Linux 4.8-rc8
[linux/fpc-iii.git] / mm / huge_memory.c
blob53ae6d00656aced3b21ebe1af8215fc1112af5eb
1 /*
2 * Copyright (C) 2009 Red Hat, Inc.
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 #include <linux/mm.h>
11 #include <linux/sched.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/swapops.h>
20 #include <linux/dax.h>
21 #include <linux/khugepaged.h>
22 #include <linux/freezer.h>
23 #include <linux/pfn_t.h>
24 #include <linux/mman.h>
25 #include <linux/memremap.h>
26 #include <linux/pagemap.h>
27 #include <linux/debugfs.h>
28 #include <linux/migrate.h>
29 #include <linux/hashtable.h>
30 #include <linux/userfaultfd_k.h>
31 #include <linux/page_idle.h>
32 #include <linux/shmem_fs.h>
34 #include <asm/tlb.h>
35 #include <asm/pgalloc.h>
36 #include "internal.h"
39 * By default transparent hugepage support is disabled in order that avoid
40 * to risk increase the memory footprint of applications without a guaranteed
41 * benefit. When transparent hugepage support is enabled, is for all mappings,
42 * and khugepaged scans all mappings.
43 * Defrag is invoked by khugepaged hugepage allocations and by page faults
44 * for all hugepage allocations.
46 unsigned long transparent_hugepage_flags __read_mostly =
47 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
48 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
49 #endif
50 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
51 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
52 #endif
53 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
54 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
55 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
57 static struct shrinker deferred_split_shrinker;
59 static atomic_t huge_zero_refcount;
60 struct page *huge_zero_page __read_mostly;
62 struct page *get_huge_zero_page(void)
64 struct page *zero_page;
65 retry:
66 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
67 return READ_ONCE(huge_zero_page);
69 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
70 HPAGE_PMD_ORDER);
71 if (!zero_page) {
72 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
73 return NULL;
75 count_vm_event(THP_ZERO_PAGE_ALLOC);
76 preempt_disable();
77 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
78 preempt_enable();
79 __free_pages(zero_page, compound_order(zero_page));
80 goto retry;
83 /* We take additional reference here. It will be put back by shrinker */
84 atomic_set(&huge_zero_refcount, 2);
85 preempt_enable();
86 return READ_ONCE(huge_zero_page);
89 void put_huge_zero_page(void)
92 * Counter should never go to zero here. Only shrinker can put
93 * last reference.
95 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
98 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
99 struct shrink_control *sc)
101 /* we can free zero page only if last reference remains */
102 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
105 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
106 struct shrink_control *sc)
108 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
109 struct page *zero_page = xchg(&huge_zero_page, NULL);
110 BUG_ON(zero_page == NULL);
111 __free_pages(zero_page, compound_order(zero_page));
112 return HPAGE_PMD_NR;
115 return 0;
118 static struct shrinker huge_zero_page_shrinker = {
119 .count_objects = shrink_huge_zero_page_count,
120 .scan_objects = shrink_huge_zero_page_scan,
121 .seeks = DEFAULT_SEEKS,
124 #ifdef CONFIG_SYSFS
126 static ssize_t triple_flag_store(struct kobject *kobj,
127 struct kobj_attribute *attr,
128 const char *buf, size_t count,
129 enum transparent_hugepage_flag enabled,
130 enum transparent_hugepage_flag deferred,
131 enum transparent_hugepage_flag req_madv)
133 if (!memcmp("defer", buf,
134 min(sizeof("defer")-1, count))) {
135 if (enabled == deferred)
136 return -EINVAL;
137 clear_bit(enabled, &transparent_hugepage_flags);
138 clear_bit(req_madv, &transparent_hugepage_flags);
139 set_bit(deferred, &transparent_hugepage_flags);
140 } else if (!memcmp("always", buf,
141 min(sizeof("always")-1, count))) {
142 clear_bit(deferred, &transparent_hugepage_flags);
143 clear_bit(req_madv, &transparent_hugepage_flags);
144 set_bit(enabled, &transparent_hugepage_flags);
145 } else if (!memcmp("madvise", buf,
146 min(sizeof("madvise")-1, count))) {
147 clear_bit(enabled, &transparent_hugepage_flags);
148 clear_bit(deferred, &transparent_hugepage_flags);
149 set_bit(req_madv, &transparent_hugepage_flags);
150 } else if (!memcmp("never", buf,
151 min(sizeof("never")-1, count))) {
152 clear_bit(enabled, &transparent_hugepage_flags);
153 clear_bit(req_madv, &transparent_hugepage_flags);
154 clear_bit(deferred, &transparent_hugepage_flags);
155 } else
156 return -EINVAL;
158 return count;
161 static ssize_t enabled_show(struct kobject *kobj,
162 struct kobj_attribute *attr, char *buf)
164 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
165 return sprintf(buf, "[always] madvise never\n");
166 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
167 return sprintf(buf, "always [madvise] never\n");
168 else
169 return sprintf(buf, "always madvise [never]\n");
172 static ssize_t enabled_store(struct kobject *kobj,
173 struct kobj_attribute *attr,
174 const char *buf, size_t count)
176 ssize_t ret;
178 ret = triple_flag_store(kobj, attr, buf, count,
179 TRANSPARENT_HUGEPAGE_FLAG,
180 TRANSPARENT_HUGEPAGE_FLAG,
181 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
183 if (ret > 0) {
184 int err = start_stop_khugepaged();
185 if (err)
186 ret = err;
189 return ret;
191 static struct kobj_attribute enabled_attr =
192 __ATTR(enabled, 0644, enabled_show, enabled_store);
194 ssize_t single_hugepage_flag_show(struct kobject *kobj,
195 struct kobj_attribute *attr, char *buf,
196 enum transparent_hugepage_flag flag)
198 return sprintf(buf, "%d\n",
199 !!test_bit(flag, &transparent_hugepage_flags));
202 ssize_t single_hugepage_flag_store(struct kobject *kobj,
203 struct kobj_attribute *attr,
204 const char *buf, size_t count,
205 enum transparent_hugepage_flag flag)
207 unsigned long value;
208 int ret;
210 ret = kstrtoul(buf, 10, &value);
211 if (ret < 0)
212 return ret;
213 if (value > 1)
214 return -EINVAL;
216 if (value)
217 set_bit(flag, &transparent_hugepage_flags);
218 else
219 clear_bit(flag, &transparent_hugepage_flags);
221 return count;
225 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
226 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
227 * memory just to allocate one more hugepage.
229 static ssize_t defrag_show(struct kobject *kobj,
230 struct kobj_attribute *attr, char *buf)
232 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
233 return sprintf(buf, "[always] defer madvise never\n");
234 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
235 return sprintf(buf, "always [defer] madvise never\n");
236 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
237 return sprintf(buf, "always defer [madvise] never\n");
238 else
239 return sprintf(buf, "always defer madvise [never]\n");
242 static ssize_t defrag_store(struct kobject *kobj,
243 struct kobj_attribute *attr,
244 const char *buf, size_t count)
246 return triple_flag_store(kobj, attr, buf, count,
247 TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
248 TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
249 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
251 static struct kobj_attribute defrag_attr =
252 __ATTR(defrag, 0644, defrag_show, defrag_store);
254 static ssize_t use_zero_page_show(struct kobject *kobj,
255 struct kobj_attribute *attr, char *buf)
257 return single_hugepage_flag_show(kobj, attr, buf,
258 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
260 static ssize_t use_zero_page_store(struct kobject *kobj,
261 struct kobj_attribute *attr, const char *buf, size_t count)
263 return single_hugepage_flag_store(kobj, attr, buf, count,
264 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
266 static struct kobj_attribute use_zero_page_attr =
267 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
268 #ifdef CONFIG_DEBUG_VM
269 static ssize_t debug_cow_show(struct kobject *kobj,
270 struct kobj_attribute *attr, char *buf)
272 return single_hugepage_flag_show(kobj, attr, buf,
273 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
275 static ssize_t debug_cow_store(struct kobject *kobj,
276 struct kobj_attribute *attr,
277 const char *buf, size_t count)
279 return single_hugepage_flag_store(kobj, attr, buf, count,
280 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
282 static struct kobj_attribute debug_cow_attr =
283 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
284 #endif /* CONFIG_DEBUG_VM */
286 static struct attribute *hugepage_attr[] = {
287 &enabled_attr.attr,
288 &defrag_attr.attr,
289 &use_zero_page_attr.attr,
290 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
291 &shmem_enabled_attr.attr,
292 #endif
293 #ifdef CONFIG_DEBUG_VM
294 &debug_cow_attr.attr,
295 #endif
296 NULL,
299 static struct attribute_group hugepage_attr_group = {
300 .attrs = hugepage_attr,
303 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
305 int err;
307 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
308 if (unlikely(!*hugepage_kobj)) {
309 pr_err("failed to create transparent hugepage kobject\n");
310 return -ENOMEM;
313 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
314 if (err) {
315 pr_err("failed to register transparent hugepage group\n");
316 goto delete_obj;
319 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
320 if (err) {
321 pr_err("failed to register transparent hugepage group\n");
322 goto remove_hp_group;
325 return 0;
327 remove_hp_group:
328 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
329 delete_obj:
330 kobject_put(*hugepage_kobj);
331 return err;
334 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
336 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
337 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
338 kobject_put(hugepage_kobj);
340 #else
341 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
343 return 0;
346 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
349 #endif /* CONFIG_SYSFS */
351 static int __init hugepage_init(void)
353 int err;
354 struct kobject *hugepage_kobj;
356 if (!has_transparent_hugepage()) {
357 transparent_hugepage_flags = 0;
358 return -EINVAL;
362 * hugepages can't be allocated by the buddy allocator
364 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
366 * we use page->mapping and page->index in second tail page
367 * as list_head: assuming THP order >= 2
369 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
371 err = hugepage_init_sysfs(&hugepage_kobj);
372 if (err)
373 goto err_sysfs;
375 err = khugepaged_init();
376 if (err)
377 goto err_slab;
379 err = register_shrinker(&huge_zero_page_shrinker);
380 if (err)
381 goto err_hzp_shrinker;
382 err = register_shrinker(&deferred_split_shrinker);
383 if (err)
384 goto err_split_shrinker;
387 * By default disable transparent hugepages on smaller systems,
388 * where the extra memory used could hurt more than TLB overhead
389 * is likely to save. The admin can still enable it through /sys.
391 if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
392 transparent_hugepage_flags = 0;
393 return 0;
396 err = start_stop_khugepaged();
397 if (err)
398 goto err_khugepaged;
400 return 0;
401 err_khugepaged:
402 unregister_shrinker(&deferred_split_shrinker);
403 err_split_shrinker:
404 unregister_shrinker(&huge_zero_page_shrinker);
405 err_hzp_shrinker:
406 khugepaged_destroy();
407 err_slab:
408 hugepage_exit_sysfs(hugepage_kobj);
409 err_sysfs:
410 return err;
412 subsys_initcall(hugepage_init);
414 static int __init setup_transparent_hugepage(char *str)
416 int ret = 0;
417 if (!str)
418 goto out;
419 if (!strcmp(str, "always")) {
420 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
421 &transparent_hugepage_flags);
422 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
423 &transparent_hugepage_flags);
424 ret = 1;
425 } else if (!strcmp(str, "madvise")) {
426 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
427 &transparent_hugepage_flags);
428 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
429 &transparent_hugepage_flags);
430 ret = 1;
431 } else if (!strcmp(str, "never")) {
432 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
433 &transparent_hugepage_flags);
434 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
435 &transparent_hugepage_flags);
436 ret = 1;
438 out:
439 if (!ret)
440 pr_warn("transparent_hugepage= cannot parse, ignored\n");
441 return ret;
443 __setup("transparent_hugepage=", setup_transparent_hugepage);
445 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
447 if (likely(vma->vm_flags & VM_WRITE))
448 pmd = pmd_mkwrite(pmd);
449 return pmd;
452 static inline struct list_head *page_deferred_list(struct page *page)
455 * ->lru in the tail pages is occupied by compound_head.
456 * Let's use ->mapping + ->index in the second tail page as list_head.
458 return (struct list_head *)&page[2].mapping;
461 void prep_transhuge_page(struct page *page)
464 * we use page->mapping and page->indexlru in second tail page
465 * as list_head: assuming THP order >= 2
468 INIT_LIST_HEAD(page_deferred_list(page));
469 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
472 static int __do_huge_pmd_anonymous_page(struct fault_env *fe, struct page *page,
473 gfp_t gfp)
475 struct vm_area_struct *vma = fe->vma;
476 struct mem_cgroup *memcg;
477 pgtable_t pgtable;
478 unsigned long haddr = fe->address & HPAGE_PMD_MASK;
480 VM_BUG_ON_PAGE(!PageCompound(page), page);
482 if (mem_cgroup_try_charge(page, vma->vm_mm, gfp, &memcg, true)) {
483 put_page(page);
484 count_vm_event(THP_FAULT_FALLBACK);
485 return VM_FAULT_FALLBACK;
488 pgtable = pte_alloc_one(vma->vm_mm, haddr);
489 if (unlikely(!pgtable)) {
490 mem_cgroup_cancel_charge(page, memcg, true);
491 put_page(page);
492 return VM_FAULT_OOM;
495 clear_huge_page(page, haddr, HPAGE_PMD_NR);
497 * The memory barrier inside __SetPageUptodate makes sure that
498 * clear_huge_page writes become visible before the set_pmd_at()
499 * write.
501 __SetPageUptodate(page);
503 fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
504 if (unlikely(!pmd_none(*fe->pmd))) {
505 spin_unlock(fe->ptl);
506 mem_cgroup_cancel_charge(page, memcg, true);
507 put_page(page);
508 pte_free(vma->vm_mm, pgtable);
509 } else {
510 pmd_t entry;
512 /* Deliver the page fault to userland */
513 if (userfaultfd_missing(vma)) {
514 int ret;
516 spin_unlock(fe->ptl);
517 mem_cgroup_cancel_charge(page, memcg, true);
518 put_page(page);
519 pte_free(vma->vm_mm, pgtable);
520 ret = handle_userfault(fe, VM_UFFD_MISSING);
521 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
522 return ret;
525 entry = mk_huge_pmd(page, vma->vm_page_prot);
526 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
527 page_add_new_anon_rmap(page, vma, haddr, true);
528 mem_cgroup_commit_charge(page, memcg, false, true);
529 lru_cache_add_active_or_unevictable(page, vma);
530 pgtable_trans_huge_deposit(vma->vm_mm, fe->pmd, pgtable);
531 set_pmd_at(vma->vm_mm, haddr, fe->pmd, entry);
532 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
533 atomic_long_inc(&vma->vm_mm->nr_ptes);
534 spin_unlock(fe->ptl);
535 count_vm_event(THP_FAULT_ALLOC);
538 return 0;
542 * If THP defrag is set to always then directly reclaim/compact as necessary
543 * If set to defer then do only background reclaim/compact and defer to khugepaged
544 * If set to madvise and the VMA is flagged then directly reclaim/compact
545 * When direct reclaim/compact is allowed, don't retry except for flagged VMA's
547 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
549 bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
551 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
552 &transparent_hugepage_flags) && vma_madvised)
553 return GFP_TRANSHUGE;
554 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
555 &transparent_hugepage_flags))
556 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
557 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
558 &transparent_hugepage_flags))
559 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
561 return GFP_TRANSHUGE_LIGHT;
564 /* Caller must hold page table lock. */
565 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
566 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
567 struct page *zero_page)
569 pmd_t entry;
570 if (!pmd_none(*pmd))
571 return false;
572 entry = mk_pmd(zero_page, vma->vm_page_prot);
573 entry = pmd_mkhuge(entry);
574 if (pgtable)
575 pgtable_trans_huge_deposit(mm, pmd, pgtable);
576 set_pmd_at(mm, haddr, pmd, entry);
577 atomic_long_inc(&mm->nr_ptes);
578 return true;
581 int do_huge_pmd_anonymous_page(struct fault_env *fe)
583 struct vm_area_struct *vma = fe->vma;
584 gfp_t gfp;
585 struct page *page;
586 unsigned long haddr = fe->address & HPAGE_PMD_MASK;
588 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
589 return VM_FAULT_FALLBACK;
590 if (unlikely(anon_vma_prepare(vma)))
591 return VM_FAULT_OOM;
592 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
593 return VM_FAULT_OOM;
594 if (!(fe->flags & FAULT_FLAG_WRITE) &&
595 !mm_forbids_zeropage(vma->vm_mm) &&
596 transparent_hugepage_use_zero_page()) {
597 pgtable_t pgtable;
598 struct page *zero_page;
599 bool set;
600 int ret;
601 pgtable = pte_alloc_one(vma->vm_mm, haddr);
602 if (unlikely(!pgtable))
603 return VM_FAULT_OOM;
604 zero_page = get_huge_zero_page();
605 if (unlikely(!zero_page)) {
606 pte_free(vma->vm_mm, pgtable);
607 count_vm_event(THP_FAULT_FALLBACK);
608 return VM_FAULT_FALLBACK;
610 fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
611 ret = 0;
612 set = false;
613 if (pmd_none(*fe->pmd)) {
614 if (userfaultfd_missing(vma)) {
615 spin_unlock(fe->ptl);
616 ret = handle_userfault(fe, VM_UFFD_MISSING);
617 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
618 } else {
619 set_huge_zero_page(pgtable, vma->vm_mm, vma,
620 haddr, fe->pmd, zero_page);
621 spin_unlock(fe->ptl);
622 set = true;
624 } else
625 spin_unlock(fe->ptl);
626 if (!set) {
627 pte_free(vma->vm_mm, pgtable);
628 put_huge_zero_page();
630 return ret;
632 gfp = alloc_hugepage_direct_gfpmask(vma);
633 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
634 if (unlikely(!page)) {
635 count_vm_event(THP_FAULT_FALLBACK);
636 return VM_FAULT_FALLBACK;
638 prep_transhuge_page(page);
639 return __do_huge_pmd_anonymous_page(fe, page, gfp);
642 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
643 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write)
645 struct mm_struct *mm = vma->vm_mm;
646 pmd_t entry;
647 spinlock_t *ptl;
649 ptl = pmd_lock(mm, pmd);
650 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
651 if (pfn_t_devmap(pfn))
652 entry = pmd_mkdevmap(entry);
653 if (write) {
654 entry = pmd_mkyoung(pmd_mkdirty(entry));
655 entry = maybe_pmd_mkwrite(entry, vma);
657 set_pmd_at(mm, addr, pmd, entry);
658 update_mmu_cache_pmd(vma, addr, pmd);
659 spin_unlock(ptl);
662 int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
663 pmd_t *pmd, pfn_t pfn, bool write)
665 pgprot_t pgprot = vma->vm_page_prot;
667 * If we had pmd_special, we could avoid all these restrictions,
668 * but we need to be consistent with PTEs and architectures that
669 * can't support a 'special' bit.
671 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
672 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
673 (VM_PFNMAP|VM_MIXEDMAP));
674 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
675 BUG_ON(!pfn_t_devmap(pfn));
677 if (addr < vma->vm_start || addr >= vma->vm_end)
678 return VM_FAULT_SIGBUS;
679 if (track_pfn_insert(vma, &pgprot, pfn))
680 return VM_FAULT_SIGBUS;
681 insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write);
682 return VM_FAULT_NOPAGE;
684 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
686 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
687 pmd_t *pmd)
689 pmd_t _pmd;
692 * We should set the dirty bit only for FOLL_WRITE but for now
693 * the dirty bit in the pmd is meaningless. And if the dirty
694 * bit will become meaningful and we'll only set it with
695 * FOLL_WRITE, an atomic set_bit will be required on the pmd to
696 * set the young bit, instead of the current set_pmd_at.
698 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
699 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
700 pmd, _pmd, 1))
701 update_mmu_cache_pmd(vma, addr, pmd);
704 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
705 pmd_t *pmd, int flags)
707 unsigned long pfn = pmd_pfn(*pmd);
708 struct mm_struct *mm = vma->vm_mm;
709 struct dev_pagemap *pgmap;
710 struct page *page;
712 assert_spin_locked(pmd_lockptr(mm, pmd));
714 if (flags & FOLL_WRITE && !pmd_write(*pmd))
715 return NULL;
717 if (pmd_present(*pmd) && pmd_devmap(*pmd))
718 /* pass */;
719 else
720 return NULL;
722 if (flags & FOLL_TOUCH)
723 touch_pmd(vma, addr, pmd);
726 * device mapped pages can only be returned if the
727 * caller will manage the page reference count.
729 if (!(flags & FOLL_GET))
730 return ERR_PTR(-EEXIST);
732 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
733 pgmap = get_dev_pagemap(pfn, NULL);
734 if (!pgmap)
735 return ERR_PTR(-EFAULT);
736 page = pfn_to_page(pfn);
737 get_page(page);
738 put_dev_pagemap(pgmap);
740 return page;
743 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
744 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
745 struct vm_area_struct *vma)
747 spinlock_t *dst_ptl, *src_ptl;
748 struct page *src_page;
749 pmd_t pmd;
750 pgtable_t pgtable = NULL;
751 int ret = -ENOMEM;
753 /* Skip if can be re-fill on fault */
754 if (!vma_is_anonymous(vma))
755 return 0;
757 pgtable = pte_alloc_one(dst_mm, addr);
758 if (unlikely(!pgtable))
759 goto out;
761 dst_ptl = pmd_lock(dst_mm, dst_pmd);
762 src_ptl = pmd_lockptr(src_mm, src_pmd);
763 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
765 ret = -EAGAIN;
766 pmd = *src_pmd;
767 if (unlikely(!pmd_trans_huge(pmd))) {
768 pte_free(dst_mm, pgtable);
769 goto out_unlock;
772 * When page table lock is held, the huge zero pmd should not be
773 * under splitting since we don't split the page itself, only pmd to
774 * a page table.
776 if (is_huge_zero_pmd(pmd)) {
777 struct page *zero_page;
779 * get_huge_zero_page() will never allocate a new page here,
780 * since we already have a zero page to copy. It just takes a
781 * reference.
783 zero_page = get_huge_zero_page();
784 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
785 zero_page);
786 ret = 0;
787 goto out_unlock;
790 src_page = pmd_page(pmd);
791 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
792 get_page(src_page);
793 page_dup_rmap(src_page, true);
794 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
795 atomic_long_inc(&dst_mm->nr_ptes);
796 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
798 pmdp_set_wrprotect(src_mm, addr, src_pmd);
799 pmd = pmd_mkold(pmd_wrprotect(pmd));
800 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
802 ret = 0;
803 out_unlock:
804 spin_unlock(src_ptl);
805 spin_unlock(dst_ptl);
806 out:
807 return ret;
810 void huge_pmd_set_accessed(struct fault_env *fe, pmd_t orig_pmd)
812 pmd_t entry;
813 unsigned long haddr;
815 fe->ptl = pmd_lock(fe->vma->vm_mm, fe->pmd);
816 if (unlikely(!pmd_same(*fe->pmd, orig_pmd)))
817 goto unlock;
819 entry = pmd_mkyoung(orig_pmd);
820 haddr = fe->address & HPAGE_PMD_MASK;
821 if (pmdp_set_access_flags(fe->vma, haddr, fe->pmd, entry,
822 fe->flags & FAULT_FLAG_WRITE))
823 update_mmu_cache_pmd(fe->vma, fe->address, fe->pmd);
825 unlock:
826 spin_unlock(fe->ptl);
829 static int do_huge_pmd_wp_page_fallback(struct fault_env *fe, pmd_t orig_pmd,
830 struct page *page)
832 struct vm_area_struct *vma = fe->vma;
833 unsigned long haddr = fe->address & HPAGE_PMD_MASK;
834 struct mem_cgroup *memcg;
835 pgtable_t pgtable;
836 pmd_t _pmd;
837 int ret = 0, i;
838 struct page **pages;
839 unsigned long mmun_start; /* For mmu_notifiers */
840 unsigned long mmun_end; /* For mmu_notifiers */
842 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
843 GFP_KERNEL);
844 if (unlikely(!pages)) {
845 ret |= VM_FAULT_OOM;
846 goto out;
849 for (i = 0; i < HPAGE_PMD_NR; i++) {
850 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
851 __GFP_OTHER_NODE, vma,
852 fe->address, page_to_nid(page));
853 if (unlikely(!pages[i] ||
854 mem_cgroup_try_charge(pages[i], vma->vm_mm,
855 GFP_KERNEL, &memcg, false))) {
856 if (pages[i])
857 put_page(pages[i]);
858 while (--i >= 0) {
859 memcg = (void *)page_private(pages[i]);
860 set_page_private(pages[i], 0);
861 mem_cgroup_cancel_charge(pages[i], memcg,
862 false);
863 put_page(pages[i]);
865 kfree(pages);
866 ret |= VM_FAULT_OOM;
867 goto out;
869 set_page_private(pages[i], (unsigned long)memcg);
872 for (i = 0; i < HPAGE_PMD_NR; i++) {
873 copy_user_highpage(pages[i], page + i,
874 haddr + PAGE_SIZE * i, vma);
875 __SetPageUptodate(pages[i]);
876 cond_resched();
879 mmun_start = haddr;
880 mmun_end = haddr + HPAGE_PMD_SIZE;
881 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
883 fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
884 if (unlikely(!pmd_same(*fe->pmd, orig_pmd)))
885 goto out_free_pages;
886 VM_BUG_ON_PAGE(!PageHead(page), page);
888 pmdp_huge_clear_flush_notify(vma, haddr, fe->pmd);
889 /* leave pmd empty until pte is filled */
891 pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, fe->pmd);
892 pmd_populate(vma->vm_mm, &_pmd, pgtable);
894 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
895 pte_t entry;
896 entry = mk_pte(pages[i], vma->vm_page_prot);
897 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
898 memcg = (void *)page_private(pages[i]);
899 set_page_private(pages[i], 0);
900 page_add_new_anon_rmap(pages[i], fe->vma, haddr, false);
901 mem_cgroup_commit_charge(pages[i], memcg, false, false);
902 lru_cache_add_active_or_unevictable(pages[i], vma);
903 fe->pte = pte_offset_map(&_pmd, haddr);
904 VM_BUG_ON(!pte_none(*fe->pte));
905 set_pte_at(vma->vm_mm, haddr, fe->pte, entry);
906 pte_unmap(fe->pte);
908 kfree(pages);
910 smp_wmb(); /* make pte visible before pmd */
911 pmd_populate(vma->vm_mm, fe->pmd, pgtable);
912 page_remove_rmap(page, true);
913 spin_unlock(fe->ptl);
915 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
917 ret |= VM_FAULT_WRITE;
918 put_page(page);
920 out:
921 return ret;
923 out_free_pages:
924 spin_unlock(fe->ptl);
925 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
926 for (i = 0; i < HPAGE_PMD_NR; i++) {
927 memcg = (void *)page_private(pages[i]);
928 set_page_private(pages[i], 0);
929 mem_cgroup_cancel_charge(pages[i], memcg, false);
930 put_page(pages[i]);
932 kfree(pages);
933 goto out;
936 int do_huge_pmd_wp_page(struct fault_env *fe, pmd_t orig_pmd)
938 struct vm_area_struct *vma = fe->vma;
939 struct page *page = NULL, *new_page;
940 struct mem_cgroup *memcg;
941 unsigned long haddr = fe->address & HPAGE_PMD_MASK;
942 unsigned long mmun_start; /* For mmu_notifiers */
943 unsigned long mmun_end; /* For mmu_notifiers */
944 gfp_t huge_gfp; /* for allocation and charge */
945 int ret = 0;
947 fe->ptl = pmd_lockptr(vma->vm_mm, fe->pmd);
948 VM_BUG_ON_VMA(!vma->anon_vma, vma);
949 if (is_huge_zero_pmd(orig_pmd))
950 goto alloc;
951 spin_lock(fe->ptl);
952 if (unlikely(!pmd_same(*fe->pmd, orig_pmd)))
953 goto out_unlock;
955 page = pmd_page(orig_pmd);
956 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
958 * We can only reuse the page if nobody else maps the huge page or it's
959 * part.
961 if (page_trans_huge_mapcount(page, NULL) == 1) {
962 pmd_t entry;
963 entry = pmd_mkyoung(orig_pmd);
964 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
965 if (pmdp_set_access_flags(vma, haddr, fe->pmd, entry, 1))
966 update_mmu_cache_pmd(vma, fe->address, fe->pmd);
967 ret |= VM_FAULT_WRITE;
968 goto out_unlock;
970 get_page(page);
971 spin_unlock(fe->ptl);
972 alloc:
973 if (transparent_hugepage_enabled(vma) &&
974 !transparent_hugepage_debug_cow()) {
975 huge_gfp = alloc_hugepage_direct_gfpmask(vma);
976 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
977 } else
978 new_page = NULL;
980 if (likely(new_page)) {
981 prep_transhuge_page(new_page);
982 } else {
983 if (!page) {
984 split_huge_pmd(vma, fe->pmd, fe->address);
985 ret |= VM_FAULT_FALLBACK;
986 } else {
987 ret = do_huge_pmd_wp_page_fallback(fe, orig_pmd, page);
988 if (ret & VM_FAULT_OOM) {
989 split_huge_pmd(vma, fe->pmd, fe->address);
990 ret |= VM_FAULT_FALLBACK;
992 put_page(page);
994 count_vm_event(THP_FAULT_FALLBACK);
995 goto out;
998 if (unlikely(mem_cgroup_try_charge(new_page, vma->vm_mm,
999 huge_gfp, &memcg, true))) {
1000 put_page(new_page);
1001 split_huge_pmd(vma, fe->pmd, fe->address);
1002 if (page)
1003 put_page(page);
1004 ret |= VM_FAULT_FALLBACK;
1005 count_vm_event(THP_FAULT_FALLBACK);
1006 goto out;
1009 count_vm_event(THP_FAULT_ALLOC);
1011 if (!page)
1012 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1013 else
1014 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1015 __SetPageUptodate(new_page);
1017 mmun_start = haddr;
1018 mmun_end = haddr + HPAGE_PMD_SIZE;
1019 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1021 spin_lock(fe->ptl);
1022 if (page)
1023 put_page(page);
1024 if (unlikely(!pmd_same(*fe->pmd, orig_pmd))) {
1025 spin_unlock(fe->ptl);
1026 mem_cgroup_cancel_charge(new_page, memcg, true);
1027 put_page(new_page);
1028 goto out_mn;
1029 } else {
1030 pmd_t entry;
1031 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1032 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1033 pmdp_huge_clear_flush_notify(vma, haddr, fe->pmd);
1034 page_add_new_anon_rmap(new_page, vma, haddr, true);
1035 mem_cgroup_commit_charge(new_page, memcg, false, true);
1036 lru_cache_add_active_or_unevictable(new_page, vma);
1037 set_pmd_at(vma->vm_mm, haddr, fe->pmd, entry);
1038 update_mmu_cache_pmd(vma, fe->address, fe->pmd);
1039 if (!page) {
1040 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1041 put_huge_zero_page();
1042 } else {
1043 VM_BUG_ON_PAGE(!PageHead(page), page);
1044 page_remove_rmap(page, true);
1045 put_page(page);
1047 ret |= VM_FAULT_WRITE;
1049 spin_unlock(fe->ptl);
1050 out_mn:
1051 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1052 out:
1053 return ret;
1054 out_unlock:
1055 spin_unlock(fe->ptl);
1056 return ret;
1059 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1060 unsigned long addr,
1061 pmd_t *pmd,
1062 unsigned int flags)
1064 struct mm_struct *mm = vma->vm_mm;
1065 struct page *page = NULL;
1067 assert_spin_locked(pmd_lockptr(mm, pmd));
1069 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1070 goto out;
1072 /* Avoid dumping huge zero page */
1073 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1074 return ERR_PTR(-EFAULT);
1076 /* Full NUMA hinting faults to serialise migration in fault paths */
1077 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1078 goto out;
1080 page = pmd_page(*pmd);
1081 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1082 if (flags & FOLL_TOUCH)
1083 touch_pmd(vma, addr, pmd);
1084 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1086 * We don't mlock() pte-mapped THPs. This way we can avoid
1087 * leaking mlocked pages into non-VM_LOCKED VMAs.
1089 * For anon THP:
1091 * In most cases the pmd is the only mapping of the page as we
1092 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1093 * writable private mappings in populate_vma_page_range().
1095 * The only scenario when we have the page shared here is if we
1096 * mlocking read-only mapping shared over fork(). We skip
1097 * mlocking such pages.
1099 * For file THP:
1101 * We can expect PageDoubleMap() to be stable under page lock:
1102 * for file pages we set it in page_add_file_rmap(), which
1103 * requires page to be locked.
1106 if (PageAnon(page) && compound_mapcount(page) != 1)
1107 goto skip_mlock;
1108 if (PageDoubleMap(page) || !page->mapping)
1109 goto skip_mlock;
1110 if (!trylock_page(page))
1111 goto skip_mlock;
1112 lru_add_drain();
1113 if (page->mapping && !PageDoubleMap(page))
1114 mlock_vma_page(page);
1115 unlock_page(page);
1117 skip_mlock:
1118 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1119 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1120 if (flags & FOLL_GET)
1121 get_page(page);
1123 out:
1124 return page;
1127 /* NUMA hinting page fault entry point for trans huge pmds */
1128 int do_huge_pmd_numa_page(struct fault_env *fe, pmd_t pmd)
1130 struct vm_area_struct *vma = fe->vma;
1131 struct anon_vma *anon_vma = NULL;
1132 struct page *page;
1133 unsigned long haddr = fe->address & HPAGE_PMD_MASK;
1134 int page_nid = -1, this_nid = numa_node_id();
1135 int target_nid, last_cpupid = -1;
1136 bool page_locked;
1137 bool migrated = false;
1138 bool was_writable;
1139 int flags = 0;
1141 fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
1142 if (unlikely(!pmd_same(pmd, *fe->pmd)))
1143 goto out_unlock;
1146 * If there are potential migrations, wait for completion and retry
1147 * without disrupting NUMA hinting information. Do not relock and
1148 * check_same as the page may no longer be mapped.
1150 if (unlikely(pmd_trans_migrating(*fe->pmd))) {
1151 page = pmd_page(*fe->pmd);
1152 spin_unlock(fe->ptl);
1153 wait_on_page_locked(page);
1154 goto out;
1157 page = pmd_page(pmd);
1158 BUG_ON(is_huge_zero_page(page));
1159 page_nid = page_to_nid(page);
1160 last_cpupid = page_cpupid_last(page);
1161 count_vm_numa_event(NUMA_HINT_FAULTS);
1162 if (page_nid == this_nid) {
1163 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1164 flags |= TNF_FAULT_LOCAL;
1167 /* See similar comment in do_numa_page for explanation */
1168 if (!(vma->vm_flags & VM_WRITE))
1169 flags |= TNF_NO_GROUP;
1172 * Acquire the page lock to serialise THP migrations but avoid dropping
1173 * page_table_lock if at all possible
1175 page_locked = trylock_page(page);
1176 target_nid = mpol_misplaced(page, vma, haddr);
1177 if (target_nid == -1) {
1178 /* If the page was locked, there are no parallel migrations */
1179 if (page_locked)
1180 goto clear_pmdnuma;
1183 /* Migration could have started since the pmd_trans_migrating check */
1184 if (!page_locked) {
1185 spin_unlock(fe->ptl);
1186 wait_on_page_locked(page);
1187 page_nid = -1;
1188 goto out;
1192 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1193 * to serialises splits
1195 get_page(page);
1196 spin_unlock(fe->ptl);
1197 anon_vma = page_lock_anon_vma_read(page);
1199 /* Confirm the PMD did not change while page_table_lock was released */
1200 spin_lock(fe->ptl);
1201 if (unlikely(!pmd_same(pmd, *fe->pmd))) {
1202 unlock_page(page);
1203 put_page(page);
1204 page_nid = -1;
1205 goto out_unlock;
1208 /* Bail if we fail to protect against THP splits for any reason */
1209 if (unlikely(!anon_vma)) {
1210 put_page(page);
1211 page_nid = -1;
1212 goto clear_pmdnuma;
1216 * Migrate the THP to the requested node, returns with page unlocked
1217 * and access rights restored.
1219 spin_unlock(fe->ptl);
1220 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1221 fe->pmd, pmd, fe->address, page, target_nid);
1222 if (migrated) {
1223 flags |= TNF_MIGRATED;
1224 page_nid = target_nid;
1225 } else
1226 flags |= TNF_MIGRATE_FAIL;
1228 goto out;
1229 clear_pmdnuma:
1230 BUG_ON(!PageLocked(page));
1231 was_writable = pmd_write(pmd);
1232 pmd = pmd_modify(pmd, vma->vm_page_prot);
1233 pmd = pmd_mkyoung(pmd);
1234 if (was_writable)
1235 pmd = pmd_mkwrite(pmd);
1236 set_pmd_at(vma->vm_mm, haddr, fe->pmd, pmd);
1237 update_mmu_cache_pmd(vma, fe->address, fe->pmd);
1238 unlock_page(page);
1239 out_unlock:
1240 spin_unlock(fe->ptl);
1242 out:
1243 if (anon_vma)
1244 page_unlock_anon_vma_read(anon_vma);
1246 if (page_nid != -1)
1247 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, fe->flags);
1249 return 0;
1253 * Return true if we do MADV_FREE successfully on entire pmd page.
1254 * Otherwise, return false.
1256 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1257 pmd_t *pmd, unsigned long addr, unsigned long next)
1259 spinlock_t *ptl;
1260 pmd_t orig_pmd;
1261 struct page *page;
1262 struct mm_struct *mm = tlb->mm;
1263 bool ret = false;
1265 ptl = pmd_trans_huge_lock(pmd, vma);
1266 if (!ptl)
1267 goto out_unlocked;
1269 orig_pmd = *pmd;
1270 if (is_huge_zero_pmd(orig_pmd))
1271 goto out;
1273 page = pmd_page(orig_pmd);
1275 * If other processes are mapping this page, we couldn't discard
1276 * the page unless they all do MADV_FREE so let's skip the page.
1278 if (page_mapcount(page) != 1)
1279 goto out;
1281 if (!trylock_page(page))
1282 goto out;
1285 * If user want to discard part-pages of THP, split it so MADV_FREE
1286 * will deactivate only them.
1288 if (next - addr != HPAGE_PMD_SIZE) {
1289 get_page(page);
1290 spin_unlock(ptl);
1291 split_huge_page(page);
1292 put_page(page);
1293 unlock_page(page);
1294 goto out_unlocked;
1297 if (PageDirty(page))
1298 ClearPageDirty(page);
1299 unlock_page(page);
1301 if (PageActive(page))
1302 deactivate_page(page);
1304 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1305 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1306 tlb->fullmm);
1307 orig_pmd = pmd_mkold(orig_pmd);
1308 orig_pmd = pmd_mkclean(orig_pmd);
1310 set_pmd_at(mm, addr, pmd, orig_pmd);
1311 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1313 ret = true;
1314 out:
1315 spin_unlock(ptl);
1316 out_unlocked:
1317 return ret;
1320 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1321 pmd_t *pmd, unsigned long addr)
1323 pmd_t orig_pmd;
1324 spinlock_t *ptl;
1326 ptl = __pmd_trans_huge_lock(pmd, vma);
1327 if (!ptl)
1328 return 0;
1330 * For architectures like ppc64 we look at deposited pgtable
1331 * when calling pmdp_huge_get_and_clear. So do the
1332 * pgtable_trans_huge_withdraw after finishing pmdp related
1333 * operations.
1335 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1336 tlb->fullmm);
1337 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1338 if (vma_is_dax(vma)) {
1339 spin_unlock(ptl);
1340 if (is_huge_zero_pmd(orig_pmd))
1341 tlb_remove_page(tlb, pmd_page(orig_pmd));
1342 } else if (is_huge_zero_pmd(orig_pmd)) {
1343 pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1344 atomic_long_dec(&tlb->mm->nr_ptes);
1345 spin_unlock(ptl);
1346 tlb_remove_page(tlb, pmd_page(orig_pmd));
1347 } else {
1348 struct page *page = pmd_page(orig_pmd);
1349 page_remove_rmap(page, true);
1350 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1351 VM_BUG_ON_PAGE(!PageHead(page), page);
1352 if (PageAnon(page)) {
1353 pgtable_t pgtable;
1354 pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
1355 pte_free(tlb->mm, pgtable);
1356 atomic_long_dec(&tlb->mm->nr_ptes);
1357 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1358 } else {
1359 add_mm_counter(tlb->mm, MM_FILEPAGES, -HPAGE_PMD_NR);
1361 spin_unlock(ptl);
1362 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1364 return 1;
1367 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1368 unsigned long new_addr, unsigned long old_end,
1369 pmd_t *old_pmd, pmd_t *new_pmd)
1371 spinlock_t *old_ptl, *new_ptl;
1372 pmd_t pmd;
1373 struct mm_struct *mm = vma->vm_mm;
1375 if ((old_addr & ~HPAGE_PMD_MASK) ||
1376 (new_addr & ~HPAGE_PMD_MASK) ||
1377 old_end - old_addr < HPAGE_PMD_SIZE)
1378 return false;
1381 * The destination pmd shouldn't be established, free_pgtables()
1382 * should have release it.
1384 if (WARN_ON(!pmd_none(*new_pmd))) {
1385 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1386 return false;
1390 * We don't have to worry about the ordering of src and dst
1391 * ptlocks because exclusive mmap_sem prevents deadlock.
1393 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1394 if (old_ptl) {
1395 new_ptl = pmd_lockptr(mm, new_pmd);
1396 if (new_ptl != old_ptl)
1397 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1398 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1399 VM_BUG_ON(!pmd_none(*new_pmd));
1401 if (pmd_move_must_withdraw(new_ptl, old_ptl) &&
1402 vma_is_anonymous(vma)) {
1403 pgtable_t pgtable;
1404 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1405 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1407 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1408 if (new_ptl != old_ptl)
1409 spin_unlock(new_ptl);
1410 spin_unlock(old_ptl);
1411 return true;
1413 return false;
1417 * Returns
1418 * - 0 if PMD could not be locked
1419 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1420 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1422 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1423 unsigned long addr, pgprot_t newprot, int prot_numa)
1425 struct mm_struct *mm = vma->vm_mm;
1426 spinlock_t *ptl;
1427 int ret = 0;
1429 ptl = __pmd_trans_huge_lock(pmd, vma);
1430 if (ptl) {
1431 pmd_t entry;
1432 bool preserve_write = prot_numa && pmd_write(*pmd);
1433 ret = 1;
1436 * Avoid trapping faults against the zero page. The read-only
1437 * data is likely to be read-cached on the local CPU and
1438 * local/remote hits to the zero page are not interesting.
1440 if (prot_numa && is_huge_zero_pmd(*pmd)) {
1441 spin_unlock(ptl);
1442 return ret;
1445 if (!prot_numa || !pmd_protnone(*pmd)) {
1446 entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd);
1447 entry = pmd_modify(entry, newprot);
1448 if (preserve_write)
1449 entry = pmd_mkwrite(entry);
1450 ret = HPAGE_PMD_NR;
1451 set_pmd_at(mm, addr, pmd, entry);
1452 BUG_ON(vma_is_anonymous(vma) && !preserve_write &&
1453 pmd_write(entry));
1455 spin_unlock(ptl);
1458 return ret;
1462 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1464 * Note that if it returns page table lock pointer, this routine returns without
1465 * unlocking page table lock. So callers must unlock it.
1467 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1469 spinlock_t *ptl;
1470 ptl = pmd_lock(vma->vm_mm, pmd);
1471 if (likely(pmd_trans_huge(*pmd) || pmd_devmap(*pmd)))
1472 return ptl;
1473 spin_unlock(ptl);
1474 return NULL;
1477 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
1478 unsigned long haddr, pmd_t *pmd)
1480 struct mm_struct *mm = vma->vm_mm;
1481 pgtable_t pgtable;
1482 pmd_t _pmd;
1483 int i;
1485 /* leave pmd empty until pte is filled */
1486 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1488 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1489 pmd_populate(mm, &_pmd, pgtable);
1491 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1492 pte_t *pte, entry;
1493 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
1494 entry = pte_mkspecial(entry);
1495 pte = pte_offset_map(&_pmd, haddr);
1496 VM_BUG_ON(!pte_none(*pte));
1497 set_pte_at(mm, haddr, pte, entry);
1498 pte_unmap(pte);
1500 smp_wmb(); /* make pte visible before pmd */
1501 pmd_populate(mm, pmd, pgtable);
1502 put_huge_zero_page();
1505 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
1506 unsigned long haddr, bool freeze)
1508 struct mm_struct *mm = vma->vm_mm;
1509 struct page *page;
1510 pgtable_t pgtable;
1511 pmd_t _pmd;
1512 bool young, write, dirty, soft_dirty;
1513 unsigned long addr;
1514 int i;
1516 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
1517 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1518 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
1519 VM_BUG_ON(!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd));
1521 count_vm_event(THP_SPLIT_PMD);
1523 if (!vma_is_anonymous(vma)) {
1524 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1525 if (is_huge_zero_pmd(_pmd))
1526 put_huge_zero_page();
1527 if (vma_is_dax(vma))
1528 return;
1529 page = pmd_page(_pmd);
1530 if (!PageReferenced(page) && pmd_young(_pmd))
1531 SetPageReferenced(page);
1532 page_remove_rmap(page, true);
1533 put_page(page);
1534 add_mm_counter(mm, MM_FILEPAGES, -HPAGE_PMD_NR);
1535 return;
1536 } else if (is_huge_zero_pmd(*pmd)) {
1537 return __split_huge_zero_page_pmd(vma, haddr, pmd);
1540 page = pmd_page(*pmd);
1541 VM_BUG_ON_PAGE(!page_count(page), page);
1542 page_ref_add(page, HPAGE_PMD_NR - 1);
1543 write = pmd_write(*pmd);
1544 young = pmd_young(*pmd);
1545 dirty = pmd_dirty(*pmd);
1546 soft_dirty = pmd_soft_dirty(*pmd);
1548 pmdp_huge_split_prepare(vma, haddr, pmd);
1549 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1550 pmd_populate(mm, &_pmd, pgtable);
1552 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
1553 pte_t entry, *pte;
1555 * Note that NUMA hinting access restrictions are not
1556 * transferred to avoid any possibility of altering
1557 * permissions across VMAs.
1559 if (freeze) {
1560 swp_entry_t swp_entry;
1561 swp_entry = make_migration_entry(page + i, write);
1562 entry = swp_entry_to_pte(swp_entry);
1563 if (soft_dirty)
1564 entry = pte_swp_mksoft_dirty(entry);
1565 } else {
1566 entry = mk_pte(page + i, vma->vm_page_prot);
1567 entry = maybe_mkwrite(entry, vma);
1568 if (!write)
1569 entry = pte_wrprotect(entry);
1570 if (!young)
1571 entry = pte_mkold(entry);
1572 if (soft_dirty)
1573 entry = pte_mksoft_dirty(entry);
1575 if (dirty)
1576 SetPageDirty(page + i);
1577 pte = pte_offset_map(&_pmd, addr);
1578 BUG_ON(!pte_none(*pte));
1579 set_pte_at(mm, addr, pte, entry);
1580 atomic_inc(&page[i]._mapcount);
1581 pte_unmap(pte);
1585 * Set PG_double_map before dropping compound_mapcount to avoid
1586 * false-negative page_mapped().
1588 if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
1589 for (i = 0; i < HPAGE_PMD_NR; i++)
1590 atomic_inc(&page[i]._mapcount);
1593 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
1594 /* Last compound_mapcount is gone. */
1595 __dec_node_page_state(page, NR_ANON_THPS);
1596 if (TestClearPageDoubleMap(page)) {
1597 /* No need in mapcount reference anymore */
1598 for (i = 0; i < HPAGE_PMD_NR; i++)
1599 atomic_dec(&page[i]._mapcount);
1603 smp_wmb(); /* make pte visible before pmd */
1605 * Up to this point the pmd is present and huge and userland has the
1606 * whole access to the hugepage during the split (which happens in
1607 * place). If we overwrite the pmd with the not-huge version pointing
1608 * to the pte here (which of course we could if all CPUs were bug
1609 * free), userland could trigger a small page size TLB miss on the
1610 * small sized TLB while the hugepage TLB entry is still established in
1611 * the huge TLB. Some CPU doesn't like that.
1612 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
1613 * 383 on page 93. Intel should be safe but is also warns that it's
1614 * only safe if the permission and cache attributes of the two entries
1615 * loaded in the two TLB is identical (which should be the case here).
1616 * But it is generally safer to never allow small and huge TLB entries
1617 * for the same virtual address to be loaded simultaneously. So instead
1618 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
1619 * current pmd notpresent (atomically because here the pmd_trans_huge
1620 * and pmd_trans_splitting must remain set at all times on the pmd
1621 * until the split is complete for this pmd), then we flush the SMP TLB
1622 * and finally we write the non-huge version of the pmd entry with
1623 * pmd_populate.
1625 pmdp_invalidate(vma, haddr, pmd);
1626 pmd_populate(mm, pmd, pgtable);
1628 if (freeze) {
1629 for (i = 0; i < HPAGE_PMD_NR; i++) {
1630 page_remove_rmap(page + i, false);
1631 put_page(page + i);
1636 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1637 unsigned long address, bool freeze, struct page *page)
1639 spinlock_t *ptl;
1640 struct mm_struct *mm = vma->vm_mm;
1641 unsigned long haddr = address & HPAGE_PMD_MASK;
1643 mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
1644 ptl = pmd_lock(mm, pmd);
1647 * If caller asks to setup a migration entries, we need a page to check
1648 * pmd against. Otherwise we can end up replacing wrong page.
1650 VM_BUG_ON(freeze && !page);
1651 if (page && page != pmd_page(*pmd))
1652 goto out;
1654 if (pmd_trans_huge(*pmd)) {
1655 page = pmd_page(*pmd);
1656 if (PageMlocked(page))
1657 clear_page_mlock(page);
1658 } else if (!pmd_devmap(*pmd))
1659 goto out;
1660 __split_huge_pmd_locked(vma, pmd, haddr, freeze);
1661 out:
1662 spin_unlock(ptl);
1663 mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE);
1666 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
1667 bool freeze, struct page *page)
1669 pgd_t *pgd;
1670 pud_t *pud;
1671 pmd_t *pmd;
1673 pgd = pgd_offset(vma->vm_mm, address);
1674 if (!pgd_present(*pgd))
1675 return;
1677 pud = pud_offset(pgd, address);
1678 if (!pud_present(*pud))
1679 return;
1681 pmd = pmd_offset(pud, address);
1683 __split_huge_pmd(vma, pmd, address, freeze, page);
1686 void vma_adjust_trans_huge(struct vm_area_struct *vma,
1687 unsigned long start,
1688 unsigned long end,
1689 long adjust_next)
1692 * If the new start address isn't hpage aligned and it could
1693 * previously contain an hugepage: check if we need to split
1694 * an huge pmd.
1696 if (start & ~HPAGE_PMD_MASK &&
1697 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
1698 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
1699 split_huge_pmd_address(vma, start, false, NULL);
1702 * If the new end address isn't hpage aligned and it could
1703 * previously contain an hugepage: check if we need to split
1704 * an huge pmd.
1706 if (end & ~HPAGE_PMD_MASK &&
1707 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
1708 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
1709 split_huge_pmd_address(vma, end, false, NULL);
1712 * If we're also updating the vma->vm_next->vm_start, if the new
1713 * vm_next->vm_start isn't page aligned and it could previously
1714 * contain an hugepage: check if we need to split an huge pmd.
1716 if (adjust_next > 0) {
1717 struct vm_area_struct *next = vma->vm_next;
1718 unsigned long nstart = next->vm_start;
1719 nstart += adjust_next << PAGE_SHIFT;
1720 if (nstart & ~HPAGE_PMD_MASK &&
1721 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
1722 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
1723 split_huge_pmd_address(next, nstart, false, NULL);
1727 static void freeze_page(struct page *page)
1729 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
1730 TTU_RMAP_LOCKED;
1731 int i, ret;
1733 VM_BUG_ON_PAGE(!PageHead(page), page);
1735 if (PageAnon(page))
1736 ttu_flags |= TTU_MIGRATION;
1738 /* We only need TTU_SPLIT_HUGE_PMD once */
1739 ret = try_to_unmap(page, ttu_flags | TTU_SPLIT_HUGE_PMD);
1740 for (i = 1; !ret && i < HPAGE_PMD_NR; i++) {
1741 /* Cut short if the page is unmapped */
1742 if (page_count(page) == 1)
1743 return;
1745 ret = try_to_unmap(page + i, ttu_flags);
1747 VM_BUG_ON_PAGE(ret, page + i - 1);
1750 static void unfreeze_page(struct page *page)
1752 int i;
1754 for (i = 0; i < HPAGE_PMD_NR; i++)
1755 remove_migration_ptes(page + i, page + i, true);
1758 static void __split_huge_page_tail(struct page *head, int tail,
1759 struct lruvec *lruvec, struct list_head *list)
1761 struct page *page_tail = head + tail;
1763 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
1764 VM_BUG_ON_PAGE(page_ref_count(page_tail) != 0, page_tail);
1767 * tail_page->_refcount is zero and not changing from under us. But
1768 * get_page_unless_zero() may be running from under us on the
1769 * tail_page. If we used atomic_set() below instead of atomic_inc() or
1770 * atomic_add(), we would then run atomic_set() concurrently with
1771 * get_page_unless_zero(), and atomic_set() is implemented in C not
1772 * using locked ops. spin_unlock on x86 sometime uses locked ops
1773 * because of PPro errata 66, 92, so unless somebody can guarantee
1774 * atomic_set() here would be safe on all archs (and not only on x86),
1775 * it's safer to use atomic_inc()/atomic_add().
1777 if (PageAnon(head)) {
1778 page_ref_inc(page_tail);
1779 } else {
1780 /* Additional pin to radix tree */
1781 page_ref_add(page_tail, 2);
1784 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1785 page_tail->flags |= (head->flags &
1786 ((1L << PG_referenced) |
1787 (1L << PG_swapbacked) |
1788 (1L << PG_mlocked) |
1789 (1L << PG_uptodate) |
1790 (1L << PG_active) |
1791 (1L << PG_locked) |
1792 (1L << PG_unevictable) |
1793 (1L << PG_dirty)));
1796 * After clearing PageTail the gup refcount can be released.
1797 * Page flags also must be visible before we make the page non-compound.
1799 smp_wmb();
1801 clear_compound_head(page_tail);
1803 if (page_is_young(head))
1804 set_page_young(page_tail);
1805 if (page_is_idle(head))
1806 set_page_idle(page_tail);
1808 /* ->mapping in first tail page is compound_mapcount */
1809 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
1810 page_tail);
1811 page_tail->mapping = head->mapping;
1813 page_tail->index = head->index + tail;
1814 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
1815 lru_add_page_tail(head, page_tail, lruvec, list);
1818 static void __split_huge_page(struct page *page, struct list_head *list,
1819 unsigned long flags)
1821 struct page *head = compound_head(page);
1822 struct zone *zone = page_zone(head);
1823 struct lruvec *lruvec;
1824 pgoff_t end = -1;
1825 int i;
1827 lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat);
1829 /* complete memcg works before add pages to LRU */
1830 mem_cgroup_split_huge_fixup(head);
1832 if (!PageAnon(page))
1833 end = DIV_ROUND_UP(i_size_read(head->mapping->host), PAGE_SIZE);
1835 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
1836 __split_huge_page_tail(head, i, lruvec, list);
1837 /* Some pages can be beyond i_size: drop them from page cache */
1838 if (head[i].index >= end) {
1839 __ClearPageDirty(head + i);
1840 __delete_from_page_cache(head + i, NULL);
1841 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
1842 shmem_uncharge(head->mapping->host, 1);
1843 put_page(head + i);
1847 ClearPageCompound(head);
1848 /* See comment in __split_huge_page_tail() */
1849 if (PageAnon(head)) {
1850 page_ref_inc(head);
1851 } else {
1852 /* Additional pin to radix tree */
1853 page_ref_add(head, 2);
1854 spin_unlock(&head->mapping->tree_lock);
1857 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
1859 unfreeze_page(head);
1861 for (i = 0; i < HPAGE_PMD_NR; i++) {
1862 struct page *subpage = head + i;
1863 if (subpage == page)
1864 continue;
1865 unlock_page(subpage);
1868 * Subpages may be freed if there wasn't any mapping
1869 * like if add_to_swap() is running on a lru page that
1870 * had its mapping zapped. And freeing these pages
1871 * requires taking the lru_lock so we do the put_page
1872 * of the tail pages after the split is complete.
1874 put_page(subpage);
1878 int total_mapcount(struct page *page)
1880 int i, compound, ret;
1882 VM_BUG_ON_PAGE(PageTail(page), page);
1884 if (likely(!PageCompound(page)))
1885 return atomic_read(&page->_mapcount) + 1;
1887 compound = compound_mapcount(page);
1888 if (PageHuge(page))
1889 return compound;
1890 ret = compound;
1891 for (i = 0; i < HPAGE_PMD_NR; i++)
1892 ret += atomic_read(&page[i]._mapcount) + 1;
1893 /* File pages has compound_mapcount included in _mapcount */
1894 if (!PageAnon(page))
1895 return ret - compound * HPAGE_PMD_NR;
1896 if (PageDoubleMap(page))
1897 ret -= HPAGE_PMD_NR;
1898 return ret;
1902 * This calculates accurately how many mappings a transparent hugepage
1903 * has (unlike page_mapcount() which isn't fully accurate). This full
1904 * accuracy is primarily needed to know if copy-on-write faults can
1905 * reuse the page and change the mapping to read-write instead of
1906 * copying them. At the same time this returns the total_mapcount too.
1908 * The function returns the highest mapcount any one of the subpages
1909 * has. If the return value is one, even if different processes are
1910 * mapping different subpages of the transparent hugepage, they can
1911 * all reuse it, because each process is reusing a different subpage.
1913 * The total_mapcount is instead counting all virtual mappings of the
1914 * subpages. If the total_mapcount is equal to "one", it tells the
1915 * caller all mappings belong to the same "mm" and in turn the
1916 * anon_vma of the transparent hugepage can become the vma->anon_vma
1917 * local one as no other process may be mapping any of the subpages.
1919 * It would be more accurate to replace page_mapcount() with
1920 * page_trans_huge_mapcount(), however we only use
1921 * page_trans_huge_mapcount() in the copy-on-write faults where we
1922 * need full accuracy to avoid breaking page pinning, because
1923 * page_trans_huge_mapcount() is slower than page_mapcount().
1925 int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
1927 int i, ret, _total_mapcount, mapcount;
1929 /* hugetlbfs shouldn't call it */
1930 VM_BUG_ON_PAGE(PageHuge(page), page);
1932 if (likely(!PageTransCompound(page))) {
1933 mapcount = atomic_read(&page->_mapcount) + 1;
1934 if (total_mapcount)
1935 *total_mapcount = mapcount;
1936 return mapcount;
1939 page = compound_head(page);
1941 _total_mapcount = ret = 0;
1942 for (i = 0; i < HPAGE_PMD_NR; i++) {
1943 mapcount = atomic_read(&page[i]._mapcount) + 1;
1944 ret = max(ret, mapcount);
1945 _total_mapcount += mapcount;
1947 if (PageDoubleMap(page)) {
1948 ret -= 1;
1949 _total_mapcount -= HPAGE_PMD_NR;
1951 mapcount = compound_mapcount(page);
1952 ret += mapcount;
1953 _total_mapcount += mapcount;
1954 if (total_mapcount)
1955 *total_mapcount = _total_mapcount;
1956 return ret;
1960 * This function splits huge page into normal pages. @page can point to any
1961 * subpage of huge page to split. Split doesn't change the position of @page.
1963 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
1964 * The huge page must be locked.
1966 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
1968 * Both head page and tail pages will inherit mapping, flags, and so on from
1969 * the hugepage.
1971 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
1972 * they are not mapped.
1974 * Returns 0 if the hugepage is split successfully.
1975 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
1976 * us.
1978 int split_huge_page_to_list(struct page *page, struct list_head *list)
1980 struct page *head = compound_head(page);
1981 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
1982 struct anon_vma *anon_vma = NULL;
1983 struct address_space *mapping = NULL;
1984 int count, mapcount, extra_pins, ret;
1985 bool mlocked;
1986 unsigned long flags;
1988 VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
1989 VM_BUG_ON_PAGE(!PageLocked(page), page);
1990 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
1991 VM_BUG_ON_PAGE(!PageCompound(page), page);
1993 if (PageAnon(head)) {
1995 * The caller does not necessarily hold an mmap_sem that would
1996 * prevent the anon_vma disappearing so we first we take a
1997 * reference to it and then lock the anon_vma for write. This
1998 * is similar to page_lock_anon_vma_read except the write lock
1999 * is taken to serialise against parallel split or collapse
2000 * operations.
2002 anon_vma = page_get_anon_vma(head);
2003 if (!anon_vma) {
2004 ret = -EBUSY;
2005 goto out;
2007 extra_pins = 0;
2008 mapping = NULL;
2009 anon_vma_lock_write(anon_vma);
2010 } else {
2011 mapping = head->mapping;
2013 /* Truncated ? */
2014 if (!mapping) {
2015 ret = -EBUSY;
2016 goto out;
2019 /* Addidional pins from radix tree */
2020 extra_pins = HPAGE_PMD_NR;
2021 anon_vma = NULL;
2022 i_mmap_lock_read(mapping);
2026 * Racy check if we can split the page, before freeze_page() will
2027 * split PMDs
2029 if (total_mapcount(head) != page_count(head) - extra_pins - 1) {
2030 ret = -EBUSY;
2031 goto out_unlock;
2034 mlocked = PageMlocked(page);
2035 freeze_page(head);
2036 VM_BUG_ON_PAGE(compound_mapcount(head), head);
2038 /* Make sure the page is not on per-CPU pagevec as it takes pin */
2039 if (mlocked)
2040 lru_add_drain();
2042 /* prevent PageLRU to go away from under us, and freeze lru stats */
2043 spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags);
2045 if (mapping) {
2046 void **pslot;
2048 spin_lock(&mapping->tree_lock);
2049 pslot = radix_tree_lookup_slot(&mapping->page_tree,
2050 page_index(head));
2052 * Check if the head page is present in radix tree.
2053 * We assume all tail are present too, if head is there.
2055 if (radix_tree_deref_slot_protected(pslot,
2056 &mapping->tree_lock) != head)
2057 goto fail;
2060 /* Prevent deferred_split_scan() touching ->_refcount */
2061 spin_lock(&pgdata->split_queue_lock);
2062 count = page_count(head);
2063 mapcount = total_mapcount(head);
2064 if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2065 if (!list_empty(page_deferred_list(head))) {
2066 pgdata->split_queue_len--;
2067 list_del(page_deferred_list(head));
2069 if (mapping)
2070 __dec_node_page_state(page, NR_SHMEM_THPS);
2071 spin_unlock(&pgdata->split_queue_lock);
2072 __split_huge_page(page, list, flags);
2073 ret = 0;
2074 } else {
2075 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2076 pr_alert("total_mapcount: %u, page_count(): %u\n",
2077 mapcount, count);
2078 if (PageTail(page))
2079 dump_page(head, NULL);
2080 dump_page(page, "total_mapcount(head) > 0");
2081 BUG();
2083 spin_unlock(&pgdata->split_queue_lock);
2084 fail: if (mapping)
2085 spin_unlock(&mapping->tree_lock);
2086 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2087 unfreeze_page(head);
2088 ret = -EBUSY;
2091 out_unlock:
2092 if (anon_vma) {
2093 anon_vma_unlock_write(anon_vma);
2094 put_anon_vma(anon_vma);
2096 if (mapping)
2097 i_mmap_unlock_read(mapping);
2098 out:
2099 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2100 return ret;
2103 void free_transhuge_page(struct page *page)
2105 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2106 unsigned long flags;
2108 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2109 if (!list_empty(page_deferred_list(page))) {
2110 pgdata->split_queue_len--;
2111 list_del(page_deferred_list(page));
2113 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2114 free_compound_page(page);
2117 void deferred_split_huge_page(struct page *page)
2119 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2120 unsigned long flags;
2122 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2124 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2125 if (list_empty(page_deferred_list(page))) {
2126 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2127 list_add_tail(page_deferred_list(page), &pgdata->split_queue);
2128 pgdata->split_queue_len++;
2130 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2133 static unsigned long deferred_split_count(struct shrinker *shrink,
2134 struct shrink_control *sc)
2136 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2137 return ACCESS_ONCE(pgdata->split_queue_len);
2140 static unsigned long deferred_split_scan(struct shrinker *shrink,
2141 struct shrink_control *sc)
2143 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2144 unsigned long flags;
2145 LIST_HEAD(list), *pos, *next;
2146 struct page *page;
2147 int split = 0;
2149 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2150 /* Take pin on all head pages to avoid freeing them under us */
2151 list_for_each_safe(pos, next, &pgdata->split_queue) {
2152 page = list_entry((void *)pos, struct page, mapping);
2153 page = compound_head(page);
2154 if (get_page_unless_zero(page)) {
2155 list_move(page_deferred_list(page), &list);
2156 } else {
2157 /* We lost race with put_compound_page() */
2158 list_del_init(page_deferred_list(page));
2159 pgdata->split_queue_len--;
2161 if (!--sc->nr_to_scan)
2162 break;
2164 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2166 list_for_each_safe(pos, next, &list) {
2167 page = list_entry((void *)pos, struct page, mapping);
2168 lock_page(page);
2169 /* split_huge_page() removes page from list on success */
2170 if (!split_huge_page(page))
2171 split++;
2172 unlock_page(page);
2173 put_page(page);
2176 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2177 list_splice_tail(&list, &pgdata->split_queue);
2178 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2181 * Stop shrinker if we didn't split any page, but the queue is empty.
2182 * This can happen if pages were freed under us.
2184 if (!split && list_empty(&pgdata->split_queue))
2185 return SHRINK_STOP;
2186 return split;
2189 static struct shrinker deferred_split_shrinker = {
2190 .count_objects = deferred_split_count,
2191 .scan_objects = deferred_split_scan,
2192 .seeks = DEFAULT_SEEKS,
2193 .flags = SHRINKER_NUMA_AWARE,
2196 #ifdef CONFIG_DEBUG_FS
2197 static int split_huge_pages_set(void *data, u64 val)
2199 struct zone *zone;
2200 struct page *page;
2201 unsigned long pfn, max_zone_pfn;
2202 unsigned long total = 0, split = 0;
2204 if (val != 1)
2205 return -EINVAL;
2207 for_each_populated_zone(zone) {
2208 max_zone_pfn = zone_end_pfn(zone);
2209 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2210 if (!pfn_valid(pfn))
2211 continue;
2213 page = pfn_to_page(pfn);
2214 if (!get_page_unless_zero(page))
2215 continue;
2217 if (zone != page_zone(page))
2218 goto next;
2220 if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2221 goto next;
2223 total++;
2224 lock_page(page);
2225 if (!split_huge_page(page))
2226 split++;
2227 unlock_page(page);
2228 next:
2229 put_page(page);
2233 pr_info("%lu of %lu THP split\n", split, total);
2235 return 0;
2237 DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2238 "%llu\n");
2240 static int __init split_huge_pages_debugfs(void)
2242 void *ret;
2244 ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2245 &split_huge_pages_fops);
2246 if (!ret)
2247 pr_warn("Failed to create split_huge_pages in debugfs");
2248 return 0;
2250 late_initcall(split_huge_pages_debugfs);
2251 #endif