NFSv4.1: Fix a request leak on the back channel
[linux/fpc-iii.git] / kernel / workqueue.c
blob7947e162304375e65a6d5f285da460ec7b79fc6b
1 /*
2 * kernel/workqueue.c - generic async execution with shared worker pool
4 * Copyright (C) 2002 Ingo Molnar
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
12 * Made to use alloc_percpu by Christoph Lameter.
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There is one worker pool for each CPU and
20 * one extra for works which are better served by workers which are
21 * not bound to any specific CPU.
23 * Please read Documentation/workqueue.txt for details.
26 #include <linux/export.h>
27 #include <linux/kernel.h>
28 #include <linux/sched.h>
29 #include <linux/init.h>
30 #include <linux/signal.h>
31 #include <linux/completion.h>
32 #include <linux/workqueue.h>
33 #include <linux/slab.h>
34 #include <linux/cpu.h>
35 #include <linux/notifier.h>
36 #include <linux/kthread.h>
37 #include <linux/hardirq.h>
38 #include <linux/mempolicy.h>
39 #include <linux/freezer.h>
40 #include <linux/kallsyms.h>
41 #include <linux/debug_locks.h>
42 #include <linux/lockdep.h>
43 #include <linux/idr.h>
45 #include "workqueue_sched.h"
47 enum {
48 /* global_cwq flags */
49 GCWQ_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
50 GCWQ_MANAGING_WORKERS = 1 << 1, /* managing workers */
51 GCWQ_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
52 GCWQ_FREEZING = 1 << 3, /* freeze in progress */
53 GCWQ_HIGHPRI_PENDING = 1 << 4, /* highpri works on queue */
55 /* worker flags */
56 WORKER_STARTED = 1 << 0, /* started */
57 WORKER_DIE = 1 << 1, /* die die die */
58 WORKER_IDLE = 1 << 2, /* is idle */
59 WORKER_PREP = 1 << 3, /* preparing to run works */
60 WORKER_ROGUE = 1 << 4, /* not bound to any cpu */
61 WORKER_REBIND = 1 << 5, /* mom is home, come back */
62 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
63 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
65 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_ROGUE | WORKER_REBIND |
66 WORKER_CPU_INTENSIVE | WORKER_UNBOUND,
68 /* gcwq->trustee_state */
69 TRUSTEE_START = 0, /* start */
70 TRUSTEE_IN_CHARGE = 1, /* trustee in charge of gcwq */
71 TRUSTEE_BUTCHER = 2, /* butcher workers */
72 TRUSTEE_RELEASE = 3, /* release workers */
73 TRUSTEE_DONE = 4, /* trustee is done */
75 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
76 BUSY_WORKER_HASH_SIZE = 1 << BUSY_WORKER_HASH_ORDER,
77 BUSY_WORKER_HASH_MASK = BUSY_WORKER_HASH_SIZE - 1,
79 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
80 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
82 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
83 /* call for help after 10ms
84 (min two ticks) */
85 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
86 CREATE_COOLDOWN = HZ, /* time to breath after fail */
87 TRUSTEE_COOLDOWN = HZ / 10, /* for trustee draining */
90 * Rescue workers are used only on emergencies and shared by
91 * all cpus. Give -20.
93 RESCUER_NICE_LEVEL = -20,
97 * Structure fields follow one of the following exclusion rules.
99 * I: Modifiable by initialization/destruction paths and read-only for
100 * everyone else.
102 * P: Preemption protected. Disabling preemption is enough and should
103 * only be modified and accessed from the local cpu.
105 * L: gcwq->lock protected. Access with gcwq->lock held.
107 * X: During normal operation, modification requires gcwq->lock and
108 * should be done only from local cpu. Either disabling preemption
109 * on local cpu or grabbing gcwq->lock is enough for read access.
110 * If GCWQ_DISASSOCIATED is set, it's identical to L.
112 * F: wq->flush_mutex protected.
114 * W: workqueue_lock protected.
117 struct global_cwq;
120 * The poor guys doing the actual heavy lifting. All on-duty workers
121 * are either serving the manager role, on idle list or on busy hash.
123 struct worker {
124 /* on idle list while idle, on busy hash table while busy */
125 union {
126 struct list_head entry; /* L: while idle */
127 struct hlist_node hentry; /* L: while busy */
130 struct work_struct *current_work; /* L: work being processed */
131 struct cpu_workqueue_struct *current_cwq; /* L: current_work's cwq */
132 struct list_head scheduled; /* L: scheduled works */
133 struct task_struct *task; /* I: worker task */
134 struct global_cwq *gcwq; /* I: the associated gcwq */
135 /* 64 bytes boundary on 64bit, 32 on 32bit */
136 unsigned long last_active; /* L: last active timestamp */
137 unsigned int flags; /* X: flags */
138 int id; /* I: worker id */
139 struct work_struct rebind_work; /* L: rebind worker to cpu */
143 * Global per-cpu workqueue. There's one and only one for each cpu
144 * and all works are queued and processed here regardless of their
145 * target workqueues.
147 struct global_cwq {
148 spinlock_t lock; /* the gcwq lock */
149 struct list_head worklist; /* L: list of pending works */
150 unsigned int cpu; /* I: the associated cpu */
151 unsigned int flags; /* L: GCWQ_* flags */
153 int nr_workers; /* L: total number of workers */
154 int nr_idle; /* L: currently idle ones */
156 /* workers are chained either in the idle_list or busy_hash */
157 struct list_head idle_list; /* X: list of idle workers */
158 struct hlist_head busy_hash[BUSY_WORKER_HASH_SIZE];
159 /* L: hash of busy workers */
161 struct timer_list idle_timer; /* L: worker idle timeout */
162 struct timer_list mayday_timer; /* L: SOS timer for dworkers */
164 struct ida worker_ida; /* L: for worker IDs */
166 struct task_struct *trustee; /* L: for gcwq shutdown */
167 unsigned int trustee_state; /* L: trustee state */
168 wait_queue_head_t trustee_wait; /* trustee wait */
169 struct worker *first_idle; /* L: first idle worker */
170 } ____cacheline_aligned_in_smp;
173 * The per-CPU workqueue. The lower WORK_STRUCT_FLAG_BITS of
174 * work_struct->data are used for flags and thus cwqs need to be
175 * aligned at two's power of the number of flag bits.
177 struct cpu_workqueue_struct {
178 struct global_cwq *gcwq; /* I: the associated gcwq */
179 struct workqueue_struct *wq; /* I: the owning workqueue */
180 int work_color; /* L: current color */
181 int flush_color; /* L: flushing color */
182 int nr_in_flight[WORK_NR_COLORS];
183 /* L: nr of in_flight works */
184 int nr_active; /* L: nr of active works */
185 int max_active; /* L: max active works */
186 struct list_head delayed_works; /* L: delayed works */
190 * Structure used to wait for workqueue flush.
192 struct wq_flusher {
193 struct list_head list; /* F: list of flushers */
194 int flush_color; /* F: flush color waiting for */
195 struct completion done; /* flush completion */
199 * All cpumasks are assumed to be always set on UP and thus can't be
200 * used to determine whether there's something to be done.
202 #ifdef CONFIG_SMP
203 typedef cpumask_var_t mayday_mask_t;
204 #define mayday_test_and_set_cpu(cpu, mask) \
205 cpumask_test_and_set_cpu((cpu), (mask))
206 #define mayday_clear_cpu(cpu, mask) cpumask_clear_cpu((cpu), (mask))
207 #define for_each_mayday_cpu(cpu, mask) for_each_cpu((cpu), (mask))
208 #define alloc_mayday_mask(maskp, gfp) zalloc_cpumask_var((maskp), (gfp))
209 #define free_mayday_mask(mask) free_cpumask_var((mask))
210 #else
211 typedef unsigned long mayday_mask_t;
212 #define mayday_test_and_set_cpu(cpu, mask) test_and_set_bit(0, &(mask))
213 #define mayday_clear_cpu(cpu, mask) clear_bit(0, &(mask))
214 #define for_each_mayday_cpu(cpu, mask) if ((cpu) = 0, (mask))
215 #define alloc_mayday_mask(maskp, gfp) true
216 #define free_mayday_mask(mask) do { } while (0)
217 #endif
220 * The externally visible workqueue abstraction is an array of
221 * per-CPU workqueues:
223 struct workqueue_struct {
224 unsigned int flags; /* W: WQ_* flags */
225 union {
226 struct cpu_workqueue_struct __percpu *pcpu;
227 struct cpu_workqueue_struct *single;
228 unsigned long v;
229 } cpu_wq; /* I: cwq's */
230 struct list_head list; /* W: list of all workqueues */
232 struct mutex flush_mutex; /* protects wq flushing */
233 int work_color; /* F: current work color */
234 int flush_color; /* F: current flush color */
235 atomic_t nr_cwqs_to_flush; /* flush in progress */
236 struct wq_flusher *first_flusher; /* F: first flusher */
237 struct list_head flusher_queue; /* F: flush waiters */
238 struct list_head flusher_overflow; /* F: flush overflow list */
240 mayday_mask_t mayday_mask; /* cpus requesting rescue */
241 struct worker *rescuer; /* I: rescue worker */
243 int nr_drainers; /* W: drain in progress */
244 int saved_max_active; /* W: saved cwq max_active */
245 const char *name; /* I: workqueue name */
246 #ifdef CONFIG_LOCKDEP
247 struct lockdep_map lockdep_map;
248 #endif
251 struct workqueue_struct *system_wq __read_mostly;
252 struct workqueue_struct *system_long_wq __read_mostly;
253 struct workqueue_struct *system_nrt_wq __read_mostly;
254 struct workqueue_struct *system_unbound_wq __read_mostly;
255 struct workqueue_struct *system_freezable_wq __read_mostly;
256 struct workqueue_struct *system_nrt_freezable_wq __read_mostly;
257 EXPORT_SYMBOL_GPL(system_wq);
258 EXPORT_SYMBOL_GPL(system_long_wq);
259 EXPORT_SYMBOL_GPL(system_nrt_wq);
260 EXPORT_SYMBOL_GPL(system_unbound_wq);
261 EXPORT_SYMBOL_GPL(system_freezable_wq);
262 EXPORT_SYMBOL_GPL(system_nrt_freezable_wq);
264 #define CREATE_TRACE_POINTS
265 #include <trace/events/workqueue.h>
267 #define for_each_busy_worker(worker, i, pos, gcwq) \
268 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++) \
269 hlist_for_each_entry(worker, pos, &gcwq->busy_hash[i], hentry)
271 static inline int __next_gcwq_cpu(int cpu, const struct cpumask *mask,
272 unsigned int sw)
274 if (cpu < nr_cpu_ids) {
275 if (sw & 1) {
276 cpu = cpumask_next(cpu, mask);
277 if (cpu < nr_cpu_ids)
278 return cpu;
280 if (sw & 2)
281 return WORK_CPU_UNBOUND;
283 return WORK_CPU_NONE;
286 static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
287 struct workqueue_struct *wq)
289 return __next_gcwq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
293 * CPU iterators
295 * An extra gcwq is defined for an invalid cpu number
296 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
297 * specific CPU. The following iterators are similar to
298 * for_each_*_cpu() iterators but also considers the unbound gcwq.
300 * for_each_gcwq_cpu() : possible CPUs + WORK_CPU_UNBOUND
301 * for_each_online_gcwq_cpu() : online CPUs + WORK_CPU_UNBOUND
302 * for_each_cwq_cpu() : possible CPUs for bound workqueues,
303 * WORK_CPU_UNBOUND for unbound workqueues
305 #define for_each_gcwq_cpu(cpu) \
306 for ((cpu) = __next_gcwq_cpu(-1, cpu_possible_mask, 3); \
307 (cpu) < WORK_CPU_NONE; \
308 (cpu) = __next_gcwq_cpu((cpu), cpu_possible_mask, 3))
310 #define for_each_online_gcwq_cpu(cpu) \
311 for ((cpu) = __next_gcwq_cpu(-1, cpu_online_mask, 3); \
312 (cpu) < WORK_CPU_NONE; \
313 (cpu) = __next_gcwq_cpu((cpu), cpu_online_mask, 3))
315 #define for_each_cwq_cpu(cpu, wq) \
316 for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, (wq)); \
317 (cpu) < WORK_CPU_NONE; \
318 (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, (wq)))
320 #ifdef CONFIG_DEBUG_OBJECTS_WORK
322 static struct debug_obj_descr work_debug_descr;
324 static void *work_debug_hint(void *addr)
326 return ((struct work_struct *) addr)->func;
330 * fixup_init is called when:
331 * - an active object is initialized
333 static int work_fixup_init(void *addr, enum debug_obj_state state)
335 struct work_struct *work = addr;
337 switch (state) {
338 case ODEBUG_STATE_ACTIVE:
339 cancel_work_sync(work);
340 debug_object_init(work, &work_debug_descr);
341 return 1;
342 default:
343 return 0;
348 * fixup_activate is called when:
349 * - an active object is activated
350 * - an unknown object is activated (might be a statically initialized object)
352 static int work_fixup_activate(void *addr, enum debug_obj_state state)
354 struct work_struct *work = addr;
356 switch (state) {
358 case ODEBUG_STATE_NOTAVAILABLE:
360 * This is not really a fixup. The work struct was
361 * statically initialized. We just make sure that it
362 * is tracked in the object tracker.
364 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
365 debug_object_init(work, &work_debug_descr);
366 debug_object_activate(work, &work_debug_descr);
367 return 0;
369 WARN_ON_ONCE(1);
370 return 0;
372 case ODEBUG_STATE_ACTIVE:
373 WARN_ON(1);
375 default:
376 return 0;
381 * fixup_free is called when:
382 * - an active object is freed
384 static int work_fixup_free(void *addr, enum debug_obj_state state)
386 struct work_struct *work = addr;
388 switch (state) {
389 case ODEBUG_STATE_ACTIVE:
390 cancel_work_sync(work);
391 debug_object_free(work, &work_debug_descr);
392 return 1;
393 default:
394 return 0;
398 static struct debug_obj_descr work_debug_descr = {
399 .name = "work_struct",
400 .debug_hint = work_debug_hint,
401 .fixup_init = work_fixup_init,
402 .fixup_activate = work_fixup_activate,
403 .fixup_free = work_fixup_free,
406 static inline void debug_work_activate(struct work_struct *work)
408 debug_object_activate(work, &work_debug_descr);
411 static inline void debug_work_deactivate(struct work_struct *work)
413 debug_object_deactivate(work, &work_debug_descr);
416 void __init_work(struct work_struct *work, int onstack)
418 if (onstack)
419 debug_object_init_on_stack(work, &work_debug_descr);
420 else
421 debug_object_init(work, &work_debug_descr);
423 EXPORT_SYMBOL_GPL(__init_work);
425 void destroy_work_on_stack(struct work_struct *work)
427 debug_object_free(work, &work_debug_descr);
429 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
431 #else
432 static inline void debug_work_activate(struct work_struct *work) { }
433 static inline void debug_work_deactivate(struct work_struct *work) { }
434 #endif
436 /* Serializes the accesses to the list of workqueues. */
437 static DEFINE_SPINLOCK(workqueue_lock);
438 static LIST_HEAD(workqueues);
439 static bool workqueue_freezing; /* W: have wqs started freezing? */
442 * The almighty global cpu workqueues. nr_running is the only field
443 * which is expected to be used frequently by other cpus via
444 * try_to_wake_up(). Put it in a separate cacheline.
446 static DEFINE_PER_CPU(struct global_cwq, global_cwq);
447 static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, gcwq_nr_running);
450 * Global cpu workqueue and nr_running counter for unbound gcwq. The
451 * gcwq is always online, has GCWQ_DISASSOCIATED set, and all its
452 * workers have WORKER_UNBOUND set.
454 static struct global_cwq unbound_global_cwq;
455 static atomic_t unbound_gcwq_nr_running = ATOMIC_INIT(0); /* always 0 */
457 static int worker_thread(void *__worker);
459 static struct global_cwq *get_gcwq(unsigned int cpu)
461 if (cpu != WORK_CPU_UNBOUND)
462 return &per_cpu(global_cwq, cpu);
463 else
464 return &unbound_global_cwq;
467 static atomic_t *get_gcwq_nr_running(unsigned int cpu)
469 if (cpu != WORK_CPU_UNBOUND)
470 return &per_cpu(gcwq_nr_running, cpu);
471 else
472 return &unbound_gcwq_nr_running;
475 static struct cpu_workqueue_struct *get_cwq(unsigned int cpu,
476 struct workqueue_struct *wq)
478 if (!(wq->flags & WQ_UNBOUND)) {
479 if (likely(cpu < nr_cpu_ids)) {
480 #ifdef CONFIG_SMP
481 return per_cpu_ptr(wq->cpu_wq.pcpu, cpu);
482 #else
483 return wq->cpu_wq.single;
484 #endif
486 } else if (likely(cpu == WORK_CPU_UNBOUND))
487 return wq->cpu_wq.single;
488 return NULL;
491 static unsigned int work_color_to_flags(int color)
493 return color << WORK_STRUCT_COLOR_SHIFT;
496 static int get_work_color(struct work_struct *work)
498 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
499 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
502 static int work_next_color(int color)
504 return (color + 1) % WORK_NR_COLORS;
508 * A work's data points to the cwq with WORK_STRUCT_CWQ set while the
509 * work is on queue. Once execution starts, WORK_STRUCT_CWQ is
510 * cleared and the work data contains the cpu number it was last on.
512 * set_work_{cwq|cpu}() and clear_work_data() can be used to set the
513 * cwq, cpu or clear work->data. These functions should only be
514 * called while the work is owned - ie. while the PENDING bit is set.
516 * get_work_[g]cwq() can be used to obtain the gcwq or cwq
517 * corresponding to a work. gcwq is available once the work has been
518 * queued anywhere after initialization. cwq is available only from
519 * queueing until execution starts.
521 static inline void set_work_data(struct work_struct *work, unsigned long data,
522 unsigned long flags)
524 BUG_ON(!work_pending(work));
525 atomic_long_set(&work->data, data | flags | work_static(work));
528 static void set_work_cwq(struct work_struct *work,
529 struct cpu_workqueue_struct *cwq,
530 unsigned long extra_flags)
532 set_work_data(work, (unsigned long)cwq,
533 WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags);
536 static void set_work_cpu(struct work_struct *work, unsigned int cpu)
538 set_work_data(work, cpu << WORK_STRUCT_FLAG_BITS, WORK_STRUCT_PENDING);
541 static void clear_work_data(struct work_struct *work)
543 set_work_data(work, WORK_STRUCT_NO_CPU, 0);
546 static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work)
548 unsigned long data = atomic_long_read(&work->data);
550 if (data & WORK_STRUCT_CWQ)
551 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
552 else
553 return NULL;
556 static struct global_cwq *get_work_gcwq(struct work_struct *work)
558 unsigned long data = atomic_long_read(&work->data);
559 unsigned int cpu;
561 if (data & WORK_STRUCT_CWQ)
562 return ((struct cpu_workqueue_struct *)
563 (data & WORK_STRUCT_WQ_DATA_MASK))->gcwq;
565 cpu = data >> WORK_STRUCT_FLAG_BITS;
566 if (cpu == WORK_CPU_NONE)
567 return NULL;
569 BUG_ON(cpu >= nr_cpu_ids && cpu != WORK_CPU_UNBOUND);
570 return get_gcwq(cpu);
574 * Policy functions. These define the policies on how the global
575 * worker pool is managed. Unless noted otherwise, these functions
576 * assume that they're being called with gcwq->lock held.
579 static bool __need_more_worker(struct global_cwq *gcwq)
581 return !atomic_read(get_gcwq_nr_running(gcwq->cpu)) ||
582 gcwq->flags & GCWQ_HIGHPRI_PENDING;
586 * Need to wake up a worker? Called from anything but currently
587 * running workers.
589 static bool need_more_worker(struct global_cwq *gcwq)
591 return !list_empty(&gcwq->worklist) && __need_more_worker(gcwq);
594 /* Can I start working? Called from busy but !running workers. */
595 static bool may_start_working(struct global_cwq *gcwq)
597 return gcwq->nr_idle;
600 /* Do I need to keep working? Called from currently running workers. */
601 static bool keep_working(struct global_cwq *gcwq)
603 atomic_t *nr_running = get_gcwq_nr_running(gcwq->cpu);
605 return !list_empty(&gcwq->worklist) &&
606 (atomic_read(nr_running) <= 1 ||
607 gcwq->flags & GCWQ_HIGHPRI_PENDING);
610 /* Do we need a new worker? Called from manager. */
611 static bool need_to_create_worker(struct global_cwq *gcwq)
613 return need_more_worker(gcwq) && !may_start_working(gcwq);
616 /* Do I need to be the manager? */
617 static bool need_to_manage_workers(struct global_cwq *gcwq)
619 return need_to_create_worker(gcwq) || gcwq->flags & GCWQ_MANAGE_WORKERS;
622 /* Do we have too many workers and should some go away? */
623 static bool too_many_workers(struct global_cwq *gcwq)
625 bool managing = gcwq->flags & GCWQ_MANAGING_WORKERS;
626 int nr_idle = gcwq->nr_idle + managing; /* manager is considered idle */
627 int nr_busy = gcwq->nr_workers - nr_idle;
629 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
633 * Wake up functions.
636 /* Return the first worker. Safe with preemption disabled */
637 static struct worker *first_worker(struct global_cwq *gcwq)
639 if (unlikely(list_empty(&gcwq->idle_list)))
640 return NULL;
642 return list_first_entry(&gcwq->idle_list, struct worker, entry);
646 * wake_up_worker - wake up an idle worker
647 * @gcwq: gcwq to wake worker for
649 * Wake up the first idle worker of @gcwq.
651 * CONTEXT:
652 * spin_lock_irq(gcwq->lock).
654 static void wake_up_worker(struct global_cwq *gcwq)
656 struct worker *worker = first_worker(gcwq);
658 if (likely(worker))
659 wake_up_process(worker->task);
663 * wq_worker_waking_up - a worker is waking up
664 * @task: task waking up
665 * @cpu: CPU @task is waking up to
667 * This function is called during try_to_wake_up() when a worker is
668 * being awoken.
670 * CONTEXT:
671 * spin_lock_irq(rq->lock)
673 void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
675 struct worker *worker = kthread_data(task);
677 if (!(worker->flags & WORKER_NOT_RUNNING))
678 atomic_inc(get_gcwq_nr_running(cpu));
682 * wq_worker_sleeping - a worker is going to sleep
683 * @task: task going to sleep
684 * @cpu: CPU in question, must be the current CPU number
686 * This function is called during schedule() when a busy worker is
687 * going to sleep. Worker on the same cpu can be woken up by
688 * returning pointer to its task.
690 * CONTEXT:
691 * spin_lock_irq(rq->lock)
693 * RETURNS:
694 * Worker task on @cpu to wake up, %NULL if none.
696 struct task_struct *wq_worker_sleeping(struct task_struct *task,
697 unsigned int cpu)
699 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
700 struct global_cwq *gcwq = get_gcwq(cpu);
701 atomic_t *nr_running = get_gcwq_nr_running(cpu);
703 if (worker->flags & WORKER_NOT_RUNNING)
704 return NULL;
706 /* this can only happen on the local cpu */
707 BUG_ON(cpu != raw_smp_processor_id());
710 * The counterpart of the following dec_and_test, implied mb,
711 * worklist not empty test sequence is in insert_work().
712 * Please read comment there.
714 * NOT_RUNNING is clear. This means that trustee is not in
715 * charge and we're running on the local cpu w/ rq lock held
716 * and preemption disabled, which in turn means that none else
717 * could be manipulating idle_list, so dereferencing idle_list
718 * without gcwq lock is safe.
720 if (atomic_dec_and_test(nr_running) && !list_empty(&gcwq->worklist))
721 to_wakeup = first_worker(gcwq);
722 return to_wakeup ? to_wakeup->task : NULL;
726 * worker_set_flags - set worker flags and adjust nr_running accordingly
727 * @worker: self
728 * @flags: flags to set
729 * @wakeup: wakeup an idle worker if necessary
731 * Set @flags in @worker->flags and adjust nr_running accordingly. If
732 * nr_running becomes zero and @wakeup is %true, an idle worker is
733 * woken up.
735 * CONTEXT:
736 * spin_lock_irq(gcwq->lock)
738 static inline void worker_set_flags(struct worker *worker, unsigned int flags,
739 bool wakeup)
741 struct global_cwq *gcwq = worker->gcwq;
743 WARN_ON_ONCE(worker->task != current);
746 * If transitioning into NOT_RUNNING, adjust nr_running and
747 * wake up an idle worker as necessary if requested by
748 * @wakeup.
750 if ((flags & WORKER_NOT_RUNNING) &&
751 !(worker->flags & WORKER_NOT_RUNNING)) {
752 atomic_t *nr_running = get_gcwq_nr_running(gcwq->cpu);
754 if (wakeup) {
755 if (atomic_dec_and_test(nr_running) &&
756 !list_empty(&gcwq->worklist))
757 wake_up_worker(gcwq);
758 } else
759 atomic_dec(nr_running);
762 worker->flags |= flags;
766 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
767 * @worker: self
768 * @flags: flags to clear
770 * Clear @flags in @worker->flags and adjust nr_running accordingly.
772 * CONTEXT:
773 * spin_lock_irq(gcwq->lock)
775 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
777 struct global_cwq *gcwq = worker->gcwq;
778 unsigned int oflags = worker->flags;
780 WARN_ON_ONCE(worker->task != current);
782 worker->flags &= ~flags;
785 * If transitioning out of NOT_RUNNING, increment nr_running. Note
786 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
787 * of multiple flags, not a single flag.
789 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
790 if (!(worker->flags & WORKER_NOT_RUNNING))
791 atomic_inc(get_gcwq_nr_running(gcwq->cpu));
795 * busy_worker_head - return the busy hash head for a work
796 * @gcwq: gcwq of interest
797 * @work: work to be hashed
799 * Return hash head of @gcwq for @work.
801 * CONTEXT:
802 * spin_lock_irq(gcwq->lock).
804 * RETURNS:
805 * Pointer to the hash head.
807 static struct hlist_head *busy_worker_head(struct global_cwq *gcwq,
808 struct work_struct *work)
810 const int base_shift = ilog2(sizeof(struct work_struct));
811 unsigned long v = (unsigned long)work;
813 /* simple shift and fold hash, do we need something better? */
814 v >>= base_shift;
815 v += v >> BUSY_WORKER_HASH_ORDER;
816 v &= BUSY_WORKER_HASH_MASK;
818 return &gcwq->busy_hash[v];
822 * __find_worker_executing_work - find worker which is executing a work
823 * @gcwq: gcwq of interest
824 * @bwh: hash head as returned by busy_worker_head()
825 * @work: work to find worker for
827 * Find a worker which is executing @work on @gcwq. @bwh should be
828 * the hash head obtained by calling busy_worker_head() with the same
829 * work.
831 * CONTEXT:
832 * spin_lock_irq(gcwq->lock).
834 * RETURNS:
835 * Pointer to worker which is executing @work if found, NULL
836 * otherwise.
838 static struct worker *__find_worker_executing_work(struct global_cwq *gcwq,
839 struct hlist_head *bwh,
840 struct work_struct *work)
842 struct worker *worker;
843 struct hlist_node *tmp;
845 hlist_for_each_entry(worker, tmp, bwh, hentry)
846 if (worker->current_work == work)
847 return worker;
848 return NULL;
852 * find_worker_executing_work - find worker which is executing a work
853 * @gcwq: gcwq of interest
854 * @work: work to find worker for
856 * Find a worker which is executing @work on @gcwq. This function is
857 * identical to __find_worker_executing_work() except that this
858 * function calculates @bwh itself.
860 * CONTEXT:
861 * spin_lock_irq(gcwq->lock).
863 * RETURNS:
864 * Pointer to worker which is executing @work if found, NULL
865 * otherwise.
867 static struct worker *find_worker_executing_work(struct global_cwq *gcwq,
868 struct work_struct *work)
870 return __find_worker_executing_work(gcwq, busy_worker_head(gcwq, work),
871 work);
875 * gcwq_determine_ins_pos - find insertion position
876 * @gcwq: gcwq of interest
877 * @cwq: cwq a work is being queued for
879 * A work for @cwq is about to be queued on @gcwq, determine insertion
880 * position for the work. If @cwq is for HIGHPRI wq, the work is
881 * queued at the head of the queue but in FIFO order with respect to
882 * other HIGHPRI works; otherwise, at the end of the queue. This
883 * function also sets GCWQ_HIGHPRI_PENDING flag to hint @gcwq that
884 * there are HIGHPRI works pending.
886 * CONTEXT:
887 * spin_lock_irq(gcwq->lock).
889 * RETURNS:
890 * Pointer to inserstion position.
892 static inline struct list_head *gcwq_determine_ins_pos(struct global_cwq *gcwq,
893 struct cpu_workqueue_struct *cwq)
895 struct work_struct *twork;
897 if (likely(!(cwq->wq->flags & WQ_HIGHPRI)))
898 return &gcwq->worklist;
900 list_for_each_entry(twork, &gcwq->worklist, entry) {
901 struct cpu_workqueue_struct *tcwq = get_work_cwq(twork);
903 if (!(tcwq->wq->flags & WQ_HIGHPRI))
904 break;
907 gcwq->flags |= GCWQ_HIGHPRI_PENDING;
908 return &twork->entry;
912 * insert_work - insert a work into gcwq
913 * @cwq: cwq @work belongs to
914 * @work: work to insert
915 * @head: insertion point
916 * @extra_flags: extra WORK_STRUCT_* flags to set
918 * Insert @work which belongs to @cwq into @gcwq after @head.
919 * @extra_flags is or'd to work_struct flags.
921 * CONTEXT:
922 * spin_lock_irq(gcwq->lock).
924 static void insert_work(struct cpu_workqueue_struct *cwq,
925 struct work_struct *work, struct list_head *head,
926 unsigned int extra_flags)
928 struct global_cwq *gcwq = cwq->gcwq;
930 /* we own @work, set data and link */
931 set_work_cwq(work, cwq, extra_flags);
934 * Ensure that we get the right work->data if we see the
935 * result of list_add() below, see try_to_grab_pending().
937 smp_wmb();
939 list_add_tail(&work->entry, head);
942 * Ensure either worker_sched_deactivated() sees the above
943 * list_add_tail() or we see zero nr_running to avoid workers
944 * lying around lazily while there are works to be processed.
946 smp_mb();
948 if (__need_more_worker(gcwq))
949 wake_up_worker(gcwq);
953 * Test whether @work is being queued from another work executing on the
954 * same workqueue. This is rather expensive and should only be used from
955 * cold paths.
957 static bool is_chained_work(struct workqueue_struct *wq)
959 unsigned long flags;
960 unsigned int cpu;
962 for_each_gcwq_cpu(cpu) {
963 struct global_cwq *gcwq = get_gcwq(cpu);
964 struct worker *worker;
965 struct hlist_node *pos;
966 int i;
968 spin_lock_irqsave(&gcwq->lock, flags);
969 for_each_busy_worker(worker, i, pos, gcwq) {
970 if (worker->task != current)
971 continue;
972 spin_unlock_irqrestore(&gcwq->lock, flags);
974 * I'm @worker, no locking necessary. See if @work
975 * is headed to the same workqueue.
977 return worker->current_cwq->wq == wq;
979 spin_unlock_irqrestore(&gcwq->lock, flags);
981 return false;
984 static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
985 struct work_struct *work)
987 struct global_cwq *gcwq;
988 struct cpu_workqueue_struct *cwq;
989 struct list_head *worklist;
990 unsigned int work_flags;
991 unsigned long flags;
993 debug_work_activate(work);
995 /* if dying, only works from the same workqueue are allowed */
996 if (unlikely(wq->flags & WQ_DRAINING) &&
997 WARN_ON_ONCE(!is_chained_work(wq)))
998 return;
1000 /* determine gcwq to use */
1001 if (!(wq->flags & WQ_UNBOUND)) {
1002 struct global_cwq *last_gcwq;
1004 if (unlikely(cpu == WORK_CPU_UNBOUND))
1005 cpu = raw_smp_processor_id();
1008 * It's multi cpu. If @wq is non-reentrant and @work
1009 * was previously on a different cpu, it might still
1010 * be running there, in which case the work needs to
1011 * be queued on that cpu to guarantee non-reentrance.
1013 gcwq = get_gcwq(cpu);
1014 if (wq->flags & WQ_NON_REENTRANT &&
1015 (last_gcwq = get_work_gcwq(work)) && last_gcwq != gcwq) {
1016 struct worker *worker;
1018 spin_lock_irqsave(&last_gcwq->lock, flags);
1020 worker = find_worker_executing_work(last_gcwq, work);
1022 if (worker && worker->current_cwq->wq == wq)
1023 gcwq = last_gcwq;
1024 else {
1025 /* meh... not running there, queue here */
1026 spin_unlock_irqrestore(&last_gcwq->lock, flags);
1027 spin_lock_irqsave(&gcwq->lock, flags);
1029 } else
1030 spin_lock_irqsave(&gcwq->lock, flags);
1031 } else {
1032 gcwq = get_gcwq(WORK_CPU_UNBOUND);
1033 spin_lock_irqsave(&gcwq->lock, flags);
1036 /* gcwq determined, get cwq and queue */
1037 cwq = get_cwq(gcwq->cpu, wq);
1038 trace_workqueue_queue_work(cpu, cwq, work);
1040 BUG_ON(!list_empty(&work->entry));
1042 cwq->nr_in_flight[cwq->work_color]++;
1043 work_flags = work_color_to_flags(cwq->work_color);
1045 if (likely(cwq->nr_active < cwq->max_active)) {
1046 trace_workqueue_activate_work(work);
1047 cwq->nr_active++;
1048 worklist = gcwq_determine_ins_pos(gcwq, cwq);
1049 } else {
1050 work_flags |= WORK_STRUCT_DELAYED;
1051 worklist = &cwq->delayed_works;
1054 insert_work(cwq, work, worklist, work_flags);
1056 spin_unlock_irqrestore(&gcwq->lock, flags);
1060 * queue_work - queue work on a workqueue
1061 * @wq: workqueue to use
1062 * @work: work to queue
1064 * Returns 0 if @work was already on a queue, non-zero otherwise.
1066 * We queue the work to the CPU on which it was submitted, but if the CPU dies
1067 * it can be processed by another CPU.
1069 int queue_work(struct workqueue_struct *wq, struct work_struct *work)
1071 int ret;
1073 ret = queue_work_on(get_cpu(), wq, work);
1074 put_cpu();
1076 return ret;
1078 EXPORT_SYMBOL_GPL(queue_work);
1081 * queue_work_on - queue work on specific cpu
1082 * @cpu: CPU number to execute work on
1083 * @wq: workqueue to use
1084 * @work: work to queue
1086 * Returns 0 if @work was already on a queue, non-zero otherwise.
1088 * We queue the work to a specific CPU, the caller must ensure it
1089 * can't go away.
1092 queue_work_on(int cpu, struct workqueue_struct *wq, struct work_struct *work)
1094 int ret = 0;
1096 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1097 __queue_work(cpu, wq, work);
1098 ret = 1;
1100 return ret;
1102 EXPORT_SYMBOL_GPL(queue_work_on);
1104 static void delayed_work_timer_fn(unsigned long __data)
1106 struct delayed_work *dwork = (struct delayed_work *)__data;
1107 struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work);
1109 __queue_work(smp_processor_id(), cwq->wq, &dwork->work);
1113 * queue_delayed_work - queue work on a workqueue after delay
1114 * @wq: workqueue to use
1115 * @dwork: delayable work to queue
1116 * @delay: number of jiffies to wait before queueing
1118 * Returns 0 if @work was already on a queue, non-zero otherwise.
1120 int queue_delayed_work(struct workqueue_struct *wq,
1121 struct delayed_work *dwork, unsigned long delay)
1123 if (delay == 0)
1124 return queue_work(wq, &dwork->work);
1126 return queue_delayed_work_on(-1, wq, dwork, delay);
1128 EXPORT_SYMBOL_GPL(queue_delayed_work);
1131 * queue_delayed_work_on - queue work on specific CPU after delay
1132 * @cpu: CPU number to execute work on
1133 * @wq: workqueue to use
1134 * @dwork: work to queue
1135 * @delay: number of jiffies to wait before queueing
1137 * Returns 0 if @work was already on a queue, non-zero otherwise.
1139 int queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1140 struct delayed_work *dwork, unsigned long delay)
1142 int ret = 0;
1143 struct timer_list *timer = &dwork->timer;
1144 struct work_struct *work = &dwork->work;
1146 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1147 unsigned int lcpu;
1149 BUG_ON(timer_pending(timer));
1150 BUG_ON(!list_empty(&work->entry));
1152 timer_stats_timer_set_start_info(&dwork->timer);
1155 * This stores cwq for the moment, for the timer_fn.
1156 * Note that the work's gcwq is preserved to allow
1157 * reentrance detection for delayed works.
1159 if (!(wq->flags & WQ_UNBOUND)) {
1160 struct global_cwq *gcwq = get_work_gcwq(work);
1162 if (gcwq && gcwq->cpu != WORK_CPU_UNBOUND)
1163 lcpu = gcwq->cpu;
1164 else
1165 lcpu = raw_smp_processor_id();
1166 } else
1167 lcpu = WORK_CPU_UNBOUND;
1169 set_work_cwq(work, get_cwq(lcpu, wq), 0);
1171 timer->expires = jiffies + delay;
1172 timer->data = (unsigned long)dwork;
1173 timer->function = delayed_work_timer_fn;
1175 if (unlikely(cpu >= 0))
1176 add_timer_on(timer, cpu);
1177 else
1178 add_timer(timer);
1179 ret = 1;
1181 return ret;
1183 EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1186 * worker_enter_idle - enter idle state
1187 * @worker: worker which is entering idle state
1189 * @worker is entering idle state. Update stats and idle timer if
1190 * necessary.
1192 * LOCKING:
1193 * spin_lock_irq(gcwq->lock).
1195 static void worker_enter_idle(struct worker *worker)
1197 struct global_cwq *gcwq = worker->gcwq;
1199 BUG_ON(worker->flags & WORKER_IDLE);
1200 BUG_ON(!list_empty(&worker->entry) &&
1201 (worker->hentry.next || worker->hentry.pprev));
1203 /* can't use worker_set_flags(), also called from start_worker() */
1204 worker->flags |= WORKER_IDLE;
1205 gcwq->nr_idle++;
1206 worker->last_active = jiffies;
1208 /* idle_list is LIFO */
1209 list_add(&worker->entry, &gcwq->idle_list);
1211 if (likely(!(worker->flags & WORKER_ROGUE))) {
1212 if (too_many_workers(gcwq) && !timer_pending(&gcwq->idle_timer))
1213 mod_timer(&gcwq->idle_timer,
1214 jiffies + IDLE_WORKER_TIMEOUT);
1215 } else
1216 wake_up_all(&gcwq->trustee_wait);
1219 * Sanity check nr_running. Because trustee releases gcwq->lock
1220 * between setting %WORKER_ROGUE and zapping nr_running, the
1221 * warning may trigger spuriously. Check iff trustee is idle.
1223 WARN_ON_ONCE(gcwq->trustee_state == TRUSTEE_DONE &&
1224 gcwq->nr_workers == gcwq->nr_idle &&
1225 atomic_read(get_gcwq_nr_running(gcwq->cpu)));
1229 * worker_leave_idle - leave idle state
1230 * @worker: worker which is leaving idle state
1232 * @worker is leaving idle state. Update stats.
1234 * LOCKING:
1235 * spin_lock_irq(gcwq->lock).
1237 static void worker_leave_idle(struct worker *worker)
1239 struct global_cwq *gcwq = worker->gcwq;
1241 BUG_ON(!(worker->flags & WORKER_IDLE));
1242 worker_clr_flags(worker, WORKER_IDLE);
1243 gcwq->nr_idle--;
1244 list_del_init(&worker->entry);
1248 * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock gcwq
1249 * @worker: self
1251 * Works which are scheduled while the cpu is online must at least be
1252 * scheduled to a worker which is bound to the cpu so that if they are
1253 * flushed from cpu callbacks while cpu is going down, they are
1254 * guaranteed to execute on the cpu.
1256 * This function is to be used by rogue workers and rescuers to bind
1257 * themselves to the target cpu and may race with cpu going down or
1258 * coming online. kthread_bind() can't be used because it may put the
1259 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1260 * verbatim as it's best effort and blocking and gcwq may be
1261 * [dis]associated in the meantime.
1263 * This function tries set_cpus_allowed() and locks gcwq and verifies
1264 * the binding against GCWQ_DISASSOCIATED which is set during
1265 * CPU_DYING and cleared during CPU_ONLINE, so if the worker enters
1266 * idle state or fetches works without dropping lock, it can guarantee
1267 * the scheduling requirement described in the first paragraph.
1269 * CONTEXT:
1270 * Might sleep. Called without any lock but returns with gcwq->lock
1271 * held.
1273 * RETURNS:
1274 * %true if the associated gcwq is online (@worker is successfully
1275 * bound), %false if offline.
1277 static bool worker_maybe_bind_and_lock(struct worker *worker)
1278 __acquires(&gcwq->lock)
1280 struct global_cwq *gcwq = worker->gcwq;
1281 struct task_struct *task = worker->task;
1283 while (true) {
1285 * The following call may fail, succeed or succeed
1286 * without actually migrating the task to the cpu if
1287 * it races with cpu hotunplug operation. Verify
1288 * against GCWQ_DISASSOCIATED.
1290 if (!(gcwq->flags & GCWQ_DISASSOCIATED))
1291 set_cpus_allowed_ptr(task, get_cpu_mask(gcwq->cpu));
1293 spin_lock_irq(&gcwq->lock);
1294 if (gcwq->flags & GCWQ_DISASSOCIATED)
1295 return false;
1296 if (task_cpu(task) == gcwq->cpu &&
1297 cpumask_equal(&current->cpus_allowed,
1298 get_cpu_mask(gcwq->cpu)))
1299 return true;
1300 spin_unlock_irq(&gcwq->lock);
1303 * We've raced with CPU hot[un]plug. Give it a breather
1304 * and retry migration. cond_resched() is required here;
1305 * otherwise, we might deadlock against cpu_stop trying to
1306 * bring down the CPU on non-preemptive kernel.
1308 cpu_relax();
1309 cond_resched();
1314 * Function for worker->rebind_work used to rebind rogue busy workers
1315 * to the associated cpu which is coming back online. This is
1316 * scheduled by cpu up but can race with other cpu hotplug operations
1317 * and may be executed twice without intervening cpu down.
1319 static void worker_rebind_fn(struct work_struct *work)
1321 struct worker *worker = container_of(work, struct worker, rebind_work);
1322 struct global_cwq *gcwq = worker->gcwq;
1324 if (worker_maybe_bind_and_lock(worker))
1325 worker_clr_flags(worker, WORKER_REBIND);
1327 spin_unlock_irq(&gcwq->lock);
1330 static struct worker *alloc_worker(void)
1332 struct worker *worker;
1334 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
1335 if (worker) {
1336 INIT_LIST_HEAD(&worker->entry);
1337 INIT_LIST_HEAD(&worker->scheduled);
1338 INIT_WORK(&worker->rebind_work, worker_rebind_fn);
1339 /* on creation a worker is in !idle && prep state */
1340 worker->flags = WORKER_PREP;
1342 return worker;
1346 * create_worker - create a new workqueue worker
1347 * @gcwq: gcwq the new worker will belong to
1348 * @bind: whether to set affinity to @cpu or not
1350 * Create a new worker which is bound to @gcwq. The returned worker
1351 * can be started by calling start_worker() or destroyed using
1352 * destroy_worker().
1354 * CONTEXT:
1355 * Might sleep. Does GFP_KERNEL allocations.
1357 * RETURNS:
1358 * Pointer to the newly created worker.
1360 static struct worker *create_worker(struct global_cwq *gcwq, bool bind)
1362 bool on_unbound_cpu = gcwq->cpu == WORK_CPU_UNBOUND;
1363 struct worker *worker = NULL;
1364 int id = -1;
1366 spin_lock_irq(&gcwq->lock);
1367 while (ida_get_new(&gcwq->worker_ida, &id)) {
1368 spin_unlock_irq(&gcwq->lock);
1369 if (!ida_pre_get(&gcwq->worker_ida, GFP_KERNEL))
1370 goto fail;
1371 spin_lock_irq(&gcwq->lock);
1373 spin_unlock_irq(&gcwq->lock);
1375 worker = alloc_worker();
1376 if (!worker)
1377 goto fail;
1379 worker->gcwq = gcwq;
1380 worker->id = id;
1382 if (!on_unbound_cpu)
1383 worker->task = kthread_create_on_node(worker_thread,
1384 worker,
1385 cpu_to_node(gcwq->cpu),
1386 "kworker/%u:%d", gcwq->cpu, id);
1387 else
1388 worker->task = kthread_create(worker_thread, worker,
1389 "kworker/u:%d", id);
1390 if (IS_ERR(worker->task))
1391 goto fail;
1394 * A rogue worker will become a regular one if CPU comes
1395 * online later on. Make sure every worker has
1396 * PF_THREAD_BOUND set.
1398 if (bind && !on_unbound_cpu)
1399 kthread_bind(worker->task, gcwq->cpu);
1400 else {
1401 worker->task->flags |= PF_THREAD_BOUND;
1402 if (on_unbound_cpu)
1403 worker->flags |= WORKER_UNBOUND;
1406 return worker;
1407 fail:
1408 if (id >= 0) {
1409 spin_lock_irq(&gcwq->lock);
1410 ida_remove(&gcwq->worker_ida, id);
1411 spin_unlock_irq(&gcwq->lock);
1413 kfree(worker);
1414 return NULL;
1418 * start_worker - start a newly created worker
1419 * @worker: worker to start
1421 * Make the gcwq aware of @worker and start it.
1423 * CONTEXT:
1424 * spin_lock_irq(gcwq->lock).
1426 static void start_worker(struct worker *worker)
1428 worker->flags |= WORKER_STARTED;
1429 worker->gcwq->nr_workers++;
1430 worker_enter_idle(worker);
1431 wake_up_process(worker->task);
1435 * destroy_worker - destroy a workqueue worker
1436 * @worker: worker to be destroyed
1438 * Destroy @worker and adjust @gcwq stats accordingly.
1440 * CONTEXT:
1441 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
1443 static void destroy_worker(struct worker *worker)
1445 struct global_cwq *gcwq = worker->gcwq;
1446 int id = worker->id;
1448 /* sanity check frenzy */
1449 BUG_ON(worker->current_work);
1450 BUG_ON(!list_empty(&worker->scheduled));
1452 if (worker->flags & WORKER_STARTED)
1453 gcwq->nr_workers--;
1454 if (worker->flags & WORKER_IDLE)
1455 gcwq->nr_idle--;
1457 list_del_init(&worker->entry);
1458 worker->flags |= WORKER_DIE;
1460 spin_unlock_irq(&gcwq->lock);
1462 kthread_stop(worker->task);
1463 kfree(worker);
1465 spin_lock_irq(&gcwq->lock);
1466 ida_remove(&gcwq->worker_ida, id);
1469 static void idle_worker_timeout(unsigned long __gcwq)
1471 struct global_cwq *gcwq = (void *)__gcwq;
1473 spin_lock_irq(&gcwq->lock);
1475 if (too_many_workers(gcwq)) {
1476 struct worker *worker;
1477 unsigned long expires;
1479 /* idle_list is kept in LIFO order, check the last one */
1480 worker = list_entry(gcwq->idle_list.prev, struct worker, entry);
1481 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1483 if (time_before(jiffies, expires))
1484 mod_timer(&gcwq->idle_timer, expires);
1485 else {
1486 /* it's been idle for too long, wake up manager */
1487 gcwq->flags |= GCWQ_MANAGE_WORKERS;
1488 wake_up_worker(gcwq);
1492 spin_unlock_irq(&gcwq->lock);
1495 static bool send_mayday(struct work_struct *work)
1497 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1498 struct workqueue_struct *wq = cwq->wq;
1499 unsigned int cpu;
1501 if (!(wq->flags & WQ_RESCUER))
1502 return false;
1504 /* mayday mayday mayday */
1505 cpu = cwq->gcwq->cpu;
1506 /* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
1507 if (cpu == WORK_CPU_UNBOUND)
1508 cpu = 0;
1509 if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
1510 wake_up_process(wq->rescuer->task);
1511 return true;
1514 static void gcwq_mayday_timeout(unsigned long __gcwq)
1516 struct global_cwq *gcwq = (void *)__gcwq;
1517 struct work_struct *work;
1519 spin_lock_irq(&gcwq->lock);
1521 if (need_to_create_worker(gcwq)) {
1523 * We've been trying to create a new worker but
1524 * haven't been successful. We might be hitting an
1525 * allocation deadlock. Send distress signals to
1526 * rescuers.
1528 list_for_each_entry(work, &gcwq->worklist, entry)
1529 send_mayday(work);
1532 spin_unlock_irq(&gcwq->lock);
1534 mod_timer(&gcwq->mayday_timer, jiffies + MAYDAY_INTERVAL);
1538 * maybe_create_worker - create a new worker if necessary
1539 * @gcwq: gcwq to create a new worker for
1541 * Create a new worker for @gcwq if necessary. @gcwq is guaranteed to
1542 * have at least one idle worker on return from this function. If
1543 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1544 * sent to all rescuers with works scheduled on @gcwq to resolve
1545 * possible allocation deadlock.
1547 * On return, need_to_create_worker() is guaranteed to be false and
1548 * may_start_working() true.
1550 * LOCKING:
1551 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1552 * multiple times. Does GFP_KERNEL allocations. Called only from
1553 * manager.
1555 * RETURNS:
1556 * false if no action was taken and gcwq->lock stayed locked, true
1557 * otherwise.
1559 static bool maybe_create_worker(struct global_cwq *gcwq)
1560 __releases(&gcwq->lock)
1561 __acquires(&gcwq->lock)
1563 if (!need_to_create_worker(gcwq))
1564 return false;
1565 restart:
1566 spin_unlock_irq(&gcwq->lock);
1568 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1569 mod_timer(&gcwq->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1571 while (true) {
1572 struct worker *worker;
1574 worker = create_worker(gcwq, true);
1575 if (worker) {
1576 del_timer_sync(&gcwq->mayday_timer);
1577 spin_lock_irq(&gcwq->lock);
1578 start_worker(worker);
1579 BUG_ON(need_to_create_worker(gcwq));
1580 return true;
1583 if (!need_to_create_worker(gcwq))
1584 break;
1586 __set_current_state(TASK_INTERRUPTIBLE);
1587 schedule_timeout(CREATE_COOLDOWN);
1589 if (!need_to_create_worker(gcwq))
1590 break;
1593 del_timer_sync(&gcwq->mayday_timer);
1594 spin_lock_irq(&gcwq->lock);
1595 if (need_to_create_worker(gcwq))
1596 goto restart;
1597 return true;
1601 * maybe_destroy_worker - destroy workers which have been idle for a while
1602 * @gcwq: gcwq to destroy workers for
1604 * Destroy @gcwq workers which have been idle for longer than
1605 * IDLE_WORKER_TIMEOUT.
1607 * LOCKING:
1608 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1609 * multiple times. Called only from manager.
1611 * RETURNS:
1612 * false if no action was taken and gcwq->lock stayed locked, true
1613 * otherwise.
1615 static bool maybe_destroy_workers(struct global_cwq *gcwq)
1617 bool ret = false;
1619 while (too_many_workers(gcwq)) {
1620 struct worker *worker;
1621 unsigned long expires;
1623 worker = list_entry(gcwq->idle_list.prev, struct worker, entry);
1624 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1626 if (time_before(jiffies, expires)) {
1627 mod_timer(&gcwq->idle_timer, expires);
1628 break;
1631 destroy_worker(worker);
1632 ret = true;
1635 return ret;
1639 * manage_workers - manage worker pool
1640 * @worker: self
1642 * Assume the manager role and manage gcwq worker pool @worker belongs
1643 * to. At any given time, there can be only zero or one manager per
1644 * gcwq. The exclusion is handled automatically by this function.
1646 * The caller can safely start processing works on false return. On
1647 * true return, it's guaranteed that need_to_create_worker() is false
1648 * and may_start_working() is true.
1650 * CONTEXT:
1651 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1652 * multiple times. Does GFP_KERNEL allocations.
1654 * RETURNS:
1655 * false if no action was taken and gcwq->lock stayed locked, true if
1656 * some action was taken.
1658 static bool manage_workers(struct worker *worker)
1660 struct global_cwq *gcwq = worker->gcwq;
1661 bool ret = false;
1663 if (gcwq->flags & GCWQ_MANAGING_WORKERS)
1664 return ret;
1666 gcwq->flags &= ~GCWQ_MANAGE_WORKERS;
1667 gcwq->flags |= GCWQ_MANAGING_WORKERS;
1670 * Destroy and then create so that may_start_working() is true
1671 * on return.
1673 ret |= maybe_destroy_workers(gcwq);
1674 ret |= maybe_create_worker(gcwq);
1676 gcwq->flags &= ~GCWQ_MANAGING_WORKERS;
1679 * The trustee might be waiting to take over the manager
1680 * position, tell it we're done.
1682 if (unlikely(gcwq->trustee))
1683 wake_up_all(&gcwq->trustee_wait);
1685 return ret;
1689 * move_linked_works - move linked works to a list
1690 * @work: start of series of works to be scheduled
1691 * @head: target list to append @work to
1692 * @nextp: out paramter for nested worklist walking
1694 * Schedule linked works starting from @work to @head. Work series to
1695 * be scheduled starts at @work and includes any consecutive work with
1696 * WORK_STRUCT_LINKED set in its predecessor.
1698 * If @nextp is not NULL, it's updated to point to the next work of
1699 * the last scheduled work. This allows move_linked_works() to be
1700 * nested inside outer list_for_each_entry_safe().
1702 * CONTEXT:
1703 * spin_lock_irq(gcwq->lock).
1705 static void move_linked_works(struct work_struct *work, struct list_head *head,
1706 struct work_struct **nextp)
1708 struct work_struct *n;
1711 * Linked worklist will always end before the end of the list,
1712 * use NULL for list head.
1714 list_for_each_entry_safe_from(work, n, NULL, entry) {
1715 list_move_tail(&work->entry, head);
1716 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1717 break;
1721 * If we're already inside safe list traversal and have moved
1722 * multiple works to the scheduled queue, the next position
1723 * needs to be updated.
1725 if (nextp)
1726 *nextp = n;
1729 static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq)
1731 struct work_struct *work = list_first_entry(&cwq->delayed_works,
1732 struct work_struct, entry);
1733 struct list_head *pos = gcwq_determine_ins_pos(cwq->gcwq, cwq);
1735 trace_workqueue_activate_work(work);
1736 move_linked_works(work, pos, NULL);
1737 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1738 cwq->nr_active++;
1742 * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight
1743 * @cwq: cwq of interest
1744 * @color: color of work which left the queue
1745 * @delayed: for a delayed work
1747 * A work either has completed or is removed from pending queue,
1748 * decrement nr_in_flight of its cwq and handle workqueue flushing.
1750 * CONTEXT:
1751 * spin_lock_irq(gcwq->lock).
1753 static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color,
1754 bool delayed)
1756 /* ignore uncolored works */
1757 if (color == WORK_NO_COLOR)
1758 return;
1760 cwq->nr_in_flight[color]--;
1762 if (!delayed) {
1763 cwq->nr_active--;
1764 if (!list_empty(&cwq->delayed_works)) {
1765 /* one down, submit a delayed one */
1766 if (cwq->nr_active < cwq->max_active)
1767 cwq_activate_first_delayed(cwq);
1771 /* is flush in progress and are we at the flushing tip? */
1772 if (likely(cwq->flush_color != color))
1773 return;
1775 /* are there still in-flight works? */
1776 if (cwq->nr_in_flight[color])
1777 return;
1779 /* this cwq is done, clear flush_color */
1780 cwq->flush_color = -1;
1783 * If this was the last cwq, wake up the first flusher. It
1784 * will handle the rest.
1786 if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush))
1787 complete(&cwq->wq->first_flusher->done);
1791 * process_one_work - process single work
1792 * @worker: self
1793 * @work: work to process
1795 * Process @work. This function contains all the logics necessary to
1796 * process a single work including synchronization against and
1797 * interaction with other workers on the same cpu, queueing and
1798 * flushing. As long as context requirement is met, any worker can
1799 * call this function to process a work.
1801 * CONTEXT:
1802 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
1804 static void process_one_work(struct worker *worker, struct work_struct *work)
1805 __releases(&gcwq->lock)
1806 __acquires(&gcwq->lock)
1808 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1809 struct global_cwq *gcwq = cwq->gcwq;
1810 struct hlist_head *bwh = busy_worker_head(gcwq, work);
1811 bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE;
1812 work_func_t f = work->func;
1813 int work_color;
1814 struct worker *collision;
1815 #ifdef CONFIG_LOCKDEP
1817 * It is permissible to free the struct work_struct from
1818 * inside the function that is called from it, this we need to
1819 * take into account for lockdep too. To avoid bogus "held
1820 * lock freed" warnings as well as problems when looking into
1821 * work->lockdep_map, make a copy and use that here.
1823 struct lockdep_map lockdep_map = work->lockdep_map;
1824 #endif
1826 * A single work shouldn't be executed concurrently by
1827 * multiple workers on a single cpu. Check whether anyone is
1828 * already processing the work. If so, defer the work to the
1829 * currently executing one.
1831 collision = __find_worker_executing_work(gcwq, bwh, work);
1832 if (unlikely(collision)) {
1833 move_linked_works(work, &collision->scheduled, NULL);
1834 return;
1837 /* claim and process */
1838 debug_work_deactivate(work);
1839 hlist_add_head(&worker->hentry, bwh);
1840 worker->current_work = work;
1841 worker->current_cwq = cwq;
1842 work_color = get_work_color(work);
1844 /* record the current cpu number in the work data and dequeue */
1845 set_work_cpu(work, gcwq->cpu);
1846 list_del_init(&work->entry);
1849 * If HIGHPRI_PENDING, check the next work, and, if HIGHPRI,
1850 * wake up another worker; otherwise, clear HIGHPRI_PENDING.
1852 if (unlikely(gcwq->flags & GCWQ_HIGHPRI_PENDING)) {
1853 struct work_struct *nwork = list_first_entry(&gcwq->worklist,
1854 struct work_struct, entry);
1856 if (!list_empty(&gcwq->worklist) &&
1857 get_work_cwq(nwork)->wq->flags & WQ_HIGHPRI)
1858 wake_up_worker(gcwq);
1859 else
1860 gcwq->flags &= ~GCWQ_HIGHPRI_PENDING;
1864 * CPU intensive works don't participate in concurrency
1865 * management. They're the scheduler's responsibility.
1867 if (unlikely(cpu_intensive))
1868 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
1870 spin_unlock_irq(&gcwq->lock);
1872 work_clear_pending(work);
1873 lock_map_acquire_read(&cwq->wq->lockdep_map);
1874 lock_map_acquire(&lockdep_map);
1875 trace_workqueue_execute_start(work);
1876 f(work);
1878 * While we must be careful to not use "work" after this, the trace
1879 * point will only record its address.
1881 trace_workqueue_execute_end(work);
1882 lock_map_release(&lockdep_map);
1883 lock_map_release(&cwq->wq->lockdep_map);
1885 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
1886 printk(KERN_ERR "BUG: workqueue leaked lock or atomic: "
1887 "%s/0x%08x/%d\n",
1888 current->comm, preempt_count(), task_pid_nr(current));
1889 printk(KERN_ERR " last function: ");
1890 print_symbol("%s\n", (unsigned long)f);
1891 debug_show_held_locks(current);
1892 dump_stack();
1895 spin_lock_irq(&gcwq->lock);
1897 /* clear cpu intensive status */
1898 if (unlikely(cpu_intensive))
1899 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
1901 /* we're done with it, release */
1902 hlist_del_init(&worker->hentry);
1903 worker->current_work = NULL;
1904 worker->current_cwq = NULL;
1905 cwq_dec_nr_in_flight(cwq, work_color, false);
1909 * process_scheduled_works - process scheduled works
1910 * @worker: self
1912 * Process all scheduled works. Please note that the scheduled list
1913 * may change while processing a work, so this function repeatedly
1914 * fetches a work from the top and executes it.
1916 * CONTEXT:
1917 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1918 * multiple times.
1920 static void process_scheduled_works(struct worker *worker)
1922 while (!list_empty(&worker->scheduled)) {
1923 struct work_struct *work = list_first_entry(&worker->scheduled,
1924 struct work_struct, entry);
1925 process_one_work(worker, work);
1930 * worker_thread - the worker thread function
1931 * @__worker: self
1933 * The gcwq worker thread function. There's a single dynamic pool of
1934 * these per each cpu. These workers process all works regardless of
1935 * their specific target workqueue. The only exception is works which
1936 * belong to workqueues with a rescuer which will be explained in
1937 * rescuer_thread().
1939 static int worker_thread(void *__worker)
1941 struct worker *worker = __worker;
1942 struct global_cwq *gcwq = worker->gcwq;
1944 /* tell the scheduler that this is a workqueue worker */
1945 worker->task->flags |= PF_WQ_WORKER;
1946 woke_up:
1947 spin_lock_irq(&gcwq->lock);
1949 /* DIE can be set only while we're idle, checking here is enough */
1950 if (worker->flags & WORKER_DIE) {
1951 spin_unlock_irq(&gcwq->lock);
1952 worker->task->flags &= ~PF_WQ_WORKER;
1953 return 0;
1956 worker_leave_idle(worker);
1957 recheck:
1958 /* no more worker necessary? */
1959 if (!need_more_worker(gcwq))
1960 goto sleep;
1962 /* do we need to manage? */
1963 if (unlikely(!may_start_working(gcwq)) && manage_workers(worker))
1964 goto recheck;
1967 * ->scheduled list can only be filled while a worker is
1968 * preparing to process a work or actually processing it.
1969 * Make sure nobody diddled with it while I was sleeping.
1971 BUG_ON(!list_empty(&worker->scheduled));
1974 * When control reaches this point, we're guaranteed to have
1975 * at least one idle worker or that someone else has already
1976 * assumed the manager role.
1978 worker_clr_flags(worker, WORKER_PREP);
1980 do {
1981 struct work_struct *work =
1982 list_first_entry(&gcwq->worklist,
1983 struct work_struct, entry);
1985 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
1986 /* optimization path, not strictly necessary */
1987 process_one_work(worker, work);
1988 if (unlikely(!list_empty(&worker->scheduled)))
1989 process_scheduled_works(worker);
1990 } else {
1991 move_linked_works(work, &worker->scheduled, NULL);
1992 process_scheduled_works(worker);
1994 } while (keep_working(gcwq));
1996 worker_set_flags(worker, WORKER_PREP, false);
1997 sleep:
1998 if (unlikely(need_to_manage_workers(gcwq)) && manage_workers(worker))
1999 goto recheck;
2002 * gcwq->lock is held and there's no work to process and no
2003 * need to manage, sleep. Workers are woken up only while
2004 * holding gcwq->lock or from local cpu, so setting the
2005 * current state before releasing gcwq->lock is enough to
2006 * prevent losing any event.
2008 worker_enter_idle(worker);
2009 __set_current_state(TASK_INTERRUPTIBLE);
2010 spin_unlock_irq(&gcwq->lock);
2011 schedule();
2012 goto woke_up;
2016 * rescuer_thread - the rescuer thread function
2017 * @__wq: the associated workqueue
2019 * Workqueue rescuer thread function. There's one rescuer for each
2020 * workqueue which has WQ_RESCUER set.
2022 * Regular work processing on a gcwq may block trying to create a new
2023 * worker which uses GFP_KERNEL allocation which has slight chance of
2024 * developing into deadlock if some works currently on the same queue
2025 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2026 * the problem rescuer solves.
2028 * When such condition is possible, the gcwq summons rescuers of all
2029 * workqueues which have works queued on the gcwq and let them process
2030 * those works so that forward progress can be guaranteed.
2032 * This should happen rarely.
2034 static int rescuer_thread(void *__wq)
2036 struct workqueue_struct *wq = __wq;
2037 struct worker *rescuer = wq->rescuer;
2038 struct list_head *scheduled = &rescuer->scheduled;
2039 bool is_unbound = wq->flags & WQ_UNBOUND;
2040 unsigned int cpu;
2042 set_user_nice(current, RESCUER_NICE_LEVEL);
2043 repeat:
2044 set_current_state(TASK_INTERRUPTIBLE);
2046 if (kthread_should_stop())
2047 return 0;
2050 * See whether any cpu is asking for help. Unbounded
2051 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
2053 for_each_mayday_cpu(cpu, wq->mayday_mask) {
2054 unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
2055 struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq);
2056 struct global_cwq *gcwq = cwq->gcwq;
2057 struct work_struct *work, *n;
2059 __set_current_state(TASK_RUNNING);
2060 mayday_clear_cpu(cpu, wq->mayday_mask);
2062 /* migrate to the target cpu if possible */
2063 rescuer->gcwq = gcwq;
2064 worker_maybe_bind_and_lock(rescuer);
2067 * Slurp in all works issued via this workqueue and
2068 * process'em.
2070 BUG_ON(!list_empty(&rescuer->scheduled));
2071 list_for_each_entry_safe(work, n, &gcwq->worklist, entry)
2072 if (get_work_cwq(work) == cwq)
2073 move_linked_works(work, scheduled, &n);
2075 process_scheduled_works(rescuer);
2078 * Leave this gcwq. If keep_working() is %true, notify a
2079 * regular worker; otherwise, we end up with 0 concurrency
2080 * and stalling the execution.
2082 if (keep_working(gcwq))
2083 wake_up_worker(gcwq);
2085 spin_unlock_irq(&gcwq->lock);
2088 schedule();
2089 goto repeat;
2092 struct wq_barrier {
2093 struct work_struct work;
2094 struct completion done;
2097 static void wq_barrier_func(struct work_struct *work)
2099 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2100 complete(&barr->done);
2104 * insert_wq_barrier - insert a barrier work
2105 * @cwq: cwq to insert barrier into
2106 * @barr: wq_barrier to insert
2107 * @target: target work to attach @barr to
2108 * @worker: worker currently executing @target, NULL if @target is not executing
2110 * @barr is linked to @target such that @barr is completed only after
2111 * @target finishes execution. Please note that the ordering
2112 * guarantee is observed only with respect to @target and on the local
2113 * cpu.
2115 * Currently, a queued barrier can't be canceled. This is because
2116 * try_to_grab_pending() can't determine whether the work to be
2117 * grabbed is at the head of the queue and thus can't clear LINKED
2118 * flag of the previous work while there must be a valid next work
2119 * after a work with LINKED flag set.
2121 * Note that when @worker is non-NULL, @target may be modified
2122 * underneath us, so we can't reliably determine cwq from @target.
2124 * CONTEXT:
2125 * spin_lock_irq(gcwq->lock).
2127 static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
2128 struct wq_barrier *barr,
2129 struct work_struct *target, struct worker *worker)
2131 struct list_head *head;
2132 unsigned int linked = 0;
2135 * debugobject calls are safe here even with gcwq->lock locked
2136 * as we know for sure that this will not trigger any of the
2137 * checks and call back into the fixup functions where we
2138 * might deadlock.
2140 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2141 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2142 init_completion(&barr->done);
2145 * If @target is currently being executed, schedule the
2146 * barrier to the worker; otherwise, put it after @target.
2148 if (worker)
2149 head = worker->scheduled.next;
2150 else {
2151 unsigned long *bits = work_data_bits(target);
2153 head = target->entry.next;
2154 /* there can already be other linked works, inherit and set */
2155 linked = *bits & WORK_STRUCT_LINKED;
2156 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2159 debug_work_activate(&barr->work);
2160 insert_work(cwq, &barr->work, head,
2161 work_color_to_flags(WORK_NO_COLOR) | linked);
2165 * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing
2166 * @wq: workqueue being flushed
2167 * @flush_color: new flush color, < 0 for no-op
2168 * @work_color: new work color, < 0 for no-op
2170 * Prepare cwqs for workqueue flushing.
2172 * If @flush_color is non-negative, flush_color on all cwqs should be
2173 * -1. If no cwq has in-flight commands at the specified color, all
2174 * cwq->flush_color's stay at -1 and %false is returned. If any cwq
2175 * has in flight commands, its cwq->flush_color is set to
2176 * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq
2177 * wakeup logic is armed and %true is returned.
2179 * The caller should have initialized @wq->first_flusher prior to
2180 * calling this function with non-negative @flush_color. If
2181 * @flush_color is negative, no flush color update is done and %false
2182 * is returned.
2184 * If @work_color is non-negative, all cwqs should have the same
2185 * work_color which is previous to @work_color and all will be
2186 * advanced to @work_color.
2188 * CONTEXT:
2189 * mutex_lock(wq->flush_mutex).
2191 * RETURNS:
2192 * %true if @flush_color >= 0 and there's something to flush. %false
2193 * otherwise.
2195 static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq,
2196 int flush_color, int work_color)
2198 bool wait = false;
2199 unsigned int cpu;
2201 if (flush_color >= 0) {
2202 BUG_ON(atomic_read(&wq->nr_cwqs_to_flush));
2203 atomic_set(&wq->nr_cwqs_to_flush, 1);
2206 for_each_cwq_cpu(cpu, wq) {
2207 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2208 struct global_cwq *gcwq = cwq->gcwq;
2210 spin_lock_irq(&gcwq->lock);
2212 if (flush_color >= 0) {
2213 BUG_ON(cwq->flush_color != -1);
2215 if (cwq->nr_in_flight[flush_color]) {
2216 cwq->flush_color = flush_color;
2217 atomic_inc(&wq->nr_cwqs_to_flush);
2218 wait = true;
2222 if (work_color >= 0) {
2223 BUG_ON(work_color != work_next_color(cwq->work_color));
2224 cwq->work_color = work_color;
2227 spin_unlock_irq(&gcwq->lock);
2230 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush))
2231 complete(&wq->first_flusher->done);
2233 return wait;
2237 * flush_workqueue - ensure that any scheduled work has run to completion.
2238 * @wq: workqueue to flush
2240 * Forces execution of the workqueue and blocks until its completion.
2241 * This is typically used in driver shutdown handlers.
2243 * We sleep until all works which were queued on entry have been handled,
2244 * but we are not livelocked by new incoming ones.
2246 void flush_workqueue(struct workqueue_struct *wq)
2248 struct wq_flusher this_flusher = {
2249 .list = LIST_HEAD_INIT(this_flusher.list),
2250 .flush_color = -1,
2251 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2253 int next_color;
2255 lock_map_acquire(&wq->lockdep_map);
2256 lock_map_release(&wq->lockdep_map);
2258 mutex_lock(&wq->flush_mutex);
2261 * Start-to-wait phase
2263 next_color = work_next_color(wq->work_color);
2265 if (next_color != wq->flush_color) {
2267 * Color space is not full. The current work_color
2268 * becomes our flush_color and work_color is advanced
2269 * by one.
2271 BUG_ON(!list_empty(&wq->flusher_overflow));
2272 this_flusher.flush_color = wq->work_color;
2273 wq->work_color = next_color;
2275 if (!wq->first_flusher) {
2276 /* no flush in progress, become the first flusher */
2277 BUG_ON(wq->flush_color != this_flusher.flush_color);
2279 wq->first_flusher = &this_flusher;
2281 if (!flush_workqueue_prep_cwqs(wq, wq->flush_color,
2282 wq->work_color)) {
2283 /* nothing to flush, done */
2284 wq->flush_color = next_color;
2285 wq->first_flusher = NULL;
2286 goto out_unlock;
2288 } else {
2289 /* wait in queue */
2290 BUG_ON(wq->flush_color == this_flusher.flush_color);
2291 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2292 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2294 } else {
2296 * Oops, color space is full, wait on overflow queue.
2297 * The next flush completion will assign us
2298 * flush_color and transfer to flusher_queue.
2300 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2303 mutex_unlock(&wq->flush_mutex);
2305 wait_for_completion(&this_flusher.done);
2308 * Wake-up-and-cascade phase
2310 * First flushers are responsible for cascading flushes and
2311 * handling overflow. Non-first flushers can simply return.
2313 if (wq->first_flusher != &this_flusher)
2314 return;
2316 mutex_lock(&wq->flush_mutex);
2318 /* we might have raced, check again with mutex held */
2319 if (wq->first_flusher != &this_flusher)
2320 goto out_unlock;
2322 wq->first_flusher = NULL;
2324 BUG_ON(!list_empty(&this_flusher.list));
2325 BUG_ON(wq->flush_color != this_flusher.flush_color);
2327 while (true) {
2328 struct wq_flusher *next, *tmp;
2330 /* complete all the flushers sharing the current flush color */
2331 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2332 if (next->flush_color != wq->flush_color)
2333 break;
2334 list_del_init(&next->list);
2335 complete(&next->done);
2338 BUG_ON(!list_empty(&wq->flusher_overflow) &&
2339 wq->flush_color != work_next_color(wq->work_color));
2341 /* this flush_color is finished, advance by one */
2342 wq->flush_color = work_next_color(wq->flush_color);
2344 /* one color has been freed, handle overflow queue */
2345 if (!list_empty(&wq->flusher_overflow)) {
2347 * Assign the same color to all overflowed
2348 * flushers, advance work_color and append to
2349 * flusher_queue. This is the start-to-wait
2350 * phase for these overflowed flushers.
2352 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2353 tmp->flush_color = wq->work_color;
2355 wq->work_color = work_next_color(wq->work_color);
2357 list_splice_tail_init(&wq->flusher_overflow,
2358 &wq->flusher_queue);
2359 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2362 if (list_empty(&wq->flusher_queue)) {
2363 BUG_ON(wq->flush_color != wq->work_color);
2364 break;
2368 * Need to flush more colors. Make the next flusher
2369 * the new first flusher and arm cwqs.
2371 BUG_ON(wq->flush_color == wq->work_color);
2372 BUG_ON(wq->flush_color != next->flush_color);
2374 list_del_init(&next->list);
2375 wq->first_flusher = next;
2377 if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1))
2378 break;
2381 * Meh... this color is already done, clear first
2382 * flusher and repeat cascading.
2384 wq->first_flusher = NULL;
2387 out_unlock:
2388 mutex_unlock(&wq->flush_mutex);
2390 EXPORT_SYMBOL_GPL(flush_workqueue);
2393 * drain_workqueue - drain a workqueue
2394 * @wq: workqueue to drain
2396 * Wait until the workqueue becomes empty. While draining is in progress,
2397 * only chain queueing is allowed. IOW, only currently pending or running
2398 * work items on @wq can queue further work items on it. @wq is flushed
2399 * repeatedly until it becomes empty. The number of flushing is detemined
2400 * by the depth of chaining and should be relatively short. Whine if it
2401 * takes too long.
2403 void drain_workqueue(struct workqueue_struct *wq)
2405 unsigned int flush_cnt = 0;
2406 unsigned int cpu;
2409 * __queue_work() needs to test whether there are drainers, is much
2410 * hotter than drain_workqueue() and already looks at @wq->flags.
2411 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
2413 spin_lock(&workqueue_lock);
2414 if (!wq->nr_drainers++)
2415 wq->flags |= WQ_DRAINING;
2416 spin_unlock(&workqueue_lock);
2417 reflush:
2418 flush_workqueue(wq);
2420 for_each_cwq_cpu(cpu, wq) {
2421 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2422 bool drained;
2424 spin_lock_irq(&cwq->gcwq->lock);
2425 drained = !cwq->nr_active && list_empty(&cwq->delayed_works);
2426 spin_unlock_irq(&cwq->gcwq->lock);
2428 if (drained)
2429 continue;
2431 if (++flush_cnt == 10 ||
2432 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2433 pr_warning("workqueue %s: flush on destruction isn't complete after %u tries\n",
2434 wq->name, flush_cnt);
2435 goto reflush;
2438 spin_lock(&workqueue_lock);
2439 if (!--wq->nr_drainers)
2440 wq->flags &= ~WQ_DRAINING;
2441 spin_unlock(&workqueue_lock);
2443 EXPORT_SYMBOL_GPL(drain_workqueue);
2445 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
2446 bool wait_executing)
2448 struct worker *worker = NULL;
2449 struct global_cwq *gcwq;
2450 struct cpu_workqueue_struct *cwq;
2452 might_sleep();
2453 gcwq = get_work_gcwq(work);
2454 if (!gcwq)
2455 return false;
2457 spin_lock_irq(&gcwq->lock);
2458 if (!list_empty(&work->entry)) {
2460 * See the comment near try_to_grab_pending()->smp_rmb().
2461 * If it was re-queued to a different gcwq under us, we
2462 * are not going to wait.
2464 smp_rmb();
2465 cwq = get_work_cwq(work);
2466 if (unlikely(!cwq || gcwq != cwq->gcwq))
2467 goto already_gone;
2468 } else if (wait_executing) {
2469 worker = find_worker_executing_work(gcwq, work);
2470 if (!worker)
2471 goto already_gone;
2472 cwq = worker->current_cwq;
2473 } else
2474 goto already_gone;
2476 insert_wq_barrier(cwq, barr, work, worker);
2477 spin_unlock_irq(&gcwq->lock);
2480 * If @max_active is 1 or rescuer is in use, flushing another work
2481 * item on the same workqueue may lead to deadlock. Make sure the
2482 * flusher is not running on the same workqueue by verifying write
2483 * access.
2485 if (cwq->wq->saved_max_active == 1 || cwq->wq->flags & WQ_RESCUER)
2486 lock_map_acquire(&cwq->wq->lockdep_map);
2487 else
2488 lock_map_acquire_read(&cwq->wq->lockdep_map);
2489 lock_map_release(&cwq->wq->lockdep_map);
2491 return true;
2492 already_gone:
2493 spin_unlock_irq(&gcwq->lock);
2494 return false;
2498 * flush_work - wait for a work to finish executing the last queueing instance
2499 * @work: the work to flush
2501 * Wait until @work has finished execution. This function considers
2502 * only the last queueing instance of @work. If @work has been
2503 * enqueued across different CPUs on a non-reentrant workqueue or on
2504 * multiple workqueues, @work might still be executing on return on
2505 * some of the CPUs from earlier queueing.
2507 * If @work was queued only on a non-reentrant, ordered or unbound
2508 * workqueue, @work is guaranteed to be idle on return if it hasn't
2509 * been requeued since flush started.
2511 * RETURNS:
2512 * %true if flush_work() waited for the work to finish execution,
2513 * %false if it was already idle.
2515 bool flush_work(struct work_struct *work)
2517 struct wq_barrier barr;
2519 if (start_flush_work(work, &barr, true)) {
2520 wait_for_completion(&barr.done);
2521 destroy_work_on_stack(&barr.work);
2522 return true;
2523 } else
2524 return false;
2526 EXPORT_SYMBOL_GPL(flush_work);
2528 static bool wait_on_cpu_work(struct global_cwq *gcwq, struct work_struct *work)
2530 struct wq_barrier barr;
2531 struct worker *worker;
2533 spin_lock_irq(&gcwq->lock);
2535 worker = find_worker_executing_work(gcwq, work);
2536 if (unlikely(worker))
2537 insert_wq_barrier(worker->current_cwq, &barr, work, worker);
2539 spin_unlock_irq(&gcwq->lock);
2541 if (unlikely(worker)) {
2542 wait_for_completion(&barr.done);
2543 destroy_work_on_stack(&barr.work);
2544 return true;
2545 } else
2546 return false;
2549 static bool wait_on_work(struct work_struct *work)
2551 bool ret = false;
2552 int cpu;
2554 might_sleep();
2556 lock_map_acquire(&work->lockdep_map);
2557 lock_map_release(&work->lockdep_map);
2559 for_each_gcwq_cpu(cpu)
2560 ret |= wait_on_cpu_work(get_gcwq(cpu), work);
2561 return ret;
2565 * flush_work_sync - wait until a work has finished execution
2566 * @work: the work to flush
2568 * Wait until @work has finished execution. On return, it's
2569 * guaranteed that all queueing instances of @work which happened
2570 * before this function is called are finished. In other words, if
2571 * @work hasn't been requeued since this function was called, @work is
2572 * guaranteed to be idle on return.
2574 * RETURNS:
2575 * %true if flush_work_sync() waited for the work to finish execution,
2576 * %false if it was already idle.
2578 bool flush_work_sync(struct work_struct *work)
2580 struct wq_barrier barr;
2581 bool pending, waited;
2583 /* we'll wait for executions separately, queue barr only if pending */
2584 pending = start_flush_work(work, &barr, false);
2586 /* wait for executions to finish */
2587 waited = wait_on_work(work);
2589 /* wait for the pending one */
2590 if (pending) {
2591 wait_for_completion(&barr.done);
2592 destroy_work_on_stack(&barr.work);
2595 return pending || waited;
2597 EXPORT_SYMBOL_GPL(flush_work_sync);
2600 * Upon a successful return (>= 0), the caller "owns" WORK_STRUCT_PENDING bit,
2601 * so this work can't be re-armed in any way.
2603 static int try_to_grab_pending(struct work_struct *work)
2605 struct global_cwq *gcwq;
2606 int ret = -1;
2608 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
2609 return 0;
2612 * The queueing is in progress, or it is already queued. Try to
2613 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
2615 gcwq = get_work_gcwq(work);
2616 if (!gcwq)
2617 return ret;
2619 spin_lock_irq(&gcwq->lock);
2620 if (!list_empty(&work->entry)) {
2622 * This work is queued, but perhaps we locked the wrong gcwq.
2623 * In that case we must see the new value after rmb(), see
2624 * insert_work()->wmb().
2626 smp_rmb();
2627 if (gcwq == get_work_gcwq(work)) {
2628 debug_work_deactivate(work);
2629 list_del_init(&work->entry);
2630 cwq_dec_nr_in_flight(get_work_cwq(work),
2631 get_work_color(work),
2632 *work_data_bits(work) & WORK_STRUCT_DELAYED);
2633 ret = 1;
2636 spin_unlock_irq(&gcwq->lock);
2638 return ret;
2641 static bool __cancel_work_timer(struct work_struct *work,
2642 struct timer_list* timer)
2644 int ret;
2646 do {
2647 ret = (timer && likely(del_timer(timer)));
2648 if (!ret)
2649 ret = try_to_grab_pending(work);
2650 wait_on_work(work);
2651 } while (unlikely(ret < 0));
2653 clear_work_data(work);
2654 return ret;
2658 * cancel_work_sync - cancel a work and wait for it to finish
2659 * @work: the work to cancel
2661 * Cancel @work and wait for its execution to finish. This function
2662 * can be used even if the work re-queues itself or migrates to
2663 * another workqueue. On return from this function, @work is
2664 * guaranteed to be not pending or executing on any CPU.
2666 * cancel_work_sync(&delayed_work->work) must not be used for
2667 * delayed_work's. Use cancel_delayed_work_sync() instead.
2669 * The caller must ensure that the workqueue on which @work was last
2670 * queued can't be destroyed before this function returns.
2672 * RETURNS:
2673 * %true if @work was pending, %false otherwise.
2675 bool cancel_work_sync(struct work_struct *work)
2677 return __cancel_work_timer(work, NULL);
2679 EXPORT_SYMBOL_GPL(cancel_work_sync);
2682 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2683 * @dwork: the delayed work to flush
2685 * Delayed timer is cancelled and the pending work is queued for
2686 * immediate execution. Like flush_work(), this function only
2687 * considers the last queueing instance of @dwork.
2689 * RETURNS:
2690 * %true if flush_work() waited for the work to finish execution,
2691 * %false if it was already idle.
2693 bool flush_delayed_work(struct delayed_work *dwork)
2695 if (del_timer_sync(&dwork->timer))
2696 __queue_work(raw_smp_processor_id(),
2697 get_work_cwq(&dwork->work)->wq, &dwork->work);
2698 return flush_work(&dwork->work);
2700 EXPORT_SYMBOL(flush_delayed_work);
2703 * flush_delayed_work_sync - wait for a dwork to finish
2704 * @dwork: the delayed work to flush
2706 * Delayed timer is cancelled and the pending work is queued for
2707 * execution immediately. Other than timer handling, its behavior
2708 * is identical to flush_work_sync().
2710 * RETURNS:
2711 * %true if flush_work_sync() waited for the work to finish execution,
2712 * %false if it was already idle.
2714 bool flush_delayed_work_sync(struct delayed_work *dwork)
2716 if (del_timer_sync(&dwork->timer))
2717 __queue_work(raw_smp_processor_id(),
2718 get_work_cwq(&dwork->work)->wq, &dwork->work);
2719 return flush_work_sync(&dwork->work);
2721 EXPORT_SYMBOL(flush_delayed_work_sync);
2724 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2725 * @dwork: the delayed work cancel
2727 * This is cancel_work_sync() for delayed works.
2729 * RETURNS:
2730 * %true if @dwork was pending, %false otherwise.
2732 bool cancel_delayed_work_sync(struct delayed_work *dwork)
2734 return __cancel_work_timer(&dwork->work, &dwork->timer);
2736 EXPORT_SYMBOL(cancel_delayed_work_sync);
2739 * schedule_work - put work task in global workqueue
2740 * @work: job to be done
2742 * Returns zero if @work was already on the kernel-global workqueue and
2743 * non-zero otherwise.
2745 * This puts a job in the kernel-global workqueue if it was not already
2746 * queued and leaves it in the same position on the kernel-global
2747 * workqueue otherwise.
2749 int schedule_work(struct work_struct *work)
2751 return queue_work(system_wq, work);
2753 EXPORT_SYMBOL(schedule_work);
2756 * schedule_work_on - put work task on a specific cpu
2757 * @cpu: cpu to put the work task on
2758 * @work: job to be done
2760 * This puts a job on a specific cpu
2762 int schedule_work_on(int cpu, struct work_struct *work)
2764 return queue_work_on(cpu, system_wq, work);
2766 EXPORT_SYMBOL(schedule_work_on);
2769 * schedule_delayed_work - put work task in global workqueue after delay
2770 * @dwork: job to be done
2771 * @delay: number of jiffies to wait or 0 for immediate execution
2773 * After waiting for a given time this puts a job in the kernel-global
2774 * workqueue.
2776 int schedule_delayed_work(struct delayed_work *dwork,
2777 unsigned long delay)
2779 return queue_delayed_work(system_wq, dwork, delay);
2781 EXPORT_SYMBOL(schedule_delayed_work);
2784 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
2785 * @cpu: cpu to use
2786 * @dwork: job to be done
2787 * @delay: number of jiffies to wait
2789 * After waiting for a given time this puts a job in the kernel-global
2790 * workqueue on the specified CPU.
2792 int schedule_delayed_work_on(int cpu,
2793 struct delayed_work *dwork, unsigned long delay)
2795 return queue_delayed_work_on(cpu, system_wq, dwork, delay);
2797 EXPORT_SYMBOL(schedule_delayed_work_on);
2800 * schedule_on_each_cpu - execute a function synchronously on each online CPU
2801 * @func: the function to call
2803 * schedule_on_each_cpu() executes @func on each online CPU using the
2804 * system workqueue and blocks until all CPUs have completed.
2805 * schedule_on_each_cpu() is very slow.
2807 * RETURNS:
2808 * 0 on success, -errno on failure.
2810 int schedule_on_each_cpu(work_func_t func)
2812 int cpu;
2813 struct work_struct __percpu *works;
2815 works = alloc_percpu(struct work_struct);
2816 if (!works)
2817 return -ENOMEM;
2819 get_online_cpus();
2821 for_each_online_cpu(cpu) {
2822 struct work_struct *work = per_cpu_ptr(works, cpu);
2824 INIT_WORK(work, func);
2825 schedule_work_on(cpu, work);
2828 for_each_online_cpu(cpu)
2829 flush_work(per_cpu_ptr(works, cpu));
2831 put_online_cpus();
2832 free_percpu(works);
2833 return 0;
2837 * flush_scheduled_work - ensure that any scheduled work has run to completion.
2839 * Forces execution of the kernel-global workqueue and blocks until its
2840 * completion.
2842 * Think twice before calling this function! It's very easy to get into
2843 * trouble if you don't take great care. Either of the following situations
2844 * will lead to deadlock:
2846 * One of the work items currently on the workqueue needs to acquire
2847 * a lock held by your code or its caller.
2849 * Your code is running in the context of a work routine.
2851 * They will be detected by lockdep when they occur, but the first might not
2852 * occur very often. It depends on what work items are on the workqueue and
2853 * what locks they need, which you have no control over.
2855 * In most situations flushing the entire workqueue is overkill; you merely
2856 * need to know that a particular work item isn't queued and isn't running.
2857 * In such cases you should use cancel_delayed_work_sync() or
2858 * cancel_work_sync() instead.
2860 void flush_scheduled_work(void)
2862 flush_workqueue(system_wq);
2864 EXPORT_SYMBOL(flush_scheduled_work);
2867 * execute_in_process_context - reliably execute the routine with user context
2868 * @fn: the function to execute
2869 * @ew: guaranteed storage for the execute work structure (must
2870 * be available when the work executes)
2872 * Executes the function immediately if process context is available,
2873 * otherwise schedules the function for delayed execution.
2875 * Returns: 0 - function was executed
2876 * 1 - function was scheduled for execution
2878 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
2880 if (!in_interrupt()) {
2881 fn(&ew->work);
2882 return 0;
2885 INIT_WORK(&ew->work, fn);
2886 schedule_work(&ew->work);
2888 return 1;
2890 EXPORT_SYMBOL_GPL(execute_in_process_context);
2892 int keventd_up(void)
2894 return system_wq != NULL;
2897 static int alloc_cwqs(struct workqueue_struct *wq)
2900 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
2901 * Make sure that the alignment isn't lower than that of
2902 * unsigned long long.
2904 const size_t size = sizeof(struct cpu_workqueue_struct);
2905 const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
2906 __alignof__(unsigned long long));
2907 #ifdef CONFIG_SMP
2908 bool percpu = !(wq->flags & WQ_UNBOUND);
2909 #else
2910 bool percpu = false;
2911 #endif
2913 if (percpu)
2914 wq->cpu_wq.pcpu = __alloc_percpu(size, align);
2915 else {
2916 void *ptr;
2919 * Allocate enough room to align cwq and put an extra
2920 * pointer at the end pointing back to the originally
2921 * allocated pointer which will be used for free.
2923 ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
2924 if (ptr) {
2925 wq->cpu_wq.single = PTR_ALIGN(ptr, align);
2926 *(void **)(wq->cpu_wq.single + 1) = ptr;
2930 /* just in case, make sure it's actually aligned */
2931 BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align));
2932 return wq->cpu_wq.v ? 0 : -ENOMEM;
2935 static void free_cwqs(struct workqueue_struct *wq)
2937 #ifdef CONFIG_SMP
2938 bool percpu = !(wq->flags & WQ_UNBOUND);
2939 #else
2940 bool percpu = false;
2941 #endif
2943 if (percpu)
2944 free_percpu(wq->cpu_wq.pcpu);
2945 else if (wq->cpu_wq.single) {
2946 /* the pointer to free is stored right after the cwq */
2947 kfree(*(void **)(wq->cpu_wq.single + 1));
2951 static int wq_clamp_max_active(int max_active, unsigned int flags,
2952 const char *name)
2954 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
2956 if (max_active < 1 || max_active > lim)
2957 printk(KERN_WARNING "workqueue: max_active %d requested for %s "
2958 "is out of range, clamping between %d and %d\n",
2959 max_active, name, 1, lim);
2961 return clamp_val(max_active, 1, lim);
2964 struct workqueue_struct *__alloc_workqueue_key(const char *name,
2965 unsigned int flags,
2966 int max_active,
2967 struct lock_class_key *key,
2968 const char *lock_name)
2970 struct workqueue_struct *wq;
2971 unsigned int cpu;
2974 * Workqueues which may be used during memory reclaim should
2975 * have a rescuer to guarantee forward progress.
2977 if (flags & WQ_MEM_RECLAIM)
2978 flags |= WQ_RESCUER;
2981 * Unbound workqueues aren't concurrency managed and should be
2982 * dispatched to workers immediately.
2984 if (flags & WQ_UNBOUND)
2985 flags |= WQ_HIGHPRI;
2987 max_active = max_active ?: WQ_DFL_ACTIVE;
2988 max_active = wq_clamp_max_active(max_active, flags, name);
2990 wq = kzalloc(sizeof(*wq), GFP_KERNEL);
2991 if (!wq)
2992 goto err;
2994 wq->flags = flags;
2995 wq->saved_max_active = max_active;
2996 mutex_init(&wq->flush_mutex);
2997 atomic_set(&wq->nr_cwqs_to_flush, 0);
2998 INIT_LIST_HEAD(&wq->flusher_queue);
2999 INIT_LIST_HEAD(&wq->flusher_overflow);
3001 wq->name = name;
3002 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3003 INIT_LIST_HEAD(&wq->list);
3005 if (alloc_cwqs(wq) < 0)
3006 goto err;
3008 for_each_cwq_cpu(cpu, wq) {
3009 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3010 struct global_cwq *gcwq = get_gcwq(cpu);
3012 BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK);
3013 cwq->gcwq = gcwq;
3014 cwq->wq = wq;
3015 cwq->flush_color = -1;
3016 cwq->max_active = max_active;
3017 INIT_LIST_HEAD(&cwq->delayed_works);
3020 if (flags & WQ_RESCUER) {
3021 struct worker *rescuer;
3023 if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
3024 goto err;
3026 wq->rescuer = rescuer = alloc_worker();
3027 if (!rescuer)
3028 goto err;
3030 rescuer->task = kthread_create(rescuer_thread, wq, "%s", name);
3031 if (IS_ERR(rescuer->task))
3032 goto err;
3034 rescuer->task->flags |= PF_THREAD_BOUND;
3035 wake_up_process(rescuer->task);
3039 * workqueue_lock protects global freeze state and workqueues
3040 * list. Grab it, set max_active accordingly and add the new
3041 * workqueue to workqueues list.
3043 spin_lock(&workqueue_lock);
3045 if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
3046 for_each_cwq_cpu(cpu, wq)
3047 get_cwq(cpu, wq)->max_active = 0;
3049 list_add(&wq->list, &workqueues);
3051 spin_unlock(&workqueue_lock);
3053 return wq;
3054 err:
3055 if (wq) {
3056 free_cwqs(wq);
3057 free_mayday_mask(wq->mayday_mask);
3058 kfree(wq->rescuer);
3059 kfree(wq);
3061 return NULL;
3063 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
3066 * destroy_workqueue - safely terminate a workqueue
3067 * @wq: target workqueue
3069 * Safely destroy a workqueue. All work currently pending will be done first.
3071 void destroy_workqueue(struct workqueue_struct *wq)
3073 unsigned int cpu;
3075 /* drain it before proceeding with destruction */
3076 drain_workqueue(wq);
3079 * wq list is used to freeze wq, remove from list after
3080 * flushing is complete in case freeze races us.
3082 spin_lock(&workqueue_lock);
3083 list_del(&wq->list);
3084 spin_unlock(&workqueue_lock);
3086 /* sanity check */
3087 for_each_cwq_cpu(cpu, wq) {
3088 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3089 int i;
3091 for (i = 0; i < WORK_NR_COLORS; i++)
3092 BUG_ON(cwq->nr_in_flight[i]);
3093 BUG_ON(cwq->nr_active);
3094 BUG_ON(!list_empty(&cwq->delayed_works));
3097 if (wq->flags & WQ_RESCUER) {
3098 kthread_stop(wq->rescuer->task);
3099 free_mayday_mask(wq->mayday_mask);
3100 kfree(wq->rescuer);
3103 free_cwqs(wq);
3104 kfree(wq);
3106 EXPORT_SYMBOL_GPL(destroy_workqueue);
3109 * workqueue_set_max_active - adjust max_active of a workqueue
3110 * @wq: target workqueue
3111 * @max_active: new max_active value.
3113 * Set max_active of @wq to @max_active.
3115 * CONTEXT:
3116 * Don't call from IRQ context.
3118 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
3120 unsigned int cpu;
3122 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
3124 spin_lock(&workqueue_lock);
3126 wq->saved_max_active = max_active;
3128 for_each_cwq_cpu(cpu, wq) {
3129 struct global_cwq *gcwq = get_gcwq(cpu);
3131 spin_lock_irq(&gcwq->lock);
3133 if (!(wq->flags & WQ_FREEZABLE) ||
3134 !(gcwq->flags & GCWQ_FREEZING))
3135 get_cwq(gcwq->cpu, wq)->max_active = max_active;
3137 spin_unlock_irq(&gcwq->lock);
3140 spin_unlock(&workqueue_lock);
3142 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
3145 * workqueue_congested - test whether a workqueue is congested
3146 * @cpu: CPU in question
3147 * @wq: target workqueue
3149 * Test whether @wq's cpu workqueue for @cpu is congested. There is
3150 * no synchronization around this function and the test result is
3151 * unreliable and only useful as advisory hints or for debugging.
3153 * RETURNS:
3154 * %true if congested, %false otherwise.
3156 bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
3158 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3160 return !list_empty(&cwq->delayed_works);
3162 EXPORT_SYMBOL_GPL(workqueue_congested);
3165 * work_cpu - return the last known associated cpu for @work
3166 * @work: the work of interest
3168 * RETURNS:
3169 * CPU number if @work was ever queued. WORK_CPU_NONE otherwise.
3171 unsigned int work_cpu(struct work_struct *work)
3173 struct global_cwq *gcwq = get_work_gcwq(work);
3175 return gcwq ? gcwq->cpu : WORK_CPU_NONE;
3177 EXPORT_SYMBOL_GPL(work_cpu);
3180 * work_busy - test whether a work is currently pending or running
3181 * @work: the work to be tested
3183 * Test whether @work is currently pending or running. There is no
3184 * synchronization around this function and the test result is
3185 * unreliable and only useful as advisory hints or for debugging.
3186 * Especially for reentrant wqs, the pending state might hide the
3187 * running state.
3189 * RETURNS:
3190 * OR'd bitmask of WORK_BUSY_* bits.
3192 unsigned int work_busy(struct work_struct *work)
3194 struct global_cwq *gcwq = get_work_gcwq(work);
3195 unsigned long flags;
3196 unsigned int ret = 0;
3198 if (!gcwq)
3199 return false;
3201 spin_lock_irqsave(&gcwq->lock, flags);
3203 if (work_pending(work))
3204 ret |= WORK_BUSY_PENDING;
3205 if (find_worker_executing_work(gcwq, work))
3206 ret |= WORK_BUSY_RUNNING;
3208 spin_unlock_irqrestore(&gcwq->lock, flags);
3210 return ret;
3212 EXPORT_SYMBOL_GPL(work_busy);
3215 * CPU hotplug.
3217 * There are two challenges in supporting CPU hotplug. Firstly, there
3218 * are a lot of assumptions on strong associations among work, cwq and
3219 * gcwq which make migrating pending and scheduled works very
3220 * difficult to implement without impacting hot paths. Secondly,
3221 * gcwqs serve mix of short, long and very long running works making
3222 * blocked draining impractical.
3224 * This is solved by allowing a gcwq to be detached from CPU, running
3225 * it with unbound (rogue) workers and allowing it to be reattached
3226 * later if the cpu comes back online. A separate thread is created
3227 * to govern a gcwq in such state and is called the trustee of the
3228 * gcwq.
3230 * Trustee states and their descriptions.
3232 * START Command state used on startup. On CPU_DOWN_PREPARE, a
3233 * new trustee is started with this state.
3235 * IN_CHARGE Once started, trustee will enter this state after
3236 * assuming the manager role and making all existing
3237 * workers rogue. DOWN_PREPARE waits for trustee to
3238 * enter this state. After reaching IN_CHARGE, trustee
3239 * tries to execute the pending worklist until it's empty
3240 * and the state is set to BUTCHER, or the state is set
3241 * to RELEASE.
3243 * BUTCHER Command state which is set by the cpu callback after
3244 * the cpu has went down. Once this state is set trustee
3245 * knows that there will be no new works on the worklist
3246 * and once the worklist is empty it can proceed to
3247 * killing idle workers.
3249 * RELEASE Command state which is set by the cpu callback if the
3250 * cpu down has been canceled or it has come online
3251 * again. After recognizing this state, trustee stops
3252 * trying to drain or butcher and clears ROGUE, rebinds
3253 * all remaining workers back to the cpu and releases
3254 * manager role.
3256 * DONE Trustee will enter this state after BUTCHER or RELEASE
3257 * is complete.
3259 * trustee CPU draining
3260 * took over down complete
3261 * START -----------> IN_CHARGE -----------> BUTCHER -----------> DONE
3262 * | | ^
3263 * | CPU is back online v return workers |
3264 * ----------------> RELEASE --------------
3268 * trustee_wait_event_timeout - timed event wait for trustee
3269 * @cond: condition to wait for
3270 * @timeout: timeout in jiffies
3272 * wait_event_timeout() for trustee to use. Handles locking and
3273 * checks for RELEASE request.
3275 * CONTEXT:
3276 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
3277 * multiple times. To be used by trustee.
3279 * RETURNS:
3280 * Positive indicating left time if @cond is satisfied, 0 if timed
3281 * out, -1 if canceled.
3283 #define trustee_wait_event_timeout(cond, timeout) ({ \
3284 long __ret = (timeout); \
3285 while (!((cond) || (gcwq->trustee_state == TRUSTEE_RELEASE)) && \
3286 __ret) { \
3287 spin_unlock_irq(&gcwq->lock); \
3288 __wait_event_timeout(gcwq->trustee_wait, (cond) || \
3289 (gcwq->trustee_state == TRUSTEE_RELEASE), \
3290 __ret); \
3291 spin_lock_irq(&gcwq->lock); \
3293 gcwq->trustee_state == TRUSTEE_RELEASE ? -1 : (__ret); \
3297 * trustee_wait_event - event wait for trustee
3298 * @cond: condition to wait for
3300 * wait_event() for trustee to use. Automatically handles locking and
3301 * checks for CANCEL request.
3303 * CONTEXT:
3304 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
3305 * multiple times. To be used by trustee.
3307 * RETURNS:
3308 * 0 if @cond is satisfied, -1 if canceled.
3310 #define trustee_wait_event(cond) ({ \
3311 long __ret1; \
3312 __ret1 = trustee_wait_event_timeout(cond, MAX_SCHEDULE_TIMEOUT);\
3313 __ret1 < 0 ? -1 : 0; \
3316 static int __cpuinit trustee_thread(void *__gcwq)
3318 struct global_cwq *gcwq = __gcwq;
3319 struct worker *worker;
3320 struct work_struct *work;
3321 struct hlist_node *pos;
3322 long rc;
3323 int i;
3325 BUG_ON(gcwq->cpu != smp_processor_id());
3327 spin_lock_irq(&gcwq->lock);
3329 * Claim the manager position and make all workers rogue.
3330 * Trustee must be bound to the target cpu and can't be
3331 * cancelled.
3333 BUG_ON(gcwq->cpu != smp_processor_id());
3334 rc = trustee_wait_event(!(gcwq->flags & GCWQ_MANAGING_WORKERS));
3335 BUG_ON(rc < 0);
3337 gcwq->flags |= GCWQ_MANAGING_WORKERS;
3339 list_for_each_entry(worker, &gcwq->idle_list, entry)
3340 worker->flags |= WORKER_ROGUE;
3342 for_each_busy_worker(worker, i, pos, gcwq)
3343 worker->flags |= WORKER_ROGUE;
3346 * Call schedule() so that we cross rq->lock and thus can
3347 * guarantee sched callbacks see the rogue flag. This is
3348 * necessary as scheduler callbacks may be invoked from other
3349 * cpus.
3351 spin_unlock_irq(&gcwq->lock);
3352 schedule();
3353 spin_lock_irq(&gcwq->lock);
3356 * Sched callbacks are disabled now. Zap nr_running. After
3357 * this, nr_running stays zero and need_more_worker() and
3358 * keep_working() are always true as long as the worklist is
3359 * not empty.
3361 atomic_set(get_gcwq_nr_running(gcwq->cpu), 0);
3363 spin_unlock_irq(&gcwq->lock);
3364 del_timer_sync(&gcwq->idle_timer);
3365 spin_lock_irq(&gcwq->lock);
3368 * We're now in charge. Notify and proceed to drain. We need
3369 * to keep the gcwq running during the whole CPU down
3370 * procedure as other cpu hotunplug callbacks may need to
3371 * flush currently running tasks.
3373 gcwq->trustee_state = TRUSTEE_IN_CHARGE;
3374 wake_up_all(&gcwq->trustee_wait);
3377 * The original cpu is in the process of dying and may go away
3378 * anytime now. When that happens, we and all workers would
3379 * be migrated to other cpus. Try draining any left work. We
3380 * want to get it over with ASAP - spam rescuers, wake up as
3381 * many idlers as necessary and create new ones till the
3382 * worklist is empty. Note that if the gcwq is frozen, there
3383 * may be frozen works in freezable cwqs. Don't declare
3384 * completion while frozen.
3386 while (gcwq->nr_workers != gcwq->nr_idle ||
3387 gcwq->flags & GCWQ_FREEZING ||
3388 gcwq->trustee_state == TRUSTEE_IN_CHARGE) {
3389 int nr_works = 0;
3391 list_for_each_entry(work, &gcwq->worklist, entry) {
3392 send_mayday(work);
3393 nr_works++;
3396 list_for_each_entry(worker, &gcwq->idle_list, entry) {
3397 if (!nr_works--)
3398 break;
3399 wake_up_process(worker->task);
3402 if (need_to_create_worker(gcwq)) {
3403 spin_unlock_irq(&gcwq->lock);
3404 worker = create_worker(gcwq, false);
3405 spin_lock_irq(&gcwq->lock);
3406 if (worker) {
3407 worker->flags |= WORKER_ROGUE;
3408 start_worker(worker);
3412 /* give a breather */
3413 if (trustee_wait_event_timeout(false, TRUSTEE_COOLDOWN) < 0)
3414 break;
3418 * Either all works have been scheduled and cpu is down, or
3419 * cpu down has already been canceled. Wait for and butcher
3420 * all workers till we're canceled.
3422 do {
3423 rc = trustee_wait_event(!list_empty(&gcwq->idle_list));
3424 while (!list_empty(&gcwq->idle_list))
3425 destroy_worker(list_first_entry(&gcwq->idle_list,
3426 struct worker, entry));
3427 } while (gcwq->nr_workers && rc >= 0);
3430 * At this point, either draining has completed and no worker
3431 * is left, or cpu down has been canceled or the cpu is being
3432 * brought back up. There shouldn't be any idle one left.
3433 * Tell the remaining busy ones to rebind once it finishes the
3434 * currently scheduled works by scheduling the rebind_work.
3436 WARN_ON(!list_empty(&gcwq->idle_list));
3438 for_each_busy_worker(worker, i, pos, gcwq) {
3439 struct work_struct *rebind_work = &worker->rebind_work;
3442 * Rebind_work may race with future cpu hotplug
3443 * operations. Use a separate flag to mark that
3444 * rebinding is scheduled.
3446 worker->flags |= WORKER_REBIND;
3447 worker->flags &= ~WORKER_ROGUE;
3449 /* queue rebind_work, wq doesn't matter, use the default one */
3450 if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
3451 work_data_bits(rebind_work)))
3452 continue;
3454 debug_work_activate(rebind_work);
3455 insert_work(get_cwq(gcwq->cpu, system_wq), rebind_work,
3456 worker->scheduled.next,
3457 work_color_to_flags(WORK_NO_COLOR));
3460 /* relinquish manager role */
3461 gcwq->flags &= ~GCWQ_MANAGING_WORKERS;
3463 /* notify completion */
3464 gcwq->trustee = NULL;
3465 gcwq->trustee_state = TRUSTEE_DONE;
3466 wake_up_all(&gcwq->trustee_wait);
3467 spin_unlock_irq(&gcwq->lock);
3468 return 0;
3472 * wait_trustee_state - wait for trustee to enter the specified state
3473 * @gcwq: gcwq the trustee of interest belongs to
3474 * @state: target state to wait for
3476 * Wait for the trustee to reach @state. DONE is already matched.
3478 * CONTEXT:
3479 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
3480 * multiple times. To be used by cpu_callback.
3482 static void __cpuinit wait_trustee_state(struct global_cwq *gcwq, int state)
3483 __releases(&gcwq->lock)
3484 __acquires(&gcwq->lock)
3486 if (!(gcwq->trustee_state == state ||
3487 gcwq->trustee_state == TRUSTEE_DONE)) {
3488 spin_unlock_irq(&gcwq->lock);
3489 __wait_event(gcwq->trustee_wait,
3490 gcwq->trustee_state == state ||
3491 gcwq->trustee_state == TRUSTEE_DONE);
3492 spin_lock_irq(&gcwq->lock);
3496 static int __devinit workqueue_cpu_callback(struct notifier_block *nfb,
3497 unsigned long action,
3498 void *hcpu)
3500 unsigned int cpu = (unsigned long)hcpu;
3501 struct global_cwq *gcwq = get_gcwq(cpu);
3502 struct task_struct *new_trustee = NULL;
3503 struct worker *uninitialized_var(new_worker);
3504 unsigned long flags;
3506 action &= ~CPU_TASKS_FROZEN;
3508 switch (action) {
3509 case CPU_DOWN_PREPARE:
3510 new_trustee = kthread_create(trustee_thread, gcwq,
3511 "workqueue_trustee/%d\n", cpu);
3512 if (IS_ERR(new_trustee))
3513 return notifier_from_errno(PTR_ERR(new_trustee));
3514 kthread_bind(new_trustee, cpu);
3515 /* fall through */
3516 case CPU_UP_PREPARE:
3517 BUG_ON(gcwq->first_idle);
3518 new_worker = create_worker(gcwq, false);
3519 if (!new_worker) {
3520 if (new_trustee)
3521 kthread_stop(new_trustee);
3522 return NOTIFY_BAD;
3526 /* some are called w/ irq disabled, don't disturb irq status */
3527 spin_lock_irqsave(&gcwq->lock, flags);
3529 switch (action) {
3530 case CPU_DOWN_PREPARE:
3531 /* initialize trustee and tell it to acquire the gcwq */
3532 BUG_ON(gcwq->trustee || gcwq->trustee_state != TRUSTEE_DONE);
3533 gcwq->trustee = new_trustee;
3534 gcwq->trustee_state = TRUSTEE_START;
3535 wake_up_process(gcwq->trustee);
3536 wait_trustee_state(gcwq, TRUSTEE_IN_CHARGE);
3537 /* fall through */
3538 case CPU_UP_PREPARE:
3539 BUG_ON(gcwq->first_idle);
3540 gcwq->first_idle = new_worker;
3541 break;
3543 case CPU_DYING:
3545 * Before this, the trustee and all workers except for
3546 * the ones which are still executing works from
3547 * before the last CPU down must be on the cpu. After
3548 * this, they'll all be diasporas.
3550 gcwq->flags |= GCWQ_DISASSOCIATED;
3551 break;
3553 case CPU_POST_DEAD:
3554 gcwq->trustee_state = TRUSTEE_BUTCHER;
3555 /* fall through */
3556 case CPU_UP_CANCELED:
3557 destroy_worker(gcwq->first_idle);
3558 gcwq->first_idle = NULL;
3559 break;
3561 case CPU_DOWN_FAILED:
3562 case CPU_ONLINE:
3563 gcwq->flags &= ~GCWQ_DISASSOCIATED;
3564 if (gcwq->trustee_state != TRUSTEE_DONE) {
3565 gcwq->trustee_state = TRUSTEE_RELEASE;
3566 wake_up_process(gcwq->trustee);
3567 wait_trustee_state(gcwq, TRUSTEE_DONE);
3571 * Trustee is done and there might be no worker left.
3572 * Put the first_idle in and request a real manager to
3573 * take a look.
3575 spin_unlock_irq(&gcwq->lock);
3576 kthread_bind(gcwq->first_idle->task, cpu);
3577 spin_lock_irq(&gcwq->lock);
3578 gcwq->flags |= GCWQ_MANAGE_WORKERS;
3579 start_worker(gcwq->first_idle);
3580 gcwq->first_idle = NULL;
3581 break;
3584 spin_unlock_irqrestore(&gcwq->lock, flags);
3586 return notifier_from_errno(0);
3589 #ifdef CONFIG_SMP
3591 struct work_for_cpu {
3592 struct completion completion;
3593 long (*fn)(void *);
3594 void *arg;
3595 long ret;
3598 static int do_work_for_cpu(void *_wfc)
3600 struct work_for_cpu *wfc = _wfc;
3601 wfc->ret = wfc->fn(wfc->arg);
3602 complete(&wfc->completion);
3603 return 0;
3607 * work_on_cpu - run a function in user context on a particular cpu
3608 * @cpu: the cpu to run on
3609 * @fn: the function to run
3610 * @arg: the function arg
3612 * This will return the value @fn returns.
3613 * It is up to the caller to ensure that the cpu doesn't go offline.
3614 * The caller must not hold any locks which would prevent @fn from completing.
3616 long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
3618 struct task_struct *sub_thread;
3619 struct work_for_cpu wfc = {
3620 .completion = COMPLETION_INITIALIZER_ONSTACK(wfc.completion),
3621 .fn = fn,
3622 .arg = arg,
3625 sub_thread = kthread_create(do_work_for_cpu, &wfc, "work_for_cpu");
3626 if (IS_ERR(sub_thread))
3627 return PTR_ERR(sub_thread);
3628 kthread_bind(sub_thread, cpu);
3629 wake_up_process(sub_thread);
3630 wait_for_completion(&wfc.completion);
3631 return wfc.ret;
3633 EXPORT_SYMBOL_GPL(work_on_cpu);
3634 #endif /* CONFIG_SMP */
3636 #ifdef CONFIG_FREEZER
3639 * freeze_workqueues_begin - begin freezing workqueues
3641 * Start freezing workqueues. After this function returns, all freezable
3642 * workqueues will queue new works to their frozen_works list instead of
3643 * gcwq->worklist.
3645 * CONTEXT:
3646 * Grabs and releases workqueue_lock and gcwq->lock's.
3648 void freeze_workqueues_begin(void)
3650 unsigned int cpu;
3652 spin_lock(&workqueue_lock);
3654 BUG_ON(workqueue_freezing);
3655 workqueue_freezing = true;
3657 for_each_gcwq_cpu(cpu) {
3658 struct global_cwq *gcwq = get_gcwq(cpu);
3659 struct workqueue_struct *wq;
3661 spin_lock_irq(&gcwq->lock);
3663 BUG_ON(gcwq->flags & GCWQ_FREEZING);
3664 gcwq->flags |= GCWQ_FREEZING;
3666 list_for_each_entry(wq, &workqueues, list) {
3667 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3669 if (cwq && wq->flags & WQ_FREEZABLE)
3670 cwq->max_active = 0;
3673 spin_unlock_irq(&gcwq->lock);
3676 spin_unlock(&workqueue_lock);
3680 * freeze_workqueues_busy - are freezable workqueues still busy?
3682 * Check whether freezing is complete. This function must be called
3683 * between freeze_workqueues_begin() and thaw_workqueues().
3685 * CONTEXT:
3686 * Grabs and releases workqueue_lock.
3688 * RETURNS:
3689 * %true if some freezable workqueues are still busy. %false if freezing
3690 * is complete.
3692 bool freeze_workqueues_busy(void)
3694 unsigned int cpu;
3695 bool busy = false;
3697 spin_lock(&workqueue_lock);
3699 BUG_ON(!workqueue_freezing);
3701 for_each_gcwq_cpu(cpu) {
3702 struct workqueue_struct *wq;
3704 * nr_active is monotonically decreasing. It's safe
3705 * to peek without lock.
3707 list_for_each_entry(wq, &workqueues, list) {
3708 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3710 if (!cwq || !(wq->flags & WQ_FREEZABLE))
3711 continue;
3713 BUG_ON(cwq->nr_active < 0);
3714 if (cwq->nr_active) {
3715 busy = true;
3716 goto out_unlock;
3720 out_unlock:
3721 spin_unlock(&workqueue_lock);
3722 return busy;
3726 * thaw_workqueues - thaw workqueues
3728 * Thaw workqueues. Normal queueing is restored and all collected
3729 * frozen works are transferred to their respective gcwq worklists.
3731 * CONTEXT:
3732 * Grabs and releases workqueue_lock and gcwq->lock's.
3734 void thaw_workqueues(void)
3736 unsigned int cpu;
3738 spin_lock(&workqueue_lock);
3740 if (!workqueue_freezing)
3741 goto out_unlock;
3743 for_each_gcwq_cpu(cpu) {
3744 struct global_cwq *gcwq = get_gcwq(cpu);
3745 struct workqueue_struct *wq;
3747 spin_lock_irq(&gcwq->lock);
3749 BUG_ON(!(gcwq->flags & GCWQ_FREEZING));
3750 gcwq->flags &= ~GCWQ_FREEZING;
3752 list_for_each_entry(wq, &workqueues, list) {
3753 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3755 if (!cwq || !(wq->flags & WQ_FREEZABLE))
3756 continue;
3758 /* restore max_active and repopulate worklist */
3759 cwq->max_active = wq->saved_max_active;
3761 while (!list_empty(&cwq->delayed_works) &&
3762 cwq->nr_active < cwq->max_active)
3763 cwq_activate_first_delayed(cwq);
3766 wake_up_worker(gcwq);
3768 spin_unlock_irq(&gcwq->lock);
3771 workqueue_freezing = false;
3772 out_unlock:
3773 spin_unlock(&workqueue_lock);
3775 #endif /* CONFIG_FREEZER */
3777 static int __init init_workqueues(void)
3779 unsigned int cpu;
3780 int i;
3782 cpu_notifier(workqueue_cpu_callback, CPU_PRI_WORKQUEUE);
3784 /* initialize gcwqs */
3785 for_each_gcwq_cpu(cpu) {
3786 struct global_cwq *gcwq = get_gcwq(cpu);
3788 spin_lock_init(&gcwq->lock);
3789 INIT_LIST_HEAD(&gcwq->worklist);
3790 gcwq->cpu = cpu;
3791 gcwq->flags |= GCWQ_DISASSOCIATED;
3793 INIT_LIST_HEAD(&gcwq->idle_list);
3794 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++)
3795 INIT_HLIST_HEAD(&gcwq->busy_hash[i]);
3797 init_timer_deferrable(&gcwq->idle_timer);
3798 gcwq->idle_timer.function = idle_worker_timeout;
3799 gcwq->idle_timer.data = (unsigned long)gcwq;
3801 setup_timer(&gcwq->mayday_timer, gcwq_mayday_timeout,
3802 (unsigned long)gcwq);
3804 ida_init(&gcwq->worker_ida);
3806 gcwq->trustee_state = TRUSTEE_DONE;
3807 init_waitqueue_head(&gcwq->trustee_wait);
3810 /* create the initial worker */
3811 for_each_online_gcwq_cpu(cpu) {
3812 struct global_cwq *gcwq = get_gcwq(cpu);
3813 struct worker *worker;
3815 if (cpu != WORK_CPU_UNBOUND)
3816 gcwq->flags &= ~GCWQ_DISASSOCIATED;
3817 worker = create_worker(gcwq, true);
3818 BUG_ON(!worker);
3819 spin_lock_irq(&gcwq->lock);
3820 start_worker(worker);
3821 spin_unlock_irq(&gcwq->lock);
3824 system_wq = alloc_workqueue("events", 0, 0);
3825 system_long_wq = alloc_workqueue("events_long", 0, 0);
3826 system_nrt_wq = alloc_workqueue("events_nrt", WQ_NON_REENTRANT, 0);
3827 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
3828 WQ_UNBOUND_MAX_ACTIVE);
3829 system_freezable_wq = alloc_workqueue("events_freezable",
3830 WQ_FREEZABLE, 0);
3831 system_nrt_freezable_wq = alloc_workqueue("events_nrt_freezable",
3832 WQ_NON_REENTRANT | WQ_FREEZABLE, 0);
3833 BUG_ON(!system_wq || !system_long_wq || !system_nrt_wq ||
3834 !system_unbound_wq || !system_freezable_wq ||
3835 !system_nrt_freezable_wq);
3836 return 0;
3838 early_initcall(init_workqueues);