Linux 4.8-rc8
[linux/fpc-iii.git] / mm / kasan / kasan.c
blob88af13c00d3cbfedb1d6d42ef5ddcf6ca9a50cab
1 /*
2 * This file contains shadow memory manipulation code.
4 * Copyright (c) 2014 Samsung Electronics Co., Ltd.
5 * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
7 * Some code borrowed from https://github.com/xairy/kasan-prototype by
8 * Andrey Konovalov <adech.fo@gmail.com>
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17 #define DISABLE_BRANCH_PROFILING
19 #include <linux/export.h>
20 #include <linux/interrupt.h>
21 #include <linux/init.h>
22 #include <linux/kasan.h>
23 #include <linux/kernel.h>
24 #include <linux/kmemleak.h>
25 #include <linux/linkage.h>
26 #include <linux/memblock.h>
27 #include <linux/memory.h>
28 #include <linux/mm.h>
29 #include <linux/module.h>
30 #include <linux/printk.h>
31 #include <linux/sched.h>
32 #include <linux/slab.h>
33 #include <linux/stacktrace.h>
34 #include <linux/string.h>
35 #include <linux/types.h>
36 #include <linux/vmalloc.h>
38 #include "kasan.h"
39 #include "../slab.h"
42 * Poisons the shadow memory for 'size' bytes starting from 'addr'.
43 * Memory addresses should be aligned to KASAN_SHADOW_SCALE_SIZE.
45 static void kasan_poison_shadow(const void *address, size_t size, u8 value)
47 void *shadow_start, *shadow_end;
49 shadow_start = kasan_mem_to_shadow(address);
50 shadow_end = kasan_mem_to_shadow(address + size);
52 memset(shadow_start, value, shadow_end - shadow_start);
55 void kasan_unpoison_shadow(const void *address, size_t size)
57 kasan_poison_shadow(address, size, 0);
59 if (size & KASAN_SHADOW_MASK) {
60 u8 *shadow = (u8 *)kasan_mem_to_shadow(address + size);
61 *shadow = size & KASAN_SHADOW_MASK;
65 static void __kasan_unpoison_stack(struct task_struct *task, void *sp)
67 void *base = task_stack_page(task);
68 size_t size = sp - base;
70 kasan_unpoison_shadow(base, size);
73 /* Unpoison the entire stack for a task. */
74 void kasan_unpoison_task_stack(struct task_struct *task)
76 __kasan_unpoison_stack(task, task_stack_page(task) + THREAD_SIZE);
79 /* Unpoison the stack for the current task beyond a watermark sp value. */
80 asmlinkage void kasan_unpoison_remaining_stack(void *sp)
82 __kasan_unpoison_stack(current, sp);
86 * All functions below always inlined so compiler could
87 * perform better optimizations in each of __asan_loadX/__assn_storeX
88 * depending on memory access size X.
91 static __always_inline bool memory_is_poisoned_1(unsigned long addr)
93 s8 shadow_value = *(s8 *)kasan_mem_to_shadow((void *)addr);
95 if (unlikely(shadow_value)) {
96 s8 last_accessible_byte = addr & KASAN_SHADOW_MASK;
97 return unlikely(last_accessible_byte >= shadow_value);
100 return false;
103 static __always_inline bool memory_is_poisoned_2(unsigned long addr)
105 u16 *shadow_addr = (u16 *)kasan_mem_to_shadow((void *)addr);
107 if (unlikely(*shadow_addr)) {
108 if (memory_is_poisoned_1(addr + 1))
109 return true;
112 * If single shadow byte covers 2-byte access, we don't
113 * need to do anything more. Otherwise, test the first
114 * shadow byte.
116 if (likely(((addr + 1) & KASAN_SHADOW_MASK) != 0))
117 return false;
119 return unlikely(*(u8 *)shadow_addr);
122 return false;
125 static __always_inline bool memory_is_poisoned_4(unsigned long addr)
127 u16 *shadow_addr = (u16 *)kasan_mem_to_shadow((void *)addr);
129 if (unlikely(*shadow_addr)) {
130 if (memory_is_poisoned_1(addr + 3))
131 return true;
134 * If single shadow byte covers 4-byte access, we don't
135 * need to do anything more. Otherwise, test the first
136 * shadow byte.
138 if (likely(((addr + 3) & KASAN_SHADOW_MASK) >= 3))
139 return false;
141 return unlikely(*(u8 *)shadow_addr);
144 return false;
147 static __always_inline bool memory_is_poisoned_8(unsigned long addr)
149 u16 *shadow_addr = (u16 *)kasan_mem_to_shadow((void *)addr);
151 if (unlikely(*shadow_addr)) {
152 if (memory_is_poisoned_1(addr + 7))
153 return true;
156 * If single shadow byte covers 8-byte access, we don't
157 * need to do anything more. Otherwise, test the first
158 * shadow byte.
160 if (likely(IS_ALIGNED(addr, KASAN_SHADOW_SCALE_SIZE)))
161 return false;
163 return unlikely(*(u8 *)shadow_addr);
166 return false;
169 static __always_inline bool memory_is_poisoned_16(unsigned long addr)
171 u32 *shadow_addr = (u32 *)kasan_mem_to_shadow((void *)addr);
173 if (unlikely(*shadow_addr)) {
174 u16 shadow_first_bytes = *(u16 *)shadow_addr;
176 if (unlikely(shadow_first_bytes))
177 return true;
180 * If two shadow bytes covers 16-byte access, we don't
181 * need to do anything more. Otherwise, test the last
182 * shadow byte.
184 if (likely(IS_ALIGNED(addr, KASAN_SHADOW_SCALE_SIZE)))
185 return false;
187 return memory_is_poisoned_1(addr + 15);
190 return false;
193 static __always_inline unsigned long bytes_is_zero(const u8 *start,
194 size_t size)
196 while (size) {
197 if (unlikely(*start))
198 return (unsigned long)start;
199 start++;
200 size--;
203 return 0;
206 static __always_inline unsigned long memory_is_zero(const void *start,
207 const void *end)
209 unsigned int words;
210 unsigned long ret;
211 unsigned int prefix = (unsigned long)start % 8;
213 if (end - start <= 16)
214 return bytes_is_zero(start, end - start);
216 if (prefix) {
217 prefix = 8 - prefix;
218 ret = bytes_is_zero(start, prefix);
219 if (unlikely(ret))
220 return ret;
221 start += prefix;
224 words = (end - start) / 8;
225 while (words) {
226 if (unlikely(*(u64 *)start))
227 return bytes_is_zero(start, 8);
228 start += 8;
229 words--;
232 return bytes_is_zero(start, (end - start) % 8);
235 static __always_inline bool memory_is_poisoned_n(unsigned long addr,
236 size_t size)
238 unsigned long ret;
240 ret = memory_is_zero(kasan_mem_to_shadow((void *)addr),
241 kasan_mem_to_shadow((void *)addr + size - 1) + 1);
243 if (unlikely(ret)) {
244 unsigned long last_byte = addr + size - 1;
245 s8 *last_shadow = (s8 *)kasan_mem_to_shadow((void *)last_byte);
247 if (unlikely(ret != (unsigned long)last_shadow ||
248 ((long)(last_byte & KASAN_SHADOW_MASK) >= *last_shadow)))
249 return true;
251 return false;
254 static __always_inline bool memory_is_poisoned(unsigned long addr, size_t size)
256 if (__builtin_constant_p(size)) {
257 switch (size) {
258 case 1:
259 return memory_is_poisoned_1(addr);
260 case 2:
261 return memory_is_poisoned_2(addr);
262 case 4:
263 return memory_is_poisoned_4(addr);
264 case 8:
265 return memory_is_poisoned_8(addr);
266 case 16:
267 return memory_is_poisoned_16(addr);
268 default:
269 BUILD_BUG();
273 return memory_is_poisoned_n(addr, size);
276 static __always_inline void check_memory_region_inline(unsigned long addr,
277 size_t size, bool write,
278 unsigned long ret_ip)
280 if (unlikely(size == 0))
281 return;
283 if (unlikely((void *)addr <
284 kasan_shadow_to_mem((void *)KASAN_SHADOW_START))) {
285 kasan_report(addr, size, write, ret_ip);
286 return;
289 if (likely(!memory_is_poisoned(addr, size)))
290 return;
292 kasan_report(addr, size, write, ret_ip);
295 static void check_memory_region(unsigned long addr,
296 size_t size, bool write,
297 unsigned long ret_ip)
299 check_memory_region_inline(addr, size, write, ret_ip);
302 void kasan_check_read(const void *p, unsigned int size)
304 check_memory_region((unsigned long)p, size, false, _RET_IP_);
306 EXPORT_SYMBOL(kasan_check_read);
308 void kasan_check_write(const void *p, unsigned int size)
310 check_memory_region((unsigned long)p, size, true, _RET_IP_);
312 EXPORT_SYMBOL(kasan_check_write);
314 #undef memset
315 void *memset(void *addr, int c, size_t len)
317 check_memory_region((unsigned long)addr, len, true, _RET_IP_);
319 return __memset(addr, c, len);
322 #undef memmove
323 void *memmove(void *dest, const void *src, size_t len)
325 check_memory_region((unsigned long)src, len, false, _RET_IP_);
326 check_memory_region((unsigned long)dest, len, true, _RET_IP_);
328 return __memmove(dest, src, len);
331 #undef memcpy
332 void *memcpy(void *dest, const void *src, size_t len)
334 check_memory_region((unsigned long)src, len, false, _RET_IP_);
335 check_memory_region((unsigned long)dest, len, true, _RET_IP_);
337 return __memcpy(dest, src, len);
340 void kasan_alloc_pages(struct page *page, unsigned int order)
342 if (likely(!PageHighMem(page)))
343 kasan_unpoison_shadow(page_address(page), PAGE_SIZE << order);
346 void kasan_free_pages(struct page *page, unsigned int order)
348 if (likely(!PageHighMem(page)))
349 kasan_poison_shadow(page_address(page),
350 PAGE_SIZE << order,
351 KASAN_FREE_PAGE);
355 * Adaptive redzone policy taken from the userspace AddressSanitizer runtime.
356 * For larger allocations larger redzones are used.
358 static size_t optimal_redzone(size_t object_size)
360 int rz =
361 object_size <= 64 - 16 ? 16 :
362 object_size <= 128 - 32 ? 32 :
363 object_size <= 512 - 64 ? 64 :
364 object_size <= 4096 - 128 ? 128 :
365 object_size <= (1 << 14) - 256 ? 256 :
366 object_size <= (1 << 15) - 512 ? 512 :
367 object_size <= (1 << 16) - 1024 ? 1024 : 2048;
368 return rz;
371 void kasan_cache_create(struct kmem_cache *cache, size_t *size,
372 unsigned long *flags)
374 int redzone_adjust;
375 int orig_size = *size;
377 /* Add alloc meta. */
378 cache->kasan_info.alloc_meta_offset = *size;
379 *size += sizeof(struct kasan_alloc_meta);
381 /* Add free meta. */
382 if (cache->flags & SLAB_DESTROY_BY_RCU || cache->ctor ||
383 cache->object_size < sizeof(struct kasan_free_meta)) {
384 cache->kasan_info.free_meta_offset = *size;
385 *size += sizeof(struct kasan_free_meta);
387 redzone_adjust = optimal_redzone(cache->object_size) -
388 (*size - cache->object_size);
390 if (redzone_adjust > 0)
391 *size += redzone_adjust;
393 *size = min(KMALLOC_MAX_SIZE, max(*size, cache->object_size +
394 optimal_redzone(cache->object_size)));
397 * If the metadata doesn't fit, don't enable KASAN at all.
399 if (*size <= cache->kasan_info.alloc_meta_offset ||
400 *size <= cache->kasan_info.free_meta_offset) {
401 cache->kasan_info.alloc_meta_offset = 0;
402 cache->kasan_info.free_meta_offset = 0;
403 *size = orig_size;
404 return;
407 *flags |= SLAB_KASAN;
410 void kasan_cache_shrink(struct kmem_cache *cache)
412 quarantine_remove_cache(cache);
415 void kasan_cache_destroy(struct kmem_cache *cache)
417 quarantine_remove_cache(cache);
420 size_t kasan_metadata_size(struct kmem_cache *cache)
422 return (cache->kasan_info.alloc_meta_offset ?
423 sizeof(struct kasan_alloc_meta) : 0) +
424 (cache->kasan_info.free_meta_offset ?
425 sizeof(struct kasan_free_meta) : 0);
428 void kasan_poison_slab(struct page *page)
430 kasan_poison_shadow(page_address(page),
431 PAGE_SIZE << compound_order(page),
432 KASAN_KMALLOC_REDZONE);
435 void kasan_unpoison_object_data(struct kmem_cache *cache, void *object)
437 kasan_unpoison_shadow(object, cache->object_size);
440 void kasan_poison_object_data(struct kmem_cache *cache, void *object)
442 kasan_poison_shadow(object,
443 round_up(cache->object_size, KASAN_SHADOW_SCALE_SIZE),
444 KASAN_KMALLOC_REDZONE);
447 static inline int in_irqentry_text(unsigned long ptr)
449 return (ptr >= (unsigned long)&__irqentry_text_start &&
450 ptr < (unsigned long)&__irqentry_text_end) ||
451 (ptr >= (unsigned long)&__softirqentry_text_start &&
452 ptr < (unsigned long)&__softirqentry_text_end);
455 static inline void filter_irq_stacks(struct stack_trace *trace)
457 int i;
459 if (!trace->nr_entries)
460 return;
461 for (i = 0; i < trace->nr_entries; i++)
462 if (in_irqentry_text(trace->entries[i])) {
463 /* Include the irqentry function into the stack. */
464 trace->nr_entries = i + 1;
465 break;
469 static inline depot_stack_handle_t save_stack(gfp_t flags)
471 unsigned long entries[KASAN_STACK_DEPTH];
472 struct stack_trace trace = {
473 .nr_entries = 0,
474 .entries = entries,
475 .max_entries = KASAN_STACK_DEPTH,
476 .skip = 0
479 save_stack_trace(&trace);
480 filter_irq_stacks(&trace);
481 if (trace.nr_entries != 0 &&
482 trace.entries[trace.nr_entries-1] == ULONG_MAX)
483 trace.nr_entries--;
485 return depot_save_stack(&trace, flags);
488 static inline void set_track(struct kasan_track *track, gfp_t flags)
490 track->pid = current->pid;
491 track->stack = save_stack(flags);
494 struct kasan_alloc_meta *get_alloc_info(struct kmem_cache *cache,
495 const void *object)
497 BUILD_BUG_ON(sizeof(struct kasan_alloc_meta) > 32);
498 return (void *)object + cache->kasan_info.alloc_meta_offset;
501 struct kasan_free_meta *get_free_info(struct kmem_cache *cache,
502 const void *object)
504 BUILD_BUG_ON(sizeof(struct kasan_free_meta) > 32);
505 return (void *)object + cache->kasan_info.free_meta_offset;
508 void kasan_init_slab_obj(struct kmem_cache *cache, const void *object)
510 struct kasan_alloc_meta *alloc_info;
512 if (!(cache->flags & SLAB_KASAN))
513 return;
515 alloc_info = get_alloc_info(cache, object);
516 __memset(alloc_info, 0, sizeof(*alloc_info));
519 void kasan_slab_alloc(struct kmem_cache *cache, void *object, gfp_t flags)
521 kasan_kmalloc(cache, object, cache->object_size, flags);
524 static void kasan_poison_slab_free(struct kmem_cache *cache, void *object)
526 unsigned long size = cache->object_size;
527 unsigned long rounded_up_size = round_up(size, KASAN_SHADOW_SCALE_SIZE);
529 /* RCU slabs could be legally used after free within the RCU period */
530 if (unlikely(cache->flags & SLAB_DESTROY_BY_RCU))
531 return;
533 kasan_poison_shadow(object, rounded_up_size, KASAN_KMALLOC_FREE);
536 bool kasan_slab_free(struct kmem_cache *cache, void *object)
538 s8 shadow_byte;
540 /* RCU slabs could be legally used after free within the RCU period */
541 if (unlikely(cache->flags & SLAB_DESTROY_BY_RCU))
542 return false;
544 shadow_byte = READ_ONCE(*(s8 *)kasan_mem_to_shadow(object));
545 if (shadow_byte < 0 || shadow_byte >= KASAN_SHADOW_SCALE_SIZE) {
546 kasan_report_double_free(cache, object, shadow_byte);
547 return true;
550 kasan_poison_slab_free(cache, object);
552 if (unlikely(!(cache->flags & SLAB_KASAN)))
553 return false;
555 set_track(&get_alloc_info(cache, object)->free_track, GFP_NOWAIT);
556 quarantine_put(get_free_info(cache, object), cache);
557 return true;
560 void kasan_kmalloc(struct kmem_cache *cache, const void *object, size_t size,
561 gfp_t flags)
563 unsigned long redzone_start;
564 unsigned long redzone_end;
566 if (gfpflags_allow_blocking(flags))
567 quarantine_reduce();
569 if (unlikely(object == NULL))
570 return;
572 redzone_start = round_up((unsigned long)(object + size),
573 KASAN_SHADOW_SCALE_SIZE);
574 redzone_end = round_up((unsigned long)object + cache->object_size,
575 KASAN_SHADOW_SCALE_SIZE);
577 kasan_unpoison_shadow(object, size);
578 kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start,
579 KASAN_KMALLOC_REDZONE);
581 if (cache->flags & SLAB_KASAN)
582 set_track(&get_alloc_info(cache, object)->alloc_track, flags);
584 EXPORT_SYMBOL(kasan_kmalloc);
586 void kasan_kmalloc_large(const void *ptr, size_t size, gfp_t flags)
588 struct page *page;
589 unsigned long redzone_start;
590 unsigned long redzone_end;
592 if (gfpflags_allow_blocking(flags))
593 quarantine_reduce();
595 if (unlikely(ptr == NULL))
596 return;
598 page = virt_to_page(ptr);
599 redzone_start = round_up((unsigned long)(ptr + size),
600 KASAN_SHADOW_SCALE_SIZE);
601 redzone_end = (unsigned long)ptr + (PAGE_SIZE << compound_order(page));
603 kasan_unpoison_shadow(ptr, size);
604 kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start,
605 KASAN_PAGE_REDZONE);
608 void kasan_krealloc(const void *object, size_t size, gfp_t flags)
610 struct page *page;
612 if (unlikely(object == ZERO_SIZE_PTR))
613 return;
615 page = virt_to_head_page(object);
617 if (unlikely(!PageSlab(page)))
618 kasan_kmalloc_large(object, size, flags);
619 else
620 kasan_kmalloc(page->slab_cache, object, size, flags);
623 void kasan_poison_kfree(void *ptr)
625 struct page *page;
627 page = virt_to_head_page(ptr);
629 if (unlikely(!PageSlab(page)))
630 kasan_poison_shadow(ptr, PAGE_SIZE << compound_order(page),
631 KASAN_FREE_PAGE);
632 else
633 kasan_poison_slab_free(page->slab_cache, ptr);
636 void kasan_kfree_large(const void *ptr)
638 struct page *page = virt_to_page(ptr);
640 kasan_poison_shadow(ptr, PAGE_SIZE << compound_order(page),
641 KASAN_FREE_PAGE);
644 int kasan_module_alloc(void *addr, size_t size)
646 void *ret;
647 size_t shadow_size;
648 unsigned long shadow_start;
650 shadow_start = (unsigned long)kasan_mem_to_shadow(addr);
651 shadow_size = round_up(size >> KASAN_SHADOW_SCALE_SHIFT,
652 PAGE_SIZE);
654 if (WARN_ON(!PAGE_ALIGNED(shadow_start)))
655 return -EINVAL;
657 ret = __vmalloc_node_range(shadow_size, 1, shadow_start,
658 shadow_start + shadow_size,
659 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
660 PAGE_KERNEL, VM_NO_GUARD, NUMA_NO_NODE,
661 __builtin_return_address(0));
663 if (ret) {
664 find_vm_area(addr)->flags |= VM_KASAN;
665 kmemleak_ignore(ret);
666 return 0;
669 return -ENOMEM;
672 void kasan_free_shadow(const struct vm_struct *vm)
674 if (vm->flags & VM_KASAN)
675 vfree(kasan_mem_to_shadow(vm->addr));
678 static void register_global(struct kasan_global *global)
680 size_t aligned_size = round_up(global->size, KASAN_SHADOW_SCALE_SIZE);
682 kasan_unpoison_shadow(global->beg, global->size);
684 kasan_poison_shadow(global->beg + aligned_size,
685 global->size_with_redzone - aligned_size,
686 KASAN_GLOBAL_REDZONE);
689 void __asan_register_globals(struct kasan_global *globals, size_t size)
691 int i;
693 for (i = 0; i < size; i++)
694 register_global(&globals[i]);
696 EXPORT_SYMBOL(__asan_register_globals);
698 void __asan_unregister_globals(struct kasan_global *globals, size_t size)
701 EXPORT_SYMBOL(__asan_unregister_globals);
703 #define DEFINE_ASAN_LOAD_STORE(size) \
704 void __asan_load##size(unsigned long addr) \
706 check_memory_region_inline(addr, size, false, _RET_IP_);\
708 EXPORT_SYMBOL(__asan_load##size); \
709 __alias(__asan_load##size) \
710 void __asan_load##size##_noabort(unsigned long); \
711 EXPORT_SYMBOL(__asan_load##size##_noabort); \
712 void __asan_store##size(unsigned long addr) \
714 check_memory_region_inline(addr, size, true, _RET_IP_); \
716 EXPORT_SYMBOL(__asan_store##size); \
717 __alias(__asan_store##size) \
718 void __asan_store##size##_noabort(unsigned long); \
719 EXPORT_SYMBOL(__asan_store##size##_noabort)
721 DEFINE_ASAN_LOAD_STORE(1);
722 DEFINE_ASAN_LOAD_STORE(2);
723 DEFINE_ASAN_LOAD_STORE(4);
724 DEFINE_ASAN_LOAD_STORE(8);
725 DEFINE_ASAN_LOAD_STORE(16);
727 void __asan_loadN(unsigned long addr, size_t size)
729 check_memory_region(addr, size, false, _RET_IP_);
731 EXPORT_SYMBOL(__asan_loadN);
733 __alias(__asan_loadN)
734 void __asan_loadN_noabort(unsigned long, size_t);
735 EXPORT_SYMBOL(__asan_loadN_noabort);
737 void __asan_storeN(unsigned long addr, size_t size)
739 check_memory_region(addr, size, true, _RET_IP_);
741 EXPORT_SYMBOL(__asan_storeN);
743 __alias(__asan_storeN)
744 void __asan_storeN_noabort(unsigned long, size_t);
745 EXPORT_SYMBOL(__asan_storeN_noabort);
747 /* to shut up compiler complaints */
748 void __asan_handle_no_return(void) {}
749 EXPORT_SYMBOL(__asan_handle_no_return);
751 #ifdef CONFIG_MEMORY_HOTPLUG
752 static int kasan_mem_notifier(struct notifier_block *nb,
753 unsigned long action, void *data)
755 return (action == MEM_GOING_ONLINE) ? NOTIFY_BAD : NOTIFY_OK;
758 static int __init kasan_memhotplug_init(void)
760 pr_info("WARNING: KASAN doesn't support memory hot-add\n");
761 pr_info("Memory hot-add will be disabled\n");
763 hotplug_memory_notifier(kasan_mem_notifier, 0);
765 return 0;
768 module_init(kasan_memhotplug_init);
769 #endif