4 * numa: Simulate NUMA-sensitive workload and measure their NUMA performance
7 /* For the CLR_() macros */
11 #include "../builtin.h"
12 #include "../util/util.h"
13 #include <subcmd/parse-options.h>
14 #include "../util/cloexec.h"
29 #include <sys/resource.h>
31 #include <sys/prctl.h>
32 #include <sys/types.h>
38 * Regular printout to the terminal, supressed if -q is specified:
40 #define tprintf(x...) do { if (g && g->p.show_details >= 0) printf(x); } while (0)
45 #define dprintf(x...) do { if (g && g->p.show_details >= 1) printf(x); } while (0)
49 cpu_set_t bind_cpumask
;
55 unsigned int loops_done
;
61 pthread_mutex_t
*process_lock
;
64 /* Parameters set by options: */
67 /* Startup synchronization: */
68 bool serialize_startup
;
74 /* Working set sizes: */
75 const char *mb_global_str
;
76 const char *mb_proc_str
;
77 const char *mb_proc_locked_str
;
78 const char *mb_thread_str
;
82 double mb_proc_locked
;
85 /* Access patterns to the working set: */
89 bool data_zero_memset
;
95 /* Working set initialization: */
107 long bytes_process_locked
;
113 bool show_convergence
;
114 bool measure_convergence
;
120 /* Affinity options -C and -N: */
126 /* Global, read-writable area, accessible to all processes and threads: */
131 pthread_mutex_t startup_mutex
;
132 int nr_tasks_started
;
134 pthread_mutex_t startup_done_mutex
;
136 pthread_mutex_t start_work_mutex
;
137 int nr_tasks_working
;
139 pthread_mutex_t stop_work_mutex
;
142 struct thread_data
*threads
;
144 /* Convergence latency measurement: */
153 static struct global_info
*g
= NULL
;
155 static int parse_cpus_opt(const struct option
*opt
, const char *arg
, int unset
);
156 static int parse_nodes_opt(const struct option
*opt
, const char *arg
, int unset
);
160 static const struct option options
[] = {
161 OPT_INTEGER('p', "nr_proc" , &p0
.nr_proc
, "number of processes"),
162 OPT_INTEGER('t', "nr_threads" , &p0
.nr_threads
, "number of threads per process"),
164 OPT_STRING('G', "mb_global" , &p0
.mb_global_str
, "MB", "global memory (MBs)"),
165 OPT_STRING('P', "mb_proc" , &p0
.mb_proc_str
, "MB", "process memory (MBs)"),
166 OPT_STRING('L', "mb_proc_locked", &p0
.mb_proc_locked_str
,"MB", "process serialized/locked memory access (MBs), <= process_memory"),
167 OPT_STRING('T', "mb_thread" , &p0
.mb_thread_str
, "MB", "thread memory (MBs)"),
169 OPT_UINTEGER('l', "nr_loops" , &p0
.nr_loops
, "max number of loops to run (default: unlimited)"),
170 OPT_UINTEGER('s', "nr_secs" , &p0
.nr_secs
, "max number of seconds to run (default: 5 secs)"),
171 OPT_UINTEGER('u', "usleep" , &p0
.sleep_usecs
, "usecs to sleep per loop iteration"),
173 OPT_BOOLEAN('R', "data_reads" , &p0
.data_reads
, "access the data via writes (can be mixed with -W)"),
174 OPT_BOOLEAN('W', "data_writes" , &p0
.data_writes
, "access the data via writes (can be mixed with -R)"),
175 OPT_BOOLEAN('B', "data_backwards", &p0
.data_backwards
, "access the data backwards as well"),
176 OPT_BOOLEAN('Z', "data_zero_memset", &p0
.data_zero_memset
,"access the data via glibc bzero only"),
177 OPT_BOOLEAN('r', "data_rand_walk", &p0
.data_rand_walk
, "access the data with random (32bit LFSR) walk"),
180 OPT_BOOLEAN('z', "init_zero" , &p0
.init_zero
, "bzero the initial allocations"),
181 OPT_BOOLEAN('I', "init_random" , &p0
.init_random
, "randomize the contents of the initial allocations"),
182 OPT_BOOLEAN('0', "init_cpu0" , &p0
.init_cpu0
, "do the initial allocations on CPU#0"),
183 OPT_INTEGER('x', "perturb_secs", &p0
.perturb_secs
, "perturb thread 0/0 every X secs, to test convergence stability"),
185 OPT_INCR ('d', "show_details" , &p0
.show_details
, "Show details"),
186 OPT_INCR ('a', "all" , &p0
.run_all
, "Run all tests in the suite"),
187 OPT_INTEGER('H', "thp" , &p0
.thp
, "MADV_NOHUGEPAGE < 0 < MADV_HUGEPAGE"),
188 OPT_BOOLEAN('c', "show_convergence", &p0
.show_convergence
, "show convergence details"),
189 OPT_BOOLEAN('m', "measure_convergence", &p0
.measure_convergence
, "measure convergence latency"),
190 OPT_BOOLEAN('q', "quiet" , &p0
.show_quiet
, "quiet mode"),
191 OPT_BOOLEAN('S', "serialize-startup", &p0
.serialize_startup
,"serialize thread startup"),
193 /* Special option string parsing callbacks: */
194 OPT_CALLBACK('C', "cpus", NULL
, "cpu[,cpu2,...cpuN]",
195 "bind the first N tasks to these specific cpus (the rest is unbound)",
197 OPT_CALLBACK('M', "memnodes", NULL
, "node[,node2,...nodeN]",
198 "bind the first N tasks to these specific memory nodes (the rest is unbound)",
203 static const char * const bench_numa_usage
[] = {
204 "perf bench numa <options>",
208 static const char * const numa_usage
[] = {
209 "perf bench numa mem [<options>]",
213 static cpu_set_t
bind_to_cpu(int target_cpu
)
215 cpu_set_t orig_mask
, mask
;
218 ret
= sched_getaffinity(0, sizeof(orig_mask
), &orig_mask
);
223 if (target_cpu
== -1) {
226 for (cpu
= 0; cpu
< g
->p
.nr_cpus
; cpu
++)
229 BUG_ON(target_cpu
< 0 || target_cpu
>= g
->p
.nr_cpus
);
230 CPU_SET(target_cpu
, &mask
);
233 ret
= sched_setaffinity(0, sizeof(mask
), &mask
);
239 static cpu_set_t
bind_to_node(int target_node
)
241 int cpus_per_node
= g
->p
.nr_cpus
/g
->p
.nr_nodes
;
242 cpu_set_t orig_mask
, mask
;
246 BUG_ON(cpus_per_node
*g
->p
.nr_nodes
!= g
->p
.nr_cpus
);
247 BUG_ON(!cpus_per_node
);
249 ret
= sched_getaffinity(0, sizeof(orig_mask
), &orig_mask
);
254 if (target_node
== -1) {
255 for (cpu
= 0; cpu
< g
->p
.nr_cpus
; cpu
++)
258 int cpu_start
= (target_node
+ 0) * cpus_per_node
;
259 int cpu_stop
= (target_node
+ 1) * cpus_per_node
;
261 BUG_ON(cpu_stop
> g
->p
.nr_cpus
);
263 for (cpu
= cpu_start
; cpu
< cpu_stop
; cpu
++)
267 ret
= sched_setaffinity(0, sizeof(mask
), &mask
);
273 static void bind_to_cpumask(cpu_set_t mask
)
277 ret
= sched_setaffinity(0, sizeof(mask
), &mask
);
281 static void mempol_restore(void)
285 ret
= set_mempolicy(MPOL_DEFAULT
, NULL
, g
->p
.nr_nodes
-1);
290 static void bind_to_memnode(int node
)
292 unsigned long nodemask
;
298 BUG_ON(g
->p
.nr_nodes
> (int)sizeof(nodemask
)*8);
299 nodemask
= 1L << node
;
301 ret
= set_mempolicy(MPOL_BIND
, &nodemask
, sizeof(nodemask
)*8);
302 dprintf("binding to node %d, mask: %016lx => %d\n", node
, nodemask
, ret
);
307 #define HPSIZE (2*1024*1024)
309 #define set_taskname(fmt...) \
313 snprintf(name, 20, fmt); \
314 prctl(PR_SET_NAME, name); \
317 static u8
*alloc_data(ssize_t bytes0
, int map_flags
,
318 int init_zero
, int init_cpu0
, int thp
, int init_random
)
328 /* Allocate and initialize all memory on CPU#0: */
330 orig_mask
= bind_to_node(0);
334 bytes
= bytes0
+ HPSIZE
;
336 buf
= (void *)mmap(0, bytes
, PROT_READ
|PROT_WRITE
, MAP_ANON
|map_flags
, -1, 0);
337 BUG_ON(buf
== (void *)-1);
339 if (map_flags
== MAP_PRIVATE
) {
341 ret
= madvise(buf
, bytes
, MADV_HUGEPAGE
);
342 if (ret
&& !g
->print_once
) {
344 printf("WARNING: Could not enable THP - do: 'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled'\n");
348 ret
= madvise(buf
, bytes
, MADV_NOHUGEPAGE
);
349 if (ret
&& !g
->print_once
) {
351 printf("WARNING: Could not disable THP: run a CONFIG_TRANSPARENT_HUGEPAGE kernel?\n");
359 /* Initialize random contents, different in each word: */
361 u64
*wbuf
= (void *)buf
;
365 for (i
= 0; i
< bytes
/8; i
++)
370 /* Align to 2MB boundary: */
371 buf
= (void *)(((unsigned long)buf
+ HPSIZE
-1) & ~(HPSIZE
-1));
373 /* Restore affinity: */
375 bind_to_cpumask(orig_mask
);
382 static void free_data(void *data
, ssize_t bytes
)
389 ret
= munmap(data
, bytes
);
394 * Create a shared memory buffer that can be shared between processes, zeroed:
396 static void * zalloc_shared_data(ssize_t bytes
)
398 return alloc_data(bytes
, MAP_SHARED
, 1, g
->p
.init_cpu0
, g
->p
.thp
, g
->p
.init_random
);
402 * Create a shared memory buffer that can be shared between processes:
404 static void * setup_shared_data(ssize_t bytes
)
406 return alloc_data(bytes
, MAP_SHARED
, 0, g
->p
.init_cpu0
, g
->p
.thp
, g
->p
.init_random
);
410 * Allocate process-local memory - this will either be shared between
411 * threads of this process, or only be accessed by this thread:
413 static void * setup_private_data(ssize_t bytes
)
415 return alloc_data(bytes
, MAP_PRIVATE
, 0, g
->p
.init_cpu0
, g
->p
.thp
, g
->p
.init_random
);
419 * Return a process-shared (global) mutex:
421 static void init_global_mutex(pthread_mutex_t
*mutex
)
423 pthread_mutexattr_t attr
;
425 pthread_mutexattr_init(&attr
);
426 pthread_mutexattr_setpshared(&attr
, PTHREAD_PROCESS_SHARED
);
427 pthread_mutex_init(mutex
, &attr
);
430 static int parse_cpu_list(const char *arg
)
432 p0
.cpu_list_str
= strdup(arg
);
434 dprintf("got CPU list: {%s}\n", p0
.cpu_list_str
);
439 static int parse_setup_cpu_list(void)
441 struct thread_data
*td
;
445 if (!g
->p
.cpu_list_str
)
448 dprintf("g->p.nr_tasks: %d\n", g
->p
.nr_tasks
);
450 str0
= str
= strdup(g
->p
.cpu_list_str
);
455 tprintf("# binding tasks to CPUs:\n");
459 int bind_cpu
, bind_cpu_0
, bind_cpu_1
;
460 char *tok
, *tok_end
, *tok_step
, *tok_len
, *tok_mul
;
465 tok
= strsep(&str
, ",");
469 tok_end
= strstr(tok
, "-");
471 dprintf("\ntoken: {%s}, end: {%s}\n", tok
, tok_end
);
473 /* Single CPU specified: */
474 bind_cpu_0
= bind_cpu_1
= atol(tok
);
476 /* CPU range specified (for example: "5-11"): */
477 bind_cpu_0
= atol(tok
);
478 bind_cpu_1
= atol(tok_end
+ 1);
482 tok_step
= strstr(tok
, "#");
484 step
= atol(tok_step
+ 1);
485 BUG_ON(step
<= 0 || step
>= g
->p
.nr_cpus
);
490 * Eg: "--cpus 8_4-16#4" means: '--cpus 8_4,12_4,16_4',
491 * where the _4 means the next 4 CPUs are allowed.
494 tok_len
= strstr(tok
, "_");
496 bind_len
= atol(tok_len
+ 1);
497 BUG_ON(bind_len
<= 0 || bind_len
> g
->p
.nr_cpus
);
500 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
502 tok_mul
= strstr(tok
, "x");
504 mul
= atol(tok_mul
+ 1);
508 dprintf("CPUs: %d_%d-%d#%dx%d\n", bind_cpu_0
, bind_len
, bind_cpu_1
, step
, mul
);
510 if (bind_cpu_0
>= g
->p
.nr_cpus
|| bind_cpu_1
>= g
->p
.nr_cpus
) {
511 printf("\nTest not applicable, system has only %d CPUs.\n", g
->p
.nr_cpus
);
515 BUG_ON(bind_cpu_0
< 0 || bind_cpu_1
< 0);
516 BUG_ON(bind_cpu_0
> bind_cpu_1
);
518 for (bind_cpu
= bind_cpu_0
; bind_cpu
<= bind_cpu_1
; bind_cpu
+= step
) {
521 for (i
= 0; i
< mul
; i
++) {
524 if (t
>= g
->p
.nr_tasks
) {
525 printf("\n# NOTE: ignoring bind CPUs starting at CPU#%d\n #", bind_cpu
);
533 tprintf("%2d/%d", bind_cpu
, bind_len
);
535 tprintf("%2d", bind_cpu
);
538 CPU_ZERO(&td
->bind_cpumask
);
539 for (cpu
= bind_cpu
; cpu
< bind_cpu
+bind_len
; cpu
++) {
540 BUG_ON(cpu
< 0 || cpu
>= g
->p
.nr_cpus
);
541 CPU_SET(cpu
, &td
->bind_cpumask
);
551 if (t
< g
->p
.nr_tasks
)
552 printf("# NOTE: %d tasks bound, %d tasks unbound\n", t
, g
->p
.nr_tasks
- t
);
558 static int parse_cpus_opt(const struct option
*opt __maybe_unused
,
559 const char *arg
, int unset __maybe_unused
)
564 return parse_cpu_list(arg
);
567 static int parse_node_list(const char *arg
)
569 p0
.node_list_str
= strdup(arg
);
571 dprintf("got NODE list: {%s}\n", p0
.node_list_str
);
576 static int parse_setup_node_list(void)
578 struct thread_data
*td
;
582 if (!g
->p
.node_list_str
)
585 dprintf("g->p.nr_tasks: %d\n", g
->p
.nr_tasks
);
587 str0
= str
= strdup(g
->p
.node_list_str
);
592 tprintf("# binding tasks to NODEs:\n");
596 int bind_node
, bind_node_0
, bind_node_1
;
597 char *tok
, *tok_end
, *tok_step
, *tok_mul
;
601 tok
= strsep(&str
, ",");
605 tok_end
= strstr(tok
, "-");
607 dprintf("\ntoken: {%s}, end: {%s}\n", tok
, tok_end
);
609 /* Single NODE specified: */
610 bind_node_0
= bind_node_1
= atol(tok
);
612 /* NODE range specified (for example: "5-11"): */
613 bind_node_0
= atol(tok
);
614 bind_node_1
= atol(tok_end
+ 1);
618 tok_step
= strstr(tok
, "#");
620 step
= atol(tok_step
+ 1);
621 BUG_ON(step
<= 0 || step
>= g
->p
.nr_nodes
);
624 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
626 tok_mul
= strstr(tok
, "x");
628 mul
= atol(tok_mul
+ 1);
632 dprintf("NODEs: %d-%d #%d\n", bind_node_0
, bind_node_1
, step
);
634 if (bind_node_0
>= g
->p
.nr_nodes
|| bind_node_1
>= g
->p
.nr_nodes
) {
635 printf("\nTest not applicable, system has only %d nodes.\n", g
->p
.nr_nodes
);
639 BUG_ON(bind_node_0
< 0 || bind_node_1
< 0);
640 BUG_ON(bind_node_0
> bind_node_1
);
642 for (bind_node
= bind_node_0
; bind_node
<= bind_node_1
; bind_node
+= step
) {
645 for (i
= 0; i
< mul
; i
++) {
646 if (t
>= g
->p
.nr_tasks
) {
647 printf("\n# NOTE: ignoring bind NODEs starting at NODE#%d\n", bind_node
);
653 tprintf(" %2d", bind_node
);
655 tprintf(",%2d", bind_node
);
657 td
->bind_node
= bind_node
;
666 if (t
< g
->p
.nr_tasks
)
667 printf("# NOTE: %d tasks mem-bound, %d tasks unbound\n", t
, g
->p
.nr_tasks
- t
);
673 static int parse_nodes_opt(const struct option
*opt __maybe_unused
,
674 const char *arg
, int unset __maybe_unused
)
679 return parse_node_list(arg
);
684 #define BIT(x) (1ul << x)
686 static inline uint32_t lfsr_32(uint32_t lfsr
)
688 const uint32_t taps
= BIT(1) | BIT(5) | BIT(6) | BIT(31);
689 return (lfsr
>>1) ^ ((0x0u
- (lfsr
& 0x1u
)) & taps
);
693 * Make sure there's real data dependency to RAM (when read
694 * accesses are enabled), so the compiler, the CPU and the
695 * kernel (KSM, zero page, etc.) cannot optimize away RAM
698 static inline u64
access_data(u64
*data
__attribute__((unused
)), u64 val
)
702 if (g
->p
.data_writes
)
708 * The worker process does two types of work, a forwards going
709 * loop and a backwards going loop.
711 * We do this so that on multiprocessor systems we do not create
712 * a 'train' of processing, with highly synchronized processes,
713 * skewing the whole benchmark.
715 static u64
do_work(u8
*__data
, long bytes
, int nr
, int nr_max
, int loop
, u64 val
)
717 long words
= bytes
/sizeof(u64
);
718 u64
*data
= (void *)__data
;
719 long chunk_0
, chunk_1
;
724 BUG_ON(!data
&& words
);
725 BUG_ON(data
&& !words
);
730 /* Very simple memset() work variant: */
731 if (g
->p
.data_zero_memset
&& !g
->p
.data_rand_walk
) {
736 /* Spread out by PID/TID nr and by loop nr: */
737 chunk_0
= words
/nr_max
;
738 chunk_1
= words
/g
->p
.nr_loops
;
739 off
= nr
*chunk_0
+ loop
*chunk_1
;
744 if (g
->p
.data_rand_walk
) {
745 u32 lfsr
= nr
+ loop
+ val
;
748 for (i
= 0; i
< words
/1024; i
++) {
751 lfsr
= lfsr_32(lfsr
);
753 start
= lfsr
% words
;
754 end
= min(start
+ 1024, words
-1);
756 if (g
->p
.data_zero_memset
) {
757 bzero(data
+ start
, (end
-start
) * sizeof(u64
));
759 for (j
= start
; j
< end
; j
++)
760 val
= access_data(data
+ j
, val
);
763 } else if (!g
->p
.data_backwards
|| (nr
+ loop
) & 1) {
769 /* Process data forwards: */
771 if (unlikely(d
>= d1
))
773 if (unlikely(d
== d0
))
776 val
= access_data(d
, val
);
781 /* Process data backwards: */
787 /* Process data forwards: */
789 if (unlikely(d
< data
))
791 if (unlikely(d
== d0
))
794 val
= access_data(d
, val
);
803 static void update_curr_cpu(int task_nr
, unsigned long bytes_worked
)
807 cpu
= sched_getcpu();
809 g
->threads
[task_nr
].curr_cpu
= cpu
;
810 prctl(0, bytes_worked
);
813 #define MAX_NR_NODES 64
816 * Count the number of nodes a process's threads
819 * A count of 1 means that the process is compressed
820 * to a single node. A count of g->p.nr_nodes means it's
821 * spread out on the whole system.
823 static int count_process_nodes(int process_nr
)
825 char node_present
[MAX_NR_NODES
] = { 0, };
829 for (t
= 0; t
< g
->p
.nr_threads
; t
++) {
830 struct thread_data
*td
;
834 task_nr
= process_nr
*g
->p
.nr_threads
+ t
;
835 td
= g
->threads
+ task_nr
;
837 node
= numa_node_of_cpu(td
->curr_cpu
);
838 if (node
< 0) /* curr_cpu was likely still -1 */
841 node_present
[node
] = 1;
846 for (n
= 0; n
< MAX_NR_NODES
; n
++)
847 nodes
+= node_present
[n
];
853 * Count the number of distinct process-threads a node contains.
855 * A count of 1 means that the node contains only a single
856 * process. If all nodes on the system contain at most one
857 * process then we are well-converged.
859 static int count_node_processes(int node
)
864 for (p
= 0; p
< g
->p
.nr_proc
; p
++) {
865 for (t
= 0; t
< g
->p
.nr_threads
; t
++) {
866 struct thread_data
*td
;
870 task_nr
= p
*g
->p
.nr_threads
+ t
;
871 td
= g
->threads
+ task_nr
;
873 n
= numa_node_of_cpu(td
->curr_cpu
);
884 static void calc_convergence_compression(int *strong
)
886 unsigned int nodes_min
, nodes_max
;
892 for (p
= 0; p
< g
->p
.nr_proc
; p
++) {
893 unsigned int nodes
= count_process_nodes(p
);
900 nodes_min
= min(nodes
, nodes_min
);
901 nodes_max
= max(nodes
, nodes_max
);
904 /* Strong convergence: all threads compress on a single node: */
905 if (nodes_min
== 1 && nodes_max
== 1) {
909 tprintf(" {%d-%d}", nodes_min
, nodes_max
);
913 static void calc_convergence(double runtime_ns_max
, double *convergence
)
915 unsigned int loops_done_min
, loops_done_max
;
917 int nodes
[MAX_NR_NODES
];
928 if (!g
->p
.show_convergence
&& !g
->p
.measure_convergence
)
931 for (node
= 0; node
< g
->p
.nr_nodes
; node
++)
937 for (t
= 0; t
< g
->p
.nr_tasks
; t
++) {
938 struct thread_data
*td
= g
->threads
+ t
;
939 unsigned int loops_done
;
943 /* Not all threads have written it yet: */
947 node
= numa_node_of_cpu(cpu
);
951 loops_done
= td
->loops_done
;
952 loops_done_min
= min(loops_done
, loops_done_min
);
953 loops_done_max
= max(loops_done
, loops_done_max
);
957 nr_min
= g
->p
.nr_tasks
;
960 for (node
= 0; node
< g
->p
.nr_nodes
; node
++) {
962 nr_min
= min(nr
, nr_min
);
963 nr_max
= max(nr
, nr_max
);
966 BUG_ON(nr_min
> nr_max
);
968 BUG_ON(sum
> g
->p
.nr_tasks
);
970 if (0 && (sum
< g
->p
.nr_tasks
))
974 * Count the number of distinct process groups present
975 * on nodes - when we are converged this will decrease
980 for (node
= 0; node
< g
->p
.nr_nodes
; node
++) {
981 int processes
= count_node_processes(node
);
984 tprintf(" %2d/%-2d", nr
, processes
);
986 process_groups
+= processes
;
989 distance
= nr_max
- nr_min
;
991 tprintf(" [%2d/%-2d]", distance
, process_groups
);
993 tprintf(" l:%3d-%-3d (%3d)",
994 loops_done_min
, loops_done_max
, loops_done_max
-loops_done_min
);
996 if (loops_done_min
&& loops_done_max
) {
997 double skew
= 1.0 - (double)loops_done_min
/loops_done_max
;
999 tprintf(" [%4.1f%%]", skew
* 100.0);
1002 calc_convergence_compression(&strong
);
1004 if (strong
&& process_groups
== g
->p
.nr_proc
) {
1005 if (!*convergence
) {
1006 *convergence
= runtime_ns_max
;
1007 tprintf(" (%6.1fs converged)\n", *convergence
/1e9
);
1008 if (g
->p
.measure_convergence
) {
1009 g
->all_converged
= true;
1010 g
->stop_work
= true;
1015 tprintf(" (%6.1fs de-converged)", runtime_ns_max
/1e9
);
1022 static void show_summary(double runtime_ns_max
, int l
, double *convergence
)
1024 tprintf("\r # %5.1f%% [%.1f mins]",
1025 (double)(l
+1)/g
->p
.nr_loops
*100.0, runtime_ns_max
/1e9
/ 60.0);
1027 calc_convergence(runtime_ns_max
, convergence
);
1029 if (g
->p
.show_details
>= 0)
1033 static void *worker_thread(void *__tdata
)
1035 struct thread_data
*td
= __tdata
;
1036 struct timeval start0
, start
, stop
, diff
;
1037 int process_nr
= td
->process_nr
;
1038 int thread_nr
= td
->thread_nr
;
1039 unsigned long last_perturbance
;
1040 int task_nr
= td
->task_nr
;
1041 int details
= g
->p
.show_details
;
1042 int first_task
, last_task
;
1043 double convergence
= 0;
1045 double runtime_ns_max
;
1052 struct rusage rusage
;
1054 bind_to_cpumask(td
->bind_cpumask
);
1055 bind_to_memnode(td
->bind_node
);
1057 set_taskname("thread %d/%d", process_nr
, thread_nr
);
1059 global_data
= g
->data
;
1060 process_data
= td
->process_data
;
1061 thread_data
= setup_private_data(g
->p
.bytes_thread
);
1066 if (process_nr
== g
->p
.nr_proc
-1 && thread_nr
== g
->p
.nr_threads
-1)
1070 if (process_nr
== 0 && thread_nr
== 0)
1074 printf("# thread %2d / %2d global mem: %p, process mem: %p, thread mem: %p\n",
1075 process_nr
, thread_nr
, global_data
, process_data
, thread_data
);
1078 if (g
->p
.serialize_startup
) {
1079 pthread_mutex_lock(&g
->startup_mutex
);
1080 g
->nr_tasks_started
++;
1081 pthread_mutex_unlock(&g
->startup_mutex
);
1083 /* Here we will wait for the main process to start us all at once: */
1084 pthread_mutex_lock(&g
->start_work_mutex
);
1085 g
->nr_tasks_working
++;
1087 /* Last one wake the main process: */
1088 if (g
->nr_tasks_working
== g
->p
.nr_tasks
)
1089 pthread_mutex_unlock(&g
->startup_done_mutex
);
1091 pthread_mutex_unlock(&g
->start_work_mutex
);
1094 gettimeofday(&start0
, NULL
);
1096 start
= stop
= start0
;
1097 last_perturbance
= start
.tv_sec
;
1099 for (l
= 0; l
< g
->p
.nr_loops
; l
++) {
1105 val
+= do_work(global_data
, g
->p
.bytes_global
, process_nr
, g
->p
.nr_proc
, l
, val
);
1106 val
+= do_work(process_data
, g
->p
.bytes_process
, thread_nr
, g
->p
.nr_threads
, l
, val
);
1107 val
+= do_work(thread_data
, g
->p
.bytes_thread
, 0, 1, l
, val
);
1109 if (g
->p
.sleep_usecs
) {
1110 pthread_mutex_lock(td
->process_lock
);
1111 usleep(g
->p
.sleep_usecs
);
1112 pthread_mutex_unlock(td
->process_lock
);
1115 * Amount of work to be done under a process-global lock:
1117 if (g
->p
.bytes_process_locked
) {
1118 pthread_mutex_lock(td
->process_lock
);
1119 val
+= do_work(process_data
, g
->p
.bytes_process_locked
, thread_nr
, g
->p
.nr_threads
, l
, val
);
1120 pthread_mutex_unlock(td
->process_lock
);
1123 work_done
= g
->p
.bytes_global
+ g
->p
.bytes_process
+
1124 g
->p
.bytes_process_locked
+ g
->p
.bytes_thread
;
1126 update_curr_cpu(task_nr
, work_done
);
1127 bytes_done
+= work_done
;
1129 if (details
< 0 && !g
->p
.perturb_secs
&& !g
->p
.measure_convergence
&& !g
->p
.nr_secs
)
1134 gettimeofday(&stop
, NULL
);
1136 /* Check whether our max runtime timed out: */
1138 timersub(&stop
, &start0
, &diff
);
1139 if ((u32
)diff
.tv_sec
>= g
->p
.nr_secs
) {
1140 g
->stop_work
= true;
1145 /* Update the summary at most once per second: */
1146 if (start
.tv_sec
== stop
.tv_sec
)
1150 * Perturb the first task's equilibrium every g->p.perturb_secs seconds,
1151 * by migrating to CPU#0:
1153 if (first_task
&& g
->p
.perturb_secs
&& (int)(stop
.tv_sec
- last_perturbance
) >= g
->p
.perturb_secs
) {
1154 cpu_set_t orig_mask
;
1158 last_perturbance
= stop
.tv_sec
;
1161 * Depending on where we are running, move into
1162 * the other half of the system, to create some
1165 this_cpu
= g
->threads
[task_nr
].curr_cpu
;
1166 if (this_cpu
< g
->p
.nr_cpus
/2)
1167 target_cpu
= g
->p
.nr_cpus
-1;
1171 orig_mask
= bind_to_cpu(target_cpu
);
1173 /* Here we are running on the target CPU already */
1175 printf(" (injecting perturbalance, moved to CPU#%d)\n", target_cpu
);
1177 bind_to_cpumask(orig_mask
);
1181 timersub(&stop
, &start
, &diff
);
1182 runtime_ns_max
= diff
.tv_sec
* 1000000000;
1183 runtime_ns_max
+= diff
.tv_usec
* 1000;
1186 printf(" #%2d / %2d: %14.2lf nsecs/op [val: %016"PRIx64
"]\n",
1187 process_nr
, thread_nr
, runtime_ns_max
/ bytes_done
, val
);
1194 timersub(&stop
, &start0
, &diff
);
1195 runtime_ns_max
= diff
.tv_sec
* 1000000000ULL;
1196 runtime_ns_max
+= diff
.tv_usec
* 1000ULL;
1198 show_summary(runtime_ns_max
, l
, &convergence
);
1201 gettimeofday(&stop
, NULL
);
1202 timersub(&stop
, &start0
, &diff
);
1203 td
->runtime_ns
= diff
.tv_sec
* 1000000000ULL;
1204 td
->runtime_ns
+= diff
.tv_usec
* 1000ULL;
1205 td
->speed_gbs
= bytes_done
/ (td
->runtime_ns
/ 1e9
) / 1e9
;
1207 getrusage(RUSAGE_THREAD
, &rusage
);
1208 td
->system_time_ns
= rusage
.ru_stime
.tv_sec
* 1000000000ULL;
1209 td
->system_time_ns
+= rusage
.ru_stime
.tv_usec
* 1000ULL;
1210 td
->user_time_ns
= rusage
.ru_utime
.tv_sec
* 1000000000ULL;
1211 td
->user_time_ns
+= rusage
.ru_utime
.tv_usec
* 1000ULL;
1213 free_data(thread_data
, g
->p
.bytes_thread
);
1215 pthread_mutex_lock(&g
->stop_work_mutex
);
1216 g
->bytes_done
+= bytes_done
;
1217 pthread_mutex_unlock(&g
->stop_work_mutex
);
1223 * A worker process starts a couple of threads:
1225 static void worker_process(int process_nr
)
1227 pthread_mutex_t process_lock
;
1228 struct thread_data
*td
;
1229 pthread_t
*pthreads
;
1235 pthread_mutex_init(&process_lock
, NULL
);
1236 set_taskname("process %d", process_nr
);
1239 * Pick up the memory policy and the CPU binding of our first thread,
1240 * so that we initialize memory accordingly:
1242 task_nr
= process_nr
*g
->p
.nr_threads
;
1243 td
= g
->threads
+ task_nr
;
1245 bind_to_memnode(td
->bind_node
);
1246 bind_to_cpumask(td
->bind_cpumask
);
1248 pthreads
= zalloc(g
->p
.nr_threads
* sizeof(pthread_t
));
1249 process_data
= setup_private_data(g
->p
.bytes_process
);
1251 if (g
->p
.show_details
>= 3) {
1252 printf(" # process %2d global mem: %p, process mem: %p\n",
1253 process_nr
, g
->data
, process_data
);
1256 for (t
= 0; t
< g
->p
.nr_threads
; t
++) {
1257 task_nr
= process_nr
*g
->p
.nr_threads
+ t
;
1258 td
= g
->threads
+ task_nr
;
1260 td
->process_data
= process_data
;
1261 td
->process_nr
= process_nr
;
1263 td
->task_nr
= task_nr
;
1266 td
->process_lock
= &process_lock
;
1268 ret
= pthread_create(pthreads
+ t
, NULL
, worker_thread
, td
);
1272 for (t
= 0; t
< g
->p
.nr_threads
; t
++) {
1273 ret
= pthread_join(pthreads
[t
], NULL
);
1277 free_data(process_data
, g
->p
.bytes_process
);
1281 static void print_summary(void)
1283 if (g
->p
.show_details
< 0)
1287 printf(" # %d %s will execute (on %d nodes, %d CPUs):\n",
1288 g
->p
.nr_tasks
, g
->p
.nr_tasks
== 1 ? "task" : "tasks", g
->p
.nr_nodes
, g
->p
.nr_cpus
);
1289 printf(" # %5dx %5ldMB global shared mem operations\n",
1290 g
->p
.nr_loops
, g
->p
.bytes_global
/1024/1024);
1291 printf(" # %5dx %5ldMB process shared mem operations\n",
1292 g
->p
.nr_loops
, g
->p
.bytes_process
/1024/1024);
1293 printf(" # %5dx %5ldMB thread local mem operations\n",
1294 g
->p
.nr_loops
, g
->p
.bytes_thread
/1024/1024);
1298 printf("\n ###\n"); fflush(stdout
);
1301 static void init_thread_data(void)
1303 ssize_t size
= sizeof(*g
->threads
)*g
->p
.nr_tasks
;
1306 g
->threads
= zalloc_shared_data(size
);
1308 for (t
= 0; t
< g
->p
.nr_tasks
; t
++) {
1309 struct thread_data
*td
= g
->threads
+ t
;
1312 /* Allow all nodes by default: */
1315 /* Allow all CPUs by default: */
1316 CPU_ZERO(&td
->bind_cpumask
);
1317 for (cpu
= 0; cpu
< g
->p
.nr_cpus
; cpu
++)
1318 CPU_SET(cpu
, &td
->bind_cpumask
);
1322 static void deinit_thread_data(void)
1324 ssize_t size
= sizeof(*g
->threads
)*g
->p
.nr_tasks
;
1326 free_data(g
->threads
, size
);
1329 static int init(void)
1331 g
= (void *)alloc_data(sizeof(*g
), MAP_SHARED
, 1, 0, 0 /* THP */, 0);
1333 /* Copy over options: */
1336 g
->p
.nr_cpus
= numa_num_configured_cpus();
1338 g
->p
.nr_nodes
= numa_max_node() + 1;
1340 /* char array in count_process_nodes(): */
1341 BUG_ON(g
->p
.nr_nodes
> MAX_NR_NODES
|| g
->p
.nr_nodes
< 0);
1343 if (g
->p
.show_quiet
&& !g
->p
.show_details
)
1344 g
->p
.show_details
= -1;
1346 /* Some memory should be specified: */
1347 if (!g
->p
.mb_global_str
&& !g
->p
.mb_proc_str
&& !g
->p
.mb_thread_str
)
1350 if (g
->p
.mb_global_str
) {
1351 g
->p
.mb_global
= atof(g
->p
.mb_global_str
);
1352 BUG_ON(g
->p
.mb_global
< 0);
1355 if (g
->p
.mb_proc_str
) {
1356 g
->p
.mb_proc
= atof(g
->p
.mb_proc_str
);
1357 BUG_ON(g
->p
.mb_proc
< 0);
1360 if (g
->p
.mb_proc_locked_str
) {
1361 g
->p
.mb_proc_locked
= atof(g
->p
.mb_proc_locked_str
);
1362 BUG_ON(g
->p
.mb_proc_locked
< 0);
1363 BUG_ON(g
->p
.mb_proc_locked
> g
->p
.mb_proc
);
1366 if (g
->p
.mb_thread_str
) {
1367 g
->p
.mb_thread
= atof(g
->p
.mb_thread_str
);
1368 BUG_ON(g
->p
.mb_thread
< 0);
1371 BUG_ON(g
->p
.nr_threads
<= 0);
1372 BUG_ON(g
->p
.nr_proc
<= 0);
1374 g
->p
.nr_tasks
= g
->p
.nr_proc
*g
->p
.nr_threads
;
1376 g
->p
.bytes_global
= g
->p
.mb_global
*1024L*1024L;
1377 g
->p
.bytes_process
= g
->p
.mb_proc
*1024L*1024L;
1378 g
->p
.bytes_process_locked
= g
->p
.mb_proc_locked
*1024L*1024L;
1379 g
->p
.bytes_thread
= g
->p
.mb_thread
*1024L*1024L;
1381 g
->data
= setup_shared_data(g
->p
.bytes_global
);
1383 /* Startup serialization: */
1384 init_global_mutex(&g
->start_work_mutex
);
1385 init_global_mutex(&g
->startup_mutex
);
1386 init_global_mutex(&g
->startup_done_mutex
);
1387 init_global_mutex(&g
->stop_work_mutex
);
1392 if (parse_setup_cpu_list() || parse_setup_node_list())
1401 static void deinit(void)
1403 free_data(g
->data
, g
->p
.bytes_global
);
1406 deinit_thread_data();
1408 free_data(g
, sizeof(*g
));
1413 * Print a short or long result, depending on the verbosity setting:
1415 static void print_res(const char *name
, double val
,
1416 const char *txt_unit
, const char *txt_short
, const char *txt_long
)
1421 if (!g
->p
.show_quiet
)
1422 printf(" %-30s %15.3f, %-15s %s\n", name
, val
, txt_unit
, txt_short
);
1424 printf(" %14.3f %s\n", val
, txt_long
);
1427 static int __bench_numa(const char *name
)
1429 struct timeval start
, stop
, diff
;
1430 u64 runtime_ns_min
, runtime_ns_sum
;
1431 pid_t
*pids
, pid
, wpid
;
1432 double delta_runtime
;
1434 double runtime_sec_max
;
1435 double runtime_sec_min
;
1443 pids
= zalloc(g
->p
.nr_proc
* sizeof(*pids
));
1446 /* All threads try to acquire it, this way we can wait for them to start up: */
1447 pthread_mutex_lock(&g
->start_work_mutex
);
1449 if (g
->p
.serialize_startup
) {
1451 tprintf(" # Startup synchronization: ..."); fflush(stdout
);
1454 gettimeofday(&start
, NULL
);
1456 for (i
= 0; i
< g
->p
.nr_proc
; i
++) {
1458 dprintf(" # process %2d: PID %d\n", i
, pid
);
1462 /* Child process: */
1470 /* Wait for all the threads to start up: */
1471 while (g
->nr_tasks_started
!= g
->p
.nr_tasks
)
1474 BUG_ON(g
->nr_tasks_started
!= g
->p
.nr_tasks
);
1476 if (g
->p
.serialize_startup
) {
1479 pthread_mutex_lock(&g
->startup_done_mutex
);
1481 /* This will start all threads: */
1482 pthread_mutex_unlock(&g
->start_work_mutex
);
1484 /* This mutex is locked - the last started thread will wake us: */
1485 pthread_mutex_lock(&g
->startup_done_mutex
);
1487 gettimeofday(&stop
, NULL
);
1489 timersub(&stop
, &start
, &diff
);
1491 startup_sec
= diff
.tv_sec
* 1000000000.0;
1492 startup_sec
+= diff
.tv_usec
* 1000.0;
1495 tprintf(" threads initialized in %.6f seconds.\n", startup_sec
);
1499 pthread_mutex_unlock(&g
->startup_done_mutex
);
1501 gettimeofday(&start
, NULL
);
1504 /* Parent process: */
1507 for (i
= 0; i
< g
->p
.nr_proc
; i
++) {
1508 wpid
= waitpid(pids
[i
], &wait_stat
, 0);
1510 BUG_ON(!WIFEXITED(wait_stat
));
1515 runtime_ns_min
= -1LL;
1517 for (t
= 0; t
< g
->p
.nr_tasks
; t
++) {
1518 u64 thread_runtime_ns
= g
->threads
[t
].runtime_ns
;
1520 runtime_ns_sum
+= thread_runtime_ns
;
1521 runtime_ns_min
= min(thread_runtime_ns
, runtime_ns_min
);
1524 gettimeofday(&stop
, NULL
);
1525 timersub(&stop
, &start
, &diff
);
1527 BUG_ON(bench_format
!= BENCH_FORMAT_DEFAULT
);
1529 tprintf("\n ###\n");
1532 runtime_sec_max
= diff
.tv_sec
* 1000000000.0;
1533 runtime_sec_max
+= diff
.tv_usec
* 1000.0;
1534 runtime_sec_max
/= 1e9
;
1536 runtime_sec_min
= runtime_ns_min
/1e9
;
1538 bytes
= g
->bytes_done
;
1539 runtime_avg
= (double)runtime_ns_sum
/ g
->p
.nr_tasks
/ 1e9
;
1541 if (g
->p
.measure_convergence
) {
1542 print_res(name
, runtime_sec_max
,
1543 "secs,", "NUMA-convergence-latency", "secs latency to NUMA-converge");
1546 print_res(name
, runtime_sec_max
,
1547 "secs,", "runtime-max/thread", "secs slowest (max) thread-runtime");
1549 print_res(name
, runtime_sec_min
,
1550 "secs,", "runtime-min/thread", "secs fastest (min) thread-runtime");
1552 print_res(name
, runtime_avg
,
1553 "secs,", "runtime-avg/thread", "secs average thread-runtime");
1555 delta_runtime
= (runtime_sec_max
- runtime_sec_min
)/2.0;
1556 print_res(name
, delta_runtime
/ runtime_sec_max
* 100.0,
1557 "%,", "spread-runtime/thread", "% difference between max/avg runtime");
1559 print_res(name
, bytes
/ g
->p
.nr_tasks
/ 1e9
,
1560 "GB,", "data/thread", "GB data processed, per thread");
1562 print_res(name
, bytes
/ 1e9
,
1563 "GB,", "data-total", "GB data processed, total");
1565 print_res(name
, runtime_sec_max
* 1e9
/ (bytes
/ g
->p
.nr_tasks
),
1566 "nsecs,", "runtime/byte/thread","nsecs/byte/thread runtime");
1568 print_res(name
, bytes
/ g
->p
.nr_tasks
/ 1e9
/ runtime_sec_max
,
1569 "GB/sec,", "thread-speed", "GB/sec/thread speed");
1571 print_res(name
, bytes
/ runtime_sec_max
/ 1e9
,
1572 "GB/sec,", "total-speed", "GB/sec total speed");
1574 if (g
->p
.show_details
>= 2) {
1576 struct thread_data
*td
;
1577 for (p
= 0; p
< g
->p
.nr_proc
; p
++) {
1578 for (t
= 0; t
< g
->p
.nr_threads
; t
++) {
1579 memset(tname
, 0, 32);
1580 td
= g
->threads
+ p
*g
->p
.nr_threads
+ t
;
1581 snprintf(tname
, 32, "process%d:thread%d", p
, t
);
1582 print_res(tname
, td
->speed_gbs
,
1583 "GB/sec", "thread-speed", "GB/sec/thread speed");
1584 print_res(tname
, td
->system_time_ns
/ 1e9
,
1585 "secs", "thread-system-time", "system CPU time/thread");
1586 print_res(tname
, td
->user_time_ns
/ 1e9
,
1587 "secs", "thread-user-time", "user CPU time/thread");
1601 static int command_size(const char **argv
)
1610 BUG_ON(size
>= MAX_ARGS
);
1615 static void init_params(struct params
*p
, const char *name
, int argc
, const char **argv
)
1619 printf("\n # Running %s \"perf bench numa", name
);
1621 for (i
= 0; i
< argc
; i
++)
1622 printf(" %s", argv
[i
]);
1626 memset(p
, 0, sizeof(*p
));
1628 /* Initialize nonzero defaults: */
1630 p
->serialize_startup
= 1;
1631 p
->data_reads
= true;
1632 p
->data_writes
= true;
1633 p
->data_backwards
= true;
1634 p
->data_rand_walk
= true;
1636 p
->init_random
= true;
1637 p
->mb_global_str
= "1";
1641 p
->run_all
= argc
== 1;
1644 static int run_bench_numa(const char *name
, const char **argv
)
1646 int argc
= command_size(argv
);
1648 init_params(&p0
, name
, argc
, argv
);
1649 argc
= parse_options(argc
, argv
, options
, bench_numa_usage
, 0);
1653 if (__bench_numa(name
))
1662 #define OPT_BW_RAM "-s", "20", "-zZq", "--thp", " 1", "--no-data_rand_walk"
1663 #define OPT_BW_RAM_NOTHP OPT_BW_RAM, "--thp", "-1"
1665 #define OPT_CONV "-s", "100", "-zZ0qcm", "--thp", " 1"
1666 #define OPT_CONV_NOTHP OPT_CONV, "--thp", "-1"
1668 #define OPT_BW "-s", "20", "-zZ0q", "--thp", " 1"
1669 #define OPT_BW_NOTHP OPT_BW, "--thp", "-1"
1672 * The built-in test-suite executed by "perf bench numa -a".
1674 * (A minimum of 4 nodes and 16 GB of RAM is recommended.)
1676 static const char *tests
[][MAX_ARGS
] = {
1677 /* Basic single-stream NUMA bandwidth measurements: */
1678 { "RAM-bw-local,", "mem", "-p", "1", "-t", "1", "-P", "1024",
1679 "-C" , "0", "-M", "0", OPT_BW_RAM
},
1680 { "RAM-bw-local-NOTHP,",
1681 "mem", "-p", "1", "-t", "1", "-P", "1024",
1682 "-C" , "0", "-M", "0", OPT_BW_RAM_NOTHP
},
1683 { "RAM-bw-remote,", "mem", "-p", "1", "-t", "1", "-P", "1024",
1684 "-C" , "0", "-M", "1", OPT_BW_RAM
},
1686 /* 2-stream NUMA bandwidth measurements: */
1687 { "RAM-bw-local-2x,", "mem", "-p", "2", "-t", "1", "-P", "1024",
1688 "-C", "0,2", "-M", "0x2", OPT_BW_RAM
},
1689 { "RAM-bw-remote-2x,", "mem", "-p", "2", "-t", "1", "-P", "1024",
1690 "-C", "0,2", "-M", "1x2", OPT_BW_RAM
},
1692 /* Cross-stream NUMA bandwidth measurement: */
1693 { "RAM-bw-cross,", "mem", "-p", "2", "-t", "1", "-P", "1024",
1694 "-C", "0,8", "-M", "1,0", OPT_BW_RAM
},
1696 /* Convergence latency measurements: */
1697 { " 1x3-convergence,", "mem", "-p", "1", "-t", "3", "-P", "512", OPT_CONV
},
1698 { " 1x4-convergence,", "mem", "-p", "1", "-t", "4", "-P", "512", OPT_CONV
},
1699 { " 1x6-convergence,", "mem", "-p", "1", "-t", "6", "-P", "1020", OPT_CONV
},
1700 { " 2x3-convergence,", "mem", "-p", "3", "-t", "3", "-P", "1020", OPT_CONV
},
1701 { " 3x3-convergence,", "mem", "-p", "3", "-t", "3", "-P", "1020", OPT_CONV
},
1702 { " 4x4-convergence,", "mem", "-p", "4", "-t", "4", "-P", "512", OPT_CONV
},
1703 { " 4x4-convergence-NOTHP,",
1704 "mem", "-p", "4", "-t", "4", "-P", "512", OPT_CONV_NOTHP
},
1705 { " 4x6-convergence,", "mem", "-p", "4", "-t", "6", "-P", "1020", OPT_CONV
},
1706 { " 4x8-convergence,", "mem", "-p", "4", "-t", "8", "-P", "512", OPT_CONV
},
1707 { " 8x4-convergence,", "mem", "-p", "8", "-t", "4", "-P", "512", OPT_CONV
},
1708 { " 8x4-convergence-NOTHP,",
1709 "mem", "-p", "8", "-t", "4", "-P", "512", OPT_CONV_NOTHP
},
1710 { " 3x1-convergence,", "mem", "-p", "3", "-t", "1", "-P", "512", OPT_CONV
},
1711 { " 4x1-convergence,", "mem", "-p", "4", "-t", "1", "-P", "512", OPT_CONV
},
1712 { " 8x1-convergence,", "mem", "-p", "8", "-t", "1", "-P", "512", OPT_CONV
},
1713 { "16x1-convergence,", "mem", "-p", "16", "-t", "1", "-P", "256", OPT_CONV
},
1714 { "32x1-convergence,", "mem", "-p", "32", "-t", "1", "-P", "128", OPT_CONV
},
1716 /* Various NUMA process/thread layout bandwidth measurements: */
1717 { " 2x1-bw-process,", "mem", "-p", "2", "-t", "1", "-P", "1024", OPT_BW
},
1718 { " 3x1-bw-process,", "mem", "-p", "3", "-t", "1", "-P", "1024", OPT_BW
},
1719 { " 4x1-bw-process,", "mem", "-p", "4", "-t", "1", "-P", "1024", OPT_BW
},
1720 { " 8x1-bw-process,", "mem", "-p", "8", "-t", "1", "-P", " 512", OPT_BW
},
1721 { " 8x1-bw-process-NOTHP,",
1722 "mem", "-p", "8", "-t", "1", "-P", " 512", OPT_BW_NOTHP
},
1723 { "16x1-bw-process,", "mem", "-p", "16", "-t", "1", "-P", "256", OPT_BW
},
1725 { " 4x1-bw-thread,", "mem", "-p", "1", "-t", "4", "-T", "256", OPT_BW
},
1726 { " 8x1-bw-thread,", "mem", "-p", "1", "-t", "8", "-T", "256", OPT_BW
},
1727 { "16x1-bw-thread,", "mem", "-p", "1", "-t", "16", "-T", "128", OPT_BW
},
1728 { "32x1-bw-thread,", "mem", "-p", "1", "-t", "32", "-T", "64", OPT_BW
},
1730 { " 2x3-bw-thread,", "mem", "-p", "2", "-t", "3", "-P", "512", OPT_BW
},
1731 { " 4x4-bw-thread,", "mem", "-p", "4", "-t", "4", "-P", "512", OPT_BW
},
1732 { " 4x6-bw-thread,", "mem", "-p", "4", "-t", "6", "-P", "512", OPT_BW
},
1733 { " 4x8-bw-thread,", "mem", "-p", "4", "-t", "8", "-P", "512", OPT_BW
},
1734 { " 4x8-bw-thread-NOTHP,",
1735 "mem", "-p", "4", "-t", "8", "-P", "512", OPT_BW_NOTHP
},
1736 { " 3x3-bw-thread,", "mem", "-p", "3", "-t", "3", "-P", "512", OPT_BW
},
1737 { " 5x5-bw-thread,", "mem", "-p", "5", "-t", "5", "-P", "512", OPT_BW
},
1739 { "2x16-bw-thread,", "mem", "-p", "2", "-t", "16", "-P", "512", OPT_BW
},
1740 { "1x32-bw-thread,", "mem", "-p", "1", "-t", "32", "-P", "2048", OPT_BW
},
1742 { "numa02-bw,", "mem", "-p", "1", "-t", "32", "-T", "32", OPT_BW
},
1743 { "numa02-bw-NOTHP,", "mem", "-p", "1", "-t", "32", "-T", "32", OPT_BW_NOTHP
},
1744 { "numa01-bw-thread,", "mem", "-p", "2", "-t", "16", "-T", "192", OPT_BW
},
1745 { "numa01-bw-thread-NOTHP,",
1746 "mem", "-p", "2", "-t", "16", "-T", "192", OPT_BW_NOTHP
},
1749 static int bench_all(void)
1751 int nr
= ARRAY_SIZE(tests
);
1755 ret
= system("echo ' #'; echo ' # Running test on: '$(uname -a); echo ' #'");
1758 for (i
= 0; i
< nr
; i
++) {
1759 run_bench_numa(tests
[i
][0], tests
[i
] + 1);
1767 int bench_numa(int argc
, const char **argv
, const char *prefix __maybe_unused
)
1769 init_params(&p0
, "main,", argc
, argv
);
1770 argc
= parse_options(argc
, argv
, options
, bench_numa_usage
, 0);
1777 if (__bench_numa(NULL
))
1783 usage_with_options(numa_usage
, options
);