap_fdatawait_range(META_MAPPING(sbi
), 0, LLONG_MAX
);
1130 /* update user_block_counts */
1131 sbi
->last_valid_block_count
= sbi
->total_valid_block_count
;
1132 percpu_counter_set(&sbi
->alloc_valid_block_count
, 0);
1134 /* Here, we only have one bio having CP pack */
1135 sync_meta_pages(sbi
, META_FLUSH
, LONG_MAX
);
1137 /* wait for previous submitted meta pages writeback */
1138 wait_on_all_pages_writeback(sbi
);
1141 * invalidate meta page which is used temporarily for zeroing out
1142 * block at the end of warm node chain.
1145 invalidate_mapping_pages(META_MAPPING(sbi
), discard_blk
,
1148 release_ino_entry(sbi
, false);
1150 if (unlikely(f2fs_cp_error(sbi
)))
1153 clear_prefree_segments(sbi
, cpc
);
1154 clear_sbi_flag(sbi
, SBI_IS_DIRTY
);
1160 * We guarantee that this checkpoint procedure will not fail.
1162 int write_checkpoint(struct f2fs_sb_info
*sbi
, struct cp_control
*cpc
)
1164 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
1165 unsigned long long ckpt_ver
;
1168 mutex_lock(&sbi
->cp_mutex
);
1170 if (!is_sbi_flag_set(sbi
, SBI_IS_DIRTY
) &&
1171 (cpc
->reason
== CP_FASTBOOT
|| cpc
->reason
== CP_SYNC
||
1172 (cpc
->reason
== CP_DISCARD
&& !sbi
->discard_blks
)))
1174 if (unlikely(f2fs_cp_error(sbi
))) {
1178 if (f2fs_readonly(sbi
->sb
)) {
1183 trace_f2fs_write_checkpoint(sbi
->sb
, cpc
->reason
, "start block_ops");
1185 err
= block_operations(sbi
);
1189 trace_f2fs_write_checkpoint(sbi
->sb
, cpc
->reason
, "finish block_ops");
1191 f2fs_flush_merged_bios(sbi
);
1194 * update checkpoint pack index
1195 * Increase the version number so that
1196 * SIT entries and seg summaries are written at correct place
1198 ckpt_ver
= cur_cp_version(ckpt
);
1199 ckpt
->checkpoint_ver
= cpu_to_le64(++ckpt_ver
);
1201 /* write cached NAT/SIT entries to NAT/SIT area */
1202 flush_nat_entries(sbi
);
1203 flush_sit_entries(sbi
, cpc
);
1205 /* unlock all the fs_lock[] in do_checkpoint() */
1206 err
= do_checkpoint(sbi
, cpc
);
1208 unblock_operations(sbi
);
1209 stat_inc_cp_count(sbi
->stat_info
);
1211 if (cpc
->reason
== CP_RECOVERY
)
1212 f2fs_msg(sbi
->sb
, KERN_NOTICE
,
1213 "checkpoint: version = %llx", ckpt_ver
);
1215 /* do checkpoint periodically */
1216 f2fs_update_time(sbi
, CP_TIME
);
1217 trace_f2fs_write_checkpoint(sbi
->sb
, cpc
->reason
, "finish checkpoint");
1219 mutex_unlock(&sbi
->cp_mutex
);
1223 void init_ino_entry_info(struct f2fs_sb_info
*sbi
)
1227 for (i
= 0; i
< MAX_INO_ENTRY
; i
++) {
1228 struct inode_management
*im
= &sbi
->im
[i
];
1230 INIT_RADIX_TREE(&im
->ino_root
, GFP_ATOMIC
);
1231 spin_lock_init(&im
->ino_lock
);
1232 INIT_LIST_HEAD(&im
->ino_list
);
1236 sbi
->max_orphans
= (sbi
->blocks_per_seg
- F2FS_CP_PACKS
-
1237 NR_CURSEG_TYPE
- __cp_payload(sbi
)) *
1238 F2FS_ORPHANS_PER_BLOCK
;
1241 int __init
create_checkpoint_caches(void)
1243 ino_entry_slab
= f2fs_kmem_cache_create("f2fs_ino_entry",
1244 sizeof(struct ino_entry
));
1245 if (!ino_entry_slab
)
1247 inode_entry_slab
= f2fs_kmem_cache_create("f2fs_inode_entry",
1248 sizeof(struct inode_entry
));
1249 if (!inode_entry_slab
) {
1250 kmem_cache_destroy(ino_entry_slab
);
1256 void destroy_checkpoint_caches(void)
1258 kmem_cache_destroy(ino_entry_slab
);
1259 kmem_cache_destroy(inode_entry_slab
);