2 * This file is part of UBIFS.
4 * Copyright (C) 2006-2008 Nokia Corporation.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
24 * This file implements VFS file and inode operations for regular files, device
25 * nodes and symlinks as well as address space operations.
27 * UBIFS uses 2 page flags: @PG_private and @PG_checked. @PG_private is set if
28 * the page is dirty and is used for optimization purposes - dirty pages are
29 * not budgeted so the flag shows that 'ubifs_write_end()' should not release
30 * the budget for this page. The @PG_checked flag is set if full budgeting is
31 * required for the page e.g., when it corresponds to a file hole or it is
32 * beyond the file size. The budgeting is done in 'ubifs_write_begin()', because
33 * it is OK to fail in this function, and the budget is released in
34 * 'ubifs_write_end()'. So the @PG_private and @PG_checked flags carry
35 * information about how the page was budgeted, to make it possible to release
36 * the budget properly.
38 * A thing to keep in mind: inode @i_mutex is locked in most VFS operations we
39 * implement. However, this is not true for 'ubifs_writepage()', which may be
40 * called with @i_mutex unlocked. For example, when flusher thread is doing
41 * background write-back, it calls 'ubifs_writepage()' with unlocked @i_mutex.
42 * At "normal" work-paths the @i_mutex is locked in 'ubifs_writepage()', e.g.
43 * in the "sys_write -> alloc_pages -> direct reclaim path". So, in
44 * 'ubifs_writepage()' we are only guaranteed that the page is locked.
46 * Similarly, @i_mutex is not always locked in 'ubifs_readpage()', e.g., the
47 * read-ahead path does not lock it ("sys_read -> generic_file_aio_read ->
48 * ondemand_readahead -> readpage"). In case of readahead, @I_SYNC flag is not
49 * set as well. However, UBIFS disables readahead.
53 #include <linux/mount.h>
54 #include <linux/slab.h>
55 #include <linux/migrate.h>
57 static int read_block(struct inode
*inode
, void *addr
, unsigned int block
,
58 struct ubifs_data_node
*dn
)
60 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
61 int err
, len
, out_len
;
65 data_key_init(c
, &key
, inode
->i_ino
, block
);
66 err
= ubifs_tnc_lookup(c
, &key
, dn
);
69 /* Not found, so it must be a hole */
70 memset(addr
, 0, UBIFS_BLOCK_SIZE
);
74 ubifs_assert(le64_to_cpu(dn
->ch
.sqnum
) >
75 ubifs_inode(inode
)->creat_sqnum
);
76 len
= le32_to_cpu(dn
->size
);
77 if (len
<= 0 || len
> UBIFS_BLOCK_SIZE
)
80 dlen
= le32_to_cpu(dn
->ch
.len
) - UBIFS_DATA_NODE_SZ
;
81 out_len
= UBIFS_BLOCK_SIZE
;
82 err
= ubifs_decompress(c
, &dn
->data
, dlen
, addr
, &out_len
,
83 le16_to_cpu(dn
->compr_type
));
84 if (err
|| len
!= out_len
)
88 * Data length can be less than a full block, even for blocks that are
89 * not the last in the file (e.g., as a result of making a hole and
90 * appending data). Ensure that the remainder is zeroed out.
92 if (len
< UBIFS_BLOCK_SIZE
)
93 memset(addr
+ len
, 0, UBIFS_BLOCK_SIZE
- len
);
98 ubifs_err(c
, "bad data node (block %u, inode %lu)",
100 ubifs_dump_node(c
, dn
);
104 static int do_readpage(struct page
*page
)
108 unsigned int block
, beyond
;
109 struct ubifs_data_node
*dn
;
110 struct inode
*inode
= page
->mapping
->host
;
111 loff_t i_size
= i_size_read(inode
);
113 dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
114 inode
->i_ino
, page
->index
, i_size
, page
->flags
);
115 ubifs_assert(!PageChecked(page
));
116 ubifs_assert(!PagePrivate(page
));
120 block
= page
->index
<< UBIFS_BLOCKS_PER_PAGE_SHIFT
;
121 beyond
= (i_size
+ UBIFS_BLOCK_SIZE
- 1) >> UBIFS_BLOCK_SHIFT
;
122 if (block
>= beyond
) {
123 /* Reading beyond inode */
124 SetPageChecked(page
);
125 memset(addr
, 0, PAGE_SIZE
);
129 dn
= kmalloc(UBIFS_MAX_DATA_NODE_SZ
, GFP_NOFS
);
139 if (block
>= beyond
) {
140 /* Reading beyond inode */
142 memset(addr
, 0, UBIFS_BLOCK_SIZE
);
144 ret
= read_block(inode
, addr
, block
, dn
);
149 } else if (block
+ 1 == beyond
) {
150 int dlen
= le32_to_cpu(dn
->size
);
151 int ilen
= i_size
& (UBIFS_BLOCK_SIZE
- 1);
153 if (ilen
&& ilen
< dlen
)
154 memset(addr
+ ilen
, 0, dlen
- ilen
);
157 if (++i
>= UBIFS_BLOCKS_PER_PAGE
)
160 addr
+= UBIFS_BLOCK_SIZE
;
163 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
164 if (err
== -ENOENT
) {
165 /* Not found, so it must be a hole */
166 SetPageChecked(page
);
170 ubifs_err(c
, "cannot read page %lu of inode %lu, error %d",
171 page
->index
, inode
->i_ino
, err
);
178 SetPageUptodate(page
);
179 ClearPageError(page
);
180 flush_dcache_page(page
);
186 ClearPageUptodate(page
);
188 flush_dcache_page(page
);
194 * release_new_page_budget - release budget of a new page.
195 * @c: UBIFS file-system description object
197 * This is a helper function which releases budget corresponding to the budget
198 * of one new page of data.
200 static void release_new_page_budget(struct ubifs_info
*c
)
202 struct ubifs_budget_req req
= { .recalculate
= 1, .new_page
= 1 };
204 ubifs_release_budget(c
, &req
);
208 * release_existing_page_budget - release budget of an existing page.
209 * @c: UBIFS file-system description object
211 * This is a helper function which releases budget corresponding to the budget
212 * of changing one one page of data which already exists on the flash media.
214 static void release_existing_page_budget(struct ubifs_info
*c
)
216 struct ubifs_budget_req req
= { .dd_growth
= c
->bi
.page_budget
};
218 ubifs_release_budget(c
, &req
);
221 static int write_begin_slow(struct address_space
*mapping
,
222 loff_t pos
, unsigned len
, struct page
**pagep
,
225 struct inode
*inode
= mapping
->host
;
226 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
227 pgoff_t index
= pos
>> PAGE_SHIFT
;
228 struct ubifs_budget_req req
= { .new_page
= 1 };
229 int uninitialized_var(err
), appending
= !!(pos
+ len
> inode
->i_size
);
232 dbg_gen("ino %lu, pos %llu, len %u, i_size %lld",
233 inode
->i_ino
, pos
, len
, inode
->i_size
);
236 * At the slow path we have to budget before locking the page, because
237 * budgeting may force write-back, which would wait on locked pages and
238 * deadlock if we had the page locked. At this point we do not know
239 * anything about the page, so assume that this is a new page which is
240 * written to a hole. This corresponds to largest budget. Later the
241 * budget will be amended if this is not true.
244 /* We are appending data, budget for inode change */
247 err
= ubifs_budget_space(c
, &req
);
251 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
252 if (unlikely(!page
)) {
253 ubifs_release_budget(c
, &req
);
257 if (!PageUptodate(page
)) {
258 if (!(pos
& ~PAGE_MASK
) && len
== PAGE_SIZE
)
259 SetPageChecked(page
);
261 err
= do_readpage(page
);
265 ubifs_release_budget(c
, &req
);
270 SetPageUptodate(page
);
271 ClearPageError(page
);
274 if (PagePrivate(page
))
276 * The page is dirty, which means it was budgeted twice:
277 * o first time the budget was allocated by the task which
278 * made the page dirty and set the PG_private flag;
279 * o and then we budgeted for it for the second time at the
280 * very beginning of this function.
282 * So what we have to do is to release the page budget we
285 release_new_page_budget(c
);
286 else if (!PageChecked(page
))
288 * We are changing a page which already exists on the media.
289 * This means that changing the page does not make the amount
290 * of indexing information larger, and this part of the budget
291 * which we have already acquired may be released.
293 ubifs_convert_page_budget(c
);
296 struct ubifs_inode
*ui
= ubifs_inode(inode
);
299 * 'ubifs_write_end()' is optimized from the fast-path part of
300 * 'ubifs_write_begin()' and expects the @ui_mutex to be locked
301 * if data is appended.
303 mutex_lock(&ui
->ui_mutex
);
306 * The inode is dirty already, so we may free the
307 * budget we allocated.
309 ubifs_release_dirty_inode_budget(c
, ui
);
317 * allocate_budget - allocate budget for 'ubifs_write_begin()'.
318 * @c: UBIFS file-system description object
319 * @page: page to allocate budget for
320 * @ui: UBIFS inode object the page belongs to
321 * @appending: non-zero if the page is appended
323 * This is a helper function for 'ubifs_write_begin()' which allocates budget
324 * for the operation. The budget is allocated differently depending on whether
325 * this is appending, whether the page is dirty or not, and so on. This
326 * function leaves the @ui->ui_mutex locked in case of appending. Returns zero
327 * in case of success and %-ENOSPC in case of failure.
329 static int allocate_budget(struct ubifs_info
*c
, struct page
*page
,
330 struct ubifs_inode
*ui
, int appending
)
332 struct ubifs_budget_req req
= { .fast
= 1 };
334 if (PagePrivate(page
)) {
337 * The page is dirty and we are not appending, which
338 * means no budget is needed at all.
342 mutex_lock(&ui
->ui_mutex
);
345 * The page is dirty and we are appending, so the inode
346 * has to be marked as dirty. However, it is already
347 * dirty, so we do not need any budget. We may return,
348 * but @ui->ui_mutex hast to be left locked because we
349 * should prevent write-back from flushing the inode
350 * and freeing the budget. The lock will be released in
351 * 'ubifs_write_end()'.
356 * The page is dirty, we are appending, the inode is clean, so
357 * we need to budget the inode change.
361 if (PageChecked(page
))
363 * The page corresponds to a hole and does not
364 * exist on the media. So changing it makes
365 * make the amount of indexing information
366 * larger, and we have to budget for a new
372 * Not a hole, the change will not add any new
373 * indexing information, budget for page
376 req
.dirtied_page
= 1;
379 mutex_lock(&ui
->ui_mutex
);
382 * The inode is clean but we will have to mark
383 * it as dirty because we are appending. This
390 return ubifs_budget_space(c
, &req
);
394 * This function is called when a page of data is going to be written. Since
395 * the page of data will not necessarily go to the flash straight away, UBIFS
396 * has to reserve space on the media for it, which is done by means of
399 * This is the hot-path of the file-system and we are trying to optimize it as
400 * much as possible. For this reasons it is split on 2 parts - slow and fast.
402 * There many budgeting cases:
403 * o a new page is appended - we have to budget for a new page and for
404 * changing the inode; however, if the inode is already dirty, there is
405 * no need to budget for it;
406 * o an existing clean page is changed - we have budget for it; if the page
407 * does not exist on the media (a hole), we have to budget for a new
408 * page; otherwise, we may budget for changing an existing page; the
409 * difference between these cases is that changing an existing page does
410 * not introduce anything new to the FS indexing information, so it does
411 * not grow, and smaller budget is acquired in this case;
412 * o an existing dirty page is changed - no need to budget at all, because
413 * the page budget has been acquired by earlier, when the page has been
416 * UBIFS budgeting sub-system may force write-back if it thinks there is no
417 * space to reserve. This imposes some locking restrictions and makes it
418 * impossible to take into account the above cases, and makes it impossible to
419 * optimize budgeting.
421 * The solution for this is that the fast path of 'ubifs_write_begin()' assumes
422 * there is a plenty of flash space and the budget will be acquired quickly,
423 * without forcing write-back. The slow path does not make this assumption.
425 static int ubifs_write_begin(struct file
*file
, struct address_space
*mapping
,
426 loff_t pos
, unsigned len
, unsigned flags
,
427 struct page
**pagep
, void **fsdata
)
429 struct inode
*inode
= mapping
->host
;
430 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
431 struct ubifs_inode
*ui
= ubifs_inode(inode
);
432 pgoff_t index
= pos
>> PAGE_SHIFT
;
433 int uninitialized_var(err
), appending
= !!(pos
+ len
> inode
->i_size
);
434 int skipped_read
= 0;
437 ubifs_assert(ubifs_inode(inode
)->ui_size
== inode
->i_size
);
438 ubifs_assert(!c
->ro_media
&& !c
->ro_mount
);
440 if (unlikely(c
->ro_error
))
443 /* Try out the fast-path part first */
444 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
448 if (!PageUptodate(page
)) {
449 /* The page is not loaded from the flash */
450 if (!(pos
& ~PAGE_MASK
) && len
== PAGE_SIZE
) {
452 * We change whole page so no need to load it. But we
453 * do not know whether this page exists on the media or
454 * not, so we assume the latter because it requires
455 * larger budget. The assumption is that it is better
456 * to budget a bit more than to read the page from the
457 * media. Thus, we are setting the @PG_checked flag
460 SetPageChecked(page
);
463 err
= do_readpage(page
);
471 SetPageUptodate(page
);
472 ClearPageError(page
);
475 err
= allocate_budget(c
, page
, ui
, appending
);
477 ubifs_assert(err
== -ENOSPC
);
479 * If we skipped reading the page because we were going to
480 * write all of it, then it is not up to date.
483 ClearPageChecked(page
);
484 ClearPageUptodate(page
);
487 * Budgeting failed which means it would have to force
488 * write-back but didn't, because we set the @fast flag in the
489 * request. Write-back cannot be done now, while we have the
490 * page locked, because it would deadlock. Unlock and free
491 * everything and fall-back to slow-path.
494 ubifs_assert(mutex_is_locked(&ui
->ui_mutex
));
495 mutex_unlock(&ui
->ui_mutex
);
500 return write_begin_slow(mapping
, pos
, len
, pagep
, flags
);
504 * Whee, we acquired budgeting quickly - without involving
505 * garbage-collection, committing or forcing write-back. We return
506 * with @ui->ui_mutex locked if we are appending pages, and unlocked
507 * otherwise. This is an optimization (slightly hacky though).
515 * cancel_budget - cancel budget.
516 * @c: UBIFS file-system description object
517 * @page: page to cancel budget for
518 * @ui: UBIFS inode object the page belongs to
519 * @appending: non-zero if the page is appended
521 * This is a helper function for a page write operation. It unlocks the
522 * @ui->ui_mutex in case of appending.
524 static void cancel_budget(struct ubifs_info
*c
, struct page
*page
,
525 struct ubifs_inode
*ui
, int appending
)
529 ubifs_release_dirty_inode_budget(c
, ui
);
530 mutex_unlock(&ui
->ui_mutex
);
532 if (!PagePrivate(page
)) {
533 if (PageChecked(page
))
534 release_new_page_budget(c
);
536 release_existing_page_budget(c
);
540 static int ubifs_write_end(struct file
*file
, struct address_space
*mapping
,
541 loff_t pos
, unsigned len
, unsigned copied
,
542 struct page
*page
, void *fsdata
)
544 struct inode
*inode
= mapping
->host
;
545 struct ubifs_inode
*ui
= ubifs_inode(inode
);
546 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
547 loff_t end_pos
= pos
+ len
;
548 int appending
= !!(end_pos
> inode
->i_size
);
550 dbg_gen("ino %lu, pos %llu, pg %lu, len %u, copied %d, i_size %lld",
551 inode
->i_ino
, pos
, page
->index
, len
, copied
, inode
->i_size
);
553 if (unlikely(copied
< len
&& len
== PAGE_SIZE
)) {
555 * VFS copied less data to the page that it intended and
556 * declared in its '->write_begin()' call via the @len
557 * argument. If the page was not up-to-date, and @len was
558 * @PAGE_SIZE, the 'ubifs_write_begin()' function did
559 * not load it from the media (for optimization reasons). This
560 * means that part of the page contains garbage. So read the
563 dbg_gen("copied %d instead of %d, read page and repeat",
565 cancel_budget(c
, page
, ui
, appending
);
566 ClearPageChecked(page
);
569 * Return 0 to force VFS to repeat the whole operation, or the
570 * error code if 'do_readpage()' fails.
572 copied
= do_readpage(page
);
576 if (!PagePrivate(page
)) {
577 SetPagePrivate(page
);
578 atomic_long_inc(&c
->dirty_pg_cnt
);
579 __set_page_dirty_nobuffers(page
);
583 i_size_write(inode
, end_pos
);
584 ui
->ui_size
= end_pos
;
586 * Note, we do not set @I_DIRTY_PAGES (which means that the
587 * inode has dirty pages), this has been done in
588 * '__set_page_dirty_nobuffers()'.
590 __mark_inode_dirty(inode
, I_DIRTY_DATASYNC
);
591 ubifs_assert(mutex_is_locked(&ui
->ui_mutex
));
592 mutex_unlock(&ui
->ui_mutex
);
602 * populate_page - copy data nodes into a page for bulk-read.
603 * @c: UBIFS file-system description object
605 * @bu: bulk-read information
606 * @n: next zbranch slot
608 * This function returns %0 on success and a negative error code on failure.
610 static int populate_page(struct ubifs_info
*c
, struct page
*page
,
611 struct bu_info
*bu
, int *n
)
613 int i
= 0, nn
= *n
, offs
= bu
->zbranch
[0].offs
, hole
= 0, read
= 0;
614 struct inode
*inode
= page
->mapping
->host
;
615 loff_t i_size
= i_size_read(inode
);
616 unsigned int page_block
;
620 dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
621 inode
->i_ino
, page
->index
, i_size
, page
->flags
);
623 addr
= zaddr
= kmap(page
);
625 end_index
= (i_size
- 1) >> PAGE_SHIFT
;
626 if (!i_size
|| page
->index
> end_index
) {
628 memset(addr
, 0, PAGE_SIZE
);
632 page_block
= page
->index
<< UBIFS_BLOCKS_PER_PAGE_SHIFT
;
634 int err
, len
, out_len
, dlen
;
638 memset(addr
, 0, UBIFS_BLOCK_SIZE
);
639 } else if (key_block(c
, &bu
->zbranch
[nn
].key
) == page_block
) {
640 struct ubifs_data_node
*dn
;
642 dn
= bu
->buf
+ (bu
->zbranch
[nn
].offs
- offs
);
644 ubifs_assert(le64_to_cpu(dn
->ch
.sqnum
) >
645 ubifs_inode(inode
)->creat_sqnum
);
647 len
= le32_to_cpu(dn
->size
);
648 if (len
<= 0 || len
> UBIFS_BLOCK_SIZE
)
651 dlen
= le32_to_cpu(dn
->ch
.len
) - UBIFS_DATA_NODE_SZ
;
652 out_len
= UBIFS_BLOCK_SIZE
;
653 err
= ubifs_decompress(c
, &dn
->data
, dlen
, addr
, &out_len
,
654 le16_to_cpu(dn
->compr_type
));
655 if (err
|| len
!= out_len
)
658 if (len
< UBIFS_BLOCK_SIZE
)
659 memset(addr
+ len
, 0, UBIFS_BLOCK_SIZE
- len
);
662 read
= (i
<< UBIFS_BLOCK_SHIFT
) + len
;
663 } else if (key_block(c
, &bu
->zbranch
[nn
].key
) < page_block
) {
668 memset(addr
, 0, UBIFS_BLOCK_SIZE
);
670 if (++i
>= UBIFS_BLOCKS_PER_PAGE
)
672 addr
+= UBIFS_BLOCK_SIZE
;
676 if (end_index
== page
->index
) {
677 int len
= i_size
& (PAGE_SIZE
- 1);
679 if (len
&& len
< read
)
680 memset(zaddr
+ len
, 0, read
- len
);
685 SetPageChecked(page
);
689 SetPageUptodate(page
);
690 ClearPageError(page
);
691 flush_dcache_page(page
);
697 ClearPageUptodate(page
);
699 flush_dcache_page(page
);
701 ubifs_err(c
, "bad data node (block %u, inode %lu)",
702 page_block
, inode
->i_ino
);
707 * ubifs_do_bulk_read - do bulk-read.
708 * @c: UBIFS file-system description object
709 * @bu: bulk-read information
710 * @page1: first page to read
712 * This function returns %1 if the bulk-read is done, otherwise %0 is returned.
714 static int ubifs_do_bulk_read(struct ubifs_info
*c
, struct bu_info
*bu
,
717 pgoff_t offset
= page1
->index
, end_index
;
718 struct address_space
*mapping
= page1
->mapping
;
719 struct inode
*inode
= mapping
->host
;
720 struct ubifs_inode
*ui
= ubifs_inode(inode
);
721 int err
, page_idx
, page_cnt
, ret
= 0, n
= 0;
722 int allocate
= bu
->buf
? 0 : 1;
725 err
= ubifs_tnc_get_bu_keys(c
, bu
);
730 /* Turn off bulk-read at the end of the file */
731 ui
->read_in_a_row
= 1;
735 page_cnt
= bu
->blk_cnt
>> UBIFS_BLOCKS_PER_PAGE_SHIFT
;
738 * This happens when there are multiple blocks per page and the
739 * blocks for the first page we are looking for, are not
740 * together. If all the pages were like this, bulk-read would
741 * reduce performance, so we turn it off for a while.
749 * Allocate bulk-read buffer depending on how many data
750 * nodes we are going to read.
752 bu
->buf_len
= bu
->zbranch
[bu
->cnt
- 1].offs
+
753 bu
->zbranch
[bu
->cnt
- 1].len
-
755 ubifs_assert(bu
->buf_len
> 0);
756 ubifs_assert(bu
->buf_len
<= c
->leb_size
);
757 bu
->buf
= kmalloc(bu
->buf_len
, GFP_NOFS
| __GFP_NOWARN
);
762 err
= ubifs_tnc_bulk_read(c
, bu
);
767 err
= populate_page(c
, page1
, bu
, &n
);
774 isize
= i_size_read(inode
);
777 end_index
= ((isize
- 1) >> PAGE_SHIFT
);
779 for (page_idx
= 1; page_idx
< page_cnt
; page_idx
++) {
780 pgoff_t page_offset
= offset
+ page_idx
;
783 if (page_offset
> end_index
)
785 page
= find_or_create_page(mapping
, page_offset
,
786 GFP_NOFS
| __GFP_COLD
);
789 if (!PageUptodate(page
))
790 err
= populate_page(c
, page
, bu
, &n
);
797 ui
->last_page_read
= offset
+ page_idx
- 1;
805 ubifs_warn(c
, "ignoring error %d and skipping bulk-read", err
);
809 ui
->read_in_a_row
= ui
->bulk_read
= 0;
814 * ubifs_bulk_read - determine whether to bulk-read and, if so, do it.
815 * @page: page from which to start bulk-read.
817 * Some flash media are capable of reading sequentially at faster rates. UBIFS
818 * bulk-read facility is designed to take advantage of that, by reading in one
819 * go consecutive data nodes that are also located consecutively in the same
820 * LEB. This function returns %1 if a bulk-read is done and %0 otherwise.
822 static int ubifs_bulk_read(struct page
*page
)
824 struct inode
*inode
= page
->mapping
->host
;
825 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
826 struct ubifs_inode
*ui
= ubifs_inode(inode
);
827 pgoff_t index
= page
->index
, last_page_read
= ui
->last_page_read
;
829 int err
= 0, allocated
= 0;
831 ui
->last_page_read
= index
;
836 * Bulk-read is protected by @ui->ui_mutex, but it is an optimization,
837 * so don't bother if we cannot lock the mutex.
839 if (!mutex_trylock(&ui
->ui_mutex
))
842 if (index
!= last_page_read
+ 1) {
843 /* Turn off bulk-read if we stop reading sequentially */
844 ui
->read_in_a_row
= 1;
850 if (!ui
->bulk_read
) {
851 ui
->read_in_a_row
+= 1;
852 if (ui
->read_in_a_row
< 3)
854 /* Three reads in a row, so switch on bulk-read */
859 * If possible, try to use pre-allocated bulk-read information, which
860 * is protected by @c->bu_mutex.
862 if (mutex_trylock(&c
->bu_mutex
))
865 bu
= kmalloc(sizeof(struct bu_info
), GFP_NOFS
| __GFP_NOWARN
);
873 bu
->buf_len
= c
->max_bu_buf_len
;
874 data_key_init(c
, &bu
->key
, inode
->i_ino
,
875 page
->index
<< UBIFS_BLOCKS_PER_PAGE_SHIFT
);
876 err
= ubifs_do_bulk_read(c
, bu
, page
);
879 mutex_unlock(&c
->bu_mutex
);
884 mutex_unlock(&ui
->ui_mutex
);
888 static int ubifs_readpage(struct file
*file
, struct page
*page
)
890 if (ubifs_bulk_read(page
))
897 static int do_writepage(struct page
*page
, int len
)
899 int err
= 0, i
, blen
;
903 struct inode
*inode
= page
->mapping
->host
;
904 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
907 struct ubifs_inode
*ui
= ubifs_inode(inode
);
908 spin_lock(&ui
->ui_lock
);
909 ubifs_assert(page
->index
<= ui
->synced_i_size
>> PAGE_SHIFT
);
910 spin_unlock(&ui
->ui_lock
);
913 /* Update radix tree tags */
914 set_page_writeback(page
);
917 block
= page
->index
<< UBIFS_BLOCKS_PER_PAGE_SHIFT
;
920 blen
= min_t(int, len
, UBIFS_BLOCK_SIZE
);
921 data_key_init(c
, &key
, inode
->i_ino
, block
);
922 err
= ubifs_jnl_write_data(c
, inode
, &key
, addr
, blen
);
925 if (++i
>= UBIFS_BLOCKS_PER_PAGE
)
933 ubifs_err(c
, "cannot write page %lu of inode %lu, error %d",
934 page
->index
, inode
->i_ino
, err
);
935 ubifs_ro_mode(c
, err
);
938 ubifs_assert(PagePrivate(page
));
939 if (PageChecked(page
))
940 release_new_page_budget(c
);
942 release_existing_page_budget(c
);
944 atomic_long_dec(&c
->dirty_pg_cnt
);
945 ClearPagePrivate(page
);
946 ClearPageChecked(page
);
950 end_page_writeback(page
);
955 * When writing-back dirty inodes, VFS first writes-back pages belonging to the
956 * inode, then the inode itself. For UBIFS this may cause a problem. Consider a
957 * situation when a we have an inode with size 0, then a megabyte of data is
958 * appended to the inode, then write-back starts and flushes some amount of the
959 * dirty pages, the journal becomes full, commit happens and finishes, and then
960 * an unclean reboot happens. When the file system is mounted next time, the
961 * inode size would still be 0, but there would be many pages which are beyond
962 * the inode size, they would be indexed and consume flash space. Because the
963 * journal has been committed, the replay would not be able to detect this
964 * situation and correct the inode size. This means UBIFS would have to scan
965 * whole index and correct all inode sizes, which is long an unacceptable.
967 * To prevent situations like this, UBIFS writes pages back only if they are
968 * within the last synchronized inode size, i.e. the size which has been
969 * written to the flash media last time. Otherwise, UBIFS forces inode
970 * write-back, thus making sure the on-flash inode contains current inode size,
971 * and then keeps writing pages back.
973 * Some locking issues explanation. 'ubifs_writepage()' first is called with
974 * the page locked, and it locks @ui_mutex. However, write-back does take inode
975 * @i_mutex, which means other VFS operations may be run on this inode at the
976 * same time. And the problematic one is truncation to smaller size, from where
977 * we have to call 'truncate_setsize()', which first changes @inode->i_size,
978 * then drops the truncated pages. And while dropping the pages, it takes the
979 * page lock. This means that 'do_truncation()' cannot call 'truncate_setsize()'
980 * with @ui_mutex locked, because it would deadlock with 'ubifs_writepage()'.
981 * This means that @inode->i_size is changed while @ui_mutex is unlocked.
983 * XXX(truncate): with the new truncate sequence this is not true anymore,
984 * and the calls to truncate_setsize can be move around freely. They should
985 * be moved to the very end of the truncate sequence.
987 * But in 'ubifs_writepage()' we have to guarantee that we do not write beyond
988 * inode size. How do we do this if @inode->i_size may became smaller while we
989 * are in the middle of 'ubifs_writepage()'? The UBIFS solution is the
990 * @ui->ui_isize "shadow" field which UBIFS uses instead of @inode->i_size
991 * internally and updates it under @ui_mutex.
993 * Q: why we do not worry that if we race with truncation, we may end up with a
994 * situation when the inode is truncated while we are in the middle of
995 * 'do_writepage()', so we do write beyond inode size?
996 * A: If we are in the middle of 'do_writepage()', truncation would be locked
997 * on the page lock and it would not write the truncated inode node to the
998 * journal before we have finished.
1000 static int ubifs_writepage(struct page
*page
, struct writeback_control
*wbc
)
1002 struct inode
*inode
= page
->mapping
->host
;
1003 struct ubifs_inode
*ui
= ubifs_inode(inode
);
1004 loff_t i_size
= i_size_read(inode
), synced_i_size
;
1005 pgoff_t end_index
= i_size
>> PAGE_SHIFT
;
1006 int err
, len
= i_size
& (PAGE_SIZE
- 1);
1009 dbg_gen("ino %lu, pg %lu, pg flags %#lx",
1010 inode
->i_ino
, page
->index
, page
->flags
);
1011 ubifs_assert(PagePrivate(page
));
1013 /* Is the page fully outside @i_size? (truncate in progress) */
1014 if (page
->index
> end_index
|| (page
->index
== end_index
&& !len
)) {
1019 spin_lock(&ui
->ui_lock
);
1020 synced_i_size
= ui
->synced_i_size
;
1021 spin_unlock(&ui
->ui_lock
);
1023 /* Is the page fully inside @i_size? */
1024 if (page
->index
< end_index
) {
1025 if (page
->index
>= synced_i_size
>> PAGE_SHIFT
) {
1026 err
= inode
->i_sb
->s_op
->write_inode(inode
, NULL
);
1030 * The inode has been written, but the write-buffer has
1031 * not been synchronized, so in case of an unclean
1032 * reboot we may end up with some pages beyond inode
1033 * size, but they would be in the journal (because
1034 * commit flushes write buffers) and recovery would deal
1038 return do_writepage(page
, PAGE_SIZE
);
1042 * The page straddles @i_size. It must be zeroed out on each and every
1043 * writepage invocation because it may be mmapped. "A file is mapped
1044 * in multiples of the page size. For a file that is not a multiple of
1045 * the page size, the remaining memory is zeroed when mapped, and
1046 * writes to that region are not written out to the file."
1048 kaddr
= kmap_atomic(page
);
1049 memset(kaddr
+ len
, 0, PAGE_SIZE
- len
);
1050 flush_dcache_page(page
);
1051 kunmap_atomic(kaddr
);
1053 if (i_size
> synced_i_size
) {
1054 err
= inode
->i_sb
->s_op
->write_inode(inode
, NULL
);
1059 return do_writepage(page
, len
);
1067 * do_attr_changes - change inode attributes.
1068 * @inode: inode to change attributes for
1069 * @attr: describes attributes to change
1071 static void do_attr_changes(struct inode
*inode
, const struct iattr
*attr
)
1073 if (attr
->ia_valid
& ATTR_UID
)
1074 inode
->i_uid
= attr
->ia_uid
;
1075 if (attr
->ia_valid
& ATTR_GID
)
1076 inode
->i_gid
= attr
->ia_gid
;
1077 if (attr
->ia_valid
& ATTR_ATIME
)
1078 inode
->i_atime
= timespec_trunc(attr
->ia_atime
,
1079 inode
->i_sb
->s_time_gran
);
1080 if (attr
->ia_valid
& ATTR_MTIME
)
1081 inode
->i_mtime
= timespec_trunc(attr
->ia_mtime
,
1082 inode
->i_sb
->s_time_gran
);
1083 if (attr
->ia_valid
& ATTR_CTIME
)
1084 inode
->i_ctime
= timespec_trunc(attr
->ia_ctime
,
1085 inode
->i_sb
->s_time_gran
);
1086 if (attr
->ia_valid
& ATTR_MODE
) {
1087 umode_t mode
= attr
->ia_mode
;
1089 if (!in_group_p(inode
->i_gid
) && !capable(CAP_FSETID
))
1091 inode
->i_mode
= mode
;
1096 * do_truncation - truncate an inode.
1097 * @c: UBIFS file-system description object
1098 * @inode: inode to truncate
1099 * @attr: inode attribute changes description
1101 * This function implements VFS '->setattr()' call when the inode is truncated
1102 * to a smaller size. Returns zero in case of success and a negative error code
1103 * in case of failure.
1105 static int do_truncation(struct ubifs_info
*c
, struct inode
*inode
,
1106 const struct iattr
*attr
)
1109 struct ubifs_budget_req req
;
1110 loff_t old_size
= inode
->i_size
, new_size
= attr
->ia_size
;
1111 int offset
= new_size
& (UBIFS_BLOCK_SIZE
- 1), budgeted
= 1;
1112 struct ubifs_inode
*ui
= ubifs_inode(inode
);
1114 dbg_gen("ino %lu, size %lld -> %lld", inode
->i_ino
, old_size
, new_size
);
1115 memset(&req
, 0, sizeof(struct ubifs_budget_req
));
1118 * If this is truncation to a smaller size, and we do not truncate on a
1119 * block boundary, budget for changing one data block, because the last
1120 * block will be re-written.
1122 if (new_size
& (UBIFS_BLOCK_SIZE
- 1))
1123 req
.dirtied_page
= 1;
1125 req
.dirtied_ino
= 1;
1126 /* A funny way to budget for truncation node */
1127 req
.dirtied_ino_d
= UBIFS_TRUN_NODE_SZ
;
1128 err
= ubifs_budget_space(c
, &req
);
1131 * Treat truncations to zero as deletion and always allow them,
1132 * just like we do for '->unlink()'.
1134 if (new_size
|| err
!= -ENOSPC
)
1139 truncate_setsize(inode
, new_size
);
1142 pgoff_t index
= new_size
>> PAGE_SHIFT
;
1145 page
= find_lock_page(inode
->i_mapping
, index
);
1147 if (PageDirty(page
)) {
1149 * 'ubifs_jnl_truncate()' will try to truncate
1150 * the last data node, but it contains
1151 * out-of-date data because the page is dirty.
1152 * Write the page now, so that
1153 * 'ubifs_jnl_truncate()' will see an already
1154 * truncated (and up to date) data node.
1156 ubifs_assert(PagePrivate(page
));
1158 clear_page_dirty_for_io(page
);
1159 if (UBIFS_BLOCKS_PER_PAGE_SHIFT
)
1162 err
= do_writepage(page
, offset
);
1167 * We could now tell 'ubifs_jnl_truncate()' not
1168 * to read the last block.
1172 * We could 'kmap()' the page and pass the data
1173 * to 'ubifs_jnl_truncate()' to save it from
1174 * having to read it.
1182 mutex_lock(&ui
->ui_mutex
);
1183 ui
->ui_size
= inode
->i_size
;
1184 /* Truncation changes inode [mc]time */
1185 inode
->i_mtime
= inode
->i_ctime
= ubifs_current_time(inode
);
1186 /* Other attributes may be changed at the same time as well */
1187 do_attr_changes(inode
, attr
);
1188 err
= ubifs_jnl_truncate(c
, inode
, old_size
, new_size
);
1189 mutex_unlock(&ui
->ui_mutex
);
1193 ubifs_release_budget(c
, &req
);
1195 c
->bi
.nospace
= c
->bi
.nospace_rp
= 0;
1202 * do_setattr - change inode attributes.
1203 * @c: UBIFS file-system description object
1204 * @inode: inode to change attributes for
1205 * @attr: inode attribute changes description
1207 * This function implements VFS '->setattr()' call for all cases except
1208 * truncations to smaller size. Returns zero in case of success and a negative
1209 * error code in case of failure.
1211 static int do_setattr(struct ubifs_info
*c
, struct inode
*inode
,
1212 const struct iattr
*attr
)
1215 loff_t new_size
= attr
->ia_size
;
1216 struct ubifs_inode
*ui
= ubifs_inode(inode
);
1217 struct ubifs_budget_req req
= { .dirtied_ino
= 1,
1218 .dirtied_ino_d
= ALIGN(ui
->data_len
, 8) };
1220 err
= ubifs_budget_space(c
, &req
);
1224 if (attr
->ia_valid
& ATTR_SIZE
) {
1225 dbg_gen("size %lld -> %lld", inode
->i_size
, new_size
);
1226 truncate_setsize(inode
, new_size
);
1229 mutex_lock(&ui
->ui_mutex
);
1230 if (attr
->ia_valid
& ATTR_SIZE
) {
1231 /* Truncation changes inode [mc]time */
1232 inode
->i_mtime
= inode
->i_ctime
= ubifs_current_time(inode
);
1233 /* 'truncate_setsize()' changed @i_size, update @ui_size */
1234 ui
->ui_size
= inode
->i_size
;
1237 do_attr_changes(inode
, attr
);
1239 release
= ui
->dirty
;
1240 if (attr
->ia_valid
& ATTR_SIZE
)
1242 * Inode length changed, so we have to make sure
1243 * @I_DIRTY_DATASYNC is set.
1245 __mark_inode_dirty(inode
, I_DIRTY_SYNC
| I_DIRTY_DATASYNC
);
1247 mark_inode_dirty_sync(inode
);
1248 mutex_unlock(&ui
->ui_mutex
);
1251 ubifs_release_budget(c
, &req
);
1253 err
= inode
->i_sb
->s_op
->write_inode(inode
, NULL
);
1257 int ubifs_setattr(struct dentry
*dentry
, struct iattr
*attr
)
1260 struct inode
*inode
= d_inode(dentry
);
1261 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
1263 dbg_gen("ino %lu, mode %#x, ia_valid %#x",
1264 inode
->i_ino
, inode
->i_mode
, attr
->ia_valid
);
1265 err
= inode_change_ok(inode
, attr
);
1269 err
= dbg_check_synced_i_size(c
, inode
);
1273 if ((attr
->ia_valid
& ATTR_SIZE
) && attr
->ia_size
< inode
->i_size
)
1274 /* Truncation to a smaller size */
1275 err
= do_truncation(c
, inode
, attr
);
1277 err
= do_setattr(c
, inode
, attr
);
1282 static void ubifs_invalidatepage(struct page
*page
, unsigned int offset
,
1283 unsigned int length
)
1285 struct inode
*inode
= page
->mapping
->host
;
1286 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
1288 ubifs_assert(PagePrivate(page
));
1289 if (offset
|| length
< PAGE_SIZE
)
1290 /* Partial page remains dirty */
1293 if (PageChecked(page
))
1294 release_new_page_budget(c
);
1296 release_existing_page_budget(c
);
1298 atomic_long_dec(&c
->dirty_pg_cnt
);
1299 ClearPagePrivate(page
);
1300 ClearPageChecked(page
);
1303 int ubifs_fsync(struct file
*file
, loff_t start
, loff_t end
, int datasync
)
1305 struct inode
*inode
= file
->f_mapping
->host
;
1306 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
1309 dbg_gen("syncing inode %lu", inode
->i_ino
);
1313 * For some really strange reasons VFS does not filter out
1314 * 'fsync()' for R/O mounted file-systems as per 2.6.39.
1318 err
= filemap_write_and_wait_range(inode
->i_mapping
, start
, end
);
1323 /* Synchronize the inode unless this is a 'datasync()' call. */
1324 if (!datasync
|| (inode
->i_state
& I_DIRTY_DATASYNC
)) {
1325 err
= inode
->i_sb
->s_op
->write_inode(inode
, NULL
);
1331 * Nodes related to this inode may still sit in a write-buffer. Flush
1334 err
= ubifs_sync_wbufs_by_inode(c
, inode
);
1336 inode_unlock(inode
);
1341 * mctime_update_needed - check if mtime or ctime update is needed.
1342 * @inode: the inode to do the check for
1343 * @now: current time
1345 * This helper function checks if the inode mtime/ctime should be updated or
1346 * not. If current values of the time-stamps are within the UBIFS inode time
1347 * granularity, they are not updated. This is an optimization.
1349 static inline int mctime_update_needed(const struct inode
*inode
,
1350 const struct timespec
*now
)
1352 if (!timespec_equal(&inode
->i_mtime
, now
) ||
1353 !timespec_equal(&inode
->i_ctime
, now
))
1358 #ifdef CONFIG_UBIFS_ATIME_SUPPORT
1360 * ubifs_update_time - update time of inode.
1361 * @inode: inode to update
1363 * This function updates time of the inode.
1365 int ubifs_update_time(struct inode
*inode
, struct timespec
*time
,
1368 struct ubifs_inode
*ui
= ubifs_inode(inode
);
1369 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
1370 struct ubifs_budget_req req
= { .dirtied_ino
= 1,
1371 .dirtied_ino_d
= ALIGN(ui
->data_len
, 8) };
1372 int iflags
= I_DIRTY_TIME
;
1375 err
= ubifs_budget_space(c
, &req
);
1379 mutex_lock(&ui
->ui_mutex
);
1380 if (flags
& S_ATIME
)
1381 inode
->i_atime
= *time
;
1382 if (flags
& S_CTIME
)
1383 inode
->i_ctime
= *time
;
1384 if (flags
& S_MTIME
)
1385 inode
->i_mtime
= *time
;
1387 if (!(inode
->i_sb
->s_flags
& MS_LAZYTIME
))
1388 iflags
|= I_DIRTY_SYNC
;
1390 release
= ui
->dirty
;
1391 __mark_inode_dirty(inode
, iflags
);
1392 mutex_unlock(&ui
->ui_mutex
);
1394 ubifs_release_budget(c
, &req
);
1400 * update_ctime - update mtime and ctime of an inode.
1401 * @inode: inode to update
1403 * This function updates mtime and ctime of the inode if it is not equivalent to
1404 * current time. Returns zero in case of success and a negative error code in
1407 static int update_mctime(struct inode
*inode
)
1409 struct timespec now
= ubifs_current_time(inode
);
1410 struct ubifs_inode
*ui
= ubifs_inode(inode
);
1411 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
1413 if (mctime_update_needed(inode
, &now
)) {
1415 struct ubifs_budget_req req
= { .dirtied_ino
= 1,
1416 .dirtied_ino_d
= ALIGN(ui
->data_len
, 8) };
1418 err
= ubifs_budget_space(c
, &req
);
1422 mutex_lock(&ui
->ui_mutex
);
1423 inode
->i_mtime
= inode
->i_ctime
= ubifs_current_time(inode
);
1424 release
= ui
->dirty
;
1425 mark_inode_dirty_sync(inode
);
1426 mutex_unlock(&ui
->ui_mutex
);
1428 ubifs_release_budget(c
, &req
);
1434 static ssize_t
ubifs_write_iter(struct kiocb
*iocb
, struct iov_iter
*from
)
1436 int err
= update_mctime(file_inode(iocb
->ki_filp
));
1440 return generic_file_write_iter(iocb
, from
);
1443 static int ubifs_set_page_dirty(struct page
*page
)
1447 ret
= __set_page_dirty_nobuffers(page
);
1449 * An attempt to dirty a page without budgeting for it - should not
1452 ubifs_assert(ret
== 0);
1456 #ifdef CONFIG_MIGRATION
1457 static int ubifs_migrate_page(struct address_space
*mapping
,
1458 struct page
*newpage
, struct page
*page
, enum migrate_mode mode
)
1462 rc
= migrate_page_move_mapping(mapping
, newpage
, page
, NULL
, mode
, 0);
1463 if (rc
!= MIGRATEPAGE_SUCCESS
)
1466 if (PagePrivate(page
)) {
1467 ClearPagePrivate(page
);
1468 SetPagePrivate(newpage
);
1471 migrate_page_copy(newpage
, page
);
1472 return MIGRATEPAGE_SUCCESS
;
1476 static int ubifs_releasepage(struct page
*page
, gfp_t unused_gfp_flags
)
1479 * An attempt to release a dirty page without budgeting for it - should
1482 if (PageWriteback(page
))
1484 ubifs_assert(PagePrivate(page
));
1486 ClearPagePrivate(page
);
1487 ClearPageChecked(page
);
1492 * mmap()d file has taken write protection fault and is being made writable.
1493 * UBIFS must ensure page is budgeted for.
1495 static int ubifs_vm_page_mkwrite(struct vm_area_struct
*vma
,
1496 struct vm_fault
*vmf
)
1498 struct page
*page
= vmf
->page
;
1499 struct inode
*inode
= file_inode(vma
->vm_file
);
1500 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
1501 struct timespec now
= ubifs_current_time(inode
);
1502 struct ubifs_budget_req req
= { .new_page
= 1 };
1503 int err
, update_time
;
1505 dbg_gen("ino %lu, pg %lu, i_size %lld", inode
->i_ino
, page
->index
,
1506 i_size_read(inode
));
1507 ubifs_assert(!c
->ro_media
&& !c
->ro_mount
);
1509 if (unlikely(c
->ro_error
))
1510 return VM_FAULT_SIGBUS
; /* -EROFS */
1513 * We have not locked @page so far so we may budget for changing the
1514 * page. Note, we cannot do this after we locked the page, because
1515 * budgeting may cause write-back which would cause deadlock.
1517 * At the moment we do not know whether the page is dirty or not, so we
1518 * assume that it is not and budget for a new page. We could look at
1519 * the @PG_private flag and figure this out, but we may race with write
1520 * back and the page state may change by the time we lock it, so this
1521 * would need additional care. We do not bother with this at the
1522 * moment, although it might be good idea to do. Instead, we allocate
1523 * budget for a new page and amend it later on if the page was in fact
1526 * The budgeting-related logic of this function is similar to what we
1527 * do in 'ubifs_write_begin()' and 'ubifs_write_end()'. Glance there
1528 * for more comments.
1530 update_time
= mctime_update_needed(inode
, &now
);
1533 * We have to change inode time stamp which requires extra
1536 req
.dirtied_ino
= 1;
1538 err
= ubifs_budget_space(c
, &req
);
1539 if (unlikely(err
)) {
1541 ubifs_warn(c
, "out of space for mmapped file (inode number %lu)",
1543 return VM_FAULT_SIGBUS
;
1547 if (unlikely(page
->mapping
!= inode
->i_mapping
||
1548 page_offset(page
) > i_size_read(inode
))) {
1549 /* Page got truncated out from underneath us */
1554 if (PagePrivate(page
))
1555 release_new_page_budget(c
);
1557 if (!PageChecked(page
))
1558 ubifs_convert_page_budget(c
);
1559 SetPagePrivate(page
);
1560 atomic_long_inc(&c
->dirty_pg_cnt
);
1561 __set_page_dirty_nobuffers(page
);
1566 struct ubifs_inode
*ui
= ubifs_inode(inode
);
1568 mutex_lock(&ui
->ui_mutex
);
1569 inode
->i_mtime
= inode
->i_ctime
= ubifs_current_time(inode
);
1570 release
= ui
->dirty
;
1571 mark_inode_dirty_sync(inode
);
1572 mutex_unlock(&ui
->ui_mutex
);
1574 ubifs_release_dirty_inode_budget(c
, ui
);
1577 wait_for_stable_page(page
);
1578 return VM_FAULT_LOCKED
;
1582 ubifs_release_budget(c
, &req
);
1584 err
= VM_FAULT_SIGBUS
;
1588 static const struct vm_operations_struct ubifs_file_vm_ops
= {
1589 .fault
= filemap_fault
,
1590 .map_pages
= filemap_map_pages
,
1591 .page_mkwrite
= ubifs_vm_page_mkwrite
,
1594 static int ubifs_file_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1598 err
= generic_file_mmap(file
, vma
);
1601 vma
->vm_ops
= &ubifs_file_vm_ops
;
1602 #ifdef CONFIG_UBIFS_ATIME_SUPPORT
1603 file_accessed(file
);
1608 const struct address_space_operations ubifs_file_address_operations
= {
1609 .readpage
= ubifs_readpage
,
1610 .writepage
= ubifs_writepage
,
1611 .write_begin
= ubifs_write_begin
,
1612 .write_end
= ubifs_write_end
,
1613 .invalidatepage
= ubifs_invalidatepage
,
1614 .set_page_dirty
= ubifs_set_page_dirty
,
1615 #ifdef CONFIG_MIGRATION
1616 .migratepage
= ubifs_migrate_page
,
1618 .releasepage
= ubifs_releasepage
,
1621 const struct inode_operations ubifs_file_inode_operations
= {
1622 .setattr
= ubifs_setattr
,
1623 .getattr
= ubifs_getattr
,
1624 .setxattr
= generic_setxattr
,
1625 .getxattr
= generic_getxattr
,
1626 .listxattr
= ubifs_listxattr
,
1627 .removexattr
= generic_removexattr
,
1628 #ifdef CONFIG_UBIFS_ATIME_SUPPORT
1629 .update_time
= ubifs_update_time
,
1633 const struct inode_operations ubifs_symlink_inode_operations
= {
1634 .readlink
= generic_readlink
,
1635 .get_link
= simple_get_link
,
1636 .setattr
= ubifs_setattr
,
1637 .getattr
= ubifs_getattr
,
1638 .setxattr
= generic_setxattr
,
1639 .getxattr
= generic_getxattr
,
1640 .listxattr
= ubifs_listxattr
,
1641 .removexattr
= generic_removexattr
,
1642 #ifdef CONFIG_UBIFS_ATIME_SUPPORT
1643 .update_time
= ubifs_update_time
,
1647 const struct file_operations ubifs_file_operations
= {
1648 .llseek
= generic_file_llseek
,
1649 .read_iter
= generic_file_read_iter
,
1650 .write_iter
= ubifs_write_iter
,
1651 .mmap
= ubifs_file_mmap
,
1652 .fsync
= ubifs_fsync
,
1653 .unlocked_ioctl
= ubifs_ioctl
,
1654 .splice_read
= generic_file_splice_read
,
1655 .splice_write
= iter_file_splice_write
,
1656 #ifdef CONFIG_COMPAT
1657 .compat_ioctl
= ubifs_compat_ioctl
,