2 * builtin-timechart.c - make an svg timechart of system activity
4 * (C) Copyright 2009 Intel Corporation
7 * Arjan van de Ven <arjan@linux.intel.com>
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; version 2
15 #include <traceevent/event-parse.h>
19 #include "util/util.h"
21 #include "util/color.h"
22 #include <linux/list.h>
23 #include "util/cache.h"
24 #include "util/evlist.h"
25 #include "util/evsel.h"
26 #include <linux/rbtree.h>
27 #include "util/symbol.h"
28 #include "util/callchain.h"
29 #include "util/strlist.h"
32 #include "util/header.h"
33 #include <subcmd/parse-options.h>
34 #include "util/parse-events.h"
35 #include "util/event.h"
36 #include "util/session.h"
37 #include "util/svghelper.h"
38 #include "util/tool.h"
39 #include "util/data.h"
40 #include "util/debug.h"
42 #define SUPPORT_OLD_POWER_EVENTS 1
43 #define PWR_EVENT_EXIT -1
50 struct perf_tool tool
;
51 struct per_pid
*all_data
;
52 struct power_event
*power_events
;
53 struct wake_event
*wake_events
;
56 u64 min_freq
, /* Lowest CPU frequency seen */
57 max_freq
, /* Highest CPU frequency seen */
59 first_time
, last_time
;
65 /* IO related settings */
78 * Datastructure layout:
79 * We keep an list of "pid"s, matching the kernels notion of a task struct.
80 * Each "pid" entry, has a list of "comm"s.
81 * this is because we want to track different programs different, while
82 * exec will reuse the original pid (by design).
83 * Each comm has a list of samples that will be used to draw
99 struct per_pidcomm
*all
;
100 struct per_pidcomm
*current
;
105 struct per_pidcomm
*next
;
121 struct cpu_sample
*samples
;
122 struct io_sample
*io_samples
;
125 struct sample_wrapper
{
126 struct sample_wrapper
*next
;
129 unsigned char data
[0];
133 #define TYPE_RUNNING 1
134 #define TYPE_WAITING 2
135 #define TYPE_BLOCKED 3
138 struct cpu_sample
*next
;
144 const char *backtrace
;
157 struct io_sample
*next
;
172 struct power_event
*next
;
181 struct wake_event
*next
;
185 const char *backtrace
;
188 struct process_filter
{
191 struct process_filter
*next
;
194 static struct process_filter
*process_filter
;
197 static struct per_pid
*find_create_pid(struct timechart
*tchart
, int pid
)
199 struct per_pid
*cursor
= tchart
->all_data
;
202 if (cursor
->pid
== pid
)
204 cursor
= cursor
->next
;
206 cursor
= zalloc(sizeof(*cursor
));
207 assert(cursor
!= NULL
);
209 cursor
->next
= tchart
->all_data
;
210 tchart
->all_data
= cursor
;
214 static void pid_set_comm(struct timechart
*tchart
, int pid
, char *comm
)
217 struct per_pidcomm
*c
;
218 p
= find_create_pid(tchart
, pid
);
221 if (c
->comm
&& strcmp(c
->comm
, comm
) == 0) {
226 c
->comm
= strdup(comm
);
232 c
= zalloc(sizeof(*c
));
234 c
->comm
= strdup(comm
);
240 static void pid_fork(struct timechart
*tchart
, int pid
, int ppid
, u64 timestamp
)
242 struct per_pid
*p
, *pp
;
243 p
= find_create_pid(tchart
, pid
);
244 pp
= find_create_pid(tchart
, ppid
);
246 if (pp
->current
&& pp
->current
->comm
&& !p
->current
)
247 pid_set_comm(tchart
, pid
, pp
->current
->comm
);
249 p
->start_time
= timestamp
;
250 if (p
->current
&& !p
->current
->start_time
) {
251 p
->current
->start_time
= timestamp
;
252 p
->current
->state_since
= timestamp
;
256 static void pid_exit(struct timechart
*tchart
, int pid
, u64 timestamp
)
259 p
= find_create_pid(tchart
, pid
);
260 p
->end_time
= timestamp
;
262 p
->current
->end_time
= timestamp
;
265 static void pid_put_sample(struct timechart
*tchart
, int pid
, int type
,
266 unsigned int cpu
, u64 start
, u64 end
,
267 const char *backtrace
)
270 struct per_pidcomm
*c
;
271 struct cpu_sample
*sample
;
273 p
= find_create_pid(tchart
, pid
);
276 c
= zalloc(sizeof(*c
));
283 sample
= zalloc(sizeof(*sample
));
284 assert(sample
!= NULL
);
285 sample
->start_time
= start
;
286 sample
->end_time
= end
;
288 sample
->next
= c
->samples
;
290 sample
->backtrace
= backtrace
;
293 if (sample
->type
== TYPE_RUNNING
&& end
> start
&& start
> 0) {
294 c
->total_time
+= (end
-start
);
295 p
->total_time
+= (end
-start
);
298 if (c
->start_time
== 0 || c
->start_time
> start
)
299 c
->start_time
= start
;
300 if (p
->start_time
== 0 || p
->start_time
> start
)
301 p
->start_time
= start
;
304 #define MAX_CPUS 4096
306 static u64 cpus_cstate_start_times
[MAX_CPUS
];
307 static int cpus_cstate_state
[MAX_CPUS
];
308 static u64 cpus_pstate_start_times
[MAX_CPUS
];
309 static u64 cpus_pstate_state
[MAX_CPUS
];
311 static int process_comm_event(struct perf_tool
*tool
,
312 union perf_event
*event
,
313 struct perf_sample
*sample __maybe_unused
,
314 struct machine
*machine __maybe_unused
)
316 struct timechart
*tchart
= container_of(tool
, struct timechart
, tool
);
317 pid_set_comm(tchart
, event
->comm
.tid
, event
->comm
.comm
);
321 static int process_fork_event(struct perf_tool
*tool
,
322 union perf_event
*event
,
323 struct perf_sample
*sample __maybe_unused
,
324 struct machine
*machine __maybe_unused
)
326 struct timechart
*tchart
= container_of(tool
, struct timechart
, tool
);
327 pid_fork(tchart
, event
->fork
.pid
, event
->fork
.ppid
, event
->fork
.time
);
331 static int process_exit_event(struct perf_tool
*tool
,
332 union perf_event
*event
,
333 struct perf_sample
*sample __maybe_unused
,
334 struct machine
*machine __maybe_unused
)
336 struct timechart
*tchart
= container_of(tool
, struct timechart
, tool
);
337 pid_exit(tchart
, event
->fork
.pid
, event
->fork
.time
);
341 #ifdef SUPPORT_OLD_POWER_EVENTS
342 static int use_old_power_events
;
345 static void c_state_start(int cpu
, u64 timestamp
, int state
)
347 cpus_cstate_start_times
[cpu
] = timestamp
;
348 cpus_cstate_state
[cpu
] = state
;
351 static void c_state_end(struct timechart
*tchart
, int cpu
, u64 timestamp
)
353 struct power_event
*pwr
= zalloc(sizeof(*pwr
));
358 pwr
->state
= cpus_cstate_state
[cpu
];
359 pwr
->start_time
= cpus_cstate_start_times
[cpu
];
360 pwr
->end_time
= timestamp
;
363 pwr
->next
= tchart
->power_events
;
365 tchart
->power_events
= pwr
;
368 static void p_state_change(struct timechart
*tchart
, int cpu
, u64 timestamp
, u64 new_freq
)
370 struct power_event
*pwr
;
372 if (new_freq
> 8000000) /* detect invalid data */
375 pwr
= zalloc(sizeof(*pwr
));
379 pwr
->state
= cpus_pstate_state
[cpu
];
380 pwr
->start_time
= cpus_pstate_start_times
[cpu
];
381 pwr
->end_time
= timestamp
;
384 pwr
->next
= tchart
->power_events
;
386 if (!pwr
->start_time
)
387 pwr
->start_time
= tchart
->first_time
;
389 tchart
->power_events
= pwr
;
391 cpus_pstate_state
[cpu
] = new_freq
;
392 cpus_pstate_start_times
[cpu
] = timestamp
;
394 if ((u64
)new_freq
> tchart
->max_freq
)
395 tchart
->max_freq
= new_freq
;
397 if (new_freq
< tchart
->min_freq
|| tchart
->min_freq
== 0)
398 tchart
->min_freq
= new_freq
;
400 if (new_freq
== tchart
->max_freq
- 1000)
401 tchart
->turbo_frequency
= tchart
->max_freq
;
404 static void sched_wakeup(struct timechart
*tchart
, int cpu
, u64 timestamp
,
405 int waker
, int wakee
, u8 flags
, const char *backtrace
)
408 struct wake_event
*we
= zalloc(sizeof(*we
));
413 we
->time
= timestamp
;
415 we
->backtrace
= backtrace
;
417 if ((flags
& TRACE_FLAG_HARDIRQ
) || (flags
& TRACE_FLAG_SOFTIRQ
))
421 we
->next
= tchart
->wake_events
;
422 tchart
->wake_events
= we
;
423 p
= find_create_pid(tchart
, we
->wakee
);
425 if (p
&& p
->current
&& p
->current
->state
== TYPE_NONE
) {
426 p
->current
->state_since
= timestamp
;
427 p
->current
->state
= TYPE_WAITING
;
429 if (p
&& p
->current
&& p
->current
->state
== TYPE_BLOCKED
) {
430 pid_put_sample(tchart
, p
->pid
, p
->current
->state
, cpu
,
431 p
->current
->state_since
, timestamp
, NULL
);
432 p
->current
->state_since
= timestamp
;
433 p
->current
->state
= TYPE_WAITING
;
437 static void sched_switch(struct timechart
*tchart
, int cpu
, u64 timestamp
,
438 int prev_pid
, int next_pid
, u64 prev_state
,
439 const char *backtrace
)
441 struct per_pid
*p
= NULL
, *prev_p
;
443 prev_p
= find_create_pid(tchart
, prev_pid
);
445 p
= find_create_pid(tchart
, next_pid
);
447 if (prev_p
->current
&& prev_p
->current
->state
!= TYPE_NONE
)
448 pid_put_sample(tchart
, prev_pid
, TYPE_RUNNING
, cpu
,
449 prev_p
->current
->state_since
, timestamp
,
451 if (p
&& p
->current
) {
452 if (p
->current
->state
!= TYPE_NONE
)
453 pid_put_sample(tchart
, next_pid
, p
->current
->state
, cpu
,
454 p
->current
->state_since
, timestamp
,
457 p
->current
->state_since
= timestamp
;
458 p
->current
->state
= TYPE_RUNNING
;
461 if (prev_p
->current
) {
462 prev_p
->current
->state
= TYPE_NONE
;
463 prev_p
->current
->state_since
= timestamp
;
465 prev_p
->current
->state
= TYPE_BLOCKED
;
467 prev_p
->current
->state
= TYPE_WAITING
;
471 static const char *cat_backtrace(union perf_event
*event
,
472 struct perf_sample
*sample
,
473 struct machine
*machine
)
475 struct addr_location al
;
479 u8 cpumode
= PERF_RECORD_MISC_USER
;
480 struct addr_location tal
;
481 struct ip_callchain
*chain
= sample
->callchain
;
482 FILE *f
= open_memstream(&p
, &p_len
);
485 perror("open_memstream error");
492 if (machine__resolve(machine
, &al
, sample
) < 0) {
493 fprintf(stderr
, "problem processing %d event, skipping it.\n",
498 for (i
= 0; i
< chain
->nr
; i
++) {
501 if (callchain_param
.order
== ORDER_CALLEE
)
504 ip
= chain
->ips
[chain
->nr
- i
- 1];
506 if (ip
>= PERF_CONTEXT_MAX
) {
508 case PERF_CONTEXT_HV
:
509 cpumode
= PERF_RECORD_MISC_HYPERVISOR
;
511 case PERF_CONTEXT_KERNEL
:
512 cpumode
= PERF_RECORD_MISC_KERNEL
;
514 case PERF_CONTEXT_USER
:
515 cpumode
= PERF_RECORD_MISC_USER
;
518 pr_debug("invalid callchain context: "
519 "%"PRId64
"\n", (s64
) ip
);
522 * It seems the callchain is corrupted.
532 thread__find_addr_location(al
.thread
, cpumode
,
533 MAP__FUNCTION
, ip
, &tal
);
536 fprintf(f
, "..... %016" PRIx64
" %s\n", ip
,
539 fprintf(f
, "..... %016" PRIx64
"\n", ip
);
542 addr_location__put(&al
);
549 typedef int (*tracepoint_handler
)(struct timechart
*tchart
,
550 struct perf_evsel
*evsel
,
551 struct perf_sample
*sample
,
552 const char *backtrace
);
554 static int process_sample_event(struct perf_tool
*tool
,
555 union perf_event
*event
,
556 struct perf_sample
*sample
,
557 struct perf_evsel
*evsel
,
558 struct machine
*machine
)
560 struct timechart
*tchart
= container_of(tool
, struct timechart
, tool
);
562 if (evsel
->attr
.sample_type
& PERF_SAMPLE_TIME
) {
563 if (!tchart
->first_time
|| tchart
->first_time
> sample
->time
)
564 tchart
->first_time
= sample
->time
;
565 if (tchart
->last_time
< sample
->time
)
566 tchart
->last_time
= sample
->time
;
569 if (evsel
->handler
!= NULL
) {
570 tracepoint_handler f
= evsel
->handler
;
571 return f(tchart
, evsel
, sample
,
572 cat_backtrace(event
, sample
, machine
));
579 process_sample_cpu_idle(struct timechart
*tchart __maybe_unused
,
580 struct perf_evsel
*evsel
,
581 struct perf_sample
*sample
,
582 const char *backtrace __maybe_unused
)
584 u32 state
= perf_evsel__intval(evsel
, sample
, "state");
585 u32 cpu_id
= perf_evsel__intval(evsel
, sample
, "cpu_id");
587 if (state
== (u32
)PWR_EVENT_EXIT
)
588 c_state_end(tchart
, cpu_id
, sample
->time
);
590 c_state_start(cpu_id
, sample
->time
, state
);
595 process_sample_cpu_frequency(struct timechart
*tchart
,
596 struct perf_evsel
*evsel
,
597 struct perf_sample
*sample
,
598 const char *backtrace __maybe_unused
)
600 u32 state
= perf_evsel__intval(evsel
, sample
, "state");
601 u32 cpu_id
= perf_evsel__intval(evsel
, sample
, "cpu_id");
603 p_state_change(tchart
, cpu_id
, sample
->time
, state
);
608 process_sample_sched_wakeup(struct timechart
*tchart
,
609 struct perf_evsel
*evsel
,
610 struct perf_sample
*sample
,
611 const char *backtrace
)
613 u8 flags
= perf_evsel__intval(evsel
, sample
, "common_flags");
614 int waker
= perf_evsel__intval(evsel
, sample
, "common_pid");
615 int wakee
= perf_evsel__intval(evsel
, sample
, "pid");
617 sched_wakeup(tchart
, sample
->cpu
, sample
->time
, waker
, wakee
, flags
, backtrace
);
622 process_sample_sched_switch(struct timechart
*tchart
,
623 struct perf_evsel
*evsel
,
624 struct perf_sample
*sample
,
625 const char *backtrace
)
627 int prev_pid
= perf_evsel__intval(evsel
, sample
, "prev_pid");
628 int next_pid
= perf_evsel__intval(evsel
, sample
, "next_pid");
629 u64 prev_state
= perf_evsel__intval(evsel
, sample
, "prev_state");
631 sched_switch(tchart
, sample
->cpu
, sample
->time
, prev_pid
, next_pid
,
632 prev_state
, backtrace
);
636 #ifdef SUPPORT_OLD_POWER_EVENTS
638 process_sample_power_start(struct timechart
*tchart __maybe_unused
,
639 struct perf_evsel
*evsel
,
640 struct perf_sample
*sample
,
641 const char *backtrace __maybe_unused
)
643 u64 cpu_id
= perf_evsel__intval(evsel
, sample
, "cpu_id");
644 u64 value
= perf_evsel__intval(evsel
, sample
, "value");
646 c_state_start(cpu_id
, sample
->time
, value
);
651 process_sample_power_end(struct timechart
*tchart
,
652 struct perf_evsel
*evsel __maybe_unused
,
653 struct perf_sample
*sample
,
654 const char *backtrace __maybe_unused
)
656 c_state_end(tchart
, sample
->cpu
, sample
->time
);
661 process_sample_power_frequency(struct timechart
*tchart
,
662 struct perf_evsel
*evsel
,
663 struct perf_sample
*sample
,
664 const char *backtrace __maybe_unused
)
666 u64 cpu_id
= perf_evsel__intval(evsel
, sample
, "cpu_id");
667 u64 value
= perf_evsel__intval(evsel
, sample
, "value");
669 p_state_change(tchart
, cpu_id
, sample
->time
, value
);
672 #endif /* SUPPORT_OLD_POWER_EVENTS */
675 * After the last sample we need to wrap up the current C/P state
676 * and close out each CPU for these.
678 static void end_sample_processing(struct timechart
*tchart
)
681 struct power_event
*pwr
;
683 for (cpu
= 0; cpu
<= tchart
->numcpus
; cpu
++) {
686 pwr
= zalloc(sizeof(*pwr
));
690 pwr
->state
= cpus_cstate_state
[cpu
];
691 pwr
->start_time
= cpus_cstate_start_times
[cpu
];
692 pwr
->end_time
= tchart
->last_time
;
695 pwr
->next
= tchart
->power_events
;
697 tchart
->power_events
= pwr
;
701 pwr
= zalloc(sizeof(*pwr
));
705 pwr
->state
= cpus_pstate_state
[cpu
];
706 pwr
->start_time
= cpus_pstate_start_times
[cpu
];
707 pwr
->end_time
= tchart
->last_time
;
710 pwr
->next
= tchart
->power_events
;
712 if (!pwr
->start_time
)
713 pwr
->start_time
= tchart
->first_time
;
715 pwr
->state
= tchart
->min_freq
;
716 tchart
->power_events
= pwr
;
720 static int pid_begin_io_sample(struct timechart
*tchart
, int pid
, int type
,
723 struct per_pid
*p
= find_create_pid(tchart
, pid
);
724 struct per_pidcomm
*c
= p
->current
;
725 struct io_sample
*sample
;
726 struct io_sample
*prev
;
729 c
= zalloc(sizeof(*c
));
737 prev
= c
->io_samples
;
739 if (prev
&& prev
->start_time
&& !prev
->end_time
) {
740 pr_warning("Skip invalid start event: "
741 "previous event already started!\n");
743 /* remove previous event that has been started,
744 * we are not sure we will ever get an end for it */
745 c
->io_samples
= prev
->next
;
750 sample
= zalloc(sizeof(*sample
));
753 sample
->start_time
= start
;
756 sample
->next
= c
->io_samples
;
757 c
->io_samples
= sample
;
759 if (c
->start_time
== 0 || c
->start_time
> start
)
760 c
->start_time
= start
;
765 static int pid_end_io_sample(struct timechart
*tchart
, int pid
, int type
,
768 struct per_pid
*p
= find_create_pid(tchart
, pid
);
769 struct per_pidcomm
*c
= p
->current
;
770 struct io_sample
*sample
, *prev
;
773 pr_warning("Invalid pidcomm!\n");
777 sample
= c
->io_samples
;
779 if (!sample
) /* skip partially captured events */
782 if (sample
->end_time
) {
783 pr_warning("Skip invalid end event: "
784 "previous event already ended!\n");
788 if (sample
->type
!= type
) {
789 pr_warning("Skip invalid end event: invalid event type!\n");
793 sample
->end_time
= end
;
796 /* we want to be able to see small and fast transfers, so make them
797 * at least min_time long, but don't overlap them */
798 if (sample
->end_time
- sample
->start_time
< tchart
->min_time
)
799 sample
->end_time
= sample
->start_time
+ tchart
->min_time
;
800 if (prev
&& sample
->start_time
< prev
->end_time
) {
801 if (prev
->err
) /* try to make errors more visible */
802 sample
->start_time
= prev
->end_time
;
804 prev
->end_time
= sample
->start_time
;
809 } else if (type
== IOTYPE_READ
|| type
== IOTYPE_WRITE
||
810 type
== IOTYPE_TX
|| type
== IOTYPE_RX
) {
812 if ((u64
)ret
> c
->max_bytes
)
815 c
->total_bytes
+= ret
;
816 p
->total_bytes
+= ret
;
820 /* merge two requests to make svg smaller and render-friendly */
822 prev
->type
== sample
->type
&&
823 prev
->err
== sample
->err
&&
824 prev
->fd
== sample
->fd
&&
825 prev
->end_time
+ tchart
->merge_dist
>= sample
->start_time
) {
827 sample
->bytes
+= prev
->bytes
;
828 sample
->merges
+= prev
->merges
+ 1;
830 sample
->start_time
= prev
->start_time
;
831 sample
->next
= prev
->next
;
834 if (!sample
->err
&& sample
->bytes
> c
->max_bytes
)
835 c
->max_bytes
= sample
->bytes
;
844 process_enter_read(struct timechart
*tchart
,
845 struct perf_evsel
*evsel
,
846 struct perf_sample
*sample
)
848 long fd
= perf_evsel__intval(evsel
, sample
, "fd");
849 return pid_begin_io_sample(tchart
, sample
->tid
, IOTYPE_READ
,
854 process_exit_read(struct timechart
*tchart
,
855 struct perf_evsel
*evsel
,
856 struct perf_sample
*sample
)
858 long ret
= perf_evsel__intval(evsel
, sample
, "ret");
859 return pid_end_io_sample(tchart
, sample
->tid
, IOTYPE_READ
,
864 process_enter_write(struct timechart
*tchart
,
865 struct perf_evsel
*evsel
,
866 struct perf_sample
*sample
)
868 long fd
= perf_evsel__intval(evsel
, sample
, "fd");
869 return pid_begin_io_sample(tchart
, sample
->tid
, IOTYPE_WRITE
,
874 process_exit_write(struct timechart
*tchart
,
875 struct perf_evsel
*evsel
,
876 struct perf_sample
*sample
)
878 long ret
= perf_evsel__intval(evsel
, sample
, "ret");
879 return pid_end_io_sample(tchart
, sample
->tid
, IOTYPE_WRITE
,
884 process_enter_sync(struct timechart
*tchart
,
885 struct perf_evsel
*evsel
,
886 struct perf_sample
*sample
)
888 long fd
= perf_evsel__intval(evsel
, sample
, "fd");
889 return pid_begin_io_sample(tchart
, sample
->tid
, IOTYPE_SYNC
,
894 process_exit_sync(struct timechart
*tchart
,
895 struct perf_evsel
*evsel
,
896 struct perf_sample
*sample
)
898 long ret
= perf_evsel__intval(evsel
, sample
, "ret");
899 return pid_end_io_sample(tchart
, sample
->tid
, IOTYPE_SYNC
,
904 process_enter_tx(struct timechart
*tchart
,
905 struct perf_evsel
*evsel
,
906 struct perf_sample
*sample
)
908 long fd
= perf_evsel__intval(evsel
, sample
, "fd");
909 return pid_begin_io_sample(tchart
, sample
->tid
, IOTYPE_TX
,
914 process_exit_tx(struct timechart
*tchart
,
915 struct perf_evsel
*evsel
,
916 struct perf_sample
*sample
)
918 long ret
= perf_evsel__intval(evsel
, sample
, "ret");
919 return pid_end_io_sample(tchart
, sample
->tid
, IOTYPE_TX
,
924 process_enter_rx(struct timechart
*tchart
,
925 struct perf_evsel
*evsel
,
926 struct perf_sample
*sample
)
928 long fd
= perf_evsel__intval(evsel
, sample
, "fd");
929 return pid_begin_io_sample(tchart
, sample
->tid
, IOTYPE_RX
,
934 process_exit_rx(struct timechart
*tchart
,
935 struct perf_evsel
*evsel
,
936 struct perf_sample
*sample
)
938 long ret
= perf_evsel__intval(evsel
, sample
, "ret");
939 return pid_end_io_sample(tchart
, sample
->tid
, IOTYPE_RX
,
944 process_enter_poll(struct timechart
*tchart
,
945 struct perf_evsel
*evsel
,
946 struct perf_sample
*sample
)
948 long fd
= perf_evsel__intval(evsel
, sample
, "fd");
949 return pid_begin_io_sample(tchart
, sample
->tid
, IOTYPE_POLL
,
954 process_exit_poll(struct timechart
*tchart
,
955 struct perf_evsel
*evsel
,
956 struct perf_sample
*sample
)
958 long ret
= perf_evsel__intval(evsel
, sample
, "ret");
959 return pid_end_io_sample(tchart
, sample
->tid
, IOTYPE_POLL
,
964 * Sort the pid datastructure
966 static void sort_pids(struct timechart
*tchart
)
968 struct per_pid
*new_list
, *p
, *cursor
, *prev
;
969 /* sort by ppid first, then by pid, lowest to highest */
973 while (tchart
->all_data
) {
974 p
= tchart
->all_data
;
975 tchart
->all_data
= p
->next
;
978 if (new_list
== NULL
) {
986 if (cursor
->ppid
> p
->ppid
||
987 (cursor
->ppid
== p
->ppid
&& cursor
->pid
> p
->pid
)) {
988 /* must insert before */
990 p
->next
= prev
->next
;
1003 cursor
= cursor
->next
;
1008 tchart
->all_data
= new_list
;
1012 static void draw_c_p_states(struct timechart
*tchart
)
1014 struct power_event
*pwr
;
1015 pwr
= tchart
->power_events
;
1018 * two pass drawing so that the P state bars are on top of the C state blocks
1021 if (pwr
->type
== CSTATE
)
1022 svg_cstate(pwr
->cpu
, pwr
->start_time
, pwr
->end_time
, pwr
->state
);
1026 pwr
= tchart
->power_events
;
1028 if (pwr
->type
== PSTATE
) {
1030 pwr
->state
= tchart
->min_freq
;
1031 svg_pstate(pwr
->cpu
, pwr
->start_time
, pwr
->end_time
, pwr
->state
);
1037 static void draw_wakeups(struct timechart
*tchart
)
1039 struct wake_event
*we
;
1041 struct per_pidcomm
*c
;
1043 we
= tchart
->wake_events
;
1045 int from
= 0, to
= 0;
1046 char *task_from
= NULL
, *task_to
= NULL
;
1048 /* locate the column of the waker and wakee */
1049 p
= tchart
->all_data
;
1051 if (p
->pid
== we
->waker
|| p
->pid
== we
->wakee
) {
1054 if (c
->Y
&& c
->start_time
<= we
->time
&& c
->end_time
>= we
->time
) {
1055 if (p
->pid
== we
->waker
&& !from
) {
1057 task_from
= strdup(c
->comm
);
1059 if (p
->pid
== we
->wakee
&& !to
) {
1061 task_to
= strdup(c
->comm
);
1068 if (p
->pid
== we
->waker
&& !from
) {
1070 task_from
= strdup(c
->comm
);
1072 if (p
->pid
== we
->wakee
&& !to
) {
1074 task_to
= strdup(c
->comm
);
1083 task_from
= malloc(40);
1084 sprintf(task_from
, "[%i]", we
->waker
);
1087 task_to
= malloc(40);
1088 sprintf(task_to
, "[%i]", we
->wakee
);
1091 if (we
->waker
== -1)
1092 svg_interrupt(we
->time
, to
, we
->backtrace
);
1093 else if (from
&& to
&& abs(from
- to
) == 1)
1094 svg_wakeline(we
->time
, from
, to
, we
->backtrace
);
1096 svg_partial_wakeline(we
->time
, from
, task_from
, to
,
1097 task_to
, we
->backtrace
);
1105 static void draw_cpu_usage(struct timechart
*tchart
)
1108 struct per_pidcomm
*c
;
1109 struct cpu_sample
*sample
;
1110 p
= tchart
->all_data
;
1114 sample
= c
->samples
;
1116 if (sample
->type
== TYPE_RUNNING
) {
1117 svg_process(sample
->cpu
,
1125 sample
= sample
->next
;
1133 static void draw_io_bars(struct timechart
*tchart
)
1139 struct per_pidcomm
*c
;
1140 struct io_sample
*sample
;
1143 p
= tchart
->all_data
;
1153 svg_box(Y
, c
->start_time
, c
->end_time
, "process3");
1154 sample
= c
->io_samples
;
1155 for (sample
= c
->io_samples
; sample
; sample
= sample
->next
) {
1156 double h
= (double)sample
->bytes
/ c
->max_bytes
;
1158 if (tchart
->skip_eagain
&&
1159 sample
->err
== -EAGAIN
)
1165 if (sample
->type
== IOTYPE_SYNC
)
1170 sample
->err
? "error" : "sync",
1174 else if (sample
->type
== IOTYPE_POLL
)
1179 sample
->err
? "error" : "poll",
1183 else if (sample
->type
== IOTYPE_READ
)
1188 sample
->err
? "error" : "disk",
1192 else if (sample
->type
== IOTYPE_WRITE
)
1197 sample
->err
? "error" : "disk",
1201 else if (sample
->type
== IOTYPE_RX
)
1206 sample
->err
? "error" : "net",
1210 else if (sample
->type
== IOTYPE_TX
)
1215 sample
->err
? "error" : "net",
1222 bytes
= c
->total_bytes
;
1224 bytes
= bytes
/ 1024;
1228 bytes
= bytes
/ 1024;
1232 bytes
= bytes
/ 1024;
1237 sprintf(comm
, "%s:%i (%3.1f %sbytes)", c
->comm
?: "", p
->pid
, bytes
, suf
);
1238 svg_text(Y
, c
->start_time
, comm
);
1248 static void draw_process_bars(struct timechart
*tchart
)
1251 struct per_pidcomm
*c
;
1252 struct cpu_sample
*sample
;
1255 Y
= 2 * tchart
->numcpus
+ 2;
1257 p
= tchart
->all_data
;
1267 svg_box(Y
, c
->start_time
, c
->end_time
, "process");
1268 sample
= c
->samples
;
1270 if (sample
->type
== TYPE_RUNNING
)
1271 svg_running(Y
, sample
->cpu
,
1275 if (sample
->type
== TYPE_BLOCKED
)
1276 svg_blocked(Y
, sample
->cpu
,
1280 if (sample
->type
== TYPE_WAITING
)
1281 svg_waiting(Y
, sample
->cpu
,
1285 sample
= sample
->next
;
1290 if (c
->total_time
> 5000000000) /* 5 seconds */
1291 sprintf(comm
, "%s:%i (%2.2fs)", c
->comm
, p
->pid
, c
->total_time
/ 1000000000.0);
1293 sprintf(comm
, "%s:%i (%3.1fms)", c
->comm
, p
->pid
, c
->total_time
/ 1000000.0);
1295 svg_text(Y
, c
->start_time
, comm
);
1305 static void add_process_filter(const char *string
)
1307 int pid
= strtoull(string
, NULL
, 10);
1308 struct process_filter
*filt
= malloc(sizeof(*filt
));
1313 filt
->name
= strdup(string
);
1315 filt
->next
= process_filter
;
1317 process_filter
= filt
;
1320 static int passes_filter(struct per_pid
*p
, struct per_pidcomm
*c
)
1322 struct process_filter
*filt
;
1323 if (!process_filter
)
1326 filt
= process_filter
;
1328 if (filt
->pid
&& p
->pid
== filt
->pid
)
1330 if (strcmp(filt
->name
, c
->comm
) == 0)
1337 static int determine_display_tasks_filtered(struct timechart
*tchart
)
1340 struct per_pidcomm
*c
;
1343 p
= tchart
->all_data
;
1346 if (p
->start_time
== 1)
1347 p
->start_time
= tchart
->first_time
;
1349 /* no exit marker, task kept running to the end */
1350 if (p
->end_time
== 0)
1351 p
->end_time
= tchart
->last_time
;
1358 if (c
->start_time
== 1)
1359 c
->start_time
= tchart
->first_time
;
1361 if (passes_filter(p
, c
)) {
1367 if (c
->end_time
== 0)
1368 c
->end_time
= tchart
->last_time
;
1377 static int determine_display_tasks(struct timechart
*tchart
, u64 threshold
)
1380 struct per_pidcomm
*c
;
1383 p
= tchart
->all_data
;
1386 if (p
->start_time
== 1)
1387 p
->start_time
= tchart
->first_time
;
1389 /* no exit marker, task kept running to the end */
1390 if (p
->end_time
== 0)
1391 p
->end_time
= tchart
->last_time
;
1392 if (p
->total_time
>= threshold
)
1400 if (c
->start_time
== 1)
1401 c
->start_time
= tchart
->first_time
;
1403 if (c
->total_time
>= threshold
) {
1408 if (c
->end_time
== 0)
1409 c
->end_time
= tchart
->last_time
;
1418 static int determine_display_io_tasks(struct timechart
*timechart
, u64 threshold
)
1421 struct per_pidcomm
*c
;
1424 p
= timechart
->all_data
;
1426 /* no exit marker, task kept running to the end */
1427 if (p
->end_time
== 0)
1428 p
->end_time
= timechart
->last_time
;
1435 if (c
->total_bytes
>= threshold
) {
1440 if (c
->end_time
== 0)
1441 c
->end_time
= timechart
->last_time
;
1450 #define BYTES_THRESH (1 * 1024 * 1024)
1451 #define TIME_THRESH 10000000
1453 static void write_svg_file(struct timechart
*tchart
, const char *filename
)
1457 int thresh
= tchart
->io_events
? BYTES_THRESH
: TIME_THRESH
;
1459 if (tchart
->power_only
)
1460 tchart
->proc_num
= 0;
1462 /* We'd like to show at least proc_num tasks;
1463 * be less picky if we have fewer */
1466 count
= determine_display_tasks_filtered(tchart
);
1467 else if (tchart
->io_events
)
1468 count
= determine_display_io_tasks(tchart
, thresh
);
1470 count
= determine_display_tasks(tchart
, thresh
);
1472 } while (!process_filter
&& thresh
&& count
< tchart
->proc_num
);
1474 if (!tchart
->proc_num
)
1477 if (tchart
->io_events
) {
1478 open_svg(filename
, 0, count
, tchart
->first_time
, tchart
->last_time
);
1483 draw_io_bars(tchart
);
1485 open_svg(filename
, tchart
->numcpus
, count
, tchart
->first_time
, tchart
->last_time
);
1491 for (i
= 0; i
< tchart
->numcpus
; i
++)
1492 svg_cpu_box(i
, tchart
->max_freq
, tchart
->turbo_frequency
);
1494 draw_cpu_usage(tchart
);
1495 if (tchart
->proc_num
)
1496 draw_process_bars(tchart
);
1497 if (!tchart
->tasks_only
)
1498 draw_c_p_states(tchart
);
1499 if (tchart
->proc_num
)
1500 draw_wakeups(tchart
);
1506 static int process_header(struct perf_file_section
*section __maybe_unused
,
1507 struct perf_header
*ph
,
1509 int fd __maybe_unused
,
1512 struct timechart
*tchart
= data
;
1516 tchart
->numcpus
= ph
->env
.nr_cpus_avail
;
1519 case HEADER_CPU_TOPOLOGY
:
1520 if (!tchart
->topology
)
1523 if (svg_build_topology_map(ph
->env
.sibling_cores
,
1524 ph
->env
.nr_sibling_cores
,
1525 ph
->env
.sibling_threads
,
1526 ph
->env
.nr_sibling_threads
))
1527 fprintf(stderr
, "problem building topology\n");
1537 static int __cmd_timechart(struct timechart
*tchart
, const char *output_name
)
1539 const struct perf_evsel_str_handler power_tracepoints
[] = {
1540 { "power:cpu_idle", process_sample_cpu_idle
},
1541 { "power:cpu_frequency", process_sample_cpu_frequency
},
1542 { "sched:sched_wakeup", process_sample_sched_wakeup
},
1543 { "sched:sched_switch", process_sample_sched_switch
},
1544 #ifdef SUPPORT_OLD_POWER_EVENTS
1545 { "power:power_start", process_sample_power_start
},
1546 { "power:power_end", process_sample_power_end
},
1547 { "power:power_frequency", process_sample_power_frequency
},
1550 { "syscalls:sys_enter_read", process_enter_read
},
1551 { "syscalls:sys_enter_pread64", process_enter_read
},
1552 { "syscalls:sys_enter_readv", process_enter_read
},
1553 { "syscalls:sys_enter_preadv", process_enter_read
},
1554 { "syscalls:sys_enter_write", process_enter_write
},
1555 { "syscalls:sys_enter_pwrite64", process_enter_write
},
1556 { "syscalls:sys_enter_writev", process_enter_write
},
1557 { "syscalls:sys_enter_pwritev", process_enter_write
},
1558 { "syscalls:sys_enter_sync", process_enter_sync
},
1559 { "syscalls:sys_enter_sync_file_range", process_enter_sync
},
1560 { "syscalls:sys_enter_fsync", process_enter_sync
},
1561 { "syscalls:sys_enter_msync", process_enter_sync
},
1562 { "syscalls:sys_enter_recvfrom", process_enter_rx
},
1563 { "syscalls:sys_enter_recvmmsg", process_enter_rx
},
1564 { "syscalls:sys_enter_recvmsg", process_enter_rx
},
1565 { "syscalls:sys_enter_sendto", process_enter_tx
},
1566 { "syscalls:sys_enter_sendmsg", process_enter_tx
},
1567 { "syscalls:sys_enter_sendmmsg", process_enter_tx
},
1568 { "syscalls:sys_enter_epoll_pwait", process_enter_poll
},
1569 { "syscalls:sys_enter_epoll_wait", process_enter_poll
},
1570 { "syscalls:sys_enter_poll", process_enter_poll
},
1571 { "syscalls:sys_enter_ppoll", process_enter_poll
},
1572 { "syscalls:sys_enter_pselect6", process_enter_poll
},
1573 { "syscalls:sys_enter_select", process_enter_poll
},
1575 { "syscalls:sys_exit_read", process_exit_read
},
1576 { "syscalls:sys_exit_pread64", process_exit_read
},
1577 { "syscalls:sys_exit_readv", process_exit_read
},
1578 { "syscalls:sys_exit_preadv", process_exit_read
},
1579 { "syscalls:sys_exit_write", process_exit_write
},
1580 { "syscalls:sys_exit_pwrite64", process_exit_write
},
1581 { "syscalls:sys_exit_writev", process_exit_write
},
1582 { "syscalls:sys_exit_pwritev", process_exit_write
},
1583 { "syscalls:sys_exit_sync", process_exit_sync
},
1584 { "syscalls:sys_exit_sync_file_range", process_exit_sync
},
1585 { "syscalls:sys_exit_fsync", process_exit_sync
},
1586 { "syscalls:sys_exit_msync", process_exit_sync
},
1587 { "syscalls:sys_exit_recvfrom", process_exit_rx
},
1588 { "syscalls:sys_exit_recvmmsg", process_exit_rx
},
1589 { "syscalls:sys_exit_recvmsg", process_exit_rx
},
1590 { "syscalls:sys_exit_sendto", process_exit_tx
},
1591 { "syscalls:sys_exit_sendmsg", process_exit_tx
},
1592 { "syscalls:sys_exit_sendmmsg", process_exit_tx
},
1593 { "syscalls:sys_exit_epoll_pwait", process_exit_poll
},
1594 { "syscalls:sys_exit_epoll_wait", process_exit_poll
},
1595 { "syscalls:sys_exit_poll", process_exit_poll
},
1596 { "syscalls:sys_exit_ppoll", process_exit_poll
},
1597 { "syscalls:sys_exit_pselect6", process_exit_poll
},
1598 { "syscalls:sys_exit_select", process_exit_poll
},
1600 struct perf_data_file file
= {
1602 .mode
= PERF_DATA_MODE_READ
,
1603 .force
= tchart
->force
,
1606 struct perf_session
*session
= perf_session__new(&file
, false,
1610 if (session
== NULL
)
1613 symbol__init(&session
->header
.env
);
1615 (void)perf_header__process_sections(&session
->header
,
1616 perf_data_file__fd(session
->file
),
1620 if (!perf_session__has_traces(session
, "timechart record"))
1623 if (perf_session__set_tracepoints_handlers(session
,
1624 power_tracepoints
)) {
1625 pr_err("Initializing session tracepoint handlers failed\n");
1629 ret
= perf_session__process_events(session
);
1633 end_sample_processing(tchart
);
1637 write_svg_file(tchart
, output_name
);
1639 pr_info("Written %2.1f seconds of trace to %s.\n",
1640 (tchart
->last_time
- tchart
->first_time
) / 1000000000.0, output_name
);
1642 perf_session__delete(session
);
1646 static int timechart__io_record(int argc
, const char **argv
)
1648 unsigned int rec_argc
, i
;
1649 const char **rec_argv
;
1651 char *filter
= NULL
;
1653 const char * const common_args
[] = {
1654 "record", "-a", "-R", "-c", "1",
1656 unsigned int common_args_nr
= ARRAY_SIZE(common_args
);
1658 const char * const disk_events
[] = {
1659 "syscalls:sys_enter_read",
1660 "syscalls:sys_enter_pread64",
1661 "syscalls:sys_enter_readv",
1662 "syscalls:sys_enter_preadv",
1663 "syscalls:sys_enter_write",
1664 "syscalls:sys_enter_pwrite64",
1665 "syscalls:sys_enter_writev",
1666 "syscalls:sys_enter_pwritev",
1667 "syscalls:sys_enter_sync",
1668 "syscalls:sys_enter_sync_file_range",
1669 "syscalls:sys_enter_fsync",
1670 "syscalls:sys_enter_msync",
1672 "syscalls:sys_exit_read",
1673 "syscalls:sys_exit_pread64",
1674 "syscalls:sys_exit_readv",
1675 "syscalls:sys_exit_preadv",
1676 "syscalls:sys_exit_write",
1677 "syscalls:sys_exit_pwrite64",
1678 "syscalls:sys_exit_writev",
1679 "syscalls:sys_exit_pwritev",
1680 "syscalls:sys_exit_sync",
1681 "syscalls:sys_exit_sync_file_range",
1682 "syscalls:sys_exit_fsync",
1683 "syscalls:sys_exit_msync",
1685 unsigned int disk_events_nr
= ARRAY_SIZE(disk_events
);
1687 const char * const net_events
[] = {
1688 "syscalls:sys_enter_recvfrom",
1689 "syscalls:sys_enter_recvmmsg",
1690 "syscalls:sys_enter_recvmsg",
1691 "syscalls:sys_enter_sendto",
1692 "syscalls:sys_enter_sendmsg",
1693 "syscalls:sys_enter_sendmmsg",
1695 "syscalls:sys_exit_recvfrom",
1696 "syscalls:sys_exit_recvmmsg",
1697 "syscalls:sys_exit_recvmsg",
1698 "syscalls:sys_exit_sendto",
1699 "syscalls:sys_exit_sendmsg",
1700 "syscalls:sys_exit_sendmmsg",
1702 unsigned int net_events_nr
= ARRAY_SIZE(net_events
);
1704 const char * const poll_events
[] = {
1705 "syscalls:sys_enter_epoll_pwait",
1706 "syscalls:sys_enter_epoll_wait",
1707 "syscalls:sys_enter_poll",
1708 "syscalls:sys_enter_ppoll",
1709 "syscalls:sys_enter_pselect6",
1710 "syscalls:sys_enter_select",
1712 "syscalls:sys_exit_epoll_pwait",
1713 "syscalls:sys_exit_epoll_wait",
1714 "syscalls:sys_exit_poll",
1715 "syscalls:sys_exit_ppoll",
1716 "syscalls:sys_exit_pselect6",
1717 "syscalls:sys_exit_select",
1719 unsigned int poll_events_nr
= ARRAY_SIZE(poll_events
);
1721 rec_argc
= common_args_nr
+
1722 disk_events_nr
* 4 +
1724 poll_events_nr
* 4 +
1726 rec_argv
= calloc(rec_argc
+ 1, sizeof(char *));
1728 if (rec_argv
== NULL
)
1731 if (asprintf(&filter
, "common_pid != %d", getpid()) < 0)
1735 for (i
= 0; i
< common_args_nr
; i
++)
1736 *p
++ = strdup(common_args
[i
]);
1738 for (i
= 0; i
< disk_events_nr
; i
++) {
1739 if (!is_valid_tracepoint(disk_events
[i
])) {
1745 *p
++ = strdup(disk_events
[i
]);
1749 for (i
= 0; i
< net_events_nr
; i
++) {
1750 if (!is_valid_tracepoint(net_events
[i
])) {
1756 *p
++ = strdup(net_events
[i
]);
1760 for (i
= 0; i
< poll_events_nr
; i
++) {
1761 if (!is_valid_tracepoint(poll_events
[i
])) {
1767 *p
++ = strdup(poll_events
[i
]);
1772 for (i
= 0; i
< (unsigned int)argc
; i
++)
1775 return cmd_record(rec_argc
, rec_argv
, NULL
);
1779 static int timechart__record(struct timechart
*tchart
, int argc
, const char **argv
)
1781 unsigned int rec_argc
, i
, j
;
1782 const char **rec_argv
;
1784 unsigned int record_elems
;
1786 const char * const common_args
[] = {
1787 "record", "-a", "-R", "-c", "1",
1789 unsigned int common_args_nr
= ARRAY_SIZE(common_args
);
1791 const char * const backtrace_args
[] = {
1794 unsigned int backtrace_args_no
= ARRAY_SIZE(backtrace_args
);
1796 const char * const power_args
[] = {
1797 "-e", "power:cpu_frequency",
1798 "-e", "power:cpu_idle",
1800 unsigned int power_args_nr
= ARRAY_SIZE(power_args
);
1802 const char * const old_power_args
[] = {
1803 #ifdef SUPPORT_OLD_POWER_EVENTS
1804 "-e", "power:power_start",
1805 "-e", "power:power_end",
1806 "-e", "power:power_frequency",
1809 unsigned int old_power_args_nr
= ARRAY_SIZE(old_power_args
);
1811 const char * const tasks_args
[] = {
1812 "-e", "sched:sched_wakeup",
1813 "-e", "sched:sched_switch",
1815 unsigned int tasks_args_nr
= ARRAY_SIZE(tasks_args
);
1817 #ifdef SUPPORT_OLD_POWER_EVENTS
1818 if (!is_valid_tracepoint("power:cpu_idle") &&
1819 is_valid_tracepoint("power:power_start")) {
1820 use_old_power_events
= 1;
1823 old_power_args_nr
= 0;
1827 if (tchart
->power_only
)
1830 if (tchart
->tasks_only
) {
1832 old_power_args_nr
= 0;
1835 if (!tchart
->with_backtrace
)
1836 backtrace_args_no
= 0;
1838 record_elems
= common_args_nr
+ tasks_args_nr
+
1839 power_args_nr
+ old_power_args_nr
+ backtrace_args_no
;
1841 rec_argc
= record_elems
+ argc
;
1842 rec_argv
= calloc(rec_argc
+ 1, sizeof(char *));
1844 if (rec_argv
== NULL
)
1848 for (i
= 0; i
< common_args_nr
; i
++)
1849 *p
++ = strdup(common_args
[i
]);
1851 for (i
= 0; i
< backtrace_args_no
; i
++)
1852 *p
++ = strdup(backtrace_args
[i
]);
1854 for (i
= 0; i
< tasks_args_nr
; i
++)
1855 *p
++ = strdup(tasks_args
[i
]);
1857 for (i
= 0; i
< power_args_nr
; i
++)
1858 *p
++ = strdup(power_args
[i
]);
1860 for (i
= 0; i
< old_power_args_nr
; i
++)
1861 *p
++ = strdup(old_power_args
[i
]);
1863 for (j
= 0; j
< (unsigned int)argc
; j
++)
1866 return cmd_record(rec_argc
, rec_argv
, NULL
);
1870 parse_process(const struct option
*opt __maybe_unused
, const char *arg
,
1871 int __maybe_unused unset
)
1874 add_process_filter(arg
);
1879 parse_highlight(const struct option
*opt __maybe_unused
, const char *arg
,
1880 int __maybe_unused unset
)
1882 unsigned long duration
= strtoul(arg
, NULL
, 0);
1884 if (svg_highlight
|| svg_highlight_name
)
1888 svg_highlight
= duration
;
1890 svg_highlight_name
= strdup(arg
);
1896 parse_time(const struct option
*opt
, const char *arg
, int __maybe_unused unset
)
1899 u64
*value
= opt
->value
;
1901 if (sscanf(arg
, "%" PRIu64
"%cs", value
, &unit
) > 0) {
1919 int cmd_timechart(int argc
, const char **argv
,
1920 const char *prefix __maybe_unused
)
1922 struct timechart tchart
= {
1924 .comm
= process_comm_event
,
1925 .fork
= process_fork_event
,
1926 .exit
= process_exit_event
,
1927 .sample
= process_sample_event
,
1928 .ordered_events
= true,
1931 .min_time
= 1000000,
1934 const char *output_name
= "output.svg";
1935 const struct option timechart_options
[] = {
1936 OPT_STRING('i', "input", &input_name
, "file", "input file name"),
1937 OPT_STRING('o', "output", &output_name
, "file", "output file name"),
1938 OPT_INTEGER('w', "width", &svg_page_width
, "page width"),
1939 OPT_CALLBACK(0, "highlight", NULL
, "duration or task name",
1940 "highlight tasks. Pass duration in ns or process name.",
1942 OPT_BOOLEAN('P', "power-only", &tchart
.power_only
, "output power data only"),
1943 OPT_BOOLEAN('T', "tasks-only", &tchart
.tasks_only
,
1944 "output processes data only"),
1945 OPT_CALLBACK('p', "process", NULL
, "process",
1946 "process selector. Pass a pid or process name.",
1948 OPT_CALLBACK(0, "symfs", NULL
, "directory",
1949 "Look for files with symbols relative to this directory",
1950 symbol__config_symfs
),
1951 OPT_INTEGER('n', "proc-num", &tchart
.proc_num
,
1952 "min. number of tasks to print"),
1953 OPT_BOOLEAN('t', "topology", &tchart
.topology
,
1954 "sort CPUs according to topology"),
1955 OPT_BOOLEAN(0, "io-skip-eagain", &tchart
.skip_eagain
,
1956 "skip EAGAIN errors"),
1957 OPT_CALLBACK(0, "io-min-time", &tchart
.min_time
, "time",
1958 "all IO faster than min-time will visually appear longer",
1960 OPT_CALLBACK(0, "io-merge-dist", &tchart
.merge_dist
, "time",
1961 "merge events that are merge-dist us apart",
1963 OPT_BOOLEAN('f', "force", &tchart
.force
, "don't complain, do it"),
1966 const char * const timechart_subcommands
[] = { "record", NULL
};
1967 const char *timechart_usage
[] = {
1968 "perf timechart [<options>] {record}",
1972 const struct option timechart_record_options
[] = {
1973 OPT_BOOLEAN('P', "power-only", &tchart
.power_only
, "output power data only"),
1974 OPT_BOOLEAN('T', "tasks-only", &tchart
.tasks_only
,
1975 "output processes data only"),
1976 OPT_BOOLEAN('I', "io-only", &tchart
.io_only
,
1977 "record only IO data"),
1978 OPT_BOOLEAN('g', "callchain", &tchart
.with_backtrace
, "record callchain"),
1981 const char * const timechart_record_usage
[] = {
1982 "perf timechart record [<options>]",
1985 argc
= parse_options_subcommand(argc
, argv
, timechart_options
, timechart_subcommands
,
1986 timechart_usage
, PARSE_OPT_STOP_AT_NON_OPTION
);
1988 if (tchart
.power_only
&& tchart
.tasks_only
) {
1989 pr_err("-P and -T options cannot be used at the same time.\n");
1993 if (argc
&& !strncmp(argv
[0], "rec", 3)) {
1994 argc
= parse_options(argc
, argv
, timechart_record_options
,
1995 timechart_record_usage
,
1996 PARSE_OPT_STOP_AT_NON_OPTION
);
1998 if (tchart
.power_only
&& tchart
.tasks_only
) {
1999 pr_err("-P and -T options cannot be used at the same time.\n");
2004 return timechart__io_record(argc
, argv
);
2006 return timechart__record(&tchart
, argc
, argv
);
2008 usage_with_options(timechart_usage
, timechart_options
);
2012 return __cmd_timechart(&tchart
, output_name
);