2 * Resizable virtual memory filesystem for Linux.
4 * Copyright (C) 2000 Linus Torvalds.
6 * 2000-2001 Christoph Rohland
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
21 * This file is released under the GPL.
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/uio.h>
36 static struct vfsmount
*shm_mnt
;
40 * This virtual memory filesystem is heavily based on the ramfs. It
41 * extends ramfs by the ability to use swap and honor resource limits
42 * which makes it a completely usable filesystem.
45 #include <linux/xattr.h>
46 #include <linux/exportfs.h>
47 #include <linux/posix_acl.h>
48 #include <linux/posix_acl_xattr.h>
49 #include <linux/mman.h>
50 #include <linux/string.h>
51 #include <linux/slab.h>
52 #include <linux/backing-dev.h>
53 #include <linux/shmem_fs.h>
54 #include <linux/writeback.h>
55 #include <linux/blkdev.h>
56 #include <linux/pagevec.h>
57 #include <linux/percpu_counter.h>
58 #include <linux/falloc.h>
59 #include <linux/splice.h>
60 #include <linux/security.h>
61 #include <linux/swapops.h>
62 #include <linux/mempolicy.h>
63 #include <linux/namei.h>
64 #include <linux/ctype.h>
65 #include <linux/migrate.h>
66 #include <linux/highmem.h>
67 #include <linux/seq_file.h>
68 #include <linux/magic.h>
69 #include <linux/syscalls.h>
70 #include <linux/fcntl.h>
71 #include <uapi/linux/memfd.h>
73 #include <asm/uaccess.h>
74 #include <asm/pgtable.h>
78 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
79 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
81 /* Pretend that each entry is of this size in directory's i_size */
82 #define BOGO_DIRENT_SIZE 20
84 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
85 #define SHORT_SYMLINK_LEN 128
88 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
89 * inode->i_private (with i_mutex making sure that it has only one user at
90 * a time): we would prefer not to enlarge the shmem inode just for that.
93 wait_queue_head_t
*waitq
; /* faults into hole wait for punch to end */
94 pgoff_t start
; /* start of range currently being fallocated */
95 pgoff_t next
; /* the next page offset to be fallocated */
96 pgoff_t nr_falloced
; /* how many new pages have been fallocated */
97 pgoff_t nr_unswapped
; /* how often writepage refused to swap out */
100 /* Flag allocation requirements to shmem_getpage */
102 SGP_READ
, /* don't exceed i_size, don't allocate page */
103 SGP_CACHE
, /* don't exceed i_size, may allocate page */
104 SGP_DIRTY
, /* like SGP_CACHE, but set new page dirty */
105 SGP_WRITE
, /* may exceed i_size, may allocate !Uptodate page */
106 SGP_FALLOC
, /* like SGP_WRITE, but make existing page Uptodate */
110 static unsigned long shmem_default_max_blocks(void)
112 return totalram_pages
/ 2;
115 static unsigned long shmem_default_max_inodes(void)
117 return min(totalram_pages
- totalhigh_pages
, totalram_pages
/ 2);
121 static bool shmem_should_replace_page(struct page
*page
, gfp_t gfp
);
122 static int shmem_replace_page(struct page
**pagep
, gfp_t gfp
,
123 struct shmem_inode_info
*info
, pgoff_t index
);
124 static int shmem_getpage_gfp(struct inode
*inode
, pgoff_t index
,
125 struct page
**pagep
, enum sgp_type sgp
, gfp_t gfp
, int *fault_type
);
127 static inline int shmem_getpage(struct inode
*inode
, pgoff_t index
,
128 struct page
**pagep
, enum sgp_type sgp
, int *fault_type
)
130 return shmem_getpage_gfp(inode
, index
, pagep
, sgp
,
131 mapping_gfp_mask(inode
->i_mapping
), fault_type
);
134 static inline struct shmem_sb_info
*SHMEM_SB(struct super_block
*sb
)
136 return sb
->s_fs_info
;
140 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
141 * for shared memory and for shared anonymous (/dev/zero) mappings
142 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
143 * consistent with the pre-accounting of private mappings ...
145 static inline int shmem_acct_size(unsigned long flags
, loff_t size
)
147 return (flags
& VM_NORESERVE
) ?
148 0 : security_vm_enough_memory_mm(current
->mm
, VM_ACCT(size
));
151 static inline void shmem_unacct_size(unsigned long flags
, loff_t size
)
153 if (!(flags
& VM_NORESERVE
))
154 vm_unacct_memory(VM_ACCT(size
));
157 static inline int shmem_reacct_size(unsigned long flags
,
158 loff_t oldsize
, loff_t newsize
)
160 if (!(flags
& VM_NORESERVE
)) {
161 if (VM_ACCT(newsize
) > VM_ACCT(oldsize
))
162 return security_vm_enough_memory_mm(current
->mm
,
163 VM_ACCT(newsize
) - VM_ACCT(oldsize
));
164 else if (VM_ACCT(newsize
) < VM_ACCT(oldsize
))
165 vm_unacct_memory(VM_ACCT(oldsize
) - VM_ACCT(newsize
));
171 * ... whereas tmpfs objects are accounted incrementally as
172 * pages are allocated, in order to allow huge sparse files.
173 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
174 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
176 static inline int shmem_acct_block(unsigned long flags
)
178 return (flags
& VM_NORESERVE
) ?
179 security_vm_enough_memory_mm(current
->mm
, VM_ACCT(PAGE_CACHE_SIZE
)) : 0;
182 static inline void shmem_unacct_blocks(unsigned long flags
, long pages
)
184 if (flags
& VM_NORESERVE
)
185 vm_unacct_memory(pages
* VM_ACCT(PAGE_CACHE_SIZE
));
188 static const struct super_operations shmem_ops
;
189 static const struct address_space_operations shmem_aops
;
190 static const struct file_operations shmem_file_operations
;
191 static const struct inode_operations shmem_inode_operations
;
192 static const struct inode_operations shmem_dir_inode_operations
;
193 static const struct inode_operations shmem_special_inode_operations
;
194 static const struct vm_operations_struct shmem_vm_ops
;
196 static LIST_HEAD(shmem_swaplist
);
197 static DEFINE_MUTEX(shmem_swaplist_mutex
);
199 static int shmem_reserve_inode(struct super_block
*sb
)
201 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
202 if (sbinfo
->max_inodes
) {
203 spin_lock(&sbinfo
->stat_lock
);
204 if (!sbinfo
->free_inodes
) {
205 spin_unlock(&sbinfo
->stat_lock
);
208 sbinfo
->free_inodes
--;
209 spin_unlock(&sbinfo
->stat_lock
);
214 static void shmem_free_inode(struct super_block
*sb
)
216 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
217 if (sbinfo
->max_inodes
) {
218 spin_lock(&sbinfo
->stat_lock
);
219 sbinfo
->free_inodes
++;
220 spin_unlock(&sbinfo
->stat_lock
);
225 * shmem_recalc_inode - recalculate the block usage of an inode
226 * @inode: inode to recalc
228 * We have to calculate the free blocks since the mm can drop
229 * undirtied hole pages behind our back.
231 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
232 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
234 * It has to be called with the spinlock held.
236 static void shmem_recalc_inode(struct inode
*inode
)
238 struct shmem_inode_info
*info
= SHMEM_I(inode
);
241 freed
= info
->alloced
- info
->swapped
- inode
->i_mapping
->nrpages
;
243 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
244 if (sbinfo
->max_blocks
)
245 percpu_counter_add(&sbinfo
->used_blocks
, -freed
);
246 info
->alloced
-= freed
;
247 inode
->i_blocks
-= freed
* BLOCKS_PER_PAGE
;
248 shmem_unacct_blocks(info
->flags
, freed
);
253 * Replace item expected in radix tree by a new item, while holding tree lock.
255 static int shmem_radix_tree_replace(struct address_space
*mapping
,
256 pgoff_t index
, void *expected
, void *replacement
)
261 VM_BUG_ON(!expected
);
262 VM_BUG_ON(!replacement
);
263 pslot
= radix_tree_lookup_slot(&mapping
->page_tree
, index
);
266 item
= radix_tree_deref_slot_protected(pslot
, &mapping
->tree_lock
);
267 if (item
!= expected
)
269 radix_tree_replace_slot(pslot
, replacement
);
274 * Sometimes, before we decide whether to proceed or to fail, we must check
275 * that an entry was not already brought back from swap by a racing thread.
277 * Checking page is not enough: by the time a SwapCache page is locked, it
278 * might be reused, and again be SwapCache, using the same swap as before.
280 static bool shmem_confirm_swap(struct address_space
*mapping
,
281 pgoff_t index
, swp_entry_t swap
)
286 item
= radix_tree_lookup(&mapping
->page_tree
, index
);
288 return item
== swp_to_radix_entry(swap
);
292 * Like add_to_page_cache_locked, but error if expected item has gone.
294 static int shmem_add_to_page_cache(struct page
*page
,
295 struct address_space
*mapping
,
296 pgoff_t index
, void *expected
)
300 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
301 VM_BUG_ON_PAGE(!PageSwapBacked(page
), page
);
303 page_cache_get(page
);
304 page
->mapping
= mapping
;
307 spin_lock_irq(&mapping
->tree_lock
);
309 error
= radix_tree_insert(&mapping
->page_tree
, index
, page
);
311 error
= shmem_radix_tree_replace(mapping
, index
, expected
,
315 __inc_zone_page_state(page
, NR_FILE_PAGES
);
316 __inc_zone_page_state(page
, NR_SHMEM
);
317 spin_unlock_irq(&mapping
->tree_lock
);
319 page
->mapping
= NULL
;
320 spin_unlock_irq(&mapping
->tree_lock
);
321 page_cache_release(page
);
327 * Like delete_from_page_cache, but substitutes swap for page.
329 static void shmem_delete_from_page_cache(struct page
*page
, void *radswap
)
331 struct address_space
*mapping
= page
->mapping
;
334 spin_lock_irq(&mapping
->tree_lock
);
335 error
= shmem_radix_tree_replace(mapping
, page
->index
, page
, radswap
);
336 page
->mapping
= NULL
;
338 __dec_zone_page_state(page
, NR_FILE_PAGES
);
339 __dec_zone_page_state(page
, NR_SHMEM
);
340 spin_unlock_irq(&mapping
->tree_lock
);
341 page_cache_release(page
);
346 * Remove swap entry from radix tree, free the swap and its page cache.
348 static int shmem_free_swap(struct address_space
*mapping
,
349 pgoff_t index
, void *radswap
)
353 spin_lock_irq(&mapping
->tree_lock
);
354 old
= radix_tree_delete_item(&mapping
->page_tree
, index
, radswap
);
355 spin_unlock_irq(&mapping
->tree_lock
);
358 free_swap_and_cache(radix_to_swp_entry(radswap
));
363 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
365 void shmem_unlock_mapping(struct address_space
*mapping
)
368 pgoff_t indices
[PAGEVEC_SIZE
];
371 pagevec_init(&pvec
, 0);
373 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
375 while (!mapping_unevictable(mapping
)) {
377 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
378 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
380 pvec
.nr
= find_get_entries(mapping
, index
,
381 PAGEVEC_SIZE
, pvec
.pages
, indices
);
384 index
= indices
[pvec
.nr
- 1] + 1;
385 pagevec_remove_exceptionals(&pvec
);
386 check_move_unevictable_pages(pvec
.pages
, pvec
.nr
);
387 pagevec_release(&pvec
);
393 * Remove range of pages and swap entries from radix tree, and free them.
394 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
396 static void shmem_undo_range(struct inode
*inode
, loff_t lstart
, loff_t lend
,
399 struct address_space
*mapping
= inode
->i_mapping
;
400 struct shmem_inode_info
*info
= SHMEM_I(inode
);
401 pgoff_t start
= (lstart
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
402 pgoff_t end
= (lend
+ 1) >> PAGE_CACHE_SHIFT
;
403 unsigned int partial_start
= lstart
& (PAGE_CACHE_SIZE
- 1);
404 unsigned int partial_end
= (lend
+ 1) & (PAGE_CACHE_SIZE
- 1);
406 pgoff_t indices
[PAGEVEC_SIZE
];
407 long nr_swaps_freed
= 0;
412 end
= -1; /* unsigned, so actually very big */
414 pagevec_init(&pvec
, 0);
416 while (index
< end
) {
417 pvec
.nr
= find_get_entries(mapping
, index
,
418 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
),
419 pvec
.pages
, indices
);
422 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
423 struct page
*page
= pvec
.pages
[i
];
429 if (radix_tree_exceptional_entry(page
)) {
432 nr_swaps_freed
+= !shmem_free_swap(mapping
,
437 if (!trylock_page(page
))
439 if (!unfalloc
|| !PageUptodate(page
)) {
440 if (page
->mapping
== mapping
) {
441 VM_BUG_ON_PAGE(PageWriteback(page
), page
);
442 truncate_inode_page(mapping
, page
);
447 pagevec_remove_exceptionals(&pvec
);
448 pagevec_release(&pvec
);
454 struct page
*page
= NULL
;
455 shmem_getpage(inode
, start
- 1, &page
, SGP_READ
, NULL
);
457 unsigned int top
= PAGE_CACHE_SIZE
;
462 zero_user_segment(page
, partial_start
, top
);
463 set_page_dirty(page
);
465 page_cache_release(page
);
469 struct page
*page
= NULL
;
470 shmem_getpage(inode
, end
, &page
, SGP_READ
, NULL
);
472 zero_user_segment(page
, 0, partial_end
);
473 set_page_dirty(page
);
475 page_cache_release(page
);
482 while (index
< end
) {
485 pvec
.nr
= find_get_entries(mapping
, index
,
486 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
),
487 pvec
.pages
, indices
);
489 /* If all gone or hole-punch or unfalloc, we're done */
490 if (index
== start
|| end
!= -1)
492 /* But if truncating, restart to make sure all gone */
496 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
497 struct page
*page
= pvec
.pages
[i
];
503 if (radix_tree_exceptional_entry(page
)) {
506 if (shmem_free_swap(mapping
, index
, page
)) {
507 /* Swap was replaced by page: retry */
516 if (!unfalloc
|| !PageUptodate(page
)) {
517 if (page
->mapping
== mapping
) {
518 VM_BUG_ON_PAGE(PageWriteback(page
), page
);
519 truncate_inode_page(mapping
, page
);
521 /* Page was replaced by swap: retry */
529 pagevec_remove_exceptionals(&pvec
);
530 pagevec_release(&pvec
);
534 spin_lock(&info
->lock
);
535 info
->swapped
-= nr_swaps_freed
;
536 shmem_recalc_inode(inode
);
537 spin_unlock(&info
->lock
);
540 void shmem_truncate_range(struct inode
*inode
, loff_t lstart
, loff_t lend
)
542 shmem_undo_range(inode
, lstart
, lend
, false);
543 inode
->i_ctime
= inode
->i_mtime
= CURRENT_TIME
;
545 EXPORT_SYMBOL_GPL(shmem_truncate_range
);
547 static int shmem_getattr(struct vfsmount
*mnt
, struct dentry
*dentry
,
550 struct inode
*inode
= dentry
->d_inode
;
551 struct shmem_inode_info
*info
= SHMEM_I(inode
);
553 if (info
->alloced
- info
->swapped
!= inode
->i_mapping
->nrpages
) {
554 spin_lock(&info
->lock
);
555 shmem_recalc_inode(inode
);
556 spin_unlock(&info
->lock
);
558 generic_fillattr(inode
, stat
);
562 static int shmem_setattr(struct dentry
*dentry
, struct iattr
*attr
)
564 struct inode
*inode
= d_inode(dentry
);
565 struct shmem_inode_info
*info
= SHMEM_I(inode
);
568 error
= inode_change_ok(inode
, attr
);
572 if (S_ISREG(inode
->i_mode
) && (attr
->ia_valid
& ATTR_SIZE
)) {
573 loff_t oldsize
= inode
->i_size
;
574 loff_t newsize
= attr
->ia_size
;
576 /* protected by i_mutex */
577 if ((newsize
< oldsize
&& (info
->seals
& F_SEAL_SHRINK
)) ||
578 (newsize
> oldsize
&& (info
->seals
& F_SEAL_GROW
)))
581 if (newsize
!= oldsize
) {
582 error
= shmem_reacct_size(SHMEM_I(inode
)->flags
,
586 i_size_write(inode
, newsize
);
587 inode
->i_ctime
= inode
->i_mtime
= CURRENT_TIME
;
589 if (newsize
<= oldsize
) {
590 loff_t holebegin
= round_up(newsize
, PAGE_SIZE
);
591 if (oldsize
> holebegin
)
592 unmap_mapping_range(inode
->i_mapping
,
595 shmem_truncate_range(inode
,
596 newsize
, (loff_t
)-1);
597 /* unmap again to remove racily COWed private pages */
598 if (oldsize
> holebegin
)
599 unmap_mapping_range(inode
->i_mapping
,
604 setattr_copy(inode
, attr
);
605 if (attr
->ia_valid
& ATTR_MODE
)
606 error
= posix_acl_chmod(inode
, inode
->i_mode
);
610 static void shmem_evict_inode(struct inode
*inode
)
612 struct shmem_inode_info
*info
= SHMEM_I(inode
);
614 if (inode
->i_mapping
->a_ops
== &shmem_aops
) {
615 shmem_unacct_size(info
->flags
, inode
->i_size
);
617 shmem_truncate_range(inode
, 0, (loff_t
)-1);
618 if (!list_empty(&info
->swaplist
)) {
619 mutex_lock(&shmem_swaplist_mutex
);
620 list_del_init(&info
->swaplist
);
621 mutex_unlock(&shmem_swaplist_mutex
);
624 kfree(info
->symlink
);
626 simple_xattrs_free(&info
->xattrs
);
627 WARN_ON(inode
->i_blocks
);
628 shmem_free_inode(inode
->i_sb
);
633 * If swap found in inode, free it and move page from swapcache to filecache.
635 static int shmem_unuse_inode(struct shmem_inode_info
*info
,
636 swp_entry_t swap
, struct page
**pagep
)
638 struct address_space
*mapping
= info
->vfs_inode
.i_mapping
;
644 radswap
= swp_to_radix_entry(swap
);
645 index
= radix_tree_locate_item(&mapping
->page_tree
, radswap
);
647 return -EAGAIN
; /* tell shmem_unuse we found nothing */
650 * Move _head_ to start search for next from here.
651 * But be careful: shmem_evict_inode checks list_empty without taking
652 * mutex, and there's an instant in list_move_tail when info->swaplist
653 * would appear empty, if it were the only one on shmem_swaplist.
655 if (shmem_swaplist
.next
!= &info
->swaplist
)
656 list_move_tail(&shmem_swaplist
, &info
->swaplist
);
658 gfp
= mapping_gfp_mask(mapping
);
659 if (shmem_should_replace_page(*pagep
, gfp
)) {
660 mutex_unlock(&shmem_swaplist_mutex
);
661 error
= shmem_replace_page(pagep
, gfp
, info
, index
);
662 mutex_lock(&shmem_swaplist_mutex
);
664 * We needed to drop mutex to make that restrictive page
665 * allocation, but the inode might have been freed while we
666 * dropped it: although a racing shmem_evict_inode() cannot
667 * complete without emptying the radix_tree, our page lock
668 * on this swapcache page is not enough to prevent that -
669 * free_swap_and_cache() of our swap entry will only
670 * trylock_page(), removing swap from radix_tree whatever.
672 * We must not proceed to shmem_add_to_page_cache() if the
673 * inode has been freed, but of course we cannot rely on
674 * inode or mapping or info to check that. However, we can
675 * safely check if our swap entry is still in use (and here
676 * it can't have got reused for another page): if it's still
677 * in use, then the inode cannot have been freed yet, and we
678 * can safely proceed (if it's no longer in use, that tells
679 * nothing about the inode, but we don't need to unuse swap).
681 if (!page_swapcount(*pagep
))
686 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
687 * but also to hold up shmem_evict_inode(): so inode cannot be freed
688 * beneath us (pagelock doesn't help until the page is in pagecache).
691 error
= shmem_add_to_page_cache(*pagep
, mapping
, index
,
693 if (error
!= -ENOMEM
) {
695 * Truncation and eviction use free_swap_and_cache(), which
696 * only does trylock page: if we raced, best clean up here.
698 delete_from_swap_cache(*pagep
);
699 set_page_dirty(*pagep
);
701 spin_lock(&info
->lock
);
703 spin_unlock(&info
->lock
);
711 * Search through swapped inodes to find and replace swap by page.
713 int shmem_unuse(swp_entry_t swap
, struct page
*page
)
715 struct list_head
*this, *next
;
716 struct shmem_inode_info
*info
;
717 struct mem_cgroup
*memcg
;
721 * There's a faint possibility that swap page was replaced before
722 * caller locked it: caller will come back later with the right page.
724 if (unlikely(!PageSwapCache(page
) || page_private(page
) != swap
.val
))
728 * Charge page using GFP_KERNEL while we can wait, before taking
729 * the shmem_swaplist_mutex which might hold up shmem_writepage().
730 * Charged back to the user (not to caller) when swap account is used.
732 error
= mem_cgroup_try_charge(page
, current
->mm
, GFP_KERNEL
, &memcg
);
735 /* No radix_tree_preload: swap entry keeps a place for page in tree */
738 mutex_lock(&shmem_swaplist_mutex
);
739 list_for_each_safe(this, next
, &shmem_swaplist
) {
740 info
= list_entry(this, struct shmem_inode_info
, swaplist
);
742 error
= shmem_unuse_inode(info
, swap
, &page
);
744 list_del_init(&info
->swaplist
);
746 if (error
!= -EAGAIN
)
748 /* found nothing in this: move on to search the next */
750 mutex_unlock(&shmem_swaplist_mutex
);
753 if (error
!= -ENOMEM
)
755 mem_cgroup_cancel_charge(page
, memcg
);
757 mem_cgroup_commit_charge(page
, memcg
, true);
760 page_cache_release(page
);
765 * Move the page from the page cache to the swap cache.
767 static int shmem_writepage(struct page
*page
, struct writeback_control
*wbc
)
769 struct shmem_inode_info
*info
;
770 struct address_space
*mapping
;
775 BUG_ON(!PageLocked(page
));
776 mapping
= page
->mapping
;
778 inode
= mapping
->host
;
779 info
= SHMEM_I(inode
);
780 if (info
->flags
& VM_LOCKED
)
782 if (!total_swap_pages
)
786 * Our capabilities prevent regular writeback or sync from ever calling
787 * shmem_writepage; but a stacking filesystem might use ->writepage of
788 * its underlying filesystem, in which case tmpfs should write out to
789 * swap only in response to memory pressure, and not for the writeback
792 if (!wbc
->for_reclaim
) {
793 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
798 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
799 * value into swapfile.c, the only way we can correctly account for a
800 * fallocated page arriving here is now to initialize it and write it.
802 * That's okay for a page already fallocated earlier, but if we have
803 * not yet completed the fallocation, then (a) we want to keep track
804 * of this page in case we have to undo it, and (b) it may not be a
805 * good idea to continue anyway, once we're pushing into swap. So
806 * reactivate the page, and let shmem_fallocate() quit when too many.
808 if (!PageUptodate(page
)) {
809 if (inode
->i_private
) {
810 struct shmem_falloc
*shmem_falloc
;
811 spin_lock(&inode
->i_lock
);
812 shmem_falloc
= inode
->i_private
;
814 !shmem_falloc
->waitq
&&
815 index
>= shmem_falloc
->start
&&
816 index
< shmem_falloc
->next
)
817 shmem_falloc
->nr_unswapped
++;
820 spin_unlock(&inode
->i_lock
);
824 clear_highpage(page
);
825 flush_dcache_page(page
);
826 SetPageUptodate(page
);
829 swap
= get_swap_page();
834 * Add inode to shmem_unuse()'s list of swapped-out inodes,
835 * if it's not already there. Do it now before the page is
836 * moved to swap cache, when its pagelock no longer protects
837 * the inode from eviction. But don't unlock the mutex until
838 * we've incremented swapped, because shmem_unuse_inode() will
839 * prune a !swapped inode from the swaplist under this mutex.
841 mutex_lock(&shmem_swaplist_mutex
);
842 if (list_empty(&info
->swaplist
))
843 list_add_tail(&info
->swaplist
, &shmem_swaplist
);
845 if (add_to_swap_cache(page
, swap
, GFP_ATOMIC
) == 0) {
846 swap_shmem_alloc(swap
);
847 shmem_delete_from_page_cache(page
, swp_to_radix_entry(swap
));
849 spin_lock(&info
->lock
);
851 shmem_recalc_inode(inode
);
852 spin_unlock(&info
->lock
);
854 mutex_unlock(&shmem_swaplist_mutex
);
855 BUG_ON(page_mapped(page
));
856 swap_writepage(page
, wbc
);
860 mutex_unlock(&shmem_swaplist_mutex
);
861 swapcache_free(swap
);
863 set_page_dirty(page
);
864 if (wbc
->for_reclaim
)
865 return AOP_WRITEPAGE_ACTIVATE
; /* Return with page locked */
872 static void shmem_show_mpol(struct seq_file
*seq
, struct mempolicy
*mpol
)
876 if (!mpol
|| mpol
->mode
== MPOL_DEFAULT
)
877 return; /* show nothing */
879 mpol_to_str(buffer
, sizeof(buffer
), mpol
);
881 seq_printf(seq
, ",mpol=%s", buffer
);
884 static struct mempolicy
*shmem_get_sbmpol(struct shmem_sb_info
*sbinfo
)
886 struct mempolicy
*mpol
= NULL
;
888 spin_lock(&sbinfo
->stat_lock
); /* prevent replace/use races */
891 spin_unlock(&sbinfo
->stat_lock
);
895 #endif /* CONFIG_TMPFS */
897 static struct page
*shmem_swapin(swp_entry_t swap
, gfp_t gfp
,
898 struct shmem_inode_info
*info
, pgoff_t index
)
900 struct vm_area_struct pvma
;
903 /* Create a pseudo vma that just contains the policy */
905 /* Bias interleave by inode number to distribute better across nodes */
906 pvma
.vm_pgoff
= index
+ info
->vfs_inode
.i_ino
;
908 pvma
.vm_policy
= mpol_shared_policy_lookup(&info
->policy
, index
);
910 page
= swapin_readahead(swap
, gfp
, &pvma
, 0);
912 /* Drop reference taken by mpol_shared_policy_lookup() */
913 mpol_cond_put(pvma
.vm_policy
);
918 static struct page
*shmem_alloc_page(gfp_t gfp
,
919 struct shmem_inode_info
*info
, pgoff_t index
)
921 struct vm_area_struct pvma
;
924 /* Create a pseudo vma that just contains the policy */
926 /* Bias interleave by inode number to distribute better across nodes */
927 pvma
.vm_pgoff
= index
+ info
->vfs_inode
.i_ino
;
929 pvma
.vm_policy
= mpol_shared_policy_lookup(&info
->policy
, index
);
931 page
= alloc_page_vma(gfp
, &pvma
, 0);
933 /* Drop reference taken by mpol_shared_policy_lookup() */
934 mpol_cond_put(pvma
.vm_policy
);
938 #else /* !CONFIG_NUMA */
940 static inline void shmem_show_mpol(struct seq_file
*seq
, struct mempolicy
*mpol
)
943 #endif /* CONFIG_TMPFS */
945 static inline struct page
*shmem_swapin(swp_entry_t swap
, gfp_t gfp
,
946 struct shmem_inode_info
*info
, pgoff_t index
)
948 return swapin_readahead(swap
, gfp
, NULL
, 0);
951 static inline struct page
*shmem_alloc_page(gfp_t gfp
,
952 struct shmem_inode_info
*info
, pgoff_t index
)
954 return alloc_page(gfp
);
956 #endif /* CONFIG_NUMA */
958 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
959 static inline struct mempolicy
*shmem_get_sbmpol(struct shmem_sb_info
*sbinfo
)
966 * When a page is moved from swapcache to shmem filecache (either by the
967 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
968 * shmem_unuse_inode()), it may have been read in earlier from swap, in
969 * ignorance of the mapping it belongs to. If that mapping has special
970 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
971 * we may need to copy to a suitable page before moving to filecache.
973 * In a future release, this may well be extended to respect cpuset and
974 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
975 * but for now it is a simple matter of zone.
977 static bool shmem_should_replace_page(struct page
*page
, gfp_t gfp
)
979 return page_zonenum(page
) > gfp_zone(gfp
);
982 static int shmem_replace_page(struct page
**pagep
, gfp_t gfp
,
983 struct shmem_inode_info
*info
, pgoff_t index
)
985 struct page
*oldpage
, *newpage
;
986 struct address_space
*swap_mapping
;
991 swap_index
= page_private(oldpage
);
992 swap_mapping
= page_mapping(oldpage
);
995 * We have arrived here because our zones are constrained, so don't
996 * limit chance of success by further cpuset and node constraints.
998 gfp
&= ~GFP_CONSTRAINT_MASK
;
999 newpage
= shmem_alloc_page(gfp
, info
, index
);
1003 page_cache_get(newpage
);
1004 copy_highpage(newpage
, oldpage
);
1005 flush_dcache_page(newpage
);
1007 __set_page_locked(newpage
);
1008 SetPageUptodate(newpage
);
1009 SetPageSwapBacked(newpage
);
1010 set_page_private(newpage
, swap_index
);
1011 SetPageSwapCache(newpage
);
1014 * Our caller will very soon move newpage out of swapcache, but it's
1015 * a nice clean interface for us to replace oldpage by newpage there.
1017 spin_lock_irq(&swap_mapping
->tree_lock
);
1018 error
= shmem_radix_tree_replace(swap_mapping
, swap_index
, oldpage
,
1021 __inc_zone_page_state(newpage
, NR_FILE_PAGES
);
1022 __dec_zone_page_state(oldpage
, NR_FILE_PAGES
);
1024 spin_unlock_irq(&swap_mapping
->tree_lock
);
1026 if (unlikely(error
)) {
1028 * Is this possible? I think not, now that our callers check
1029 * both PageSwapCache and page_private after getting page lock;
1030 * but be defensive. Reverse old to newpage for clear and free.
1034 mem_cgroup_replace_page(oldpage
, newpage
);
1035 lru_cache_add_anon(newpage
);
1039 ClearPageSwapCache(oldpage
);
1040 set_page_private(oldpage
, 0);
1042 unlock_page(oldpage
);
1043 page_cache_release(oldpage
);
1044 page_cache_release(oldpage
);
1049 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1051 * If we allocate a new one we do not mark it dirty. That's up to the
1052 * vm. If we swap it in we mark it dirty since we also free the swap
1053 * entry since a page cannot live in both the swap and page cache
1055 static int shmem_getpage_gfp(struct inode
*inode
, pgoff_t index
,
1056 struct page
**pagep
, enum sgp_type sgp
, gfp_t gfp
, int *fault_type
)
1058 struct address_space
*mapping
= inode
->i_mapping
;
1059 struct shmem_inode_info
*info
;
1060 struct shmem_sb_info
*sbinfo
;
1061 struct mem_cgroup
*memcg
;
1068 if (index
> (MAX_LFS_FILESIZE
>> PAGE_CACHE_SHIFT
))
1072 page
= find_lock_entry(mapping
, index
);
1073 if (radix_tree_exceptional_entry(page
)) {
1074 swap
= radix_to_swp_entry(page
);
1078 if (sgp
!= SGP_WRITE
&& sgp
!= SGP_FALLOC
&&
1079 ((loff_t
)index
<< PAGE_CACHE_SHIFT
) >= i_size_read(inode
)) {
1084 if (page
&& sgp
== SGP_WRITE
)
1085 mark_page_accessed(page
);
1087 /* fallocated page? */
1088 if (page
&& !PageUptodate(page
)) {
1089 if (sgp
!= SGP_READ
)
1092 page_cache_release(page
);
1095 if (page
|| (sgp
== SGP_READ
&& !swap
.val
)) {
1101 * Fast cache lookup did not find it:
1102 * bring it back from swap or allocate.
1104 info
= SHMEM_I(inode
);
1105 sbinfo
= SHMEM_SB(inode
->i_sb
);
1108 /* Look it up and read it in.. */
1109 page
= lookup_swap_cache(swap
);
1111 /* here we actually do the io */
1113 *fault_type
|= VM_FAULT_MAJOR
;
1114 page
= shmem_swapin(swap
, gfp
, info
, index
);
1121 /* We have to do this with page locked to prevent races */
1123 if (!PageSwapCache(page
) || page_private(page
) != swap
.val
||
1124 !shmem_confirm_swap(mapping
, index
, swap
)) {
1125 error
= -EEXIST
; /* try again */
1128 if (!PageUptodate(page
)) {
1132 wait_on_page_writeback(page
);
1134 if (shmem_should_replace_page(page
, gfp
)) {
1135 error
= shmem_replace_page(&page
, gfp
, info
, index
);
1140 error
= mem_cgroup_try_charge(page
, current
->mm
, gfp
, &memcg
);
1142 error
= shmem_add_to_page_cache(page
, mapping
, index
,
1143 swp_to_radix_entry(swap
));
1145 * We already confirmed swap under page lock, and make
1146 * no memory allocation here, so usually no possibility
1147 * of error; but free_swap_and_cache() only trylocks a
1148 * page, so it is just possible that the entry has been
1149 * truncated or holepunched since swap was confirmed.
1150 * shmem_undo_range() will have done some of the
1151 * unaccounting, now delete_from_swap_cache() will do
1153 * Reset swap.val? No, leave it so "failed" goes back to
1154 * "repeat": reading a hole and writing should succeed.
1157 mem_cgroup_cancel_charge(page
, memcg
);
1158 delete_from_swap_cache(page
);
1164 mem_cgroup_commit_charge(page
, memcg
, true);
1166 spin_lock(&info
->lock
);
1168 shmem_recalc_inode(inode
);
1169 spin_unlock(&info
->lock
);
1171 if (sgp
== SGP_WRITE
)
1172 mark_page_accessed(page
);
1174 delete_from_swap_cache(page
);
1175 set_page_dirty(page
);
1179 if (shmem_acct_block(info
->flags
)) {
1183 if (sbinfo
->max_blocks
) {
1184 if (percpu_counter_compare(&sbinfo
->used_blocks
,
1185 sbinfo
->max_blocks
) >= 0) {
1189 percpu_counter_inc(&sbinfo
->used_blocks
);
1192 page
= shmem_alloc_page(gfp
, info
, index
);
1198 __SetPageSwapBacked(page
);
1199 __set_page_locked(page
);
1200 if (sgp
== SGP_WRITE
)
1201 __SetPageReferenced(page
);
1203 error
= mem_cgroup_try_charge(page
, current
->mm
, gfp
, &memcg
);
1206 error
= radix_tree_maybe_preload(gfp
& GFP_RECLAIM_MASK
);
1208 error
= shmem_add_to_page_cache(page
, mapping
, index
,
1210 radix_tree_preload_end();
1213 mem_cgroup_cancel_charge(page
, memcg
);
1216 mem_cgroup_commit_charge(page
, memcg
, false);
1217 lru_cache_add_anon(page
);
1219 spin_lock(&info
->lock
);
1221 inode
->i_blocks
+= BLOCKS_PER_PAGE
;
1222 shmem_recalc_inode(inode
);
1223 spin_unlock(&info
->lock
);
1227 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1229 if (sgp
== SGP_FALLOC
)
1233 * Let SGP_WRITE caller clear ends if write does not fill page;
1234 * but SGP_FALLOC on a page fallocated earlier must initialize
1235 * it now, lest undo on failure cancel our earlier guarantee.
1237 if (sgp
!= SGP_WRITE
) {
1238 clear_highpage(page
);
1239 flush_dcache_page(page
);
1240 SetPageUptodate(page
);
1242 if (sgp
== SGP_DIRTY
)
1243 set_page_dirty(page
);
1246 /* Perhaps the file has been truncated since we checked */
1247 if (sgp
!= SGP_WRITE
&& sgp
!= SGP_FALLOC
&&
1248 ((loff_t
)index
<< PAGE_CACHE_SHIFT
) >= i_size_read(inode
)) {
1262 info
= SHMEM_I(inode
);
1263 ClearPageDirty(page
);
1264 delete_from_page_cache(page
);
1265 spin_lock(&info
->lock
);
1267 inode
->i_blocks
-= BLOCKS_PER_PAGE
;
1268 spin_unlock(&info
->lock
);
1270 sbinfo
= SHMEM_SB(inode
->i_sb
);
1271 if (sbinfo
->max_blocks
)
1272 percpu_counter_add(&sbinfo
->used_blocks
, -1);
1274 shmem_unacct_blocks(info
->flags
, 1);
1276 if (swap
.val
&& error
!= -EINVAL
&&
1277 !shmem_confirm_swap(mapping
, index
, swap
))
1282 page_cache_release(page
);
1284 if (error
== -ENOSPC
&& !once
++) {
1285 info
= SHMEM_I(inode
);
1286 spin_lock(&info
->lock
);
1287 shmem_recalc_inode(inode
);
1288 spin_unlock(&info
->lock
);
1291 if (error
== -EEXIST
) /* from above or from radix_tree_insert */
1296 static int shmem_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1298 struct inode
*inode
= file_inode(vma
->vm_file
);
1300 int ret
= VM_FAULT_LOCKED
;
1303 * Trinity finds that probing a hole which tmpfs is punching can
1304 * prevent the hole-punch from ever completing: which in turn
1305 * locks writers out with its hold on i_mutex. So refrain from
1306 * faulting pages into the hole while it's being punched. Although
1307 * shmem_undo_range() does remove the additions, it may be unable to
1308 * keep up, as each new page needs its own unmap_mapping_range() call,
1309 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1311 * It does not matter if we sometimes reach this check just before the
1312 * hole-punch begins, so that one fault then races with the punch:
1313 * we just need to make racing faults a rare case.
1315 * The implementation below would be much simpler if we just used a
1316 * standard mutex or completion: but we cannot take i_mutex in fault,
1317 * and bloating every shmem inode for this unlikely case would be sad.
1319 if (unlikely(inode
->i_private
)) {
1320 struct shmem_falloc
*shmem_falloc
;
1322 spin_lock(&inode
->i_lock
);
1323 shmem_falloc
= inode
->i_private
;
1325 shmem_falloc
->waitq
&&
1326 vmf
->pgoff
>= shmem_falloc
->start
&&
1327 vmf
->pgoff
< shmem_falloc
->next
) {
1328 wait_queue_head_t
*shmem_falloc_waitq
;
1329 DEFINE_WAIT(shmem_fault_wait
);
1331 ret
= VM_FAULT_NOPAGE
;
1332 if ((vmf
->flags
& FAULT_FLAG_ALLOW_RETRY
) &&
1333 !(vmf
->flags
& FAULT_FLAG_RETRY_NOWAIT
)) {
1334 /* It's polite to up mmap_sem if we can */
1335 up_read(&vma
->vm_mm
->mmap_sem
);
1336 ret
= VM_FAULT_RETRY
;
1339 shmem_falloc_waitq
= shmem_falloc
->waitq
;
1340 prepare_to_wait(shmem_falloc_waitq
, &shmem_fault_wait
,
1341 TASK_UNINTERRUPTIBLE
);
1342 spin_unlock(&inode
->i_lock
);
1346 * shmem_falloc_waitq points into the shmem_fallocate()
1347 * stack of the hole-punching task: shmem_falloc_waitq
1348 * is usually invalid by the time we reach here, but
1349 * finish_wait() does not dereference it in that case;
1350 * though i_lock needed lest racing with wake_up_all().
1352 spin_lock(&inode
->i_lock
);
1353 finish_wait(shmem_falloc_waitq
, &shmem_fault_wait
);
1354 spin_unlock(&inode
->i_lock
);
1357 spin_unlock(&inode
->i_lock
);
1360 error
= shmem_getpage(inode
, vmf
->pgoff
, &vmf
->page
, SGP_CACHE
, &ret
);
1362 return ((error
== -ENOMEM
) ? VM_FAULT_OOM
: VM_FAULT_SIGBUS
);
1364 if (ret
& VM_FAULT_MAJOR
) {
1365 count_vm_event(PGMAJFAULT
);
1366 mem_cgroup_count_vm_event(vma
->vm_mm
, PGMAJFAULT
);
1372 static int shmem_set_policy(struct vm_area_struct
*vma
, struct mempolicy
*mpol
)
1374 struct inode
*inode
= file_inode(vma
->vm_file
);
1375 return mpol_set_shared_policy(&SHMEM_I(inode
)->policy
, vma
, mpol
);
1378 static struct mempolicy
*shmem_get_policy(struct vm_area_struct
*vma
,
1381 struct inode
*inode
= file_inode(vma
->vm_file
);
1384 index
= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
) + vma
->vm_pgoff
;
1385 return mpol_shared_policy_lookup(&SHMEM_I(inode
)->policy
, index
);
1389 int shmem_lock(struct file
*file
, int lock
, struct user_struct
*user
)
1391 struct inode
*inode
= file_inode(file
);
1392 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1393 int retval
= -ENOMEM
;
1395 spin_lock(&info
->lock
);
1396 if (lock
&& !(info
->flags
& VM_LOCKED
)) {
1397 if (!user_shm_lock(inode
->i_size
, user
))
1399 info
->flags
|= VM_LOCKED
;
1400 mapping_set_unevictable(file
->f_mapping
);
1402 if (!lock
&& (info
->flags
& VM_LOCKED
) && user
) {
1403 user_shm_unlock(inode
->i_size
, user
);
1404 info
->flags
&= ~VM_LOCKED
;
1405 mapping_clear_unevictable(file
->f_mapping
);
1410 spin_unlock(&info
->lock
);
1414 static int shmem_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1416 file_accessed(file
);
1417 vma
->vm_ops
= &shmem_vm_ops
;
1421 static struct inode
*shmem_get_inode(struct super_block
*sb
, const struct inode
*dir
,
1422 umode_t mode
, dev_t dev
, unsigned long flags
)
1424 struct inode
*inode
;
1425 struct shmem_inode_info
*info
;
1426 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
1428 if (shmem_reserve_inode(sb
))
1431 inode
= new_inode(sb
);
1433 inode
->i_ino
= get_next_ino();
1434 inode_init_owner(inode
, dir
, mode
);
1435 inode
->i_blocks
= 0;
1436 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
= CURRENT_TIME
;
1437 inode
->i_generation
= get_seconds();
1438 info
= SHMEM_I(inode
);
1439 memset(info
, 0, (char *)inode
- (char *)info
);
1440 spin_lock_init(&info
->lock
);
1441 info
->seals
= F_SEAL_SEAL
;
1442 info
->flags
= flags
& VM_NORESERVE
;
1443 INIT_LIST_HEAD(&info
->swaplist
);
1444 simple_xattrs_init(&info
->xattrs
);
1445 cache_no_acl(inode
);
1447 switch (mode
& S_IFMT
) {
1449 inode
->i_op
= &shmem_special_inode_operations
;
1450 init_special_inode(inode
, mode
, dev
);
1453 inode
->i_mapping
->a_ops
= &shmem_aops
;
1454 inode
->i_op
= &shmem_inode_operations
;
1455 inode
->i_fop
= &shmem_file_operations
;
1456 mpol_shared_policy_init(&info
->policy
,
1457 shmem_get_sbmpol(sbinfo
));
1461 /* Some things misbehave if size == 0 on a directory */
1462 inode
->i_size
= 2 * BOGO_DIRENT_SIZE
;
1463 inode
->i_op
= &shmem_dir_inode_operations
;
1464 inode
->i_fop
= &simple_dir_operations
;
1468 * Must not load anything in the rbtree,
1469 * mpol_free_shared_policy will not be called.
1471 mpol_shared_policy_init(&info
->policy
, NULL
);
1475 shmem_free_inode(sb
);
1479 bool shmem_mapping(struct address_space
*mapping
)
1484 return mapping
->host
->i_sb
->s_op
== &shmem_ops
;
1488 static const struct inode_operations shmem_symlink_inode_operations
;
1489 static const struct inode_operations shmem_short_symlink_operations
;
1491 #ifdef CONFIG_TMPFS_XATTR
1492 static int shmem_initxattrs(struct inode
*, const struct xattr
*, void *);
1494 #define shmem_initxattrs NULL
1498 shmem_write_begin(struct file
*file
, struct address_space
*mapping
,
1499 loff_t pos
, unsigned len
, unsigned flags
,
1500 struct page
**pagep
, void **fsdata
)
1502 struct inode
*inode
= mapping
->host
;
1503 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1504 pgoff_t index
= pos
>> PAGE_CACHE_SHIFT
;
1506 /* i_mutex is held by caller */
1507 if (unlikely(info
->seals
)) {
1508 if (info
->seals
& F_SEAL_WRITE
)
1510 if ((info
->seals
& F_SEAL_GROW
) && pos
+ len
> inode
->i_size
)
1514 return shmem_getpage(inode
, index
, pagep
, SGP_WRITE
, NULL
);
1518 shmem_write_end(struct file
*file
, struct address_space
*mapping
,
1519 loff_t pos
, unsigned len
, unsigned copied
,
1520 struct page
*page
, void *fsdata
)
1522 struct inode
*inode
= mapping
->host
;
1524 if (pos
+ copied
> inode
->i_size
)
1525 i_size_write(inode
, pos
+ copied
);
1527 if (!PageUptodate(page
)) {
1528 if (copied
< PAGE_CACHE_SIZE
) {
1529 unsigned from
= pos
& (PAGE_CACHE_SIZE
- 1);
1530 zero_user_segments(page
, 0, from
,
1531 from
+ copied
, PAGE_CACHE_SIZE
);
1533 SetPageUptodate(page
);
1535 set_page_dirty(page
);
1537 page_cache_release(page
);
1542 static ssize_t
shmem_file_read_iter(struct kiocb
*iocb
, struct iov_iter
*to
)
1544 struct file
*file
= iocb
->ki_filp
;
1545 struct inode
*inode
= file_inode(file
);
1546 struct address_space
*mapping
= inode
->i_mapping
;
1548 unsigned long offset
;
1549 enum sgp_type sgp
= SGP_READ
;
1552 loff_t
*ppos
= &iocb
->ki_pos
;
1555 * Might this read be for a stacking filesystem? Then when reading
1556 * holes of a sparse file, we actually need to allocate those pages,
1557 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1559 if (!iter_is_iovec(to
))
1562 index
= *ppos
>> PAGE_CACHE_SHIFT
;
1563 offset
= *ppos
& ~PAGE_CACHE_MASK
;
1566 struct page
*page
= NULL
;
1568 unsigned long nr
, ret
;
1569 loff_t i_size
= i_size_read(inode
);
1571 end_index
= i_size
>> PAGE_CACHE_SHIFT
;
1572 if (index
> end_index
)
1574 if (index
== end_index
) {
1575 nr
= i_size
& ~PAGE_CACHE_MASK
;
1580 error
= shmem_getpage(inode
, index
, &page
, sgp
, NULL
);
1582 if (error
== -EINVAL
)
1590 * We must evaluate after, since reads (unlike writes)
1591 * are called without i_mutex protection against truncate
1593 nr
= PAGE_CACHE_SIZE
;
1594 i_size
= i_size_read(inode
);
1595 end_index
= i_size
>> PAGE_CACHE_SHIFT
;
1596 if (index
== end_index
) {
1597 nr
= i_size
& ~PAGE_CACHE_MASK
;
1600 page_cache_release(page
);
1608 * If users can be writing to this page using arbitrary
1609 * virtual addresses, take care about potential aliasing
1610 * before reading the page on the kernel side.
1612 if (mapping_writably_mapped(mapping
))
1613 flush_dcache_page(page
);
1615 * Mark the page accessed if we read the beginning.
1618 mark_page_accessed(page
);
1620 page
= ZERO_PAGE(0);
1621 page_cache_get(page
);
1625 * Ok, we have the page, and it's up-to-date, so
1626 * now we can copy it to user space...
1628 ret
= copy_page_to_iter(page
, offset
, nr
, to
);
1631 index
+= offset
>> PAGE_CACHE_SHIFT
;
1632 offset
&= ~PAGE_CACHE_MASK
;
1634 page_cache_release(page
);
1635 if (!iov_iter_count(to
))
1644 *ppos
= ((loff_t
) index
<< PAGE_CACHE_SHIFT
) + offset
;
1645 file_accessed(file
);
1646 return retval
? retval
: error
;
1649 static ssize_t
shmem_file_splice_read(struct file
*in
, loff_t
*ppos
,
1650 struct pipe_inode_info
*pipe
, size_t len
,
1653 struct address_space
*mapping
= in
->f_mapping
;
1654 struct inode
*inode
= mapping
->host
;
1655 unsigned int loff
, nr_pages
, req_pages
;
1656 struct page
*pages
[PIPE_DEF_BUFFERS
];
1657 struct partial_page partial
[PIPE_DEF_BUFFERS
];
1659 pgoff_t index
, end_index
;
1662 struct splice_pipe_desc spd
= {
1665 .nr_pages_max
= PIPE_DEF_BUFFERS
,
1667 .ops
= &page_cache_pipe_buf_ops
,
1668 .spd_release
= spd_release_page
,
1671 isize
= i_size_read(inode
);
1672 if (unlikely(*ppos
>= isize
))
1675 left
= isize
- *ppos
;
1676 if (unlikely(left
< len
))
1679 if (splice_grow_spd(pipe
, &spd
))
1682 index
= *ppos
>> PAGE_CACHE_SHIFT
;
1683 loff
= *ppos
& ~PAGE_CACHE_MASK
;
1684 req_pages
= (len
+ loff
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
1685 nr_pages
= min(req_pages
, spd
.nr_pages_max
);
1687 spd
.nr_pages
= find_get_pages_contig(mapping
, index
,
1688 nr_pages
, spd
.pages
);
1689 index
+= spd
.nr_pages
;
1692 while (spd
.nr_pages
< nr_pages
) {
1693 error
= shmem_getpage(inode
, index
, &page
, SGP_CACHE
, NULL
);
1697 spd
.pages
[spd
.nr_pages
++] = page
;
1701 index
= *ppos
>> PAGE_CACHE_SHIFT
;
1702 nr_pages
= spd
.nr_pages
;
1705 for (page_nr
= 0; page_nr
< nr_pages
; page_nr
++) {
1706 unsigned int this_len
;
1711 this_len
= min_t(unsigned long, len
, PAGE_CACHE_SIZE
- loff
);
1712 page
= spd
.pages
[page_nr
];
1714 if (!PageUptodate(page
) || page
->mapping
!= mapping
) {
1715 error
= shmem_getpage(inode
, index
, &page
,
1720 page_cache_release(spd
.pages
[page_nr
]);
1721 spd
.pages
[page_nr
] = page
;
1724 isize
= i_size_read(inode
);
1725 end_index
= (isize
- 1) >> PAGE_CACHE_SHIFT
;
1726 if (unlikely(!isize
|| index
> end_index
))
1729 if (end_index
== index
) {
1732 plen
= ((isize
- 1) & ~PAGE_CACHE_MASK
) + 1;
1736 this_len
= min(this_len
, plen
- loff
);
1740 spd
.partial
[page_nr
].offset
= loff
;
1741 spd
.partial
[page_nr
].len
= this_len
;
1748 while (page_nr
< nr_pages
)
1749 page_cache_release(spd
.pages
[page_nr
++]);
1752 error
= splice_to_pipe(pipe
, &spd
);
1754 splice_shrink_spd(&spd
);
1764 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1766 static pgoff_t
shmem_seek_hole_data(struct address_space
*mapping
,
1767 pgoff_t index
, pgoff_t end
, int whence
)
1770 struct pagevec pvec
;
1771 pgoff_t indices
[PAGEVEC_SIZE
];
1775 pagevec_init(&pvec
, 0);
1776 pvec
.nr
= 1; /* start small: we may be there already */
1778 pvec
.nr
= find_get_entries(mapping
, index
,
1779 pvec
.nr
, pvec
.pages
, indices
);
1781 if (whence
== SEEK_DATA
)
1785 for (i
= 0; i
< pvec
.nr
; i
++, index
++) {
1786 if (index
< indices
[i
]) {
1787 if (whence
== SEEK_HOLE
) {
1793 page
= pvec
.pages
[i
];
1794 if (page
&& !radix_tree_exceptional_entry(page
)) {
1795 if (!PageUptodate(page
))
1799 (page
&& whence
== SEEK_DATA
) ||
1800 (!page
&& whence
== SEEK_HOLE
)) {
1805 pagevec_remove_exceptionals(&pvec
);
1806 pagevec_release(&pvec
);
1807 pvec
.nr
= PAGEVEC_SIZE
;
1813 static loff_t
shmem_file_llseek(struct file
*file
, loff_t offset
, int whence
)
1815 struct address_space
*mapping
= file
->f_mapping
;
1816 struct inode
*inode
= mapping
->host
;
1820 if (whence
!= SEEK_DATA
&& whence
!= SEEK_HOLE
)
1821 return generic_file_llseek_size(file
, offset
, whence
,
1822 MAX_LFS_FILESIZE
, i_size_read(inode
));
1823 mutex_lock(&inode
->i_mutex
);
1824 /* We're holding i_mutex so we can access i_size directly */
1828 else if (offset
>= inode
->i_size
)
1831 start
= offset
>> PAGE_CACHE_SHIFT
;
1832 end
= (inode
->i_size
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
1833 new_offset
= shmem_seek_hole_data(mapping
, start
, end
, whence
);
1834 new_offset
<<= PAGE_CACHE_SHIFT
;
1835 if (new_offset
> offset
) {
1836 if (new_offset
< inode
->i_size
)
1837 offset
= new_offset
;
1838 else if (whence
== SEEK_DATA
)
1841 offset
= inode
->i_size
;
1846 offset
= vfs_setpos(file
, offset
, MAX_LFS_FILESIZE
);
1847 mutex_unlock(&inode
->i_mutex
);
1852 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
1853 * so reuse a tag which we firmly believe is never set or cleared on shmem.
1855 #define SHMEM_TAG_PINNED PAGECACHE_TAG_TOWRITE
1856 #define LAST_SCAN 4 /* about 150ms max */
1858 static void shmem_tag_pins(struct address_space
*mapping
)
1860 struct radix_tree_iter iter
;
1870 radix_tree_for_each_slot(slot
, &mapping
->page_tree
, &iter
, start
) {
1871 page
= radix_tree_deref_slot(slot
);
1872 if (!page
|| radix_tree_exception(page
)) {
1873 if (radix_tree_deref_retry(page
))
1875 } else if (page_count(page
) - page_mapcount(page
) > 1) {
1876 spin_lock_irq(&mapping
->tree_lock
);
1877 radix_tree_tag_set(&mapping
->page_tree
, iter
.index
,
1879 spin_unlock_irq(&mapping
->tree_lock
);
1882 if (need_resched()) {
1884 start
= iter
.index
+ 1;
1892 * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
1893 * via get_user_pages(), drivers might have some pending I/O without any active
1894 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
1895 * and see whether it has an elevated ref-count. If so, we tag them and wait for
1896 * them to be dropped.
1897 * The caller must guarantee that no new user will acquire writable references
1898 * to those pages to avoid races.
1900 static int shmem_wait_for_pins(struct address_space
*mapping
)
1902 struct radix_tree_iter iter
;
1908 shmem_tag_pins(mapping
);
1911 for (scan
= 0; scan
<= LAST_SCAN
; scan
++) {
1912 if (!radix_tree_tagged(&mapping
->page_tree
, SHMEM_TAG_PINNED
))
1916 lru_add_drain_all();
1917 else if (schedule_timeout_killable((HZ
<< scan
) / 200))
1923 radix_tree_for_each_tagged(slot
, &mapping
->page_tree
, &iter
,
1924 start
, SHMEM_TAG_PINNED
) {
1926 page
= radix_tree_deref_slot(slot
);
1927 if (radix_tree_exception(page
)) {
1928 if (radix_tree_deref_retry(page
))
1935 page_count(page
) - page_mapcount(page
) != 1) {
1936 if (scan
< LAST_SCAN
)
1937 goto continue_resched
;
1940 * On the last scan, we clean up all those tags
1941 * we inserted; but make a note that we still
1942 * found pages pinned.
1947 spin_lock_irq(&mapping
->tree_lock
);
1948 radix_tree_tag_clear(&mapping
->page_tree
,
1949 iter
.index
, SHMEM_TAG_PINNED
);
1950 spin_unlock_irq(&mapping
->tree_lock
);
1952 if (need_resched()) {
1954 start
= iter
.index
+ 1;
1964 #define F_ALL_SEALS (F_SEAL_SEAL | \
1969 int shmem_add_seals(struct file
*file
, unsigned int seals
)
1971 struct inode
*inode
= file_inode(file
);
1972 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1977 * Sealing allows multiple parties to share a shmem-file but restrict
1978 * access to a specific subset of file operations. Seals can only be
1979 * added, but never removed. This way, mutually untrusted parties can
1980 * share common memory regions with a well-defined policy. A malicious
1981 * peer can thus never perform unwanted operations on a shared object.
1983 * Seals are only supported on special shmem-files and always affect
1984 * the whole underlying inode. Once a seal is set, it may prevent some
1985 * kinds of access to the file. Currently, the following seals are
1987 * SEAL_SEAL: Prevent further seals from being set on this file
1988 * SEAL_SHRINK: Prevent the file from shrinking
1989 * SEAL_GROW: Prevent the file from growing
1990 * SEAL_WRITE: Prevent write access to the file
1992 * As we don't require any trust relationship between two parties, we
1993 * must prevent seals from being removed. Therefore, sealing a file
1994 * only adds a given set of seals to the file, it never touches
1995 * existing seals. Furthermore, the "setting seals"-operation can be
1996 * sealed itself, which basically prevents any further seal from being
1999 * Semantics of sealing are only defined on volatile files. Only
2000 * anonymous shmem files support sealing. More importantly, seals are
2001 * never written to disk. Therefore, there's no plan to support it on
2005 if (file
->f_op
!= &shmem_file_operations
)
2007 if (!(file
->f_mode
& FMODE_WRITE
))
2009 if (seals
& ~(unsigned int)F_ALL_SEALS
)
2012 mutex_lock(&inode
->i_mutex
);
2014 if (info
->seals
& F_SEAL_SEAL
) {
2019 if ((seals
& F_SEAL_WRITE
) && !(info
->seals
& F_SEAL_WRITE
)) {
2020 error
= mapping_deny_writable(file
->f_mapping
);
2024 error
= shmem_wait_for_pins(file
->f_mapping
);
2026 mapping_allow_writable(file
->f_mapping
);
2031 info
->seals
|= seals
;
2035 mutex_unlock(&inode
->i_mutex
);
2038 EXPORT_SYMBOL_GPL(shmem_add_seals
);
2040 int shmem_get_seals(struct file
*file
)
2042 if (file
->f_op
!= &shmem_file_operations
)
2045 return SHMEM_I(file_inode(file
))->seals
;
2047 EXPORT_SYMBOL_GPL(shmem_get_seals
);
2049 long shmem_fcntl(struct file
*file
, unsigned int cmd
, unsigned long arg
)
2055 /* disallow upper 32bit */
2059 error
= shmem_add_seals(file
, arg
);
2062 error
= shmem_get_seals(file
);
2072 static long shmem_fallocate(struct file
*file
, int mode
, loff_t offset
,
2075 struct inode
*inode
= file_inode(file
);
2076 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
2077 struct shmem_inode_info
*info
= SHMEM_I(inode
);
2078 struct shmem_falloc shmem_falloc
;
2079 pgoff_t start
, index
, end
;
2082 if (mode
& ~(FALLOC_FL_KEEP_SIZE
| FALLOC_FL_PUNCH_HOLE
))
2085 mutex_lock(&inode
->i_mutex
);
2087 if (mode
& FALLOC_FL_PUNCH_HOLE
) {
2088 struct address_space
*mapping
= file
->f_mapping
;
2089 loff_t unmap_start
= round_up(offset
, PAGE_SIZE
);
2090 loff_t unmap_end
= round_down(offset
+ len
, PAGE_SIZE
) - 1;
2091 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq
);
2093 /* protected by i_mutex */
2094 if (info
->seals
& F_SEAL_WRITE
) {
2099 shmem_falloc
.waitq
= &shmem_falloc_waitq
;
2100 shmem_falloc
.start
= unmap_start
>> PAGE_SHIFT
;
2101 shmem_falloc
.next
= (unmap_end
+ 1) >> PAGE_SHIFT
;
2102 spin_lock(&inode
->i_lock
);
2103 inode
->i_private
= &shmem_falloc
;
2104 spin_unlock(&inode
->i_lock
);
2106 if ((u64
)unmap_end
> (u64
)unmap_start
)
2107 unmap_mapping_range(mapping
, unmap_start
,
2108 1 + unmap_end
- unmap_start
, 0);
2109 shmem_truncate_range(inode
, offset
, offset
+ len
- 1);
2110 /* No need to unmap again: hole-punching leaves COWed pages */
2112 spin_lock(&inode
->i_lock
);
2113 inode
->i_private
= NULL
;
2114 wake_up_all(&shmem_falloc_waitq
);
2115 spin_unlock(&inode
->i_lock
);
2120 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2121 error
= inode_newsize_ok(inode
, offset
+ len
);
2125 if ((info
->seals
& F_SEAL_GROW
) && offset
+ len
> inode
->i_size
) {
2130 start
= offset
>> PAGE_CACHE_SHIFT
;
2131 end
= (offset
+ len
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
2132 /* Try to avoid a swapstorm if len is impossible to satisfy */
2133 if (sbinfo
->max_blocks
&& end
- start
> sbinfo
->max_blocks
) {
2138 shmem_falloc
.waitq
= NULL
;
2139 shmem_falloc
.start
= start
;
2140 shmem_falloc
.next
= start
;
2141 shmem_falloc
.nr_falloced
= 0;
2142 shmem_falloc
.nr_unswapped
= 0;
2143 spin_lock(&inode
->i_lock
);
2144 inode
->i_private
= &shmem_falloc
;
2145 spin_unlock(&inode
->i_lock
);
2147 for (index
= start
; index
< end
; index
++) {
2151 * Good, the fallocate(2) manpage permits EINTR: we may have
2152 * been interrupted because we are using up too much memory.
2154 if (signal_pending(current
))
2156 else if (shmem_falloc
.nr_unswapped
> shmem_falloc
.nr_falloced
)
2159 error
= shmem_getpage(inode
, index
, &page
, SGP_FALLOC
,
2162 /* Remove the !PageUptodate pages we added */
2163 shmem_undo_range(inode
,
2164 (loff_t
)start
<< PAGE_CACHE_SHIFT
,
2165 (loff_t
)index
<< PAGE_CACHE_SHIFT
, true);
2170 * Inform shmem_writepage() how far we have reached.
2171 * No need for lock or barrier: we have the page lock.
2173 shmem_falloc
.next
++;
2174 if (!PageUptodate(page
))
2175 shmem_falloc
.nr_falloced
++;
2178 * If !PageUptodate, leave it that way so that freeable pages
2179 * can be recognized if we need to rollback on error later.
2180 * But set_page_dirty so that memory pressure will swap rather
2181 * than free the pages we are allocating (and SGP_CACHE pages
2182 * might still be clean: we now need to mark those dirty too).
2184 set_page_dirty(page
);
2186 page_cache_release(page
);
2190 if (!(mode
& FALLOC_FL_KEEP_SIZE
) && offset
+ len
> inode
->i_size
)
2191 i_size_write(inode
, offset
+ len
);
2192 inode
->i_ctime
= CURRENT_TIME
;
2194 spin_lock(&inode
->i_lock
);
2195 inode
->i_private
= NULL
;
2196 spin_unlock(&inode
->i_lock
);
2198 mutex_unlock(&inode
->i_mutex
);
2202 static int shmem_statfs(struct dentry
*dentry
, struct kstatfs
*buf
)
2204 struct shmem_sb_info
*sbinfo
= SHMEM_SB(dentry
->d_sb
);
2206 buf
->f_type
= TMPFS_MAGIC
;
2207 buf
->f_bsize
= PAGE_CACHE_SIZE
;
2208 buf
->f_namelen
= NAME_MAX
;
2209 if (sbinfo
->max_blocks
) {
2210 buf
->f_blocks
= sbinfo
->max_blocks
;
2212 buf
->f_bfree
= sbinfo
->max_blocks
-
2213 percpu_counter_sum(&sbinfo
->used_blocks
);
2215 if (sbinfo
->max_inodes
) {
2216 buf
->f_files
= sbinfo
->max_inodes
;
2217 buf
->f_ffree
= sbinfo
->free_inodes
;
2219 /* else leave those fields 0 like simple_statfs */
2224 * File creation. Allocate an inode, and we're done..
2227 shmem_mknod(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
, dev_t dev
)
2229 struct inode
*inode
;
2230 int error
= -ENOSPC
;
2232 inode
= shmem_get_inode(dir
->i_sb
, dir
, mode
, dev
, VM_NORESERVE
);
2234 error
= simple_acl_create(dir
, inode
);
2237 error
= security_inode_init_security(inode
, dir
,
2239 shmem_initxattrs
, NULL
);
2240 if (error
&& error
!= -EOPNOTSUPP
)
2244 dir
->i_size
+= BOGO_DIRENT_SIZE
;
2245 dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
2246 d_instantiate(dentry
, inode
);
2247 dget(dentry
); /* Extra count - pin the dentry in core */
2256 shmem_tmpfile(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
2258 struct inode
*inode
;
2259 int error
= -ENOSPC
;
2261 inode
= shmem_get_inode(dir
->i_sb
, dir
, mode
, 0, VM_NORESERVE
);
2263 error
= security_inode_init_security(inode
, dir
,
2265 shmem_initxattrs
, NULL
);
2266 if (error
&& error
!= -EOPNOTSUPP
)
2268 error
= simple_acl_create(dir
, inode
);
2271 d_tmpfile(dentry
, inode
);
2279 static int shmem_mkdir(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
2283 if ((error
= shmem_mknod(dir
, dentry
, mode
| S_IFDIR
, 0)))
2289 static int shmem_create(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
,
2292 return shmem_mknod(dir
, dentry
, mode
| S_IFREG
, 0);
2298 static int shmem_link(struct dentry
*old_dentry
, struct inode
*dir
, struct dentry
*dentry
)
2300 struct inode
*inode
= d_inode(old_dentry
);
2304 * No ordinary (disk based) filesystem counts links as inodes;
2305 * but each new link needs a new dentry, pinning lowmem, and
2306 * tmpfs dentries cannot be pruned until they are unlinked.
2308 ret
= shmem_reserve_inode(inode
->i_sb
);
2312 dir
->i_size
+= BOGO_DIRENT_SIZE
;
2313 inode
->i_ctime
= dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
2315 ihold(inode
); /* New dentry reference */
2316 dget(dentry
); /* Extra pinning count for the created dentry */
2317 d_instantiate(dentry
, inode
);
2322 static int shmem_unlink(struct inode
*dir
, struct dentry
*dentry
)
2324 struct inode
*inode
= d_inode(dentry
);
2326 if (inode
->i_nlink
> 1 && !S_ISDIR(inode
->i_mode
))
2327 shmem_free_inode(inode
->i_sb
);
2329 dir
->i_size
-= BOGO_DIRENT_SIZE
;
2330 inode
->i_ctime
= dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
2332 dput(dentry
); /* Undo the count from "create" - this does all the work */
2336 static int shmem_rmdir(struct inode
*dir
, struct dentry
*dentry
)
2338 if (!simple_empty(dentry
))
2341 drop_nlink(d_inode(dentry
));
2343 return shmem_unlink(dir
, dentry
);
2346 static int shmem_exchange(struct inode
*old_dir
, struct dentry
*old_dentry
, struct inode
*new_dir
, struct dentry
*new_dentry
)
2348 bool old_is_dir
= d_is_dir(old_dentry
);
2349 bool new_is_dir
= d_is_dir(new_dentry
);
2351 if (old_dir
!= new_dir
&& old_is_dir
!= new_is_dir
) {
2353 drop_nlink(old_dir
);
2356 drop_nlink(new_dir
);
2360 old_dir
->i_ctime
= old_dir
->i_mtime
=
2361 new_dir
->i_ctime
= new_dir
->i_mtime
=
2362 d_inode(old_dentry
)->i_ctime
=
2363 d_inode(new_dentry
)->i_ctime
= CURRENT_TIME
;
2368 static int shmem_whiteout(struct inode
*old_dir
, struct dentry
*old_dentry
)
2370 struct dentry
*whiteout
;
2373 whiteout
= d_alloc(old_dentry
->d_parent
, &old_dentry
->d_name
);
2377 error
= shmem_mknod(old_dir
, whiteout
,
2378 S_IFCHR
| WHITEOUT_MODE
, WHITEOUT_DEV
);
2384 * Cheat and hash the whiteout while the old dentry is still in
2385 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2387 * d_lookup() will consistently find one of them at this point,
2388 * not sure which one, but that isn't even important.
2395 * The VFS layer already does all the dentry stuff for rename,
2396 * we just have to decrement the usage count for the target if
2397 * it exists so that the VFS layer correctly free's it when it
2400 static int shmem_rename2(struct inode
*old_dir
, struct dentry
*old_dentry
, struct inode
*new_dir
, struct dentry
*new_dentry
, unsigned int flags
)
2402 struct inode
*inode
= d_inode(old_dentry
);
2403 int they_are_dirs
= S_ISDIR(inode
->i_mode
);
2405 if (flags
& ~(RENAME_NOREPLACE
| RENAME_EXCHANGE
| RENAME_WHITEOUT
))
2408 if (flags
& RENAME_EXCHANGE
)
2409 return shmem_exchange(old_dir
, old_dentry
, new_dir
, new_dentry
);
2411 if (!simple_empty(new_dentry
))
2414 if (flags
& RENAME_WHITEOUT
) {
2417 error
= shmem_whiteout(old_dir
, old_dentry
);
2422 if (d_really_is_positive(new_dentry
)) {
2423 (void) shmem_unlink(new_dir
, new_dentry
);
2424 if (they_are_dirs
) {
2425 drop_nlink(d_inode(new_dentry
));
2426 drop_nlink(old_dir
);
2428 } else if (they_are_dirs
) {
2429 drop_nlink(old_dir
);
2433 old_dir
->i_size
-= BOGO_DIRENT_SIZE
;
2434 new_dir
->i_size
+= BOGO_DIRENT_SIZE
;
2435 old_dir
->i_ctime
= old_dir
->i_mtime
=
2436 new_dir
->i_ctime
= new_dir
->i_mtime
=
2437 inode
->i_ctime
= CURRENT_TIME
;
2441 static int shmem_symlink(struct inode
*dir
, struct dentry
*dentry
, const char *symname
)
2445 struct inode
*inode
;
2448 struct shmem_inode_info
*info
;
2450 len
= strlen(symname
) + 1;
2451 if (len
> PAGE_CACHE_SIZE
)
2452 return -ENAMETOOLONG
;
2454 inode
= shmem_get_inode(dir
->i_sb
, dir
, S_IFLNK
|S_IRWXUGO
, 0, VM_NORESERVE
);
2458 error
= security_inode_init_security(inode
, dir
, &dentry
->d_name
,
2459 shmem_initxattrs
, NULL
);
2461 if (error
!= -EOPNOTSUPP
) {
2468 info
= SHMEM_I(inode
);
2469 inode
->i_size
= len
-1;
2470 if (len
<= SHORT_SYMLINK_LEN
) {
2471 info
->symlink
= kmemdup(symname
, len
, GFP_KERNEL
);
2472 if (!info
->symlink
) {
2476 inode
->i_op
= &shmem_short_symlink_operations
;
2477 inode
->i_link
= info
->symlink
;
2479 error
= shmem_getpage(inode
, 0, &page
, SGP_WRITE
, NULL
);
2484 inode
->i_mapping
->a_ops
= &shmem_aops
;
2485 inode
->i_op
= &shmem_symlink_inode_operations
;
2486 kaddr
= kmap_atomic(page
);
2487 memcpy(kaddr
, symname
, len
);
2488 kunmap_atomic(kaddr
);
2489 SetPageUptodate(page
);
2490 set_page_dirty(page
);
2492 page_cache_release(page
);
2494 dir
->i_size
+= BOGO_DIRENT_SIZE
;
2495 dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
2496 d_instantiate(dentry
, inode
);
2501 static const char *shmem_follow_link(struct dentry
*dentry
, void **cookie
)
2503 struct page
*page
= NULL
;
2504 int error
= shmem_getpage(d_inode(dentry
), 0, &page
, SGP_READ
, NULL
);
2506 return ERR_PTR(error
);
2512 static void shmem_put_link(struct inode
*unused
, void *cookie
)
2514 struct page
*page
= cookie
;
2516 mark_page_accessed(page
);
2517 page_cache_release(page
);
2520 #ifdef CONFIG_TMPFS_XATTR
2522 * Superblocks without xattr inode operations may get some security.* xattr
2523 * support from the LSM "for free". As soon as we have any other xattrs
2524 * like ACLs, we also need to implement the security.* handlers at
2525 * filesystem level, though.
2529 * Callback for security_inode_init_security() for acquiring xattrs.
2531 static int shmem_initxattrs(struct inode
*inode
,
2532 const struct xattr
*xattr_array
,
2535 struct shmem_inode_info
*info
= SHMEM_I(inode
);
2536 const struct xattr
*xattr
;
2537 struct simple_xattr
*new_xattr
;
2540 for (xattr
= xattr_array
; xattr
->name
!= NULL
; xattr
++) {
2541 new_xattr
= simple_xattr_alloc(xattr
->value
, xattr
->value_len
);
2545 len
= strlen(xattr
->name
) + 1;
2546 new_xattr
->name
= kmalloc(XATTR_SECURITY_PREFIX_LEN
+ len
,
2548 if (!new_xattr
->name
) {
2553 memcpy(new_xattr
->name
, XATTR_SECURITY_PREFIX
,
2554 XATTR_SECURITY_PREFIX_LEN
);
2555 memcpy(new_xattr
->name
+ XATTR_SECURITY_PREFIX_LEN
,
2558 simple_xattr_list_add(&info
->xattrs
, new_xattr
);
2564 static const struct xattr_handler
*shmem_xattr_handlers
[] = {
2565 #ifdef CONFIG_TMPFS_POSIX_ACL
2566 &posix_acl_access_xattr_handler
,
2567 &posix_acl_default_xattr_handler
,
2572 static int shmem_xattr_validate(const char *name
)
2574 struct { const char *prefix
; size_t len
; } arr
[] = {
2575 { XATTR_SECURITY_PREFIX
, XATTR_SECURITY_PREFIX_LEN
},
2576 { XATTR_TRUSTED_PREFIX
, XATTR_TRUSTED_PREFIX_LEN
}
2580 for (i
= 0; i
< ARRAY_SIZE(arr
); i
++) {
2581 size_t preflen
= arr
[i
].len
;
2582 if (strncmp(name
, arr
[i
].prefix
, preflen
) == 0) {
2591 static ssize_t
shmem_getxattr(struct dentry
*dentry
, const char *name
,
2592 void *buffer
, size_t size
)
2594 struct shmem_inode_info
*info
= SHMEM_I(d_inode(dentry
));
2598 * If this is a request for a synthetic attribute in the system.*
2599 * namespace use the generic infrastructure to resolve a handler
2600 * for it via sb->s_xattr.
2602 if (!strncmp(name
, XATTR_SYSTEM_PREFIX
, XATTR_SYSTEM_PREFIX_LEN
))
2603 return generic_getxattr(dentry
, name
, buffer
, size
);
2605 err
= shmem_xattr_validate(name
);
2609 return simple_xattr_get(&info
->xattrs
, name
, buffer
, size
);
2612 static int shmem_setxattr(struct dentry
*dentry
, const char *name
,
2613 const void *value
, size_t size
, int flags
)
2615 struct shmem_inode_info
*info
= SHMEM_I(d_inode(dentry
));
2619 * If this is a request for a synthetic attribute in the system.*
2620 * namespace use the generic infrastructure to resolve a handler
2621 * for it via sb->s_xattr.
2623 if (!strncmp(name
, XATTR_SYSTEM_PREFIX
, XATTR_SYSTEM_PREFIX_LEN
))
2624 return generic_setxattr(dentry
, name
, value
, size
, flags
);
2626 err
= shmem_xattr_validate(name
);
2630 return simple_xattr_set(&info
->xattrs
, name
, value
, size
, flags
);
2633 static int shmem_removexattr(struct dentry
*dentry
, const char *name
)
2635 struct shmem_inode_info
*info
= SHMEM_I(d_inode(dentry
));
2639 * If this is a request for a synthetic attribute in the system.*
2640 * namespace use the generic infrastructure to resolve a handler
2641 * for it via sb->s_xattr.
2643 if (!strncmp(name
, XATTR_SYSTEM_PREFIX
, XATTR_SYSTEM_PREFIX_LEN
))
2644 return generic_removexattr(dentry
, name
);
2646 err
= shmem_xattr_validate(name
);
2650 return simple_xattr_remove(&info
->xattrs
, name
);
2653 static ssize_t
shmem_listxattr(struct dentry
*dentry
, char *buffer
, size_t size
)
2655 struct shmem_inode_info
*info
= SHMEM_I(d_inode(dentry
));
2656 return simple_xattr_list(&info
->xattrs
, buffer
, size
);
2658 #endif /* CONFIG_TMPFS_XATTR */
2660 static const struct inode_operations shmem_short_symlink_operations
= {
2661 .readlink
= generic_readlink
,
2662 .follow_link
= simple_follow_link
,
2663 #ifdef CONFIG_TMPFS_XATTR
2664 .setxattr
= shmem_setxattr
,
2665 .getxattr
= shmem_getxattr
,
2666 .listxattr
= shmem_listxattr
,
2667 .removexattr
= shmem_removexattr
,
2671 static const struct inode_operations shmem_symlink_inode_operations
= {
2672 .readlink
= generic_readlink
,
2673 .follow_link
= shmem_follow_link
,
2674 .put_link
= shmem_put_link
,
2675 #ifdef CONFIG_TMPFS_XATTR
2676 .setxattr
= shmem_setxattr
,
2677 .getxattr
= shmem_getxattr
,
2678 .listxattr
= shmem_listxattr
,
2679 .removexattr
= shmem_removexattr
,
2683 static struct dentry
*shmem_get_parent(struct dentry
*child
)
2685 return ERR_PTR(-ESTALE
);
2688 static int shmem_match(struct inode
*ino
, void *vfh
)
2692 inum
= (inum
<< 32) | fh
[1];
2693 return ino
->i_ino
== inum
&& fh
[0] == ino
->i_generation
;
2696 static struct dentry
*shmem_fh_to_dentry(struct super_block
*sb
,
2697 struct fid
*fid
, int fh_len
, int fh_type
)
2699 struct inode
*inode
;
2700 struct dentry
*dentry
= NULL
;
2707 inum
= (inum
<< 32) | fid
->raw
[1];
2709 inode
= ilookup5(sb
, (unsigned long)(inum
+ fid
->raw
[0]),
2710 shmem_match
, fid
->raw
);
2712 dentry
= d_find_alias(inode
);
2719 static int shmem_encode_fh(struct inode
*inode
, __u32
*fh
, int *len
,
2720 struct inode
*parent
)
2724 return FILEID_INVALID
;
2727 if (inode_unhashed(inode
)) {
2728 /* Unfortunately insert_inode_hash is not idempotent,
2729 * so as we hash inodes here rather than at creation
2730 * time, we need a lock to ensure we only try
2733 static DEFINE_SPINLOCK(lock
);
2735 if (inode_unhashed(inode
))
2736 __insert_inode_hash(inode
,
2737 inode
->i_ino
+ inode
->i_generation
);
2741 fh
[0] = inode
->i_generation
;
2742 fh
[1] = inode
->i_ino
;
2743 fh
[2] = ((__u64
)inode
->i_ino
) >> 32;
2749 static const struct export_operations shmem_export_ops
= {
2750 .get_parent
= shmem_get_parent
,
2751 .encode_fh
= shmem_encode_fh
,
2752 .fh_to_dentry
= shmem_fh_to_dentry
,
2755 static int shmem_parse_options(char *options
, struct shmem_sb_info
*sbinfo
,
2758 char *this_char
, *value
, *rest
;
2759 struct mempolicy
*mpol
= NULL
;
2763 while (options
!= NULL
) {
2764 this_char
= options
;
2767 * NUL-terminate this option: unfortunately,
2768 * mount options form a comma-separated list,
2769 * but mpol's nodelist may also contain commas.
2771 options
= strchr(options
, ',');
2772 if (options
== NULL
)
2775 if (!isdigit(*options
)) {
2782 if ((value
= strchr(this_char
,'=')) != NULL
) {
2786 "tmpfs: No value for mount option '%s'\n",
2791 if (!strcmp(this_char
,"size")) {
2792 unsigned long long size
;
2793 size
= memparse(value
,&rest
);
2795 size
<<= PAGE_SHIFT
;
2796 size
*= totalram_pages
;
2802 sbinfo
->max_blocks
=
2803 DIV_ROUND_UP(size
, PAGE_CACHE_SIZE
);
2804 } else if (!strcmp(this_char
,"nr_blocks")) {
2805 sbinfo
->max_blocks
= memparse(value
, &rest
);
2808 } else if (!strcmp(this_char
,"nr_inodes")) {
2809 sbinfo
->max_inodes
= memparse(value
, &rest
);
2812 } else if (!strcmp(this_char
,"mode")) {
2815 sbinfo
->mode
= simple_strtoul(value
, &rest
, 8) & 07777;
2818 } else if (!strcmp(this_char
,"uid")) {
2821 uid
= simple_strtoul(value
, &rest
, 0);
2824 sbinfo
->uid
= make_kuid(current_user_ns(), uid
);
2825 if (!uid_valid(sbinfo
->uid
))
2827 } else if (!strcmp(this_char
,"gid")) {
2830 gid
= simple_strtoul(value
, &rest
, 0);
2833 sbinfo
->gid
= make_kgid(current_user_ns(), gid
);
2834 if (!gid_valid(sbinfo
->gid
))
2836 } else if (!strcmp(this_char
,"mpol")) {
2839 if (mpol_parse_str(value
, &mpol
))
2842 printk(KERN_ERR
"tmpfs: Bad mount option %s\n",
2847 sbinfo
->mpol
= mpol
;
2851 printk(KERN_ERR
"tmpfs: Bad value '%s' for mount option '%s'\n",
2859 static int shmem_remount_fs(struct super_block
*sb
, int *flags
, char *data
)
2861 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
2862 struct shmem_sb_info config
= *sbinfo
;
2863 unsigned long inodes
;
2864 int error
= -EINVAL
;
2867 if (shmem_parse_options(data
, &config
, true))
2870 spin_lock(&sbinfo
->stat_lock
);
2871 inodes
= sbinfo
->max_inodes
- sbinfo
->free_inodes
;
2872 if (percpu_counter_compare(&sbinfo
->used_blocks
, config
.max_blocks
) > 0)
2874 if (config
.max_inodes
< inodes
)
2877 * Those tests disallow limited->unlimited while any are in use;
2878 * but we must separately disallow unlimited->limited, because
2879 * in that case we have no record of how much is already in use.
2881 if (config
.max_blocks
&& !sbinfo
->max_blocks
)
2883 if (config
.max_inodes
&& !sbinfo
->max_inodes
)
2887 sbinfo
->max_blocks
= config
.max_blocks
;
2888 sbinfo
->max_inodes
= config
.max_inodes
;
2889 sbinfo
->free_inodes
= config
.max_inodes
- inodes
;
2892 * Preserve previous mempolicy unless mpol remount option was specified.
2895 mpol_put(sbinfo
->mpol
);
2896 sbinfo
->mpol
= config
.mpol
; /* transfers initial ref */
2899 spin_unlock(&sbinfo
->stat_lock
);
2903 static int shmem_show_options(struct seq_file
*seq
, struct dentry
*root
)
2905 struct shmem_sb_info
*sbinfo
= SHMEM_SB(root
->d_sb
);
2907 if (sbinfo
->max_blocks
!= shmem_default_max_blocks())
2908 seq_printf(seq
, ",size=%luk",
2909 sbinfo
->max_blocks
<< (PAGE_CACHE_SHIFT
- 10));
2910 if (sbinfo
->max_inodes
!= shmem_default_max_inodes())
2911 seq_printf(seq
, ",nr_inodes=%lu", sbinfo
->max_inodes
);
2912 if (sbinfo
->mode
!= (S_IRWXUGO
| S_ISVTX
))
2913 seq_printf(seq
, ",mode=%03ho", sbinfo
->mode
);
2914 if (!uid_eq(sbinfo
->uid
, GLOBAL_ROOT_UID
))
2915 seq_printf(seq
, ",uid=%u",
2916 from_kuid_munged(&init_user_ns
, sbinfo
->uid
));
2917 if (!gid_eq(sbinfo
->gid
, GLOBAL_ROOT_GID
))
2918 seq_printf(seq
, ",gid=%u",
2919 from_kgid_munged(&init_user_ns
, sbinfo
->gid
));
2920 shmem_show_mpol(seq
, sbinfo
->mpol
);
2924 #define MFD_NAME_PREFIX "memfd:"
2925 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
2926 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
2928 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING)
2930 SYSCALL_DEFINE2(memfd_create
,
2931 const char __user
*, uname
,
2932 unsigned int, flags
)
2934 struct shmem_inode_info
*info
;
2940 if (flags
& ~(unsigned int)MFD_ALL_FLAGS
)
2943 /* length includes terminating zero */
2944 len
= strnlen_user(uname
, MFD_NAME_MAX_LEN
+ 1);
2947 if (len
> MFD_NAME_MAX_LEN
+ 1)
2950 name
= kmalloc(len
+ MFD_NAME_PREFIX_LEN
, GFP_TEMPORARY
);
2954 strcpy(name
, MFD_NAME_PREFIX
);
2955 if (copy_from_user(&name
[MFD_NAME_PREFIX_LEN
], uname
, len
)) {
2960 /* terminating-zero may have changed after strnlen_user() returned */
2961 if (name
[len
+ MFD_NAME_PREFIX_LEN
- 1]) {
2966 fd
= get_unused_fd_flags((flags
& MFD_CLOEXEC
) ? O_CLOEXEC
: 0);
2972 file
= shmem_file_setup(name
, 0, VM_NORESERVE
);
2974 error
= PTR_ERR(file
);
2977 info
= SHMEM_I(file_inode(file
));
2978 file
->f_mode
|= FMODE_LSEEK
| FMODE_PREAD
| FMODE_PWRITE
;
2979 file
->f_flags
|= O_RDWR
| O_LARGEFILE
;
2980 if (flags
& MFD_ALLOW_SEALING
)
2981 info
->seals
&= ~F_SEAL_SEAL
;
2983 fd_install(fd
, file
);
2994 #endif /* CONFIG_TMPFS */
2996 static void shmem_put_super(struct super_block
*sb
)
2998 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
3000 percpu_counter_destroy(&sbinfo
->used_blocks
);
3001 mpol_put(sbinfo
->mpol
);
3003 sb
->s_fs_info
= NULL
;
3006 int shmem_fill_super(struct super_block
*sb
, void *data
, int silent
)
3008 struct inode
*inode
;
3009 struct shmem_sb_info
*sbinfo
;
3012 /* Round up to L1_CACHE_BYTES to resist false sharing */
3013 sbinfo
= kzalloc(max((int)sizeof(struct shmem_sb_info
),
3014 L1_CACHE_BYTES
), GFP_KERNEL
);
3018 sbinfo
->mode
= S_IRWXUGO
| S_ISVTX
;
3019 sbinfo
->uid
= current_fsuid();
3020 sbinfo
->gid
= current_fsgid();
3021 sb
->s_fs_info
= sbinfo
;
3025 * Per default we only allow half of the physical ram per
3026 * tmpfs instance, limiting inodes to one per page of lowmem;
3027 * but the internal instance is left unlimited.
3029 if (!(sb
->s_flags
& MS_KERNMOUNT
)) {
3030 sbinfo
->max_blocks
= shmem_default_max_blocks();
3031 sbinfo
->max_inodes
= shmem_default_max_inodes();
3032 if (shmem_parse_options(data
, sbinfo
, false)) {
3037 sb
->s_flags
|= MS_NOUSER
;
3039 sb
->s_export_op
= &shmem_export_ops
;
3040 sb
->s_flags
|= MS_NOSEC
;
3042 sb
->s_flags
|= MS_NOUSER
;
3045 spin_lock_init(&sbinfo
->stat_lock
);
3046 if (percpu_counter_init(&sbinfo
->used_blocks
, 0, GFP_KERNEL
))
3048 sbinfo
->free_inodes
= sbinfo
->max_inodes
;
3050 sb
->s_maxbytes
= MAX_LFS_FILESIZE
;
3051 sb
->s_blocksize
= PAGE_CACHE_SIZE
;
3052 sb
->s_blocksize_bits
= PAGE_CACHE_SHIFT
;
3053 sb
->s_magic
= TMPFS_MAGIC
;
3054 sb
->s_op
= &shmem_ops
;
3055 sb
->s_time_gran
= 1;
3056 #ifdef CONFIG_TMPFS_XATTR
3057 sb
->s_xattr
= shmem_xattr_handlers
;
3059 #ifdef CONFIG_TMPFS_POSIX_ACL
3060 sb
->s_flags
|= MS_POSIXACL
;
3063 inode
= shmem_get_inode(sb
, NULL
, S_IFDIR
| sbinfo
->mode
, 0, VM_NORESERVE
);
3066 inode
->i_uid
= sbinfo
->uid
;
3067 inode
->i_gid
= sbinfo
->gid
;
3068 sb
->s_root
= d_make_root(inode
);
3074 shmem_put_super(sb
);
3078 static struct kmem_cache
*shmem_inode_cachep
;
3080 static struct inode
*shmem_alloc_inode(struct super_block
*sb
)
3082 struct shmem_inode_info
*info
;
3083 info
= kmem_cache_alloc(shmem_inode_cachep
, GFP_KERNEL
);
3086 return &info
->vfs_inode
;
3089 static void shmem_destroy_callback(struct rcu_head
*head
)
3091 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
3092 kmem_cache_free(shmem_inode_cachep
, SHMEM_I(inode
));
3095 static void shmem_destroy_inode(struct inode
*inode
)
3097 if (S_ISREG(inode
->i_mode
))
3098 mpol_free_shared_policy(&SHMEM_I(inode
)->policy
);
3099 call_rcu(&inode
->i_rcu
, shmem_destroy_callback
);
3102 static void shmem_init_inode(void *foo
)
3104 struct shmem_inode_info
*info
= foo
;
3105 inode_init_once(&info
->vfs_inode
);
3108 static int shmem_init_inodecache(void)
3110 shmem_inode_cachep
= kmem_cache_create("shmem_inode_cache",
3111 sizeof(struct shmem_inode_info
),
3112 0, SLAB_PANIC
, shmem_init_inode
);
3116 static void shmem_destroy_inodecache(void)
3118 kmem_cache_destroy(shmem_inode_cachep
);
3121 static const struct address_space_operations shmem_aops
= {
3122 .writepage
= shmem_writepage
,
3123 .set_page_dirty
= __set_page_dirty_no_writeback
,
3125 .write_begin
= shmem_write_begin
,
3126 .write_end
= shmem_write_end
,
3128 #ifdef CONFIG_MIGRATION
3129 .migratepage
= migrate_page
,
3131 .error_remove_page
= generic_error_remove_page
,
3134 static const struct file_operations shmem_file_operations
= {
3137 .llseek
= shmem_file_llseek
,
3138 .read_iter
= shmem_file_read_iter
,
3139 .write_iter
= generic_file_write_iter
,
3140 .fsync
= noop_fsync
,
3141 .splice_read
= shmem_file_splice_read
,
3142 .splice_write
= iter_file_splice_write
,
3143 .fallocate
= shmem_fallocate
,
3147 static const struct inode_operations shmem_inode_operations
= {
3148 .getattr
= shmem_getattr
,
3149 .setattr
= shmem_setattr
,
3150 #ifdef CONFIG_TMPFS_XATTR
3151 .setxattr
= shmem_setxattr
,
3152 .getxattr
= shmem_getxattr
,
3153 .listxattr
= shmem_listxattr
,
3154 .removexattr
= shmem_removexattr
,
3155 .set_acl
= simple_set_acl
,
3159 static const struct inode_operations shmem_dir_inode_operations
= {
3161 .create
= shmem_create
,
3162 .lookup
= simple_lookup
,
3164 .unlink
= shmem_unlink
,
3165 .symlink
= shmem_symlink
,
3166 .mkdir
= shmem_mkdir
,
3167 .rmdir
= shmem_rmdir
,
3168 .mknod
= shmem_mknod
,
3169 .rename2
= shmem_rename2
,
3170 .tmpfile
= shmem_tmpfile
,
3172 #ifdef CONFIG_TMPFS_XATTR
3173 .setxattr
= shmem_setxattr
,
3174 .getxattr
= shmem_getxattr
,
3175 .listxattr
= shmem_listxattr
,
3176 .removexattr
= shmem_removexattr
,
3178 #ifdef CONFIG_TMPFS_POSIX_ACL
3179 .setattr
= shmem_setattr
,
3180 .set_acl
= simple_set_acl
,
3184 static const struct inode_operations shmem_special_inode_operations
= {
3185 #ifdef CONFIG_TMPFS_XATTR
3186 .setxattr
= shmem_setxattr
,
3187 .getxattr
= shmem_getxattr
,
3188 .listxattr
= shmem_listxattr
,
3189 .removexattr
= shmem_removexattr
,
3191 #ifdef CONFIG_TMPFS_POSIX_ACL
3192 .setattr
= shmem_setattr
,
3193 .set_acl
= simple_set_acl
,
3197 static const struct super_operations shmem_ops
= {
3198 .alloc_inode
= shmem_alloc_inode
,
3199 .destroy_inode
= shmem_destroy_inode
,
3201 .statfs
= shmem_statfs
,
3202 .remount_fs
= shmem_remount_fs
,
3203 .show_options
= shmem_show_options
,
3205 .evict_inode
= shmem_evict_inode
,
3206 .drop_inode
= generic_delete_inode
,
3207 .put_super
= shmem_put_super
,
3210 static const struct vm_operations_struct shmem_vm_ops
= {
3211 .fault
= shmem_fault
,
3212 .map_pages
= filemap_map_pages
,
3214 .set_policy
= shmem_set_policy
,
3215 .get_policy
= shmem_get_policy
,
3219 static struct dentry
*shmem_mount(struct file_system_type
*fs_type
,
3220 int flags
, const char *dev_name
, void *data
)
3222 return mount_nodev(fs_type
, flags
, data
, shmem_fill_super
);
3225 static struct file_system_type shmem_fs_type
= {
3226 .owner
= THIS_MODULE
,
3228 .mount
= shmem_mount
,
3229 .kill_sb
= kill_litter_super
,
3230 .fs_flags
= FS_USERNS_MOUNT
,
3233 int __init
shmem_init(void)
3237 /* If rootfs called this, don't re-init */
3238 if (shmem_inode_cachep
)
3241 error
= shmem_init_inodecache();
3245 error
= register_filesystem(&shmem_fs_type
);
3247 printk(KERN_ERR
"Could not register tmpfs\n");
3251 shm_mnt
= kern_mount(&shmem_fs_type
);
3252 if (IS_ERR(shm_mnt
)) {
3253 error
= PTR_ERR(shm_mnt
);
3254 printk(KERN_ERR
"Could not kern_mount tmpfs\n");
3260 unregister_filesystem(&shmem_fs_type
);
3262 shmem_destroy_inodecache();
3264 shm_mnt
= ERR_PTR(error
);
3268 #else /* !CONFIG_SHMEM */
3271 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3273 * This is intended for small system where the benefits of the full
3274 * shmem code (swap-backed and resource-limited) are outweighed by
3275 * their complexity. On systems without swap this code should be
3276 * effectively equivalent, but much lighter weight.
3279 static struct file_system_type shmem_fs_type
= {
3281 .mount
= ramfs_mount
,
3282 .kill_sb
= kill_litter_super
,
3283 .fs_flags
= FS_USERNS_MOUNT
,
3286 int __init
shmem_init(void)
3288 BUG_ON(register_filesystem(&shmem_fs_type
) != 0);
3290 shm_mnt
= kern_mount(&shmem_fs_type
);
3291 BUG_ON(IS_ERR(shm_mnt
));
3296 int shmem_unuse(swp_entry_t swap
, struct page
*page
)
3301 int shmem_lock(struct file
*file
, int lock
, struct user_struct
*user
)
3306 void shmem_unlock_mapping(struct address_space
*mapping
)
3310 void shmem_truncate_range(struct inode
*inode
, loff_t lstart
, loff_t lend
)
3312 truncate_inode_pages_range(inode
->i_mapping
, lstart
, lend
);
3314 EXPORT_SYMBOL_GPL(shmem_truncate_range
);
3316 #define shmem_vm_ops generic_file_vm_ops
3317 #define shmem_file_operations ramfs_file_operations
3318 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
3319 #define shmem_acct_size(flags, size) 0
3320 #define shmem_unacct_size(flags, size) do {} while (0)
3322 #endif /* CONFIG_SHMEM */
3326 static struct dentry_operations anon_ops
= {
3327 .d_dname
= simple_dname
3330 static struct file
*__shmem_file_setup(const char *name
, loff_t size
,
3331 unsigned long flags
, unsigned int i_flags
)
3334 struct inode
*inode
;
3336 struct super_block
*sb
;
3339 if (IS_ERR(shm_mnt
))
3340 return ERR_CAST(shm_mnt
);
3342 if (size
< 0 || size
> MAX_LFS_FILESIZE
)
3343 return ERR_PTR(-EINVAL
);
3345 if (shmem_acct_size(flags
, size
))
3346 return ERR_PTR(-ENOMEM
);
3348 res
= ERR_PTR(-ENOMEM
);
3350 this.len
= strlen(name
);
3351 this.hash
= 0; /* will go */
3352 sb
= shm_mnt
->mnt_sb
;
3353 path
.mnt
= mntget(shm_mnt
);
3354 path
.dentry
= d_alloc_pseudo(sb
, &this);
3357 d_set_d_op(path
.dentry
, &anon_ops
);
3359 res
= ERR_PTR(-ENOSPC
);
3360 inode
= shmem_get_inode(sb
, NULL
, S_IFREG
| S_IRWXUGO
, 0, flags
);
3364 inode
->i_flags
|= i_flags
;
3365 d_instantiate(path
.dentry
, inode
);
3366 inode
->i_size
= size
;
3367 clear_nlink(inode
); /* It is unlinked */
3368 res
= ERR_PTR(ramfs_nommu_expand_for_mapping(inode
, size
));
3372 res
= alloc_file(&path
, FMODE_WRITE
| FMODE_READ
,
3373 &shmem_file_operations
);
3380 shmem_unacct_size(flags
, size
);
3387 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
3388 * kernel internal. There will be NO LSM permission checks against the
3389 * underlying inode. So users of this interface must do LSM checks at a
3390 * higher layer. The users are the big_key and shm implementations. LSM
3391 * checks are provided at the key or shm level rather than the inode.
3392 * @name: name for dentry (to be seen in /proc/<pid>/maps
3393 * @size: size to be set for the file
3394 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3396 struct file
*shmem_kernel_file_setup(const char *name
, loff_t size
, unsigned long flags
)
3398 return __shmem_file_setup(name
, size
, flags
, S_PRIVATE
);
3402 * shmem_file_setup - get an unlinked file living in tmpfs
3403 * @name: name for dentry (to be seen in /proc/<pid>/maps
3404 * @size: size to be set for the file
3405 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3407 struct file
*shmem_file_setup(const char *name
, loff_t size
, unsigned long flags
)
3409 return __shmem_file_setup(name
, size
, flags
, 0);
3411 EXPORT_SYMBOL_GPL(shmem_file_setup
);
3414 * shmem_zero_setup - setup a shared anonymous mapping
3415 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3417 int shmem_zero_setup(struct vm_area_struct
*vma
)
3420 loff_t size
= vma
->vm_end
- vma
->vm_start
;
3423 * Cloning a new file under mmap_sem leads to a lock ordering conflict
3424 * between XFS directory reading and selinux: since this file is only
3425 * accessible to the user through its mapping, use S_PRIVATE flag to
3426 * bypass file security, in the same way as shmem_kernel_file_setup().
3428 file
= __shmem_file_setup("dev/zero", size
, vma
->vm_flags
, S_PRIVATE
);
3430 return PTR_ERR(file
);
3434 vma
->vm_file
= file
;
3435 vma
->vm_ops
= &shmem_vm_ops
;
3440 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3441 * @mapping: the page's address_space
3442 * @index: the page index
3443 * @gfp: the page allocator flags to use if allocating
3445 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3446 * with any new page allocations done using the specified allocation flags.
3447 * But read_cache_page_gfp() uses the ->readpage() method: which does not
3448 * suit tmpfs, since it may have pages in swapcache, and needs to find those
3449 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3451 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3452 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
3454 struct page
*shmem_read_mapping_page_gfp(struct address_space
*mapping
,
3455 pgoff_t index
, gfp_t gfp
)
3458 struct inode
*inode
= mapping
->host
;
3462 BUG_ON(mapping
->a_ops
!= &shmem_aops
);
3463 error
= shmem_getpage_gfp(inode
, index
, &page
, SGP_CACHE
, gfp
, NULL
);
3465 page
= ERR_PTR(error
);
3471 * The tiny !SHMEM case uses ramfs without swap
3473 return read_cache_page_gfp(mapping
, index
, gfp
);
3476 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp
);