Linux 2.6.21-rc3
[linux/fpc-iii.git] / drivers / parisc / ccio-dma.c
blob894fdb9d44c0b832ddd5d2a23f2ceedaa71d0b16
1 /*
2 ** ccio-dma.c:
3 ** DMA management routines for first generation cache-coherent machines.
4 ** Program U2/Uturn in "Virtual Mode" and use the I/O MMU.
5 **
6 ** (c) Copyright 2000 Grant Grundler
7 ** (c) Copyright 2000 Ryan Bradetich
8 ** (c) Copyright 2000 Hewlett-Packard Company
9 **
10 ** This program is free software; you can redistribute it and/or modify
11 ** it under the terms of the GNU General Public License as published by
12 ** the Free Software Foundation; either version 2 of the License, or
13 ** (at your option) any later version.
16 ** "Real Mode" operation refers to U2/Uturn chip operation.
17 ** U2/Uturn were designed to perform coherency checks w/o using
18 ** the I/O MMU - basically what x86 does.
20 ** Philipp Rumpf has a "Real Mode" driver for PCX-W machines at:
21 ** CVSROOT=:pserver:anonymous@198.186.203.37:/cvsroot/linux-parisc
22 ** cvs -z3 co linux/arch/parisc/kernel/dma-rm.c
24 ** I've rewritten his code to work under TPG's tree. See ccio-rm-dma.c.
26 ** Drawbacks of using Real Mode are:
27 ** o outbound DMA is slower - U2 won't prefetch data (GSC+ XQL signal).
28 ** o Inbound DMA less efficient - U2 can't use DMA_FAST attribute.
29 ** o Ability to do scatter/gather in HW is lost.
30 ** o Doesn't work under PCX-U/U+ machines since they didn't follow
31 ** the coherency design originally worked out. Only PCX-W does.
34 #include <linux/types.h>
35 #include <linux/init.h>
36 #include <linux/mm.h>
37 #include <linux/spinlock.h>
38 #include <linux/slab.h>
39 #include <linux/string.h>
40 #include <linux/pci.h>
41 #include <linux/reboot.h>
42 #include <linux/proc_fs.h>
43 #include <linux/seq_file.h>
45 #include <asm/byteorder.h>
46 #include <asm/cache.h> /* for L1_CACHE_BYTES */
47 #include <asm/uaccess.h>
48 #include <asm/page.h>
49 #include <asm/dma.h>
50 #include <asm/io.h>
51 #include <asm/hardware.h> /* for register_module() */
52 #include <asm/parisc-device.h>
54 /*
55 ** Choose "ccio" since that's what HP-UX calls it.
56 ** Make it easier for folks to migrate from one to the other :^)
58 #define MODULE_NAME "ccio"
60 #undef DEBUG_CCIO_RES
61 #undef DEBUG_CCIO_RUN
62 #undef DEBUG_CCIO_INIT
63 #undef DEBUG_CCIO_RUN_SG
65 #ifdef CONFIG_PROC_FS
67 * CCIO_SEARCH_TIME can help measure how fast the bitmap search is.
68 * impacts performance though - ditch it if you don't use it.
70 #define CCIO_SEARCH_TIME
71 #undef CCIO_MAP_STATS
72 #else
73 #undef CCIO_SEARCH_TIME
74 #undef CCIO_MAP_STATS
75 #endif
77 #include <linux/proc_fs.h>
78 #include <asm/runway.h> /* for proc_runway_root */
80 #ifdef DEBUG_CCIO_INIT
81 #define DBG_INIT(x...) printk(x)
82 #else
83 #define DBG_INIT(x...)
84 #endif
86 #ifdef DEBUG_CCIO_RUN
87 #define DBG_RUN(x...) printk(x)
88 #else
89 #define DBG_RUN(x...)
90 #endif
92 #ifdef DEBUG_CCIO_RES
93 #define DBG_RES(x...) printk(x)
94 #else
95 #define DBG_RES(x...)
96 #endif
98 #ifdef DEBUG_CCIO_RUN_SG
99 #define DBG_RUN_SG(x...) printk(x)
100 #else
101 #define DBG_RUN_SG(x...)
102 #endif
104 #define CCIO_INLINE inline
105 #define WRITE_U32(value, addr) __raw_writel(value, addr)
106 #define READ_U32(addr) __raw_readl(addr)
108 #define U2_IOA_RUNWAY 0x580
109 #define U2_BC_GSC 0x501
110 #define UTURN_IOA_RUNWAY 0x581
111 #define UTURN_BC_GSC 0x502
113 #define IOA_NORMAL_MODE 0x00020080 /* IO_CONTROL to turn on CCIO */
114 #define CMD_TLB_DIRECT_WRITE 35 /* IO_COMMAND for I/O TLB Writes */
115 #define CMD_TLB_PURGE 33 /* IO_COMMAND to Purge I/O TLB entry */
117 struct ioa_registers {
118 /* Runway Supervisory Set */
119 int32_t unused1[12];
120 uint32_t io_command; /* Offset 12 */
121 uint32_t io_status; /* Offset 13 */
122 uint32_t io_control; /* Offset 14 */
123 int32_t unused2[1];
125 /* Runway Auxiliary Register Set */
126 uint32_t io_err_resp; /* Offset 0 */
127 uint32_t io_err_info; /* Offset 1 */
128 uint32_t io_err_req; /* Offset 2 */
129 uint32_t io_err_resp_hi; /* Offset 3 */
130 uint32_t io_tlb_entry_m; /* Offset 4 */
131 uint32_t io_tlb_entry_l; /* Offset 5 */
132 uint32_t unused3[1];
133 uint32_t io_pdir_base; /* Offset 7 */
134 uint32_t io_io_low_hv; /* Offset 8 */
135 uint32_t io_io_high_hv; /* Offset 9 */
136 uint32_t unused4[1];
137 uint32_t io_chain_id_mask; /* Offset 11 */
138 uint32_t unused5[2];
139 uint32_t io_io_low; /* Offset 14 */
140 uint32_t io_io_high; /* Offset 15 */
144 ** IOA Registers
145 ** -------------
147 ** Runway IO_CONTROL Register (+0x38)
149 ** The Runway IO_CONTROL register controls the forwarding of transactions.
151 ** | 0 ... 13 | 14 15 | 16 ... 21 | 22 | 23 24 | 25 ... 31 |
152 ** | HV | TLB | reserved | HV | mode | reserved |
154 ** o mode field indicates the address translation of transactions
155 ** forwarded from Runway to GSC+:
156 ** Mode Name Value Definition
157 ** Off (default) 0 Opaque to matching addresses.
158 ** Include 1 Transparent for matching addresses.
159 ** Peek 3 Map matching addresses.
161 ** + "Off" mode: Runway transactions which match the I/O range
162 ** specified by the IO_IO_LOW/IO_IO_HIGH registers will be ignored.
163 ** + "Include" mode: all addresses within the I/O range specified
164 ** by the IO_IO_LOW and IO_IO_HIGH registers are transparently
165 ** forwarded. This is the I/O Adapter's normal operating mode.
166 ** + "Peek" mode: used during system configuration to initialize the
167 ** GSC+ bus. Runway Write_Shorts in the address range specified by
168 ** IO_IO_LOW and IO_IO_HIGH are forwarded through the I/O Adapter
169 ** *AND* the GSC+ address is remapped to the Broadcast Physical
170 ** Address space by setting the 14 high order address bits of the
171 ** 32 bit GSC+ address to ones.
173 ** o TLB field affects transactions which are forwarded from GSC+ to Runway.
174 ** "Real" mode is the poweron default.
176 ** TLB Mode Value Description
177 ** Real 0 No TLB translation. Address is directly mapped and the
178 ** virtual address is composed of selected physical bits.
179 ** Error 1 Software fills the TLB manually.
180 ** Normal 2 IOA fetches IO TLB misses from IO PDIR (in host memory).
183 ** IO_IO_LOW_HV +0x60 (HV dependent)
184 ** IO_IO_HIGH_HV +0x64 (HV dependent)
185 ** IO_IO_LOW +0x78 (Architected register)
186 ** IO_IO_HIGH +0x7c (Architected register)
188 ** IO_IO_LOW and IO_IO_HIGH set the lower and upper bounds of the
189 ** I/O Adapter address space, respectively.
191 ** 0 ... 7 | 8 ... 15 | 16 ... 31 |
192 ** 11111111 | 11111111 | address |
194 ** Each LOW/HIGH pair describes a disjoint address space region.
195 ** (2 per GSC+ port). Each incoming Runway transaction address is compared
196 ** with both sets of LOW/HIGH registers. If the address is in the range
197 ** greater than or equal to IO_IO_LOW and less than IO_IO_HIGH the transaction
198 ** for forwarded to the respective GSC+ bus.
199 ** Specify IO_IO_LOW equal to or greater than IO_IO_HIGH to avoid specifying
200 ** an address space region.
202 ** In order for a Runway address to reside within GSC+ extended address space:
203 ** Runway Address [0:7] must identically compare to 8'b11111111
204 ** Runway Address [8:11] must be equal to IO_IO_LOW(_HV)[16:19]
205 ** Runway Address [12:23] must be greater than or equal to
206 ** IO_IO_LOW(_HV)[20:31] and less than IO_IO_HIGH(_HV)[20:31].
207 ** Runway Address [24:39] is not used in the comparison.
209 ** When the Runway transaction is forwarded to GSC+, the GSC+ address is
210 ** as follows:
211 ** GSC+ Address[0:3] 4'b1111
212 ** GSC+ Address[4:29] Runway Address[12:37]
213 ** GSC+ Address[30:31] 2'b00
215 ** All 4 Low/High registers must be initialized (by PDC) once the lower bus
216 ** is interrogated and address space is defined. The operating system will
217 ** modify the architectural IO_IO_LOW and IO_IO_HIGH registers following
218 ** the PDC initialization. However, the hardware version dependent IO_IO_LOW
219 ** and IO_IO_HIGH registers should not be subsequently altered by the OS.
221 ** Writes to both sets of registers will take effect immediately, bypassing
222 ** the queues, which ensures that subsequent Runway transactions are checked
223 ** against the updated bounds values. However reads are queued, introducing
224 ** the possibility of a read being bypassed by a subsequent write to the same
225 ** register. This sequence can be avoided by having software wait for read
226 ** returns before issuing subsequent writes.
229 struct ioc {
230 struct ioa_registers __iomem *ioc_regs; /* I/O MMU base address */
231 u8 *res_map; /* resource map, bit == pdir entry */
232 u64 *pdir_base; /* physical base address */
233 u32 pdir_size; /* bytes, function of IOV Space size */
234 u32 res_hint; /* next available IOVP -
235 circular search */
236 u32 res_size; /* size of resource map in bytes */
237 spinlock_t res_lock;
239 #ifdef CCIO_SEARCH_TIME
240 #define CCIO_SEARCH_SAMPLE 0x100
241 unsigned long avg_search[CCIO_SEARCH_SAMPLE];
242 unsigned long avg_idx; /* current index into avg_search */
243 #endif
244 #ifdef CCIO_MAP_STATS
245 unsigned long used_pages;
246 unsigned long msingle_calls;
247 unsigned long msingle_pages;
248 unsigned long msg_calls;
249 unsigned long msg_pages;
250 unsigned long usingle_calls;
251 unsigned long usingle_pages;
252 unsigned long usg_calls;
253 unsigned long usg_pages;
254 #endif
255 unsigned short cujo20_bug;
257 /* STUFF We don't need in performance path */
258 u32 chainid_shift; /* specify bit location of chain_id */
259 struct ioc *next; /* Linked list of discovered iocs */
260 const char *name; /* device name from firmware */
261 unsigned int hw_path; /* the hardware path this ioc is associatd with */
262 struct pci_dev *fake_pci_dev; /* the fake pci_dev for non-pci devs */
263 struct resource mmio_region[2]; /* The "routed" MMIO regions */
266 static struct ioc *ioc_list;
267 static int ioc_count;
269 /**************************************************************
271 * I/O Pdir Resource Management
273 * Bits set in the resource map are in use.
274 * Each bit can represent a number of pages.
275 * LSbs represent lower addresses (IOVA's).
277 * This was was copied from sba_iommu.c. Don't try to unify
278 * the two resource managers unless a way to have different
279 * allocation policies is also adjusted. We'd like to avoid
280 * I/O TLB thrashing by having resource allocation policy
281 * match the I/O TLB replacement policy.
283 ***************************************************************/
284 #define IOVP_SIZE PAGE_SIZE
285 #define IOVP_SHIFT PAGE_SHIFT
286 #define IOVP_MASK PAGE_MASK
288 /* Convert from IOVP to IOVA and vice versa. */
289 #define CCIO_IOVA(iovp,offset) ((iovp) | (offset))
290 #define CCIO_IOVP(iova) ((iova) & IOVP_MASK)
292 #define PDIR_INDEX(iovp) ((iovp)>>IOVP_SHIFT)
293 #define MKIOVP(pdir_idx) ((long)(pdir_idx) << IOVP_SHIFT)
294 #define MKIOVA(iovp,offset) (dma_addr_t)((long)iovp | (long)offset)
295 #define ROUNDUP(x,y) ((x + ((y)-1)) & ~((y)-1))
298 ** Don't worry about the 150% average search length on a miss.
299 ** If the search wraps around, and passes the res_hint, it will
300 ** cause the kernel to panic anyhow.
302 #define CCIO_SEARCH_LOOP(ioc, res_idx, mask, size) \
303 for(; res_ptr < res_end; ++res_ptr) { \
304 if(0 == (*res_ptr & mask)) { \
305 *res_ptr |= mask; \
306 res_idx = (unsigned int)((unsigned long)res_ptr - (unsigned long)ioc->res_map); \
307 ioc->res_hint = res_idx + (size >> 3); \
308 goto resource_found; \
312 #define CCIO_FIND_FREE_MAPPING(ioa, res_idx, mask, size) \
313 u##size *res_ptr = (u##size *)&((ioc)->res_map[ioa->res_hint & ~((size >> 3) - 1)]); \
314 u##size *res_end = (u##size *)&(ioc)->res_map[ioa->res_size]; \
315 CCIO_SEARCH_LOOP(ioc, res_idx, mask, size); \
316 res_ptr = (u##size *)&(ioc)->res_map[0]; \
317 CCIO_SEARCH_LOOP(ioa, res_idx, mask, size);
320 ** Find available bit in this ioa's resource map.
321 ** Use a "circular" search:
322 ** o Most IOVA's are "temporary" - avg search time should be small.
323 ** o keep a history of what happened for debugging
324 ** o KISS.
326 ** Perf optimizations:
327 ** o search for log2(size) bits at a time.
328 ** o search for available resource bits using byte/word/whatever.
329 ** o use different search for "large" (eg > 4 pages) or "very large"
330 ** (eg > 16 pages) mappings.
334 * ccio_alloc_range - Allocate pages in the ioc's resource map.
335 * @ioc: The I/O Controller.
336 * @pages_needed: The requested number of pages to be mapped into the
337 * I/O Pdir...
339 * This function searches the resource map of the ioc to locate a range
340 * of available pages for the requested size.
342 static int
343 ccio_alloc_range(struct ioc *ioc, size_t size)
345 unsigned int pages_needed = size >> IOVP_SHIFT;
346 unsigned int res_idx;
347 #ifdef CCIO_SEARCH_TIME
348 unsigned long cr_start = mfctl(16);
349 #endif
351 BUG_ON(pages_needed == 0);
352 BUG_ON((pages_needed * IOVP_SIZE) > DMA_CHUNK_SIZE);
354 DBG_RES("%s() size: %d pages_needed %d\n",
355 __FUNCTION__, size, pages_needed);
358 ** "seek and ye shall find"...praying never hurts either...
359 ** ggg sacrifices another 710 to the computer gods.
362 if (pages_needed <= 8) {
364 * LAN traffic will not thrash the TLB IFF the same NIC
365 * uses 8 adjacent pages to map seperate payload data.
366 * ie the same byte in the resource bit map.
368 #if 0
369 /* FIXME: bit search should shift it's way through
370 * an unsigned long - not byte at a time. As it is now,
371 * we effectively allocate this byte to this mapping.
373 unsigned long mask = ~(~0UL >> pages_needed);
374 CCIO_FIND_FREE_MAPPING(ioc, res_idx, mask, 8);
375 #else
376 CCIO_FIND_FREE_MAPPING(ioc, res_idx, 0xff, 8);
377 #endif
378 } else if (pages_needed <= 16) {
379 CCIO_FIND_FREE_MAPPING(ioc, res_idx, 0xffff, 16);
380 } else if (pages_needed <= 32) {
381 CCIO_FIND_FREE_MAPPING(ioc, res_idx, ~(unsigned int)0, 32);
382 #ifdef __LP64__
383 } else if (pages_needed <= 64) {
384 CCIO_FIND_FREE_MAPPING(ioc, res_idx, ~0UL, 64);
385 #endif
386 } else {
387 panic("%s: %s() Too many pages to map. pages_needed: %u\n",
388 __FILE__, __FUNCTION__, pages_needed);
391 panic("%s: %s() I/O MMU is out of mapping resources.\n", __FILE__,
392 __FUNCTION__);
394 resource_found:
396 DBG_RES("%s() res_idx %d res_hint: %d\n",
397 __FUNCTION__, res_idx, ioc->res_hint);
399 #ifdef CCIO_SEARCH_TIME
401 unsigned long cr_end = mfctl(16);
402 unsigned long tmp = cr_end - cr_start;
403 /* check for roll over */
404 cr_start = (cr_end < cr_start) ? -(tmp) : (tmp);
406 ioc->avg_search[ioc->avg_idx++] = cr_start;
407 ioc->avg_idx &= CCIO_SEARCH_SAMPLE - 1;
408 #endif
409 #ifdef CCIO_MAP_STATS
410 ioc->used_pages += pages_needed;
411 #endif
413 ** return the bit address.
415 return res_idx << 3;
418 #define CCIO_FREE_MAPPINGS(ioc, res_idx, mask, size) \
419 u##size *res_ptr = (u##size *)&((ioc)->res_map[res_idx]); \
420 BUG_ON((*res_ptr & mask) != mask); \
421 *res_ptr &= ~(mask);
424 * ccio_free_range - Free pages from the ioc's resource map.
425 * @ioc: The I/O Controller.
426 * @iova: The I/O Virtual Address.
427 * @pages_mapped: The requested number of pages to be freed from the
428 * I/O Pdir.
430 * This function frees the resouces allocated for the iova.
432 static void
433 ccio_free_range(struct ioc *ioc, dma_addr_t iova, unsigned long pages_mapped)
435 unsigned long iovp = CCIO_IOVP(iova);
436 unsigned int res_idx = PDIR_INDEX(iovp) >> 3;
438 BUG_ON(pages_mapped == 0);
439 BUG_ON((pages_mapped * IOVP_SIZE) > DMA_CHUNK_SIZE);
440 BUG_ON(pages_mapped > BITS_PER_LONG);
442 DBG_RES("%s(): res_idx: %d pages_mapped %d\n",
443 __FUNCTION__, res_idx, pages_mapped);
445 #ifdef CCIO_MAP_STATS
446 ioc->used_pages -= pages_mapped;
447 #endif
449 if(pages_mapped <= 8) {
450 #if 0
451 /* see matching comments in alloc_range */
452 unsigned long mask = ~(~0UL >> pages_mapped);
453 CCIO_FREE_MAPPINGS(ioc, res_idx, mask, 8);
454 #else
455 CCIO_FREE_MAPPINGS(ioc, res_idx, 0xff, 8);
456 #endif
457 } else if(pages_mapped <= 16) {
458 CCIO_FREE_MAPPINGS(ioc, res_idx, 0xffff, 16);
459 } else if(pages_mapped <= 32) {
460 CCIO_FREE_MAPPINGS(ioc, res_idx, ~(unsigned int)0, 32);
461 #ifdef __LP64__
462 } else if(pages_mapped <= 64) {
463 CCIO_FREE_MAPPINGS(ioc, res_idx, ~0UL, 64);
464 #endif
465 } else {
466 panic("%s:%s() Too many pages to unmap.\n", __FILE__,
467 __FUNCTION__);
471 /****************************************************************
473 ** CCIO dma_ops support routines
475 *****************************************************************/
477 typedef unsigned long space_t;
478 #define KERNEL_SPACE 0
481 ** DMA "Page Type" and Hints
482 ** o if SAFE_DMA isn't set, mapping is for FAST_DMA. SAFE_DMA should be
483 ** set for subcacheline DMA transfers since we don't want to damage the
484 ** other part of a cacheline.
485 ** o SAFE_DMA must be set for "memory" allocated via pci_alloc_consistent().
486 ** This bit tells U2 to do R/M/W for partial cachelines. "Streaming"
487 ** data can avoid this if the mapping covers full cache lines.
488 ** o STOP_MOST is needed for atomicity across cachelines.
489 ** Apparently only "some EISA devices" need this.
490 ** Using CONFIG_ISA is hack. Only the IOA with EISA under it needs
491 ** to use this hint iff the EISA devices needs this feature.
492 ** According to the U2 ERS, STOP_MOST enabled pages hurt performance.
493 ** o PREFETCH should *not* be set for cases like Multiple PCI devices
494 ** behind GSCtoPCI (dino) bus converter. Only one cacheline per GSC
495 ** device can be fetched and multiply DMA streams will thrash the
496 ** prefetch buffer and burn memory bandwidth. See 6.7.3 "Prefetch Rules
497 ** and Invalidation of Prefetch Entries".
499 ** FIXME: the default hints need to be per GSC device - not global.
501 ** HP-UX dorks: linux device driver programming model is totally different
502 ** than HP-UX's. HP-UX always sets HINT_PREFETCH since it's drivers
503 ** do special things to work on non-coherent platforms...linux has to
504 ** be much more careful with this.
506 #define IOPDIR_VALID 0x01UL
507 #define HINT_SAFE_DMA 0x02UL /* used for pci_alloc_consistent() pages */
508 #ifdef CONFIG_EISA
509 #define HINT_STOP_MOST 0x04UL /* LSL support */
510 #else
511 #define HINT_STOP_MOST 0x00UL /* only needed for "some EISA devices" */
512 #endif
513 #define HINT_UDPATE_ENB 0x08UL /* not used/supported by U2 */
514 #define HINT_PREFETCH 0x10UL /* for outbound pages which are not SAFE */
518 ** Use direction (ie PCI_DMA_TODEVICE) to pick hint.
519 ** ccio_alloc_consistent() depends on this to get SAFE_DMA
520 ** when it passes in BIDIRECTIONAL flag.
522 static u32 hint_lookup[] = {
523 [PCI_DMA_BIDIRECTIONAL] = HINT_STOP_MOST | HINT_SAFE_DMA | IOPDIR_VALID,
524 [PCI_DMA_TODEVICE] = HINT_STOP_MOST | HINT_PREFETCH | IOPDIR_VALID,
525 [PCI_DMA_FROMDEVICE] = HINT_STOP_MOST | IOPDIR_VALID,
529 * ccio_io_pdir_entry - Initialize an I/O Pdir.
530 * @pdir_ptr: A pointer into I/O Pdir.
531 * @sid: The Space Identifier.
532 * @vba: The virtual address.
533 * @hints: The DMA Hint.
535 * Given a virtual address (vba, arg2) and space id, (sid, arg1),
536 * load the I/O PDIR entry pointed to by pdir_ptr (arg0). Each IO Pdir
537 * entry consists of 8 bytes as shown below (MSB == bit 0):
540 * WORD 0:
541 * +------+----------------+-----------------------------------------------+
542 * | Phys | Virtual Index | Phys |
543 * | 0:3 | 0:11 | 4:19 |
544 * |4 bits| 12 bits | 16 bits |
545 * +------+----------------+-----------------------------------------------+
546 * WORD 1:
547 * +-----------------------+-----------------------------------------------+
548 * | Phys | Rsvd | Prefetch |Update |Rsvd |Lock |Safe |Valid |
549 * | 20:39 | | Enable |Enable | |Enable|DMA | |
550 * | 20 bits | 5 bits | 1 bit |1 bit |2 bits|1 bit |1 bit |1 bit |
551 * +-----------------------+-----------------------------------------------+
553 * The virtual index field is filled with the results of the LCI
554 * (Load Coherence Index) instruction. The 8 bits used for the virtual
555 * index are bits 12:19 of the value returned by LCI.
557 void CCIO_INLINE
558 ccio_io_pdir_entry(u64 *pdir_ptr, space_t sid, unsigned long vba,
559 unsigned long hints)
561 register unsigned long pa;
562 register unsigned long ci; /* coherent index */
564 /* We currently only support kernel addresses */
565 BUG_ON(sid != KERNEL_SPACE);
567 mtsp(sid,1);
570 ** WORD 1 - low order word
571 ** "hints" parm includes the VALID bit!
572 ** "dep" clobbers the physical address offset bits as well.
574 pa = virt_to_phys(vba);
575 asm volatile("depw %1,31,12,%0" : "+r" (pa) : "r" (hints));
576 ((u32 *)pdir_ptr)[1] = (u32) pa;
579 ** WORD 0 - high order word
582 #ifdef __LP64__
584 ** get bits 12:15 of physical address
585 ** shift bits 16:31 of physical address
586 ** and deposit them
588 asm volatile ("extrd,u %1,15,4,%0" : "=r" (ci) : "r" (pa));
589 asm volatile ("extrd,u %1,31,16,%0" : "+r" (pa) : "r" (pa));
590 asm volatile ("depd %1,35,4,%0" : "+r" (pa) : "r" (ci));
591 #else
592 pa = 0;
593 #endif
595 ** get CPU coherency index bits
596 ** Grab virtual index [0:11]
597 ** Deposit virt_idx bits into I/O PDIR word
599 asm volatile ("lci %%r0(%%sr1, %1), %0" : "=r" (ci) : "r" (vba));
600 asm volatile ("extru %1,19,12,%0" : "+r" (ci) : "r" (ci));
601 asm volatile ("depw %1,15,12,%0" : "+r" (pa) : "r" (ci));
603 ((u32 *)pdir_ptr)[0] = (u32) pa;
606 /* FIXME: PCX_W platforms don't need FDC/SYNC. (eg C360)
607 ** PCX-U/U+ do. (eg C200/C240)
608 ** PCX-T'? Don't know. (eg C110 or similar K-class)
610 ** See PDC_MODEL/option 0/SW_CAP word for "Non-coherent IO-PDIR bit".
611 ** Hopefully we can patch (NOP) these out at boot time somehow.
613 ** "Since PCX-U employs an offset hash that is incompatible with
614 ** the real mode coherence index generation of U2, the PDIR entry
615 ** must be flushed to memory to retain coherence."
617 asm volatile("fdc %%r0(%0)" : : "r" (pdir_ptr));
618 asm volatile("sync");
622 * ccio_clear_io_tlb - Remove stale entries from the I/O TLB.
623 * @ioc: The I/O Controller.
624 * @iovp: The I/O Virtual Page.
625 * @byte_cnt: The requested number of bytes to be freed from the I/O Pdir.
627 * Purge invalid I/O PDIR entries from the I/O TLB.
629 * FIXME: Can we change the byte_cnt to pages_mapped?
631 static CCIO_INLINE void
632 ccio_clear_io_tlb(struct ioc *ioc, dma_addr_t iovp, size_t byte_cnt)
634 u32 chain_size = 1 << ioc->chainid_shift;
636 iovp &= IOVP_MASK; /* clear offset bits, just want pagenum */
637 byte_cnt += chain_size;
639 while(byte_cnt > chain_size) {
640 WRITE_U32(CMD_TLB_PURGE | iovp, &ioc->ioc_regs->io_command);
641 iovp += chain_size;
642 byte_cnt -= chain_size;
647 * ccio_mark_invalid - Mark the I/O Pdir entries invalid.
648 * @ioc: The I/O Controller.
649 * @iova: The I/O Virtual Address.
650 * @byte_cnt: The requested number of bytes to be freed from the I/O Pdir.
652 * Mark the I/O Pdir entries invalid and blow away the corresponding I/O
653 * TLB entries.
655 * FIXME: at some threshhold it might be "cheaper" to just blow
656 * away the entire I/O TLB instead of individual entries.
658 * FIXME: Uturn has 256 TLB entries. We don't need to purge every
659 * PDIR entry - just once for each possible TLB entry.
660 * (We do need to maker I/O PDIR entries invalid regardless).
662 * FIXME: Can we change byte_cnt to pages_mapped?
664 static CCIO_INLINE void
665 ccio_mark_invalid(struct ioc *ioc, dma_addr_t iova, size_t byte_cnt)
667 u32 iovp = (u32)CCIO_IOVP(iova);
668 size_t saved_byte_cnt;
670 /* round up to nearest page size */
671 saved_byte_cnt = byte_cnt = ROUNDUP(byte_cnt, IOVP_SIZE);
673 while(byte_cnt > 0) {
674 /* invalidate one page at a time */
675 unsigned int idx = PDIR_INDEX(iovp);
676 char *pdir_ptr = (char *) &(ioc->pdir_base[idx]);
678 BUG_ON(idx >= (ioc->pdir_size / sizeof(u64)));
679 pdir_ptr[7] = 0; /* clear only VALID bit */
681 ** FIXME: PCX_W platforms don't need FDC/SYNC. (eg C360)
682 ** PCX-U/U+ do. (eg C200/C240)
683 ** See PDC_MODEL/option 0/SW_CAP for "Non-coherent IO-PDIR bit".
685 ** Hopefully someone figures out how to patch (NOP) the
686 ** FDC/SYNC out at boot time.
688 asm volatile("fdc %%r0(%0)" : : "r" (pdir_ptr[7]));
690 iovp += IOVP_SIZE;
691 byte_cnt -= IOVP_SIZE;
694 asm volatile("sync");
695 ccio_clear_io_tlb(ioc, CCIO_IOVP(iova), saved_byte_cnt);
698 /****************************************************************
700 ** CCIO dma_ops
702 *****************************************************************/
705 * ccio_dma_supported - Verify the IOMMU supports the DMA address range.
706 * @dev: The PCI device.
707 * @mask: A bit mask describing the DMA address range of the device.
709 * This function implements the pci_dma_supported function.
711 static int
712 ccio_dma_supported(struct device *dev, u64 mask)
714 if(dev == NULL) {
715 printk(KERN_ERR MODULE_NAME ": EISA/ISA/et al not supported\n");
716 BUG();
717 return 0;
720 /* only support 32-bit devices (ie PCI/GSC) */
721 return (int)(mask == 0xffffffffUL);
725 * ccio_map_single - Map an address range into the IOMMU.
726 * @dev: The PCI device.
727 * @addr: The start address of the DMA region.
728 * @size: The length of the DMA region.
729 * @direction: The direction of the DMA transaction (to/from device).
731 * This function implements the pci_map_single function.
733 static dma_addr_t
734 ccio_map_single(struct device *dev, void *addr, size_t size,
735 enum dma_data_direction direction)
737 int idx;
738 struct ioc *ioc;
739 unsigned long flags;
740 dma_addr_t iovp;
741 dma_addr_t offset;
742 u64 *pdir_start;
743 unsigned long hint = hint_lookup[(int)direction];
745 BUG_ON(!dev);
746 ioc = GET_IOC(dev);
748 BUG_ON(size <= 0);
750 /* save offset bits */
751 offset = ((unsigned long) addr) & ~IOVP_MASK;
753 /* round up to nearest IOVP_SIZE */
754 size = ROUNDUP(size + offset, IOVP_SIZE);
755 spin_lock_irqsave(&ioc->res_lock, flags);
757 #ifdef CCIO_MAP_STATS
758 ioc->msingle_calls++;
759 ioc->msingle_pages += size >> IOVP_SHIFT;
760 #endif
762 idx = ccio_alloc_range(ioc, size);
763 iovp = (dma_addr_t)MKIOVP(idx);
765 pdir_start = &(ioc->pdir_base[idx]);
767 DBG_RUN("%s() 0x%p -> 0x%lx size: %0x%x\n",
768 __FUNCTION__, addr, (long)iovp | offset, size);
770 /* If not cacheline aligned, force SAFE_DMA on the whole mess */
771 if((size % L1_CACHE_BYTES) || ((unsigned long)addr % L1_CACHE_BYTES))
772 hint |= HINT_SAFE_DMA;
774 while(size > 0) {
775 ccio_io_pdir_entry(pdir_start, KERNEL_SPACE, (unsigned long)addr, hint);
777 DBG_RUN(" pdir %p %08x%08x\n",
778 pdir_start,
779 (u32) (((u32 *) pdir_start)[0]),
780 (u32) (((u32 *) pdir_start)[1]));
781 ++pdir_start;
782 addr += IOVP_SIZE;
783 size -= IOVP_SIZE;
786 spin_unlock_irqrestore(&ioc->res_lock, flags);
788 /* form complete address */
789 return CCIO_IOVA(iovp, offset);
793 * ccio_unmap_single - Unmap an address range from the IOMMU.
794 * @dev: The PCI device.
795 * @addr: The start address of the DMA region.
796 * @size: The length of the DMA region.
797 * @direction: The direction of the DMA transaction (to/from device).
799 * This function implements the pci_unmap_single function.
801 static void
802 ccio_unmap_single(struct device *dev, dma_addr_t iova, size_t size,
803 enum dma_data_direction direction)
805 struct ioc *ioc;
806 unsigned long flags;
807 dma_addr_t offset = iova & ~IOVP_MASK;
809 BUG_ON(!dev);
810 ioc = GET_IOC(dev);
812 DBG_RUN("%s() iovp 0x%lx/%x\n",
813 __FUNCTION__, (long)iova, size);
815 iova ^= offset; /* clear offset bits */
816 size += offset;
817 size = ROUNDUP(size, IOVP_SIZE);
819 spin_lock_irqsave(&ioc->res_lock, flags);
821 #ifdef CCIO_MAP_STATS
822 ioc->usingle_calls++;
823 ioc->usingle_pages += size >> IOVP_SHIFT;
824 #endif
826 ccio_mark_invalid(ioc, iova, size);
827 ccio_free_range(ioc, iova, (size >> IOVP_SHIFT));
828 spin_unlock_irqrestore(&ioc->res_lock, flags);
832 * ccio_alloc_consistent - Allocate a consistent DMA mapping.
833 * @dev: The PCI device.
834 * @size: The length of the DMA region.
835 * @dma_handle: The DMA address handed back to the device (not the cpu).
837 * This function implements the pci_alloc_consistent function.
839 static void *
840 ccio_alloc_consistent(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t flag)
842 void *ret;
843 #if 0
844 /* GRANT Need to establish hierarchy for non-PCI devs as well
845 ** and then provide matching gsc_map_xxx() functions for them as well.
847 if(!hwdev) {
848 /* only support PCI */
849 *dma_handle = 0;
850 return 0;
852 #endif
853 ret = (void *) __get_free_pages(flag, get_order(size));
855 if (ret) {
856 memset(ret, 0, size);
857 *dma_handle = ccio_map_single(dev, ret, size, PCI_DMA_BIDIRECTIONAL);
860 return ret;
864 * ccio_free_consistent - Free a consistent DMA mapping.
865 * @dev: The PCI device.
866 * @size: The length of the DMA region.
867 * @cpu_addr: The cpu address returned from the ccio_alloc_consistent.
868 * @dma_handle: The device address returned from the ccio_alloc_consistent.
870 * This function implements the pci_free_consistent function.
872 static void
873 ccio_free_consistent(struct device *dev, size_t size, void *cpu_addr,
874 dma_addr_t dma_handle)
876 ccio_unmap_single(dev, dma_handle, size, 0);
877 free_pages((unsigned long)cpu_addr, get_order(size));
881 ** Since 0 is a valid pdir_base index value, can't use that
882 ** to determine if a value is valid or not. Use a flag to indicate
883 ** the SG list entry contains a valid pdir index.
885 #define PIDE_FLAG 0x80000000UL
887 #ifdef CCIO_MAP_STATS
888 #define IOMMU_MAP_STATS
889 #endif
890 #include "iommu-helpers.h"
893 * ccio_map_sg - Map the scatter/gather list into the IOMMU.
894 * @dev: The PCI device.
895 * @sglist: The scatter/gather list to be mapped in the IOMMU.
896 * @nents: The number of entries in the scatter/gather list.
897 * @direction: The direction of the DMA transaction (to/from device).
899 * This function implements the pci_map_sg function.
901 static int
902 ccio_map_sg(struct device *dev, struct scatterlist *sglist, int nents,
903 enum dma_data_direction direction)
905 struct ioc *ioc;
906 int coalesced, filled = 0;
907 unsigned long flags;
908 unsigned long hint = hint_lookup[(int)direction];
909 unsigned long prev_len = 0, current_len = 0;
910 int i;
912 BUG_ON(!dev);
913 ioc = GET_IOC(dev);
915 DBG_RUN_SG("%s() START %d entries\n", __FUNCTION__, nents);
917 /* Fast path single entry scatterlists. */
918 if (nents == 1) {
919 sg_dma_address(sglist) = ccio_map_single(dev,
920 (void *)sg_virt_addr(sglist), sglist->length,
921 direction);
922 sg_dma_len(sglist) = sglist->length;
923 return 1;
926 for(i = 0; i < nents; i++)
927 prev_len += sglist[i].length;
929 spin_lock_irqsave(&ioc->res_lock, flags);
931 #ifdef CCIO_MAP_STATS
932 ioc->msg_calls++;
933 #endif
936 ** First coalesce the chunks and allocate I/O pdir space
938 ** If this is one DMA stream, we can properly map using the
939 ** correct virtual address associated with each DMA page.
940 ** w/o this association, we wouldn't have coherent DMA!
941 ** Access to the virtual address is what forces a two pass algorithm.
943 coalesced = iommu_coalesce_chunks(ioc, sglist, nents, ccio_alloc_range);
946 ** Program the I/O Pdir
948 ** map the virtual addresses to the I/O Pdir
949 ** o dma_address will contain the pdir index
950 ** o dma_len will contain the number of bytes to map
951 ** o page/offset contain the virtual address.
953 filled = iommu_fill_pdir(ioc, sglist, nents, hint, ccio_io_pdir_entry);
955 spin_unlock_irqrestore(&ioc->res_lock, flags);
957 BUG_ON(coalesced != filled);
959 DBG_RUN_SG("%s() DONE %d mappings\n", __FUNCTION__, filled);
961 for (i = 0; i < filled; i++)
962 current_len += sg_dma_len(sglist + i);
964 BUG_ON(current_len != prev_len);
966 return filled;
970 * ccio_unmap_sg - Unmap the scatter/gather list from the IOMMU.
971 * @dev: The PCI device.
972 * @sglist: The scatter/gather list to be unmapped from the IOMMU.
973 * @nents: The number of entries in the scatter/gather list.
974 * @direction: The direction of the DMA transaction (to/from device).
976 * This function implements the pci_unmap_sg function.
978 static void
979 ccio_unmap_sg(struct device *dev, struct scatterlist *sglist, int nents,
980 enum dma_data_direction direction)
982 struct ioc *ioc;
984 BUG_ON(!dev);
985 ioc = GET_IOC(dev);
987 DBG_RUN_SG("%s() START %d entries, %08lx,%x\n",
988 __FUNCTION__, nents, sg_virt_addr(sglist), sglist->length);
990 #ifdef CCIO_MAP_STATS
991 ioc->usg_calls++;
992 #endif
994 while(sg_dma_len(sglist) && nents--) {
996 #ifdef CCIO_MAP_STATS
997 ioc->usg_pages += sg_dma_len(sglist) >> PAGE_SHIFT;
998 #endif
999 ccio_unmap_single(dev, sg_dma_address(sglist),
1000 sg_dma_len(sglist), direction);
1001 ++sglist;
1004 DBG_RUN_SG("%s() DONE (nents %d)\n", __FUNCTION__, nents);
1007 static struct hppa_dma_ops ccio_ops = {
1008 .dma_supported = ccio_dma_supported,
1009 .alloc_consistent = ccio_alloc_consistent,
1010 .alloc_noncoherent = ccio_alloc_consistent,
1011 .free_consistent = ccio_free_consistent,
1012 .map_single = ccio_map_single,
1013 .unmap_single = ccio_unmap_single,
1014 .map_sg = ccio_map_sg,
1015 .unmap_sg = ccio_unmap_sg,
1016 .dma_sync_single_for_cpu = NULL, /* NOP for U2/Uturn */
1017 .dma_sync_single_for_device = NULL, /* NOP for U2/Uturn */
1018 .dma_sync_sg_for_cpu = NULL, /* ditto */
1019 .dma_sync_sg_for_device = NULL, /* ditto */
1022 #ifdef CONFIG_PROC_FS
1023 static int ccio_proc_info(struct seq_file *m, void *p)
1025 int len = 0;
1026 struct ioc *ioc = ioc_list;
1028 while (ioc != NULL) {
1029 unsigned int total_pages = ioc->res_size << 3;
1030 unsigned long avg = 0, min, max;
1031 int j;
1033 len += seq_printf(m, "%s\n", ioc->name);
1035 len += seq_printf(m, "Cujo 2.0 bug : %s\n",
1036 (ioc->cujo20_bug ? "yes" : "no"));
1038 len += seq_printf(m, "IO PDIR size : %d bytes (%d entries)\n",
1039 total_pages * 8, total_pages);
1041 #ifdef CCIO_MAP_STATS
1042 len += seq_printf(m, "IO PDIR entries : %ld free %ld used (%d%%)\n",
1043 total_pages - ioc->used_pages, ioc->used_pages,
1044 (int)(ioc->used_pages * 100 / total_pages));
1045 #endif
1047 len += seq_printf(m, "Resource bitmap : %d bytes (%d pages)\n",
1048 ioc->res_size, total_pages);
1050 #ifdef CCIO_SEARCH_TIME
1051 min = max = ioc->avg_search[0];
1052 for(j = 0; j < CCIO_SEARCH_SAMPLE; ++j) {
1053 avg += ioc->avg_search[j];
1054 if(ioc->avg_search[j] > max)
1055 max = ioc->avg_search[j];
1056 if(ioc->avg_search[j] < min)
1057 min = ioc->avg_search[j];
1059 avg /= CCIO_SEARCH_SAMPLE;
1060 len += seq_printf(m, " Bitmap search : %ld/%ld/%ld (min/avg/max CPU Cycles)\n",
1061 min, avg, max);
1062 #endif
1063 #ifdef CCIO_MAP_STATS
1064 len += seq_printf(m, "pci_map_single(): %8ld calls %8ld pages (avg %d/1000)\n",
1065 ioc->msingle_calls, ioc->msingle_pages,
1066 (int)((ioc->msingle_pages * 1000)/ioc->msingle_calls));
1068 /* KLUGE - unmap_sg calls unmap_single for each mapped page */
1069 min = ioc->usingle_calls - ioc->usg_calls;
1070 max = ioc->usingle_pages - ioc->usg_pages;
1071 len += seq_printf(m, "pci_unmap_single: %8ld calls %8ld pages (avg %d/1000)\n",
1072 min, max, (int)((max * 1000)/min));
1074 len += seq_printf(m, "pci_map_sg() : %8ld calls %8ld pages (avg %d/1000)\n",
1075 ioc->msg_calls, ioc->msg_pages,
1076 (int)((ioc->msg_pages * 1000)/ioc->msg_calls));
1078 len += seq_printf(m, "pci_unmap_sg() : %8ld calls %8ld pages (avg %d/1000)\n\n\n",
1079 ioc->usg_calls, ioc->usg_pages,
1080 (int)((ioc->usg_pages * 1000)/ioc->usg_calls));
1081 #endif /* CCIO_MAP_STATS */
1083 ioc = ioc->next;
1086 return 0;
1089 static int ccio_proc_info_open(struct inode *inode, struct file *file)
1091 return single_open(file, &ccio_proc_info, NULL);
1094 static const struct file_operations ccio_proc_info_fops = {
1095 .owner = THIS_MODULE,
1096 .open = ccio_proc_info_open,
1097 .read = seq_read,
1098 .llseek = seq_lseek,
1099 .release = single_release,
1102 static int ccio_proc_bitmap_info(struct seq_file *m, void *p)
1104 int len = 0;
1105 struct ioc *ioc = ioc_list;
1107 while (ioc != NULL) {
1108 u32 *res_ptr = (u32 *)ioc->res_map;
1109 int j;
1111 for (j = 0; j < (ioc->res_size / sizeof(u32)); j++) {
1112 if ((j & 7) == 0)
1113 len += seq_puts(m, "\n ");
1114 len += seq_printf(m, "%08x", *res_ptr);
1115 res_ptr++;
1117 len += seq_puts(m, "\n\n");
1118 ioc = ioc->next;
1119 break; /* XXX - remove me */
1122 return 0;
1125 static int ccio_proc_bitmap_open(struct inode *inode, struct file *file)
1127 return single_open(file, &ccio_proc_bitmap_info, NULL);
1130 static const struct file_operations ccio_proc_bitmap_fops = {
1131 .owner = THIS_MODULE,
1132 .open = ccio_proc_bitmap_open,
1133 .read = seq_read,
1134 .llseek = seq_lseek,
1135 .release = single_release,
1137 #endif
1140 * ccio_find_ioc - Find the ioc in the ioc_list
1141 * @hw_path: The hardware path of the ioc.
1143 * This function searches the ioc_list for an ioc that matches
1144 * the provide hardware path.
1146 static struct ioc * ccio_find_ioc(int hw_path)
1148 int i;
1149 struct ioc *ioc;
1151 ioc = ioc_list;
1152 for (i = 0; i < ioc_count; i++) {
1153 if (ioc->hw_path == hw_path)
1154 return ioc;
1156 ioc = ioc->next;
1159 return NULL;
1163 * ccio_get_iommu - Find the iommu which controls this device
1164 * @dev: The parisc device.
1166 * This function searches through the registered IOMMU's and returns
1167 * the appropriate IOMMU for the device based on its hardware path.
1169 void * ccio_get_iommu(const struct parisc_device *dev)
1171 dev = find_pa_parent_type(dev, HPHW_IOA);
1172 if (!dev)
1173 return NULL;
1175 return ccio_find_ioc(dev->hw_path);
1178 #define CUJO_20_STEP 0x10000000 /* inc upper nibble */
1180 /* Cujo 2.0 has a bug which will silently corrupt data being transferred
1181 * to/from certain pages. To avoid this happening, we mark these pages
1182 * as `used', and ensure that nothing will try to allocate from them.
1184 void ccio_cujo20_fixup(struct parisc_device *cujo, u32 iovp)
1186 unsigned int idx;
1187 struct parisc_device *dev = parisc_parent(cujo);
1188 struct ioc *ioc = ccio_get_iommu(dev);
1189 u8 *res_ptr;
1191 ioc->cujo20_bug = 1;
1192 res_ptr = ioc->res_map;
1193 idx = PDIR_INDEX(iovp) >> 3;
1195 while (idx < ioc->res_size) {
1196 res_ptr[idx] |= 0xff;
1197 idx += PDIR_INDEX(CUJO_20_STEP) >> 3;
1201 #if 0
1202 /* GRANT - is this needed for U2 or not? */
1205 ** Get the size of the I/O TLB for this I/O MMU.
1207 ** If spa_shift is non-zero (ie probably U2),
1208 ** then calculate the I/O TLB size using spa_shift.
1210 ** Otherwise we are supposed to get the IODC entry point ENTRY TLB
1211 ** and execute it. However, both U2 and Uturn firmware supplies spa_shift.
1212 ** I think only Java (K/D/R-class too?) systems don't do this.
1214 static int
1215 ccio_get_iotlb_size(struct parisc_device *dev)
1217 if (dev->spa_shift == 0) {
1218 panic("%s() : Can't determine I/O TLB size.\n", __FUNCTION__);
1220 return (1 << dev->spa_shift);
1222 #else
1224 /* Uturn supports 256 TLB entries */
1225 #define CCIO_CHAINID_SHIFT 8
1226 #define CCIO_CHAINID_MASK 0xff
1227 #endif /* 0 */
1229 /* We *can't* support JAVA (T600). Venture there at your own risk. */
1230 static struct parisc_device_id ccio_tbl[] = {
1231 { HPHW_IOA, HVERSION_REV_ANY_ID, U2_IOA_RUNWAY, 0xb }, /* U2 */
1232 { HPHW_IOA, HVERSION_REV_ANY_ID, UTURN_IOA_RUNWAY, 0xb }, /* UTurn */
1233 { 0, }
1236 static int ccio_probe(struct parisc_device *dev);
1238 static struct parisc_driver ccio_driver = {
1239 .name = "ccio",
1240 .id_table = ccio_tbl,
1241 .probe = ccio_probe,
1245 * ccio_ioc_init - Initalize the I/O Controller
1246 * @ioc: The I/O Controller.
1248 * Initalize the I/O Controller which includes setting up the
1249 * I/O Page Directory, the resource map, and initalizing the
1250 * U2/Uturn chip into virtual mode.
1252 static void
1253 ccio_ioc_init(struct ioc *ioc)
1255 int i;
1256 unsigned int iov_order;
1257 u32 iova_space_size;
1260 ** Determine IOVA Space size from memory size.
1262 ** Ideally, PCI drivers would register the maximum number
1263 ** of DMA they can have outstanding for each device they
1264 ** own. Next best thing would be to guess how much DMA
1265 ** can be outstanding based on PCI Class/sub-class. Both
1266 ** methods still require some "extra" to support PCI
1267 ** Hot-Plug/Removal of PCI cards. (aka PCI OLARD).
1270 iova_space_size = (u32) (num_physpages / count_parisc_driver(&ccio_driver));
1272 /* limit IOVA space size to 1MB-1GB */
1274 if (iova_space_size < (1 << (20 - PAGE_SHIFT))) {
1275 iova_space_size = 1 << (20 - PAGE_SHIFT);
1276 #ifdef __LP64__
1277 } else if (iova_space_size > (1 << (30 - PAGE_SHIFT))) {
1278 iova_space_size = 1 << (30 - PAGE_SHIFT);
1279 #endif
1283 ** iova space must be log2() in size.
1284 ** thus, pdir/res_map will also be log2().
1287 /* We could use larger page sizes in order to *decrease* the number
1288 ** of mappings needed. (ie 8k pages means 1/2 the mappings).
1290 ** Note: Grant Grunder says "Using 8k I/O pages isn't trivial either
1291 ** since the pages must also be physically contiguous - typically
1292 ** this is the case under linux."
1295 iov_order = get_order(iova_space_size << PAGE_SHIFT);
1297 /* iova_space_size is now bytes, not pages */
1298 iova_space_size = 1 << (iov_order + PAGE_SHIFT);
1300 ioc->pdir_size = (iova_space_size / IOVP_SIZE) * sizeof(u64);
1302 BUG_ON(ioc->pdir_size > 8 * 1024 * 1024); /* max pdir size <= 8MB */
1304 /* Verify it's a power of two */
1305 BUG_ON((1 << get_order(ioc->pdir_size)) != (ioc->pdir_size >> PAGE_SHIFT));
1307 DBG_INIT("%s() hpa 0x%p mem %luMB IOV %dMB (%d bits)\n",
1308 __FUNCTION__, ioc->ioc_regs,
1309 (unsigned long) num_physpages >> (20 - PAGE_SHIFT),
1310 iova_space_size>>20,
1311 iov_order + PAGE_SHIFT);
1313 ioc->pdir_base = (u64 *)__get_free_pages(GFP_KERNEL,
1314 get_order(ioc->pdir_size));
1315 if(NULL == ioc->pdir_base) {
1316 panic("%s() could not allocate I/O Page Table\n", __FUNCTION__);
1318 memset(ioc->pdir_base, 0, ioc->pdir_size);
1320 BUG_ON((((unsigned long)ioc->pdir_base) & PAGE_MASK) != (unsigned long)ioc->pdir_base);
1321 DBG_INIT(" base %p\n", ioc->pdir_base);
1323 /* resource map size dictated by pdir_size */
1324 ioc->res_size = (ioc->pdir_size / sizeof(u64)) >> 3;
1325 DBG_INIT("%s() res_size 0x%x\n", __FUNCTION__, ioc->res_size);
1327 ioc->res_map = (u8 *)__get_free_pages(GFP_KERNEL,
1328 get_order(ioc->res_size));
1329 if(NULL == ioc->res_map) {
1330 panic("%s() could not allocate resource map\n", __FUNCTION__);
1332 memset(ioc->res_map, 0, ioc->res_size);
1334 /* Initialize the res_hint to 16 */
1335 ioc->res_hint = 16;
1337 /* Initialize the spinlock */
1338 spin_lock_init(&ioc->res_lock);
1341 ** Chainid is the upper most bits of an IOVP used to determine
1342 ** which TLB entry an IOVP will use.
1344 ioc->chainid_shift = get_order(iova_space_size) + PAGE_SHIFT - CCIO_CHAINID_SHIFT;
1345 DBG_INIT(" chainid_shift 0x%x\n", ioc->chainid_shift);
1348 ** Initialize IOA hardware
1350 WRITE_U32(CCIO_CHAINID_MASK << ioc->chainid_shift,
1351 &ioc->ioc_regs->io_chain_id_mask);
1353 WRITE_U32(virt_to_phys(ioc->pdir_base),
1354 &ioc->ioc_regs->io_pdir_base);
1357 ** Go to "Virtual Mode"
1359 WRITE_U32(IOA_NORMAL_MODE, &ioc->ioc_regs->io_control);
1362 ** Initialize all I/O TLB entries to 0 (Valid bit off).
1364 WRITE_U32(0, &ioc->ioc_regs->io_tlb_entry_m);
1365 WRITE_U32(0, &ioc->ioc_regs->io_tlb_entry_l);
1367 for(i = 1 << CCIO_CHAINID_SHIFT; i ; i--) {
1368 WRITE_U32((CMD_TLB_DIRECT_WRITE | (i << ioc->chainid_shift)),
1369 &ioc->ioc_regs->io_command);
1373 static void
1374 ccio_init_resource(struct resource *res, char *name, void __iomem *ioaddr)
1376 int result;
1378 res->parent = NULL;
1379 res->flags = IORESOURCE_MEM;
1381 * bracing ((signed) ...) are required for 64bit kernel because
1382 * we only want to sign extend the lower 16 bits of the register.
1383 * The upper 16-bits of range registers are hardcoded to 0xffff.
1385 res->start = (unsigned long)((signed) READ_U32(ioaddr) << 16);
1386 res->end = (unsigned long)((signed) (READ_U32(ioaddr + 4) << 16) - 1);
1387 res->name = name;
1389 * Check if this MMIO range is disable
1391 if (res->end + 1 == res->start)
1392 return;
1394 /* On some platforms (e.g. K-Class), we have already registered
1395 * resources for devices reported by firmware. Some are children
1396 * of ccio.
1397 * "insert" ccio ranges in the mmio hierarchy (/proc/iomem).
1399 result = insert_resource(&iomem_resource, res);
1400 if (result < 0) {
1401 printk(KERN_ERR "%s() failed to claim CCIO bus address space (%08lx,%08lx)\n",
1402 __FUNCTION__, res->start, res->end);
1406 static void __init ccio_init_resources(struct ioc *ioc)
1408 struct resource *res = ioc->mmio_region;
1409 char *name = kmalloc(14, GFP_KERNEL);
1411 snprintf(name, 14, "GSC Bus [%d/]", ioc->hw_path);
1413 ccio_init_resource(res, name, &ioc->ioc_regs->io_io_low);
1414 ccio_init_resource(res + 1, name, &ioc->ioc_regs->io_io_low_hv);
1417 static int new_ioc_area(struct resource *res, unsigned long size,
1418 unsigned long min, unsigned long max, unsigned long align)
1420 if (max <= min)
1421 return -EBUSY;
1423 res->start = (max - size + 1) &~ (align - 1);
1424 res->end = res->start + size;
1426 /* We might be trying to expand the MMIO range to include
1427 * a child device that has already registered it's MMIO space.
1428 * Use "insert" instead of request_resource().
1430 if (!insert_resource(&iomem_resource, res))
1431 return 0;
1433 return new_ioc_area(res, size, min, max - size, align);
1436 static int expand_ioc_area(struct resource *res, unsigned long size,
1437 unsigned long min, unsigned long max, unsigned long align)
1439 unsigned long start, len;
1441 if (!res->parent)
1442 return new_ioc_area(res, size, min, max, align);
1444 start = (res->start - size) &~ (align - 1);
1445 len = res->end - start + 1;
1446 if (start >= min) {
1447 if (!adjust_resource(res, start, len))
1448 return 0;
1451 start = res->start;
1452 len = ((size + res->end + align) &~ (align - 1)) - start;
1453 if (start + len <= max) {
1454 if (!adjust_resource(res, start, len))
1455 return 0;
1458 return -EBUSY;
1462 * Dino calls this function. Beware that we may get called on systems
1463 * which have no IOC (725, B180, C160L, etc) but do have a Dino.
1464 * So it's legal to find no parent IOC.
1466 * Some other issues: one of the resources in the ioc may be unassigned.
1468 int ccio_allocate_resource(const struct parisc_device *dev,
1469 struct resource *res, unsigned long size,
1470 unsigned long min, unsigned long max, unsigned long align)
1472 struct resource *parent = &iomem_resource;
1473 struct ioc *ioc = ccio_get_iommu(dev);
1474 if (!ioc)
1475 goto out;
1477 parent = ioc->mmio_region;
1478 if (parent->parent &&
1479 !allocate_resource(parent, res, size, min, max, align, NULL, NULL))
1480 return 0;
1482 if ((parent + 1)->parent &&
1483 !allocate_resource(parent + 1, res, size, min, max, align,
1484 NULL, NULL))
1485 return 0;
1487 if (!expand_ioc_area(parent, size, min, max, align)) {
1488 __raw_writel(((parent->start)>>16) | 0xffff0000,
1489 &ioc->ioc_regs->io_io_low);
1490 __raw_writel(((parent->end)>>16) | 0xffff0000,
1491 &ioc->ioc_regs->io_io_high);
1492 } else if (!expand_ioc_area(parent + 1, size, min, max, align)) {
1493 parent++;
1494 __raw_writel(((parent->start)>>16) | 0xffff0000,
1495 &ioc->ioc_regs->io_io_low_hv);
1496 __raw_writel(((parent->end)>>16) | 0xffff0000,
1497 &ioc->ioc_regs->io_io_high_hv);
1498 } else {
1499 return -EBUSY;
1502 out:
1503 return allocate_resource(parent, res, size, min, max, align, NULL,NULL);
1506 int ccio_request_resource(const struct parisc_device *dev,
1507 struct resource *res)
1509 struct resource *parent;
1510 struct ioc *ioc = ccio_get_iommu(dev);
1512 if (!ioc) {
1513 parent = &iomem_resource;
1514 } else if ((ioc->mmio_region->start <= res->start) &&
1515 (res->end <= ioc->mmio_region->end)) {
1516 parent = ioc->mmio_region;
1517 } else if (((ioc->mmio_region + 1)->start <= res->start) &&
1518 (res->end <= (ioc->mmio_region + 1)->end)) {
1519 parent = ioc->mmio_region + 1;
1520 } else {
1521 return -EBUSY;
1524 /* "transparent" bus bridges need to register MMIO resources
1525 * firmware assigned them. e.g. children of hppb.c (e.g. K-class)
1526 * registered their resources in the PDC "bus walk" (See
1527 * arch/parisc/kernel/inventory.c).
1529 return insert_resource(parent, res);
1533 * ccio_probe - Determine if ccio should claim this device.
1534 * @dev: The device which has been found
1536 * Determine if ccio should claim this chip (return 0) or not (return 1).
1537 * If so, initialize the chip and tell other partners in crime they
1538 * have work to do.
1540 static int ccio_probe(struct parisc_device *dev)
1542 int i;
1543 struct ioc *ioc, **ioc_p = &ioc_list;
1544 struct proc_dir_entry *info_entry, *bitmap_entry;
1546 ioc = kzalloc(sizeof(struct ioc), GFP_KERNEL);
1547 if (ioc == NULL) {
1548 printk(KERN_ERR MODULE_NAME ": memory allocation failure\n");
1549 return 1;
1552 ioc->name = dev->id.hversion == U2_IOA_RUNWAY ? "U2" : "UTurn";
1554 printk(KERN_INFO "Found %s at 0x%lx\n", ioc->name, dev->hpa.start);
1556 for (i = 0; i < ioc_count; i++) {
1557 ioc_p = &(*ioc_p)->next;
1559 *ioc_p = ioc;
1561 ioc->hw_path = dev->hw_path;
1562 ioc->ioc_regs = ioremap_nocache(dev->hpa.start, 4096);
1563 ccio_ioc_init(ioc);
1564 ccio_init_resources(ioc);
1565 hppa_dma_ops = &ccio_ops;
1566 dev->dev.platform_data = kzalloc(sizeof(struct pci_hba_data), GFP_KERNEL);
1568 /* if this fails, no I/O cards will work, so may as well bug */
1569 BUG_ON(dev->dev.platform_data == NULL);
1570 HBA_DATA(dev->dev.platform_data)->iommu = ioc;
1572 if (ioc_count == 0) {
1573 info_entry = create_proc_entry(MODULE_NAME, 0, proc_runway_root);
1574 if (info_entry)
1575 info_entry->proc_fops = &ccio_proc_info_fops;
1577 bitmap_entry = create_proc_entry(MODULE_NAME"-bitmap", 0, proc_runway_root);
1578 if (bitmap_entry)
1579 bitmap_entry->proc_fops = &ccio_proc_bitmap_fops;
1582 ioc_count++;
1584 parisc_vmerge_boundary = IOVP_SIZE;
1585 parisc_vmerge_max_size = BITS_PER_LONG * IOVP_SIZE;
1586 parisc_has_iommu();
1587 return 0;
1591 * ccio_init - ccio initalization procedure.
1593 * Register this driver.
1595 void __init ccio_init(void)
1597 register_parisc_driver(&ccio_driver);