2 * Routines having to do with the 'struct sk_buff' memory handlers.
4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
8 * Alan Cox : Fixed the worst of the load
10 * Dave Platt : Interrupt stacking fix.
11 * Richard Kooijman : Timestamp fixes.
12 * Alan Cox : Changed buffer format.
13 * Alan Cox : destructor hook for AF_UNIX etc.
14 * Linus Torvalds : Better skb_clone.
15 * Alan Cox : Added skb_copy.
16 * Alan Cox : Added all the changed routines Linus
17 * only put in the headers
18 * Ray VanTassle : Fixed --skb->lock in free
19 * Alan Cox : skb_copy copy arp field
20 * Andi Kleen : slabified it.
21 * Robert Olsson : Removed skb_head_pool
24 * The __skb_ routines should be called with interrupts
25 * disabled, or you better be *real* sure that the operation is atomic
26 * with respect to whatever list is being frobbed (e.g. via lock_sock()
27 * or via disabling bottom half handlers, etc).
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
36 * The functions in this file will not compile correctly with gcc 2.4.x
39 #include <linux/module.h>
40 #include <linux/types.h>
41 #include <linux/kernel.h>
42 #include <linux/kmemcheck.h>
44 #include <linux/interrupt.h>
46 #include <linux/inet.h>
47 #include <linux/slab.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/splice.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 #include <linux/errqueue.h>
60 #include <linux/prefetch.h>
62 #include <net/protocol.h>
65 #include <net/checksum.h>
68 #include <asm/uaccess.h>
69 #include <asm/system.h>
70 #include <trace/events/skb.h>
74 static struct kmem_cache
*skbuff_head_cache __read_mostly
;
75 static struct kmem_cache
*skbuff_fclone_cache __read_mostly
;
77 static void sock_pipe_buf_release(struct pipe_inode_info
*pipe
,
78 struct pipe_buffer
*buf
)
83 static void sock_pipe_buf_get(struct pipe_inode_info
*pipe
,
84 struct pipe_buffer
*buf
)
89 static int sock_pipe_buf_steal(struct pipe_inode_info
*pipe
,
90 struct pipe_buffer
*buf
)
96 /* Pipe buffer operations for a socket. */
97 static const struct pipe_buf_operations sock_pipe_buf_ops
= {
99 .map
= generic_pipe_buf_map
,
100 .unmap
= generic_pipe_buf_unmap
,
101 .confirm
= generic_pipe_buf_confirm
,
102 .release
= sock_pipe_buf_release
,
103 .steal
= sock_pipe_buf_steal
,
104 .get
= sock_pipe_buf_get
,
108 * Keep out-of-line to prevent kernel bloat.
109 * __builtin_return_address is not used because it is not always
114 * skb_over_panic - private function
119 * Out of line support code for skb_put(). Not user callable.
121 static void skb_over_panic(struct sk_buff
*skb
, int sz
, void *here
)
123 printk(KERN_EMERG
"skb_over_panic: text:%p len:%d put:%d head:%p "
124 "data:%p tail:%#lx end:%#lx dev:%s\n",
125 here
, skb
->len
, sz
, skb
->head
, skb
->data
,
126 (unsigned long)skb
->tail
, (unsigned long)skb
->end
,
127 skb
->dev
? skb
->dev
->name
: "<NULL>");
132 * skb_under_panic - private function
137 * Out of line support code for skb_push(). Not user callable.
140 static void skb_under_panic(struct sk_buff
*skb
, int sz
, void *here
)
142 printk(KERN_EMERG
"skb_under_panic: text:%p len:%d put:%d head:%p "
143 "data:%p tail:%#lx end:%#lx dev:%s\n",
144 here
, skb
->len
, sz
, skb
->head
, skb
->data
,
145 (unsigned long)skb
->tail
, (unsigned long)skb
->end
,
146 skb
->dev
? skb
->dev
->name
: "<NULL>");
150 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
151 * 'private' fields and also do memory statistics to find all the
157 * __alloc_skb - allocate a network buffer
158 * @size: size to allocate
159 * @gfp_mask: allocation mask
160 * @fclone: allocate from fclone cache instead of head cache
161 * and allocate a cloned (child) skb
162 * @node: numa node to allocate memory on
164 * Allocate a new &sk_buff. The returned buffer has no headroom and a
165 * tail room of size bytes. The object has a reference count of one.
166 * The return is the buffer. On a failure the return is %NULL.
168 * Buffers may only be allocated from interrupts using a @gfp_mask of
171 struct sk_buff
*__alloc_skb(unsigned int size
, gfp_t gfp_mask
,
172 int fclone
, int node
)
174 struct kmem_cache
*cache
;
175 struct skb_shared_info
*shinfo
;
179 cache
= fclone
? skbuff_fclone_cache
: skbuff_head_cache
;
182 skb
= kmem_cache_alloc_node(cache
, gfp_mask
& ~__GFP_DMA
, node
);
187 /* We do our best to align skb_shared_info on a separate cache
188 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
189 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
190 * Both skb->head and skb_shared_info are cache line aligned.
192 size
= SKB_DATA_ALIGN(size
);
193 size
+= SKB_DATA_ALIGN(sizeof(struct skb_shared_info
));
194 data
= kmalloc_node_track_caller(size
, gfp_mask
, node
);
197 /* kmalloc(size) might give us more room than requested.
198 * Put skb_shared_info exactly at the end of allocated zone,
199 * to allow max possible filling before reallocation.
201 size
= SKB_WITH_OVERHEAD(ksize(data
));
202 prefetchw(data
+ size
);
205 * Only clear those fields we need to clear, not those that we will
206 * actually initialise below. Hence, don't put any more fields after
207 * the tail pointer in struct sk_buff!
209 memset(skb
, 0, offsetof(struct sk_buff
, tail
));
210 /* Account for allocated memory : skb + skb->head */
211 skb
->truesize
= SKB_TRUESIZE(size
);
212 atomic_set(&skb
->users
, 1);
215 skb_reset_tail_pointer(skb
);
216 skb
->end
= skb
->tail
+ size
;
217 #ifdef NET_SKBUFF_DATA_USES_OFFSET
218 skb
->mac_header
= ~0U;
221 /* make sure we initialize shinfo sequentially */
222 shinfo
= skb_shinfo(skb
);
223 memset(shinfo
, 0, offsetof(struct skb_shared_info
, dataref
));
224 atomic_set(&shinfo
->dataref
, 1);
225 kmemcheck_annotate_variable(shinfo
->destructor_arg
);
228 struct sk_buff
*child
= skb
+ 1;
229 atomic_t
*fclone_ref
= (atomic_t
*) (child
+ 1);
231 kmemcheck_annotate_bitfield(child
, flags1
);
232 kmemcheck_annotate_bitfield(child
, flags2
);
233 skb
->fclone
= SKB_FCLONE_ORIG
;
234 atomic_set(fclone_ref
, 1);
236 child
->fclone
= SKB_FCLONE_UNAVAILABLE
;
241 kmem_cache_free(cache
, skb
);
245 EXPORT_SYMBOL(__alloc_skb
);
248 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
249 * @dev: network device to receive on
250 * @length: length to allocate
251 * @gfp_mask: get_free_pages mask, passed to alloc_skb
253 * Allocate a new &sk_buff and assign it a usage count of one. The
254 * buffer has unspecified headroom built in. Users should allocate
255 * the headroom they think they need without accounting for the
256 * built in space. The built in space is used for optimisations.
258 * %NULL is returned if there is no free memory.
260 struct sk_buff
*__netdev_alloc_skb(struct net_device
*dev
,
261 unsigned int length
, gfp_t gfp_mask
)
265 skb
= __alloc_skb(length
+ NET_SKB_PAD
, gfp_mask
, 0, NUMA_NO_NODE
);
267 skb_reserve(skb
, NET_SKB_PAD
);
272 EXPORT_SYMBOL(__netdev_alloc_skb
);
274 void skb_add_rx_frag(struct sk_buff
*skb
, int i
, struct page
*page
, int off
,
277 skb_fill_page_desc(skb
, i
, page
, off
, size
);
279 skb
->data_len
+= size
;
280 skb
->truesize
+= size
;
282 EXPORT_SYMBOL(skb_add_rx_frag
);
285 * dev_alloc_skb - allocate an skbuff for receiving
286 * @length: length to allocate
288 * Allocate a new &sk_buff and assign it a usage count of one. The
289 * buffer has unspecified headroom built in. Users should allocate
290 * the headroom they think they need without accounting for the
291 * built in space. The built in space is used for optimisations.
293 * %NULL is returned if there is no free memory. Although this function
294 * allocates memory it can be called from an interrupt.
296 struct sk_buff
*dev_alloc_skb(unsigned int length
)
299 * There is more code here than it seems:
300 * __dev_alloc_skb is an inline
302 return __dev_alloc_skb(length
, GFP_ATOMIC
);
304 EXPORT_SYMBOL(dev_alloc_skb
);
306 static void skb_drop_list(struct sk_buff
**listp
)
308 struct sk_buff
*list
= *listp
;
313 struct sk_buff
*this = list
;
319 static inline void skb_drop_fraglist(struct sk_buff
*skb
)
321 skb_drop_list(&skb_shinfo(skb
)->frag_list
);
324 static void skb_clone_fraglist(struct sk_buff
*skb
)
326 struct sk_buff
*list
;
328 skb_walk_frags(skb
, list
)
332 static void skb_release_data(struct sk_buff
*skb
)
335 !atomic_sub_return(skb
->nohdr
? (1 << SKB_DATAREF_SHIFT
) + 1 : 1,
336 &skb_shinfo(skb
)->dataref
)) {
337 if (skb_shinfo(skb
)->nr_frags
) {
339 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++)
340 skb_frag_unref(skb
, i
);
344 * If skb buf is from userspace, we need to notify the caller
345 * the lower device DMA has done;
347 if (skb_shinfo(skb
)->tx_flags
& SKBTX_DEV_ZEROCOPY
) {
348 struct ubuf_info
*uarg
;
350 uarg
= skb_shinfo(skb
)->destructor_arg
;
352 uarg
->callback(uarg
);
355 if (skb_has_frag_list(skb
))
356 skb_drop_fraglist(skb
);
363 * Free an skbuff by memory without cleaning the state.
365 static void kfree_skbmem(struct sk_buff
*skb
)
367 struct sk_buff
*other
;
368 atomic_t
*fclone_ref
;
370 switch (skb
->fclone
) {
371 case SKB_FCLONE_UNAVAILABLE
:
372 kmem_cache_free(skbuff_head_cache
, skb
);
375 case SKB_FCLONE_ORIG
:
376 fclone_ref
= (atomic_t
*) (skb
+ 2);
377 if (atomic_dec_and_test(fclone_ref
))
378 kmem_cache_free(skbuff_fclone_cache
, skb
);
381 case SKB_FCLONE_CLONE
:
382 fclone_ref
= (atomic_t
*) (skb
+ 1);
385 /* The clone portion is available for
386 * fast-cloning again.
388 skb
->fclone
= SKB_FCLONE_UNAVAILABLE
;
390 if (atomic_dec_and_test(fclone_ref
))
391 kmem_cache_free(skbuff_fclone_cache
, other
);
396 static void skb_release_head_state(struct sk_buff
*skb
)
400 secpath_put(skb
->sp
);
402 if (skb
->destructor
) {
404 skb
->destructor(skb
);
406 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
407 nf_conntrack_put(skb
->nfct
);
409 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
410 nf_conntrack_put_reasm(skb
->nfct_reasm
);
412 #ifdef CONFIG_BRIDGE_NETFILTER
413 nf_bridge_put(skb
->nf_bridge
);
415 /* XXX: IS this still necessary? - JHS */
416 #ifdef CONFIG_NET_SCHED
418 #ifdef CONFIG_NET_CLS_ACT
424 /* Free everything but the sk_buff shell. */
425 static void skb_release_all(struct sk_buff
*skb
)
427 skb_release_head_state(skb
);
428 skb_release_data(skb
);
432 * __kfree_skb - private function
435 * Free an sk_buff. Release anything attached to the buffer.
436 * Clean the state. This is an internal helper function. Users should
437 * always call kfree_skb
440 void __kfree_skb(struct sk_buff
*skb
)
442 skb_release_all(skb
);
445 EXPORT_SYMBOL(__kfree_skb
);
448 * kfree_skb - free an sk_buff
449 * @skb: buffer to free
451 * Drop a reference to the buffer and free it if the usage count has
454 void kfree_skb(struct sk_buff
*skb
)
458 if (likely(atomic_read(&skb
->users
) == 1))
460 else if (likely(!atomic_dec_and_test(&skb
->users
)))
462 trace_kfree_skb(skb
, __builtin_return_address(0));
465 EXPORT_SYMBOL(kfree_skb
);
468 * consume_skb - free an skbuff
469 * @skb: buffer to free
471 * Drop a ref to the buffer and free it if the usage count has hit zero
472 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
473 * is being dropped after a failure and notes that
475 void consume_skb(struct sk_buff
*skb
)
479 if (likely(atomic_read(&skb
->users
) == 1))
481 else if (likely(!atomic_dec_and_test(&skb
->users
)))
483 trace_consume_skb(skb
);
486 EXPORT_SYMBOL(consume_skb
);
489 * skb_recycle - clean up an skb for reuse
492 * Recycles the skb to be reused as a receive buffer. This
493 * function does any necessary reference count dropping, and
494 * cleans up the skbuff as if it just came from __alloc_skb().
496 void skb_recycle(struct sk_buff
*skb
)
498 struct skb_shared_info
*shinfo
;
500 skb_release_head_state(skb
);
502 shinfo
= skb_shinfo(skb
);
503 memset(shinfo
, 0, offsetof(struct skb_shared_info
, dataref
));
504 atomic_set(&shinfo
->dataref
, 1);
506 memset(skb
, 0, offsetof(struct sk_buff
, tail
));
507 skb
->data
= skb
->head
+ NET_SKB_PAD
;
508 skb_reset_tail_pointer(skb
);
510 EXPORT_SYMBOL(skb_recycle
);
513 * skb_recycle_check - check if skb can be reused for receive
515 * @skb_size: minimum receive buffer size
517 * Checks that the skb passed in is not shared or cloned, and
518 * that it is linear and its head portion at least as large as
519 * skb_size so that it can be recycled as a receive buffer.
520 * If these conditions are met, this function does any necessary
521 * reference count dropping and cleans up the skbuff as if it
522 * just came from __alloc_skb().
524 bool skb_recycle_check(struct sk_buff
*skb
, int skb_size
)
526 if (!skb_is_recycleable(skb
, skb_size
))
533 EXPORT_SYMBOL(skb_recycle_check
);
535 static void __copy_skb_header(struct sk_buff
*new, const struct sk_buff
*old
)
537 new->tstamp
= old
->tstamp
;
539 new->transport_header
= old
->transport_header
;
540 new->network_header
= old
->network_header
;
541 new->mac_header
= old
->mac_header
;
542 skb_dst_copy(new, old
);
543 new->rxhash
= old
->rxhash
;
544 new->ooo_okay
= old
->ooo_okay
;
545 new->l4_rxhash
= old
->l4_rxhash
;
547 new->sp
= secpath_get(old
->sp
);
549 memcpy(new->cb
, old
->cb
, sizeof(old
->cb
));
550 new->csum
= old
->csum
;
551 new->local_df
= old
->local_df
;
552 new->pkt_type
= old
->pkt_type
;
553 new->ip_summed
= old
->ip_summed
;
554 skb_copy_queue_mapping(new, old
);
555 new->priority
= old
->priority
;
556 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
557 new->ipvs_property
= old
->ipvs_property
;
559 new->protocol
= old
->protocol
;
560 new->mark
= old
->mark
;
561 new->skb_iif
= old
->skb_iif
;
563 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
564 defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
565 new->nf_trace
= old
->nf_trace
;
567 #ifdef CONFIG_NET_SCHED
568 new->tc_index
= old
->tc_index
;
569 #ifdef CONFIG_NET_CLS_ACT
570 new->tc_verd
= old
->tc_verd
;
573 new->vlan_tci
= old
->vlan_tci
;
575 skb_copy_secmark(new, old
);
579 * You should not add any new code to this function. Add it to
580 * __copy_skb_header above instead.
582 static struct sk_buff
*__skb_clone(struct sk_buff
*n
, struct sk_buff
*skb
)
584 #define C(x) n->x = skb->x
586 n
->next
= n
->prev
= NULL
;
588 __copy_skb_header(n
, skb
);
593 n
->hdr_len
= skb
->nohdr
? skb_headroom(skb
) : skb
->hdr_len
;
596 n
->destructor
= NULL
;
602 atomic_set(&n
->users
, 1);
604 atomic_inc(&(skb_shinfo(skb
)->dataref
));
612 * skb_morph - morph one skb into another
613 * @dst: the skb to receive the contents
614 * @src: the skb to supply the contents
616 * This is identical to skb_clone except that the target skb is
617 * supplied by the user.
619 * The target skb is returned upon exit.
621 struct sk_buff
*skb_morph(struct sk_buff
*dst
, struct sk_buff
*src
)
623 skb_release_all(dst
);
624 return __skb_clone(dst
, src
);
626 EXPORT_SYMBOL_GPL(skb_morph
);
628 /* skb_copy_ubufs - copy userspace skb frags buffers to kernel
629 * @skb: the skb to modify
630 * @gfp_mask: allocation priority
632 * This must be called on SKBTX_DEV_ZEROCOPY skb.
633 * It will copy all frags into kernel and drop the reference
634 * to userspace pages.
636 * If this function is called from an interrupt gfp_mask() must be
639 * Returns 0 on success or a negative error code on failure
640 * to allocate kernel memory to copy to.
642 int skb_copy_ubufs(struct sk_buff
*skb
, gfp_t gfp_mask
)
645 int num_frags
= skb_shinfo(skb
)->nr_frags
;
646 struct page
*page
, *head
= NULL
;
647 struct ubuf_info
*uarg
= skb_shinfo(skb
)->destructor_arg
;
649 for (i
= 0; i
< num_frags
; i
++) {
651 skb_frag_t
*f
= &skb_shinfo(skb
)->frags
[i
];
653 page
= alloc_page(GFP_ATOMIC
);
656 struct page
*next
= (struct page
*)head
->private;
662 vaddr
= kmap_skb_frag(&skb_shinfo(skb
)->frags
[i
]);
663 memcpy(page_address(page
),
664 vaddr
+ f
->page_offset
, skb_frag_size(f
));
665 kunmap_skb_frag(vaddr
);
666 page
->private = (unsigned long)head
;
670 /* skb frags release userspace buffers */
671 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++)
672 skb_frag_unref(skb
, i
);
674 uarg
->callback(uarg
);
676 /* skb frags point to kernel buffers */
677 for (i
= skb_shinfo(skb
)->nr_frags
; i
> 0; i
--) {
678 __skb_fill_page_desc(skb
, i
-1, head
, 0,
679 skb_shinfo(skb
)->frags
[i
- 1].size
);
680 head
= (struct page
*)head
->private;
683 skb_shinfo(skb
)->tx_flags
&= ~SKBTX_DEV_ZEROCOPY
;
689 * skb_clone - duplicate an sk_buff
690 * @skb: buffer to clone
691 * @gfp_mask: allocation priority
693 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
694 * copies share the same packet data but not structure. The new
695 * buffer has a reference count of 1. If the allocation fails the
696 * function returns %NULL otherwise the new buffer is returned.
698 * If this function is called from an interrupt gfp_mask() must be
702 struct sk_buff
*skb_clone(struct sk_buff
*skb
, gfp_t gfp_mask
)
706 if (skb_shinfo(skb
)->tx_flags
& SKBTX_DEV_ZEROCOPY
) {
707 if (skb_copy_ubufs(skb
, gfp_mask
))
712 if (skb
->fclone
== SKB_FCLONE_ORIG
&&
713 n
->fclone
== SKB_FCLONE_UNAVAILABLE
) {
714 atomic_t
*fclone_ref
= (atomic_t
*) (n
+ 1);
715 n
->fclone
= SKB_FCLONE_CLONE
;
716 atomic_inc(fclone_ref
);
718 n
= kmem_cache_alloc(skbuff_head_cache
, gfp_mask
);
722 kmemcheck_annotate_bitfield(n
, flags1
);
723 kmemcheck_annotate_bitfield(n
, flags2
);
724 n
->fclone
= SKB_FCLONE_UNAVAILABLE
;
727 return __skb_clone(n
, skb
);
729 EXPORT_SYMBOL(skb_clone
);
731 static void copy_skb_header(struct sk_buff
*new, const struct sk_buff
*old
)
733 #ifndef NET_SKBUFF_DATA_USES_OFFSET
735 * Shift between the two data areas in bytes
737 unsigned long offset
= new->data
- old
->data
;
740 __copy_skb_header(new, old
);
742 #ifndef NET_SKBUFF_DATA_USES_OFFSET
743 /* {transport,network,mac}_header are relative to skb->head */
744 new->transport_header
+= offset
;
745 new->network_header
+= offset
;
746 if (skb_mac_header_was_set(new))
747 new->mac_header
+= offset
;
749 skb_shinfo(new)->gso_size
= skb_shinfo(old
)->gso_size
;
750 skb_shinfo(new)->gso_segs
= skb_shinfo(old
)->gso_segs
;
751 skb_shinfo(new)->gso_type
= skb_shinfo(old
)->gso_type
;
755 * skb_copy - create private copy of an sk_buff
756 * @skb: buffer to copy
757 * @gfp_mask: allocation priority
759 * Make a copy of both an &sk_buff and its data. This is used when the
760 * caller wishes to modify the data and needs a private copy of the
761 * data to alter. Returns %NULL on failure or the pointer to the buffer
762 * on success. The returned buffer has a reference count of 1.
764 * As by-product this function converts non-linear &sk_buff to linear
765 * one, so that &sk_buff becomes completely private and caller is allowed
766 * to modify all the data of returned buffer. This means that this
767 * function is not recommended for use in circumstances when only
768 * header is going to be modified. Use pskb_copy() instead.
771 struct sk_buff
*skb_copy(const struct sk_buff
*skb
, gfp_t gfp_mask
)
773 int headerlen
= skb_headroom(skb
);
774 unsigned int size
= (skb_end_pointer(skb
) - skb
->head
) + skb
->data_len
;
775 struct sk_buff
*n
= alloc_skb(size
, gfp_mask
);
780 /* Set the data pointer */
781 skb_reserve(n
, headerlen
);
782 /* Set the tail pointer and length */
783 skb_put(n
, skb
->len
);
785 if (skb_copy_bits(skb
, -headerlen
, n
->head
, headerlen
+ skb
->len
))
788 copy_skb_header(n
, skb
);
791 EXPORT_SYMBOL(skb_copy
);
794 * pskb_copy - create copy of an sk_buff with private head.
795 * @skb: buffer to copy
796 * @gfp_mask: allocation priority
798 * Make a copy of both an &sk_buff and part of its data, located
799 * in header. Fragmented data remain shared. This is used when
800 * the caller wishes to modify only header of &sk_buff and needs
801 * private copy of the header to alter. Returns %NULL on failure
802 * or the pointer to the buffer on success.
803 * The returned buffer has a reference count of 1.
806 struct sk_buff
*pskb_copy(struct sk_buff
*skb
, gfp_t gfp_mask
)
808 unsigned int size
= skb_end_pointer(skb
) - skb
->head
;
809 struct sk_buff
*n
= alloc_skb(size
, gfp_mask
);
814 /* Set the data pointer */
815 skb_reserve(n
, skb_headroom(skb
));
816 /* Set the tail pointer and length */
817 skb_put(n
, skb_headlen(skb
));
819 skb_copy_from_linear_data(skb
, n
->data
, n
->len
);
821 n
->truesize
+= skb
->data_len
;
822 n
->data_len
= skb
->data_len
;
825 if (skb_shinfo(skb
)->nr_frags
) {
828 if (skb_shinfo(skb
)->tx_flags
& SKBTX_DEV_ZEROCOPY
) {
829 if (skb_copy_ubufs(skb
, gfp_mask
)) {
835 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
836 skb_shinfo(n
)->frags
[i
] = skb_shinfo(skb
)->frags
[i
];
837 skb_frag_ref(skb
, i
);
839 skb_shinfo(n
)->nr_frags
= i
;
842 if (skb_has_frag_list(skb
)) {
843 skb_shinfo(n
)->frag_list
= skb_shinfo(skb
)->frag_list
;
844 skb_clone_fraglist(n
);
847 copy_skb_header(n
, skb
);
851 EXPORT_SYMBOL(pskb_copy
);
854 * pskb_expand_head - reallocate header of &sk_buff
855 * @skb: buffer to reallocate
856 * @nhead: room to add at head
857 * @ntail: room to add at tail
858 * @gfp_mask: allocation priority
860 * Expands (or creates identical copy, if &nhead and &ntail are zero)
861 * header of skb. &sk_buff itself is not changed. &sk_buff MUST have
862 * reference count of 1. Returns zero in the case of success or error,
863 * if expansion failed. In the last case, &sk_buff is not changed.
865 * All the pointers pointing into skb header may change and must be
866 * reloaded after call to this function.
869 int pskb_expand_head(struct sk_buff
*skb
, int nhead
, int ntail
,
874 int size
= nhead
+ (skb_end_pointer(skb
) - skb
->head
) + ntail
;
883 size
= SKB_DATA_ALIGN(size
);
885 /* Check if we can avoid taking references on fragments if we own
886 * the last reference on skb->head. (see skb_release_data())
891 int delta
= skb
->nohdr
? (1 << SKB_DATAREF_SHIFT
) + 1 : 1;
892 fastpath
= atomic_read(&skb_shinfo(skb
)->dataref
) == delta
;
896 size
+ sizeof(struct skb_shared_info
) <= ksize(skb
->head
)) {
897 memmove(skb
->head
+ size
, skb_shinfo(skb
),
898 offsetof(struct skb_shared_info
,
899 frags
[skb_shinfo(skb
)->nr_frags
]));
900 memmove(skb
->head
+ nhead
, skb
->head
,
901 skb_tail_pointer(skb
) - skb
->head
);
906 data
= kmalloc(size
+ SKB_DATA_ALIGN(sizeof(struct skb_shared_info
)),
910 size
= SKB_WITH_OVERHEAD(ksize(data
));
912 /* Copy only real data... and, alas, header. This should be
913 * optimized for the cases when header is void.
915 memcpy(data
+ nhead
, skb
->head
, skb_tail_pointer(skb
) - skb
->head
);
917 memcpy((struct skb_shared_info
*)(data
+ size
),
919 offsetof(struct skb_shared_info
, frags
[skb_shinfo(skb
)->nr_frags
]));
924 /* copy this zero copy skb frags */
925 if (skb_shinfo(skb
)->tx_flags
& SKBTX_DEV_ZEROCOPY
) {
926 if (skb_copy_ubufs(skb
, gfp_mask
))
929 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++)
930 skb_frag_ref(skb
, i
);
932 if (skb_has_frag_list(skb
))
933 skb_clone_fraglist(skb
);
935 skb_release_data(skb
);
937 off
= (data
+ nhead
) - skb
->head
;
942 #ifdef NET_SKBUFF_DATA_USES_OFFSET
946 skb
->end
= skb
->head
+ size
;
948 /* {transport,network,mac}_header and tail are relative to skb->head */
950 skb
->transport_header
+= off
;
951 skb
->network_header
+= off
;
952 if (skb_mac_header_was_set(skb
))
953 skb
->mac_header
+= off
;
954 /* Only adjust this if it actually is csum_start rather than csum */
955 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
956 skb
->csum_start
+= nhead
;
960 atomic_set(&skb_shinfo(skb
)->dataref
, 1);
968 EXPORT_SYMBOL(pskb_expand_head
);
970 /* Make private copy of skb with writable head and some headroom */
972 struct sk_buff
*skb_realloc_headroom(struct sk_buff
*skb
, unsigned int headroom
)
974 struct sk_buff
*skb2
;
975 int delta
= headroom
- skb_headroom(skb
);
978 skb2
= pskb_copy(skb
, GFP_ATOMIC
);
980 skb2
= skb_clone(skb
, GFP_ATOMIC
);
981 if (skb2
&& pskb_expand_head(skb2
, SKB_DATA_ALIGN(delta
), 0,
989 EXPORT_SYMBOL(skb_realloc_headroom
);
992 * skb_copy_expand - copy and expand sk_buff
993 * @skb: buffer to copy
994 * @newheadroom: new free bytes at head
995 * @newtailroom: new free bytes at tail
996 * @gfp_mask: allocation priority
998 * Make a copy of both an &sk_buff and its data and while doing so
999 * allocate additional space.
1001 * This is used when the caller wishes to modify the data and needs a
1002 * private copy of the data to alter as well as more space for new fields.
1003 * Returns %NULL on failure or the pointer to the buffer
1004 * on success. The returned buffer has a reference count of 1.
1006 * You must pass %GFP_ATOMIC as the allocation priority if this function
1007 * is called from an interrupt.
1009 struct sk_buff
*skb_copy_expand(const struct sk_buff
*skb
,
1010 int newheadroom
, int newtailroom
,
1014 * Allocate the copy buffer
1016 struct sk_buff
*n
= alloc_skb(newheadroom
+ skb
->len
+ newtailroom
,
1018 int oldheadroom
= skb_headroom(skb
);
1019 int head_copy_len
, head_copy_off
;
1025 skb_reserve(n
, newheadroom
);
1027 /* Set the tail pointer and length */
1028 skb_put(n
, skb
->len
);
1030 head_copy_len
= oldheadroom
;
1032 if (newheadroom
<= head_copy_len
)
1033 head_copy_len
= newheadroom
;
1035 head_copy_off
= newheadroom
- head_copy_len
;
1037 /* Copy the linear header and data. */
1038 if (skb_copy_bits(skb
, -head_copy_len
, n
->head
+ head_copy_off
,
1039 skb
->len
+ head_copy_len
))
1042 copy_skb_header(n
, skb
);
1044 off
= newheadroom
- oldheadroom
;
1045 if (n
->ip_summed
== CHECKSUM_PARTIAL
)
1046 n
->csum_start
+= off
;
1047 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1048 n
->transport_header
+= off
;
1049 n
->network_header
+= off
;
1050 if (skb_mac_header_was_set(skb
))
1051 n
->mac_header
+= off
;
1056 EXPORT_SYMBOL(skb_copy_expand
);
1059 * skb_pad - zero pad the tail of an skb
1060 * @skb: buffer to pad
1061 * @pad: space to pad
1063 * Ensure that a buffer is followed by a padding area that is zero
1064 * filled. Used by network drivers which may DMA or transfer data
1065 * beyond the buffer end onto the wire.
1067 * May return error in out of memory cases. The skb is freed on error.
1070 int skb_pad(struct sk_buff
*skb
, int pad
)
1075 /* If the skbuff is non linear tailroom is always zero.. */
1076 if (!skb_cloned(skb
) && skb_tailroom(skb
) >= pad
) {
1077 memset(skb
->data
+skb
->len
, 0, pad
);
1081 ntail
= skb
->data_len
+ pad
- (skb
->end
- skb
->tail
);
1082 if (likely(skb_cloned(skb
) || ntail
> 0)) {
1083 err
= pskb_expand_head(skb
, 0, ntail
, GFP_ATOMIC
);
1088 /* FIXME: The use of this function with non-linear skb's really needs
1091 err
= skb_linearize(skb
);
1095 memset(skb
->data
+ skb
->len
, 0, pad
);
1102 EXPORT_SYMBOL(skb_pad
);
1105 * skb_put - add data to a buffer
1106 * @skb: buffer to use
1107 * @len: amount of data to add
1109 * This function extends the used data area of the buffer. If this would
1110 * exceed the total buffer size the kernel will panic. A pointer to the
1111 * first byte of the extra data is returned.
1113 unsigned char *skb_put(struct sk_buff
*skb
, unsigned int len
)
1115 unsigned char *tmp
= skb_tail_pointer(skb
);
1116 SKB_LINEAR_ASSERT(skb
);
1119 if (unlikely(skb
->tail
> skb
->end
))
1120 skb_over_panic(skb
, len
, __builtin_return_address(0));
1123 EXPORT_SYMBOL(skb_put
);
1126 * skb_push - add data to the start of a buffer
1127 * @skb: buffer to use
1128 * @len: amount of data to add
1130 * This function extends the used data area of the buffer at the buffer
1131 * start. If this would exceed the total buffer headroom the kernel will
1132 * panic. A pointer to the first byte of the extra data is returned.
1134 unsigned char *skb_push(struct sk_buff
*skb
, unsigned int len
)
1138 if (unlikely(skb
->data
<skb
->head
))
1139 skb_under_panic(skb
, len
, __builtin_return_address(0));
1142 EXPORT_SYMBOL(skb_push
);
1145 * skb_pull - remove data from the start of a buffer
1146 * @skb: buffer to use
1147 * @len: amount of data to remove
1149 * This function removes data from the start of a buffer, returning
1150 * the memory to the headroom. A pointer to the next data in the buffer
1151 * is returned. Once the data has been pulled future pushes will overwrite
1154 unsigned char *skb_pull(struct sk_buff
*skb
, unsigned int len
)
1156 return skb_pull_inline(skb
, len
);
1158 EXPORT_SYMBOL(skb_pull
);
1161 * skb_trim - remove end from a buffer
1162 * @skb: buffer to alter
1165 * Cut the length of a buffer down by removing data from the tail. If
1166 * the buffer is already under the length specified it is not modified.
1167 * The skb must be linear.
1169 void skb_trim(struct sk_buff
*skb
, unsigned int len
)
1172 __skb_trim(skb
, len
);
1174 EXPORT_SYMBOL(skb_trim
);
1176 /* Trims skb to length len. It can change skb pointers.
1179 int ___pskb_trim(struct sk_buff
*skb
, unsigned int len
)
1181 struct sk_buff
**fragp
;
1182 struct sk_buff
*frag
;
1183 int offset
= skb_headlen(skb
);
1184 int nfrags
= skb_shinfo(skb
)->nr_frags
;
1188 if (skb_cloned(skb
) &&
1189 unlikely((err
= pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
))))
1196 for (; i
< nfrags
; i
++) {
1197 int end
= offset
+ skb_frag_size(&skb_shinfo(skb
)->frags
[i
]);
1204 skb_frag_size_set(&skb_shinfo(skb
)->frags
[i
++], len
- offset
);
1207 skb_shinfo(skb
)->nr_frags
= i
;
1209 for (; i
< nfrags
; i
++)
1210 skb_frag_unref(skb
, i
);
1212 if (skb_has_frag_list(skb
))
1213 skb_drop_fraglist(skb
);
1217 for (fragp
= &skb_shinfo(skb
)->frag_list
; (frag
= *fragp
);
1218 fragp
= &frag
->next
) {
1219 int end
= offset
+ frag
->len
;
1221 if (skb_shared(frag
)) {
1222 struct sk_buff
*nfrag
;
1224 nfrag
= skb_clone(frag
, GFP_ATOMIC
);
1225 if (unlikely(!nfrag
))
1228 nfrag
->next
= frag
->next
;
1240 unlikely((err
= pskb_trim(frag
, len
- offset
))))
1244 skb_drop_list(&frag
->next
);
1249 if (len
> skb_headlen(skb
)) {
1250 skb
->data_len
-= skb
->len
- len
;
1255 skb_set_tail_pointer(skb
, len
);
1260 EXPORT_SYMBOL(___pskb_trim
);
1263 * __pskb_pull_tail - advance tail of skb header
1264 * @skb: buffer to reallocate
1265 * @delta: number of bytes to advance tail
1267 * The function makes a sense only on a fragmented &sk_buff,
1268 * it expands header moving its tail forward and copying necessary
1269 * data from fragmented part.
1271 * &sk_buff MUST have reference count of 1.
1273 * Returns %NULL (and &sk_buff does not change) if pull failed
1274 * or value of new tail of skb in the case of success.
1276 * All the pointers pointing into skb header may change and must be
1277 * reloaded after call to this function.
1280 /* Moves tail of skb head forward, copying data from fragmented part,
1281 * when it is necessary.
1282 * 1. It may fail due to malloc failure.
1283 * 2. It may change skb pointers.
1285 * It is pretty complicated. Luckily, it is called only in exceptional cases.
1287 unsigned char *__pskb_pull_tail(struct sk_buff
*skb
, int delta
)
1289 /* If skb has not enough free space at tail, get new one
1290 * plus 128 bytes for future expansions. If we have enough
1291 * room at tail, reallocate without expansion only if skb is cloned.
1293 int i
, k
, eat
= (skb
->tail
+ delta
) - skb
->end
;
1295 if (eat
> 0 || skb_cloned(skb
)) {
1296 if (pskb_expand_head(skb
, 0, eat
> 0 ? eat
+ 128 : 0,
1301 if (skb_copy_bits(skb
, skb_headlen(skb
), skb_tail_pointer(skb
), delta
))
1304 /* Optimization: no fragments, no reasons to preestimate
1305 * size of pulled pages. Superb.
1307 if (!skb_has_frag_list(skb
))
1310 /* Estimate size of pulled pages. */
1312 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1313 int size
= skb_frag_size(&skb_shinfo(skb
)->frags
[i
]);
1320 /* If we need update frag list, we are in troubles.
1321 * Certainly, it possible to add an offset to skb data,
1322 * but taking into account that pulling is expected to
1323 * be very rare operation, it is worth to fight against
1324 * further bloating skb head and crucify ourselves here instead.
1325 * Pure masohism, indeed. 8)8)
1328 struct sk_buff
*list
= skb_shinfo(skb
)->frag_list
;
1329 struct sk_buff
*clone
= NULL
;
1330 struct sk_buff
*insp
= NULL
;
1335 if (list
->len
<= eat
) {
1336 /* Eaten as whole. */
1341 /* Eaten partially. */
1343 if (skb_shared(list
)) {
1344 /* Sucks! We need to fork list. :-( */
1345 clone
= skb_clone(list
, GFP_ATOMIC
);
1351 /* This may be pulled without
1355 if (!pskb_pull(list
, eat
)) {
1363 /* Free pulled out fragments. */
1364 while ((list
= skb_shinfo(skb
)->frag_list
) != insp
) {
1365 skb_shinfo(skb
)->frag_list
= list
->next
;
1368 /* And insert new clone at head. */
1371 skb_shinfo(skb
)->frag_list
= clone
;
1374 /* Success! Now we may commit changes to skb data. */
1379 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1380 int size
= skb_frag_size(&skb_shinfo(skb
)->frags
[i
]);
1383 skb_frag_unref(skb
, i
);
1386 skb_shinfo(skb
)->frags
[k
] = skb_shinfo(skb
)->frags
[i
];
1388 skb_shinfo(skb
)->frags
[k
].page_offset
+= eat
;
1389 skb_frag_size_sub(&skb_shinfo(skb
)->frags
[k
], eat
);
1395 skb_shinfo(skb
)->nr_frags
= k
;
1398 skb
->data_len
-= delta
;
1400 return skb_tail_pointer(skb
);
1402 EXPORT_SYMBOL(__pskb_pull_tail
);
1405 * skb_copy_bits - copy bits from skb to kernel buffer
1407 * @offset: offset in source
1408 * @to: destination buffer
1409 * @len: number of bytes to copy
1411 * Copy the specified number of bytes from the source skb to the
1412 * destination buffer.
1415 * If its prototype is ever changed,
1416 * check arch/{*}/net/{*}.S files,
1417 * since it is called from BPF assembly code.
1419 int skb_copy_bits(const struct sk_buff
*skb
, int offset
, void *to
, int len
)
1421 int start
= skb_headlen(skb
);
1422 struct sk_buff
*frag_iter
;
1425 if (offset
> (int)skb
->len
- len
)
1429 if ((copy
= start
- offset
) > 0) {
1432 skb_copy_from_linear_data_offset(skb
, offset
, to
, copy
);
1433 if ((len
-= copy
) == 0)
1439 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1442 WARN_ON(start
> offset
+ len
);
1444 end
= start
+ skb_frag_size(&skb_shinfo(skb
)->frags
[i
]);
1445 if ((copy
= end
- offset
) > 0) {
1451 vaddr
= kmap_skb_frag(&skb_shinfo(skb
)->frags
[i
]);
1453 vaddr
+ skb_shinfo(skb
)->frags
[i
].page_offset
+
1454 offset
- start
, copy
);
1455 kunmap_skb_frag(vaddr
);
1457 if ((len
-= copy
) == 0)
1465 skb_walk_frags(skb
, frag_iter
) {
1468 WARN_ON(start
> offset
+ len
);
1470 end
= start
+ frag_iter
->len
;
1471 if ((copy
= end
- offset
) > 0) {
1474 if (skb_copy_bits(frag_iter
, offset
- start
, to
, copy
))
1476 if ((len
-= copy
) == 0)
1490 EXPORT_SYMBOL(skb_copy_bits
);
1493 * Callback from splice_to_pipe(), if we need to release some pages
1494 * at the end of the spd in case we error'ed out in filling the pipe.
1496 static void sock_spd_release(struct splice_pipe_desc
*spd
, unsigned int i
)
1498 put_page(spd
->pages
[i
]);
1501 static inline struct page
*linear_to_page(struct page
*page
, unsigned int *len
,
1502 unsigned int *offset
,
1503 struct sk_buff
*skb
, struct sock
*sk
)
1505 struct page
*p
= sk
->sk_sndmsg_page
;
1510 p
= sk
->sk_sndmsg_page
= alloc_pages(sk
->sk_allocation
, 0);
1514 off
= sk
->sk_sndmsg_off
= 0;
1515 /* hold one ref to this page until it's full */
1519 off
= sk
->sk_sndmsg_off
;
1520 mlen
= PAGE_SIZE
- off
;
1521 if (mlen
< 64 && mlen
< *len
) {
1526 *len
= min_t(unsigned int, *len
, mlen
);
1529 memcpy(page_address(p
) + off
, page_address(page
) + *offset
, *len
);
1530 sk
->sk_sndmsg_off
+= *len
;
1538 * Fill page/offset/length into spd, if it can hold more pages.
1540 static inline int spd_fill_page(struct splice_pipe_desc
*spd
,
1541 struct pipe_inode_info
*pipe
, struct page
*page
,
1542 unsigned int *len
, unsigned int offset
,
1543 struct sk_buff
*skb
, int linear
,
1546 if (unlikely(spd
->nr_pages
== pipe
->buffers
))
1550 page
= linear_to_page(page
, len
, &offset
, skb
, sk
);
1556 spd
->pages
[spd
->nr_pages
] = page
;
1557 spd
->partial
[spd
->nr_pages
].len
= *len
;
1558 spd
->partial
[spd
->nr_pages
].offset
= offset
;
1564 static inline void __segment_seek(struct page
**page
, unsigned int *poff
,
1565 unsigned int *plen
, unsigned int off
)
1570 n
= *poff
/ PAGE_SIZE
;
1572 *page
= nth_page(*page
, n
);
1574 *poff
= *poff
% PAGE_SIZE
;
1578 static inline int __splice_segment(struct page
*page
, unsigned int poff
,
1579 unsigned int plen
, unsigned int *off
,
1580 unsigned int *len
, struct sk_buff
*skb
,
1581 struct splice_pipe_desc
*spd
, int linear
,
1583 struct pipe_inode_info
*pipe
)
1588 /* skip this segment if already processed */
1594 /* ignore any bits we already processed */
1596 __segment_seek(&page
, &poff
, &plen
, *off
);
1601 unsigned int flen
= min(*len
, plen
);
1603 /* the linear region may spread across several pages */
1604 flen
= min_t(unsigned int, flen
, PAGE_SIZE
- poff
);
1606 if (spd_fill_page(spd
, pipe
, page
, &flen
, poff
, skb
, linear
, sk
))
1609 __segment_seek(&page
, &poff
, &plen
, flen
);
1612 } while (*len
&& plen
);
1618 * Map linear and fragment data from the skb to spd. It reports failure if the
1619 * pipe is full or if we already spliced the requested length.
1621 static int __skb_splice_bits(struct sk_buff
*skb
, struct pipe_inode_info
*pipe
,
1622 unsigned int *offset
, unsigned int *len
,
1623 struct splice_pipe_desc
*spd
, struct sock
*sk
)
1628 * map the linear part
1630 if (__splice_segment(virt_to_page(skb
->data
),
1631 (unsigned long) skb
->data
& (PAGE_SIZE
- 1),
1633 offset
, len
, skb
, spd
, 1, sk
, pipe
))
1637 * then map the fragments
1639 for (seg
= 0; seg
< skb_shinfo(skb
)->nr_frags
; seg
++) {
1640 const skb_frag_t
*f
= &skb_shinfo(skb
)->frags
[seg
];
1642 if (__splice_segment(skb_frag_page(f
),
1643 f
->page_offset
, skb_frag_size(f
),
1644 offset
, len
, skb
, spd
, 0, sk
, pipe
))
1652 * Map data from the skb to a pipe. Should handle both the linear part,
1653 * the fragments, and the frag list. It does NOT handle frag lists within
1654 * the frag list, if such a thing exists. We'd probably need to recurse to
1655 * handle that cleanly.
1657 int skb_splice_bits(struct sk_buff
*skb
, unsigned int offset
,
1658 struct pipe_inode_info
*pipe
, unsigned int tlen
,
1661 struct partial_page partial
[PIPE_DEF_BUFFERS
];
1662 struct page
*pages
[PIPE_DEF_BUFFERS
];
1663 struct splice_pipe_desc spd
= {
1667 .ops
= &sock_pipe_buf_ops
,
1668 .spd_release
= sock_spd_release
,
1670 struct sk_buff
*frag_iter
;
1671 struct sock
*sk
= skb
->sk
;
1674 if (splice_grow_spd(pipe
, &spd
))
1678 * __skb_splice_bits() only fails if the output has no room left,
1679 * so no point in going over the frag_list for the error case.
1681 if (__skb_splice_bits(skb
, pipe
, &offset
, &tlen
, &spd
, sk
))
1687 * now see if we have a frag_list to map
1689 skb_walk_frags(skb
, frag_iter
) {
1692 if (__skb_splice_bits(frag_iter
, pipe
, &offset
, &tlen
, &spd
, sk
))
1699 * Drop the socket lock, otherwise we have reverse
1700 * locking dependencies between sk_lock and i_mutex
1701 * here as compared to sendfile(). We enter here
1702 * with the socket lock held, and splice_to_pipe() will
1703 * grab the pipe inode lock. For sendfile() emulation,
1704 * we call into ->sendpage() with the i_mutex lock held
1705 * and networking will grab the socket lock.
1708 ret
= splice_to_pipe(pipe
, &spd
);
1712 splice_shrink_spd(pipe
, &spd
);
1717 * skb_store_bits - store bits from kernel buffer to skb
1718 * @skb: destination buffer
1719 * @offset: offset in destination
1720 * @from: source buffer
1721 * @len: number of bytes to copy
1723 * Copy the specified number of bytes from the source buffer to the
1724 * destination skb. This function handles all the messy bits of
1725 * traversing fragment lists and such.
1728 int skb_store_bits(struct sk_buff
*skb
, int offset
, const void *from
, int len
)
1730 int start
= skb_headlen(skb
);
1731 struct sk_buff
*frag_iter
;
1734 if (offset
> (int)skb
->len
- len
)
1737 if ((copy
= start
- offset
) > 0) {
1740 skb_copy_to_linear_data_offset(skb
, offset
, from
, copy
);
1741 if ((len
-= copy
) == 0)
1747 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1748 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
1751 WARN_ON(start
> offset
+ len
);
1753 end
= start
+ skb_frag_size(frag
);
1754 if ((copy
= end
- offset
) > 0) {
1760 vaddr
= kmap_skb_frag(frag
);
1761 memcpy(vaddr
+ frag
->page_offset
+ offset
- start
,
1763 kunmap_skb_frag(vaddr
);
1765 if ((len
-= copy
) == 0)
1773 skb_walk_frags(skb
, frag_iter
) {
1776 WARN_ON(start
> offset
+ len
);
1778 end
= start
+ frag_iter
->len
;
1779 if ((copy
= end
- offset
) > 0) {
1782 if (skb_store_bits(frag_iter
, offset
- start
,
1785 if ((len
-= copy
) == 0)
1798 EXPORT_SYMBOL(skb_store_bits
);
1800 /* Checksum skb data. */
1802 __wsum
skb_checksum(const struct sk_buff
*skb
, int offset
,
1803 int len
, __wsum csum
)
1805 int start
= skb_headlen(skb
);
1806 int i
, copy
= start
- offset
;
1807 struct sk_buff
*frag_iter
;
1810 /* Checksum header. */
1814 csum
= csum_partial(skb
->data
+ offset
, copy
, csum
);
1815 if ((len
-= copy
) == 0)
1821 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1824 WARN_ON(start
> offset
+ len
);
1826 end
= start
+ skb_frag_size(&skb_shinfo(skb
)->frags
[i
]);
1827 if ((copy
= end
- offset
) > 0) {
1830 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
1834 vaddr
= kmap_skb_frag(frag
);
1835 csum2
= csum_partial(vaddr
+ frag
->page_offset
+
1836 offset
- start
, copy
, 0);
1837 kunmap_skb_frag(vaddr
);
1838 csum
= csum_block_add(csum
, csum2
, pos
);
1847 skb_walk_frags(skb
, frag_iter
) {
1850 WARN_ON(start
> offset
+ len
);
1852 end
= start
+ frag_iter
->len
;
1853 if ((copy
= end
- offset
) > 0) {
1857 csum2
= skb_checksum(frag_iter
, offset
- start
,
1859 csum
= csum_block_add(csum
, csum2
, pos
);
1860 if ((len
-= copy
) == 0)
1871 EXPORT_SYMBOL(skb_checksum
);
1873 /* Both of above in one bottle. */
1875 __wsum
skb_copy_and_csum_bits(const struct sk_buff
*skb
, int offset
,
1876 u8
*to
, int len
, __wsum csum
)
1878 int start
= skb_headlen(skb
);
1879 int i
, copy
= start
- offset
;
1880 struct sk_buff
*frag_iter
;
1887 csum
= csum_partial_copy_nocheck(skb
->data
+ offset
, to
,
1889 if ((len
-= copy
) == 0)
1896 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1899 WARN_ON(start
> offset
+ len
);
1901 end
= start
+ skb_frag_size(&skb_shinfo(skb
)->frags
[i
]);
1902 if ((copy
= end
- offset
) > 0) {
1905 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
1909 vaddr
= kmap_skb_frag(frag
);
1910 csum2
= csum_partial_copy_nocheck(vaddr
+
1914 kunmap_skb_frag(vaddr
);
1915 csum
= csum_block_add(csum
, csum2
, pos
);
1925 skb_walk_frags(skb
, frag_iter
) {
1929 WARN_ON(start
> offset
+ len
);
1931 end
= start
+ frag_iter
->len
;
1932 if ((copy
= end
- offset
) > 0) {
1935 csum2
= skb_copy_and_csum_bits(frag_iter
,
1938 csum
= csum_block_add(csum
, csum2
, pos
);
1939 if ((len
-= copy
) == 0)
1950 EXPORT_SYMBOL(skb_copy_and_csum_bits
);
1952 void skb_copy_and_csum_dev(const struct sk_buff
*skb
, u8
*to
)
1957 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
1958 csstart
= skb_checksum_start_offset(skb
);
1960 csstart
= skb_headlen(skb
);
1962 BUG_ON(csstart
> skb_headlen(skb
));
1964 skb_copy_from_linear_data(skb
, to
, csstart
);
1967 if (csstart
!= skb
->len
)
1968 csum
= skb_copy_and_csum_bits(skb
, csstart
, to
+ csstart
,
1969 skb
->len
- csstart
, 0);
1971 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
1972 long csstuff
= csstart
+ skb
->csum_offset
;
1974 *((__sum16
*)(to
+ csstuff
)) = csum_fold(csum
);
1977 EXPORT_SYMBOL(skb_copy_and_csum_dev
);
1980 * skb_dequeue - remove from the head of the queue
1981 * @list: list to dequeue from
1983 * Remove the head of the list. The list lock is taken so the function
1984 * may be used safely with other locking list functions. The head item is
1985 * returned or %NULL if the list is empty.
1988 struct sk_buff
*skb_dequeue(struct sk_buff_head
*list
)
1990 unsigned long flags
;
1991 struct sk_buff
*result
;
1993 spin_lock_irqsave(&list
->lock
, flags
);
1994 result
= __skb_dequeue(list
);
1995 spin_unlock_irqrestore(&list
->lock
, flags
);
1998 EXPORT_SYMBOL(skb_dequeue
);
2001 * skb_dequeue_tail - remove from the tail of the queue
2002 * @list: list to dequeue from
2004 * Remove the tail of the list. The list lock is taken so the function
2005 * may be used safely with other locking list functions. The tail item is
2006 * returned or %NULL if the list is empty.
2008 struct sk_buff
*skb_dequeue_tail(struct sk_buff_head
*list
)
2010 unsigned long flags
;
2011 struct sk_buff
*result
;
2013 spin_lock_irqsave(&list
->lock
, flags
);
2014 result
= __skb_dequeue_tail(list
);
2015 spin_unlock_irqrestore(&list
->lock
, flags
);
2018 EXPORT_SYMBOL(skb_dequeue_tail
);
2021 * skb_queue_purge - empty a list
2022 * @list: list to empty
2024 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2025 * the list and one reference dropped. This function takes the list
2026 * lock and is atomic with respect to other list locking functions.
2028 void skb_queue_purge(struct sk_buff_head
*list
)
2030 struct sk_buff
*skb
;
2031 while ((skb
= skb_dequeue(list
)) != NULL
)
2034 EXPORT_SYMBOL(skb_queue_purge
);
2037 * skb_queue_head - queue a buffer at the list head
2038 * @list: list to use
2039 * @newsk: buffer to queue
2041 * Queue a buffer at the start of the list. This function takes the
2042 * list lock and can be used safely with other locking &sk_buff functions
2045 * A buffer cannot be placed on two lists at the same time.
2047 void skb_queue_head(struct sk_buff_head
*list
, struct sk_buff
*newsk
)
2049 unsigned long flags
;
2051 spin_lock_irqsave(&list
->lock
, flags
);
2052 __skb_queue_head(list
, newsk
);
2053 spin_unlock_irqrestore(&list
->lock
, flags
);
2055 EXPORT_SYMBOL(skb_queue_head
);
2058 * skb_queue_tail - queue a buffer at the list tail
2059 * @list: list to use
2060 * @newsk: buffer to queue
2062 * Queue a buffer at the tail of the list. This function takes the
2063 * list lock and can be used safely with other locking &sk_buff functions
2066 * A buffer cannot be placed on two lists at the same time.
2068 void skb_queue_tail(struct sk_buff_head
*list
, struct sk_buff
*newsk
)
2070 unsigned long flags
;
2072 spin_lock_irqsave(&list
->lock
, flags
);
2073 __skb_queue_tail(list
, newsk
);
2074 spin_unlock_irqrestore(&list
->lock
, flags
);
2076 EXPORT_SYMBOL(skb_queue_tail
);
2079 * skb_unlink - remove a buffer from a list
2080 * @skb: buffer to remove
2081 * @list: list to use
2083 * Remove a packet from a list. The list locks are taken and this
2084 * function is atomic with respect to other list locked calls
2086 * You must know what list the SKB is on.
2088 void skb_unlink(struct sk_buff
*skb
, struct sk_buff_head
*list
)
2090 unsigned long flags
;
2092 spin_lock_irqsave(&list
->lock
, flags
);
2093 __skb_unlink(skb
, list
);
2094 spin_unlock_irqrestore(&list
->lock
, flags
);
2096 EXPORT_SYMBOL(skb_unlink
);
2099 * skb_append - append a buffer
2100 * @old: buffer to insert after
2101 * @newsk: buffer to insert
2102 * @list: list to use
2104 * Place a packet after a given packet in a list. The list locks are taken
2105 * and this function is atomic with respect to other list locked calls.
2106 * A buffer cannot be placed on two lists at the same time.
2108 void skb_append(struct sk_buff
*old
, struct sk_buff
*newsk
, struct sk_buff_head
*list
)
2110 unsigned long flags
;
2112 spin_lock_irqsave(&list
->lock
, flags
);
2113 __skb_queue_after(list
, old
, newsk
);
2114 spin_unlock_irqrestore(&list
->lock
, flags
);
2116 EXPORT_SYMBOL(skb_append
);
2119 * skb_insert - insert a buffer
2120 * @old: buffer to insert before
2121 * @newsk: buffer to insert
2122 * @list: list to use
2124 * Place a packet before a given packet in a list. The list locks are
2125 * taken and this function is atomic with respect to other list locked
2128 * A buffer cannot be placed on two lists at the same time.
2130 void skb_insert(struct sk_buff
*old
, struct sk_buff
*newsk
, struct sk_buff_head
*list
)
2132 unsigned long flags
;
2134 spin_lock_irqsave(&list
->lock
, flags
);
2135 __skb_insert(newsk
, old
->prev
, old
, list
);
2136 spin_unlock_irqrestore(&list
->lock
, flags
);
2138 EXPORT_SYMBOL(skb_insert
);
2140 static inline void skb_split_inside_header(struct sk_buff
*skb
,
2141 struct sk_buff
* skb1
,
2142 const u32 len
, const int pos
)
2146 skb_copy_from_linear_data_offset(skb
, len
, skb_put(skb1
, pos
- len
),
2148 /* And move data appendix as is. */
2149 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++)
2150 skb_shinfo(skb1
)->frags
[i
] = skb_shinfo(skb
)->frags
[i
];
2152 skb_shinfo(skb1
)->nr_frags
= skb_shinfo(skb
)->nr_frags
;
2153 skb_shinfo(skb
)->nr_frags
= 0;
2154 skb1
->data_len
= skb
->data_len
;
2155 skb1
->len
+= skb1
->data_len
;
2158 skb_set_tail_pointer(skb
, len
);
2161 static inline void skb_split_no_header(struct sk_buff
*skb
,
2162 struct sk_buff
* skb1
,
2163 const u32 len
, int pos
)
2166 const int nfrags
= skb_shinfo(skb
)->nr_frags
;
2168 skb_shinfo(skb
)->nr_frags
= 0;
2169 skb1
->len
= skb1
->data_len
= skb
->len
- len
;
2171 skb
->data_len
= len
- pos
;
2173 for (i
= 0; i
< nfrags
; i
++) {
2174 int size
= skb_frag_size(&skb_shinfo(skb
)->frags
[i
]);
2176 if (pos
+ size
> len
) {
2177 skb_shinfo(skb1
)->frags
[k
] = skb_shinfo(skb
)->frags
[i
];
2181 * We have two variants in this case:
2182 * 1. Move all the frag to the second
2183 * part, if it is possible. F.e.
2184 * this approach is mandatory for TUX,
2185 * where splitting is expensive.
2186 * 2. Split is accurately. We make this.
2188 skb_frag_ref(skb
, i
);
2189 skb_shinfo(skb1
)->frags
[0].page_offset
+= len
- pos
;
2190 skb_frag_size_sub(&skb_shinfo(skb1
)->frags
[0], len
- pos
);
2191 skb_frag_size_set(&skb_shinfo(skb
)->frags
[i
], len
- pos
);
2192 skb_shinfo(skb
)->nr_frags
++;
2196 skb_shinfo(skb
)->nr_frags
++;
2199 skb_shinfo(skb1
)->nr_frags
= k
;
2203 * skb_split - Split fragmented skb to two parts at length len.
2204 * @skb: the buffer to split
2205 * @skb1: the buffer to receive the second part
2206 * @len: new length for skb
2208 void skb_split(struct sk_buff
*skb
, struct sk_buff
*skb1
, const u32 len
)
2210 int pos
= skb_headlen(skb
);
2212 if (len
< pos
) /* Split line is inside header. */
2213 skb_split_inside_header(skb
, skb1
, len
, pos
);
2214 else /* Second chunk has no header, nothing to copy. */
2215 skb_split_no_header(skb
, skb1
, len
, pos
);
2217 EXPORT_SYMBOL(skb_split
);
2219 /* Shifting from/to a cloned skb is a no-go.
2221 * Caller cannot keep skb_shinfo related pointers past calling here!
2223 static int skb_prepare_for_shift(struct sk_buff
*skb
)
2225 return skb_cloned(skb
) && pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
);
2229 * skb_shift - Shifts paged data partially from skb to another
2230 * @tgt: buffer into which tail data gets added
2231 * @skb: buffer from which the paged data comes from
2232 * @shiftlen: shift up to this many bytes
2234 * Attempts to shift up to shiftlen worth of bytes, which may be less than
2235 * the length of the skb, from skb to tgt. Returns number bytes shifted.
2236 * It's up to caller to free skb if everything was shifted.
2238 * If @tgt runs out of frags, the whole operation is aborted.
2240 * Skb cannot include anything else but paged data while tgt is allowed
2241 * to have non-paged data as well.
2243 * TODO: full sized shift could be optimized but that would need
2244 * specialized skb free'er to handle frags without up-to-date nr_frags.
2246 int skb_shift(struct sk_buff
*tgt
, struct sk_buff
*skb
, int shiftlen
)
2248 int from
, to
, merge
, todo
;
2249 struct skb_frag_struct
*fragfrom
, *fragto
;
2251 BUG_ON(shiftlen
> skb
->len
);
2252 BUG_ON(skb_headlen(skb
)); /* Would corrupt stream */
2256 to
= skb_shinfo(tgt
)->nr_frags
;
2257 fragfrom
= &skb_shinfo(skb
)->frags
[from
];
2259 /* Actual merge is delayed until the point when we know we can
2260 * commit all, so that we don't have to undo partial changes
2263 !skb_can_coalesce(tgt
, to
, skb_frag_page(fragfrom
),
2264 fragfrom
->page_offset
)) {
2269 todo
-= skb_frag_size(fragfrom
);
2271 if (skb_prepare_for_shift(skb
) ||
2272 skb_prepare_for_shift(tgt
))
2275 /* All previous frag pointers might be stale! */
2276 fragfrom
= &skb_shinfo(skb
)->frags
[from
];
2277 fragto
= &skb_shinfo(tgt
)->frags
[merge
];
2279 skb_frag_size_add(fragto
, shiftlen
);
2280 skb_frag_size_sub(fragfrom
, shiftlen
);
2281 fragfrom
->page_offset
+= shiftlen
;
2289 /* Skip full, not-fitting skb to avoid expensive operations */
2290 if ((shiftlen
== skb
->len
) &&
2291 (skb_shinfo(skb
)->nr_frags
- from
) > (MAX_SKB_FRAGS
- to
))
2294 if (skb_prepare_for_shift(skb
) || skb_prepare_for_shift(tgt
))
2297 while ((todo
> 0) && (from
< skb_shinfo(skb
)->nr_frags
)) {
2298 if (to
== MAX_SKB_FRAGS
)
2301 fragfrom
= &skb_shinfo(skb
)->frags
[from
];
2302 fragto
= &skb_shinfo(tgt
)->frags
[to
];
2304 if (todo
>= skb_frag_size(fragfrom
)) {
2305 *fragto
= *fragfrom
;
2306 todo
-= skb_frag_size(fragfrom
);
2311 __skb_frag_ref(fragfrom
);
2312 fragto
->page
= fragfrom
->page
;
2313 fragto
->page_offset
= fragfrom
->page_offset
;
2314 skb_frag_size_set(fragto
, todo
);
2316 fragfrom
->page_offset
+= todo
;
2317 skb_frag_size_sub(fragfrom
, todo
);
2325 /* Ready to "commit" this state change to tgt */
2326 skb_shinfo(tgt
)->nr_frags
= to
;
2329 fragfrom
= &skb_shinfo(skb
)->frags
[0];
2330 fragto
= &skb_shinfo(tgt
)->frags
[merge
];
2332 skb_frag_size_add(fragto
, skb_frag_size(fragfrom
));
2333 __skb_frag_unref(fragfrom
);
2336 /* Reposition in the original skb */
2338 while (from
< skb_shinfo(skb
)->nr_frags
)
2339 skb_shinfo(skb
)->frags
[to
++] = skb_shinfo(skb
)->frags
[from
++];
2340 skb_shinfo(skb
)->nr_frags
= to
;
2342 BUG_ON(todo
> 0 && !skb_shinfo(skb
)->nr_frags
);
2345 /* Most likely the tgt won't ever need its checksum anymore, skb on
2346 * the other hand might need it if it needs to be resent
2348 tgt
->ip_summed
= CHECKSUM_PARTIAL
;
2349 skb
->ip_summed
= CHECKSUM_PARTIAL
;
2351 /* Yak, is it really working this way? Some helper please? */
2352 skb
->len
-= shiftlen
;
2353 skb
->data_len
-= shiftlen
;
2354 skb
->truesize
-= shiftlen
;
2355 tgt
->len
+= shiftlen
;
2356 tgt
->data_len
+= shiftlen
;
2357 tgt
->truesize
+= shiftlen
;
2363 * skb_prepare_seq_read - Prepare a sequential read of skb data
2364 * @skb: the buffer to read
2365 * @from: lower offset of data to be read
2366 * @to: upper offset of data to be read
2367 * @st: state variable
2369 * Initializes the specified state variable. Must be called before
2370 * invoking skb_seq_read() for the first time.
2372 void skb_prepare_seq_read(struct sk_buff
*skb
, unsigned int from
,
2373 unsigned int to
, struct skb_seq_state
*st
)
2375 st
->lower_offset
= from
;
2376 st
->upper_offset
= to
;
2377 st
->root_skb
= st
->cur_skb
= skb
;
2378 st
->frag_idx
= st
->stepped_offset
= 0;
2379 st
->frag_data
= NULL
;
2381 EXPORT_SYMBOL(skb_prepare_seq_read
);
2384 * skb_seq_read - Sequentially read skb data
2385 * @consumed: number of bytes consumed by the caller so far
2386 * @data: destination pointer for data to be returned
2387 * @st: state variable
2389 * Reads a block of skb data at &consumed relative to the
2390 * lower offset specified to skb_prepare_seq_read(). Assigns
2391 * the head of the data block to &data and returns the length
2392 * of the block or 0 if the end of the skb data or the upper
2393 * offset has been reached.
2395 * The caller is not required to consume all of the data
2396 * returned, i.e. &consumed is typically set to the number
2397 * of bytes already consumed and the next call to
2398 * skb_seq_read() will return the remaining part of the block.
2400 * Note 1: The size of each block of data returned can be arbitrary,
2401 * this limitation is the cost for zerocopy seqeuental
2402 * reads of potentially non linear data.
2404 * Note 2: Fragment lists within fragments are not implemented
2405 * at the moment, state->root_skb could be replaced with
2406 * a stack for this purpose.
2408 unsigned int skb_seq_read(unsigned int consumed
, const u8
**data
,
2409 struct skb_seq_state
*st
)
2411 unsigned int block_limit
, abs_offset
= consumed
+ st
->lower_offset
;
2414 if (unlikely(abs_offset
>= st
->upper_offset
))
2418 block_limit
= skb_headlen(st
->cur_skb
) + st
->stepped_offset
;
2420 if (abs_offset
< block_limit
&& !st
->frag_data
) {
2421 *data
= st
->cur_skb
->data
+ (abs_offset
- st
->stepped_offset
);
2422 return block_limit
- abs_offset
;
2425 if (st
->frag_idx
== 0 && !st
->frag_data
)
2426 st
->stepped_offset
+= skb_headlen(st
->cur_skb
);
2428 while (st
->frag_idx
< skb_shinfo(st
->cur_skb
)->nr_frags
) {
2429 frag
= &skb_shinfo(st
->cur_skb
)->frags
[st
->frag_idx
];
2430 block_limit
= skb_frag_size(frag
) + st
->stepped_offset
;
2432 if (abs_offset
< block_limit
) {
2434 st
->frag_data
= kmap_skb_frag(frag
);
2436 *data
= (u8
*) st
->frag_data
+ frag
->page_offset
+
2437 (abs_offset
- st
->stepped_offset
);
2439 return block_limit
- abs_offset
;
2442 if (st
->frag_data
) {
2443 kunmap_skb_frag(st
->frag_data
);
2444 st
->frag_data
= NULL
;
2448 st
->stepped_offset
+= skb_frag_size(frag
);
2451 if (st
->frag_data
) {
2452 kunmap_skb_frag(st
->frag_data
);
2453 st
->frag_data
= NULL
;
2456 if (st
->root_skb
== st
->cur_skb
&& skb_has_frag_list(st
->root_skb
)) {
2457 st
->cur_skb
= skb_shinfo(st
->root_skb
)->frag_list
;
2460 } else if (st
->cur_skb
->next
) {
2461 st
->cur_skb
= st
->cur_skb
->next
;
2468 EXPORT_SYMBOL(skb_seq_read
);
2471 * skb_abort_seq_read - Abort a sequential read of skb data
2472 * @st: state variable
2474 * Must be called if skb_seq_read() was not called until it
2477 void skb_abort_seq_read(struct skb_seq_state
*st
)
2480 kunmap_skb_frag(st
->frag_data
);
2482 EXPORT_SYMBOL(skb_abort_seq_read
);
2484 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
2486 static unsigned int skb_ts_get_next_block(unsigned int offset
, const u8
**text
,
2487 struct ts_config
*conf
,
2488 struct ts_state
*state
)
2490 return skb_seq_read(offset
, text
, TS_SKB_CB(state
));
2493 static void skb_ts_finish(struct ts_config
*conf
, struct ts_state
*state
)
2495 skb_abort_seq_read(TS_SKB_CB(state
));
2499 * skb_find_text - Find a text pattern in skb data
2500 * @skb: the buffer to look in
2501 * @from: search offset
2503 * @config: textsearch configuration
2504 * @state: uninitialized textsearch state variable
2506 * Finds a pattern in the skb data according to the specified
2507 * textsearch configuration. Use textsearch_next() to retrieve
2508 * subsequent occurrences of the pattern. Returns the offset
2509 * to the first occurrence or UINT_MAX if no match was found.
2511 unsigned int skb_find_text(struct sk_buff
*skb
, unsigned int from
,
2512 unsigned int to
, struct ts_config
*config
,
2513 struct ts_state
*state
)
2517 config
->get_next_block
= skb_ts_get_next_block
;
2518 config
->finish
= skb_ts_finish
;
2520 skb_prepare_seq_read(skb
, from
, to
, TS_SKB_CB(state
));
2522 ret
= textsearch_find(config
, state
);
2523 return (ret
<= to
- from
? ret
: UINT_MAX
);
2525 EXPORT_SYMBOL(skb_find_text
);
2528 * skb_append_datato_frags: - append the user data to a skb
2529 * @sk: sock structure
2530 * @skb: skb structure to be appened with user data.
2531 * @getfrag: call back function to be used for getting the user data
2532 * @from: pointer to user message iov
2533 * @length: length of the iov message
2535 * Description: This procedure append the user data in the fragment part
2536 * of the skb if any page alloc fails user this procedure returns -ENOMEM
2538 int skb_append_datato_frags(struct sock
*sk
, struct sk_buff
*skb
,
2539 int (*getfrag
)(void *from
, char *to
, int offset
,
2540 int len
, int odd
, struct sk_buff
*skb
),
2541 void *from
, int length
)
2544 skb_frag_t
*frag
= NULL
;
2545 struct page
*page
= NULL
;
2551 /* Return error if we don't have space for new frag */
2552 frg_cnt
= skb_shinfo(skb
)->nr_frags
;
2553 if (frg_cnt
>= MAX_SKB_FRAGS
)
2556 /* allocate a new page for next frag */
2557 page
= alloc_pages(sk
->sk_allocation
, 0);
2559 /* If alloc_page fails just return failure and caller will
2560 * free previous allocated pages by doing kfree_skb()
2565 /* initialize the next frag */
2566 skb_fill_page_desc(skb
, frg_cnt
, page
, 0, 0);
2567 skb
->truesize
+= PAGE_SIZE
;
2568 atomic_add(PAGE_SIZE
, &sk
->sk_wmem_alloc
);
2570 /* get the new initialized frag */
2571 frg_cnt
= skb_shinfo(skb
)->nr_frags
;
2572 frag
= &skb_shinfo(skb
)->frags
[frg_cnt
- 1];
2574 /* copy the user data to page */
2575 left
= PAGE_SIZE
- frag
->page_offset
;
2576 copy
= (length
> left
)? left
: length
;
2578 ret
= getfrag(from
, skb_frag_address(frag
) + skb_frag_size(frag
),
2579 offset
, copy
, 0, skb
);
2583 /* copy was successful so update the size parameters */
2584 skb_frag_size_add(frag
, copy
);
2586 skb
->data_len
+= copy
;
2590 } while (length
> 0);
2594 EXPORT_SYMBOL(skb_append_datato_frags
);
2597 * skb_pull_rcsum - pull skb and update receive checksum
2598 * @skb: buffer to update
2599 * @len: length of data pulled
2601 * This function performs an skb_pull on the packet and updates
2602 * the CHECKSUM_COMPLETE checksum. It should be used on
2603 * receive path processing instead of skb_pull unless you know
2604 * that the checksum difference is zero (e.g., a valid IP header)
2605 * or you are setting ip_summed to CHECKSUM_NONE.
2607 unsigned char *skb_pull_rcsum(struct sk_buff
*skb
, unsigned int len
)
2609 BUG_ON(len
> skb
->len
);
2611 BUG_ON(skb
->len
< skb
->data_len
);
2612 skb_postpull_rcsum(skb
, skb
->data
, len
);
2613 return skb
->data
+= len
;
2615 EXPORT_SYMBOL_GPL(skb_pull_rcsum
);
2618 * skb_segment - Perform protocol segmentation on skb.
2619 * @skb: buffer to segment
2620 * @features: features for the output path (see dev->features)
2622 * This function performs segmentation on the given skb. It returns
2623 * a pointer to the first in a list of new skbs for the segments.
2624 * In case of error it returns ERR_PTR(err).
2626 struct sk_buff
*skb_segment(struct sk_buff
*skb
, u32 features
)
2628 struct sk_buff
*segs
= NULL
;
2629 struct sk_buff
*tail
= NULL
;
2630 struct sk_buff
*fskb
= skb_shinfo(skb
)->frag_list
;
2631 unsigned int mss
= skb_shinfo(skb
)->gso_size
;
2632 unsigned int doffset
= skb
->data
- skb_mac_header(skb
);
2633 unsigned int offset
= doffset
;
2634 unsigned int headroom
;
2636 int sg
= !!(features
& NETIF_F_SG
);
2637 int nfrags
= skb_shinfo(skb
)->nr_frags
;
2642 __skb_push(skb
, doffset
);
2643 headroom
= skb_headroom(skb
);
2644 pos
= skb_headlen(skb
);
2647 struct sk_buff
*nskb
;
2652 len
= skb
->len
- offset
;
2656 hsize
= skb_headlen(skb
) - offset
;
2659 if (hsize
> len
|| !sg
)
2662 if (!hsize
&& i
>= nfrags
) {
2663 BUG_ON(fskb
->len
!= len
);
2666 nskb
= skb_clone(fskb
, GFP_ATOMIC
);
2669 if (unlikely(!nskb
))
2672 hsize
= skb_end_pointer(nskb
) - nskb
->head
;
2673 if (skb_cow_head(nskb
, doffset
+ headroom
)) {
2678 nskb
->truesize
+= skb_end_pointer(nskb
) - nskb
->head
-
2680 skb_release_head_state(nskb
);
2681 __skb_push(nskb
, doffset
);
2683 nskb
= alloc_skb(hsize
+ doffset
+ headroom
,
2686 if (unlikely(!nskb
))
2689 skb_reserve(nskb
, headroom
);
2690 __skb_put(nskb
, doffset
);
2699 __copy_skb_header(nskb
, skb
);
2700 nskb
->mac_len
= skb
->mac_len
;
2702 /* nskb and skb might have different headroom */
2703 if (nskb
->ip_summed
== CHECKSUM_PARTIAL
)
2704 nskb
->csum_start
+= skb_headroom(nskb
) - headroom
;
2706 skb_reset_mac_header(nskb
);
2707 skb_set_network_header(nskb
, skb
->mac_len
);
2708 nskb
->transport_header
= (nskb
->network_header
+
2709 skb_network_header_len(skb
));
2710 skb_copy_from_linear_data(skb
, nskb
->data
, doffset
);
2712 if (fskb
!= skb_shinfo(skb
)->frag_list
)
2716 nskb
->ip_summed
= CHECKSUM_NONE
;
2717 nskb
->csum
= skb_copy_and_csum_bits(skb
, offset
,
2723 frag
= skb_shinfo(nskb
)->frags
;
2725 skb_copy_from_linear_data_offset(skb
, offset
,
2726 skb_put(nskb
, hsize
), hsize
);
2728 while (pos
< offset
+ len
&& i
< nfrags
) {
2729 *frag
= skb_shinfo(skb
)->frags
[i
];
2730 __skb_frag_ref(frag
);
2731 size
= skb_frag_size(frag
);
2734 frag
->page_offset
+= offset
- pos
;
2735 skb_frag_size_sub(frag
, offset
- pos
);
2738 skb_shinfo(nskb
)->nr_frags
++;
2740 if (pos
+ size
<= offset
+ len
) {
2744 skb_frag_size_sub(frag
, pos
+ size
- (offset
+ len
));
2751 if (pos
< offset
+ len
) {
2752 struct sk_buff
*fskb2
= fskb
;
2754 BUG_ON(pos
+ fskb
->len
!= offset
+ len
);
2760 fskb2
= skb_clone(fskb2
, GFP_ATOMIC
);
2766 SKB_FRAG_ASSERT(nskb
);
2767 skb_shinfo(nskb
)->frag_list
= fskb2
;
2771 nskb
->data_len
= len
- hsize
;
2772 nskb
->len
+= nskb
->data_len
;
2773 nskb
->truesize
+= nskb
->data_len
;
2774 } while ((offset
+= len
) < skb
->len
);
2779 while ((skb
= segs
)) {
2783 return ERR_PTR(err
);
2785 EXPORT_SYMBOL_GPL(skb_segment
);
2787 int skb_gro_receive(struct sk_buff
**head
, struct sk_buff
*skb
)
2789 struct sk_buff
*p
= *head
;
2790 struct sk_buff
*nskb
;
2791 struct skb_shared_info
*skbinfo
= skb_shinfo(skb
);
2792 struct skb_shared_info
*pinfo
= skb_shinfo(p
);
2793 unsigned int headroom
;
2794 unsigned int len
= skb_gro_len(skb
);
2795 unsigned int offset
= skb_gro_offset(skb
);
2796 unsigned int headlen
= skb_headlen(skb
);
2798 if (p
->len
+ len
>= 65536)
2801 if (pinfo
->frag_list
)
2803 else if (headlen
<= offset
) {
2806 int i
= skbinfo
->nr_frags
;
2807 int nr_frags
= pinfo
->nr_frags
+ i
;
2811 if (nr_frags
> MAX_SKB_FRAGS
)
2814 pinfo
->nr_frags
= nr_frags
;
2815 skbinfo
->nr_frags
= 0;
2817 frag
= pinfo
->frags
+ nr_frags
;
2818 frag2
= skbinfo
->frags
+ i
;
2823 frag
->page_offset
+= offset
;
2824 skb_frag_size_sub(frag
, offset
);
2826 skb
->truesize
-= skb
->data_len
;
2827 skb
->len
-= skb
->data_len
;
2830 NAPI_GRO_CB(skb
)->free
= 1;
2832 } else if (skb_gro_len(p
) != pinfo
->gso_size
)
2835 headroom
= skb_headroom(p
);
2836 nskb
= alloc_skb(headroom
+ skb_gro_offset(p
), GFP_ATOMIC
);
2837 if (unlikely(!nskb
))
2840 __copy_skb_header(nskb
, p
);
2841 nskb
->mac_len
= p
->mac_len
;
2843 skb_reserve(nskb
, headroom
);
2844 __skb_put(nskb
, skb_gro_offset(p
));
2846 skb_set_mac_header(nskb
, skb_mac_header(p
) - p
->data
);
2847 skb_set_network_header(nskb
, skb_network_offset(p
));
2848 skb_set_transport_header(nskb
, skb_transport_offset(p
));
2850 __skb_pull(p
, skb_gro_offset(p
));
2851 memcpy(skb_mac_header(nskb
), skb_mac_header(p
),
2852 p
->data
- skb_mac_header(p
));
2854 *NAPI_GRO_CB(nskb
) = *NAPI_GRO_CB(p
);
2855 skb_shinfo(nskb
)->frag_list
= p
;
2856 skb_shinfo(nskb
)->gso_size
= pinfo
->gso_size
;
2857 pinfo
->gso_size
= 0;
2858 skb_header_release(p
);
2861 nskb
->data_len
+= p
->len
;
2862 nskb
->truesize
+= p
->len
;
2863 nskb
->len
+= p
->len
;
2866 nskb
->next
= p
->next
;
2872 if (offset
> headlen
) {
2873 unsigned int eat
= offset
- headlen
;
2875 skbinfo
->frags
[0].page_offset
+= eat
;
2876 skb_frag_size_sub(&skbinfo
->frags
[0], eat
);
2877 skb
->data_len
-= eat
;
2882 __skb_pull(skb
, offset
);
2884 p
->prev
->next
= skb
;
2886 skb_header_release(skb
);
2889 NAPI_GRO_CB(p
)->count
++;
2894 NAPI_GRO_CB(skb
)->same_flow
= 1;
2897 EXPORT_SYMBOL_GPL(skb_gro_receive
);
2899 void __init
skb_init(void)
2901 skbuff_head_cache
= kmem_cache_create("skbuff_head_cache",
2902 sizeof(struct sk_buff
),
2904 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
,
2906 skbuff_fclone_cache
= kmem_cache_create("skbuff_fclone_cache",
2907 (2*sizeof(struct sk_buff
)) +
2910 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
,
2915 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
2916 * @skb: Socket buffer containing the buffers to be mapped
2917 * @sg: The scatter-gather list to map into
2918 * @offset: The offset into the buffer's contents to start mapping
2919 * @len: Length of buffer space to be mapped
2921 * Fill the specified scatter-gather list with mappings/pointers into a
2922 * region of the buffer space attached to a socket buffer.
2925 __skb_to_sgvec(struct sk_buff
*skb
, struct scatterlist
*sg
, int offset
, int len
)
2927 int start
= skb_headlen(skb
);
2928 int i
, copy
= start
- offset
;
2929 struct sk_buff
*frag_iter
;
2935 sg_set_buf(sg
, skb
->data
+ offset
, copy
);
2937 if ((len
-= copy
) == 0)
2942 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
2945 WARN_ON(start
> offset
+ len
);
2947 end
= start
+ skb_frag_size(&skb_shinfo(skb
)->frags
[i
]);
2948 if ((copy
= end
- offset
) > 0) {
2949 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
2953 sg_set_page(&sg
[elt
], skb_frag_page(frag
), copy
,
2954 frag
->page_offset
+offset
-start
);
2963 skb_walk_frags(skb
, frag_iter
) {
2966 WARN_ON(start
> offset
+ len
);
2968 end
= start
+ frag_iter
->len
;
2969 if ((copy
= end
- offset
) > 0) {
2972 elt
+= __skb_to_sgvec(frag_iter
, sg
+elt
, offset
- start
,
2974 if ((len
-= copy
) == 0)
2984 int skb_to_sgvec(struct sk_buff
*skb
, struct scatterlist
*sg
, int offset
, int len
)
2986 int nsg
= __skb_to_sgvec(skb
, sg
, offset
, len
);
2988 sg_mark_end(&sg
[nsg
- 1]);
2992 EXPORT_SYMBOL_GPL(skb_to_sgvec
);
2995 * skb_cow_data - Check that a socket buffer's data buffers are writable
2996 * @skb: The socket buffer to check.
2997 * @tailbits: Amount of trailing space to be added
2998 * @trailer: Returned pointer to the skb where the @tailbits space begins
3000 * Make sure that the data buffers attached to a socket buffer are
3001 * writable. If they are not, private copies are made of the data buffers
3002 * and the socket buffer is set to use these instead.
3004 * If @tailbits is given, make sure that there is space to write @tailbits
3005 * bytes of data beyond current end of socket buffer. @trailer will be
3006 * set to point to the skb in which this space begins.
3008 * The number of scatterlist elements required to completely map the
3009 * COW'd and extended socket buffer will be returned.
3011 int skb_cow_data(struct sk_buff
*skb
, int tailbits
, struct sk_buff
**trailer
)
3015 struct sk_buff
*skb1
, **skb_p
;
3017 /* If skb is cloned or its head is paged, reallocate
3018 * head pulling out all the pages (pages are considered not writable
3019 * at the moment even if they are anonymous).
3021 if ((skb_cloned(skb
) || skb_shinfo(skb
)->nr_frags
) &&
3022 __pskb_pull_tail(skb
, skb_pagelen(skb
)-skb_headlen(skb
)) == NULL
)
3025 /* Easy case. Most of packets will go this way. */
3026 if (!skb_has_frag_list(skb
)) {
3027 /* A little of trouble, not enough of space for trailer.
3028 * This should not happen, when stack is tuned to generate
3029 * good frames. OK, on miss we reallocate and reserve even more
3030 * space, 128 bytes is fair. */
3032 if (skb_tailroom(skb
) < tailbits
&&
3033 pskb_expand_head(skb
, 0, tailbits
-skb_tailroom(skb
)+128, GFP_ATOMIC
))
3041 /* Misery. We are in troubles, going to mincer fragments... */
3044 skb_p
= &skb_shinfo(skb
)->frag_list
;
3047 while ((skb1
= *skb_p
) != NULL
) {
3050 /* The fragment is partially pulled by someone,
3051 * this can happen on input. Copy it and everything
3054 if (skb_shared(skb1
))
3057 /* If the skb is the last, worry about trailer. */
3059 if (skb1
->next
== NULL
&& tailbits
) {
3060 if (skb_shinfo(skb1
)->nr_frags
||
3061 skb_has_frag_list(skb1
) ||
3062 skb_tailroom(skb1
) < tailbits
)
3063 ntail
= tailbits
+ 128;
3069 skb_shinfo(skb1
)->nr_frags
||
3070 skb_has_frag_list(skb1
)) {
3071 struct sk_buff
*skb2
;
3073 /* Fuck, we are miserable poor guys... */
3075 skb2
= skb_copy(skb1
, GFP_ATOMIC
);
3077 skb2
= skb_copy_expand(skb1
,
3081 if (unlikely(skb2
== NULL
))
3085 skb_set_owner_w(skb2
, skb1
->sk
);
3087 /* Looking around. Are we still alive?
3088 * OK, link new skb, drop old one */
3090 skb2
->next
= skb1
->next
;
3097 skb_p
= &skb1
->next
;
3102 EXPORT_SYMBOL_GPL(skb_cow_data
);
3104 static void sock_rmem_free(struct sk_buff
*skb
)
3106 struct sock
*sk
= skb
->sk
;
3108 atomic_sub(skb
->truesize
, &sk
->sk_rmem_alloc
);
3112 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
3114 int sock_queue_err_skb(struct sock
*sk
, struct sk_buff
*skb
)
3118 if (atomic_read(&sk
->sk_rmem_alloc
) + skb
->truesize
>=
3119 (unsigned)sk
->sk_rcvbuf
)
3124 skb
->destructor
= sock_rmem_free
;
3125 atomic_add(skb
->truesize
, &sk
->sk_rmem_alloc
);
3127 /* before exiting rcu section, make sure dst is refcounted */
3130 skb_queue_tail(&sk
->sk_error_queue
, skb
);
3131 if (!sock_flag(sk
, SOCK_DEAD
))
3132 sk
->sk_data_ready(sk
, len
);
3135 EXPORT_SYMBOL(sock_queue_err_skb
);
3137 void skb_tstamp_tx(struct sk_buff
*orig_skb
,
3138 struct skb_shared_hwtstamps
*hwtstamps
)
3140 struct sock
*sk
= orig_skb
->sk
;
3141 struct sock_exterr_skb
*serr
;
3142 struct sk_buff
*skb
;
3148 skb
= skb_clone(orig_skb
, GFP_ATOMIC
);
3153 *skb_hwtstamps(skb
) =
3157 * no hardware time stamps available,
3158 * so keep the shared tx_flags and only
3159 * store software time stamp
3161 skb
->tstamp
= ktime_get_real();
3164 serr
= SKB_EXT_ERR(skb
);
3165 memset(serr
, 0, sizeof(*serr
));
3166 serr
->ee
.ee_errno
= ENOMSG
;
3167 serr
->ee
.ee_origin
= SO_EE_ORIGIN_TIMESTAMPING
;
3169 err
= sock_queue_err_skb(sk
, skb
);
3174 EXPORT_SYMBOL_GPL(skb_tstamp_tx
);
3178 * skb_partial_csum_set - set up and verify partial csum values for packet
3179 * @skb: the skb to set
3180 * @start: the number of bytes after skb->data to start checksumming.
3181 * @off: the offset from start to place the checksum.
3183 * For untrusted partially-checksummed packets, we need to make sure the values
3184 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3186 * This function checks and sets those values and skb->ip_summed: if this
3187 * returns false you should drop the packet.
3189 bool skb_partial_csum_set(struct sk_buff
*skb
, u16 start
, u16 off
)
3191 if (unlikely(start
> skb_headlen(skb
)) ||
3192 unlikely((int)start
+ off
> skb_headlen(skb
) - 2)) {
3193 if (net_ratelimit())
3195 "bad partial csum: csum=%u/%u len=%u\n",
3196 start
, off
, skb_headlen(skb
));
3199 skb
->ip_summed
= CHECKSUM_PARTIAL
;
3200 skb
->csum_start
= skb_headroom(skb
) + start
;
3201 skb
->csum_offset
= off
;
3204 EXPORT_SYMBOL_GPL(skb_partial_csum_set
);
3206 void __skb_warn_lro_forwarding(const struct sk_buff
*skb
)
3208 if (net_ratelimit())
3209 pr_warning("%s: received packets cannot be forwarded"
3210 " while LRO is enabled\n", skb
->dev
->name
);
3212 EXPORT_SYMBOL(__skb_warn_lro_forwarding
);