2 * This file is part of UBIFS.
4 * Copyright (C) 2006-2008 Nokia Corporation.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 * Author: Adrian Hunter
25 * An orphan is an inode number whose inode node has been committed to the index
26 * with a link count of zero. That happens when an open file is deleted
27 * (unlinked) and then a commit is run. In the normal course of events the inode
28 * would be deleted when the file is closed. However in the case of an unclean
29 * unmount, orphans need to be accounted for. After an unclean unmount, the
30 * orphans' inodes must be deleted which means either scanning the entire index
31 * looking for them, or keeping a list on flash somewhere. This unit implements
32 * the latter approach.
34 * The orphan area is a fixed number of LEBs situated between the LPT area and
35 * the main area. The number of orphan area LEBs is specified when the file
36 * system is created. The minimum number is 1. The size of the orphan area
37 * should be so that it can hold the maximum number of orphans that are expected
38 * to ever exist at one time.
40 * The number of orphans that can fit in a LEB is:
42 * (c->leb_size - UBIFS_ORPH_NODE_SZ) / sizeof(__le64)
44 * For example: a 15872 byte LEB can fit 1980 orphans so 1 LEB may be enough.
46 * Orphans are accumulated in a rb-tree. When an inode's link count drops to
47 * zero, the inode number is added to the rb-tree. It is removed from the tree
48 * when the inode is deleted. Any new orphans that are in the orphan tree when
49 * the commit is run, are written to the orphan area in 1 or more orphan nodes.
50 * If the orphan area is full, it is consolidated to make space. There is
51 * always enough space because validation prevents the user from creating more
52 * than the maximum number of orphans allowed.
55 static int dbg_check_orphans(struct ubifs_info
*c
);
58 * ubifs_add_orphan - add an orphan.
59 * @c: UBIFS file-system description object
60 * @inum: orphan inode number
62 * Add an orphan. This function is called when an inodes link count drops to
65 int ubifs_add_orphan(struct ubifs_info
*c
, ino_t inum
)
67 struct ubifs_orphan
*orphan
, *o
;
68 struct rb_node
**p
, *parent
= NULL
;
70 orphan
= kzalloc(sizeof(struct ubifs_orphan
), GFP_NOFS
);
76 spin_lock(&c
->orphan_lock
);
77 if (c
->tot_orphans
>= c
->max_orphans
) {
78 spin_unlock(&c
->orphan_lock
);
82 p
= &c
->orph_tree
.rb_node
;
85 o
= rb_entry(parent
, struct ubifs_orphan
, rb
);
88 else if (inum
> o
->inum
)
91 ubifs_err("orphaned twice");
92 spin_unlock(&c
->orphan_lock
);
99 rb_link_node(&orphan
->rb
, parent
, p
);
100 rb_insert_color(&orphan
->rb
, &c
->orph_tree
);
101 list_add_tail(&orphan
->list
, &c
->orph_list
);
102 list_add_tail(&orphan
->new_list
, &c
->orph_new
);
103 spin_unlock(&c
->orphan_lock
);
104 dbg_gen("ino %lu", (unsigned long)inum
);
109 * ubifs_delete_orphan - delete an orphan.
110 * @c: UBIFS file-system description object
111 * @inum: orphan inode number
113 * Delete an orphan. This function is called when an inode is deleted.
115 void ubifs_delete_orphan(struct ubifs_info
*c
, ino_t inum
)
117 struct ubifs_orphan
*o
;
120 spin_lock(&c
->orphan_lock
);
121 p
= c
->orph_tree
.rb_node
;
123 o
= rb_entry(p
, struct ubifs_orphan
, rb
);
126 else if (inum
> o
->inum
)
130 spin_unlock(&c
->orphan_lock
);
131 dbg_gen("deleted twice ino %lu",
132 (unsigned long)inum
);
137 o
->dnext
= c
->orph_dnext
;
139 spin_unlock(&c
->orphan_lock
);
140 dbg_gen("delete later ino %lu",
141 (unsigned long)inum
);
144 rb_erase(p
, &c
->orph_tree
);
148 list_del(&o
->new_list
);
151 spin_unlock(&c
->orphan_lock
);
153 dbg_gen("inum %lu", (unsigned long)inum
);
157 spin_unlock(&c
->orphan_lock
);
158 ubifs_err("missing orphan ino %lu", (unsigned long)inum
);
163 * ubifs_orphan_start_commit - start commit of orphans.
164 * @c: UBIFS file-system description object
166 * Start commit of orphans.
168 int ubifs_orphan_start_commit(struct ubifs_info
*c
)
170 struct ubifs_orphan
*orphan
, **last
;
172 spin_lock(&c
->orphan_lock
);
173 last
= &c
->orph_cnext
;
174 list_for_each_entry(orphan
, &c
->orph_new
, new_list
) {
175 ubifs_assert(orphan
->new);
176 ubifs_assert(!orphan
->cmt
);
180 last
= &orphan
->cnext
;
183 c
->cmt_orphans
= c
->new_orphans
;
185 dbg_cmt("%d orphans to commit", c
->cmt_orphans
);
186 INIT_LIST_HEAD(&c
->orph_new
);
187 if (c
->tot_orphans
== 0)
191 spin_unlock(&c
->orphan_lock
);
196 * avail_orphs - calculate available space.
197 * @c: UBIFS file-system description object
199 * This function returns the number of orphans that can be written in the
202 static int avail_orphs(struct ubifs_info
*c
)
204 int avail_lebs
, avail
, gap
;
206 avail_lebs
= c
->orph_lebs
- (c
->ohead_lnum
- c
->orph_first
) - 1;
208 ((c
->leb_size
- UBIFS_ORPH_NODE_SZ
) / sizeof(__le64
));
209 gap
= c
->leb_size
- c
->ohead_offs
;
210 if (gap
>= UBIFS_ORPH_NODE_SZ
+ sizeof(__le64
))
211 avail
+= (gap
- UBIFS_ORPH_NODE_SZ
) / sizeof(__le64
);
216 * tot_avail_orphs - calculate total space.
217 * @c: UBIFS file-system description object
219 * This function returns the number of orphans that can be written in half
220 * the total space. That leaves half the space for adding new orphans.
222 static int tot_avail_orphs(struct ubifs_info
*c
)
224 int avail_lebs
, avail
;
226 avail_lebs
= c
->orph_lebs
;
228 ((c
->leb_size
- UBIFS_ORPH_NODE_SZ
) / sizeof(__le64
));
233 * do_write_orph_node - write a node to the orphan head.
234 * @c: UBIFS file-system description object
235 * @len: length of node
236 * @atomic: write atomically
238 * This function writes a node to the orphan head from the orphan buffer. If
239 * %atomic is not zero, then the write is done atomically. On success, %0 is
240 * returned, otherwise a negative error code is returned.
242 static int do_write_orph_node(struct ubifs_info
*c
, int len
, int atomic
)
247 ubifs_assert(c
->ohead_offs
== 0);
248 ubifs_prepare_node(c
, c
->orph_buf
, len
, 1);
249 len
= ALIGN(len
, c
->min_io_size
);
250 err
= ubifs_leb_change(c
, c
->ohead_lnum
, c
->orph_buf
, len
);
252 if (c
->ohead_offs
== 0) {
253 /* Ensure LEB has been unmapped */
254 err
= ubifs_leb_unmap(c
, c
->ohead_lnum
);
258 err
= ubifs_write_node(c
, c
->orph_buf
, len
, c
->ohead_lnum
,
265 * write_orph_node - write an orphan node.
266 * @c: UBIFS file-system description object
267 * @atomic: write atomically
269 * This function builds an orphan node from the cnext list and writes it to the
270 * orphan head. On success, %0 is returned, otherwise a negative error code
273 static int write_orph_node(struct ubifs_info
*c
, int atomic
)
275 struct ubifs_orphan
*orphan
, *cnext
;
276 struct ubifs_orph_node
*orph
;
277 int gap
, err
, len
, cnt
, i
;
279 ubifs_assert(c
->cmt_orphans
> 0);
280 gap
= c
->leb_size
- c
->ohead_offs
;
281 if (gap
< UBIFS_ORPH_NODE_SZ
+ sizeof(__le64
)) {
285 if (c
->ohead_lnum
> c
->orph_last
) {
287 * We limit the number of orphans so that this should
290 ubifs_err("out of space in orphan area");
294 cnt
= (gap
- UBIFS_ORPH_NODE_SZ
) / sizeof(__le64
);
295 if (cnt
> c
->cmt_orphans
)
296 cnt
= c
->cmt_orphans
;
297 len
= UBIFS_ORPH_NODE_SZ
+ cnt
* sizeof(__le64
);
298 ubifs_assert(c
->orph_buf
);
300 orph
->ch
.node_type
= UBIFS_ORPH_NODE
;
301 spin_lock(&c
->orphan_lock
);
302 cnext
= c
->orph_cnext
;
303 for (i
= 0; i
< cnt
; i
++) {
305 ubifs_assert(orphan
->cmt
);
306 orph
->inos
[i
] = cpu_to_le64(orphan
->inum
);
308 cnext
= orphan
->cnext
;
309 orphan
->cnext
= NULL
;
311 c
->orph_cnext
= cnext
;
312 c
->cmt_orphans
-= cnt
;
313 spin_unlock(&c
->orphan_lock
);
315 orph
->cmt_no
= cpu_to_le64(c
->cmt_no
);
317 /* Mark the last node of the commit */
318 orph
->cmt_no
= cpu_to_le64((c
->cmt_no
) | (1ULL << 63));
319 ubifs_assert(c
->ohead_offs
+ len
<= c
->leb_size
);
320 ubifs_assert(c
->ohead_lnum
>= c
->orph_first
);
321 ubifs_assert(c
->ohead_lnum
<= c
->orph_last
);
322 err
= do_write_orph_node(c
, len
, atomic
);
323 c
->ohead_offs
+= ALIGN(len
, c
->min_io_size
);
324 c
->ohead_offs
= ALIGN(c
->ohead_offs
, 8);
329 * write_orph_nodes - write orphan nodes until there are no more to commit.
330 * @c: UBIFS file-system description object
331 * @atomic: write atomically
333 * This function writes orphan nodes for all the orphans to commit. On success,
334 * %0 is returned, otherwise a negative error code is returned.
336 static int write_orph_nodes(struct ubifs_info
*c
, int atomic
)
340 while (c
->cmt_orphans
> 0) {
341 err
= write_orph_node(c
, atomic
);
348 /* Unmap any unused LEBs after consolidation */
349 lnum
= c
->ohead_lnum
+ 1;
350 for (lnum
= c
->ohead_lnum
+ 1; lnum
<= c
->orph_last
; lnum
++) {
351 err
= ubifs_leb_unmap(c
, lnum
);
360 * consolidate - consolidate the orphan area.
361 * @c: UBIFS file-system description object
363 * This function enables consolidation by putting all the orphans into the list
364 * to commit. The list is in the order that the orphans were added, and the
365 * LEBs are written atomically in order, so at no time can orphans be lost by
366 * an unclean unmount.
368 * This function returns %0 on success and a negative error code on failure.
370 static int consolidate(struct ubifs_info
*c
)
372 int tot_avail
= tot_avail_orphs(c
), err
= 0;
374 spin_lock(&c
->orphan_lock
);
375 dbg_cmt("there is space for %d orphans and there are %d",
376 tot_avail
, c
->tot_orphans
);
377 if (c
->tot_orphans
- c
->new_orphans
<= tot_avail
) {
378 struct ubifs_orphan
*orphan
, **last
;
381 /* Change the cnext list to include all non-new orphans */
382 last
= &c
->orph_cnext
;
383 list_for_each_entry(orphan
, &c
->orph_list
, list
) {
388 last
= &orphan
->cnext
;
392 ubifs_assert(cnt
== c
->tot_orphans
- c
->new_orphans
);
393 c
->cmt_orphans
= cnt
;
394 c
->ohead_lnum
= c
->orph_first
;
398 * We limit the number of orphans so that this should
401 ubifs_err("out of space in orphan area");
404 spin_unlock(&c
->orphan_lock
);
409 * commit_orphans - commit orphans.
410 * @c: UBIFS file-system description object
412 * This function commits orphans to flash. On success, %0 is returned,
413 * otherwise a negative error code is returned.
415 static int commit_orphans(struct ubifs_info
*c
)
417 int avail
, atomic
= 0, err
;
419 ubifs_assert(c
->cmt_orphans
> 0);
420 avail
= avail_orphs(c
);
421 if (avail
< c
->cmt_orphans
) {
422 /* Not enough space to write new orphans, so consolidate */
423 err
= consolidate(c
);
428 err
= write_orph_nodes(c
, atomic
);
433 * erase_deleted - erase the orphans marked for deletion.
434 * @c: UBIFS file-system description object
436 * During commit, the orphans being committed cannot be deleted, so they are
437 * marked for deletion and deleted by this function. Also, the recovery
438 * adds killed orphans to the deletion list, and therefore they are deleted
441 static void erase_deleted(struct ubifs_info
*c
)
443 struct ubifs_orphan
*orphan
, *dnext
;
445 spin_lock(&c
->orphan_lock
);
446 dnext
= c
->orph_dnext
;
449 dnext
= orphan
->dnext
;
450 ubifs_assert(!orphan
->new);
451 ubifs_assert(orphan
->del
);
452 rb_erase(&orphan
->rb
, &c
->orph_tree
);
453 list_del(&orphan
->list
);
455 dbg_gen("deleting orphan ino %lu", (unsigned long)orphan
->inum
);
458 c
->orph_dnext
= NULL
;
459 spin_unlock(&c
->orphan_lock
);
463 * ubifs_orphan_end_commit - end commit of orphans.
464 * @c: UBIFS file-system description object
466 * End commit of orphans.
468 int ubifs_orphan_end_commit(struct ubifs_info
*c
)
472 if (c
->cmt_orphans
!= 0) {
473 err
= commit_orphans(c
);
478 err
= dbg_check_orphans(c
);
483 * ubifs_clear_orphans - erase all LEBs used for orphans.
484 * @c: UBIFS file-system description object
486 * If recovery is not required, then the orphans from the previous session
487 * are not needed. This function locates the LEBs used to record
488 * orphans, and un-maps them.
490 int ubifs_clear_orphans(struct ubifs_info
*c
)
494 for (lnum
= c
->orph_first
; lnum
<= c
->orph_last
; lnum
++) {
495 err
= ubifs_leb_unmap(c
, lnum
);
499 c
->ohead_lnum
= c
->orph_first
;
505 * insert_dead_orphan - insert an orphan.
506 * @c: UBIFS file-system description object
507 * @inum: orphan inode number
509 * This function is a helper to the 'do_kill_orphans()' function. The orphan
510 * must be kept until the next commit, so it is added to the rb-tree and the
513 static int insert_dead_orphan(struct ubifs_info
*c
, ino_t inum
)
515 struct ubifs_orphan
*orphan
, *o
;
516 struct rb_node
**p
, *parent
= NULL
;
518 orphan
= kzalloc(sizeof(struct ubifs_orphan
), GFP_KERNEL
);
523 p
= &c
->orph_tree
.rb_node
;
526 o
= rb_entry(parent
, struct ubifs_orphan
, rb
);
529 else if (inum
> o
->inum
)
532 /* Already added - no problem */
538 rb_link_node(&orphan
->rb
, parent
, p
);
539 rb_insert_color(&orphan
->rb
, &c
->orph_tree
);
540 list_add_tail(&orphan
->list
, &c
->orph_list
);
542 orphan
->dnext
= c
->orph_dnext
;
543 c
->orph_dnext
= orphan
;
544 dbg_mnt("ino %lu, new %d, tot %d", (unsigned long)inum
,
545 c
->new_orphans
, c
->tot_orphans
);
550 * do_kill_orphans - remove orphan inodes from the index.
551 * @c: UBIFS file-system description object
553 * @last_cmt_no: cmt_no of last orphan node read is passed and returned here
554 * @outofdate: whether the LEB is out of date is returned here
555 * @last_flagged: whether the end orphan node is encountered
557 * This function is a helper to the 'kill_orphans()' function. It goes through
558 * every orphan node in a LEB and for every inode number recorded, removes
559 * all keys for that inode from the TNC.
561 static int do_kill_orphans(struct ubifs_info
*c
, struct ubifs_scan_leb
*sleb
,
562 unsigned long long *last_cmt_no
, int *outofdate
,
565 struct ubifs_scan_node
*snod
;
566 struct ubifs_orph_node
*orph
;
567 unsigned long long cmt_no
;
569 int i
, n
, err
, first
= 1;
571 list_for_each_entry(snod
, &sleb
->nodes
, list
) {
572 if (snod
->type
!= UBIFS_ORPH_NODE
) {
573 ubifs_err("invalid node type %d in orphan area at %d:%d",
574 snod
->type
, sleb
->lnum
, snod
->offs
);
575 ubifs_dump_node(c
, snod
->node
);
581 /* Check commit number */
582 cmt_no
= le64_to_cpu(orph
->cmt_no
) & LLONG_MAX
;
584 * The commit number on the master node may be less, because
585 * of a failed commit. If there are several failed commits in a
586 * row, the commit number written on orphan nodes will continue
587 * to increase (because the commit number is adjusted here) even
588 * though the commit number on the master node stays the same
589 * because the master node has not been re-written.
591 if (cmt_no
> c
->cmt_no
)
593 if (cmt_no
< *last_cmt_no
&& *last_flagged
) {
595 * The last orphan node had a higher commit number and
596 * was flagged as the last written for that commit
597 * number. That makes this orphan node, out of date.
600 ubifs_err("out of order commit number %llu in orphan node at %d:%d",
601 cmt_no
, sleb
->lnum
, snod
->offs
);
602 ubifs_dump_node(c
, snod
->node
);
605 dbg_rcvry("out of date LEB %d", sleb
->lnum
);
613 n
= (le32_to_cpu(orph
->ch
.len
) - UBIFS_ORPH_NODE_SZ
) >> 3;
614 for (i
= 0; i
< n
; i
++) {
615 inum
= le64_to_cpu(orph
->inos
[i
]);
616 dbg_rcvry("deleting orphaned inode %lu",
617 (unsigned long)inum
);
618 err
= ubifs_tnc_remove_ino(c
, inum
);
621 err
= insert_dead_orphan(c
, inum
);
626 *last_cmt_no
= cmt_no
;
627 if (le64_to_cpu(orph
->cmt_no
) & (1ULL << 63)) {
628 dbg_rcvry("last orph node for commit %llu at %d:%d",
629 cmt_no
, sleb
->lnum
, snod
->offs
);
639 * kill_orphans - remove all orphan inodes from the index.
640 * @c: UBIFS file-system description object
642 * If recovery is required, then orphan inodes recorded during the previous
643 * session (which ended with an unclean unmount) must be deleted from the index.
644 * This is done by updating the TNC, but since the index is not updated until
645 * the next commit, the LEBs where the orphan information is recorded are not
646 * erased until the next commit.
648 static int kill_orphans(struct ubifs_info
*c
)
650 unsigned long long last_cmt_no
= 0;
651 int lnum
, err
= 0, outofdate
= 0, last_flagged
= 0;
653 c
->ohead_lnum
= c
->orph_first
;
655 /* Check no-orphans flag and skip this if no orphans */
657 dbg_rcvry("no orphans");
661 * Orph nodes always start at c->orph_first and are written to each
662 * successive LEB in turn. Generally unused LEBs will have been unmapped
663 * but may contain out of date orphan nodes if the unmap didn't go
664 * through. In addition, the last orphan node written for each commit is
665 * marked (top bit of orph->cmt_no is set to 1). It is possible that
666 * there are orphan nodes from the next commit (i.e. the commit did not
667 * complete successfully). In that case, no orphans will have been lost
668 * due to the way that orphans are written, and any orphans added will
669 * be valid orphans anyway and so can be deleted.
671 for (lnum
= c
->orph_first
; lnum
<= c
->orph_last
; lnum
++) {
672 struct ubifs_scan_leb
*sleb
;
674 dbg_rcvry("LEB %d", lnum
);
675 sleb
= ubifs_scan(c
, lnum
, 0, c
->sbuf
, 1);
677 if (PTR_ERR(sleb
) == -EUCLEAN
)
678 sleb
= ubifs_recover_leb(c
, lnum
, 0,
685 err
= do_kill_orphans(c
, sleb
, &last_cmt_no
, &outofdate
,
687 if (err
|| outofdate
) {
688 ubifs_scan_destroy(sleb
);
692 c
->ohead_lnum
= lnum
;
693 c
->ohead_offs
= sleb
->endpt
;
695 ubifs_scan_destroy(sleb
);
701 * ubifs_mount_orphans - delete orphan inodes and erase LEBs that recorded them.
702 * @c: UBIFS file-system description object
703 * @unclean: indicates recovery from unclean unmount
704 * @read_only: indicates read only mount
706 * This function is called when mounting to erase orphans from the previous
707 * session. If UBIFS was not unmounted cleanly, then the inodes recorded as
708 * orphans are deleted.
710 int ubifs_mount_orphans(struct ubifs_info
*c
, int unclean
, int read_only
)
714 c
->max_orphans
= tot_avail_orphs(c
);
717 c
->orph_buf
= vmalloc(c
->leb_size
);
723 err
= kill_orphans(c
);
725 err
= ubifs_clear_orphans(c
);
731 * Everything below is related to debugging.
734 struct check_orphan
{
740 unsigned long last_ino
;
741 unsigned long tot_inos
;
742 unsigned long missing
;
743 unsigned long long leaf_cnt
;
744 struct ubifs_ino_node
*node
;
748 static int dbg_find_orphan(struct ubifs_info
*c
, ino_t inum
)
750 struct ubifs_orphan
*o
;
753 spin_lock(&c
->orphan_lock
);
754 p
= c
->orph_tree
.rb_node
;
756 o
= rb_entry(p
, struct ubifs_orphan
, rb
);
759 else if (inum
> o
->inum
)
762 spin_unlock(&c
->orphan_lock
);
766 spin_unlock(&c
->orphan_lock
);
770 static int dbg_ins_check_orphan(struct rb_root
*root
, ino_t inum
)
772 struct check_orphan
*orphan
, *o
;
773 struct rb_node
**p
, *parent
= NULL
;
775 orphan
= kzalloc(sizeof(struct check_orphan
), GFP_NOFS
);
783 o
= rb_entry(parent
, struct check_orphan
, rb
);
786 else if (inum
> o
->inum
)
793 rb_link_node(&orphan
->rb
, parent
, p
);
794 rb_insert_color(&orphan
->rb
, root
);
798 static int dbg_find_check_orphan(struct rb_root
*root
, ino_t inum
)
800 struct check_orphan
*o
;
805 o
= rb_entry(p
, struct check_orphan
, rb
);
808 else if (inum
> o
->inum
)
816 static void dbg_free_check_tree(struct rb_root
*root
)
818 struct rb_node
*this = root
->rb_node
;
819 struct check_orphan
*o
;
823 this = this->rb_left
;
825 } else if (this->rb_right
) {
826 this = this->rb_right
;
829 o
= rb_entry(this, struct check_orphan
, rb
);
830 this = rb_parent(this);
832 if (this->rb_left
== &o
->rb
)
833 this->rb_left
= NULL
;
835 this->rb_right
= NULL
;
841 static int dbg_orphan_check(struct ubifs_info
*c
, struct ubifs_zbranch
*zbr
,
844 struct check_info
*ci
= priv
;
848 inum
= key_inum(c
, &zbr
->key
);
849 if (inum
!= ci
->last_ino
) {
850 /* Lowest node type is the inode node, so it comes first */
851 if (key_type(c
, &zbr
->key
) != UBIFS_INO_KEY
)
852 ubifs_err("found orphan node ino %lu, type %d",
853 (unsigned long)inum
, key_type(c
, &zbr
->key
));
856 err
= ubifs_tnc_read_node(c
, zbr
, ci
->node
);
858 ubifs_err("node read failed, error %d", err
);
861 if (ci
->node
->nlink
== 0)
862 /* Must be recorded as an orphan */
863 if (!dbg_find_check_orphan(&ci
->root
, inum
) &&
864 !dbg_find_orphan(c
, inum
)) {
865 ubifs_err("missing orphan, ino %lu",
866 (unsigned long)inum
);
874 static int dbg_read_orphans(struct check_info
*ci
, struct ubifs_scan_leb
*sleb
)
876 struct ubifs_scan_node
*snod
;
877 struct ubifs_orph_node
*orph
;
881 list_for_each_entry(snod
, &sleb
->nodes
, list
) {
883 if (snod
->type
!= UBIFS_ORPH_NODE
)
886 n
= (le32_to_cpu(orph
->ch
.len
) - UBIFS_ORPH_NODE_SZ
) >> 3;
887 for (i
= 0; i
< n
; i
++) {
888 inum
= le64_to_cpu(orph
->inos
[i
]);
889 err
= dbg_ins_check_orphan(&ci
->root
, inum
);
897 static int dbg_scan_orphans(struct ubifs_info
*c
, struct check_info
*ci
)
902 /* Check no-orphans flag and skip this if no orphans */
906 buf
= __vmalloc(c
->leb_size
, GFP_NOFS
, PAGE_KERNEL
);
908 ubifs_err("cannot allocate memory to check orphans");
912 for (lnum
= c
->orph_first
; lnum
<= c
->orph_last
; lnum
++) {
913 struct ubifs_scan_leb
*sleb
;
915 sleb
= ubifs_scan(c
, lnum
, 0, buf
, 0);
921 err
= dbg_read_orphans(ci
, sleb
);
922 ubifs_scan_destroy(sleb
);
931 static int dbg_check_orphans(struct ubifs_info
*c
)
933 struct check_info ci
;
936 if (!dbg_is_chk_orph(c
))
944 ci
.node
= kmalloc(UBIFS_MAX_INO_NODE_SZ
, GFP_NOFS
);
946 ubifs_err("out of memory");
950 err
= dbg_scan_orphans(c
, &ci
);
954 err
= dbg_walk_index(c
, &dbg_orphan_check
, NULL
, &ci
);
956 ubifs_err("cannot scan TNC, error %d", err
);
961 ubifs_err("%lu missing orphan(s)", ci
.missing
);
966 dbg_cmt("last inode number is %lu", ci
.last_ino
);
967 dbg_cmt("total number of inodes is %lu", ci
.tot_inos
);
968 dbg_cmt("total number of leaf nodes is %llu", ci
.leaf_cnt
);
971 dbg_free_check_tree(&ci
.root
);