2 * Copyright (C) 2009 Red Hat, Inc.
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 #include <linux/sched.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/swapops.h>
20 #include <linux/dax.h>
21 #include <linux/khugepaged.h>
22 #include <linux/freezer.h>
23 #include <linux/pfn_t.h>
24 #include <linux/mman.h>
25 #include <linux/memremap.h>
26 #include <linux/pagemap.h>
27 #include <linux/debugfs.h>
28 #include <linux/migrate.h>
29 #include <linux/hashtable.h>
30 #include <linux/userfaultfd_k.h>
31 #include <linux/page_idle.h>
32 #include <linux/shmem_fs.h>
35 #include <asm/pgalloc.h>
39 * By default transparent hugepage support is disabled in order that avoid
40 * to risk increase the memory footprint of applications without a guaranteed
41 * benefit. When transparent hugepage support is enabled, is for all mappings,
42 * and khugepaged scans all mappings.
43 * Defrag is invoked by khugepaged hugepage allocations and by page faults
44 * for all hugepage allocations.
46 unsigned long transparent_hugepage_flags __read_mostly
=
47 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
48 (1<<TRANSPARENT_HUGEPAGE_FLAG
)|
50 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
51 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
)|
53 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG
)|
54 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG
)|
55 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG
);
57 static struct shrinker deferred_split_shrinker
;
59 static atomic_t huge_zero_refcount
;
60 struct page
*huge_zero_page __read_mostly
;
62 struct page
*get_huge_zero_page(void)
64 struct page
*zero_page
;
66 if (likely(atomic_inc_not_zero(&huge_zero_refcount
)))
67 return READ_ONCE(huge_zero_page
);
69 zero_page
= alloc_pages((GFP_TRANSHUGE
| __GFP_ZERO
) & ~__GFP_MOVABLE
,
72 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED
);
75 count_vm_event(THP_ZERO_PAGE_ALLOC
);
77 if (cmpxchg(&huge_zero_page
, NULL
, zero_page
)) {
79 __free_pages(zero_page
, compound_order(zero_page
));
83 /* We take additional reference here. It will be put back by shrinker */
84 atomic_set(&huge_zero_refcount
, 2);
86 return READ_ONCE(huge_zero_page
);
89 void put_huge_zero_page(void)
92 * Counter should never go to zero here. Only shrinker can put
95 BUG_ON(atomic_dec_and_test(&huge_zero_refcount
));
98 static unsigned long shrink_huge_zero_page_count(struct shrinker
*shrink
,
99 struct shrink_control
*sc
)
101 /* we can free zero page only if last reference remains */
102 return atomic_read(&huge_zero_refcount
) == 1 ? HPAGE_PMD_NR
: 0;
105 static unsigned long shrink_huge_zero_page_scan(struct shrinker
*shrink
,
106 struct shrink_control
*sc
)
108 if (atomic_cmpxchg(&huge_zero_refcount
, 1, 0) == 1) {
109 struct page
*zero_page
= xchg(&huge_zero_page
, NULL
);
110 BUG_ON(zero_page
== NULL
);
111 __free_pages(zero_page
, compound_order(zero_page
));
118 static struct shrinker huge_zero_page_shrinker
= {
119 .count_objects
= shrink_huge_zero_page_count
,
120 .scan_objects
= shrink_huge_zero_page_scan
,
121 .seeks
= DEFAULT_SEEKS
,
126 static ssize_t
triple_flag_store(struct kobject
*kobj
,
127 struct kobj_attribute
*attr
,
128 const char *buf
, size_t count
,
129 enum transparent_hugepage_flag enabled
,
130 enum transparent_hugepage_flag deferred
,
131 enum transparent_hugepage_flag req_madv
)
133 if (!memcmp("defer", buf
,
134 min(sizeof("defer")-1, count
))) {
135 if (enabled
== deferred
)
137 clear_bit(enabled
, &transparent_hugepage_flags
);
138 clear_bit(req_madv
, &transparent_hugepage_flags
);
139 set_bit(deferred
, &transparent_hugepage_flags
);
140 } else if (!memcmp("always", buf
,
141 min(sizeof("always")-1, count
))) {
142 clear_bit(deferred
, &transparent_hugepage_flags
);
143 clear_bit(req_madv
, &transparent_hugepage_flags
);
144 set_bit(enabled
, &transparent_hugepage_flags
);
145 } else if (!memcmp("madvise", buf
,
146 min(sizeof("madvise")-1, count
))) {
147 clear_bit(enabled
, &transparent_hugepage_flags
);
148 clear_bit(deferred
, &transparent_hugepage_flags
);
149 set_bit(req_madv
, &transparent_hugepage_flags
);
150 } else if (!memcmp("never", buf
,
151 min(sizeof("never")-1, count
))) {
152 clear_bit(enabled
, &transparent_hugepage_flags
);
153 clear_bit(req_madv
, &transparent_hugepage_flags
);
154 clear_bit(deferred
, &transparent_hugepage_flags
);
161 static ssize_t
enabled_show(struct kobject
*kobj
,
162 struct kobj_attribute
*attr
, char *buf
)
164 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG
, &transparent_hugepage_flags
))
165 return sprintf(buf
, "[always] madvise never\n");
166 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
, &transparent_hugepage_flags
))
167 return sprintf(buf
, "always [madvise] never\n");
169 return sprintf(buf
, "always madvise [never]\n");
172 static ssize_t
enabled_store(struct kobject
*kobj
,
173 struct kobj_attribute
*attr
,
174 const char *buf
, size_t count
)
178 ret
= triple_flag_store(kobj
, attr
, buf
, count
,
179 TRANSPARENT_HUGEPAGE_FLAG
,
180 TRANSPARENT_HUGEPAGE_FLAG
,
181 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
);
184 int err
= start_stop_khugepaged();
191 static struct kobj_attribute enabled_attr
=
192 __ATTR(enabled
, 0644, enabled_show
, enabled_store
);
194 ssize_t
single_hugepage_flag_show(struct kobject
*kobj
,
195 struct kobj_attribute
*attr
, char *buf
,
196 enum transparent_hugepage_flag flag
)
198 return sprintf(buf
, "%d\n",
199 !!test_bit(flag
, &transparent_hugepage_flags
));
202 ssize_t
single_hugepage_flag_store(struct kobject
*kobj
,
203 struct kobj_attribute
*attr
,
204 const char *buf
, size_t count
,
205 enum transparent_hugepage_flag flag
)
210 ret
= kstrtoul(buf
, 10, &value
);
217 set_bit(flag
, &transparent_hugepage_flags
);
219 clear_bit(flag
, &transparent_hugepage_flags
);
225 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
226 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
227 * memory just to allocate one more hugepage.
229 static ssize_t
defrag_show(struct kobject
*kobj
,
230 struct kobj_attribute
*attr
, char *buf
)
232 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG
, &transparent_hugepage_flags
))
233 return sprintf(buf
, "[always] defer madvise never\n");
234 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG
, &transparent_hugepage_flags
))
235 return sprintf(buf
, "always [defer] madvise never\n");
236 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG
, &transparent_hugepage_flags
))
237 return sprintf(buf
, "always defer [madvise] never\n");
239 return sprintf(buf
, "always defer madvise [never]\n");
242 static ssize_t
defrag_store(struct kobject
*kobj
,
243 struct kobj_attribute
*attr
,
244 const char *buf
, size_t count
)
246 return triple_flag_store(kobj
, attr
, buf
, count
,
247 TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG
,
248 TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG
,
249 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG
);
251 static struct kobj_attribute defrag_attr
=
252 __ATTR(defrag
, 0644, defrag_show
, defrag_store
);
254 static ssize_t
use_zero_page_show(struct kobject
*kobj
,
255 struct kobj_attribute
*attr
, char *buf
)
257 return single_hugepage_flag_show(kobj
, attr
, buf
,
258 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG
);
260 static ssize_t
use_zero_page_store(struct kobject
*kobj
,
261 struct kobj_attribute
*attr
, const char *buf
, size_t count
)
263 return single_hugepage_flag_store(kobj
, attr
, buf
, count
,
264 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG
);
266 static struct kobj_attribute use_zero_page_attr
=
267 __ATTR(use_zero_page
, 0644, use_zero_page_show
, use_zero_page_store
);
268 #ifdef CONFIG_DEBUG_VM
269 static ssize_t
debug_cow_show(struct kobject
*kobj
,
270 struct kobj_attribute
*attr
, char *buf
)
272 return single_hugepage_flag_show(kobj
, attr
, buf
,
273 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG
);
275 static ssize_t
debug_cow_store(struct kobject
*kobj
,
276 struct kobj_attribute
*attr
,
277 const char *buf
, size_t count
)
279 return single_hugepage_flag_store(kobj
, attr
, buf
, count
,
280 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG
);
282 static struct kobj_attribute debug_cow_attr
=
283 __ATTR(debug_cow
, 0644, debug_cow_show
, debug_cow_store
);
284 #endif /* CONFIG_DEBUG_VM */
286 static struct attribute
*hugepage_attr
[] = {
289 &use_zero_page_attr
.attr
,
290 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
291 &shmem_enabled_attr
.attr
,
293 #ifdef CONFIG_DEBUG_VM
294 &debug_cow_attr
.attr
,
299 static struct attribute_group hugepage_attr_group
= {
300 .attrs
= hugepage_attr
,
303 static int __init
hugepage_init_sysfs(struct kobject
**hugepage_kobj
)
307 *hugepage_kobj
= kobject_create_and_add("transparent_hugepage", mm_kobj
);
308 if (unlikely(!*hugepage_kobj
)) {
309 pr_err("failed to create transparent hugepage kobject\n");
313 err
= sysfs_create_group(*hugepage_kobj
, &hugepage_attr_group
);
315 pr_err("failed to register transparent hugepage group\n");
319 err
= sysfs_create_group(*hugepage_kobj
, &khugepaged_attr_group
);
321 pr_err("failed to register transparent hugepage group\n");
322 goto remove_hp_group
;
328 sysfs_remove_group(*hugepage_kobj
, &hugepage_attr_group
);
330 kobject_put(*hugepage_kobj
);
334 static void __init
hugepage_exit_sysfs(struct kobject
*hugepage_kobj
)
336 sysfs_remove_group(hugepage_kobj
, &khugepaged_attr_group
);
337 sysfs_remove_group(hugepage_kobj
, &hugepage_attr_group
);
338 kobject_put(hugepage_kobj
);
341 static inline int hugepage_init_sysfs(struct kobject
**hugepage_kobj
)
346 static inline void hugepage_exit_sysfs(struct kobject
*hugepage_kobj
)
349 #endif /* CONFIG_SYSFS */
351 static int __init
hugepage_init(void)
354 struct kobject
*hugepage_kobj
;
356 if (!has_transparent_hugepage()) {
357 transparent_hugepage_flags
= 0;
362 * hugepages can't be allocated by the buddy allocator
364 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER
>= MAX_ORDER
);
366 * we use page->mapping and page->index in second tail page
367 * as list_head: assuming THP order >= 2
369 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER
< 2);
371 err
= hugepage_init_sysfs(&hugepage_kobj
);
375 err
= khugepaged_init();
379 err
= register_shrinker(&huge_zero_page_shrinker
);
381 goto err_hzp_shrinker
;
382 err
= register_shrinker(&deferred_split_shrinker
);
384 goto err_split_shrinker
;
387 * By default disable transparent hugepages on smaller systems,
388 * where the extra memory used could hurt more than TLB overhead
389 * is likely to save. The admin can still enable it through /sys.
391 if (totalram_pages
< (512 << (20 - PAGE_SHIFT
))) {
392 transparent_hugepage_flags
= 0;
396 err
= start_stop_khugepaged();
402 unregister_shrinker(&deferred_split_shrinker
);
404 unregister_shrinker(&huge_zero_page_shrinker
);
406 khugepaged_destroy();
408 hugepage_exit_sysfs(hugepage_kobj
);
412 subsys_initcall(hugepage_init
);
414 static int __init
setup_transparent_hugepage(char *str
)
419 if (!strcmp(str
, "always")) {
420 set_bit(TRANSPARENT_HUGEPAGE_FLAG
,
421 &transparent_hugepage_flags
);
422 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
,
423 &transparent_hugepage_flags
);
425 } else if (!strcmp(str
, "madvise")) {
426 clear_bit(TRANSPARENT_HUGEPAGE_FLAG
,
427 &transparent_hugepage_flags
);
428 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
,
429 &transparent_hugepage_flags
);
431 } else if (!strcmp(str
, "never")) {
432 clear_bit(TRANSPARENT_HUGEPAGE_FLAG
,
433 &transparent_hugepage_flags
);
434 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
,
435 &transparent_hugepage_flags
);
440 pr_warn("transparent_hugepage= cannot parse, ignored\n");
443 __setup("transparent_hugepage=", setup_transparent_hugepage
);
445 pmd_t
maybe_pmd_mkwrite(pmd_t pmd
, struct vm_area_struct
*vma
)
447 if (likely(vma
->vm_flags
& VM_WRITE
))
448 pmd
= pmd_mkwrite(pmd
);
452 static inline struct list_head
*page_deferred_list(struct page
*page
)
455 * ->lru in the tail pages is occupied by compound_head.
456 * Let's use ->mapping + ->index in the second tail page as list_head.
458 return (struct list_head
*)&page
[2].mapping
;
461 void prep_transhuge_page(struct page
*page
)
464 * we use page->mapping and page->indexlru in second tail page
465 * as list_head: assuming THP order >= 2
468 INIT_LIST_HEAD(page_deferred_list(page
));
469 set_compound_page_dtor(page
, TRANSHUGE_PAGE_DTOR
);
472 static int __do_huge_pmd_anonymous_page(struct fault_env
*fe
, struct page
*page
,
475 struct vm_area_struct
*vma
= fe
->vma
;
476 struct mem_cgroup
*memcg
;
478 unsigned long haddr
= fe
->address
& HPAGE_PMD_MASK
;
480 VM_BUG_ON_PAGE(!PageCompound(page
), page
);
482 if (mem_cgroup_try_charge(page
, vma
->vm_mm
, gfp
, &memcg
, true)) {
484 count_vm_event(THP_FAULT_FALLBACK
);
485 return VM_FAULT_FALLBACK
;
488 pgtable
= pte_alloc_one(vma
->vm_mm
, haddr
);
489 if (unlikely(!pgtable
)) {
490 mem_cgroup_cancel_charge(page
, memcg
, true);
495 clear_huge_page(page
, haddr
, HPAGE_PMD_NR
);
497 * The memory barrier inside __SetPageUptodate makes sure that
498 * clear_huge_page writes become visible before the set_pmd_at()
501 __SetPageUptodate(page
);
503 fe
->ptl
= pmd_lock(vma
->vm_mm
, fe
->pmd
);
504 if (unlikely(!pmd_none(*fe
->pmd
))) {
505 spin_unlock(fe
->ptl
);
506 mem_cgroup_cancel_charge(page
, memcg
, true);
508 pte_free(vma
->vm_mm
, pgtable
);
512 /* Deliver the page fault to userland */
513 if (userfaultfd_missing(vma
)) {
516 spin_unlock(fe
->ptl
);
517 mem_cgroup_cancel_charge(page
, memcg
, true);
519 pte_free(vma
->vm_mm
, pgtable
);
520 ret
= handle_userfault(fe
, VM_UFFD_MISSING
);
521 VM_BUG_ON(ret
& VM_FAULT_FALLBACK
);
525 entry
= mk_huge_pmd(page
, vma
->vm_page_prot
);
526 entry
= maybe_pmd_mkwrite(pmd_mkdirty(entry
), vma
);
527 page_add_new_anon_rmap(page
, vma
, haddr
, true);
528 mem_cgroup_commit_charge(page
, memcg
, false, true);
529 lru_cache_add_active_or_unevictable(page
, vma
);
530 pgtable_trans_huge_deposit(vma
->vm_mm
, fe
->pmd
, pgtable
);
531 set_pmd_at(vma
->vm_mm
, haddr
, fe
->pmd
, entry
);
532 add_mm_counter(vma
->vm_mm
, MM_ANONPAGES
, HPAGE_PMD_NR
);
533 atomic_long_inc(&vma
->vm_mm
->nr_ptes
);
534 spin_unlock(fe
->ptl
);
535 count_vm_event(THP_FAULT_ALLOC
);
542 * If THP defrag is set to always then directly reclaim/compact as necessary
543 * If set to defer then do only background reclaim/compact and defer to khugepaged
544 * If set to madvise and the VMA is flagged then directly reclaim/compact
545 * When direct reclaim/compact is allowed, don't retry except for flagged VMA's
547 static inline gfp_t
alloc_hugepage_direct_gfpmask(struct vm_area_struct
*vma
)
549 bool vma_madvised
= !!(vma
->vm_flags
& VM_HUGEPAGE
);
551 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG
,
552 &transparent_hugepage_flags
) && vma_madvised
)
553 return GFP_TRANSHUGE
;
554 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG
,
555 &transparent_hugepage_flags
))
556 return GFP_TRANSHUGE_LIGHT
| __GFP_KSWAPD_RECLAIM
;
557 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG
,
558 &transparent_hugepage_flags
))
559 return GFP_TRANSHUGE
| (vma_madvised
? 0 : __GFP_NORETRY
);
561 return GFP_TRANSHUGE_LIGHT
;
564 /* Caller must hold page table lock. */
565 static bool set_huge_zero_page(pgtable_t pgtable
, struct mm_struct
*mm
,
566 struct vm_area_struct
*vma
, unsigned long haddr
, pmd_t
*pmd
,
567 struct page
*zero_page
)
572 entry
= mk_pmd(zero_page
, vma
->vm_page_prot
);
573 entry
= pmd_mkhuge(entry
);
575 pgtable_trans_huge_deposit(mm
, pmd
, pgtable
);
576 set_pmd_at(mm
, haddr
, pmd
, entry
);
577 atomic_long_inc(&mm
->nr_ptes
);
581 int do_huge_pmd_anonymous_page(struct fault_env
*fe
)
583 struct vm_area_struct
*vma
= fe
->vma
;
586 unsigned long haddr
= fe
->address
& HPAGE_PMD_MASK
;
588 if (haddr
< vma
->vm_start
|| haddr
+ HPAGE_PMD_SIZE
> vma
->vm_end
)
589 return VM_FAULT_FALLBACK
;
590 if (unlikely(anon_vma_prepare(vma
)))
592 if (unlikely(khugepaged_enter(vma
, vma
->vm_flags
)))
594 if (!(fe
->flags
& FAULT_FLAG_WRITE
) &&
595 !mm_forbids_zeropage(vma
->vm_mm
) &&
596 transparent_hugepage_use_zero_page()) {
598 struct page
*zero_page
;
601 pgtable
= pte_alloc_one(vma
->vm_mm
, haddr
);
602 if (unlikely(!pgtable
))
604 zero_page
= get_huge_zero_page();
605 if (unlikely(!zero_page
)) {
606 pte_free(vma
->vm_mm
, pgtable
);
607 count_vm_event(THP_FAULT_FALLBACK
);
608 return VM_FAULT_FALLBACK
;
610 fe
->ptl
= pmd_lock(vma
->vm_mm
, fe
->pmd
);
613 if (pmd_none(*fe
->pmd
)) {
614 if (userfaultfd_missing(vma
)) {
615 spin_unlock(fe
->ptl
);
616 ret
= handle_userfault(fe
, VM_UFFD_MISSING
);
617 VM_BUG_ON(ret
& VM_FAULT_FALLBACK
);
619 set_huge_zero_page(pgtable
, vma
->vm_mm
, vma
,
620 haddr
, fe
->pmd
, zero_page
);
621 spin_unlock(fe
->ptl
);
625 spin_unlock(fe
->ptl
);
627 pte_free(vma
->vm_mm
, pgtable
);
628 put_huge_zero_page();
632 gfp
= alloc_hugepage_direct_gfpmask(vma
);
633 page
= alloc_hugepage_vma(gfp
, vma
, haddr
, HPAGE_PMD_ORDER
);
634 if (unlikely(!page
)) {
635 count_vm_event(THP_FAULT_FALLBACK
);
636 return VM_FAULT_FALLBACK
;
638 prep_transhuge_page(page
);
639 return __do_huge_pmd_anonymous_page(fe
, page
, gfp
);
642 static void insert_pfn_pmd(struct vm_area_struct
*vma
, unsigned long addr
,
643 pmd_t
*pmd
, pfn_t pfn
, pgprot_t prot
, bool write
)
645 struct mm_struct
*mm
= vma
->vm_mm
;
649 ptl
= pmd_lock(mm
, pmd
);
650 entry
= pmd_mkhuge(pfn_t_pmd(pfn
, prot
));
651 if (pfn_t_devmap(pfn
))
652 entry
= pmd_mkdevmap(entry
);
654 entry
= pmd_mkyoung(pmd_mkdirty(entry
));
655 entry
= maybe_pmd_mkwrite(entry
, vma
);
657 set_pmd_at(mm
, addr
, pmd
, entry
);
658 update_mmu_cache_pmd(vma
, addr
, pmd
);
662 int vmf_insert_pfn_pmd(struct vm_area_struct
*vma
, unsigned long addr
,
663 pmd_t
*pmd
, pfn_t pfn
, bool write
)
665 pgprot_t pgprot
= vma
->vm_page_prot
;
667 * If we had pmd_special, we could avoid all these restrictions,
668 * but we need to be consistent with PTEs and architectures that
669 * can't support a 'special' bit.
671 BUG_ON(!(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)));
672 BUG_ON((vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)) ==
673 (VM_PFNMAP
|VM_MIXEDMAP
));
674 BUG_ON((vma
->vm_flags
& VM_PFNMAP
) && is_cow_mapping(vma
->vm_flags
));
675 BUG_ON(!pfn_t_devmap(pfn
));
677 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
678 return VM_FAULT_SIGBUS
;
679 if (track_pfn_insert(vma
, &pgprot
, pfn
))
680 return VM_FAULT_SIGBUS
;
681 insert_pfn_pmd(vma
, addr
, pmd
, pfn
, pgprot
, write
);
682 return VM_FAULT_NOPAGE
;
684 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd
);
686 static void touch_pmd(struct vm_area_struct
*vma
, unsigned long addr
,
692 * We should set the dirty bit only for FOLL_WRITE but for now
693 * the dirty bit in the pmd is meaningless. And if the dirty
694 * bit will become meaningful and we'll only set it with
695 * FOLL_WRITE, an atomic set_bit will be required on the pmd to
696 * set the young bit, instead of the current set_pmd_at.
698 _pmd
= pmd_mkyoung(pmd_mkdirty(*pmd
));
699 if (pmdp_set_access_flags(vma
, addr
& HPAGE_PMD_MASK
,
701 update_mmu_cache_pmd(vma
, addr
, pmd
);
704 struct page
*follow_devmap_pmd(struct vm_area_struct
*vma
, unsigned long addr
,
705 pmd_t
*pmd
, int flags
)
707 unsigned long pfn
= pmd_pfn(*pmd
);
708 struct mm_struct
*mm
= vma
->vm_mm
;
709 struct dev_pagemap
*pgmap
;
712 assert_spin_locked(pmd_lockptr(mm
, pmd
));
714 if (flags
& FOLL_WRITE
&& !pmd_write(*pmd
))
717 if (pmd_present(*pmd
) && pmd_devmap(*pmd
))
722 if (flags
& FOLL_TOUCH
)
723 touch_pmd(vma
, addr
, pmd
);
726 * device mapped pages can only be returned if the
727 * caller will manage the page reference count.
729 if (!(flags
& FOLL_GET
))
730 return ERR_PTR(-EEXIST
);
732 pfn
+= (addr
& ~PMD_MASK
) >> PAGE_SHIFT
;
733 pgmap
= get_dev_pagemap(pfn
, NULL
);
735 return ERR_PTR(-EFAULT
);
736 page
= pfn_to_page(pfn
);
738 put_dev_pagemap(pgmap
);
743 int copy_huge_pmd(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
744 pmd_t
*dst_pmd
, pmd_t
*src_pmd
, unsigned long addr
,
745 struct vm_area_struct
*vma
)
747 spinlock_t
*dst_ptl
, *src_ptl
;
748 struct page
*src_page
;
750 pgtable_t pgtable
= NULL
;
753 /* Skip if can be re-fill on fault */
754 if (!vma_is_anonymous(vma
))
757 pgtable
= pte_alloc_one(dst_mm
, addr
);
758 if (unlikely(!pgtable
))
761 dst_ptl
= pmd_lock(dst_mm
, dst_pmd
);
762 src_ptl
= pmd_lockptr(src_mm
, src_pmd
);
763 spin_lock_nested(src_ptl
, SINGLE_DEPTH_NESTING
);
767 if (unlikely(!pmd_trans_huge(pmd
))) {
768 pte_free(dst_mm
, pgtable
);
772 * When page table lock is held, the huge zero pmd should not be
773 * under splitting since we don't split the page itself, only pmd to
776 if (is_huge_zero_pmd(pmd
)) {
777 struct page
*zero_page
;
779 * get_huge_zero_page() will never allocate a new page here,
780 * since we already have a zero page to copy. It just takes a
783 zero_page
= get_huge_zero_page();
784 set_huge_zero_page(pgtable
, dst_mm
, vma
, addr
, dst_pmd
,
790 src_page
= pmd_page(pmd
);
791 VM_BUG_ON_PAGE(!PageHead(src_page
), src_page
);
793 page_dup_rmap(src_page
, true);
794 add_mm_counter(dst_mm
, MM_ANONPAGES
, HPAGE_PMD_NR
);
795 atomic_long_inc(&dst_mm
->nr_ptes
);
796 pgtable_trans_huge_deposit(dst_mm
, dst_pmd
, pgtable
);
798 pmdp_set_wrprotect(src_mm
, addr
, src_pmd
);
799 pmd
= pmd_mkold(pmd_wrprotect(pmd
));
800 set_pmd_at(dst_mm
, addr
, dst_pmd
, pmd
);
804 spin_unlock(src_ptl
);
805 spin_unlock(dst_ptl
);
810 void huge_pmd_set_accessed(struct fault_env
*fe
, pmd_t orig_pmd
)
815 fe
->ptl
= pmd_lock(fe
->vma
->vm_mm
, fe
->pmd
);
816 if (unlikely(!pmd_same(*fe
->pmd
, orig_pmd
)))
819 entry
= pmd_mkyoung(orig_pmd
);
820 haddr
= fe
->address
& HPAGE_PMD_MASK
;
821 if (pmdp_set_access_flags(fe
->vma
, haddr
, fe
->pmd
, entry
,
822 fe
->flags
& FAULT_FLAG_WRITE
))
823 update_mmu_cache_pmd(fe
->vma
, fe
->address
, fe
->pmd
);
826 spin_unlock(fe
->ptl
);
829 static int do_huge_pmd_wp_page_fallback(struct fault_env
*fe
, pmd_t orig_pmd
,
832 struct vm_area_struct
*vma
= fe
->vma
;
833 unsigned long haddr
= fe
->address
& HPAGE_PMD_MASK
;
834 struct mem_cgroup
*memcg
;
839 unsigned long mmun_start
; /* For mmu_notifiers */
840 unsigned long mmun_end
; /* For mmu_notifiers */
842 pages
= kmalloc(sizeof(struct page
*) * HPAGE_PMD_NR
,
844 if (unlikely(!pages
)) {
849 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
850 pages
[i
] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE
|
851 __GFP_OTHER_NODE
, vma
,
852 fe
->address
, page_to_nid(page
));
853 if (unlikely(!pages
[i
] ||
854 mem_cgroup_try_charge(pages
[i
], vma
->vm_mm
,
855 GFP_KERNEL
, &memcg
, false))) {
859 memcg
= (void *)page_private(pages
[i
]);
860 set_page_private(pages
[i
], 0);
861 mem_cgroup_cancel_charge(pages
[i
], memcg
,
869 set_page_private(pages
[i
], (unsigned long)memcg
);
872 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
873 copy_user_highpage(pages
[i
], page
+ i
,
874 haddr
+ PAGE_SIZE
* i
, vma
);
875 __SetPageUptodate(pages
[i
]);
880 mmun_end
= haddr
+ HPAGE_PMD_SIZE
;
881 mmu_notifier_invalidate_range_start(vma
->vm_mm
, mmun_start
, mmun_end
);
883 fe
->ptl
= pmd_lock(vma
->vm_mm
, fe
->pmd
);
884 if (unlikely(!pmd_same(*fe
->pmd
, orig_pmd
)))
886 VM_BUG_ON_PAGE(!PageHead(page
), page
);
888 pmdp_huge_clear_flush_notify(vma
, haddr
, fe
->pmd
);
889 /* leave pmd empty until pte is filled */
891 pgtable
= pgtable_trans_huge_withdraw(vma
->vm_mm
, fe
->pmd
);
892 pmd_populate(vma
->vm_mm
, &_pmd
, pgtable
);
894 for (i
= 0; i
< HPAGE_PMD_NR
; i
++, haddr
+= PAGE_SIZE
) {
896 entry
= mk_pte(pages
[i
], vma
->vm_page_prot
);
897 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
898 memcg
= (void *)page_private(pages
[i
]);
899 set_page_private(pages
[i
], 0);
900 page_add_new_anon_rmap(pages
[i
], fe
->vma
, haddr
, false);
901 mem_cgroup_commit_charge(pages
[i
], memcg
, false, false);
902 lru_cache_add_active_or_unevictable(pages
[i
], vma
);
903 fe
->pte
= pte_offset_map(&_pmd
, haddr
);
904 VM_BUG_ON(!pte_none(*fe
->pte
));
905 set_pte_at(vma
->vm_mm
, haddr
, fe
->pte
, entry
);
910 smp_wmb(); /* make pte visible before pmd */
911 pmd_populate(vma
->vm_mm
, fe
->pmd
, pgtable
);
912 page_remove_rmap(page
, true);
913 spin_unlock(fe
->ptl
);
915 mmu_notifier_invalidate_range_end(vma
->vm_mm
, mmun_start
, mmun_end
);
917 ret
|= VM_FAULT_WRITE
;
924 spin_unlock(fe
->ptl
);
925 mmu_notifier_invalidate_range_end(vma
->vm_mm
, mmun_start
, mmun_end
);
926 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
927 memcg
= (void *)page_private(pages
[i
]);
928 set_page_private(pages
[i
], 0);
929 mem_cgroup_cancel_charge(pages
[i
], memcg
, false);
936 int do_huge_pmd_wp_page(struct fault_env
*fe
, pmd_t orig_pmd
)
938 struct vm_area_struct
*vma
= fe
->vma
;
939 struct page
*page
= NULL
, *new_page
;
940 struct mem_cgroup
*memcg
;
941 unsigned long haddr
= fe
->address
& HPAGE_PMD_MASK
;
942 unsigned long mmun_start
; /* For mmu_notifiers */
943 unsigned long mmun_end
; /* For mmu_notifiers */
944 gfp_t huge_gfp
; /* for allocation and charge */
947 fe
->ptl
= pmd_lockptr(vma
->vm_mm
, fe
->pmd
);
948 VM_BUG_ON_VMA(!vma
->anon_vma
, vma
);
949 if (is_huge_zero_pmd(orig_pmd
))
952 if (unlikely(!pmd_same(*fe
->pmd
, orig_pmd
)))
955 page
= pmd_page(orig_pmd
);
956 VM_BUG_ON_PAGE(!PageCompound(page
) || !PageHead(page
), page
);
958 * We can only reuse the page if nobody else maps the huge page or it's
961 if (page_trans_huge_mapcount(page
, NULL
) == 1) {
963 entry
= pmd_mkyoung(orig_pmd
);
964 entry
= maybe_pmd_mkwrite(pmd_mkdirty(entry
), vma
);
965 if (pmdp_set_access_flags(vma
, haddr
, fe
->pmd
, entry
, 1))
966 update_mmu_cache_pmd(vma
, fe
->address
, fe
->pmd
);
967 ret
|= VM_FAULT_WRITE
;
971 spin_unlock(fe
->ptl
);
973 if (transparent_hugepage_enabled(vma
) &&
974 !transparent_hugepage_debug_cow()) {
975 huge_gfp
= alloc_hugepage_direct_gfpmask(vma
);
976 new_page
= alloc_hugepage_vma(huge_gfp
, vma
, haddr
, HPAGE_PMD_ORDER
);
980 if (likely(new_page
)) {
981 prep_transhuge_page(new_page
);
984 split_huge_pmd(vma
, fe
->pmd
, fe
->address
);
985 ret
|= VM_FAULT_FALLBACK
;
987 ret
= do_huge_pmd_wp_page_fallback(fe
, orig_pmd
, page
);
988 if (ret
& VM_FAULT_OOM
) {
989 split_huge_pmd(vma
, fe
->pmd
, fe
->address
);
990 ret
|= VM_FAULT_FALLBACK
;
994 count_vm_event(THP_FAULT_FALLBACK
);
998 if (unlikely(mem_cgroup_try_charge(new_page
, vma
->vm_mm
,
999 huge_gfp
, &memcg
, true))) {
1001 split_huge_pmd(vma
, fe
->pmd
, fe
->address
);
1004 ret
|= VM_FAULT_FALLBACK
;
1005 count_vm_event(THP_FAULT_FALLBACK
);
1009 count_vm_event(THP_FAULT_ALLOC
);
1012 clear_huge_page(new_page
, haddr
, HPAGE_PMD_NR
);
1014 copy_user_huge_page(new_page
, page
, haddr
, vma
, HPAGE_PMD_NR
);
1015 __SetPageUptodate(new_page
);
1018 mmun_end
= haddr
+ HPAGE_PMD_SIZE
;
1019 mmu_notifier_invalidate_range_start(vma
->vm_mm
, mmun_start
, mmun_end
);
1024 if (unlikely(!pmd_same(*fe
->pmd
, orig_pmd
))) {
1025 spin_unlock(fe
->ptl
);
1026 mem_cgroup_cancel_charge(new_page
, memcg
, true);
1031 entry
= mk_huge_pmd(new_page
, vma
->vm_page_prot
);
1032 entry
= maybe_pmd_mkwrite(pmd_mkdirty(entry
), vma
);
1033 pmdp_huge_clear_flush_notify(vma
, haddr
, fe
->pmd
);
1034 page_add_new_anon_rmap(new_page
, vma
, haddr
, true);
1035 mem_cgroup_commit_charge(new_page
, memcg
, false, true);
1036 lru_cache_add_active_or_unevictable(new_page
, vma
);
1037 set_pmd_at(vma
->vm_mm
, haddr
, fe
->pmd
, entry
);
1038 update_mmu_cache_pmd(vma
, fe
->address
, fe
->pmd
);
1040 add_mm_counter(vma
->vm_mm
, MM_ANONPAGES
, HPAGE_PMD_NR
);
1041 put_huge_zero_page();
1043 VM_BUG_ON_PAGE(!PageHead(page
), page
);
1044 page_remove_rmap(page
, true);
1047 ret
|= VM_FAULT_WRITE
;
1049 spin_unlock(fe
->ptl
);
1051 mmu_notifier_invalidate_range_end(vma
->vm_mm
, mmun_start
, mmun_end
);
1055 spin_unlock(fe
->ptl
);
1059 struct page
*follow_trans_huge_pmd(struct vm_area_struct
*vma
,
1064 struct mm_struct
*mm
= vma
->vm_mm
;
1065 struct page
*page
= NULL
;
1067 assert_spin_locked(pmd_lockptr(mm
, pmd
));
1069 if (flags
& FOLL_WRITE
&& !pmd_write(*pmd
))
1072 /* Avoid dumping huge zero page */
1073 if ((flags
& FOLL_DUMP
) && is_huge_zero_pmd(*pmd
))
1074 return ERR_PTR(-EFAULT
);
1076 /* Full NUMA hinting faults to serialise migration in fault paths */
1077 if ((flags
& FOLL_NUMA
) && pmd_protnone(*pmd
))
1080 page
= pmd_page(*pmd
);
1081 VM_BUG_ON_PAGE(!PageHead(page
) && !is_zone_device_page(page
), page
);
1082 if (flags
& FOLL_TOUCH
)
1083 touch_pmd(vma
, addr
, pmd
);
1084 if ((flags
& FOLL_MLOCK
) && (vma
->vm_flags
& VM_LOCKED
)) {
1086 * We don't mlock() pte-mapped THPs. This way we can avoid
1087 * leaking mlocked pages into non-VM_LOCKED VMAs.
1091 * In most cases the pmd is the only mapping of the page as we
1092 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1093 * writable private mappings in populate_vma_page_range().
1095 * The only scenario when we have the page shared here is if we
1096 * mlocking read-only mapping shared over fork(). We skip
1097 * mlocking such pages.
1101 * We can expect PageDoubleMap() to be stable under page lock:
1102 * for file pages we set it in page_add_file_rmap(), which
1103 * requires page to be locked.
1106 if (PageAnon(page
) && compound_mapcount(page
) != 1)
1108 if (PageDoubleMap(page
) || !page
->mapping
)
1110 if (!trylock_page(page
))
1113 if (page
->mapping
&& !PageDoubleMap(page
))
1114 mlock_vma_page(page
);
1118 page
+= (addr
& ~HPAGE_PMD_MASK
) >> PAGE_SHIFT
;
1119 VM_BUG_ON_PAGE(!PageCompound(page
) && !is_zone_device_page(page
), page
);
1120 if (flags
& FOLL_GET
)
1127 /* NUMA hinting page fault entry point for trans huge pmds */
1128 int do_huge_pmd_numa_page(struct fault_env
*fe
, pmd_t pmd
)
1130 struct vm_area_struct
*vma
= fe
->vma
;
1131 struct anon_vma
*anon_vma
= NULL
;
1133 unsigned long haddr
= fe
->address
& HPAGE_PMD_MASK
;
1134 int page_nid
= -1, this_nid
= numa_node_id();
1135 int target_nid
, last_cpupid
= -1;
1137 bool migrated
= false;
1141 fe
->ptl
= pmd_lock(vma
->vm_mm
, fe
->pmd
);
1142 if (unlikely(!pmd_same(pmd
, *fe
->pmd
)))
1146 * If there are potential migrations, wait for completion and retry
1147 * without disrupting NUMA hinting information. Do not relock and
1148 * check_same as the page may no longer be mapped.
1150 if (unlikely(pmd_trans_migrating(*fe
->pmd
))) {
1151 page
= pmd_page(*fe
->pmd
);
1152 spin_unlock(fe
->ptl
);
1153 wait_on_page_locked(page
);
1157 page
= pmd_page(pmd
);
1158 BUG_ON(is_huge_zero_page(page
));
1159 page_nid
= page_to_nid(page
);
1160 last_cpupid
= page_cpupid_last(page
);
1161 count_vm_numa_event(NUMA_HINT_FAULTS
);
1162 if (page_nid
== this_nid
) {
1163 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL
);
1164 flags
|= TNF_FAULT_LOCAL
;
1167 /* See similar comment in do_numa_page for explanation */
1168 if (!(vma
->vm_flags
& VM_WRITE
))
1169 flags
|= TNF_NO_GROUP
;
1172 * Acquire the page lock to serialise THP migrations but avoid dropping
1173 * page_table_lock if at all possible
1175 page_locked
= trylock_page(page
);
1176 target_nid
= mpol_misplaced(page
, vma
, haddr
);
1177 if (target_nid
== -1) {
1178 /* If the page was locked, there are no parallel migrations */
1183 /* Migration could have started since the pmd_trans_migrating check */
1185 spin_unlock(fe
->ptl
);
1186 wait_on_page_locked(page
);
1192 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1193 * to serialises splits
1196 spin_unlock(fe
->ptl
);
1197 anon_vma
= page_lock_anon_vma_read(page
);
1199 /* Confirm the PMD did not change while page_table_lock was released */
1201 if (unlikely(!pmd_same(pmd
, *fe
->pmd
))) {
1208 /* Bail if we fail to protect against THP splits for any reason */
1209 if (unlikely(!anon_vma
)) {
1216 * Migrate the THP to the requested node, returns with page unlocked
1217 * and access rights restored.
1219 spin_unlock(fe
->ptl
);
1220 migrated
= migrate_misplaced_transhuge_page(vma
->vm_mm
, vma
,
1221 fe
->pmd
, pmd
, fe
->address
, page
, target_nid
);
1223 flags
|= TNF_MIGRATED
;
1224 page_nid
= target_nid
;
1226 flags
|= TNF_MIGRATE_FAIL
;
1230 BUG_ON(!PageLocked(page
));
1231 was_writable
= pmd_write(pmd
);
1232 pmd
= pmd_modify(pmd
, vma
->vm_page_prot
);
1233 pmd
= pmd_mkyoung(pmd
);
1235 pmd
= pmd_mkwrite(pmd
);
1236 set_pmd_at(vma
->vm_mm
, haddr
, fe
->pmd
, pmd
);
1237 update_mmu_cache_pmd(vma
, fe
->address
, fe
->pmd
);
1240 spin_unlock(fe
->ptl
);
1244 page_unlock_anon_vma_read(anon_vma
);
1247 task_numa_fault(last_cpupid
, page_nid
, HPAGE_PMD_NR
, fe
->flags
);
1253 * Return true if we do MADV_FREE successfully on entire pmd page.
1254 * Otherwise, return false.
1256 bool madvise_free_huge_pmd(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
1257 pmd_t
*pmd
, unsigned long addr
, unsigned long next
)
1262 struct mm_struct
*mm
= tlb
->mm
;
1265 ptl
= pmd_trans_huge_lock(pmd
, vma
);
1270 if (is_huge_zero_pmd(orig_pmd
))
1273 page
= pmd_page(orig_pmd
);
1275 * If other processes are mapping this page, we couldn't discard
1276 * the page unless they all do MADV_FREE so let's skip the page.
1278 if (page_mapcount(page
) != 1)
1281 if (!trylock_page(page
))
1285 * If user want to discard part-pages of THP, split it so MADV_FREE
1286 * will deactivate only them.
1288 if (next
- addr
!= HPAGE_PMD_SIZE
) {
1291 split_huge_page(page
);
1297 if (PageDirty(page
))
1298 ClearPageDirty(page
);
1301 if (PageActive(page
))
1302 deactivate_page(page
);
1304 if (pmd_young(orig_pmd
) || pmd_dirty(orig_pmd
)) {
1305 orig_pmd
= pmdp_huge_get_and_clear_full(tlb
->mm
, addr
, pmd
,
1307 orig_pmd
= pmd_mkold(orig_pmd
);
1308 orig_pmd
= pmd_mkclean(orig_pmd
);
1310 set_pmd_at(mm
, addr
, pmd
, orig_pmd
);
1311 tlb_remove_pmd_tlb_entry(tlb
, pmd
, addr
);
1320 int zap_huge_pmd(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
1321 pmd_t
*pmd
, unsigned long addr
)
1326 ptl
= __pmd_trans_huge_lock(pmd
, vma
);
1330 * For architectures like ppc64 we look at deposited pgtable
1331 * when calling pmdp_huge_get_and_clear. So do the
1332 * pgtable_trans_huge_withdraw after finishing pmdp related
1335 orig_pmd
= pmdp_huge_get_and_clear_full(tlb
->mm
, addr
, pmd
,
1337 tlb_remove_pmd_tlb_entry(tlb
, pmd
, addr
);
1338 if (vma_is_dax(vma
)) {
1340 if (is_huge_zero_pmd(orig_pmd
))
1341 tlb_remove_page(tlb
, pmd_page(orig_pmd
));
1342 } else if (is_huge_zero_pmd(orig_pmd
)) {
1343 pte_free(tlb
->mm
, pgtable_trans_huge_withdraw(tlb
->mm
, pmd
));
1344 atomic_long_dec(&tlb
->mm
->nr_ptes
);
1346 tlb_remove_page(tlb
, pmd_page(orig_pmd
));
1348 struct page
*page
= pmd_page(orig_pmd
);
1349 page_remove_rmap(page
, true);
1350 VM_BUG_ON_PAGE(page_mapcount(page
) < 0, page
);
1351 VM_BUG_ON_PAGE(!PageHead(page
), page
);
1352 if (PageAnon(page
)) {
1354 pgtable
= pgtable_trans_huge_withdraw(tlb
->mm
, pmd
);
1355 pte_free(tlb
->mm
, pgtable
);
1356 atomic_long_dec(&tlb
->mm
->nr_ptes
);
1357 add_mm_counter(tlb
->mm
, MM_ANONPAGES
, -HPAGE_PMD_NR
);
1359 add_mm_counter(tlb
->mm
, MM_FILEPAGES
, -HPAGE_PMD_NR
);
1362 tlb_remove_page_size(tlb
, page
, HPAGE_PMD_SIZE
);
1367 bool move_huge_pmd(struct vm_area_struct
*vma
, unsigned long old_addr
,
1368 unsigned long new_addr
, unsigned long old_end
,
1369 pmd_t
*old_pmd
, pmd_t
*new_pmd
)
1371 spinlock_t
*old_ptl
, *new_ptl
;
1373 struct mm_struct
*mm
= vma
->vm_mm
;
1375 if ((old_addr
& ~HPAGE_PMD_MASK
) ||
1376 (new_addr
& ~HPAGE_PMD_MASK
) ||
1377 old_end
- old_addr
< HPAGE_PMD_SIZE
)
1381 * The destination pmd shouldn't be established, free_pgtables()
1382 * should have release it.
1384 if (WARN_ON(!pmd_none(*new_pmd
))) {
1385 VM_BUG_ON(pmd_trans_huge(*new_pmd
));
1390 * We don't have to worry about the ordering of src and dst
1391 * ptlocks because exclusive mmap_sem prevents deadlock.
1393 old_ptl
= __pmd_trans_huge_lock(old_pmd
, vma
);
1395 new_ptl
= pmd_lockptr(mm
, new_pmd
);
1396 if (new_ptl
!= old_ptl
)
1397 spin_lock_nested(new_ptl
, SINGLE_DEPTH_NESTING
);
1398 pmd
= pmdp_huge_get_and_clear(mm
, old_addr
, old_pmd
);
1399 VM_BUG_ON(!pmd_none(*new_pmd
));
1401 if (pmd_move_must_withdraw(new_ptl
, old_ptl
) &&
1402 vma_is_anonymous(vma
)) {
1404 pgtable
= pgtable_trans_huge_withdraw(mm
, old_pmd
);
1405 pgtable_trans_huge_deposit(mm
, new_pmd
, pgtable
);
1407 set_pmd_at(mm
, new_addr
, new_pmd
, pmd_mksoft_dirty(pmd
));
1408 if (new_ptl
!= old_ptl
)
1409 spin_unlock(new_ptl
);
1410 spin_unlock(old_ptl
);
1418 * - 0 if PMD could not be locked
1419 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1420 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1422 int change_huge_pmd(struct vm_area_struct
*vma
, pmd_t
*pmd
,
1423 unsigned long addr
, pgprot_t newprot
, int prot_numa
)
1425 struct mm_struct
*mm
= vma
->vm_mm
;
1429 ptl
= __pmd_trans_huge_lock(pmd
, vma
);
1432 bool preserve_write
= prot_numa
&& pmd_write(*pmd
);
1436 * Avoid trapping faults against the zero page. The read-only
1437 * data is likely to be read-cached on the local CPU and
1438 * local/remote hits to the zero page are not interesting.
1440 if (prot_numa
&& is_huge_zero_pmd(*pmd
)) {
1445 if (!prot_numa
|| !pmd_protnone(*pmd
)) {
1446 entry
= pmdp_huge_get_and_clear_notify(mm
, addr
, pmd
);
1447 entry
= pmd_modify(entry
, newprot
);
1449 entry
= pmd_mkwrite(entry
);
1451 set_pmd_at(mm
, addr
, pmd
, entry
);
1452 BUG_ON(vma_is_anonymous(vma
) && !preserve_write
&&
1462 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1464 * Note that if it returns page table lock pointer, this routine returns without
1465 * unlocking page table lock. So callers must unlock it.
1467 spinlock_t
*__pmd_trans_huge_lock(pmd_t
*pmd
, struct vm_area_struct
*vma
)
1470 ptl
= pmd_lock(vma
->vm_mm
, pmd
);
1471 if (likely(pmd_trans_huge(*pmd
) || pmd_devmap(*pmd
)))
1477 static void __split_huge_zero_page_pmd(struct vm_area_struct
*vma
,
1478 unsigned long haddr
, pmd_t
*pmd
)
1480 struct mm_struct
*mm
= vma
->vm_mm
;
1485 /* leave pmd empty until pte is filled */
1486 pmdp_huge_clear_flush_notify(vma
, haddr
, pmd
);
1488 pgtable
= pgtable_trans_huge_withdraw(mm
, pmd
);
1489 pmd_populate(mm
, &_pmd
, pgtable
);
1491 for (i
= 0; i
< HPAGE_PMD_NR
; i
++, haddr
+= PAGE_SIZE
) {
1493 entry
= pfn_pte(my_zero_pfn(haddr
), vma
->vm_page_prot
);
1494 entry
= pte_mkspecial(entry
);
1495 pte
= pte_offset_map(&_pmd
, haddr
);
1496 VM_BUG_ON(!pte_none(*pte
));
1497 set_pte_at(mm
, haddr
, pte
, entry
);
1500 smp_wmb(); /* make pte visible before pmd */
1501 pmd_populate(mm
, pmd
, pgtable
);
1502 put_huge_zero_page();
1505 static void __split_huge_pmd_locked(struct vm_area_struct
*vma
, pmd_t
*pmd
,
1506 unsigned long haddr
, bool freeze
)
1508 struct mm_struct
*mm
= vma
->vm_mm
;
1512 bool young
, write
, dirty
, soft_dirty
;
1516 VM_BUG_ON(haddr
& ~HPAGE_PMD_MASK
);
1517 VM_BUG_ON_VMA(vma
->vm_start
> haddr
, vma
);
1518 VM_BUG_ON_VMA(vma
->vm_end
< haddr
+ HPAGE_PMD_SIZE
, vma
);
1519 VM_BUG_ON(!pmd_trans_huge(*pmd
) && !pmd_devmap(*pmd
));
1521 count_vm_event(THP_SPLIT_PMD
);
1523 if (!vma_is_anonymous(vma
)) {
1524 _pmd
= pmdp_huge_clear_flush_notify(vma
, haddr
, pmd
);
1525 if (is_huge_zero_pmd(_pmd
))
1526 put_huge_zero_page();
1527 if (vma_is_dax(vma
))
1529 page
= pmd_page(_pmd
);
1530 if (!PageReferenced(page
) && pmd_young(_pmd
))
1531 SetPageReferenced(page
);
1532 page_remove_rmap(page
, true);
1534 add_mm_counter(mm
, MM_FILEPAGES
, -HPAGE_PMD_NR
);
1536 } else if (is_huge_zero_pmd(*pmd
)) {
1537 return __split_huge_zero_page_pmd(vma
, haddr
, pmd
);
1540 page
= pmd_page(*pmd
);
1541 VM_BUG_ON_PAGE(!page_count(page
), page
);
1542 page_ref_add(page
, HPAGE_PMD_NR
- 1);
1543 write
= pmd_write(*pmd
);
1544 young
= pmd_young(*pmd
);
1545 dirty
= pmd_dirty(*pmd
);
1546 soft_dirty
= pmd_soft_dirty(*pmd
);
1548 pmdp_huge_split_prepare(vma
, haddr
, pmd
);
1549 pgtable
= pgtable_trans_huge_withdraw(mm
, pmd
);
1550 pmd_populate(mm
, &_pmd
, pgtable
);
1552 for (i
= 0, addr
= haddr
; i
< HPAGE_PMD_NR
; i
++, addr
+= PAGE_SIZE
) {
1555 * Note that NUMA hinting access restrictions are not
1556 * transferred to avoid any possibility of altering
1557 * permissions across VMAs.
1560 swp_entry_t swp_entry
;
1561 swp_entry
= make_migration_entry(page
+ i
, write
);
1562 entry
= swp_entry_to_pte(swp_entry
);
1564 entry
= pte_swp_mksoft_dirty(entry
);
1566 entry
= mk_pte(page
+ i
, vma
->vm_page_prot
);
1567 entry
= maybe_mkwrite(entry
, vma
);
1569 entry
= pte_wrprotect(entry
);
1571 entry
= pte_mkold(entry
);
1573 entry
= pte_mksoft_dirty(entry
);
1576 SetPageDirty(page
+ i
);
1577 pte
= pte_offset_map(&_pmd
, addr
);
1578 BUG_ON(!pte_none(*pte
));
1579 set_pte_at(mm
, addr
, pte
, entry
);
1580 atomic_inc(&page
[i
]._mapcount
);
1585 * Set PG_double_map before dropping compound_mapcount to avoid
1586 * false-negative page_mapped().
1588 if (compound_mapcount(page
) > 1 && !TestSetPageDoubleMap(page
)) {
1589 for (i
= 0; i
< HPAGE_PMD_NR
; i
++)
1590 atomic_inc(&page
[i
]._mapcount
);
1593 if (atomic_add_negative(-1, compound_mapcount_ptr(page
))) {
1594 /* Last compound_mapcount is gone. */
1595 __dec_node_page_state(page
, NR_ANON_THPS
);
1596 if (TestClearPageDoubleMap(page
)) {
1597 /* No need in mapcount reference anymore */
1598 for (i
= 0; i
< HPAGE_PMD_NR
; i
++)
1599 atomic_dec(&page
[i
]._mapcount
);
1603 smp_wmb(); /* make pte visible before pmd */
1605 * Up to this point the pmd is present and huge and userland has the
1606 * whole access to the hugepage during the split (which happens in
1607 * place). If we overwrite the pmd with the not-huge version pointing
1608 * to the pte here (which of course we could if all CPUs were bug
1609 * free), userland could trigger a small page size TLB miss on the
1610 * small sized TLB while the hugepage TLB entry is still established in
1611 * the huge TLB. Some CPU doesn't like that.
1612 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
1613 * 383 on page 93. Intel should be safe but is also warns that it's
1614 * only safe if the permission and cache attributes of the two entries
1615 * loaded in the two TLB is identical (which should be the case here).
1616 * But it is generally safer to never allow small and huge TLB entries
1617 * for the same virtual address to be loaded simultaneously. So instead
1618 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
1619 * current pmd notpresent (atomically because here the pmd_trans_huge
1620 * and pmd_trans_splitting must remain set at all times on the pmd
1621 * until the split is complete for this pmd), then we flush the SMP TLB
1622 * and finally we write the non-huge version of the pmd entry with
1625 pmdp_invalidate(vma
, haddr
, pmd
);
1626 pmd_populate(mm
, pmd
, pgtable
);
1629 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
1630 page_remove_rmap(page
+ i
, false);
1636 void __split_huge_pmd(struct vm_area_struct
*vma
, pmd_t
*pmd
,
1637 unsigned long address
, bool freeze
, struct page
*page
)
1640 struct mm_struct
*mm
= vma
->vm_mm
;
1641 unsigned long haddr
= address
& HPAGE_PMD_MASK
;
1643 mmu_notifier_invalidate_range_start(mm
, haddr
, haddr
+ HPAGE_PMD_SIZE
);
1644 ptl
= pmd_lock(mm
, pmd
);
1647 * If caller asks to setup a migration entries, we need a page to check
1648 * pmd against. Otherwise we can end up replacing wrong page.
1650 VM_BUG_ON(freeze
&& !page
);
1651 if (page
&& page
!= pmd_page(*pmd
))
1654 if (pmd_trans_huge(*pmd
)) {
1655 page
= pmd_page(*pmd
);
1656 if (PageMlocked(page
))
1657 clear_page_mlock(page
);
1658 } else if (!pmd_devmap(*pmd
))
1660 __split_huge_pmd_locked(vma
, pmd
, haddr
, freeze
);
1663 mmu_notifier_invalidate_range_end(mm
, haddr
, haddr
+ HPAGE_PMD_SIZE
);
1666 void split_huge_pmd_address(struct vm_area_struct
*vma
, unsigned long address
,
1667 bool freeze
, struct page
*page
)
1673 pgd
= pgd_offset(vma
->vm_mm
, address
);
1674 if (!pgd_present(*pgd
))
1677 pud
= pud_offset(pgd
, address
);
1678 if (!pud_present(*pud
))
1681 pmd
= pmd_offset(pud
, address
);
1683 __split_huge_pmd(vma
, pmd
, address
, freeze
, page
);
1686 void vma_adjust_trans_huge(struct vm_area_struct
*vma
,
1687 unsigned long start
,
1692 * If the new start address isn't hpage aligned and it could
1693 * previously contain an hugepage: check if we need to split
1696 if (start
& ~HPAGE_PMD_MASK
&&
1697 (start
& HPAGE_PMD_MASK
) >= vma
->vm_start
&&
1698 (start
& HPAGE_PMD_MASK
) + HPAGE_PMD_SIZE
<= vma
->vm_end
)
1699 split_huge_pmd_address(vma
, start
, false, NULL
);
1702 * If the new end address isn't hpage aligned and it could
1703 * previously contain an hugepage: check if we need to split
1706 if (end
& ~HPAGE_PMD_MASK
&&
1707 (end
& HPAGE_PMD_MASK
) >= vma
->vm_start
&&
1708 (end
& HPAGE_PMD_MASK
) + HPAGE_PMD_SIZE
<= vma
->vm_end
)
1709 split_huge_pmd_address(vma
, end
, false, NULL
);
1712 * If we're also updating the vma->vm_next->vm_start, if the new
1713 * vm_next->vm_start isn't page aligned and it could previously
1714 * contain an hugepage: check if we need to split an huge pmd.
1716 if (adjust_next
> 0) {
1717 struct vm_area_struct
*next
= vma
->vm_next
;
1718 unsigned long nstart
= next
->vm_start
;
1719 nstart
+= adjust_next
<< PAGE_SHIFT
;
1720 if (nstart
& ~HPAGE_PMD_MASK
&&
1721 (nstart
& HPAGE_PMD_MASK
) >= next
->vm_start
&&
1722 (nstart
& HPAGE_PMD_MASK
) + HPAGE_PMD_SIZE
<= next
->vm_end
)
1723 split_huge_pmd_address(next
, nstart
, false, NULL
);
1727 static void freeze_page(struct page
*page
)
1729 enum ttu_flags ttu_flags
= TTU_IGNORE_MLOCK
| TTU_IGNORE_ACCESS
|
1733 VM_BUG_ON_PAGE(!PageHead(page
), page
);
1736 ttu_flags
|= TTU_MIGRATION
;
1738 /* We only need TTU_SPLIT_HUGE_PMD once */
1739 ret
= try_to_unmap(page
, ttu_flags
| TTU_SPLIT_HUGE_PMD
);
1740 for (i
= 1; !ret
&& i
< HPAGE_PMD_NR
; i
++) {
1741 /* Cut short if the page is unmapped */
1742 if (page_count(page
) == 1)
1745 ret
= try_to_unmap(page
+ i
, ttu_flags
);
1747 VM_BUG_ON_PAGE(ret
, page
+ i
- 1);
1750 static void unfreeze_page(struct page
*page
)
1754 for (i
= 0; i
< HPAGE_PMD_NR
; i
++)
1755 remove_migration_ptes(page
+ i
, page
+ i
, true);
1758 static void __split_huge_page_tail(struct page
*head
, int tail
,
1759 struct lruvec
*lruvec
, struct list_head
*list
)
1761 struct page
*page_tail
= head
+ tail
;
1763 VM_BUG_ON_PAGE(atomic_read(&page_tail
->_mapcount
) != -1, page_tail
);
1764 VM_BUG_ON_PAGE(page_ref_count(page_tail
) != 0, page_tail
);
1767 * tail_page->_refcount is zero and not changing from under us. But
1768 * get_page_unless_zero() may be running from under us on the
1769 * tail_page. If we used atomic_set() below instead of atomic_inc() or
1770 * atomic_add(), we would then run atomic_set() concurrently with
1771 * get_page_unless_zero(), and atomic_set() is implemented in C not
1772 * using locked ops. spin_unlock on x86 sometime uses locked ops
1773 * because of PPro errata 66, 92, so unless somebody can guarantee
1774 * atomic_set() here would be safe on all archs (and not only on x86),
1775 * it's safer to use atomic_inc()/atomic_add().
1777 if (PageAnon(head
)) {
1778 page_ref_inc(page_tail
);
1780 /* Additional pin to radix tree */
1781 page_ref_add(page_tail
, 2);
1784 page_tail
->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
1785 page_tail
->flags
|= (head
->flags
&
1786 ((1L << PG_referenced
) |
1787 (1L << PG_swapbacked
) |
1788 (1L << PG_mlocked
) |
1789 (1L << PG_uptodate
) |
1792 (1L << PG_unevictable
) |
1796 * After clearing PageTail the gup refcount can be released.
1797 * Page flags also must be visible before we make the page non-compound.
1801 clear_compound_head(page_tail
);
1803 if (page_is_young(head
))
1804 set_page_young(page_tail
);
1805 if (page_is_idle(head
))
1806 set_page_idle(page_tail
);
1808 /* ->mapping in first tail page is compound_mapcount */
1809 VM_BUG_ON_PAGE(tail
> 2 && page_tail
->mapping
!= TAIL_MAPPING
,
1811 page_tail
->mapping
= head
->mapping
;
1813 page_tail
->index
= head
->index
+ tail
;
1814 page_cpupid_xchg_last(page_tail
, page_cpupid_last(head
));
1815 lru_add_page_tail(head
, page_tail
, lruvec
, list
);
1818 static void __split_huge_page(struct page
*page
, struct list_head
*list
,
1819 unsigned long flags
)
1821 struct page
*head
= compound_head(page
);
1822 struct zone
*zone
= page_zone(head
);
1823 struct lruvec
*lruvec
;
1827 lruvec
= mem_cgroup_page_lruvec(head
, zone
->zone_pgdat
);
1829 /* complete memcg works before add pages to LRU */
1830 mem_cgroup_split_huge_fixup(head
);
1832 if (!PageAnon(page
))
1833 end
= DIV_ROUND_UP(i_size_read(head
->mapping
->host
), PAGE_SIZE
);
1835 for (i
= HPAGE_PMD_NR
- 1; i
>= 1; i
--) {
1836 __split_huge_page_tail(head
, i
, lruvec
, list
);
1837 /* Some pages can be beyond i_size: drop them from page cache */
1838 if (head
[i
].index
>= end
) {
1839 __ClearPageDirty(head
+ i
);
1840 __delete_from_page_cache(head
+ i
, NULL
);
1841 if (IS_ENABLED(CONFIG_SHMEM
) && PageSwapBacked(head
))
1842 shmem_uncharge(head
->mapping
->host
, 1);
1847 ClearPageCompound(head
);
1848 /* See comment in __split_huge_page_tail() */
1849 if (PageAnon(head
)) {
1852 /* Additional pin to radix tree */
1853 page_ref_add(head
, 2);
1854 spin_unlock(&head
->mapping
->tree_lock
);
1857 spin_unlock_irqrestore(zone_lru_lock(page_zone(head
)), flags
);
1859 unfreeze_page(head
);
1861 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
1862 struct page
*subpage
= head
+ i
;
1863 if (subpage
== page
)
1865 unlock_page(subpage
);
1868 * Subpages may be freed if there wasn't any mapping
1869 * like if add_to_swap() is running on a lru page that
1870 * had its mapping zapped. And freeing these pages
1871 * requires taking the lru_lock so we do the put_page
1872 * of the tail pages after the split is complete.
1878 int total_mapcount(struct page
*page
)
1880 int i
, compound
, ret
;
1882 VM_BUG_ON_PAGE(PageTail(page
), page
);
1884 if (likely(!PageCompound(page
)))
1885 return atomic_read(&page
->_mapcount
) + 1;
1887 compound
= compound_mapcount(page
);
1891 for (i
= 0; i
< HPAGE_PMD_NR
; i
++)
1892 ret
+= atomic_read(&page
[i
]._mapcount
) + 1;
1893 /* File pages has compound_mapcount included in _mapcount */
1894 if (!PageAnon(page
))
1895 return ret
- compound
* HPAGE_PMD_NR
;
1896 if (PageDoubleMap(page
))
1897 ret
-= HPAGE_PMD_NR
;
1902 * This calculates accurately how many mappings a transparent hugepage
1903 * has (unlike page_mapcount() which isn't fully accurate). This full
1904 * accuracy is primarily needed to know if copy-on-write faults can
1905 * reuse the page and change the mapping to read-write instead of
1906 * copying them. At the same time this returns the total_mapcount too.
1908 * The function returns the highest mapcount any one of the subpages
1909 * has. If the return value is one, even if different processes are
1910 * mapping different subpages of the transparent hugepage, they can
1911 * all reuse it, because each process is reusing a different subpage.
1913 * The total_mapcount is instead counting all virtual mappings of the
1914 * subpages. If the total_mapcount is equal to "one", it tells the
1915 * caller all mappings belong to the same "mm" and in turn the
1916 * anon_vma of the transparent hugepage can become the vma->anon_vma
1917 * local one as no other process may be mapping any of the subpages.
1919 * It would be more accurate to replace page_mapcount() with
1920 * page_trans_huge_mapcount(), however we only use
1921 * page_trans_huge_mapcount() in the copy-on-write faults where we
1922 * need full accuracy to avoid breaking page pinning, because
1923 * page_trans_huge_mapcount() is slower than page_mapcount().
1925 int page_trans_huge_mapcount(struct page
*page
, int *total_mapcount
)
1927 int i
, ret
, _total_mapcount
, mapcount
;
1929 /* hugetlbfs shouldn't call it */
1930 VM_BUG_ON_PAGE(PageHuge(page
), page
);
1932 if (likely(!PageTransCompound(page
))) {
1933 mapcount
= atomic_read(&page
->_mapcount
) + 1;
1935 *total_mapcount
= mapcount
;
1939 page
= compound_head(page
);
1941 _total_mapcount
= ret
= 0;
1942 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
1943 mapcount
= atomic_read(&page
[i
]._mapcount
) + 1;
1944 ret
= max(ret
, mapcount
);
1945 _total_mapcount
+= mapcount
;
1947 if (PageDoubleMap(page
)) {
1949 _total_mapcount
-= HPAGE_PMD_NR
;
1951 mapcount
= compound_mapcount(page
);
1953 _total_mapcount
+= mapcount
;
1955 *total_mapcount
= _total_mapcount
;
1960 * This function splits huge page into normal pages. @page can point to any
1961 * subpage of huge page to split. Split doesn't change the position of @page.
1963 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
1964 * The huge page must be locked.
1966 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
1968 * Both head page and tail pages will inherit mapping, flags, and so on from
1971 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
1972 * they are not mapped.
1974 * Returns 0 if the hugepage is split successfully.
1975 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
1978 int split_huge_page_to_list(struct page
*page
, struct list_head
*list
)
1980 struct page
*head
= compound_head(page
);
1981 struct pglist_data
*pgdata
= NODE_DATA(page_to_nid(head
));
1982 struct anon_vma
*anon_vma
= NULL
;
1983 struct address_space
*mapping
= NULL
;
1984 int count
, mapcount
, extra_pins
, ret
;
1986 unsigned long flags
;
1988 VM_BUG_ON_PAGE(is_huge_zero_page(page
), page
);
1989 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
1990 VM_BUG_ON_PAGE(!PageSwapBacked(page
), page
);
1991 VM_BUG_ON_PAGE(!PageCompound(page
), page
);
1993 if (PageAnon(head
)) {
1995 * The caller does not necessarily hold an mmap_sem that would
1996 * prevent the anon_vma disappearing so we first we take a
1997 * reference to it and then lock the anon_vma for write. This
1998 * is similar to page_lock_anon_vma_read except the write lock
1999 * is taken to serialise against parallel split or collapse
2002 anon_vma
= page_get_anon_vma(head
);
2009 anon_vma_lock_write(anon_vma
);
2011 mapping
= head
->mapping
;
2019 /* Addidional pins from radix tree */
2020 extra_pins
= HPAGE_PMD_NR
;
2022 i_mmap_lock_read(mapping
);
2026 * Racy check if we can split the page, before freeze_page() will
2029 if (total_mapcount(head
) != page_count(head
) - extra_pins
- 1) {
2034 mlocked
= PageMlocked(page
);
2036 VM_BUG_ON_PAGE(compound_mapcount(head
), head
);
2038 /* Make sure the page is not on per-CPU pagevec as it takes pin */
2042 /* prevent PageLRU to go away from under us, and freeze lru stats */
2043 spin_lock_irqsave(zone_lru_lock(page_zone(head
)), flags
);
2048 spin_lock(&mapping
->tree_lock
);
2049 pslot
= radix_tree_lookup_slot(&mapping
->page_tree
,
2052 * Check if the head page is present in radix tree.
2053 * We assume all tail are present too, if head is there.
2055 if (radix_tree_deref_slot_protected(pslot
,
2056 &mapping
->tree_lock
) != head
)
2060 /* Prevent deferred_split_scan() touching ->_refcount */
2061 spin_lock(&pgdata
->split_queue_lock
);
2062 count
= page_count(head
);
2063 mapcount
= total_mapcount(head
);
2064 if (!mapcount
&& page_ref_freeze(head
, 1 + extra_pins
)) {
2065 if (!list_empty(page_deferred_list(head
))) {
2066 pgdata
->split_queue_len
--;
2067 list_del(page_deferred_list(head
));
2070 __dec_node_page_state(page
, NR_SHMEM_THPS
);
2071 spin_unlock(&pgdata
->split_queue_lock
);
2072 __split_huge_page(page
, list
, flags
);
2075 if (IS_ENABLED(CONFIG_DEBUG_VM
) && mapcount
) {
2076 pr_alert("total_mapcount: %u, page_count(): %u\n",
2079 dump_page(head
, NULL
);
2080 dump_page(page
, "total_mapcount(head) > 0");
2083 spin_unlock(&pgdata
->split_queue_lock
);
2085 spin_unlock(&mapping
->tree_lock
);
2086 spin_unlock_irqrestore(zone_lru_lock(page_zone(head
)), flags
);
2087 unfreeze_page(head
);
2093 anon_vma_unlock_write(anon_vma
);
2094 put_anon_vma(anon_vma
);
2097 i_mmap_unlock_read(mapping
);
2099 count_vm_event(!ret
? THP_SPLIT_PAGE
: THP_SPLIT_PAGE_FAILED
);
2103 void free_transhuge_page(struct page
*page
)
2105 struct pglist_data
*pgdata
= NODE_DATA(page_to_nid(page
));
2106 unsigned long flags
;
2108 spin_lock_irqsave(&pgdata
->split_queue_lock
, flags
);
2109 if (!list_empty(page_deferred_list(page
))) {
2110 pgdata
->split_queue_len
--;
2111 list_del(page_deferred_list(page
));
2113 spin_unlock_irqrestore(&pgdata
->split_queue_lock
, flags
);
2114 free_compound_page(page
);
2117 void deferred_split_huge_page(struct page
*page
)
2119 struct pglist_data
*pgdata
= NODE_DATA(page_to_nid(page
));
2120 unsigned long flags
;
2122 VM_BUG_ON_PAGE(!PageTransHuge(page
), page
);
2124 spin_lock_irqsave(&pgdata
->split_queue_lock
, flags
);
2125 if (list_empty(page_deferred_list(page
))) {
2126 count_vm_event(THP_DEFERRED_SPLIT_PAGE
);
2127 list_add_tail(page_deferred_list(page
), &pgdata
->split_queue
);
2128 pgdata
->split_queue_len
++;
2130 spin_unlock_irqrestore(&pgdata
->split_queue_lock
, flags
);
2133 static unsigned long deferred_split_count(struct shrinker
*shrink
,
2134 struct shrink_control
*sc
)
2136 struct pglist_data
*pgdata
= NODE_DATA(sc
->nid
);
2137 return ACCESS_ONCE(pgdata
->split_queue_len
);
2140 static unsigned long deferred_split_scan(struct shrinker
*shrink
,
2141 struct shrink_control
*sc
)
2143 struct pglist_data
*pgdata
= NODE_DATA(sc
->nid
);
2144 unsigned long flags
;
2145 LIST_HEAD(list
), *pos
, *next
;
2149 spin_lock_irqsave(&pgdata
->split_queue_lock
, flags
);
2150 /* Take pin on all head pages to avoid freeing them under us */
2151 list_for_each_safe(pos
, next
, &pgdata
->split_queue
) {
2152 page
= list_entry((void *)pos
, struct page
, mapping
);
2153 page
= compound_head(page
);
2154 if (get_page_unless_zero(page
)) {
2155 list_move(page_deferred_list(page
), &list
);
2157 /* We lost race with put_compound_page() */
2158 list_del_init(page_deferred_list(page
));
2159 pgdata
->split_queue_len
--;
2161 if (!--sc
->nr_to_scan
)
2164 spin_unlock_irqrestore(&pgdata
->split_queue_lock
, flags
);
2166 list_for_each_safe(pos
, next
, &list
) {
2167 page
= list_entry((void *)pos
, struct page
, mapping
);
2169 /* split_huge_page() removes page from list on success */
2170 if (!split_huge_page(page
))
2176 spin_lock_irqsave(&pgdata
->split_queue_lock
, flags
);
2177 list_splice_tail(&list
, &pgdata
->split_queue
);
2178 spin_unlock_irqrestore(&pgdata
->split_queue_lock
, flags
);
2181 * Stop shrinker if we didn't split any page, but the queue is empty.
2182 * This can happen if pages were freed under us.
2184 if (!split
&& list_empty(&pgdata
->split_queue
))
2189 static struct shrinker deferred_split_shrinker
= {
2190 .count_objects
= deferred_split_count
,
2191 .scan_objects
= deferred_split_scan
,
2192 .seeks
= DEFAULT_SEEKS
,
2193 .flags
= SHRINKER_NUMA_AWARE
,
2196 #ifdef CONFIG_DEBUG_FS
2197 static int split_huge_pages_set(void *data
, u64 val
)
2201 unsigned long pfn
, max_zone_pfn
;
2202 unsigned long total
= 0, split
= 0;
2207 for_each_populated_zone(zone
) {
2208 max_zone_pfn
= zone_end_pfn(zone
);
2209 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++) {
2210 if (!pfn_valid(pfn
))
2213 page
= pfn_to_page(pfn
);
2214 if (!get_page_unless_zero(page
))
2217 if (zone
!= page_zone(page
))
2220 if (!PageHead(page
) || PageHuge(page
) || !PageLRU(page
))
2225 if (!split_huge_page(page
))
2233 pr_info("%lu of %lu THP split\n", split
, total
);
2237 DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops
, NULL
, split_huge_pages_set
,
2240 static int __init
split_huge_pages_debugfs(void)
2244 ret
= debugfs_create_file("split_huge_pages", 0200, NULL
, NULL
,
2245 &split_huge_pages_fops
);
2247 pr_warn("Failed to create split_huge_pages in debugfs");
2250 late_initcall(split_huge_pages_debugfs
);