[media] lbdt3306a: rework at printk macros
[linux/fpc-iii.git] / net / ipv4 / ip_gre.c
blob6207275fc749fc52f00e63d6cae212148a791f1b
1 /*
2 * Linux NET3: GRE over IP protocol decoder.
4 * Authors: Alexey Kuznetsov (kuznet@ms2.inr.ac.ru)
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 #include <linux/capability.h>
16 #include <linux/module.h>
17 #include <linux/types.h>
18 #include <linux/kernel.h>
19 #include <linux/slab.h>
20 #include <asm/uaccess.h>
21 #include <linux/skbuff.h>
22 #include <linux/netdevice.h>
23 #include <linux/in.h>
24 #include <linux/tcp.h>
25 #include <linux/udp.h>
26 #include <linux/if_arp.h>
27 #include <linux/mroute.h>
28 #include <linux/init.h>
29 #include <linux/in6.h>
30 #include <linux/inetdevice.h>
31 #include <linux/igmp.h>
32 #include <linux/netfilter_ipv4.h>
33 #include <linux/etherdevice.h>
34 #include <linux/if_ether.h>
36 #include <net/sock.h>
37 #include <net/ip.h>
38 #include <net/icmp.h>
39 #include <net/protocol.h>
40 #include <net/ip_tunnels.h>
41 #include <net/arp.h>
42 #include <net/checksum.h>
43 #include <net/dsfield.h>
44 #include <net/inet_ecn.h>
45 #include <net/xfrm.h>
46 #include <net/net_namespace.h>
47 #include <net/netns/generic.h>
48 #include <net/rtnetlink.h>
49 #include <net/gre.h>
51 #if IS_ENABLED(CONFIG_IPV6)
52 #include <net/ipv6.h>
53 #include <net/ip6_fib.h>
54 #include <net/ip6_route.h>
55 #endif
58 Problems & solutions
59 --------------------
61 1. The most important issue is detecting local dead loops.
62 They would cause complete host lockup in transmit, which
63 would be "resolved" by stack overflow or, if queueing is enabled,
64 with infinite looping in net_bh.
66 We cannot track such dead loops during route installation,
67 it is infeasible task. The most general solutions would be
68 to keep skb->encapsulation counter (sort of local ttl),
69 and silently drop packet when it expires. It is a good
70 solution, but it supposes maintaining new variable in ALL
71 skb, even if no tunneling is used.
73 Current solution: xmit_recursion breaks dead loops. This is a percpu
74 counter, since when we enter the first ndo_xmit(), cpu migration is
75 forbidden. We force an exit if this counter reaches RECURSION_LIMIT
77 2. Networking dead loops would not kill routers, but would really
78 kill network. IP hop limit plays role of "t->recursion" in this case,
79 if we copy it from packet being encapsulated to upper header.
80 It is very good solution, but it introduces two problems:
82 - Routing protocols, using packets with ttl=1 (OSPF, RIP2),
83 do not work over tunnels.
84 - traceroute does not work. I planned to relay ICMP from tunnel,
85 so that this problem would be solved and traceroute output
86 would even more informative. This idea appeared to be wrong:
87 only Linux complies to rfc1812 now (yes, guys, Linux is the only
88 true router now :-)), all routers (at least, in neighbourhood of mine)
89 return only 8 bytes of payload. It is the end.
91 Hence, if we want that OSPF worked or traceroute said something reasonable,
92 we should search for another solution.
94 One of them is to parse packet trying to detect inner encapsulation
95 made by our node. It is difficult or even impossible, especially,
96 taking into account fragmentation. TO be short, ttl is not solution at all.
98 Current solution: The solution was UNEXPECTEDLY SIMPLE.
99 We force DF flag on tunnels with preconfigured hop limit,
100 that is ALL. :-) Well, it does not remove the problem completely,
101 but exponential growth of network traffic is changed to linear
102 (branches, that exceed pmtu are pruned) and tunnel mtu
103 rapidly degrades to value <68, where looping stops.
104 Yes, it is not good if there exists a router in the loop,
105 which does not force DF, even when encapsulating packets have DF set.
106 But it is not our problem! Nobody could accuse us, we made
107 all that we could make. Even if it is your gated who injected
108 fatal route to network, even if it were you who configured
109 fatal static route: you are innocent. :-)
111 Alexey Kuznetsov.
114 static bool log_ecn_error = true;
115 module_param(log_ecn_error, bool, 0644);
116 MODULE_PARM_DESC(log_ecn_error, "Log packets received with corrupted ECN");
118 static struct rtnl_link_ops ipgre_link_ops __read_mostly;
119 static int ipgre_tunnel_init(struct net_device *dev);
121 static int ipgre_net_id __read_mostly;
122 static int gre_tap_net_id __read_mostly;
124 static int ipgre_err(struct sk_buff *skb, u32 info,
125 const struct tnl_ptk_info *tpi)
128 /* All the routers (except for Linux) return only
129 8 bytes of packet payload. It means, that precise relaying of
130 ICMP in the real Internet is absolutely infeasible.
132 Moreover, Cisco "wise men" put GRE key to the third word
133 in GRE header. It makes impossible maintaining even soft
134 state for keyed GRE tunnels with enabled checksum. Tell
135 them "thank you".
137 Well, I wonder, rfc1812 was written by Cisco employee,
138 what the hell these idiots break standards established
139 by themselves???
141 struct net *net = dev_net(skb->dev);
142 struct ip_tunnel_net *itn;
143 const struct iphdr *iph;
144 const int type = icmp_hdr(skb)->type;
145 const int code = icmp_hdr(skb)->code;
146 struct ip_tunnel *t;
148 switch (type) {
149 default:
150 case ICMP_PARAMETERPROB:
151 return PACKET_RCVD;
153 case ICMP_DEST_UNREACH:
154 switch (code) {
155 case ICMP_SR_FAILED:
156 case ICMP_PORT_UNREACH:
157 /* Impossible event. */
158 return PACKET_RCVD;
159 default:
160 /* All others are translated to HOST_UNREACH.
161 rfc2003 contains "deep thoughts" about NET_UNREACH,
162 I believe they are just ether pollution. --ANK
164 break;
166 break;
167 case ICMP_TIME_EXCEEDED:
168 if (code != ICMP_EXC_TTL)
169 return PACKET_RCVD;
170 break;
172 case ICMP_REDIRECT:
173 break;
176 if (tpi->proto == htons(ETH_P_TEB))
177 itn = net_generic(net, gre_tap_net_id);
178 else
179 itn = net_generic(net, ipgre_net_id);
181 iph = (const struct iphdr *)(icmp_hdr(skb) + 1);
182 t = ip_tunnel_lookup(itn, skb->dev->ifindex, tpi->flags,
183 iph->daddr, iph->saddr, tpi->key);
185 if (t == NULL)
186 return PACKET_REJECT;
188 if (t->parms.iph.daddr == 0 ||
189 ipv4_is_multicast(t->parms.iph.daddr))
190 return PACKET_RCVD;
192 if (t->parms.iph.ttl == 0 && type == ICMP_TIME_EXCEEDED)
193 return PACKET_RCVD;
195 if (time_before(jiffies, t->err_time + IPTUNNEL_ERR_TIMEO))
196 t->err_count++;
197 else
198 t->err_count = 1;
199 t->err_time = jiffies;
200 return PACKET_RCVD;
203 static int ipgre_rcv(struct sk_buff *skb, const struct tnl_ptk_info *tpi)
205 struct net *net = dev_net(skb->dev);
206 struct ip_tunnel_net *itn;
207 const struct iphdr *iph;
208 struct ip_tunnel *tunnel;
210 if (tpi->proto == htons(ETH_P_TEB))
211 itn = net_generic(net, gre_tap_net_id);
212 else
213 itn = net_generic(net, ipgre_net_id);
215 iph = ip_hdr(skb);
216 tunnel = ip_tunnel_lookup(itn, skb->dev->ifindex, tpi->flags,
217 iph->saddr, iph->daddr, tpi->key);
219 if (tunnel) {
220 skb_pop_mac_header(skb);
221 ip_tunnel_rcv(tunnel, skb, tpi, log_ecn_error);
222 return PACKET_RCVD;
224 return PACKET_REJECT;
227 static void __gre_xmit(struct sk_buff *skb, struct net_device *dev,
228 const struct iphdr *tnl_params,
229 __be16 proto)
231 struct ip_tunnel *tunnel = netdev_priv(dev);
232 struct tnl_ptk_info tpi;
234 tpi.flags = tunnel->parms.o_flags;
235 tpi.proto = proto;
236 tpi.key = tunnel->parms.o_key;
237 if (tunnel->parms.o_flags & TUNNEL_SEQ)
238 tunnel->o_seqno++;
239 tpi.seq = htonl(tunnel->o_seqno);
241 /* Push GRE header. */
242 gre_build_header(skb, &tpi, tunnel->tun_hlen);
244 skb_set_inner_protocol(skb, tpi.proto);
246 ip_tunnel_xmit(skb, dev, tnl_params, tnl_params->protocol);
249 static netdev_tx_t ipgre_xmit(struct sk_buff *skb,
250 struct net_device *dev)
252 struct ip_tunnel *tunnel = netdev_priv(dev);
253 const struct iphdr *tnl_params;
255 if (dev->header_ops) {
256 /* Need space for new headers */
257 if (skb_cow_head(skb, dev->needed_headroom -
258 (tunnel->hlen + sizeof(struct iphdr))))
259 goto free_skb;
261 tnl_params = (const struct iphdr *)skb->data;
263 /* Pull skb since ip_tunnel_xmit() needs skb->data pointing
264 * to gre header.
266 skb_pull(skb, tunnel->hlen + sizeof(struct iphdr));
267 skb_reset_mac_header(skb);
268 } else {
269 if (skb_cow_head(skb, dev->needed_headroom))
270 goto free_skb;
272 tnl_params = &tunnel->parms.iph;
275 skb = gre_handle_offloads(skb, !!(tunnel->parms.o_flags&TUNNEL_CSUM));
276 if (IS_ERR(skb))
277 goto out;
279 __gre_xmit(skb, dev, tnl_params, skb->protocol);
281 return NETDEV_TX_OK;
283 free_skb:
284 kfree_skb(skb);
285 out:
286 dev->stats.tx_dropped++;
287 return NETDEV_TX_OK;
290 static netdev_tx_t gre_tap_xmit(struct sk_buff *skb,
291 struct net_device *dev)
293 struct ip_tunnel *tunnel = netdev_priv(dev);
295 skb = gre_handle_offloads(skb, !!(tunnel->parms.o_flags&TUNNEL_CSUM));
296 if (IS_ERR(skb))
297 goto out;
299 if (skb_cow_head(skb, dev->needed_headroom))
300 goto free_skb;
302 __gre_xmit(skb, dev, &tunnel->parms.iph, htons(ETH_P_TEB));
304 return NETDEV_TX_OK;
306 free_skb:
307 kfree_skb(skb);
308 out:
309 dev->stats.tx_dropped++;
310 return NETDEV_TX_OK;
313 static int ipgre_tunnel_ioctl(struct net_device *dev,
314 struct ifreq *ifr, int cmd)
316 int err;
317 struct ip_tunnel_parm p;
319 if (copy_from_user(&p, ifr->ifr_ifru.ifru_data, sizeof(p)))
320 return -EFAULT;
321 if (cmd == SIOCADDTUNNEL || cmd == SIOCCHGTUNNEL) {
322 if (p.iph.version != 4 || p.iph.protocol != IPPROTO_GRE ||
323 p.iph.ihl != 5 || (p.iph.frag_off&htons(~IP_DF)) ||
324 ((p.i_flags|p.o_flags)&(GRE_VERSION|GRE_ROUTING)))
325 return -EINVAL;
327 p.i_flags = gre_flags_to_tnl_flags(p.i_flags);
328 p.o_flags = gre_flags_to_tnl_flags(p.o_flags);
330 err = ip_tunnel_ioctl(dev, &p, cmd);
331 if (err)
332 return err;
334 p.i_flags = tnl_flags_to_gre_flags(p.i_flags);
335 p.o_flags = tnl_flags_to_gre_flags(p.o_flags);
337 if (copy_to_user(ifr->ifr_ifru.ifru_data, &p, sizeof(p)))
338 return -EFAULT;
339 return 0;
342 /* Nice toy. Unfortunately, useless in real life :-)
343 It allows to construct virtual multiprotocol broadcast "LAN"
344 over the Internet, provided multicast routing is tuned.
347 I have no idea was this bicycle invented before me,
348 so that I had to set ARPHRD_IPGRE to a random value.
349 I have an impression, that Cisco could make something similar,
350 but this feature is apparently missing in IOS<=11.2(8).
352 I set up 10.66.66/24 and fec0:6666:6666::0/96 as virtual networks
353 with broadcast 224.66.66.66. If you have access to mbone, play with me :-)
355 ping -t 255 224.66.66.66
357 If nobody answers, mbone does not work.
359 ip tunnel add Universe mode gre remote 224.66.66.66 local <Your_real_addr> ttl 255
360 ip addr add 10.66.66.<somewhat>/24 dev Universe
361 ifconfig Universe up
362 ifconfig Universe add fe80::<Your_real_addr>/10
363 ifconfig Universe add fec0:6666:6666::<Your_real_addr>/96
364 ftp 10.66.66.66
366 ftp fec0:6666:6666::193.233.7.65
369 static int ipgre_header(struct sk_buff *skb, struct net_device *dev,
370 unsigned short type,
371 const void *daddr, const void *saddr, unsigned int len)
373 struct ip_tunnel *t = netdev_priv(dev);
374 struct iphdr *iph;
375 struct gre_base_hdr *greh;
377 iph = (struct iphdr *)skb_push(skb, t->hlen + sizeof(*iph));
378 greh = (struct gre_base_hdr *)(iph+1);
379 greh->flags = tnl_flags_to_gre_flags(t->parms.o_flags);
380 greh->protocol = htons(type);
382 memcpy(iph, &t->parms.iph, sizeof(struct iphdr));
384 /* Set the source hardware address. */
385 if (saddr)
386 memcpy(&iph->saddr, saddr, 4);
387 if (daddr)
388 memcpy(&iph->daddr, daddr, 4);
389 if (iph->daddr)
390 return t->hlen + sizeof(*iph);
392 return -(t->hlen + sizeof(*iph));
395 static int ipgre_header_parse(const struct sk_buff *skb, unsigned char *haddr)
397 const struct iphdr *iph = (const struct iphdr *) skb_mac_header(skb);
398 memcpy(haddr, &iph->saddr, 4);
399 return 4;
402 static const struct header_ops ipgre_header_ops = {
403 .create = ipgre_header,
404 .parse = ipgre_header_parse,
407 #ifdef CONFIG_NET_IPGRE_BROADCAST
408 static int ipgre_open(struct net_device *dev)
410 struct ip_tunnel *t = netdev_priv(dev);
412 if (ipv4_is_multicast(t->parms.iph.daddr)) {
413 struct flowi4 fl4;
414 struct rtable *rt;
416 rt = ip_route_output_gre(t->net, &fl4,
417 t->parms.iph.daddr,
418 t->parms.iph.saddr,
419 t->parms.o_key,
420 RT_TOS(t->parms.iph.tos),
421 t->parms.link);
422 if (IS_ERR(rt))
423 return -EADDRNOTAVAIL;
424 dev = rt->dst.dev;
425 ip_rt_put(rt);
426 if (__in_dev_get_rtnl(dev) == NULL)
427 return -EADDRNOTAVAIL;
428 t->mlink = dev->ifindex;
429 ip_mc_inc_group(__in_dev_get_rtnl(dev), t->parms.iph.daddr);
431 return 0;
434 static int ipgre_close(struct net_device *dev)
436 struct ip_tunnel *t = netdev_priv(dev);
438 if (ipv4_is_multicast(t->parms.iph.daddr) && t->mlink) {
439 struct in_device *in_dev;
440 in_dev = inetdev_by_index(t->net, t->mlink);
441 if (in_dev)
442 ip_mc_dec_group(in_dev, t->parms.iph.daddr);
444 return 0;
446 #endif
448 static const struct net_device_ops ipgre_netdev_ops = {
449 .ndo_init = ipgre_tunnel_init,
450 .ndo_uninit = ip_tunnel_uninit,
451 #ifdef CONFIG_NET_IPGRE_BROADCAST
452 .ndo_open = ipgre_open,
453 .ndo_stop = ipgre_close,
454 #endif
455 .ndo_start_xmit = ipgre_xmit,
456 .ndo_do_ioctl = ipgre_tunnel_ioctl,
457 .ndo_change_mtu = ip_tunnel_change_mtu,
458 .ndo_get_stats64 = ip_tunnel_get_stats64,
461 #define GRE_FEATURES (NETIF_F_SG | \
462 NETIF_F_FRAGLIST | \
463 NETIF_F_HIGHDMA | \
464 NETIF_F_HW_CSUM)
466 static void ipgre_tunnel_setup(struct net_device *dev)
468 dev->netdev_ops = &ipgre_netdev_ops;
469 dev->type = ARPHRD_IPGRE;
470 ip_tunnel_setup(dev, ipgre_net_id);
473 static void __gre_tunnel_init(struct net_device *dev)
475 struct ip_tunnel *tunnel;
476 int t_hlen;
478 tunnel = netdev_priv(dev);
479 tunnel->tun_hlen = ip_gre_calc_hlen(tunnel->parms.o_flags);
480 tunnel->parms.iph.protocol = IPPROTO_GRE;
482 tunnel->hlen = tunnel->tun_hlen + tunnel->encap_hlen;
484 t_hlen = tunnel->hlen + sizeof(struct iphdr);
486 dev->needed_headroom = LL_MAX_HEADER + t_hlen + 4;
487 dev->mtu = ETH_DATA_LEN - t_hlen - 4;
489 dev->features |= GRE_FEATURES;
490 dev->hw_features |= GRE_FEATURES;
492 if (!(tunnel->parms.o_flags & TUNNEL_SEQ)) {
493 /* TCP offload with GRE SEQ is not supported. */
494 dev->features |= NETIF_F_GSO_SOFTWARE;
495 dev->hw_features |= NETIF_F_GSO_SOFTWARE;
496 /* Can use a lockless transmit, unless we generate
497 * output sequences
499 dev->features |= NETIF_F_LLTX;
503 static int ipgre_tunnel_init(struct net_device *dev)
505 struct ip_tunnel *tunnel = netdev_priv(dev);
506 struct iphdr *iph = &tunnel->parms.iph;
508 __gre_tunnel_init(dev);
510 memcpy(dev->dev_addr, &iph->saddr, 4);
511 memcpy(dev->broadcast, &iph->daddr, 4);
513 dev->flags = IFF_NOARP;
514 netif_keep_dst(dev);
515 dev->addr_len = 4;
517 if (iph->daddr) {
518 #ifdef CONFIG_NET_IPGRE_BROADCAST
519 if (ipv4_is_multicast(iph->daddr)) {
520 if (!iph->saddr)
521 return -EINVAL;
522 dev->flags = IFF_BROADCAST;
523 dev->header_ops = &ipgre_header_ops;
525 #endif
526 } else
527 dev->header_ops = &ipgre_header_ops;
529 return ip_tunnel_init(dev);
532 static struct gre_cisco_protocol ipgre_protocol = {
533 .handler = ipgre_rcv,
534 .err_handler = ipgre_err,
535 .priority = 0,
538 static int __net_init ipgre_init_net(struct net *net)
540 return ip_tunnel_init_net(net, ipgre_net_id, &ipgre_link_ops, NULL);
543 static void __net_exit ipgre_exit_net(struct net *net)
545 struct ip_tunnel_net *itn = net_generic(net, ipgre_net_id);
546 ip_tunnel_delete_net(itn, &ipgre_link_ops);
549 static struct pernet_operations ipgre_net_ops = {
550 .init = ipgre_init_net,
551 .exit = ipgre_exit_net,
552 .id = &ipgre_net_id,
553 .size = sizeof(struct ip_tunnel_net),
556 static int ipgre_tunnel_validate(struct nlattr *tb[], struct nlattr *data[])
558 __be16 flags;
560 if (!data)
561 return 0;
563 flags = 0;
564 if (data[IFLA_GRE_IFLAGS])
565 flags |= nla_get_be16(data[IFLA_GRE_IFLAGS]);
566 if (data[IFLA_GRE_OFLAGS])
567 flags |= nla_get_be16(data[IFLA_GRE_OFLAGS]);
568 if (flags & (GRE_VERSION|GRE_ROUTING))
569 return -EINVAL;
571 return 0;
574 static int ipgre_tap_validate(struct nlattr *tb[], struct nlattr *data[])
576 __be32 daddr;
578 if (tb[IFLA_ADDRESS]) {
579 if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN)
580 return -EINVAL;
581 if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS])))
582 return -EADDRNOTAVAIL;
585 if (!data)
586 goto out;
588 if (data[IFLA_GRE_REMOTE]) {
589 memcpy(&daddr, nla_data(data[IFLA_GRE_REMOTE]), 4);
590 if (!daddr)
591 return -EINVAL;
594 out:
595 return ipgre_tunnel_validate(tb, data);
598 static void ipgre_netlink_parms(struct nlattr *data[], struct nlattr *tb[],
599 struct ip_tunnel_parm *parms)
601 memset(parms, 0, sizeof(*parms));
603 parms->iph.protocol = IPPROTO_GRE;
605 if (!data)
606 return;
608 if (data[IFLA_GRE_LINK])
609 parms->link = nla_get_u32(data[IFLA_GRE_LINK]);
611 if (data[IFLA_GRE_IFLAGS])
612 parms->i_flags = gre_flags_to_tnl_flags(nla_get_be16(data[IFLA_GRE_IFLAGS]));
614 if (data[IFLA_GRE_OFLAGS])
615 parms->o_flags = gre_flags_to_tnl_flags(nla_get_be16(data[IFLA_GRE_OFLAGS]));
617 if (data[IFLA_GRE_IKEY])
618 parms->i_key = nla_get_be32(data[IFLA_GRE_IKEY]);
620 if (data[IFLA_GRE_OKEY])
621 parms->o_key = nla_get_be32(data[IFLA_GRE_OKEY]);
623 if (data[IFLA_GRE_LOCAL])
624 parms->iph.saddr = nla_get_be32(data[IFLA_GRE_LOCAL]);
626 if (data[IFLA_GRE_REMOTE])
627 parms->iph.daddr = nla_get_be32(data[IFLA_GRE_REMOTE]);
629 if (data[IFLA_GRE_TTL])
630 parms->iph.ttl = nla_get_u8(data[IFLA_GRE_TTL]);
632 if (data[IFLA_GRE_TOS])
633 parms->iph.tos = nla_get_u8(data[IFLA_GRE_TOS]);
635 if (!data[IFLA_GRE_PMTUDISC] || nla_get_u8(data[IFLA_GRE_PMTUDISC]))
636 parms->iph.frag_off = htons(IP_DF);
639 /* This function returns true when ENCAP attributes are present in the nl msg */
640 static bool ipgre_netlink_encap_parms(struct nlattr *data[],
641 struct ip_tunnel_encap *ipencap)
643 bool ret = false;
645 memset(ipencap, 0, sizeof(*ipencap));
647 if (!data)
648 return ret;
650 if (data[IFLA_GRE_ENCAP_TYPE]) {
651 ret = true;
652 ipencap->type = nla_get_u16(data[IFLA_GRE_ENCAP_TYPE]);
655 if (data[IFLA_GRE_ENCAP_FLAGS]) {
656 ret = true;
657 ipencap->flags = nla_get_u16(data[IFLA_GRE_ENCAP_FLAGS]);
660 if (data[IFLA_GRE_ENCAP_SPORT]) {
661 ret = true;
662 ipencap->sport = nla_get_be16(data[IFLA_GRE_ENCAP_SPORT]);
665 if (data[IFLA_GRE_ENCAP_DPORT]) {
666 ret = true;
667 ipencap->dport = nla_get_be16(data[IFLA_GRE_ENCAP_DPORT]);
670 return ret;
673 static int gre_tap_init(struct net_device *dev)
675 __gre_tunnel_init(dev);
676 dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
678 return ip_tunnel_init(dev);
681 static const struct net_device_ops gre_tap_netdev_ops = {
682 .ndo_init = gre_tap_init,
683 .ndo_uninit = ip_tunnel_uninit,
684 .ndo_start_xmit = gre_tap_xmit,
685 .ndo_set_mac_address = eth_mac_addr,
686 .ndo_validate_addr = eth_validate_addr,
687 .ndo_change_mtu = ip_tunnel_change_mtu,
688 .ndo_get_stats64 = ip_tunnel_get_stats64,
691 static void ipgre_tap_setup(struct net_device *dev)
693 ether_setup(dev);
694 dev->netdev_ops = &gre_tap_netdev_ops;
695 dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
696 ip_tunnel_setup(dev, gre_tap_net_id);
699 static int ipgre_newlink(struct net *src_net, struct net_device *dev,
700 struct nlattr *tb[], struct nlattr *data[])
702 struct ip_tunnel_parm p;
703 struct ip_tunnel_encap ipencap;
705 if (ipgre_netlink_encap_parms(data, &ipencap)) {
706 struct ip_tunnel *t = netdev_priv(dev);
707 int err = ip_tunnel_encap_setup(t, &ipencap);
709 if (err < 0)
710 return err;
713 ipgre_netlink_parms(data, tb, &p);
714 return ip_tunnel_newlink(dev, tb, &p);
717 static int ipgre_changelink(struct net_device *dev, struct nlattr *tb[],
718 struct nlattr *data[])
720 struct ip_tunnel_parm p;
721 struct ip_tunnel_encap ipencap;
723 if (ipgre_netlink_encap_parms(data, &ipencap)) {
724 struct ip_tunnel *t = netdev_priv(dev);
725 int err = ip_tunnel_encap_setup(t, &ipencap);
727 if (err < 0)
728 return err;
731 ipgre_netlink_parms(data, tb, &p);
732 return ip_tunnel_changelink(dev, tb, &p);
735 static size_t ipgre_get_size(const struct net_device *dev)
737 return
738 /* IFLA_GRE_LINK */
739 nla_total_size(4) +
740 /* IFLA_GRE_IFLAGS */
741 nla_total_size(2) +
742 /* IFLA_GRE_OFLAGS */
743 nla_total_size(2) +
744 /* IFLA_GRE_IKEY */
745 nla_total_size(4) +
746 /* IFLA_GRE_OKEY */
747 nla_total_size(4) +
748 /* IFLA_GRE_LOCAL */
749 nla_total_size(4) +
750 /* IFLA_GRE_REMOTE */
751 nla_total_size(4) +
752 /* IFLA_GRE_TTL */
753 nla_total_size(1) +
754 /* IFLA_GRE_TOS */
755 nla_total_size(1) +
756 /* IFLA_GRE_PMTUDISC */
757 nla_total_size(1) +
758 /* IFLA_GRE_ENCAP_TYPE */
759 nla_total_size(2) +
760 /* IFLA_GRE_ENCAP_FLAGS */
761 nla_total_size(2) +
762 /* IFLA_GRE_ENCAP_SPORT */
763 nla_total_size(2) +
764 /* IFLA_GRE_ENCAP_DPORT */
765 nla_total_size(2) +
769 static int ipgre_fill_info(struct sk_buff *skb, const struct net_device *dev)
771 struct ip_tunnel *t = netdev_priv(dev);
772 struct ip_tunnel_parm *p = &t->parms;
774 if (nla_put_u32(skb, IFLA_GRE_LINK, p->link) ||
775 nla_put_be16(skb, IFLA_GRE_IFLAGS, tnl_flags_to_gre_flags(p->i_flags)) ||
776 nla_put_be16(skb, IFLA_GRE_OFLAGS, tnl_flags_to_gre_flags(p->o_flags)) ||
777 nla_put_be32(skb, IFLA_GRE_IKEY, p->i_key) ||
778 nla_put_be32(skb, IFLA_GRE_OKEY, p->o_key) ||
779 nla_put_be32(skb, IFLA_GRE_LOCAL, p->iph.saddr) ||
780 nla_put_be32(skb, IFLA_GRE_REMOTE, p->iph.daddr) ||
781 nla_put_u8(skb, IFLA_GRE_TTL, p->iph.ttl) ||
782 nla_put_u8(skb, IFLA_GRE_TOS, p->iph.tos) ||
783 nla_put_u8(skb, IFLA_GRE_PMTUDISC,
784 !!(p->iph.frag_off & htons(IP_DF))))
785 goto nla_put_failure;
787 if (nla_put_u16(skb, IFLA_GRE_ENCAP_TYPE,
788 t->encap.type) ||
789 nla_put_be16(skb, IFLA_GRE_ENCAP_SPORT,
790 t->encap.sport) ||
791 nla_put_be16(skb, IFLA_GRE_ENCAP_DPORT,
792 t->encap.dport) ||
793 nla_put_u16(skb, IFLA_GRE_ENCAP_FLAGS,
794 t->encap.flags))
795 goto nla_put_failure;
797 return 0;
799 nla_put_failure:
800 return -EMSGSIZE;
803 static const struct nla_policy ipgre_policy[IFLA_GRE_MAX + 1] = {
804 [IFLA_GRE_LINK] = { .type = NLA_U32 },
805 [IFLA_GRE_IFLAGS] = { .type = NLA_U16 },
806 [IFLA_GRE_OFLAGS] = { .type = NLA_U16 },
807 [IFLA_GRE_IKEY] = { .type = NLA_U32 },
808 [IFLA_GRE_OKEY] = { .type = NLA_U32 },
809 [IFLA_GRE_LOCAL] = { .len = FIELD_SIZEOF(struct iphdr, saddr) },
810 [IFLA_GRE_REMOTE] = { .len = FIELD_SIZEOF(struct iphdr, daddr) },
811 [IFLA_GRE_TTL] = { .type = NLA_U8 },
812 [IFLA_GRE_TOS] = { .type = NLA_U8 },
813 [IFLA_GRE_PMTUDISC] = { .type = NLA_U8 },
814 [IFLA_GRE_ENCAP_TYPE] = { .type = NLA_U16 },
815 [IFLA_GRE_ENCAP_FLAGS] = { .type = NLA_U16 },
816 [IFLA_GRE_ENCAP_SPORT] = { .type = NLA_U16 },
817 [IFLA_GRE_ENCAP_DPORT] = { .type = NLA_U16 },
820 static struct rtnl_link_ops ipgre_link_ops __read_mostly = {
821 .kind = "gre",
822 .maxtype = IFLA_GRE_MAX,
823 .policy = ipgre_policy,
824 .priv_size = sizeof(struct ip_tunnel),
825 .setup = ipgre_tunnel_setup,
826 .validate = ipgre_tunnel_validate,
827 .newlink = ipgre_newlink,
828 .changelink = ipgre_changelink,
829 .dellink = ip_tunnel_dellink,
830 .get_size = ipgre_get_size,
831 .fill_info = ipgre_fill_info,
832 .get_link_net = ip_tunnel_get_link_net,
835 static struct rtnl_link_ops ipgre_tap_ops __read_mostly = {
836 .kind = "gretap",
837 .maxtype = IFLA_GRE_MAX,
838 .policy = ipgre_policy,
839 .priv_size = sizeof(struct ip_tunnel),
840 .setup = ipgre_tap_setup,
841 .validate = ipgre_tap_validate,
842 .newlink = ipgre_newlink,
843 .changelink = ipgre_changelink,
844 .dellink = ip_tunnel_dellink,
845 .get_size = ipgre_get_size,
846 .fill_info = ipgre_fill_info,
847 .get_link_net = ip_tunnel_get_link_net,
850 static int __net_init ipgre_tap_init_net(struct net *net)
852 return ip_tunnel_init_net(net, gre_tap_net_id, &ipgre_tap_ops, NULL);
855 static void __net_exit ipgre_tap_exit_net(struct net *net)
857 struct ip_tunnel_net *itn = net_generic(net, gre_tap_net_id);
858 ip_tunnel_delete_net(itn, &ipgre_tap_ops);
861 static struct pernet_operations ipgre_tap_net_ops = {
862 .init = ipgre_tap_init_net,
863 .exit = ipgre_tap_exit_net,
864 .id = &gre_tap_net_id,
865 .size = sizeof(struct ip_tunnel_net),
868 static int __init ipgre_init(void)
870 int err;
872 pr_info("GRE over IPv4 tunneling driver\n");
874 err = register_pernet_device(&ipgre_net_ops);
875 if (err < 0)
876 return err;
878 err = register_pernet_device(&ipgre_tap_net_ops);
879 if (err < 0)
880 goto pnet_tap_faied;
882 err = gre_cisco_register(&ipgre_protocol);
883 if (err < 0) {
884 pr_info("%s: can't add protocol\n", __func__);
885 goto add_proto_failed;
888 err = rtnl_link_register(&ipgre_link_ops);
889 if (err < 0)
890 goto rtnl_link_failed;
892 err = rtnl_link_register(&ipgre_tap_ops);
893 if (err < 0)
894 goto tap_ops_failed;
896 return 0;
898 tap_ops_failed:
899 rtnl_link_unregister(&ipgre_link_ops);
900 rtnl_link_failed:
901 gre_cisco_unregister(&ipgre_protocol);
902 add_proto_failed:
903 unregister_pernet_device(&ipgre_tap_net_ops);
904 pnet_tap_faied:
905 unregister_pernet_device(&ipgre_net_ops);
906 return err;
909 static void __exit ipgre_fini(void)
911 rtnl_link_unregister(&ipgre_tap_ops);
912 rtnl_link_unregister(&ipgre_link_ops);
913 gre_cisco_unregister(&ipgre_protocol);
914 unregister_pernet_device(&ipgre_tap_net_ops);
915 unregister_pernet_device(&ipgre_net_ops);
918 module_init(ipgre_init);
919 module_exit(ipgre_fini);
920 MODULE_LICENSE("GPL");
921 MODULE_ALIAS_RTNL_LINK("gre");
922 MODULE_ALIAS_RTNL_LINK("gretap");
923 MODULE_ALIAS_NETDEV("gre0");
924 MODULE_ALIAS_NETDEV("gretap0");