4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/module.h>
12 #include <linux/init.h>
14 #include <linux/statfs.h>
15 #include <linux/buffer_head.h>
16 #include <linux/backing-dev.h>
17 #include <linux/kthread.h>
18 #include <linux/parser.h>
19 #include <linux/mount.h>
20 #include <linux/seq_file.h>
21 #include <linux/proc_fs.h>
22 #include <linux/random.h>
23 #include <linux/exportfs.h>
24 #include <linux/blkdev.h>
25 #include <linux/f2fs_fs.h>
26 #include <linux/sysfs.h>
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/f2fs.h>
38 static struct proc_dir_entry
*f2fs_proc_root
;
39 static struct kmem_cache
*f2fs_inode_cachep
;
40 static struct kset
*f2fs_kset
;
42 #ifdef CONFIG_F2FS_FAULT_INJECTION
43 struct f2fs_fault_info f2fs_fault
;
45 char *fault_name
[FAULT_MAX
] = {
46 [FAULT_KMALLOC
] = "kmalloc",
47 [FAULT_PAGE_ALLOC
] = "page alloc",
48 [FAULT_ALLOC_NID
] = "alloc nid",
49 [FAULT_ORPHAN
] = "orphan",
50 [FAULT_BLOCK
] = "no more block",
51 [FAULT_DIR_DEPTH
] = "too big dir depth",
52 [FAULT_EVICT_INODE
] = "evict_inode fail",
55 static void f2fs_build_fault_attr(unsigned int rate
)
58 atomic_set(&f2fs_fault
.inject_ops
, 0);
59 f2fs_fault
.inject_rate
= rate
;
60 f2fs_fault
.inject_type
= (1 << FAULT_MAX
) - 1;
62 memset(&f2fs_fault
, 0, sizeof(struct f2fs_fault_info
));
67 /* f2fs-wide shrinker description */
68 static struct shrinker f2fs_shrinker_info
= {
69 .scan_objects
= f2fs_shrink_scan
,
70 .count_objects
= f2fs_shrink_count
,
71 .seeks
= DEFAULT_SEEKS
,
76 Opt_disable_roll_forward
,
86 Opt_disable_ext_identify
,
105 static match_table_t f2fs_tokens
= {
106 {Opt_gc_background
, "background_gc=%s"},
107 {Opt_disable_roll_forward
, "disable_roll_forward"},
108 {Opt_norecovery
, "norecovery"},
109 {Opt_discard
, "discard"},
110 {Opt_nodiscard
, "nodiscard"},
111 {Opt_noheap
, "no_heap"},
112 {Opt_user_xattr
, "user_xattr"},
113 {Opt_nouser_xattr
, "nouser_xattr"},
115 {Opt_noacl
, "noacl"},
116 {Opt_active_logs
, "active_logs=%u"},
117 {Opt_disable_ext_identify
, "disable_ext_identify"},
118 {Opt_inline_xattr
, "inline_xattr"},
119 {Opt_inline_data
, "inline_data"},
120 {Opt_inline_dentry
, "inline_dentry"},
121 {Opt_flush_merge
, "flush_merge"},
122 {Opt_noflush_merge
, "noflush_merge"},
123 {Opt_nobarrier
, "nobarrier"},
124 {Opt_fastboot
, "fastboot"},
125 {Opt_extent_cache
, "extent_cache"},
126 {Opt_noextent_cache
, "noextent_cache"},
127 {Opt_noinline_data
, "noinline_data"},
128 {Opt_data_flush
, "data_flush"},
129 {Opt_mode
, "mode=%s"},
130 {Opt_fault_injection
, "fault_injection=%u"},
131 {Opt_lazytime
, "lazytime"},
132 {Opt_nolazytime
, "nolazytime"},
136 /* Sysfs support for f2fs */
138 GC_THREAD
, /* struct f2fs_gc_thread */
139 SM_INFO
, /* struct f2fs_sm_info */
140 NM_INFO
, /* struct f2fs_nm_info */
141 F2FS_SBI
, /* struct f2fs_sb_info */
142 #ifdef CONFIG_F2FS_FAULT_INJECTION
143 FAULT_INFO_RATE
, /* struct f2fs_fault_info */
144 FAULT_INFO_TYPE
, /* struct f2fs_fault_info */
149 struct attribute attr
;
150 ssize_t (*show
)(struct f2fs_attr
*, struct f2fs_sb_info
*, char *);
151 ssize_t (*store
)(struct f2fs_attr
*, struct f2fs_sb_info
*,
152 const char *, size_t);
157 static unsigned char *__struct_ptr(struct f2fs_sb_info
*sbi
, int struct_type
)
159 if (struct_type
== GC_THREAD
)
160 return (unsigned char *)sbi
->gc_thread
;
161 else if (struct_type
== SM_INFO
)
162 return (unsigned char *)SM_I(sbi
);
163 else if (struct_type
== NM_INFO
)
164 return (unsigned char *)NM_I(sbi
);
165 else if (struct_type
== F2FS_SBI
)
166 return (unsigned char *)sbi
;
167 #ifdef CONFIG_F2FS_FAULT_INJECTION
168 else if (struct_type
== FAULT_INFO_RATE
||
169 struct_type
== FAULT_INFO_TYPE
)
170 return (unsigned char *)&f2fs_fault
;
175 static ssize_t
lifetime_write_kbytes_show(struct f2fs_attr
*a
,
176 struct f2fs_sb_info
*sbi
, char *buf
)
178 struct super_block
*sb
= sbi
->sb
;
180 if (!sb
->s_bdev
->bd_part
)
181 return snprintf(buf
, PAGE_SIZE
, "0\n");
183 return snprintf(buf
, PAGE_SIZE
, "%llu\n",
184 (unsigned long long)(sbi
->kbytes_written
+
185 BD_PART_WRITTEN(sbi
)));
188 static ssize_t
f2fs_sbi_show(struct f2fs_attr
*a
,
189 struct f2fs_sb_info
*sbi
, char *buf
)
191 unsigned char *ptr
= NULL
;
194 ptr
= __struct_ptr(sbi
, a
->struct_type
);
198 ui
= (unsigned int *)(ptr
+ a
->offset
);
200 return snprintf(buf
, PAGE_SIZE
, "%u\n", *ui
);
203 static ssize_t
f2fs_sbi_store(struct f2fs_attr
*a
,
204 struct f2fs_sb_info
*sbi
,
205 const char *buf
, size_t count
)
212 ptr
= __struct_ptr(sbi
, a
->struct_type
);
216 ui
= (unsigned int *)(ptr
+ a
->offset
);
218 ret
= kstrtoul(skip_spaces(buf
), 0, &t
);
221 #ifdef CONFIG_F2FS_FAULT_INJECTION
222 if (a
->struct_type
== FAULT_INFO_TYPE
&& t
>= (1 << FAULT_MAX
))
229 static ssize_t
f2fs_attr_show(struct kobject
*kobj
,
230 struct attribute
*attr
, char *buf
)
232 struct f2fs_sb_info
*sbi
= container_of(kobj
, struct f2fs_sb_info
,
234 struct f2fs_attr
*a
= container_of(attr
, struct f2fs_attr
, attr
);
236 return a
->show
? a
->show(a
, sbi
, buf
) : 0;
239 static ssize_t
f2fs_attr_store(struct kobject
*kobj
, struct attribute
*attr
,
240 const char *buf
, size_t len
)
242 struct f2fs_sb_info
*sbi
= container_of(kobj
, struct f2fs_sb_info
,
244 struct f2fs_attr
*a
= container_of(attr
, struct f2fs_attr
, attr
);
246 return a
->store
? a
->store(a
, sbi
, buf
, len
) : 0;
249 static void f2fs_sb_release(struct kobject
*kobj
)
251 struct f2fs_sb_info
*sbi
= container_of(kobj
, struct f2fs_sb_info
,
253 complete(&sbi
->s_kobj_unregister
);
256 #define F2FS_ATTR_OFFSET(_struct_type, _name, _mode, _show, _store, _offset) \
257 static struct f2fs_attr f2fs_attr_##_name = { \
258 .attr = {.name = __stringify(_name), .mode = _mode }, \
261 .struct_type = _struct_type, \
265 #define F2FS_RW_ATTR(struct_type, struct_name, name, elname) \
266 F2FS_ATTR_OFFSET(struct_type, name, 0644, \
267 f2fs_sbi_show, f2fs_sbi_store, \
268 offsetof(struct struct_name, elname))
270 #define F2FS_GENERAL_RO_ATTR(name) \
271 static struct f2fs_attr f2fs_attr_##name = __ATTR(name, 0444, name##_show, NULL)
273 F2FS_RW_ATTR(GC_THREAD
, f2fs_gc_kthread
, gc_min_sleep_time
, min_sleep_time
);
274 F2FS_RW_ATTR(GC_THREAD
, f2fs_gc_kthread
, gc_max_sleep_time
, max_sleep_time
);
275 F2FS_RW_ATTR(GC_THREAD
, f2fs_gc_kthread
, gc_no_gc_sleep_time
, no_gc_sleep_time
);
276 F2FS_RW_ATTR(GC_THREAD
, f2fs_gc_kthread
, gc_idle
, gc_idle
);
277 F2FS_RW_ATTR(SM_INFO
, f2fs_sm_info
, reclaim_segments
, rec_prefree_segments
);
278 F2FS_RW_ATTR(SM_INFO
, f2fs_sm_info
, max_small_discards
, max_discards
);
279 F2FS_RW_ATTR(SM_INFO
, f2fs_sm_info
, batched_trim_sections
, trim_sections
);
280 F2FS_RW_ATTR(SM_INFO
, f2fs_sm_info
, ipu_policy
, ipu_policy
);
281 F2FS_RW_ATTR(SM_INFO
, f2fs_sm_info
, min_ipu_util
, min_ipu_util
);
282 F2FS_RW_ATTR(SM_INFO
, f2fs_sm_info
, min_fsync_blocks
, min_fsync_blocks
);
283 F2FS_RW_ATTR(NM_INFO
, f2fs_nm_info
, ram_thresh
, ram_thresh
);
284 F2FS_RW_ATTR(NM_INFO
, f2fs_nm_info
, ra_nid_pages
, ra_nid_pages
);
285 F2FS_RW_ATTR(NM_INFO
, f2fs_nm_info
, dirty_nats_ratio
, dirty_nats_ratio
);
286 F2FS_RW_ATTR(F2FS_SBI
, f2fs_sb_info
, max_victim_search
, max_victim_search
);
287 F2FS_RW_ATTR(F2FS_SBI
, f2fs_sb_info
, dir_level
, dir_level
);
288 F2FS_RW_ATTR(F2FS_SBI
, f2fs_sb_info
, cp_interval
, interval_time
[CP_TIME
]);
289 F2FS_RW_ATTR(F2FS_SBI
, f2fs_sb_info
, idle_interval
, interval_time
[REQ_TIME
]);
290 #ifdef CONFIG_F2FS_FAULT_INJECTION
291 F2FS_RW_ATTR(FAULT_INFO_RATE
, f2fs_fault_info
, inject_rate
, inject_rate
);
292 F2FS_RW_ATTR(FAULT_INFO_TYPE
, f2fs_fault_info
, inject_type
, inject_type
);
294 F2FS_GENERAL_RO_ATTR(lifetime_write_kbytes
);
296 #define ATTR_LIST(name) (&f2fs_attr_##name.attr)
297 static struct attribute
*f2fs_attrs
[] = {
298 ATTR_LIST(gc_min_sleep_time
),
299 ATTR_LIST(gc_max_sleep_time
),
300 ATTR_LIST(gc_no_gc_sleep_time
),
302 ATTR_LIST(reclaim_segments
),
303 ATTR_LIST(max_small_discards
),
304 ATTR_LIST(batched_trim_sections
),
305 ATTR_LIST(ipu_policy
),
306 ATTR_LIST(min_ipu_util
),
307 ATTR_LIST(min_fsync_blocks
),
308 ATTR_LIST(max_victim_search
),
309 ATTR_LIST(dir_level
),
310 ATTR_LIST(ram_thresh
),
311 ATTR_LIST(ra_nid_pages
),
312 ATTR_LIST(dirty_nats_ratio
),
313 ATTR_LIST(cp_interval
),
314 ATTR_LIST(idle_interval
),
315 ATTR_LIST(lifetime_write_kbytes
),
319 static const struct sysfs_ops f2fs_attr_ops
= {
320 .show
= f2fs_attr_show
,
321 .store
= f2fs_attr_store
,
324 static struct kobj_type f2fs_ktype
= {
325 .default_attrs
= f2fs_attrs
,
326 .sysfs_ops
= &f2fs_attr_ops
,
327 .release
= f2fs_sb_release
,
330 #ifdef CONFIG_F2FS_FAULT_INJECTION
331 /* sysfs for f2fs fault injection */
332 static struct kobject f2fs_fault_inject
;
334 static struct attribute
*f2fs_fault_attrs
[] = {
335 ATTR_LIST(inject_rate
),
336 ATTR_LIST(inject_type
),
340 static struct kobj_type f2fs_fault_ktype
= {
341 .default_attrs
= f2fs_fault_attrs
,
342 .sysfs_ops
= &f2fs_attr_ops
,
346 void f2fs_msg(struct super_block
*sb
, const char *level
, const char *fmt
, ...)
348 struct va_format vaf
;
354 printk("%sF2FS-fs (%s): %pV\n", level
, sb
->s_id
, &vaf
);
358 static void init_once(void *foo
)
360 struct f2fs_inode_info
*fi
= (struct f2fs_inode_info
*) foo
;
362 inode_init_once(&fi
->vfs_inode
);
365 static int parse_options(struct super_block
*sb
, char *options
)
367 struct f2fs_sb_info
*sbi
= F2FS_SB(sb
);
368 struct request_queue
*q
;
369 substring_t args
[MAX_OPT_ARGS
];
373 #ifdef CONFIG_F2FS_FAULT_INJECTION
374 f2fs_build_fault_attr(0);
380 while ((p
= strsep(&options
, ",")) != NULL
) {
385 * Initialize args struct so we know whether arg was
386 * found; some options take optional arguments.
388 args
[0].to
= args
[0].from
= NULL
;
389 token
= match_token(p
, f2fs_tokens
, args
);
392 case Opt_gc_background
:
393 name
= match_strdup(&args
[0]);
397 if (strlen(name
) == 2 && !strncmp(name
, "on", 2)) {
399 clear_opt(sbi
, FORCE_FG_GC
);
400 } else if (strlen(name
) == 3 && !strncmp(name
, "off", 3)) {
401 clear_opt(sbi
, BG_GC
);
402 clear_opt(sbi
, FORCE_FG_GC
);
403 } else if (strlen(name
) == 4 && !strncmp(name
, "sync", 4)) {
405 set_opt(sbi
, FORCE_FG_GC
);
412 case Opt_disable_roll_forward
:
413 set_opt(sbi
, DISABLE_ROLL_FORWARD
);
416 /* this option mounts f2fs with ro */
417 set_opt(sbi
, DISABLE_ROLL_FORWARD
);
418 if (!f2fs_readonly(sb
))
422 q
= bdev_get_queue(sb
->s_bdev
);
423 if (blk_queue_discard(q
)) {
424 set_opt(sbi
, DISCARD
);
426 f2fs_msg(sb
, KERN_WARNING
,
427 "mounting with \"discard\" option, but "
428 "the device does not support discard");
432 clear_opt(sbi
, DISCARD
);
434 set_opt(sbi
, NOHEAP
);
436 #ifdef CONFIG_F2FS_FS_XATTR
438 set_opt(sbi
, XATTR_USER
);
440 case Opt_nouser_xattr
:
441 clear_opt(sbi
, XATTR_USER
);
443 case Opt_inline_xattr
:
444 set_opt(sbi
, INLINE_XATTR
);
448 f2fs_msg(sb
, KERN_INFO
,
449 "user_xattr options not supported");
451 case Opt_nouser_xattr
:
452 f2fs_msg(sb
, KERN_INFO
,
453 "nouser_xattr options not supported");
455 case Opt_inline_xattr
:
456 f2fs_msg(sb
, KERN_INFO
,
457 "inline_xattr options not supported");
460 #ifdef CONFIG_F2FS_FS_POSIX_ACL
462 set_opt(sbi
, POSIX_ACL
);
465 clear_opt(sbi
, POSIX_ACL
);
469 f2fs_msg(sb
, KERN_INFO
, "acl options not supported");
472 f2fs_msg(sb
, KERN_INFO
, "noacl options not supported");
475 case Opt_active_logs
:
476 if (args
->from
&& match_int(args
, &arg
))
478 if (arg
!= 2 && arg
!= 4 && arg
!= NR_CURSEG_TYPE
)
480 sbi
->active_logs
= arg
;
482 case Opt_disable_ext_identify
:
483 set_opt(sbi
, DISABLE_EXT_IDENTIFY
);
485 case Opt_inline_data
:
486 set_opt(sbi
, INLINE_DATA
);
488 case Opt_inline_dentry
:
489 set_opt(sbi
, INLINE_DENTRY
);
491 case Opt_flush_merge
:
492 set_opt(sbi
, FLUSH_MERGE
);
494 case Opt_noflush_merge
:
495 clear_opt(sbi
, FLUSH_MERGE
);
498 set_opt(sbi
, NOBARRIER
);
501 set_opt(sbi
, FASTBOOT
);
503 case Opt_extent_cache
:
504 set_opt(sbi
, EXTENT_CACHE
);
506 case Opt_noextent_cache
:
507 clear_opt(sbi
, EXTENT_CACHE
);
509 case Opt_noinline_data
:
510 clear_opt(sbi
, INLINE_DATA
);
513 set_opt(sbi
, DATA_FLUSH
);
516 name
= match_strdup(&args
[0]);
520 if (strlen(name
) == 8 &&
521 !strncmp(name
, "adaptive", 8)) {
522 set_opt_mode(sbi
, F2FS_MOUNT_ADAPTIVE
);
523 } else if (strlen(name
) == 3 &&
524 !strncmp(name
, "lfs", 3)) {
525 set_opt_mode(sbi
, F2FS_MOUNT_LFS
);
532 case Opt_fault_injection
:
533 if (args
->from
&& match_int(args
, &arg
))
535 #ifdef CONFIG_F2FS_FAULT_INJECTION
536 f2fs_build_fault_attr(arg
);
538 f2fs_msg(sb
, KERN_INFO
,
539 "FAULT_INJECTION was not selected");
543 sb
->s_flags
|= MS_LAZYTIME
;
546 sb
->s_flags
&= ~MS_LAZYTIME
;
549 f2fs_msg(sb
, KERN_ERR
,
550 "Unrecognized mount option \"%s\" or missing value",
558 static struct inode
*f2fs_alloc_inode(struct super_block
*sb
)
560 struct f2fs_inode_info
*fi
;
562 fi
= kmem_cache_alloc(f2fs_inode_cachep
, GFP_F2FS_ZERO
);
566 init_once((void *) fi
);
568 if (percpu_counter_init(&fi
->dirty_pages
, 0, GFP_NOFS
)) {
569 kmem_cache_free(f2fs_inode_cachep
, fi
);
573 /* Initialize f2fs-specific inode info */
574 fi
->vfs_inode
.i_version
= 1;
575 fi
->i_current_depth
= 1;
577 init_rwsem(&fi
->i_sem
);
578 INIT_LIST_HEAD(&fi
->dirty_list
);
579 INIT_LIST_HEAD(&fi
->gdirty_list
);
580 INIT_LIST_HEAD(&fi
->inmem_pages
);
581 mutex_init(&fi
->inmem_lock
);
582 init_rwsem(&fi
->dio_rwsem
[READ
]);
583 init_rwsem(&fi
->dio_rwsem
[WRITE
]);
585 /* Will be used by directory only */
586 fi
->i_dir_level
= F2FS_SB(sb
)->dir_level
;
587 return &fi
->vfs_inode
;
590 static int f2fs_drop_inode(struct inode
*inode
)
593 * This is to avoid a deadlock condition like below.
594 * writeback_single_inode(inode)
595 * - f2fs_write_data_page
596 * - f2fs_gc -> iput -> evict
597 * - inode_wait_for_writeback(inode)
599 if ((!inode_unhashed(inode
) && inode
->i_state
& I_SYNC
)) {
600 if (!inode
->i_nlink
&& !is_bad_inode(inode
)) {
601 /* to avoid evict_inode call simultaneously */
602 atomic_inc(&inode
->i_count
);
603 spin_unlock(&inode
->i_lock
);
605 /* some remained atomic pages should discarded */
606 if (f2fs_is_atomic_file(inode
))
607 drop_inmem_pages(inode
);
609 /* should remain fi->extent_tree for writepage */
610 f2fs_destroy_extent_node(inode
);
612 sb_start_intwrite(inode
->i_sb
);
613 f2fs_i_size_write(inode
, 0);
615 if (F2FS_HAS_BLOCKS(inode
))
616 f2fs_truncate(inode
);
618 sb_end_intwrite(inode
->i_sb
);
620 fscrypt_put_encryption_info(inode
, NULL
);
621 spin_lock(&inode
->i_lock
);
622 atomic_dec(&inode
->i_count
);
627 return generic_drop_inode(inode
);
630 int f2fs_inode_dirtied(struct inode
*inode
)
632 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
634 spin_lock(&sbi
->inode_lock
[DIRTY_META
]);
635 if (is_inode_flag_set(inode
, FI_DIRTY_INODE
)) {
636 spin_unlock(&sbi
->inode_lock
[DIRTY_META
]);
640 set_inode_flag(inode
, FI_DIRTY_INODE
);
641 list_add_tail(&F2FS_I(inode
)->gdirty_list
,
642 &sbi
->inode_list
[DIRTY_META
]);
643 inc_page_count(sbi
, F2FS_DIRTY_IMETA
);
644 stat_inc_dirty_inode(sbi
, DIRTY_META
);
645 spin_unlock(&sbi
->inode_lock
[DIRTY_META
]);
650 void f2fs_inode_synced(struct inode
*inode
)
652 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
654 spin_lock(&sbi
->inode_lock
[DIRTY_META
]);
655 if (!is_inode_flag_set(inode
, FI_DIRTY_INODE
)) {
656 spin_unlock(&sbi
->inode_lock
[DIRTY_META
]);
659 list_del_init(&F2FS_I(inode
)->gdirty_list
);
660 clear_inode_flag(inode
, FI_DIRTY_INODE
);
661 clear_inode_flag(inode
, FI_AUTO_RECOVER
);
662 dec_page_count(sbi
, F2FS_DIRTY_IMETA
);
663 stat_dec_dirty_inode(F2FS_I_SB(inode
), DIRTY_META
);
664 spin_unlock(&sbi
->inode_lock
[DIRTY_META
]);
668 * f2fs_dirty_inode() is called from __mark_inode_dirty()
670 * We should call set_dirty_inode to write the dirty inode through write_inode.
672 static void f2fs_dirty_inode(struct inode
*inode
, int flags
)
674 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
676 if (inode
->i_ino
== F2FS_NODE_INO(sbi
) ||
677 inode
->i_ino
== F2FS_META_INO(sbi
))
680 if (flags
== I_DIRTY_TIME
)
683 if (is_inode_flag_set(inode
, FI_AUTO_RECOVER
))
684 clear_inode_flag(inode
, FI_AUTO_RECOVER
);
686 f2fs_inode_dirtied(inode
);
689 static void f2fs_i_callback(struct rcu_head
*head
)
691 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
692 kmem_cache_free(f2fs_inode_cachep
, F2FS_I(inode
));
695 static void f2fs_destroy_inode(struct inode
*inode
)
697 percpu_counter_destroy(&F2FS_I(inode
)->dirty_pages
);
698 call_rcu(&inode
->i_rcu
, f2fs_i_callback
);
701 static void destroy_percpu_info(struct f2fs_sb_info
*sbi
)
705 for (i
= 0; i
< NR_COUNT_TYPE
; i
++)
706 percpu_counter_destroy(&sbi
->nr_pages
[i
]);
707 percpu_counter_destroy(&sbi
->alloc_valid_block_count
);
708 percpu_counter_destroy(&sbi
->total_valid_inode_count
);
711 static void f2fs_put_super(struct super_block
*sb
)
713 struct f2fs_sb_info
*sbi
= F2FS_SB(sb
);
716 remove_proc_entry("segment_info", sbi
->s_proc
);
717 remove_proc_entry("segment_bits", sbi
->s_proc
);
718 remove_proc_entry(sb
->s_id
, f2fs_proc_root
);
720 kobject_del(&sbi
->s_kobj
);
724 /* prevent remaining shrinker jobs */
725 mutex_lock(&sbi
->umount_mutex
);
728 * We don't need to do checkpoint when superblock is clean.
729 * But, the previous checkpoint was not done by umount, it needs to do
730 * clean checkpoint again.
732 if (is_sbi_flag_set(sbi
, SBI_IS_DIRTY
) ||
733 !is_set_ckpt_flags(F2FS_CKPT(sbi
), CP_UMOUNT_FLAG
)) {
734 struct cp_control cpc
= {
737 write_checkpoint(sbi
, &cpc
);
740 /* write_checkpoint can update stat informaion */
741 f2fs_destroy_stats(sbi
);
744 * normally superblock is clean, so we need to release this.
745 * In addition, EIO will skip do checkpoint, we need this as well.
747 release_ino_entry(sbi
, true);
748 release_discard_addrs(sbi
);
750 f2fs_leave_shrinker(sbi
);
751 mutex_unlock(&sbi
->umount_mutex
);
753 /* our cp_error case, we can wait for any writeback page */
754 f2fs_flush_merged_bios(sbi
);
756 iput(sbi
->node_inode
);
757 iput(sbi
->meta_inode
);
759 /* destroy f2fs internal modules */
760 destroy_node_manager(sbi
);
761 destroy_segment_manager(sbi
);
764 kobject_put(&sbi
->s_kobj
);
765 wait_for_completion(&sbi
->s_kobj_unregister
);
767 sb
->s_fs_info
= NULL
;
768 if (sbi
->s_chksum_driver
)
769 crypto_free_shash(sbi
->s_chksum_driver
);
770 kfree(sbi
->raw_super
);
772 destroy_percpu_info(sbi
);
776 int f2fs_sync_fs(struct super_block
*sb
, int sync
)
778 struct f2fs_sb_info
*sbi
= F2FS_SB(sb
);
781 trace_f2fs_sync_fs(sb
, sync
);
784 struct cp_control cpc
;
786 cpc
.reason
= __get_cp_reason(sbi
);
788 mutex_lock(&sbi
->gc_mutex
);
789 err
= write_checkpoint(sbi
, &cpc
);
790 mutex_unlock(&sbi
->gc_mutex
);
792 f2fs_trace_ios(NULL
, 1);
797 static int f2fs_freeze(struct super_block
*sb
)
801 if (f2fs_readonly(sb
))
804 err
= f2fs_sync_fs(sb
, 1);
808 static int f2fs_unfreeze(struct super_block
*sb
)
813 static int f2fs_statfs(struct dentry
*dentry
, struct kstatfs
*buf
)
815 struct super_block
*sb
= dentry
->d_sb
;
816 struct f2fs_sb_info
*sbi
= F2FS_SB(sb
);
817 u64 id
= huge_encode_dev(sb
->s_bdev
->bd_dev
);
818 block_t total_count
, user_block_count
, start_count
, ovp_count
;
820 total_count
= le64_to_cpu(sbi
->raw_super
->block_count
);
821 user_block_count
= sbi
->user_block_count
;
822 start_count
= le32_to_cpu(sbi
->raw_super
->segment0_blkaddr
);
823 ovp_count
= SM_I(sbi
)->ovp_segments
<< sbi
->log_blocks_per_seg
;
824 buf
->f_type
= F2FS_SUPER_MAGIC
;
825 buf
->f_bsize
= sbi
->blocksize
;
827 buf
->f_blocks
= total_count
- start_count
;
828 buf
->f_bfree
= user_block_count
- valid_user_blocks(sbi
) + ovp_count
;
829 buf
->f_bavail
= user_block_count
- valid_user_blocks(sbi
);
831 buf
->f_files
= sbi
->total_node_count
- F2FS_RESERVED_NODE_NUM
;
832 buf
->f_ffree
= buf
->f_files
- valid_inode_count(sbi
);
834 buf
->f_namelen
= F2FS_NAME_LEN
;
835 buf
->f_fsid
.val
[0] = (u32
)id
;
836 buf
->f_fsid
.val
[1] = (u32
)(id
>> 32);
841 static int f2fs_show_options(struct seq_file
*seq
, struct dentry
*root
)
843 struct f2fs_sb_info
*sbi
= F2FS_SB(root
->d_sb
);
845 if (!f2fs_readonly(sbi
->sb
) && test_opt(sbi
, BG_GC
)) {
846 if (test_opt(sbi
, FORCE_FG_GC
))
847 seq_printf(seq
, ",background_gc=%s", "sync");
849 seq_printf(seq
, ",background_gc=%s", "on");
851 seq_printf(seq
, ",background_gc=%s", "off");
853 if (test_opt(sbi
, DISABLE_ROLL_FORWARD
))
854 seq_puts(seq
, ",disable_roll_forward");
855 if (test_opt(sbi
, DISCARD
))
856 seq_puts(seq
, ",discard");
857 if (test_opt(sbi
, NOHEAP
))
858 seq_puts(seq
, ",no_heap_alloc");
859 #ifdef CONFIG_F2FS_FS_XATTR
860 if (test_opt(sbi
, XATTR_USER
))
861 seq_puts(seq
, ",user_xattr");
863 seq_puts(seq
, ",nouser_xattr");
864 if (test_opt(sbi
, INLINE_XATTR
))
865 seq_puts(seq
, ",inline_xattr");
867 #ifdef CONFIG_F2FS_FS_POSIX_ACL
868 if (test_opt(sbi
, POSIX_ACL
))
869 seq_puts(seq
, ",acl");
871 seq_puts(seq
, ",noacl");
873 if (test_opt(sbi
, DISABLE_EXT_IDENTIFY
))
874 seq_puts(seq
, ",disable_ext_identify");
875 if (test_opt(sbi
, INLINE_DATA
))
876 seq_puts(seq
, ",inline_data");
878 seq_puts(seq
, ",noinline_data");
879 if (test_opt(sbi
, INLINE_DENTRY
))
880 seq_puts(seq
, ",inline_dentry");
881 if (!f2fs_readonly(sbi
->sb
) && test_opt(sbi
, FLUSH_MERGE
))
882 seq_puts(seq
, ",flush_merge");
883 if (test_opt(sbi
, NOBARRIER
))
884 seq_puts(seq
, ",nobarrier");
885 if (test_opt(sbi
, FASTBOOT
))
886 seq_puts(seq
, ",fastboot");
887 if (test_opt(sbi
, EXTENT_CACHE
))
888 seq_puts(seq
, ",extent_cache");
890 seq_puts(seq
, ",noextent_cache");
891 if (test_opt(sbi
, DATA_FLUSH
))
892 seq_puts(seq
, ",data_flush");
894 seq_puts(seq
, ",mode=");
895 if (test_opt(sbi
, ADAPTIVE
))
896 seq_puts(seq
, "adaptive");
897 else if (test_opt(sbi
, LFS
))
898 seq_puts(seq
, "lfs");
899 seq_printf(seq
, ",active_logs=%u", sbi
->active_logs
);
904 static int segment_info_seq_show(struct seq_file
*seq
, void *offset
)
906 struct super_block
*sb
= seq
->private;
907 struct f2fs_sb_info
*sbi
= F2FS_SB(sb
);
908 unsigned int total_segs
=
909 le32_to_cpu(sbi
->raw_super
->segment_count_main
);
912 seq_puts(seq
, "format: segment_type|valid_blocks\n"
913 "segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n");
915 for (i
= 0; i
< total_segs
; i
++) {
916 struct seg_entry
*se
= get_seg_entry(sbi
, i
);
919 seq_printf(seq
, "%-10d", i
);
920 seq_printf(seq
, "%d|%-3u", se
->type
,
921 get_valid_blocks(sbi
, i
, 1));
922 if ((i
% 10) == 9 || i
== (total_segs
- 1))
931 static int segment_bits_seq_show(struct seq_file
*seq
, void *offset
)
933 struct super_block
*sb
= seq
->private;
934 struct f2fs_sb_info
*sbi
= F2FS_SB(sb
);
935 unsigned int total_segs
=
936 le32_to_cpu(sbi
->raw_super
->segment_count_main
);
939 seq_puts(seq
, "format: segment_type|valid_blocks|bitmaps\n"
940 "segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n");
942 for (i
= 0; i
< total_segs
; i
++) {
943 struct seg_entry
*se
= get_seg_entry(sbi
, i
);
945 seq_printf(seq
, "%-10d", i
);
946 seq_printf(seq
, "%d|%-3u|", se
->type
,
947 get_valid_blocks(sbi
, i
, 1));
948 for (j
= 0; j
< SIT_VBLOCK_MAP_SIZE
; j
++)
949 seq_printf(seq
, "%x ", se
->cur_valid_map
[j
]);
955 #define F2FS_PROC_FILE_DEF(_name) \
956 static int _name##_open_fs(struct inode *inode, struct file *file) \
958 return single_open(file, _name##_seq_show, PDE_DATA(inode)); \
961 static const struct file_operations f2fs_seq_##_name##_fops = { \
962 .open = _name##_open_fs, \
964 .llseek = seq_lseek, \
965 .release = single_release, \
968 F2FS_PROC_FILE_DEF(segment_info
);
969 F2FS_PROC_FILE_DEF(segment_bits
);
971 static void default_options(struct f2fs_sb_info
*sbi
)
973 /* init some FS parameters */
974 sbi
->active_logs
= NR_CURSEG_TYPE
;
977 set_opt(sbi
, INLINE_DATA
);
978 set_opt(sbi
, EXTENT_CACHE
);
979 sbi
->sb
->s_flags
|= MS_LAZYTIME
;
980 set_opt(sbi
, FLUSH_MERGE
);
981 if (f2fs_sb_mounted_hmsmr(sbi
->sb
)) {
982 set_opt_mode(sbi
, F2FS_MOUNT_LFS
);
983 set_opt(sbi
, DISCARD
);
985 set_opt_mode(sbi
, F2FS_MOUNT_ADAPTIVE
);
988 #ifdef CONFIG_F2FS_FS_XATTR
989 set_opt(sbi
, XATTR_USER
);
991 #ifdef CONFIG_F2FS_FS_POSIX_ACL
992 set_opt(sbi
, POSIX_ACL
);
996 static int f2fs_remount(struct super_block
*sb
, int *flags
, char *data
)
998 struct f2fs_sb_info
*sbi
= F2FS_SB(sb
);
999 struct f2fs_mount_info org_mount_opt
;
1000 int err
, active_logs
;
1001 bool need_restart_gc
= false;
1002 bool need_stop_gc
= false;
1003 bool no_extent_cache
= !test_opt(sbi
, EXTENT_CACHE
);
1006 * Save the old mount options in case we
1007 * need to restore them.
1009 org_mount_opt
= sbi
->mount_opt
;
1010 active_logs
= sbi
->active_logs
;
1012 /* recover superblocks we couldn't write due to previous RO mount */
1013 if (!(*flags
& MS_RDONLY
) && is_sbi_flag_set(sbi
, SBI_NEED_SB_WRITE
)) {
1014 err
= f2fs_commit_super(sbi
, false);
1015 f2fs_msg(sb
, KERN_INFO
,
1016 "Try to recover all the superblocks, ret: %d", err
);
1018 clear_sbi_flag(sbi
, SBI_NEED_SB_WRITE
);
1021 sbi
->mount_opt
.opt
= 0;
1022 default_options(sbi
);
1024 /* parse mount options */
1025 err
= parse_options(sb
, data
);
1030 * Previous and new state of filesystem is RO,
1031 * so skip checking GC and FLUSH_MERGE conditions.
1033 if (f2fs_readonly(sb
) && (*flags
& MS_RDONLY
))
1036 /* disallow enable/disable extent_cache dynamically */
1037 if (no_extent_cache
== !!test_opt(sbi
, EXTENT_CACHE
)) {
1039 f2fs_msg(sbi
->sb
, KERN_WARNING
,
1040 "switch extent_cache option is not allowed");
1045 * We stop the GC thread if FS is mounted as RO
1046 * or if background_gc = off is passed in mount
1047 * option. Also sync the filesystem.
1049 if ((*flags
& MS_RDONLY
) || !test_opt(sbi
, BG_GC
)) {
1050 if (sbi
->gc_thread
) {
1051 stop_gc_thread(sbi
);
1052 need_restart_gc
= true;
1054 } else if (!sbi
->gc_thread
) {
1055 err
= start_gc_thread(sbi
);
1058 need_stop_gc
= true;
1061 if (*flags
& MS_RDONLY
) {
1062 writeback_inodes_sb(sb
, WB_REASON_SYNC
);
1065 set_sbi_flag(sbi
, SBI_IS_DIRTY
);
1066 set_sbi_flag(sbi
, SBI_IS_CLOSE
);
1067 f2fs_sync_fs(sb
, 1);
1068 clear_sbi_flag(sbi
, SBI_IS_CLOSE
);
1072 * We stop issue flush thread if FS is mounted as RO
1073 * or if flush_merge is not passed in mount option.
1075 if ((*flags
& MS_RDONLY
) || !test_opt(sbi
, FLUSH_MERGE
)) {
1076 destroy_flush_cmd_control(sbi
);
1077 } else if (!SM_I(sbi
)->cmd_control_info
) {
1078 err
= create_flush_cmd_control(sbi
);
1083 /* Update the POSIXACL Flag */
1084 sb
->s_flags
= (sb
->s_flags
& ~MS_POSIXACL
) |
1085 (test_opt(sbi
, POSIX_ACL
) ? MS_POSIXACL
: 0);
1089 if (need_restart_gc
) {
1090 if (start_gc_thread(sbi
))
1091 f2fs_msg(sbi
->sb
, KERN_WARNING
,
1092 "background gc thread has stopped");
1093 } else if (need_stop_gc
) {
1094 stop_gc_thread(sbi
);
1097 sbi
->mount_opt
= org_mount_opt
;
1098 sbi
->active_logs
= active_logs
;
1102 static struct super_operations f2fs_sops
= {
1103 .alloc_inode
= f2fs_alloc_inode
,
1104 .drop_inode
= f2fs_drop_inode
,
1105 .destroy_inode
= f2fs_destroy_inode
,
1106 .write_inode
= f2fs_write_inode
,
1107 .dirty_inode
= f2fs_dirty_inode
,
1108 .show_options
= f2fs_show_options
,
1109 .evict_inode
= f2fs_evict_inode
,
1110 .put_super
= f2fs_put_super
,
1111 .sync_fs
= f2fs_sync_fs
,
1112 .freeze_fs
= f2fs_freeze
,
1113 .unfreeze_fs
= f2fs_unfreeze
,
1114 .statfs
= f2fs_statfs
,
1115 .remount_fs
= f2fs_remount
,
1118 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1119 static int f2fs_get_context(struct inode
*inode
, void *ctx
, size_t len
)
1121 return f2fs_getxattr(inode
, F2FS_XATTR_INDEX_ENCRYPTION
,
1122 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT
,
1126 static int f2fs_key_prefix(struct inode
*inode
, u8
**key
)
1128 *key
= F2FS_I_SB(inode
)->key_prefix
;
1129 return F2FS_I_SB(inode
)->key_prefix_size
;
1132 static int f2fs_set_context(struct inode
*inode
, const void *ctx
, size_t len
,
1135 return f2fs_setxattr(inode
, F2FS_XATTR_INDEX_ENCRYPTION
,
1136 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT
,
1137 ctx
, len
, fs_data
, XATTR_CREATE
);
1140 static unsigned f2fs_max_namelen(struct inode
*inode
)
1142 return S_ISLNK(inode
->i_mode
) ?
1143 inode
->i_sb
->s_blocksize
: F2FS_NAME_LEN
;
1146 static struct fscrypt_operations f2fs_cryptops
= {
1147 .get_context
= f2fs_get_context
,
1148 .key_prefix
= f2fs_key_prefix
,
1149 .set_context
= f2fs_set_context
,
1150 .is_encrypted
= f2fs_encrypted_inode
,
1151 .empty_dir
= f2fs_empty_dir
,
1152 .max_namelen
= f2fs_max_namelen
,
1155 static struct fscrypt_operations f2fs_cryptops
= {
1156 .is_encrypted
= f2fs_encrypted_inode
,
1160 static struct inode
*f2fs_nfs_get_inode(struct super_block
*sb
,
1161 u64 ino
, u32 generation
)
1163 struct f2fs_sb_info
*sbi
= F2FS_SB(sb
);
1164 struct inode
*inode
;
1166 if (check_nid_range(sbi
, ino
))
1167 return ERR_PTR(-ESTALE
);
1170 * f2fs_iget isn't quite right if the inode is currently unallocated!
1171 * However f2fs_iget currently does appropriate checks to handle stale
1172 * inodes so everything is OK.
1174 inode
= f2fs_iget(sb
, ino
);
1176 return ERR_CAST(inode
);
1177 if (unlikely(generation
&& inode
->i_generation
!= generation
)) {
1178 /* we didn't find the right inode.. */
1180 return ERR_PTR(-ESTALE
);
1185 static struct dentry
*f2fs_fh_to_dentry(struct super_block
*sb
, struct fid
*fid
,
1186 int fh_len
, int fh_type
)
1188 return generic_fh_to_dentry(sb
, fid
, fh_len
, fh_type
,
1189 f2fs_nfs_get_inode
);
1192 static struct dentry
*f2fs_fh_to_parent(struct super_block
*sb
, struct fid
*fid
,
1193 int fh_len
, int fh_type
)
1195 return generic_fh_to_parent(sb
, fid
, fh_len
, fh_type
,
1196 f2fs_nfs_get_inode
);
1199 static const struct export_operations f2fs_export_ops
= {
1200 .fh_to_dentry
= f2fs_fh_to_dentry
,
1201 .fh_to_parent
= f2fs_fh_to_parent
,
1202 .get_parent
= f2fs_get_parent
,
1205 static loff_t
max_file_blocks(void)
1207 loff_t result
= (DEF_ADDRS_PER_INODE
- F2FS_INLINE_XATTR_ADDRS
);
1208 loff_t leaf_count
= ADDRS_PER_BLOCK
;
1210 /* two direct node blocks */
1211 result
+= (leaf_count
* 2);
1213 /* two indirect node blocks */
1214 leaf_count
*= NIDS_PER_BLOCK
;
1215 result
+= (leaf_count
* 2);
1217 /* one double indirect node block */
1218 leaf_count
*= NIDS_PER_BLOCK
;
1219 result
+= leaf_count
;
1224 static int __f2fs_commit_super(struct buffer_head
*bh
,
1225 struct f2fs_super_block
*super
)
1229 memcpy(bh
->b_data
+ F2FS_SUPER_OFFSET
, super
, sizeof(*super
));
1230 set_buffer_uptodate(bh
);
1231 set_buffer_dirty(bh
);
1234 /* it's rare case, we can do fua all the time */
1235 return __sync_dirty_buffer(bh
, WRITE_FLUSH_FUA
);
1238 static inline bool sanity_check_area_boundary(struct f2fs_sb_info
*sbi
,
1239 struct buffer_head
*bh
)
1241 struct f2fs_super_block
*raw_super
= (struct f2fs_super_block
*)
1242 (bh
->b_data
+ F2FS_SUPER_OFFSET
);
1243 struct super_block
*sb
= sbi
->sb
;
1244 u32 segment0_blkaddr
= le32_to_cpu(raw_super
->segment0_blkaddr
);
1245 u32 cp_blkaddr
= le32_to_cpu(raw_super
->cp_blkaddr
);
1246 u32 sit_blkaddr
= le32_to_cpu(raw_super
->sit_blkaddr
);
1247 u32 nat_blkaddr
= le32_to_cpu(raw_super
->nat_blkaddr
);
1248 u32 ssa_blkaddr
= le32_to_cpu(raw_super
->ssa_blkaddr
);
1249 u32 main_blkaddr
= le32_to_cpu(raw_super
->main_blkaddr
);
1250 u32 segment_count_ckpt
= le32_to_cpu(raw_super
->segment_count_ckpt
);
1251 u32 segment_count_sit
= le32_to_cpu(raw_super
->segment_count_sit
);
1252 u32 segment_count_nat
= le32_to_cpu(raw_super
->segment_count_nat
);
1253 u32 segment_count_ssa
= le32_to_cpu(raw_super
->segment_count_ssa
);
1254 u32 segment_count_main
= le32_to_cpu(raw_super
->segment_count_main
);
1255 u32 segment_count
= le32_to_cpu(raw_super
->segment_count
);
1256 u32 log_blocks_per_seg
= le32_to_cpu(raw_super
->log_blocks_per_seg
);
1257 u64 main_end_blkaddr
= main_blkaddr
+
1258 (segment_count_main
<< log_blocks_per_seg
);
1259 u64 seg_end_blkaddr
= segment0_blkaddr
+
1260 (segment_count
<< log_blocks_per_seg
);
1262 if (segment0_blkaddr
!= cp_blkaddr
) {
1263 f2fs_msg(sb
, KERN_INFO
,
1264 "Mismatch start address, segment0(%u) cp_blkaddr(%u)",
1265 segment0_blkaddr
, cp_blkaddr
);
1269 if (cp_blkaddr
+ (segment_count_ckpt
<< log_blocks_per_seg
) !=
1271 f2fs_msg(sb
, KERN_INFO
,
1272 "Wrong CP boundary, start(%u) end(%u) blocks(%u)",
1273 cp_blkaddr
, sit_blkaddr
,
1274 segment_count_ckpt
<< log_blocks_per_seg
);
1278 if (sit_blkaddr
+ (segment_count_sit
<< log_blocks_per_seg
) !=
1280 f2fs_msg(sb
, KERN_INFO
,
1281 "Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
1282 sit_blkaddr
, nat_blkaddr
,
1283 segment_count_sit
<< log_blocks_per_seg
);
1287 if (nat_blkaddr
+ (segment_count_nat
<< log_blocks_per_seg
) !=
1289 f2fs_msg(sb
, KERN_INFO
,
1290 "Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
1291 nat_blkaddr
, ssa_blkaddr
,
1292 segment_count_nat
<< log_blocks_per_seg
);
1296 if (ssa_blkaddr
+ (segment_count_ssa
<< log_blocks_per_seg
) !=
1298 f2fs_msg(sb
, KERN_INFO
,
1299 "Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
1300 ssa_blkaddr
, main_blkaddr
,
1301 segment_count_ssa
<< log_blocks_per_seg
);
1305 if (main_end_blkaddr
> seg_end_blkaddr
) {
1306 f2fs_msg(sb
, KERN_INFO
,
1307 "Wrong MAIN_AREA boundary, start(%u) end(%u) block(%u)",
1310 (segment_count
<< log_blocks_per_seg
),
1311 segment_count_main
<< log_blocks_per_seg
);
1313 } else if (main_end_blkaddr
< seg_end_blkaddr
) {
1317 /* fix in-memory information all the time */
1318 raw_super
->segment_count
= cpu_to_le32((main_end_blkaddr
-
1319 segment0_blkaddr
) >> log_blocks_per_seg
);
1321 if (f2fs_readonly(sb
) || bdev_read_only(sb
->s_bdev
)) {
1322 set_sbi_flag(sbi
, SBI_NEED_SB_WRITE
);
1325 err
= __f2fs_commit_super(bh
, NULL
);
1326 res
= err
? "failed" : "done";
1328 f2fs_msg(sb
, KERN_INFO
,
1329 "Fix alignment : %s, start(%u) end(%u) block(%u)",
1332 (segment_count
<< log_blocks_per_seg
),
1333 segment_count_main
<< log_blocks_per_seg
);
1340 static int sanity_check_raw_super(struct f2fs_sb_info
*sbi
,
1341 struct buffer_head
*bh
)
1343 struct f2fs_super_block
*raw_super
= (struct f2fs_super_block
*)
1344 (bh
->b_data
+ F2FS_SUPER_OFFSET
);
1345 struct super_block
*sb
= sbi
->sb
;
1346 unsigned int blocksize
;
1348 if (F2FS_SUPER_MAGIC
!= le32_to_cpu(raw_super
->magic
)) {
1349 f2fs_msg(sb
, KERN_INFO
,
1350 "Magic Mismatch, valid(0x%x) - read(0x%x)",
1351 F2FS_SUPER_MAGIC
, le32_to_cpu(raw_super
->magic
));
1355 /* Currently, support only 4KB page cache size */
1356 if (F2FS_BLKSIZE
!= PAGE_SIZE
) {
1357 f2fs_msg(sb
, KERN_INFO
,
1358 "Invalid page_cache_size (%lu), supports only 4KB\n",
1363 /* Currently, support only 4KB block size */
1364 blocksize
= 1 << le32_to_cpu(raw_super
->log_blocksize
);
1365 if (blocksize
!= F2FS_BLKSIZE
) {
1366 f2fs_msg(sb
, KERN_INFO
,
1367 "Invalid blocksize (%u), supports only 4KB\n",
1372 /* check log blocks per segment */
1373 if (le32_to_cpu(raw_super
->log_blocks_per_seg
) != 9) {
1374 f2fs_msg(sb
, KERN_INFO
,
1375 "Invalid log blocks per segment (%u)\n",
1376 le32_to_cpu(raw_super
->log_blocks_per_seg
));
1380 /* Currently, support 512/1024/2048/4096 bytes sector size */
1381 if (le32_to_cpu(raw_super
->log_sectorsize
) >
1382 F2FS_MAX_LOG_SECTOR_SIZE
||
1383 le32_to_cpu(raw_super
->log_sectorsize
) <
1384 F2FS_MIN_LOG_SECTOR_SIZE
) {
1385 f2fs_msg(sb
, KERN_INFO
, "Invalid log sectorsize (%u)",
1386 le32_to_cpu(raw_super
->log_sectorsize
));
1389 if (le32_to_cpu(raw_super
->log_sectors_per_block
) +
1390 le32_to_cpu(raw_super
->log_sectorsize
) !=
1391 F2FS_MAX_LOG_SECTOR_SIZE
) {
1392 f2fs_msg(sb
, KERN_INFO
,
1393 "Invalid log sectors per block(%u) log sectorsize(%u)",
1394 le32_to_cpu(raw_super
->log_sectors_per_block
),
1395 le32_to_cpu(raw_super
->log_sectorsize
));
1399 /* check reserved ino info */
1400 if (le32_to_cpu(raw_super
->node_ino
) != 1 ||
1401 le32_to_cpu(raw_super
->meta_ino
) != 2 ||
1402 le32_to_cpu(raw_super
->root_ino
) != 3) {
1403 f2fs_msg(sb
, KERN_INFO
,
1404 "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
1405 le32_to_cpu(raw_super
->node_ino
),
1406 le32_to_cpu(raw_super
->meta_ino
),
1407 le32_to_cpu(raw_super
->root_ino
));
1411 /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
1412 if (sanity_check_area_boundary(sbi
, bh
))
1418 int sanity_check_ckpt(struct f2fs_sb_info
*sbi
)
1420 unsigned int total
, fsmeta
;
1421 struct f2fs_super_block
*raw_super
= F2FS_RAW_SUPER(sbi
);
1422 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
1424 total
= le32_to_cpu(raw_super
->segment_count
);
1425 fsmeta
= le32_to_cpu(raw_super
->segment_count_ckpt
);
1426 fsmeta
+= le32_to_cpu(raw_super
->segment_count_sit
);
1427 fsmeta
+= le32_to_cpu(raw_super
->segment_count_nat
);
1428 fsmeta
+= le32_to_cpu(ckpt
->rsvd_segment_count
);
1429 fsmeta
+= le32_to_cpu(raw_super
->segment_count_ssa
);
1431 if (unlikely(fsmeta
>= total
))
1434 if (unlikely(f2fs_cp_error(sbi
))) {
1435 f2fs_msg(sbi
->sb
, KERN_ERR
, "A bug case: need to run fsck");
1441 static void init_sb_info(struct f2fs_sb_info
*sbi
)
1443 struct f2fs_super_block
*raw_super
= sbi
->raw_super
;
1445 sbi
->log_sectors_per_block
=
1446 le32_to_cpu(raw_super
->log_sectors_per_block
);
1447 sbi
->log_blocksize
= le32_to_cpu(raw_super
->log_blocksize
);
1448 sbi
->blocksize
= 1 << sbi
->log_blocksize
;
1449 sbi
->log_blocks_per_seg
= le32_to_cpu(raw_super
->log_blocks_per_seg
);
1450 sbi
->blocks_per_seg
= 1 << sbi
->log_blocks_per_seg
;
1451 sbi
->segs_per_sec
= le32_to_cpu(raw_super
->segs_per_sec
);
1452 sbi
->secs_per_zone
= le32_to_cpu(raw_super
->secs_per_zone
);
1453 sbi
->total_sections
= le32_to_cpu(raw_super
->section_count
);
1454 sbi
->total_node_count
=
1455 (le32_to_cpu(raw_super
->segment_count_nat
) / 2)
1456 * sbi
->blocks_per_seg
* NAT_ENTRY_PER_BLOCK
;
1457 sbi
->root_ino_num
= le32_to_cpu(raw_super
->root_ino
);
1458 sbi
->node_ino_num
= le32_to_cpu(raw_super
->node_ino
);
1459 sbi
->meta_ino_num
= le32_to_cpu(raw_super
->meta_ino
);
1460 sbi
->cur_victim_sec
= NULL_SECNO
;
1461 sbi
->max_victim_search
= DEF_MAX_VICTIM_SEARCH
;
1463 sbi
->dir_level
= DEF_DIR_LEVEL
;
1464 sbi
->interval_time
[CP_TIME
] = DEF_CP_INTERVAL
;
1465 sbi
->interval_time
[REQ_TIME
] = DEF_IDLE_INTERVAL
;
1466 clear_sbi_flag(sbi
, SBI_NEED_FSCK
);
1468 INIT_LIST_HEAD(&sbi
->s_list
);
1469 mutex_init(&sbi
->umount_mutex
);
1470 mutex_init(&sbi
->wio_mutex
[NODE
]);
1471 mutex_init(&sbi
->wio_mutex
[DATA
]);
1473 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1474 memcpy(sbi
->key_prefix
, F2FS_KEY_DESC_PREFIX
,
1475 F2FS_KEY_DESC_PREFIX_SIZE
);
1476 sbi
->key_prefix_size
= F2FS_KEY_DESC_PREFIX_SIZE
;
1480 static int init_percpu_info(struct f2fs_sb_info
*sbi
)
1484 for (i
= 0; i
< NR_COUNT_TYPE
; i
++) {
1485 err
= percpu_counter_init(&sbi
->nr_pages
[i
], 0, GFP_KERNEL
);
1490 err
= percpu_counter_init(&sbi
->alloc_valid_block_count
, 0, GFP_KERNEL
);
1494 return percpu_counter_init(&sbi
->total_valid_inode_count
, 0,
1499 * Read f2fs raw super block.
1500 * Because we have two copies of super block, so read both of them
1501 * to get the first valid one. If any one of them is broken, we pass
1502 * them recovery flag back to the caller.
1504 static int read_raw_super_block(struct f2fs_sb_info
*sbi
,
1505 struct f2fs_super_block
**raw_super
,
1506 int *valid_super_block
, int *recovery
)
1508 struct super_block
*sb
= sbi
->sb
;
1510 struct buffer_head
*bh
;
1511 struct f2fs_super_block
*super
;
1514 super
= kzalloc(sizeof(struct f2fs_super_block
), GFP_KERNEL
);
1518 for (block
= 0; block
< 2; block
++) {
1519 bh
= sb_bread(sb
, block
);
1521 f2fs_msg(sb
, KERN_ERR
, "Unable to read %dth superblock",
1527 /* sanity checking of raw super */
1528 if (sanity_check_raw_super(sbi
, bh
)) {
1529 f2fs_msg(sb
, KERN_ERR
,
1530 "Can't find valid F2FS filesystem in %dth superblock",
1538 memcpy(super
, bh
->b_data
+ F2FS_SUPER_OFFSET
,
1540 *valid_super_block
= block
;
1546 /* Fail to read any one of the superblocks*/
1550 /* No valid superblock */
1559 int f2fs_commit_super(struct f2fs_sb_info
*sbi
, bool recover
)
1561 struct buffer_head
*bh
;
1564 if ((recover
&& f2fs_readonly(sbi
->sb
)) ||
1565 bdev_read_only(sbi
->sb
->s_bdev
)) {
1566 set_sbi_flag(sbi
, SBI_NEED_SB_WRITE
);
1570 /* write back-up superblock first */
1571 bh
= sb_getblk(sbi
->sb
, sbi
->valid_super_block
? 0: 1);
1574 err
= __f2fs_commit_super(bh
, F2FS_RAW_SUPER(sbi
));
1577 /* if we are in recovery path, skip writing valid superblock */
1581 /* write current valid superblock */
1582 bh
= sb_getblk(sbi
->sb
, sbi
->valid_super_block
);
1585 err
= __f2fs_commit_super(bh
, F2FS_RAW_SUPER(sbi
));
1590 static int f2fs_fill_super(struct super_block
*sb
, void *data
, int silent
)
1592 struct f2fs_sb_info
*sbi
;
1593 struct f2fs_super_block
*raw_super
;
1596 bool retry
= true, need_fsck
= false;
1597 char *options
= NULL
;
1598 int recovery
, i
, valid_super_block
;
1599 struct curseg_info
*seg_i
;
1604 valid_super_block
= -1;
1607 /* allocate memory for f2fs-specific super block info */
1608 sbi
= kzalloc(sizeof(struct f2fs_sb_info
), GFP_KERNEL
);
1614 /* Load the checksum driver */
1615 sbi
->s_chksum_driver
= crypto_alloc_shash("crc32", 0, 0);
1616 if (IS_ERR(sbi
->s_chksum_driver
)) {
1617 f2fs_msg(sb
, KERN_ERR
, "Cannot load crc32 driver.");
1618 err
= PTR_ERR(sbi
->s_chksum_driver
);
1619 sbi
->s_chksum_driver
= NULL
;
1623 /* set a block size */
1624 if (unlikely(!sb_set_blocksize(sb
, F2FS_BLKSIZE
))) {
1625 f2fs_msg(sb
, KERN_ERR
, "unable to set blocksize");
1629 err
= read_raw_super_block(sbi
, &raw_super
, &valid_super_block
,
1634 sb
->s_fs_info
= sbi
;
1635 sbi
->raw_super
= raw_super
;
1637 default_options(sbi
);
1638 /* parse mount options */
1639 options
= kstrdup((const char *)data
, GFP_KERNEL
);
1640 if (data
&& !options
) {
1645 err
= parse_options(sb
, options
);
1649 sbi
->max_file_blocks
= max_file_blocks();
1650 sb
->s_maxbytes
= sbi
->max_file_blocks
<<
1651 le32_to_cpu(raw_super
->log_blocksize
);
1652 sb
->s_max_links
= F2FS_LINK_MAX
;
1653 get_random_bytes(&sbi
->s_next_generation
, sizeof(u32
));
1655 sb
->s_op
= &f2fs_sops
;
1656 sb
->s_cop
= &f2fs_cryptops
;
1657 sb
->s_xattr
= f2fs_xattr_handlers
;
1658 sb
->s_export_op
= &f2fs_export_ops
;
1659 sb
->s_magic
= F2FS_SUPER_MAGIC
;
1660 sb
->s_time_gran
= 1;
1661 sb
->s_flags
= (sb
->s_flags
& ~MS_POSIXACL
) |
1662 (test_opt(sbi
, POSIX_ACL
) ? MS_POSIXACL
: 0);
1663 memcpy(sb
->s_uuid
, raw_super
->uuid
, sizeof(raw_super
->uuid
));
1665 /* init f2fs-specific super block info */
1666 sbi
->valid_super_block
= valid_super_block
;
1667 mutex_init(&sbi
->gc_mutex
);
1668 mutex_init(&sbi
->cp_mutex
);
1669 init_rwsem(&sbi
->node_write
);
1671 /* disallow all the data/node/meta page writes */
1672 set_sbi_flag(sbi
, SBI_POR_DOING
);
1673 spin_lock_init(&sbi
->stat_lock
);
1675 init_rwsem(&sbi
->read_io
.io_rwsem
);
1676 sbi
->read_io
.sbi
= sbi
;
1677 sbi
->read_io
.bio
= NULL
;
1678 for (i
= 0; i
< NR_PAGE_TYPE
; i
++) {
1679 init_rwsem(&sbi
->write_io
[i
].io_rwsem
);
1680 sbi
->write_io
[i
].sbi
= sbi
;
1681 sbi
->write_io
[i
].bio
= NULL
;
1684 init_rwsem(&sbi
->cp_rwsem
);
1685 init_waitqueue_head(&sbi
->cp_wait
);
1688 err
= init_percpu_info(sbi
);
1692 /* get an inode for meta space */
1693 sbi
->meta_inode
= f2fs_iget(sb
, F2FS_META_INO(sbi
));
1694 if (IS_ERR(sbi
->meta_inode
)) {
1695 f2fs_msg(sb
, KERN_ERR
, "Failed to read F2FS meta data inode");
1696 err
= PTR_ERR(sbi
->meta_inode
);
1700 err
= get_valid_checkpoint(sbi
);
1702 f2fs_msg(sb
, KERN_ERR
, "Failed to get valid F2FS checkpoint");
1703 goto free_meta_inode
;
1706 sbi
->total_valid_node_count
=
1707 le32_to_cpu(sbi
->ckpt
->valid_node_count
);
1708 percpu_counter_set(&sbi
->total_valid_inode_count
,
1709 le32_to_cpu(sbi
->ckpt
->valid_inode_count
));
1710 sbi
->user_block_count
= le64_to_cpu(sbi
->ckpt
->user_block_count
);
1711 sbi
->total_valid_block_count
=
1712 le64_to_cpu(sbi
->ckpt
->valid_block_count
);
1713 sbi
->last_valid_block_count
= sbi
->total_valid_block_count
;
1715 for (i
= 0; i
< NR_INODE_TYPE
; i
++) {
1716 INIT_LIST_HEAD(&sbi
->inode_list
[i
]);
1717 spin_lock_init(&sbi
->inode_lock
[i
]);
1720 init_extent_cache_info(sbi
);
1722 init_ino_entry_info(sbi
);
1724 /* setup f2fs internal modules */
1725 err
= build_segment_manager(sbi
);
1727 f2fs_msg(sb
, KERN_ERR
,
1728 "Failed to initialize F2FS segment manager");
1731 err
= build_node_manager(sbi
);
1733 f2fs_msg(sb
, KERN_ERR
,
1734 "Failed to initialize F2FS node manager");
1738 /* For write statistics */
1739 if (sb
->s_bdev
->bd_part
)
1740 sbi
->sectors_written_start
=
1741 (u64
)part_stat_read(sb
->s_bdev
->bd_part
, sectors
[1]);
1743 /* Read accumulated write IO statistics if exists */
1744 seg_i
= CURSEG_I(sbi
, CURSEG_HOT_NODE
);
1745 if (__exist_node_summaries(sbi
))
1746 sbi
->kbytes_written
=
1747 le64_to_cpu(seg_i
->journal
->info
.kbytes_written
);
1749 build_gc_manager(sbi
);
1751 /* get an inode for node space */
1752 sbi
->node_inode
= f2fs_iget(sb
, F2FS_NODE_INO(sbi
));
1753 if (IS_ERR(sbi
->node_inode
)) {
1754 f2fs_msg(sb
, KERN_ERR
, "Failed to read node inode");
1755 err
= PTR_ERR(sbi
->node_inode
);
1759 f2fs_join_shrinker(sbi
);
1761 /* if there are nt orphan nodes free them */
1762 err
= recover_orphan_inodes(sbi
);
1764 goto free_node_inode
;
1766 /* read root inode and dentry */
1767 root
= f2fs_iget(sb
, F2FS_ROOT_INO(sbi
));
1769 f2fs_msg(sb
, KERN_ERR
, "Failed to read root inode");
1770 err
= PTR_ERR(root
);
1771 goto free_node_inode
;
1773 if (!S_ISDIR(root
->i_mode
) || !root
->i_blocks
|| !root
->i_size
) {
1776 goto free_node_inode
;
1779 sb
->s_root
= d_make_root(root
); /* allocate root dentry */
1782 goto free_root_inode
;
1785 err
= f2fs_build_stats(sbi
);
1787 goto free_root_inode
;
1790 sbi
->s_proc
= proc_mkdir(sb
->s_id
, f2fs_proc_root
);
1793 proc_create_data("segment_info", S_IRUGO
, sbi
->s_proc
,
1794 &f2fs_seq_segment_info_fops
, sb
);
1795 proc_create_data("segment_bits", S_IRUGO
, sbi
->s_proc
,
1796 &f2fs_seq_segment_bits_fops
, sb
);
1799 sbi
->s_kobj
.kset
= f2fs_kset
;
1800 init_completion(&sbi
->s_kobj_unregister
);
1801 err
= kobject_init_and_add(&sbi
->s_kobj
, &f2fs_ktype
, NULL
,
1806 /* recover fsynced data */
1807 if (!test_opt(sbi
, DISABLE_ROLL_FORWARD
)) {
1809 * mount should be failed, when device has readonly mode, and
1810 * previous checkpoint was not done by clean system shutdown.
1812 if (bdev_read_only(sb
->s_bdev
) &&
1813 !is_set_ckpt_flags(sbi
->ckpt
, CP_UMOUNT_FLAG
)) {
1819 set_sbi_flag(sbi
, SBI_NEED_FSCK
);
1821 err
= recover_fsync_data(sbi
, false);
1824 f2fs_msg(sb
, KERN_ERR
,
1825 "Cannot recover all fsync data errno=%d", err
);
1829 err
= recover_fsync_data(sbi
, true);
1831 if (!f2fs_readonly(sb
) && err
> 0) {
1833 f2fs_msg(sb
, KERN_ERR
,
1834 "Need to recover fsync data");
1839 /* recover_fsync_data() cleared this already */
1840 clear_sbi_flag(sbi
, SBI_POR_DOING
);
1843 * If filesystem is not mounted as read-only then
1844 * do start the gc_thread.
1846 if (test_opt(sbi
, BG_GC
) && !f2fs_readonly(sb
)) {
1847 /* After POR, we can run background GC thread.*/
1848 err
= start_gc_thread(sbi
);
1854 /* recover broken superblock */
1856 err
= f2fs_commit_super(sbi
, true);
1857 f2fs_msg(sb
, KERN_INFO
,
1858 "Try to recover %dth superblock, ret: %d",
1859 sbi
->valid_super_block
? 1 : 2, err
);
1862 f2fs_update_time(sbi
, CP_TIME
);
1863 f2fs_update_time(sbi
, REQ_TIME
);
1867 f2fs_sync_inode_meta(sbi
);
1868 kobject_del(&sbi
->s_kobj
);
1869 kobject_put(&sbi
->s_kobj
);
1870 wait_for_completion(&sbi
->s_kobj_unregister
);
1873 remove_proc_entry("segment_info", sbi
->s_proc
);
1874 remove_proc_entry("segment_bits", sbi
->s_proc
);
1875 remove_proc_entry(sb
->s_id
, f2fs_proc_root
);
1877 f2fs_destroy_stats(sbi
);
1882 mutex_lock(&sbi
->umount_mutex
);
1883 f2fs_leave_shrinker(sbi
);
1884 iput(sbi
->node_inode
);
1885 mutex_unlock(&sbi
->umount_mutex
);
1887 destroy_node_manager(sbi
);
1889 destroy_segment_manager(sbi
);
1892 make_bad_inode(sbi
->meta_inode
);
1893 iput(sbi
->meta_inode
);
1895 destroy_percpu_info(sbi
);
1900 if (sbi
->s_chksum_driver
)
1901 crypto_free_shash(sbi
->s_chksum_driver
);
1904 /* give only one another chance */
1907 shrink_dcache_sb(sb
);
1913 static struct dentry
*f2fs_mount(struct file_system_type
*fs_type
, int flags
,
1914 const char *dev_name
, void *data
)
1916 return mount_bdev(fs_type
, flags
, dev_name
, data
, f2fs_fill_super
);
1919 static void kill_f2fs_super(struct super_block
*sb
)
1922 set_sbi_flag(F2FS_SB(sb
), SBI_IS_CLOSE
);
1923 kill_block_super(sb
);
1926 static struct file_system_type f2fs_fs_type
= {
1927 .owner
= THIS_MODULE
,
1929 .mount
= f2fs_mount
,
1930 .kill_sb
= kill_f2fs_super
,
1931 .fs_flags
= FS_REQUIRES_DEV
,
1933 MODULE_ALIAS_FS("f2fs");
1935 static int __init
init_inodecache(void)
1937 f2fs_inode_cachep
= kmem_cache_create("f2fs_inode_cache",
1938 sizeof(struct f2fs_inode_info
), 0,
1939 SLAB_RECLAIM_ACCOUNT
|SLAB_ACCOUNT
, NULL
);
1940 if (!f2fs_inode_cachep
)
1945 static void destroy_inodecache(void)
1948 * Make sure all delayed rcu free inodes are flushed before we
1952 kmem_cache_destroy(f2fs_inode_cachep
);
1955 static int __init
init_f2fs_fs(void)
1959 f2fs_build_trace_ios();
1961 err
= init_inodecache();
1964 err
= create_node_manager_caches();
1966 goto free_inodecache
;
1967 err
= create_segment_manager_caches();
1969 goto free_node_manager_caches
;
1970 err
= create_checkpoint_caches();
1972 goto free_segment_manager_caches
;
1973 err
= create_extent_cache();
1975 goto free_checkpoint_caches
;
1976 f2fs_kset
= kset_create_and_add("f2fs", NULL
, fs_kobj
);
1979 goto free_extent_cache
;
1981 #ifdef CONFIG_F2FS_FAULT_INJECTION
1982 f2fs_fault_inject
.kset
= f2fs_kset
;
1983 f2fs_build_fault_attr(0);
1984 err
= kobject_init_and_add(&f2fs_fault_inject
, &f2fs_fault_ktype
,
1985 NULL
, "fault_injection");
1987 f2fs_fault_inject
.kset
= NULL
;
1991 err
= register_shrinker(&f2fs_shrinker_info
);
1995 err
= register_filesystem(&f2fs_fs_type
);
1998 err
= f2fs_create_root_stats();
2000 goto free_filesystem
;
2001 f2fs_proc_root
= proc_mkdir("fs/f2fs", NULL
);
2005 unregister_filesystem(&f2fs_fs_type
);
2007 unregister_shrinker(&f2fs_shrinker_info
);
2009 #ifdef CONFIG_F2FS_FAULT_INJECTION
2010 if (f2fs_fault_inject
.kset
)
2011 kobject_put(&f2fs_fault_inject
);
2013 kset_unregister(f2fs_kset
);
2015 destroy_extent_cache();
2016 free_checkpoint_caches
:
2017 destroy_checkpoint_caches();
2018 free_segment_manager_caches
:
2019 destroy_segment_manager_caches();
2020 free_node_manager_caches
:
2021 destroy_node_manager_caches();
2023 destroy_inodecache();
2028 static void __exit
exit_f2fs_fs(void)
2030 remove_proc_entry("fs/f2fs", NULL
);
2031 f2fs_destroy_root_stats();
2032 unregister_filesystem(&f2fs_fs_type
);
2033 unregister_shrinker(&f2fs_shrinker_info
);
2034 #ifdef CONFIG_F2FS_FAULT_INJECTION
2035 kobject_put(&f2fs_fault_inject
);
2037 kset_unregister(f2fs_kset
);
2038 destroy_extent_cache();
2039 destroy_checkpoint_caches();
2040 destroy_segment_manager_caches();
2041 destroy_node_manager_caches();
2042 destroy_inodecache();
2043 f2fs_destroy_trace_ios();
2046 module_init(init_f2fs_fs
)
2047 module_exit(exit_f2fs_fs
)
2049 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
2050 MODULE_DESCRIPTION("Flash Friendly File System");
2051 MODULE_LICENSE("GPL");