2 * Compaq Hot Plug Controller Driver
4 * Copyright (C) 1995,2001 Compaq Computer Corporation
5 * Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com)
6 * Copyright (C) 2001 IBM Corp.
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or (at
13 * your option) any later version.
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
18 * NON INFRINGEMENT. See the GNU General Public License for more
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
25 * Send feedback to <greg@kroah.com>
29 #include <linux/module.h>
30 #include <linux/kernel.h>
31 #include <linux/types.h>
32 #include <linux/slab.h>
33 #include <linux/workqueue.h>
34 #include <linux/interrupt.h>
35 #include <linux/delay.h>
36 #include <linux/wait.h>
37 #include <linux/smp_lock.h>
38 #include <linux/pci.h>
39 #include <linux/pci_hotplug.h>
42 static u32
configure_new_device(struct controller
* ctrl
, struct pci_func
*func
,
43 u8 behind_bridge
, struct resource_lists
*resources
);
44 static int configure_new_function(struct controller
* ctrl
, struct pci_func
*func
,
45 u8 behind_bridge
, struct resource_lists
*resources
);
46 static void interrupt_event_handler(struct controller
*ctrl
);
48 static struct semaphore event_semaphore
; /* mutex for process loop (up if something to process) */
49 static struct semaphore event_exit
; /* guard ensure thread has exited before calling it quits */
50 static int event_finished
;
51 static unsigned long pushbutton_pending
; /* = 0 */
53 /* things needed for the long_delay function */
54 static struct semaphore delay_sem
;
55 static wait_queue_head_t delay_wait
;
57 /* delay is in jiffies to wait for */
58 static void long_delay(int delay
)
60 DECLARE_WAITQUEUE(wait
, current
);
62 /* only allow 1 customer into the delay queue at once
63 * yes this makes some people wait even longer, but who really cares?
64 * this is for _huge_ delays to make the hardware happy as the
65 * signals bounce around
69 init_waitqueue_head(&delay_wait
);
71 add_wait_queue(&delay_wait
, &wait
);
72 msleep_interruptible(jiffies_to_msecs(delay
));
73 remove_wait_queue(&delay_wait
, &wait
);
79 /* FIXME: The following line needs to be somewhere else... */
80 #define WRONG_BUS_FREQUENCY 0x07
81 static u8
handle_switch_change(u8 change
, struct controller
* ctrl
)
86 struct pci_func
*func
;
87 struct event_info
*taskInfo
;
93 dbg("cpqsbd: Switch interrupt received.\n");
95 for (hp_slot
= 0; hp_slot
< 6; hp_slot
++) {
96 if (change
& (0x1L
<< hp_slot
)) {
97 /**********************************
99 **********************************/
100 func
= cpqhp_slot_find(ctrl
->bus
,
101 (hp_slot
+ ctrl
->slot_device_offset
), 0);
103 /* this is the structure that tells the worker thread
105 taskInfo
= &(ctrl
->event_queue
[ctrl
->next_event
]);
106 ctrl
->next_event
= (ctrl
->next_event
+ 1) % 10;
107 taskInfo
->hp_slot
= hp_slot
;
111 temp_word
= ctrl
->ctrl_int_comp
>> 16;
112 func
->presence_save
= (temp_word
>> hp_slot
) & 0x01;
113 func
->presence_save
|= (temp_word
>> (hp_slot
+ 7)) & 0x02;
115 if (ctrl
->ctrl_int_comp
& (0x1L
<< hp_slot
)) {
116 /**********************************
118 **********************************/
120 func
->switch_save
= 0;
122 taskInfo
->event_type
= INT_SWITCH_OPEN
;
124 /**********************************
126 **********************************/
128 func
->switch_save
= 0x10;
130 taskInfo
->event_type
= INT_SWITCH_CLOSE
;
139 * cpqhp_find_slot: find the struct slot of given device
140 * @ctrl: scan lots of this controller
141 * @device: the device id to find
143 static struct slot
*cpqhp_find_slot(struct controller
*ctrl
, u8 device
)
145 struct slot
*slot
= ctrl
->slot
;
147 while (slot
&& (slot
->device
!= device
)) {
155 static u8
handle_presence_change(u16 change
, struct controller
* ctrl
)
161 struct pci_func
*func
;
162 struct event_info
*taskInfo
;
168 /**********************************
170 **********************************/
171 dbg("cpqsbd: Presence/Notify input change.\n");
172 dbg(" Changed bits are 0x%4.4x\n", change
);
174 for (hp_slot
= 0; hp_slot
< 6; hp_slot
++) {
175 if (change
& (0x0101 << hp_slot
)) {
176 /**********************************
178 **********************************/
179 func
= cpqhp_slot_find(ctrl
->bus
,
180 (hp_slot
+ ctrl
->slot_device_offset
), 0);
182 taskInfo
= &(ctrl
->event_queue
[ctrl
->next_event
]);
183 ctrl
->next_event
= (ctrl
->next_event
+ 1) % 10;
184 taskInfo
->hp_slot
= hp_slot
;
188 p_slot
= cpqhp_find_slot(ctrl
, hp_slot
+ (readb(ctrl
->hpc_reg
+ SLOT_MASK
) >> 4));
192 /* If the switch closed, must be a button
193 * If not in button mode, nevermind */
194 if (func
->switch_save
&& (ctrl
->push_button
== 1)) {
195 temp_word
= ctrl
->ctrl_int_comp
>> 16;
196 temp_byte
= (temp_word
>> hp_slot
) & 0x01;
197 temp_byte
|= (temp_word
>> (hp_slot
+ 7)) & 0x02;
199 if (temp_byte
!= func
->presence_save
) {
200 /**************************************
201 * button Pressed (doesn't do anything)
202 **************************************/
203 dbg("hp_slot %d button pressed\n", hp_slot
);
204 taskInfo
->event_type
= INT_BUTTON_PRESS
;
206 /**********************************
207 * button Released - TAKE ACTION!!!!
208 **********************************/
209 dbg("hp_slot %d button released\n", hp_slot
);
210 taskInfo
->event_type
= INT_BUTTON_RELEASE
;
212 /* Cancel if we are still blinking */
213 if ((p_slot
->state
== BLINKINGON_STATE
)
214 || (p_slot
->state
== BLINKINGOFF_STATE
)) {
215 taskInfo
->event_type
= INT_BUTTON_CANCEL
;
216 dbg("hp_slot %d button cancel\n", hp_slot
);
217 } else if ((p_slot
->state
== POWERON_STATE
)
218 || (p_slot
->state
== POWEROFF_STATE
)) {
219 /* info(msg_button_ignore, p_slot->number); */
220 taskInfo
->event_type
= INT_BUTTON_IGNORE
;
221 dbg("hp_slot %d button ignore\n", hp_slot
);
225 /* Switch is open, assume a presence change
226 * Save the presence state */
227 temp_word
= ctrl
->ctrl_int_comp
>> 16;
228 func
->presence_save
= (temp_word
>> hp_slot
) & 0x01;
229 func
->presence_save
|= (temp_word
>> (hp_slot
+ 7)) & 0x02;
231 if ((!(ctrl
->ctrl_int_comp
& (0x010000 << hp_slot
))) ||
232 (!(ctrl
->ctrl_int_comp
& (0x01000000 << hp_slot
)))) {
234 taskInfo
->event_type
= INT_PRESENCE_ON
;
237 taskInfo
->event_type
= INT_PRESENCE_OFF
;
247 static u8
handle_power_fault(u8 change
, struct controller
* ctrl
)
251 struct pci_func
*func
;
252 struct event_info
*taskInfo
;
257 /**********************************
259 **********************************/
261 info("power fault interrupt\n");
263 for (hp_slot
= 0; hp_slot
< 6; hp_slot
++) {
264 if (change
& (0x01 << hp_slot
)) {
265 /**********************************
267 **********************************/
268 func
= cpqhp_slot_find(ctrl
->bus
,
269 (hp_slot
+ ctrl
->slot_device_offset
), 0);
271 taskInfo
= &(ctrl
->event_queue
[ctrl
->next_event
]);
272 ctrl
->next_event
= (ctrl
->next_event
+ 1) % 10;
273 taskInfo
->hp_slot
= hp_slot
;
277 if (ctrl
->ctrl_int_comp
& (0x00000100 << hp_slot
)) {
278 /**********************************
279 * power fault Cleared
280 **********************************/
283 taskInfo
->event_type
= INT_POWER_FAULT_CLEAR
;
285 /**********************************
287 **********************************/
288 taskInfo
->event_type
= INT_POWER_FAULT
;
291 amber_LED_on (ctrl
, hp_slot
);
292 green_LED_off (ctrl
, hp_slot
);
295 /* this is a fatal condition, we want
296 * to crash the machine to protect from
297 * data corruption. simulated_NMI
298 * shouldn't ever return */
300 simulated_NMI(hp_slot, ctrl); */
302 /* The following code causes a software
303 * crash just in case simulated_NMI did
306 panic(msg_power_fault); */
308 /* set power fault status for this board */
310 info("power fault bit %x set\n", hp_slot
);
321 * sort_by_size: sort nodes on the list by their length, smallest first.
322 * @head: list to sort
325 static int sort_by_size(struct pci_resource
**head
)
327 struct pci_resource
*current_res
;
328 struct pci_resource
*next_res
;
329 int out_of_order
= 1;
334 if (!((*head
)->next
))
337 while (out_of_order
) {
340 /* Special case for swapping list head */
341 if (((*head
)->next
) &&
342 ((*head
)->length
> (*head
)->next
->length
)) {
345 *head
= (*head
)->next
;
346 current_res
->next
= (*head
)->next
;
347 (*head
)->next
= current_res
;
352 while (current_res
->next
&& current_res
->next
->next
) {
353 if (current_res
->next
->length
> current_res
->next
->next
->length
) {
355 next_res
= current_res
->next
;
356 current_res
->next
= current_res
->next
->next
;
357 current_res
= current_res
->next
;
358 next_res
->next
= current_res
->next
;
359 current_res
->next
= next_res
;
361 current_res
= current_res
->next
;
363 } /* End of out_of_order loop */
370 * sort_by_max_size: sort nodes on the list by their length, largest first.
371 * @head: list to sort
374 static int sort_by_max_size(struct pci_resource
**head
)
376 struct pci_resource
*current_res
;
377 struct pci_resource
*next_res
;
378 int out_of_order
= 1;
383 if (!((*head
)->next
))
386 while (out_of_order
) {
389 /* Special case for swapping list head */
390 if (((*head
)->next
) &&
391 ((*head
)->length
< (*head
)->next
->length
)) {
394 *head
= (*head
)->next
;
395 current_res
->next
= (*head
)->next
;
396 (*head
)->next
= current_res
;
401 while (current_res
->next
&& current_res
->next
->next
) {
402 if (current_res
->next
->length
< current_res
->next
->next
->length
) {
404 next_res
= current_res
->next
;
405 current_res
->next
= current_res
->next
->next
;
406 current_res
= current_res
->next
;
407 next_res
->next
= current_res
->next
;
408 current_res
->next
= next_res
;
410 current_res
= current_res
->next
;
412 } /* End of out_of_order loop */
419 * do_pre_bridge_resource_split: find node of resources that are unused
422 static struct pci_resource
*do_pre_bridge_resource_split(struct pci_resource
**head
,
423 struct pci_resource
**orig_head
, u32 alignment
)
425 struct pci_resource
*prevnode
= NULL
;
426 struct pci_resource
*node
;
427 struct pci_resource
*split_node
;
430 dbg("do_pre_bridge_resource_split\n");
432 if (!(*head
) || !(*orig_head
))
435 rc
= cpqhp_resource_sort_and_combine(head
);
440 if ((*head
)->base
!= (*orig_head
)->base
)
443 if ((*head
)->length
== (*orig_head
)->length
)
447 /* If we got here, there the bridge requires some of the resource, but
448 * we may be able to split some off of the front */
452 if (node
->length
& (alignment
-1)) {
453 /* this one isn't an aligned length, so we'll make a new entry
454 * and split it up. */
455 split_node
= kmalloc(sizeof(*split_node
), GFP_KERNEL
);
460 temp_dword
= (node
->length
| (alignment
-1)) + 1 - alignment
;
462 split_node
->base
= node
->base
;
463 split_node
->length
= temp_dword
;
465 node
->length
-= temp_dword
;
466 node
->base
+= split_node
->length
;
468 /* Put it in the list */
470 split_node
->next
= node
;
473 if (node
->length
< alignment
)
481 while (prevnode
->next
!= node
)
482 prevnode
= prevnode
->next
;
484 prevnode
->next
= node
->next
;
493 * do_bridge_resource_split: find one node of resources that aren't in use
496 static struct pci_resource
*do_bridge_resource_split(struct pci_resource
**head
, u32 alignment
)
498 struct pci_resource
*prevnode
= NULL
;
499 struct pci_resource
*node
;
503 rc
= cpqhp_resource_sort_and_combine(head
);
516 if (node
->length
< alignment
)
519 if (node
->base
& (alignment
- 1)) {
520 /* Short circuit if adjusted size is too small */
521 temp_dword
= (node
->base
| (alignment
-1)) + 1;
522 if ((node
->length
- (temp_dword
- node
->base
)) < alignment
)
525 node
->length
-= (temp_dword
- node
->base
);
526 node
->base
= temp_dword
;
529 if (node
->length
& (alignment
- 1))
530 /* There's stuff in use after this node */
541 * get_io_resource: find first node of given size not in ISA aliasing window.
542 * @head: list to search
543 * @size: size of node to find, must be a power of two.
545 * Description: this function sorts the resource list by size and then returns
546 * returns the first node of "size" length that is not in the ISA aliasing
547 * window. If it finds a node larger than "size" it will split it up.
550 static struct pci_resource
*get_io_resource(struct pci_resource
**head
, u32 size
)
552 struct pci_resource
*prevnode
;
553 struct pci_resource
*node
;
554 struct pci_resource
*split_node
;
560 if ( cpqhp_resource_sort_and_combine(head
) )
563 if ( sort_by_size(head
) )
566 for (node
= *head
; node
; node
= node
->next
) {
567 if (node
->length
< size
)
570 if (node
->base
& (size
- 1)) {
571 /* this one isn't base aligned properly
572 * so we'll make a new entry and split it up */
573 temp_dword
= (node
->base
| (size
-1)) + 1;
575 /* Short circuit if adjusted size is too small */
576 if ((node
->length
- (temp_dword
- node
->base
)) < size
)
579 split_node
= kmalloc(sizeof(*split_node
), GFP_KERNEL
);
584 split_node
->base
= node
->base
;
585 split_node
->length
= temp_dword
- node
->base
;
586 node
->base
= temp_dword
;
587 node
->length
-= split_node
->length
;
589 /* Put it in the list */
590 split_node
->next
= node
->next
;
591 node
->next
= split_node
;
592 } /* End of non-aligned base */
594 /* Don't need to check if too small since we already did */
595 if (node
->length
> size
) {
596 /* this one is longer than we need
597 * so we'll make a new entry and split it up */
598 split_node
= kmalloc(sizeof(*split_node
), GFP_KERNEL
);
603 split_node
->base
= node
->base
+ size
;
604 split_node
->length
= node
->length
- size
;
607 /* Put it in the list */
608 split_node
->next
= node
->next
;
609 node
->next
= split_node
;
610 } /* End of too big on top end */
612 /* For IO make sure it's not in the ISA aliasing space */
613 if (node
->base
& 0x300L
)
616 /* If we got here, then it is the right size
617 * Now take it out of the list and break */
622 while (prevnode
->next
!= node
)
623 prevnode
= prevnode
->next
;
625 prevnode
->next
= node
->next
;
636 * get_max_resource: get largest node which has at least the given size.
637 * @head: the list to search the node in
638 * @size: the minimum size of the node to find
640 * Description: Gets the largest node that is at least "size" big from the
641 * list pointed to by head. It aligns the node on top and bottom
642 * to "size" alignment before returning it.
644 static struct pci_resource
*get_max_resource(struct pci_resource
**head
, u32 size
)
646 struct pci_resource
*max
;
647 struct pci_resource
*temp
;
648 struct pci_resource
*split_node
;
651 if (cpqhp_resource_sort_and_combine(head
))
654 if (sort_by_max_size(head
))
657 for (max
= *head
; max
; max
= max
->next
) {
658 /* If not big enough we could probably just bail,
659 * instead we'll continue to the next. */
660 if (max
->length
< size
)
663 if (max
->base
& (size
- 1)) {
664 /* this one isn't base aligned properly
665 * so we'll make a new entry and split it up */
666 temp_dword
= (max
->base
| (size
-1)) + 1;
668 /* Short circuit if adjusted size is too small */
669 if ((max
->length
- (temp_dword
- max
->base
)) < size
)
672 split_node
= kmalloc(sizeof(*split_node
), GFP_KERNEL
);
677 split_node
->base
= max
->base
;
678 split_node
->length
= temp_dword
- max
->base
;
679 max
->base
= temp_dword
;
680 max
->length
-= split_node
->length
;
682 split_node
->next
= max
->next
;
683 max
->next
= split_node
;
686 if ((max
->base
+ max
->length
) & (size
- 1)) {
687 /* this one isn't end aligned properly at the top
688 * so we'll make a new entry and split it up */
689 split_node
= kmalloc(sizeof(*split_node
), GFP_KERNEL
);
693 temp_dword
= ((max
->base
+ max
->length
) & ~(size
- 1));
694 split_node
->base
= temp_dword
;
695 split_node
->length
= max
->length
+ max
->base
697 max
->length
-= split_node
->length
;
699 split_node
->next
= max
->next
;
700 max
->next
= split_node
;
703 /* Make sure it didn't shrink too much when we aligned it */
704 if (max
->length
< size
)
707 /* Now take it out of the list */
712 while (temp
&& temp
->next
!= max
) {
716 temp
->next
= max
->next
;
728 * get_resource: find resource of given size and split up larger ones.
729 * @head: the list to search for resources
730 * @size: the size limit to use
732 * Description: This function sorts the resource list by size and then
733 * returns the first node of "size" length. If it finds a node
734 * larger than "size" it will split it up.
736 * size must be a power of two.
738 static struct pci_resource
*get_resource(struct pci_resource
**head
, u32 size
)
740 struct pci_resource
*prevnode
;
741 struct pci_resource
*node
;
742 struct pci_resource
*split_node
;
745 if (cpqhp_resource_sort_and_combine(head
))
748 if (sort_by_size(head
))
751 for (node
= *head
; node
; node
= node
->next
) {
752 dbg("%s: req_size =%x node=%p, base=%x, length=%x\n",
753 __FUNCTION__
, size
, node
, node
->base
, node
->length
);
754 if (node
->length
< size
)
757 if (node
->base
& (size
- 1)) {
758 dbg("%s: not aligned\n", __FUNCTION__
);
759 /* this one isn't base aligned properly
760 * so we'll make a new entry and split it up */
761 temp_dword
= (node
->base
| (size
-1)) + 1;
763 /* Short circuit if adjusted size is too small */
764 if ((node
->length
- (temp_dword
- node
->base
)) < size
)
767 split_node
= kmalloc(sizeof(*split_node
), GFP_KERNEL
);
772 split_node
->base
= node
->base
;
773 split_node
->length
= temp_dword
- node
->base
;
774 node
->base
= temp_dword
;
775 node
->length
-= split_node
->length
;
777 split_node
->next
= node
->next
;
778 node
->next
= split_node
;
779 } /* End of non-aligned base */
781 /* Don't need to check if too small since we already did */
782 if (node
->length
> size
) {
783 dbg("%s: too big\n", __FUNCTION__
);
784 /* this one is longer than we need
785 * so we'll make a new entry and split it up */
786 split_node
= kmalloc(sizeof(*split_node
), GFP_KERNEL
);
791 split_node
->base
= node
->base
+ size
;
792 split_node
->length
= node
->length
- size
;
795 /* Put it in the list */
796 split_node
->next
= node
->next
;
797 node
->next
= split_node
;
798 } /* End of too big on top end */
800 dbg("%s: got one!!!\n", __FUNCTION__
);
801 /* If we got here, then it is the right size
802 * Now take it out of the list */
807 while (prevnode
->next
!= node
)
808 prevnode
= prevnode
->next
;
810 prevnode
->next
= node
->next
;
820 * cpqhp_resource_sort_and_combine: sort nodes by base addresses and clean up.
821 * @head: the list to sort and clean up
823 * Description: Sorts all of the nodes in the list in ascending order by
824 * their base addresses. Also does garbage collection by
825 * combining adjacent nodes.
827 * returns 0 if success
829 int cpqhp_resource_sort_and_combine(struct pci_resource
**head
)
831 struct pci_resource
*node1
;
832 struct pci_resource
*node2
;
833 int out_of_order
= 1;
835 dbg("%s: head = %p, *head = %p\n", __FUNCTION__
, head
, *head
);
840 dbg("*head->next = %p\n",(*head
)->next
);
843 return 0; /* only one item on the list, already sorted! */
845 dbg("*head->base = 0x%x\n",(*head
)->base
);
846 dbg("*head->next->base = 0x%x\n",(*head
)->next
->base
);
847 while (out_of_order
) {
850 /* Special case for swapping list head */
851 if (((*head
)->next
) &&
852 ((*head
)->base
> (*head
)->next
->base
)) {
854 (*head
) = (*head
)->next
;
855 node1
->next
= (*head
)->next
;
856 (*head
)->next
= node1
;
862 while (node1
->next
&& node1
->next
->next
) {
863 if (node1
->next
->base
> node1
->next
->next
->base
) {
866 node1
->next
= node1
->next
->next
;
868 node2
->next
= node1
->next
;
873 } /* End of out_of_order loop */
877 while (node1
&& node1
->next
) {
878 if ((node1
->base
+ node1
->length
) == node1
->next
->base
) {
881 node1
->length
+= node1
->next
->length
;
883 node1
->next
= node1
->next
->next
;
893 irqreturn_t
cpqhp_ctrl_intr(int IRQ
, void *data
)
895 struct controller
*ctrl
= data
;
896 u8 schedule_flag
= 0;
903 misc
= readw(ctrl
->hpc_reg
+ MISC
);
904 /***************************************
905 * Check to see if it was our interrupt
906 ***************************************/
907 if (!(misc
& 0x000C)) {
912 /**********************************
913 * Serial Output interrupt Pending
914 **********************************/
916 /* Clear the interrupt */
918 writew(misc
, ctrl
->hpc_reg
+ MISC
);
920 /* Read to clear posted writes */
921 misc
= readw(ctrl
->hpc_reg
+ MISC
);
923 dbg ("%s - waking up\n", __FUNCTION__
);
924 wake_up_interruptible(&ctrl
->queue
);
928 /* General-interrupt-input interrupt Pending */
929 Diff
= readl(ctrl
->hpc_reg
+ INT_INPUT_CLEAR
) ^ ctrl
->ctrl_int_comp
;
931 ctrl
->ctrl_int_comp
= readl(ctrl
->hpc_reg
+ INT_INPUT_CLEAR
);
933 /* Clear the interrupt */
934 writel(Diff
, ctrl
->hpc_reg
+ INT_INPUT_CLEAR
);
936 /* Read it back to clear any posted writes */
937 temp_dword
= readl(ctrl
->hpc_reg
+ INT_INPUT_CLEAR
);
940 /* Clear all interrupts */
941 writel(0xFFFFFFFF, ctrl
->hpc_reg
+ INT_INPUT_CLEAR
);
943 schedule_flag
+= handle_switch_change((u8
)(Diff
& 0xFFL
), ctrl
);
944 schedule_flag
+= handle_presence_change((u16
)((Diff
& 0xFFFF0000L
) >> 16), ctrl
);
945 schedule_flag
+= handle_power_fault((u8
)((Diff
& 0xFF00L
) >> 8), ctrl
);
948 reset
= readb(ctrl
->hpc_reg
+ RESET_FREQ_MODE
);
950 /* Bus reset has completed */
952 writeb(reset
, ctrl
->hpc_reg
+ RESET_FREQ_MODE
);
953 reset
= readb(ctrl
->hpc_reg
+ RESET_FREQ_MODE
);
954 wake_up_interruptible(&ctrl
->queue
);
958 up(&event_semaphore
);
959 dbg("Signal event_semaphore\n");
966 * cpqhp_slot_create - Creates a node and adds it to the proper bus.
967 * @busnumber - bus where new node is to be located
969 * Returns pointer to the new node or NULL if unsuccessful
971 struct pci_func
*cpqhp_slot_create(u8 busnumber
)
973 struct pci_func
*new_slot
;
974 struct pci_func
*next
;
976 new_slot
= kmalloc(sizeof(*new_slot
), GFP_KERNEL
);
978 if (new_slot
== NULL
) {
984 memset(new_slot
, 0, sizeof(struct pci_func
));
986 new_slot
->next
= NULL
;
987 new_slot
->configured
= 1;
989 if (cpqhp_slot_list
[busnumber
] == NULL
) {
990 cpqhp_slot_list
[busnumber
] = new_slot
;
992 next
= cpqhp_slot_list
[busnumber
];
993 while (next
->next
!= NULL
)
995 next
->next
= new_slot
;
1002 * slot_remove - Removes a node from the linked list of slots.
1003 * @old_slot: slot to remove
1005 * Returns 0 if successful, !0 otherwise.
1007 static int slot_remove(struct pci_func
* old_slot
)
1009 struct pci_func
*next
;
1011 if (old_slot
== NULL
)
1014 next
= cpqhp_slot_list
[old_slot
->bus
];
1020 if (next
== old_slot
) {
1021 cpqhp_slot_list
[old_slot
->bus
] = old_slot
->next
;
1022 cpqhp_destroy_board_resources(old_slot
);
1027 while ((next
->next
!= old_slot
) && (next
->next
!= NULL
)) {
1031 if (next
->next
== old_slot
) {
1032 next
->next
= old_slot
->next
;
1033 cpqhp_destroy_board_resources(old_slot
);
1042 * bridge_slot_remove - Removes a node from the linked list of slots.
1043 * @bridge: bridge to remove
1045 * Returns 0 if successful, !0 otherwise.
1047 static int bridge_slot_remove(struct pci_func
*bridge
)
1049 u8 subordinateBus
, secondaryBus
;
1051 struct pci_func
*next
;
1053 secondaryBus
= (bridge
->config_space
[0x06] >> 8) & 0xFF;
1054 subordinateBus
= (bridge
->config_space
[0x06] >> 16) & 0xFF;
1056 for (tempBus
= secondaryBus
; tempBus
<= subordinateBus
; tempBus
++) {
1057 next
= cpqhp_slot_list
[tempBus
];
1059 while (!slot_remove(next
)) {
1060 next
= cpqhp_slot_list
[tempBus
];
1064 next
= cpqhp_slot_list
[bridge
->bus
];
1069 if (next
== bridge
) {
1070 cpqhp_slot_list
[bridge
->bus
] = bridge
->next
;
1074 while ((next
->next
!= bridge
) && (next
->next
!= NULL
))
1077 if (next
->next
!= bridge
)
1079 next
->next
= bridge
->next
;
1087 * cpqhp_slot_find - Looks for a node by bus, and device, multiple functions accessed
1089 * @device: device to find
1090 * @index: is 0 for first function found, 1 for the second...
1092 * Returns pointer to the node if successful, %NULL otherwise.
1094 struct pci_func
*cpqhp_slot_find(u8 bus
, u8 device
, u8 index
)
1097 struct pci_func
*func
;
1099 func
= cpqhp_slot_list
[bus
];
1101 if ((func
== NULL
) || ((func
->device
== device
) && (index
== 0)))
1104 if (func
->device
== device
)
1107 while (func
->next
!= NULL
) {
1110 if (func
->device
== device
)
1121 /* DJZ: I don't think is_bridge will work as is.
1123 static int is_bridge(struct pci_func
* func
)
1125 /* Check the header type */
1126 if (((func
->config_space
[0x03] >> 16) & 0xFF) == 0x01)
1134 * set_controller_speed - set the frequency and/or mode of a specific
1135 * controller segment.
1137 * @ctrl: controller to change frequency/mode for.
1138 * @adapter_speed: the speed of the adapter we want to match.
1139 * @hp_slot: the slot number where the adapter is installed.
1141 * Returns 0 if we successfully change frequency and/or mode to match the
1145 static u8
set_controller_speed(struct controller
*ctrl
, u8 adapter_speed
, u8 hp_slot
)
1149 u8 slot_power
= readb(ctrl
->hpc_reg
+ SLOT_POWER
);
1151 u32 leds
= readl(ctrl
->hpc_reg
+ LED_CONTROL
);
1153 if (ctrl
->speed
== adapter_speed
)
1156 /* We don't allow freq/mode changes if we find another adapter running
1157 * in another slot on this controller */
1158 for(slot
= ctrl
->slot
; slot
; slot
= slot
->next
) {
1159 if (slot
->device
== (hp_slot
+ ctrl
->slot_device_offset
))
1161 if (!slot
->hotplug_slot
&& !slot
->hotplug_slot
->info
)
1163 if (slot
->hotplug_slot
->info
->adapter_status
== 0)
1165 /* If another adapter is running on the same segment but at a
1166 * lower speed/mode, we allow the new adapter to function at
1167 * this rate if supported */
1168 if (ctrl
->speed
< adapter_speed
)
1174 /* If the controller doesn't support freq/mode changes and the
1175 * controller is running at a higher mode, we bail */
1176 if ((ctrl
->speed
> adapter_speed
) && (!ctrl
->pcix_speed_capability
))
1179 /* But we allow the adapter to run at a lower rate if possible */
1180 if ((ctrl
->speed
< adapter_speed
) && (!ctrl
->pcix_speed_capability
))
1183 /* We try to set the max speed supported by both the adapter and
1185 if (ctrl
->speed_capability
< adapter_speed
) {
1186 if (ctrl
->speed
== ctrl
->speed_capability
)
1188 adapter_speed
= ctrl
->speed_capability
;
1191 writel(0x0L
, ctrl
->hpc_reg
+ LED_CONTROL
);
1192 writeb(0x00, ctrl
->hpc_reg
+ SLOT_ENABLE
);
1195 wait_for_ctrl_irq(ctrl
);
1197 if (adapter_speed
!= PCI_SPEED_133MHz_PCIX
)
1201 pci_write_config_byte(ctrl
->pci_dev
, 0x41, reg
);
1203 reg16
= readw(ctrl
->hpc_reg
+ NEXT_CURR_FREQ
);
1205 switch(adapter_speed
) {
1206 case(PCI_SPEED_133MHz_PCIX
):
1210 case(PCI_SPEED_100MHz_PCIX
):
1214 case(PCI_SPEED_66MHz_PCIX
):
1218 case(PCI_SPEED_66MHz
):
1222 default: /* 33MHz PCI 2.2 */
1228 writew(reg16
, ctrl
->hpc_reg
+ NEXT_CURR_FREQ
);
1232 /* Reenable interrupts */
1233 writel(0, ctrl
->hpc_reg
+ INT_MASK
);
1235 pci_write_config_byte(ctrl
->pci_dev
, 0x41, reg
);
1237 /* Restart state machine */
1239 pci_read_config_byte(ctrl
->pci_dev
, 0x43, ®
);
1240 pci_write_config_byte(ctrl
->pci_dev
, 0x43, reg
);
1242 /* Only if mode change...*/
1243 if (((ctrl
->speed
== PCI_SPEED_66MHz
) && (adapter_speed
== PCI_SPEED_66MHz_PCIX
)) ||
1244 ((ctrl
->speed
== PCI_SPEED_66MHz_PCIX
) && (adapter_speed
== PCI_SPEED_66MHz
)))
1247 wait_for_ctrl_irq(ctrl
);
1250 /* Restore LED/Slot state */
1251 writel(leds
, ctrl
->hpc_reg
+ LED_CONTROL
);
1252 writeb(slot_power
, ctrl
->hpc_reg
+ SLOT_ENABLE
);
1255 wait_for_ctrl_irq(ctrl
);
1257 ctrl
->speed
= adapter_speed
;
1258 slot
= cpqhp_find_slot(ctrl
, hp_slot
+ ctrl
->slot_device_offset
);
1260 info("Successfully changed frequency/mode for adapter in slot %d\n",
1265 /* the following routines constitute the bulk of the
1266 hotplug controller logic
1271 * board_replaced - Called after a board has been replaced in the system.
1273 * This is only used if we don't have resources for hot add
1274 * Turns power on for the board
1275 * Checks to see if board is the same
1276 * If board is same, reconfigures it
1277 * If board isn't same, turns it back off.
1280 static u32
board_replaced(struct pci_func
*func
, struct controller
*ctrl
)
1287 hp_slot
= func
->device
- ctrl
->slot_device_offset
;
1289 if (readl(ctrl
->hpc_reg
+ INT_INPUT_CLEAR
) & (0x01L
<< hp_slot
)) {
1290 /**********************************
1291 * The switch is open.
1292 **********************************/
1293 rc
= INTERLOCK_OPEN
;
1294 } else if (is_slot_enabled (ctrl
, hp_slot
)) {
1295 /**********************************
1296 * The board is already on
1297 **********************************/
1298 rc
= CARD_FUNCTIONING
;
1300 mutex_lock(&ctrl
->crit_sect
);
1302 /* turn on board without attaching to the bus */
1303 enable_slot_power (ctrl
, hp_slot
);
1307 /* Wait for SOBS to be unset */
1308 wait_for_ctrl_irq (ctrl
);
1310 /* Change bits in slot power register to force another shift out
1311 * NOTE: this is to work around the timer bug */
1312 temp_byte
= readb(ctrl
->hpc_reg
+ SLOT_POWER
);
1313 writeb(0x00, ctrl
->hpc_reg
+ SLOT_POWER
);
1314 writeb(temp_byte
, ctrl
->hpc_reg
+ SLOT_POWER
);
1318 /* Wait for SOBS to be unset */
1319 wait_for_ctrl_irq (ctrl
);
1321 adapter_speed
= get_adapter_speed(ctrl
, hp_slot
);
1322 if (ctrl
->speed
!= adapter_speed
)
1323 if (set_controller_speed(ctrl
, adapter_speed
, hp_slot
))
1324 rc
= WRONG_BUS_FREQUENCY
;
1326 /* turn off board without attaching to the bus */
1327 disable_slot_power (ctrl
, hp_slot
);
1331 /* Wait for SOBS to be unset */
1332 wait_for_ctrl_irq (ctrl
);
1334 mutex_unlock(&ctrl
->crit_sect
);
1339 mutex_lock(&ctrl
->crit_sect
);
1341 slot_enable (ctrl
, hp_slot
);
1342 green_LED_blink (ctrl
, hp_slot
);
1344 amber_LED_off (ctrl
, hp_slot
);
1348 /* Wait for SOBS to be unset */
1349 wait_for_ctrl_irq (ctrl
);
1351 mutex_unlock(&ctrl
->crit_sect
);
1353 /* Wait for ~1 second because of hot plug spec */
1356 /* Check for a power fault */
1357 if (func
->status
== 0xFF) {
1358 /* power fault occurred, but it was benign */
1362 rc
= cpqhp_valid_replace(ctrl
, func
);
1365 /* It must be the same board */
1367 rc
= cpqhp_configure_board(ctrl
, func
);
1369 /* If configuration fails, turn it off
1370 * Get slot won't work for devices behind
1371 * bridges, but in this case it will always be
1372 * called for the "base" bus/dev/func of an
1375 mutex_lock(&ctrl
->crit_sect
);
1377 amber_LED_on (ctrl
, hp_slot
);
1378 green_LED_off (ctrl
, hp_slot
);
1379 slot_disable (ctrl
, hp_slot
);
1383 /* Wait for SOBS to be unset */
1384 wait_for_ctrl_irq (ctrl
);
1386 mutex_unlock(&ctrl
->crit_sect
);
1394 /* Something is wrong
1396 * Get slot won't work for devices behind bridges, but
1397 * in this case it will always be called for the "base"
1398 * bus/dev/func of an adapter. */
1400 mutex_lock(&ctrl
->crit_sect
);
1402 amber_LED_on (ctrl
, hp_slot
);
1403 green_LED_off (ctrl
, hp_slot
);
1404 slot_disable (ctrl
, hp_slot
);
1408 /* Wait for SOBS to be unset */
1409 wait_for_ctrl_irq (ctrl
);
1411 mutex_unlock(&ctrl
->crit_sect
);
1421 * board_added - Called after a board has been added to the system.
1423 * Turns power on for the board
1427 static u32
board_added(struct pci_func
*func
, struct controller
*ctrl
)
1433 u32 temp_register
= 0xFFFFFFFF;
1435 struct pci_func
*new_slot
= NULL
;
1436 struct slot
*p_slot
;
1437 struct resource_lists res_lists
;
1439 hp_slot
= func
->device
- ctrl
->slot_device_offset
;
1440 dbg("%s: func->device, slot_offset, hp_slot = %d, %d ,%d\n",
1441 __FUNCTION__
, func
->device
, ctrl
->slot_device_offset
, hp_slot
);
1443 mutex_lock(&ctrl
->crit_sect
);
1445 /* turn on board without attaching to the bus */
1446 enable_slot_power(ctrl
, hp_slot
);
1450 /* Wait for SOBS to be unset */
1451 wait_for_ctrl_irq (ctrl
);
1453 /* Change bits in slot power register to force another shift out
1454 * NOTE: this is to work around the timer bug */
1455 temp_byte
= readb(ctrl
->hpc_reg
+ SLOT_POWER
);
1456 writeb(0x00, ctrl
->hpc_reg
+ SLOT_POWER
);
1457 writeb(temp_byte
, ctrl
->hpc_reg
+ SLOT_POWER
);
1461 /* Wait for SOBS to be unset */
1462 wait_for_ctrl_irq (ctrl
);
1464 adapter_speed
= get_adapter_speed(ctrl
, hp_slot
);
1465 if (ctrl
->speed
!= adapter_speed
)
1466 if (set_controller_speed(ctrl
, adapter_speed
, hp_slot
))
1467 rc
= WRONG_BUS_FREQUENCY
;
1469 /* turn off board without attaching to the bus */
1470 disable_slot_power (ctrl
, hp_slot
);
1474 /* Wait for SOBS to be unset */
1475 wait_for_ctrl_irq(ctrl
);
1477 mutex_unlock(&ctrl
->crit_sect
);
1482 p_slot
= cpqhp_find_slot(ctrl
, hp_slot
+ ctrl
->slot_device_offset
);
1484 /* turn on board and blink green LED */
1486 dbg("%s: before down\n", __FUNCTION__
);
1487 mutex_lock(&ctrl
->crit_sect
);
1488 dbg("%s: after down\n", __FUNCTION__
);
1490 dbg("%s: before slot_enable\n", __FUNCTION__
);
1491 slot_enable (ctrl
, hp_slot
);
1493 dbg("%s: before green_LED_blink\n", __FUNCTION__
);
1494 green_LED_blink (ctrl
, hp_slot
);
1496 dbg("%s: before amber_LED_blink\n", __FUNCTION__
);
1497 amber_LED_off (ctrl
, hp_slot
);
1499 dbg("%s: before set_SOGO\n", __FUNCTION__
);
1502 /* Wait for SOBS to be unset */
1503 dbg("%s: before wait_for_ctrl_irq\n", __FUNCTION__
);
1504 wait_for_ctrl_irq (ctrl
);
1505 dbg("%s: after wait_for_ctrl_irq\n", __FUNCTION__
);
1507 dbg("%s: before up\n", __FUNCTION__
);
1508 mutex_unlock(&ctrl
->crit_sect
);
1509 dbg("%s: after up\n", __FUNCTION__
);
1511 /* Wait for ~1 second because of hot plug spec */
1512 dbg("%s: before long_delay\n", __FUNCTION__
);
1514 dbg("%s: after long_delay\n", __FUNCTION__
);
1516 dbg("%s: func status = %x\n", __FUNCTION__
, func
->status
);
1517 /* Check for a power fault */
1518 if (func
->status
== 0xFF) {
1519 /* power fault occurred, but it was benign */
1520 temp_register
= 0xFFFFFFFF;
1521 dbg("%s: temp register set to %x by power fault\n", __FUNCTION__
, temp_register
);
1525 /* Get vendor/device ID u32 */
1526 ctrl
->pci_bus
->number
= func
->bus
;
1527 rc
= pci_bus_read_config_dword (ctrl
->pci_bus
, PCI_DEVFN(func
->device
, func
->function
), PCI_VENDOR_ID
, &temp_register
);
1528 dbg("%s: pci_read_config_dword returns %d\n", __FUNCTION__
, rc
);
1529 dbg("%s: temp_register is %x\n", __FUNCTION__
, temp_register
);
1532 /* Something's wrong here */
1533 temp_register
= 0xFFFFFFFF;
1534 dbg("%s: temp register set to %x by error\n", __FUNCTION__
, temp_register
);
1536 /* Preset return code. It will be changed later if things go okay. */
1537 rc
= NO_ADAPTER_PRESENT
;
1540 /* All F's is an empty slot or an invalid board */
1541 if (temp_register
!= 0xFFFFFFFF) { /* Check for a board in the slot */
1542 res_lists
.io_head
= ctrl
->io_head
;
1543 res_lists
.mem_head
= ctrl
->mem_head
;
1544 res_lists
.p_mem_head
= ctrl
->p_mem_head
;
1545 res_lists
.bus_head
= ctrl
->bus_head
;
1546 res_lists
.irqs
= NULL
;
1548 rc
= configure_new_device(ctrl
, func
, 0, &res_lists
);
1550 dbg("%s: back from configure_new_device\n", __FUNCTION__
);
1551 ctrl
->io_head
= res_lists
.io_head
;
1552 ctrl
->mem_head
= res_lists
.mem_head
;
1553 ctrl
->p_mem_head
= res_lists
.p_mem_head
;
1554 ctrl
->bus_head
= res_lists
.bus_head
;
1556 cpqhp_resource_sort_and_combine(&(ctrl
->mem_head
));
1557 cpqhp_resource_sort_and_combine(&(ctrl
->p_mem_head
));
1558 cpqhp_resource_sort_and_combine(&(ctrl
->io_head
));
1559 cpqhp_resource_sort_and_combine(&(ctrl
->bus_head
));
1562 mutex_lock(&ctrl
->crit_sect
);
1564 amber_LED_on (ctrl
, hp_slot
);
1565 green_LED_off (ctrl
, hp_slot
);
1566 slot_disable (ctrl
, hp_slot
);
1570 /* Wait for SOBS to be unset */
1571 wait_for_ctrl_irq (ctrl
);
1573 mutex_unlock(&ctrl
->crit_sect
);
1576 cpqhp_save_slot_config(ctrl
, func
);
1581 func
->switch_save
= 0x10;
1582 func
->is_a_board
= 0x01;
1584 /* next, we will instantiate the linux pci_dev structures (with
1585 * appropriate driver notification, if already present) */
1586 dbg("%s: configure linux pci_dev structure\n", __FUNCTION__
);
1589 new_slot
= cpqhp_slot_find(ctrl
->bus
, func
->device
, index
++);
1590 if (new_slot
&& !new_slot
->pci_dev
) {
1591 cpqhp_configure_device(ctrl
, new_slot
);
1595 mutex_lock(&ctrl
->crit_sect
);
1597 green_LED_on (ctrl
, hp_slot
);
1601 /* Wait for SOBS to be unset */
1602 wait_for_ctrl_irq (ctrl
);
1604 mutex_unlock(&ctrl
->crit_sect
);
1606 mutex_lock(&ctrl
->crit_sect
);
1608 amber_LED_on (ctrl
, hp_slot
);
1609 green_LED_off (ctrl
, hp_slot
);
1610 slot_disable (ctrl
, hp_slot
);
1614 /* Wait for SOBS to be unset */
1615 wait_for_ctrl_irq (ctrl
);
1617 mutex_unlock(&ctrl
->crit_sect
);
1626 * remove_board - Turns off slot and LED's
1629 static u32
remove_board(struct pci_func
* func
, u32 replace_flag
, struct controller
* ctrl
)
1637 struct resource_lists res_lists
;
1638 struct pci_func
*temp_func
;
1640 if (cpqhp_unconfigure_device(func
))
1643 device
= func
->device
;
1645 hp_slot
= func
->device
- ctrl
->slot_device_offset
;
1646 dbg("In %s, hp_slot = %d\n", __FUNCTION__
, hp_slot
);
1648 /* When we get here, it is safe to change base address registers.
1649 * We will attempt to save the base address register lengths */
1650 if (replace_flag
|| !ctrl
->add_support
)
1651 rc
= cpqhp_save_base_addr_length(ctrl
, func
);
1652 else if (!func
->bus_head
&& !func
->mem_head
&&
1653 !func
->p_mem_head
&& !func
->io_head
) {
1654 /* Here we check to see if we've saved any of the board's
1655 * resources already. If so, we'll skip the attempt to
1656 * determine what's being used. */
1658 temp_func
= cpqhp_slot_find(func
->bus
, func
->device
, index
++);
1660 if (temp_func
->bus_head
|| temp_func
->mem_head
1661 || temp_func
->p_mem_head
|| temp_func
->io_head
) {
1665 temp_func
= cpqhp_slot_find(temp_func
->bus
, temp_func
->device
, index
++);
1669 rc
= cpqhp_save_used_resources(ctrl
, func
);
1671 /* Change status to shutdown */
1672 if (func
->is_a_board
)
1673 func
->status
= 0x01;
1674 func
->configured
= 0;
1676 mutex_lock(&ctrl
->crit_sect
);
1678 green_LED_off (ctrl
, hp_slot
);
1679 slot_disable (ctrl
, hp_slot
);
1683 /* turn off SERR for slot */
1684 temp_byte
= readb(ctrl
->hpc_reg
+ SLOT_SERR
);
1685 temp_byte
&= ~(0x01 << hp_slot
);
1686 writeb(temp_byte
, ctrl
->hpc_reg
+ SLOT_SERR
);
1688 /* Wait for SOBS to be unset */
1689 wait_for_ctrl_irq (ctrl
);
1691 mutex_unlock(&ctrl
->crit_sect
);
1693 if (!replace_flag
&& ctrl
->add_support
) {
1695 res_lists
.io_head
= ctrl
->io_head
;
1696 res_lists
.mem_head
= ctrl
->mem_head
;
1697 res_lists
.p_mem_head
= ctrl
->p_mem_head
;
1698 res_lists
.bus_head
= ctrl
->bus_head
;
1700 cpqhp_return_board_resources(func
, &res_lists
);
1702 ctrl
->io_head
= res_lists
.io_head
;
1703 ctrl
->mem_head
= res_lists
.mem_head
;
1704 ctrl
->p_mem_head
= res_lists
.p_mem_head
;
1705 ctrl
->bus_head
= res_lists
.bus_head
;
1707 cpqhp_resource_sort_and_combine(&(ctrl
->mem_head
));
1708 cpqhp_resource_sort_and_combine(&(ctrl
->p_mem_head
));
1709 cpqhp_resource_sort_and_combine(&(ctrl
->io_head
));
1710 cpqhp_resource_sort_and_combine(&(ctrl
->bus_head
));
1712 if (is_bridge(func
)) {
1713 bridge_slot_remove(func
);
1717 func
= cpqhp_slot_find(ctrl
->bus
, device
, 0);
1720 /* Setup slot structure with entry for empty slot */
1721 func
= cpqhp_slot_create(ctrl
->bus
);
1726 func
->bus
= ctrl
->bus
;
1727 func
->device
= device
;
1729 func
->configured
= 0;
1730 func
->switch_save
= 0x10;
1731 func
->is_a_board
= 0;
1732 func
->p_task_event
= NULL
;
1738 static void pushbutton_helper_thread(unsigned long data
)
1740 pushbutton_pending
= data
;
1741 up(&event_semaphore
);
1745 /* this is the main worker thread */
1746 static int event_thread(void* data
)
1748 struct controller
*ctrl
;
1750 daemonize("phpd_event");
1755 dbg("!!!!event_thread sleeping\n");
1756 down_interruptible (&event_semaphore
);
1757 dbg("event_thread woken finished = %d\n", event_finished
);
1758 if (event_finished
) break;
1760 if (pushbutton_pending
)
1761 cpqhp_pushbutton_thread(pushbutton_pending
);
1763 for (ctrl
= cpqhp_ctrl_list
; ctrl
; ctrl
=ctrl
->next
)
1764 interrupt_event_handler(ctrl
);
1766 dbg("event_thread signals exit\n");
1772 int cpqhp_event_start_thread(void)
1776 /* initialize our semaphores */
1777 init_MUTEX(&delay_sem
);
1778 init_MUTEX_LOCKED(&event_semaphore
);
1779 init_MUTEX_LOCKED(&event_exit
);
1782 pid
= kernel_thread(event_thread
, NULL
, 0);
1784 err ("Can't start up our event thread\n");
1787 dbg("Our event thread pid = %d\n", pid
);
1792 void cpqhp_event_stop_thread(void)
1795 dbg("event_thread finish command given\n");
1796 up(&event_semaphore
);
1797 dbg("wait for event_thread to exit\n");
1802 static int update_slot_info(struct controller
*ctrl
, struct slot
*slot
)
1804 struct hotplug_slot_info
*info
;
1807 info
= kmalloc(sizeof(*info
), GFP_KERNEL
);
1811 info
->power_status
= get_slot_enabled(ctrl
, slot
);
1812 info
->attention_status
= cpq_get_attention_status(ctrl
, slot
);
1813 info
->latch_status
= cpq_get_latch_status(ctrl
, slot
);
1814 info
->adapter_status
= get_presence_status(ctrl
, slot
);
1815 result
= pci_hp_change_slot_info(slot
->hotplug_slot
, info
);
1820 static void interrupt_event_handler(struct controller
*ctrl
)
1824 struct pci_func
*func
;
1826 struct slot
*p_slot
;
1831 for (loop
= 0; loop
< 10; loop
++) {
1832 /* dbg("loop %d\n", loop); */
1833 if (ctrl
->event_queue
[loop
].event_type
!= 0) {
1834 hp_slot
= ctrl
->event_queue
[loop
].hp_slot
;
1836 func
= cpqhp_slot_find(ctrl
->bus
, (hp_slot
+ ctrl
->slot_device_offset
), 0);
1840 p_slot
= cpqhp_find_slot(ctrl
, hp_slot
+ ctrl
->slot_device_offset
);
1844 dbg("hp_slot %d, func %p, p_slot %p\n",
1845 hp_slot
, func
, p_slot
);
1847 if (ctrl
->event_queue
[loop
].event_type
== INT_BUTTON_PRESS
) {
1848 dbg("button pressed\n");
1849 } else if (ctrl
->event_queue
[loop
].event_type
==
1850 INT_BUTTON_CANCEL
) {
1851 dbg("button cancel\n");
1852 del_timer(&p_slot
->task_event
);
1854 mutex_lock(&ctrl
->crit_sect
);
1856 if (p_slot
->state
== BLINKINGOFF_STATE
) {
1858 dbg("turn on green LED\n");
1859 green_LED_on (ctrl
, hp_slot
);
1860 } else if (p_slot
->state
== BLINKINGON_STATE
) {
1862 dbg("turn off green LED\n");
1863 green_LED_off (ctrl
, hp_slot
);
1866 info(msg_button_cancel
, p_slot
->number
);
1868 p_slot
->state
= STATIC_STATE
;
1870 amber_LED_off (ctrl
, hp_slot
);
1874 /* Wait for SOBS to be unset */
1875 wait_for_ctrl_irq (ctrl
);
1877 mutex_unlock(&ctrl
->crit_sect
);
1879 /*** button Released (No action on press...) */
1880 else if (ctrl
->event_queue
[loop
].event_type
== INT_BUTTON_RELEASE
) {
1881 dbg("button release\n");
1883 if (is_slot_enabled (ctrl
, hp_slot
)) {
1884 dbg("slot is on\n");
1885 p_slot
->state
= BLINKINGOFF_STATE
;
1886 info(msg_button_off
, p_slot
->number
);
1888 dbg("slot is off\n");
1889 p_slot
->state
= BLINKINGON_STATE
;
1890 info(msg_button_on
, p_slot
->number
);
1892 mutex_lock(&ctrl
->crit_sect
);
1894 dbg("blink green LED and turn off amber\n");
1896 amber_LED_off (ctrl
, hp_slot
);
1897 green_LED_blink (ctrl
, hp_slot
);
1901 /* Wait for SOBS to be unset */
1902 wait_for_ctrl_irq (ctrl
);
1904 mutex_unlock(&ctrl
->crit_sect
);
1905 init_timer(&p_slot
->task_event
);
1906 p_slot
->hp_slot
= hp_slot
;
1907 p_slot
->ctrl
= ctrl
;
1908 /* p_slot->physical_slot = physical_slot; */
1909 p_slot
->task_event
.expires
= jiffies
+ 5 * HZ
; /* 5 second delay */
1910 p_slot
->task_event
.function
= pushbutton_helper_thread
;
1911 p_slot
->task_event
.data
= (u32
) p_slot
;
1913 dbg("add_timer p_slot = %p\n", p_slot
);
1914 add_timer(&p_slot
->task_event
);
1916 /***********POWER FAULT */
1917 else if (ctrl
->event_queue
[loop
].event_type
== INT_POWER_FAULT
) {
1918 dbg("power fault\n");
1920 /* refresh notification */
1922 update_slot_info(ctrl
, p_slot
);
1925 ctrl
->event_queue
[loop
].event_type
= 0;
1929 } /* End of FOR loop */
1937 * cpqhp_pushbutton_thread
1939 * Scheduled procedure to handle blocking stuff for the pushbuttons
1940 * Handles all pending events and exits.
1943 void cpqhp_pushbutton_thread(unsigned long slot
)
1947 struct pci_func
*func
;
1948 struct slot
*p_slot
= (struct slot
*) slot
;
1949 struct controller
*ctrl
= (struct controller
*) p_slot
->ctrl
;
1951 pushbutton_pending
= 0;
1952 hp_slot
= p_slot
->hp_slot
;
1954 device
= p_slot
->device
;
1956 if (is_slot_enabled(ctrl
, hp_slot
)) {
1957 p_slot
->state
= POWEROFF_STATE
;
1958 /* power Down board */
1959 func
= cpqhp_slot_find(p_slot
->bus
, p_slot
->device
, 0);
1960 dbg("In power_down_board, func = %p, ctrl = %p\n", func
, ctrl
);
1962 dbg("Error! func NULL in %s\n", __FUNCTION__
);
1966 if (func
!= NULL
&& ctrl
!= NULL
) {
1967 if (cpqhp_process_SS(ctrl
, func
) != 0) {
1968 amber_LED_on (ctrl
, hp_slot
);
1969 green_LED_on (ctrl
, hp_slot
);
1973 /* Wait for SOBS to be unset */
1974 wait_for_ctrl_irq (ctrl
);
1978 p_slot
->state
= STATIC_STATE
;
1980 p_slot
->state
= POWERON_STATE
;
1983 func
= cpqhp_slot_find(p_slot
->bus
, p_slot
->device
, 0);
1984 dbg("In add_board, func = %p, ctrl = %p\n", func
, ctrl
);
1986 dbg("Error! func NULL in %s\n", __FUNCTION__
);
1990 if (func
!= NULL
&& ctrl
!= NULL
) {
1991 if (cpqhp_process_SI(ctrl
, func
) != 0) {
1992 amber_LED_on(ctrl
, hp_slot
);
1993 green_LED_off(ctrl
, hp_slot
);
1997 /* Wait for SOBS to be unset */
1998 wait_for_ctrl_irq (ctrl
);
2002 p_slot
->state
= STATIC_STATE
;
2009 int cpqhp_process_SI(struct controller
*ctrl
, struct pci_func
*func
)
2015 struct slot
* p_slot
;
2016 int physical_slot
= 0;
2020 device
= func
->device
;
2021 hp_slot
= device
- ctrl
->slot_device_offset
;
2022 p_slot
= cpqhp_find_slot(ctrl
, device
);
2024 physical_slot
= p_slot
->number
;
2026 /* Check to see if the interlock is closed */
2027 tempdword
= readl(ctrl
->hpc_reg
+ INT_INPUT_CLEAR
);
2029 if (tempdword
& (0x01 << hp_slot
)) {
2033 if (func
->is_a_board
) {
2034 rc
= board_replaced(func
, ctrl
);
2039 func
= cpqhp_slot_create(ctrl
->bus
);
2043 func
->bus
= ctrl
->bus
;
2044 func
->device
= device
;
2046 func
->configured
= 0;
2047 func
->is_a_board
= 1;
2049 /* We have to save the presence info for these slots */
2050 temp_word
= ctrl
->ctrl_int_comp
>> 16;
2051 func
->presence_save
= (temp_word
>> hp_slot
) & 0x01;
2052 func
->presence_save
|= (temp_word
>> (hp_slot
+ 7)) & 0x02;
2054 if (ctrl
->ctrl_int_comp
& (0x1L
<< hp_slot
)) {
2055 func
->switch_save
= 0;
2057 func
->switch_save
= 0x10;
2060 rc
= board_added(func
, ctrl
);
2062 if (is_bridge(func
)) {
2063 bridge_slot_remove(func
);
2067 /* Setup slot structure with entry for empty slot */
2068 func
= cpqhp_slot_create(ctrl
->bus
);
2073 func
->bus
= ctrl
->bus
;
2074 func
->device
= device
;
2076 func
->configured
= 0;
2077 func
->is_a_board
= 0;
2079 /* We have to save the presence info for these slots */
2080 temp_word
= ctrl
->ctrl_int_comp
>> 16;
2081 func
->presence_save
= (temp_word
>> hp_slot
) & 0x01;
2082 func
->presence_save
|=
2083 (temp_word
>> (hp_slot
+ 7)) & 0x02;
2085 if (ctrl
->ctrl_int_comp
& (0x1L
<< hp_slot
)) {
2086 func
->switch_save
= 0;
2088 func
->switch_save
= 0x10;
2094 dbg("%s: rc = %d\n", __FUNCTION__
, rc
);
2098 update_slot_info(ctrl
, p_slot
);
2104 int cpqhp_process_SS(struct controller
*ctrl
, struct pci_func
*func
)
2106 u8 device
, class_code
, header_type
, BCR
;
2111 struct slot
* p_slot
;
2112 struct pci_bus
*pci_bus
= ctrl
->pci_bus
;
2113 int physical_slot
=0;
2115 device
= func
->device
;
2116 func
= cpqhp_slot_find(ctrl
->bus
, device
, index
++);
2117 p_slot
= cpqhp_find_slot(ctrl
, device
);
2119 physical_slot
= p_slot
->number
;
2122 /* Make sure there are no video controllers here */
2123 while (func
&& !rc
) {
2124 pci_bus
->number
= func
->bus
;
2125 devfn
= PCI_DEVFN(func
->device
, func
->function
);
2127 /* Check the Class Code */
2128 rc
= pci_bus_read_config_byte (pci_bus
, devfn
, 0x0B, &class_code
);
2132 if (class_code
== PCI_BASE_CLASS_DISPLAY
) {
2133 /* Display/Video adapter (not supported) */
2134 rc
= REMOVE_NOT_SUPPORTED
;
2136 /* See if it's a bridge */
2137 rc
= pci_bus_read_config_byte (pci_bus
, devfn
, PCI_HEADER_TYPE
, &header_type
);
2141 /* If it's a bridge, check the VGA Enable bit */
2142 if ((header_type
& 0x7F) == PCI_HEADER_TYPE_BRIDGE
) {
2143 rc
= pci_bus_read_config_byte (pci_bus
, devfn
, PCI_BRIDGE_CONTROL
, &BCR
);
2147 /* If the VGA Enable bit is set, remove isn't
2149 if (BCR
& PCI_BRIDGE_CTL_VGA
) {
2150 rc
= REMOVE_NOT_SUPPORTED
;
2155 func
= cpqhp_slot_find(ctrl
->bus
, device
, index
++);
2158 func
= cpqhp_slot_find(ctrl
->bus
, device
, 0);
2159 if ((func
!= NULL
) && !rc
) {
2160 /* FIXME: Replace flag should be passed into process_SS */
2161 replace_flag
= !(ctrl
->add_support
);
2162 rc
= remove_board(func
, replace_flag
, ctrl
);
2168 update_slot_info(ctrl
, p_slot
);
2174 * switch_leds: switch the leds, go from one site to the other.
2175 * @ctrl: controller to use
2176 * @num_of_slots: number of slots to use
2177 * @direction: 1 to start from the left side, 0 to start right.
2179 static void switch_leds(struct controller
*ctrl
, const int num_of_slots
,
2180 u32
*work_LED
, const int direction
)
2184 for (loop
= 0; loop
< num_of_slots
; loop
++) {
2186 *work_LED
= *work_LED
>> 1;
2188 *work_LED
= *work_LED
<< 1;
2189 writel(*work_LED
, ctrl
->hpc_reg
+ LED_CONTROL
);
2193 /* Wait for SOGO interrupt */
2194 wait_for_ctrl_irq(ctrl
);
2196 /* Get ready for next iteration */
2197 long_delay((2*HZ
)/10);
2202 * hardware_test - runs hardware tests
2204 * For hot plug ctrl folks to play with.
2205 * test_num is the number written to the "test" file in sysfs
2208 int cpqhp_hardware_test(struct controller
*ctrl
, int test_num
)
2215 num_of_slots
= readb(ctrl
->hpc_reg
+ SLOT_MASK
) & 0x0f;
2219 /* Do stuff here! */
2221 /* Do that funky LED thing */
2222 /* so we can restore them later */
2223 save_LED
= readl(ctrl
->hpc_reg
+ LED_CONTROL
);
2224 work_LED
= 0x01010101;
2225 switch_leds(ctrl
, num_of_slots
, &work_LED
, 0);
2226 switch_leds(ctrl
, num_of_slots
, &work_LED
, 1);
2227 switch_leds(ctrl
, num_of_slots
, &work_LED
, 0);
2228 switch_leds(ctrl
, num_of_slots
, &work_LED
, 1);
2230 work_LED
= 0x01010000;
2231 writel(work_LED
, ctrl
->hpc_reg
+ LED_CONTROL
);
2232 switch_leds(ctrl
, num_of_slots
, &work_LED
, 0);
2233 switch_leds(ctrl
, num_of_slots
, &work_LED
, 1);
2234 work_LED
= 0x00000101;
2235 writel(work_LED
, ctrl
->hpc_reg
+ LED_CONTROL
);
2236 switch_leds(ctrl
, num_of_slots
, &work_LED
, 0);
2237 switch_leds(ctrl
, num_of_slots
, &work_LED
, 1);
2239 work_LED
= 0x01010000;
2240 writel(work_LED
, ctrl
->hpc_reg
+ LED_CONTROL
);
2241 for (loop
= 0; loop
< num_of_slots
; loop
++) {
2244 /* Wait for SOGO interrupt */
2245 wait_for_ctrl_irq (ctrl
);
2247 /* Get ready for next iteration */
2248 long_delay((3*HZ
)/10);
2249 work_LED
= work_LED
>> 16;
2250 writel(work_LED
, ctrl
->hpc_reg
+ LED_CONTROL
);
2254 /* Wait for SOGO interrupt */
2255 wait_for_ctrl_irq (ctrl
);
2257 /* Get ready for next iteration */
2258 long_delay((3*HZ
)/10);
2259 work_LED
= work_LED
<< 16;
2260 writel(work_LED
, ctrl
->hpc_reg
+ LED_CONTROL
);
2261 work_LED
= work_LED
<< 1;
2262 writel(work_LED
, ctrl
->hpc_reg
+ LED_CONTROL
);
2265 /* put it back the way it was */
2266 writel(save_LED
, ctrl
->hpc_reg
+ LED_CONTROL
);
2270 /* Wait for SOBS to be unset */
2271 wait_for_ctrl_irq (ctrl
);
2274 /* Do other stuff here! */
2285 * configure_new_device - Configures the PCI header information of one board.
2287 * @ctrl: pointer to controller structure
2288 * @func: pointer to function structure
2289 * @behind_bridge: 1 if this is a recursive call, 0 if not
2290 * @resources: pointer to set of resource lists
2292 * Returns 0 if success
2295 static u32
configure_new_device(struct controller
* ctrl
, struct pci_func
* func
,
2296 u8 behind_bridge
, struct resource_lists
* resources
)
2298 u8 temp_byte
, function
, max_functions
, stop_it
;
2301 struct pci_func
*new_slot
;
2306 dbg("%s\n", __FUNCTION__
);
2307 /* Check for Multi-function device */
2308 ctrl
->pci_bus
->number
= func
->bus
;
2309 rc
= pci_bus_read_config_byte (ctrl
->pci_bus
, PCI_DEVFN(func
->device
, func
->function
), 0x0E, &temp_byte
);
2311 dbg("%s: rc = %d\n", __FUNCTION__
, rc
);
2315 if (temp_byte
& 0x80) /* Multi-function device */
2323 rc
= configure_new_function(ctrl
, new_slot
, behind_bridge
, resources
);
2326 dbg("configure_new_function failed %d\n",rc
);
2330 new_slot
= cpqhp_slot_find(new_slot
->bus
, new_slot
->device
, index
++);
2333 cpqhp_return_board_resources(new_slot
, resources
);
2343 /* The following loop skips to the next present function
2344 * and creates a board structure */
2346 while ((function
< max_functions
) && (!stop_it
)) {
2347 pci_bus_read_config_dword (ctrl
->pci_bus
, PCI_DEVFN(func
->device
, function
), 0x00, &ID
);
2349 if (ID
== 0xFFFFFFFF) { /* There's nothing there. */
2351 } else { /* There's something there */
2352 /* Setup slot structure. */
2353 new_slot
= cpqhp_slot_create(func
->bus
);
2355 if (new_slot
== NULL
)
2358 new_slot
->bus
= func
->bus
;
2359 new_slot
->device
= func
->device
;
2360 new_slot
->function
= function
;
2361 new_slot
->is_a_board
= 1;
2362 new_slot
->status
= 0;
2368 } while (function
< max_functions
);
2369 dbg("returning from configure_new_device\n");
2376 Configuration logic that involves the hotplug data structures and
2382 * configure_new_function - Configures the PCI header information of one device
2384 * @ctrl: pointer to controller structure
2385 * @func: pointer to function structure
2386 * @behind_bridge: 1 if this is a recursive call, 0 if not
2387 * @resources: pointer to set of resource lists
2389 * Calls itself recursively for bridged devices.
2390 * Returns 0 if success
2393 static int configure_new_function(struct controller
*ctrl
, struct pci_func
*func
,
2395 struct resource_lists
*resources
)
2410 struct pci_resource
*mem_node
;
2411 struct pci_resource
*p_mem_node
;
2412 struct pci_resource
*io_node
;
2413 struct pci_resource
*bus_node
;
2414 struct pci_resource
*hold_mem_node
;
2415 struct pci_resource
*hold_p_mem_node
;
2416 struct pci_resource
*hold_IO_node
;
2417 struct pci_resource
*hold_bus_node
;
2418 struct irq_mapping irqs
;
2419 struct pci_func
*new_slot
;
2420 struct pci_bus
*pci_bus
;
2421 struct resource_lists temp_resources
;
2423 pci_bus
= ctrl
->pci_bus
;
2424 pci_bus
->number
= func
->bus
;
2425 devfn
= PCI_DEVFN(func
->device
, func
->function
);
2427 /* Check for Bridge */
2428 rc
= pci_bus_read_config_byte(pci_bus
, devfn
, PCI_HEADER_TYPE
, &temp_byte
);
2432 if ((temp_byte
& 0x7F) == PCI_HEADER_TYPE_BRIDGE
) { /* PCI-PCI Bridge */
2433 /* set Primary bus */
2434 dbg("set Primary bus = %d\n", func
->bus
);
2435 rc
= pci_bus_write_config_byte(pci_bus
, devfn
, PCI_PRIMARY_BUS
, func
->bus
);
2439 /* find range of busses to use */
2440 dbg("find ranges of buses to use\n");
2441 bus_node
= get_max_resource(&(resources
->bus_head
), 1);
2443 /* If we don't have any busses to allocate, we can't continue */
2447 /* set Secondary bus */
2448 temp_byte
= bus_node
->base
;
2449 dbg("set Secondary bus = %d\n", bus_node
->base
);
2450 rc
= pci_bus_write_config_byte(pci_bus
, devfn
, PCI_SECONDARY_BUS
, temp_byte
);
2454 /* set subordinate bus */
2455 temp_byte
= bus_node
->base
+ bus_node
->length
- 1;
2456 dbg("set subordinate bus = %d\n", bus_node
->base
+ bus_node
->length
- 1);
2457 rc
= pci_bus_write_config_byte(pci_bus
, devfn
, PCI_SUBORDINATE_BUS
, temp_byte
);
2461 /* set subordinate Latency Timer and base Latency Timer */
2463 rc
= pci_bus_write_config_byte(pci_bus
, devfn
, PCI_SEC_LATENCY_TIMER
, temp_byte
);
2466 rc
= pci_bus_write_config_byte(pci_bus
, devfn
, PCI_LATENCY_TIMER
, temp_byte
);
2470 /* set Cache Line size */
2472 rc
= pci_bus_write_config_byte(pci_bus
, devfn
, PCI_CACHE_LINE_SIZE
, temp_byte
);
2476 /* Setup the IO, memory, and prefetchable windows */
2477 io_node
= get_max_resource(&(resources
->io_head
), 0x1000);
2480 mem_node
= get_max_resource(&(resources
->mem_head
), 0x100000);
2483 p_mem_node
= get_max_resource(&(resources
->p_mem_head
), 0x100000);
2486 dbg("Setup the IO, memory, and prefetchable windows\n");
2488 dbg("(base, len, next) (%x, %x, %p)\n", io_node
->base
,
2489 io_node
->length
, io_node
->next
);
2491 dbg("(base, len, next) (%x, %x, %p)\n", mem_node
->base
,
2492 mem_node
->length
, mem_node
->next
);
2493 dbg("p_mem_node\n");
2494 dbg("(base, len, next) (%x, %x, %p)\n", p_mem_node
->base
,
2495 p_mem_node
->length
, p_mem_node
->next
);
2497 /* set up the IRQ info */
2498 if (!resources
->irqs
) {
2499 irqs
.barber_pole
= 0;
2500 irqs
.interrupt
[0] = 0;
2501 irqs
.interrupt
[1] = 0;
2502 irqs
.interrupt
[2] = 0;
2503 irqs
.interrupt
[3] = 0;
2506 irqs
.barber_pole
= resources
->irqs
->barber_pole
;
2507 irqs
.interrupt
[0] = resources
->irqs
->interrupt
[0];
2508 irqs
.interrupt
[1] = resources
->irqs
->interrupt
[1];
2509 irqs
.interrupt
[2] = resources
->irqs
->interrupt
[2];
2510 irqs
.interrupt
[3] = resources
->irqs
->interrupt
[3];
2511 irqs
.valid_INT
= resources
->irqs
->valid_INT
;
2514 /* set up resource lists that are now aligned on top and bottom
2515 * for anything behind the bridge. */
2516 temp_resources
.bus_head
= bus_node
;
2517 temp_resources
.io_head
= io_node
;
2518 temp_resources
.mem_head
= mem_node
;
2519 temp_resources
.p_mem_head
= p_mem_node
;
2520 temp_resources
.irqs
= &irqs
;
2522 /* Make copies of the nodes we are going to pass down so that
2523 * if there is a problem,we can just use these to free resources */
2524 hold_bus_node
= kmalloc(sizeof(*hold_bus_node
), GFP_KERNEL
);
2525 hold_IO_node
= kmalloc(sizeof(*hold_IO_node
), GFP_KERNEL
);
2526 hold_mem_node
= kmalloc(sizeof(*hold_mem_node
), GFP_KERNEL
);
2527 hold_p_mem_node
= kmalloc(sizeof(*hold_p_mem_node
), GFP_KERNEL
);
2529 if (!hold_bus_node
|| !hold_IO_node
|| !hold_mem_node
|| !hold_p_mem_node
) {
2530 kfree(hold_bus_node
);
2531 kfree(hold_IO_node
);
2532 kfree(hold_mem_node
);
2533 kfree(hold_p_mem_node
);
2538 memcpy(hold_bus_node
, bus_node
, sizeof(struct pci_resource
));
2540 bus_node
->base
+= 1;
2541 bus_node
->length
-= 1;
2542 bus_node
->next
= NULL
;
2544 /* If we have IO resources copy them and fill in the bridge's
2545 * IO range registers */
2547 memcpy(hold_IO_node
, io_node
, sizeof(struct pci_resource
));
2548 io_node
->next
= NULL
;
2550 /* set IO base and Limit registers */
2551 temp_byte
= io_node
->base
>> 8;
2552 rc
= pci_bus_write_config_byte(pci_bus
, devfn
, PCI_IO_BASE
, temp_byte
);
2554 temp_byte
= (io_node
->base
+ io_node
->length
- 1) >> 8;
2555 rc
= pci_bus_write_config_byte(pci_bus
, devfn
, PCI_IO_LIMIT
, temp_byte
);
2557 kfree(hold_IO_node
);
2558 hold_IO_node
= NULL
;
2561 /* If we have memory resources copy them and fill in the
2562 * bridge's memory range registers. Otherwise, fill in the
2563 * range registers with values that disable them. */
2565 memcpy(hold_mem_node
, mem_node
, sizeof(struct pci_resource
));
2566 mem_node
->next
= NULL
;
2568 /* set Mem base and Limit registers */
2569 temp_word
= mem_node
->base
>> 16;
2570 rc
= pci_bus_write_config_word(pci_bus
, devfn
, PCI_MEMORY_BASE
, temp_word
);
2572 temp_word
= (mem_node
->base
+ mem_node
->length
- 1) >> 16;
2573 rc
= pci_bus_write_config_word(pci_bus
, devfn
, PCI_MEMORY_LIMIT
, temp_word
);
2576 rc
= pci_bus_write_config_word(pci_bus
, devfn
, PCI_MEMORY_BASE
, temp_word
);
2579 rc
= pci_bus_write_config_word(pci_bus
, devfn
, PCI_MEMORY_LIMIT
, temp_word
);
2581 kfree(hold_mem_node
);
2582 hold_mem_node
= NULL
;
2585 memcpy(hold_p_mem_node
, p_mem_node
, sizeof(struct pci_resource
));
2586 p_mem_node
->next
= NULL
;
2588 /* set Pre Mem base and Limit registers */
2589 temp_word
= p_mem_node
->base
>> 16;
2590 rc
= pci_bus_write_config_word (pci_bus
, devfn
, PCI_PREF_MEMORY_BASE
, temp_word
);
2592 temp_word
= (p_mem_node
->base
+ p_mem_node
->length
- 1) >> 16;
2593 rc
= pci_bus_write_config_word (pci_bus
, devfn
, PCI_PREF_MEMORY_LIMIT
, temp_word
);
2595 /* Adjust this to compensate for extra adjustment in first loop */
2600 /* Here we actually find the devices and configure them */
2601 for (device
= 0; (device
<= 0x1F) && !rc
; device
++) {
2602 irqs
.barber_pole
= (irqs
.barber_pole
+ 1) & 0x03;
2605 pci_bus
->number
= hold_bus_node
->base
;
2606 pci_bus_read_config_dword (pci_bus
, PCI_DEVFN(device
, 0), 0x00, &ID
);
2607 pci_bus
->number
= func
->bus
;
2609 if (ID
!= 0xFFFFFFFF) { /* device present */
2610 /* Setup slot structure. */
2611 new_slot
= cpqhp_slot_create(hold_bus_node
->base
);
2613 if (new_slot
== NULL
) {
2618 new_slot
->bus
= hold_bus_node
->base
;
2619 new_slot
->device
= device
;
2620 new_slot
->function
= 0;
2621 new_slot
->is_a_board
= 1;
2622 new_slot
->status
= 0;
2624 rc
= configure_new_device(ctrl
, new_slot
, 1, &temp_resources
);
2625 dbg("configure_new_device rc=0x%x\n",rc
);
2626 } /* End of IF (device in slot?) */
2627 } /* End of FOR loop */
2631 /* save the interrupt routing information */
2632 if (resources
->irqs
) {
2633 resources
->irqs
->interrupt
[0] = irqs
.interrupt
[0];
2634 resources
->irqs
->interrupt
[1] = irqs
.interrupt
[1];
2635 resources
->irqs
->interrupt
[2] = irqs
.interrupt
[2];
2636 resources
->irqs
->interrupt
[3] = irqs
.interrupt
[3];
2637 resources
->irqs
->valid_INT
= irqs
.valid_INT
;
2638 } else if (!behind_bridge
) {
2639 /* We need to hook up the interrupts here */
2640 for (cloop
= 0; cloop
< 4; cloop
++) {
2641 if (irqs
.valid_INT
& (0x01 << cloop
)) {
2642 rc
= cpqhp_set_irq(func
->bus
, func
->device
,
2643 0x0A + cloop
, irqs
.interrupt
[cloop
]);
2647 } /* end of for loop */
2649 /* Return unused bus resources
2650 * First use the temporary node to store information for
2652 if (hold_bus_node
&& bus_node
&& temp_resources
.bus_head
) {
2653 hold_bus_node
->length
= bus_node
->base
- hold_bus_node
->base
;
2655 hold_bus_node
->next
= func
->bus_head
;
2656 func
->bus_head
= hold_bus_node
;
2658 temp_byte
= temp_resources
.bus_head
->base
- 1;
2660 /* set subordinate bus */
2661 rc
= pci_bus_write_config_byte (pci_bus
, devfn
, PCI_SUBORDINATE_BUS
, temp_byte
);
2663 if (temp_resources
.bus_head
->length
== 0) {
2664 kfree(temp_resources
.bus_head
);
2665 temp_resources
.bus_head
= NULL
;
2667 return_resource(&(resources
->bus_head
), temp_resources
.bus_head
);
2671 /* If we have IO space available and there is some left,
2672 * return the unused portion */
2673 if (hold_IO_node
&& temp_resources
.io_head
) {
2674 io_node
= do_pre_bridge_resource_split(&(temp_resources
.io_head
),
2675 &hold_IO_node
, 0x1000);
2677 /* Check if we were able to split something off */
2679 hold_IO_node
->base
= io_node
->base
+ io_node
->length
;
2681 temp_byte
= (hold_IO_node
->base
) >> 8;
2682 rc
= pci_bus_write_config_word (pci_bus
, devfn
, PCI_IO_BASE
, temp_byte
);
2684 return_resource(&(resources
->io_head
), io_node
);
2687 io_node
= do_bridge_resource_split(&(temp_resources
.io_head
), 0x1000);
2689 /* Check if we were able to split something off */
2691 /* First use the temporary node to store
2692 * information for the board */
2693 hold_IO_node
->length
= io_node
->base
- hold_IO_node
->base
;
2695 /* If we used any, add it to the board's list */
2696 if (hold_IO_node
->length
) {
2697 hold_IO_node
->next
= func
->io_head
;
2698 func
->io_head
= hold_IO_node
;
2700 temp_byte
= (io_node
->base
- 1) >> 8;
2701 rc
= pci_bus_write_config_byte (pci_bus
, devfn
, PCI_IO_LIMIT
, temp_byte
);
2703 return_resource(&(resources
->io_head
), io_node
);
2705 /* it doesn't need any IO */
2707 rc
= pci_bus_write_config_word (pci_bus
, devfn
, PCI_IO_LIMIT
, temp_word
);
2709 return_resource(&(resources
->io_head
), io_node
);
2710 kfree(hold_IO_node
);
2713 /* it used most of the range */
2714 hold_IO_node
->next
= func
->io_head
;
2715 func
->io_head
= hold_IO_node
;
2717 } else if (hold_IO_node
) {
2718 /* it used the whole range */
2719 hold_IO_node
->next
= func
->io_head
;
2720 func
->io_head
= hold_IO_node
;
2722 /* If we have memory space available and there is some left,
2723 * return the unused portion */
2724 if (hold_mem_node
&& temp_resources
.mem_head
) {
2725 mem_node
= do_pre_bridge_resource_split(&(temp_resources
. mem_head
),
2726 &hold_mem_node
, 0x100000);
2728 /* Check if we were able to split something off */
2730 hold_mem_node
->base
= mem_node
->base
+ mem_node
->length
;
2732 temp_word
= (hold_mem_node
->base
) >> 16;
2733 rc
= pci_bus_write_config_word (pci_bus
, devfn
, PCI_MEMORY_BASE
, temp_word
);
2735 return_resource(&(resources
->mem_head
), mem_node
);
2738 mem_node
= do_bridge_resource_split(&(temp_resources
.mem_head
), 0x100000);
2740 /* Check if we were able to split something off */
2742 /* First use the temporary node to store
2743 * information for the board */
2744 hold_mem_node
->length
= mem_node
->base
- hold_mem_node
->base
;
2746 if (hold_mem_node
->length
) {
2747 hold_mem_node
->next
= func
->mem_head
;
2748 func
->mem_head
= hold_mem_node
;
2750 /* configure end address */
2751 temp_word
= (mem_node
->base
- 1) >> 16;
2752 rc
= pci_bus_write_config_word (pci_bus
, devfn
, PCI_MEMORY_LIMIT
, temp_word
);
2754 /* Return unused resources to the pool */
2755 return_resource(&(resources
->mem_head
), mem_node
);
2757 /* it doesn't need any Mem */
2759 rc
= pci_bus_write_config_word (pci_bus
, devfn
, PCI_MEMORY_LIMIT
, temp_word
);
2761 return_resource(&(resources
->mem_head
), mem_node
);
2762 kfree(hold_mem_node
);
2765 /* it used most of the range */
2766 hold_mem_node
->next
= func
->mem_head
;
2767 func
->mem_head
= hold_mem_node
;
2769 } else if (hold_mem_node
) {
2770 /* it used the whole range */
2771 hold_mem_node
->next
= func
->mem_head
;
2772 func
->mem_head
= hold_mem_node
;
2774 /* If we have prefetchable memory space available and there
2775 * is some left at the end, return the unused portion */
2776 if (hold_p_mem_node
&& temp_resources
.p_mem_head
) {
2777 p_mem_node
= do_pre_bridge_resource_split(&(temp_resources
.p_mem_head
),
2778 &hold_p_mem_node
, 0x100000);
2780 /* Check if we were able to split something off */
2782 hold_p_mem_node
->base
= p_mem_node
->base
+ p_mem_node
->length
;
2784 temp_word
= (hold_p_mem_node
->base
) >> 16;
2785 rc
= pci_bus_write_config_word (pci_bus
, devfn
, PCI_PREF_MEMORY_BASE
, temp_word
);
2787 return_resource(&(resources
->p_mem_head
), p_mem_node
);
2790 p_mem_node
= do_bridge_resource_split(&(temp_resources
.p_mem_head
), 0x100000);
2792 /* Check if we were able to split something off */
2794 /* First use the temporary node to store
2795 * information for the board */
2796 hold_p_mem_node
->length
= p_mem_node
->base
- hold_p_mem_node
->base
;
2798 /* If we used any, add it to the board's list */
2799 if (hold_p_mem_node
->length
) {
2800 hold_p_mem_node
->next
= func
->p_mem_head
;
2801 func
->p_mem_head
= hold_p_mem_node
;
2803 temp_word
= (p_mem_node
->base
- 1) >> 16;
2804 rc
= pci_bus_write_config_word (pci_bus
, devfn
, PCI_PREF_MEMORY_LIMIT
, temp_word
);
2806 return_resource(&(resources
->p_mem_head
), p_mem_node
);
2808 /* it doesn't need any PMem */
2810 rc
= pci_bus_write_config_word (pci_bus
, devfn
, PCI_PREF_MEMORY_LIMIT
, temp_word
);
2812 return_resource(&(resources
->p_mem_head
), p_mem_node
);
2813 kfree(hold_p_mem_node
);
2816 /* it used the most of the range */
2817 hold_p_mem_node
->next
= func
->p_mem_head
;
2818 func
->p_mem_head
= hold_p_mem_node
;
2820 } else if (hold_p_mem_node
) {
2821 /* it used the whole range */
2822 hold_p_mem_node
->next
= func
->p_mem_head
;
2823 func
->p_mem_head
= hold_p_mem_node
;
2825 /* We should be configuring an IRQ and the bridge's base address
2826 * registers if it needs them. Although we have never seen such
2830 command
= 0x0157; /* = PCI_COMMAND_IO |
2831 * PCI_COMMAND_MEMORY |
2832 * PCI_COMMAND_MASTER |
2833 * PCI_COMMAND_INVALIDATE |
2834 * PCI_COMMAND_PARITY |
2835 * PCI_COMMAND_SERR */
2836 rc
= pci_bus_write_config_word (pci_bus
, devfn
, PCI_COMMAND
, command
);
2838 /* set Bridge Control Register */
2839 command
= 0x07; /* = PCI_BRIDGE_CTL_PARITY |
2840 * PCI_BRIDGE_CTL_SERR |
2841 * PCI_BRIDGE_CTL_NO_ISA */
2842 rc
= pci_bus_write_config_word (pci_bus
, devfn
, PCI_BRIDGE_CONTROL
, command
);
2843 } else if ((temp_byte
& 0x7F) == PCI_HEADER_TYPE_NORMAL
) {
2844 /* Standard device */
2845 rc
= pci_bus_read_config_byte (pci_bus
, devfn
, 0x0B, &class_code
);
2847 if (class_code
== PCI_BASE_CLASS_DISPLAY
) {
2848 /* Display (video) adapter (not supported) */
2849 return DEVICE_TYPE_NOT_SUPPORTED
;
2851 /* Figure out IO and memory needs */
2852 for (cloop
= 0x10; cloop
<= 0x24; cloop
+= 4) {
2853 temp_register
= 0xFFFFFFFF;
2855 dbg("CND: bus=%d, devfn=%d, offset=%d\n", pci_bus
->number
, devfn
, cloop
);
2856 rc
= pci_bus_write_config_dword (pci_bus
, devfn
, cloop
, temp_register
);
2858 rc
= pci_bus_read_config_dword (pci_bus
, devfn
, cloop
, &temp_register
);
2859 dbg("CND: base = 0x%x\n", temp_register
);
2861 if (temp_register
) { /* If this register is implemented */
2862 if ((temp_register
& 0x03L
) == 0x01) {
2865 /* set base = amount of IO space */
2866 base
= temp_register
& 0xFFFFFFFC;
2869 dbg("CND: length = 0x%x\n", base
);
2870 io_node
= get_io_resource(&(resources
->io_head
), base
);
2871 dbg("Got io_node start = %8.8x, length = %8.8x next (%p)\n",
2872 io_node
->base
, io_node
->length
, io_node
->next
);
2873 dbg("func (%p) io_head (%p)\n", func
, func
->io_head
);
2875 /* allocate the resource to the board */
2877 base
= io_node
->base
;
2879 io_node
->next
= func
->io_head
;
2880 func
->io_head
= io_node
;
2883 } else if ((temp_register
& 0x0BL
) == 0x08) {
2884 /* Map prefetchable memory */
2885 base
= temp_register
& 0xFFFFFFF0;
2888 dbg("CND: length = 0x%x\n", base
);
2889 p_mem_node
= get_resource(&(resources
->p_mem_head
), base
);
2891 /* allocate the resource to the board */
2893 base
= p_mem_node
->base
;
2895 p_mem_node
->next
= func
->p_mem_head
;
2896 func
->p_mem_head
= p_mem_node
;
2899 } else if ((temp_register
& 0x0BL
) == 0x00) {
2901 base
= temp_register
& 0xFFFFFFF0;
2904 dbg("CND: length = 0x%x\n", base
);
2905 mem_node
= get_resource(&(resources
->mem_head
), base
);
2907 /* allocate the resource to the board */
2909 base
= mem_node
->base
;
2911 mem_node
->next
= func
->mem_head
;
2912 func
->mem_head
= mem_node
;
2915 } else if ((temp_register
& 0x0BL
) == 0x04) {
2917 base
= temp_register
& 0xFFFFFFF0;
2920 dbg("CND: length = 0x%x\n", base
);
2921 mem_node
= get_resource(&(resources
->mem_head
), base
);
2923 /* allocate the resource to the board */
2925 base
= mem_node
->base
;
2927 mem_node
->next
= func
->mem_head
;
2928 func
->mem_head
= mem_node
;
2931 } else if ((temp_register
& 0x0BL
) == 0x06) {
2932 /* Those bits are reserved, we can't handle this */
2935 /* Requesting space below 1M */
2936 return NOT_ENOUGH_RESOURCES
;
2939 rc
= pci_bus_write_config_dword(pci_bus
, devfn
, cloop
, base
);
2941 /* Check for 64-bit base */
2942 if ((temp_register
& 0x07L
) == 0x04) {
2945 /* Upper 32 bits of address always zero
2946 * on today's systems */
2947 /* FIXME this is probably not true on
2948 * Alpha and ia64??? */
2950 rc
= pci_bus_write_config_dword(pci_bus
, devfn
, cloop
, base
);
2953 } /* End of base register loop */
2954 if (cpqhp_legacy_mode
) {
2955 /* Figure out which interrupt pin this function uses */
2956 rc
= pci_bus_read_config_byte (pci_bus
, devfn
,
2957 PCI_INTERRUPT_PIN
, &temp_byte
);
2959 /* If this function needs an interrupt and we are behind
2960 * a bridge and the pin is tied to something that's
2961 * alread mapped, set this one the same */
2962 if (temp_byte
&& resources
->irqs
&&
2963 (resources
->irqs
->valid_INT
&
2964 (0x01 << ((temp_byte
+ resources
->irqs
->barber_pole
- 1) & 0x03)))) {
2965 /* We have to share with something already set up */
2966 IRQ
= resources
->irqs
->interrupt
[(temp_byte
+
2967 resources
->irqs
->barber_pole
- 1) & 0x03];
2969 /* Program IRQ based on card type */
2970 rc
= pci_bus_read_config_byte (pci_bus
, devfn
, 0x0B, &class_code
);
2972 if (class_code
== PCI_BASE_CLASS_STORAGE
) {
2973 IRQ
= cpqhp_disk_irq
;
2975 IRQ
= cpqhp_nic_irq
;
2980 rc
= pci_bus_write_config_byte (pci_bus
, devfn
, PCI_INTERRUPT_LINE
, IRQ
);
2983 if (!behind_bridge
) {
2984 rc
= cpqhp_set_irq(func
->bus
, func
->device
, temp_byte
+ 0x09, IRQ
);
2988 /* TBD - this code may also belong in the other clause
2989 * of this If statement */
2990 resources
->irqs
->interrupt
[(temp_byte
+ resources
->irqs
->barber_pole
- 1) & 0x03] = IRQ
;
2991 resources
->irqs
->valid_INT
|= 0x01 << (temp_byte
+ resources
->irqs
->barber_pole
- 1) & 0x03;
2996 rc
= pci_bus_write_config_byte(pci_bus
, devfn
,
2997 PCI_LATENCY_TIMER
, temp_byte
);
2999 /* Cache Line size */
3001 rc
= pci_bus_write_config_byte(pci_bus
, devfn
,
3002 PCI_CACHE_LINE_SIZE
, temp_byte
);
3004 /* disable ROM base Address */
3006 rc
= pci_bus_write_config_word(pci_bus
, devfn
,
3007 PCI_ROM_ADDRESS
, temp_dword
);
3010 temp_word
= 0x0157; /* = PCI_COMMAND_IO |
3011 * PCI_COMMAND_MEMORY |
3012 * PCI_COMMAND_MASTER |
3013 * PCI_COMMAND_INVALIDATE |
3014 * PCI_COMMAND_PARITY |
3015 * PCI_COMMAND_SERR */
3016 rc
= pci_bus_write_config_word (pci_bus
, devfn
,
3017 PCI_COMMAND
, temp_word
);
3018 } else { /* End of Not-A-Bridge else */
3019 /* It's some strange type of PCI adapter (Cardbus?) */
3020 return DEVICE_TYPE_NOT_SUPPORTED
;
3023 func
->configured
= 1;
3027 cpqhp_destroy_resource_list (&temp_resources
);
3029 return_resource(&(resources
-> bus_head
), hold_bus_node
);
3030 return_resource(&(resources
-> io_head
), hold_IO_node
);
3031 return_resource(&(resources
-> mem_head
), hold_mem_node
);
3032 return_resource(&(resources
-> p_mem_head
), hold_p_mem_node
);