2 * CCI cache coherent interconnect driver
4 * Copyright (C) 2013 ARM Ltd.
5 * Author: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
12 * kind, whether express or implied; without even the implied warranty
13 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
17 #include <linux/arm-cci.h>
19 #include <linux/interrupt.h>
20 #include <linux/module.h>
21 #include <linux/of_address.h>
22 #include <linux/of_irq.h>
23 #include <linux/of_platform.h>
24 #include <linux/perf_event.h>
25 #include <linux/platform_device.h>
26 #include <linux/slab.h>
27 #include <linux/spinlock.h>
29 #include <asm/cacheflush.h>
30 #include <asm/smp_plat.h>
32 static void __iomem
*cci_ctrl_base
;
33 static unsigned long cci_ctrl_phys
;
35 #ifdef CONFIG_ARM_CCI400_PORT_CTRL
38 unsigned int nb_ace_lite
;
41 static const struct cci_nb_ports cci400_ports
= {
46 #define CCI400_PORTS_DATA (&cci400_ports)
48 #define CCI400_PORTS_DATA (NULL)
51 static const struct of_device_id arm_cci_matches
[] = {
52 #ifdef CONFIG_ARM_CCI400_COMMON
53 {.compatible
= "arm,cci-400", .data
= CCI400_PORTS_DATA
},
55 #ifdef CONFIG_ARM_CCI500_PMU
56 { .compatible
= "arm,cci-500", },
61 #ifdef CONFIG_ARM_CCI_PMU
63 #define DRIVER_NAME "ARM-CCI"
64 #define DRIVER_NAME_PMU DRIVER_NAME " PMU"
66 #define CCI_PMCR 0x0100
67 #define CCI_PID2 0x0fe8
69 #define CCI_PMCR_CEN 0x00000001
70 #define CCI_PMCR_NCNT_MASK 0x0000f800
71 #define CCI_PMCR_NCNT_SHIFT 11
73 #define CCI_PID2_REV_MASK 0xf0
74 #define CCI_PID2_REV_SHIFT 4
76 #define CCI_PMU_EVT_SEL 0x000
77 #define CCI_PMU_CNTR 0x004
78 #define CCI_PMU_CNTR_CTRL 0x008
79 #define CCI_PMU_OVRFLW 0x00c
81 #define CCI_PMU_OVRFLW_FLAG 1
83 #define CCI_PMU_CNTR_SIZE(model) ((model)->cntr_size)
84 #define CCI_PMU_CNTR_BASE(model, idx) ((idx) * CCI_PMU_CNTR_SIZE(model))
85 #define CCI_PMU_CNTR_MASK ((1ULL << 32) -1)
86 #define CCI_PMU_CNTR_LAST(cci_pmu) (cci_pmu->num_cntrs - 1)
88 #define CCI_PMU_MAX_HW_CNTRS(model) \
89 ((model)->num_hw_cntrs + (model)->fixed_hw_cntrs)
91 /* Types of interfaces that can generate events */
95 #ifdef CONFIG_ARM_CCI500_PMU
106 struct cci_pmu_hw_events
{
107 struct perf_event
**events
;
108 unsigned long *used_mask
;
109 raw_spinlock_t pmu_lock
;
114 * struct cci_pmu_model:
115 * @fixed_hw_cntrs - Number of fixed event counters
116 * @num_hw_cntrs - Maximum number of programmable event counters
117 * @cntr_size - Size of an event counter mapping
119 struct cci_pmu_model
{
126 struct dev_ext_attribute
*format_attrs
;
127 struct dev_ext_attribute
*event_attrs
;
128 struct event_range event_ranges
[CCI_IF_MAX
];
129 int (*validate_hw_event
)(struct cci_pmu
*, unsigned long);
130 int (*get_event_idx
)(struct cci_pmu
*, struct cci_pmu_hw_events
*, unsigned long);
133 static struct cci_pmu_model cci_pmu_models
[];
140 unsigned long active_irqs
;
141 const struct cci_pmu_model
*model
;
142 struct cci_pmu_hw_events hw_events
;
143 struct platform_device
*plat_device
;
145 atomic_t active_events
;
146 struct mutex reserve_mutex
;
147 struct notifier_block cpu_nb
;
151 #define to_cci_pmu(c) (container_of(c, struct cci_pmu, pmu))
154 #ifdef CONFIG_ARM_CCI400_PMU
158 #ifdef CONFIG_ARM_CCI500_PMU
164 static ssize_t
cci_pmu_format_show(struct device
*dev
,
165 struct device_attribute
*attr
, char *buf
);
166 static ssize_t
cci_pmu_event_show(struct device
*dev
,
167 struct device_attribute
*attr
, char *buf
);
169 #define CCI_EXT_ATTR_ENTRY(_name, _func, _config) \
170 { __ATTR(_name, S_IRUGO, _func, NULL), (void *)_config }
172 #define CCI_FORMAT_EXT_ATTR_ENTRY(_name, _config) \
173 CCI_EXT_ATTR_ENTRY(_name, cci_pmu_format_show, (char *)_config)
174 #define CCI_EVENT_EXT_ATTR_ENTRY(_name, _config) \
175 CCI_EXT_ATTR_ENTRY(_name, cci_pmu_event_show, (unsigned long)_config)
177 /* CCI400 PMU Specific definitions */
179 #ifdef CONFIG_ARM_CCI400_PMU
182 #define CCI400_PORT_S0 0
183 #define CCI400_PORT_S1 1
184 #define CCI400_PORT_S2 2
185 #define CCI400_PORT_S3 3
186 #define CCI400_PORT_S4 4
187 #define CCI400_PORT_M0 5
188 #define CCI400_PORT_M1 6
189 #define CCI400_PORT_M2 7
191 #define CCI400_R1_PX 5
194 * Instead of an event id to monitor CCI cycles, a dedicated counter is
195 * provided. Use 0xff to represent CCI cycles and hope that no future revisions
196 * make use of this event in hardware.
198 enum cci400_perf_events
{
199 CCI400_PMU_CYCLES
= 0xff
202 #define CCI400_PMU_CYCLE_CNTR_IDX 0
203 #define CCI400_PMU_CNTR0_IDX 1
206 * CCI PMU event id is an 8-bit value made of two parts - bits 7:5 for one of 8
207 * ports and bits 4:0 are event codes. There are different event codes
208 * associated with each port type.
210 * Additionally, the range of events associated with the port types changed
211 * between Rev0 and Rev1.
213 * The constants below define the range of valid codes for each port type for
214 * the different revisions and are used to validate the event to be monitored.
217 #define CCI400_PMU_EVENT_MASK 0xffUL
218 #define CCI400_PMU_EVENT_SOURCE_SHIFT 5
219 #define CCI400_PMU_EVENT_SOURCE_MASK 0x7
220 #define CCI400_PMU_EVENT_CODE_SHIFT 0
221 #define CCI400_PMU_EVENT_CODE_MASK 0x1f
222 #define CCI400_PMU_EVENT_SOURCE(event) \
223 ((event >> CCI400_PMU_EVENT_SOURCE_SHIFT) & \
224 CCI400_PMU_EVENT_SOURCE_MASK)
225 #define CCI400_PMU_EVENT_CODE(event) \
226 ((event >> CCI400_PMU_EVENT_CODE_SHIFT) & CCI400_PMU_EVENT_CODE_MASK)
228 #define CCI400_R0_SLAVE_PORT_MIN_EV 0x00
229 #define CCI400_R0_SLAVE_PORT_MAX_EV 0x13
230 #define CCI400_R0_MASTER_PORT_MIN_EV 0x14
231 #define CCI400_R0_MASTER_PORT_MAX_EV 0x1a
233 #define CCI400_R1_SLAVE_PORT_MIN_EV 0x00
234 #define CCI400_R1_SLAVE_PORT_MAX_EV 0x14
235 #define CCI400_R1_MASTER_PORT_MIN_EV 0x00
236 #define CCI400_R1_MASTER_PORT_MAX_EV 0x11
238 #define CCI400_CYCLE_EVENT_EXT_ATTR_ENTRY(_name, _config) \
239 CCI_EXT_ATTR_ENTRY(_name, cci400_pmu_cycle_event_show, \
240 (unsigned long)_config)
242 static ssize_t
cci400_pmu_cycle_event_show(struct device
*dev
,
243 struct device_attribute
*attr
, char *buf
);
245 static struct dev_ext_attribute cci400_pmu_format_attrs
[] = {
246 CCI_FORMAT_EXT_ATTR_ENTRY(event
, "config:0-4"),
247 CCI_FORMAT_EXT_ATTR_ENTRY(source
, "config:5-7"),
250 static struct dev_ext_attribute cci400_r0_pmu_event_attrs
[] = {
252 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_any
, 0x0),
253 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_device
, 0x01),
254 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_normal_or_nonshareable
, 0x2),
255 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_inner_or_outershareable
, 0x3),
256 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_cache_maintenance
, 0x4),
257 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_mem_barrier
, 0x5),
258 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_sync_barrier
, 0x6),
259 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_dvm_msg
, 0x7),
260 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_dvm_msg_sync
, 0x8),
261 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_stall_tt_full
, 0x9),
262 CCI_EVENT_EXT_ATTR_ENTRY(si_r_data_last_hs_snoop
, 0xA),
263 CCI_EVENT_EXT_ATTR_ENTRY(si_r_data_stall_rvalids_h_rready_l
, 0xB),
264 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_any
, 0xC),
265 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_device
, 0xD),
266 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_normal_or_nonshareable
, 0xE),
267 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_inner_or_outershare_wback_wclean
, 0xF),
268 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_write_unique
, 0x10),
269 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_write_line_unique
, 0x11),
270 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_evict
, 0x12),
271 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_stall_tt_full
, 0x13),
273 CCI_EVENT_EXT_ATTR_ENTRY(mi_retry_speculative_fetch
, 0x14),
274 CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_addr_hazard
, 0x15),
275 CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_id_hazard
, 0x16),
276 CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_tt_full
, 0x17),
277 CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_barrier_hazard
, 0x18),
278 CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_barrier_hazard
, 0x19),
279 CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_tt_full
, 0x1A),
280 /* Special event for cycles counter */
281 CCI400_CYCLE_EVENT_EXT_ATTR_ENTRY(cycles
, 0xff),
284 static struct dev_ext_attribute cci400_r1_pmu_event_attrs
[] = {
286 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_any
, 0x0),
287 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_device
, 0x01),
288 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_normal_or_nonshareable
, 0x2),
289 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_inner_or_outershareable
, 0x3),
290 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_cache_maintenance
, 0x4),
291 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_mem_barrier
, 0x5),
292 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_sync_barrier
, 0x6),
293 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_dvm_msg
, 0x7),
294 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_dvm_msg_sync
, 0x8),
295 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_stall_tt_full
, 0x9),
296 CCI_EVENT_EXT_ATTR_ENTRY(si_r_data_last_hs_snoop
, 0xA),
297 CCI_EVENT_EXT_ATTR_ENTRY(si_r_data_stall_rvalids_h_rready_l
, 0xB),
298 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_any
, 0xC),
299 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_device
, 0xD),
300 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_normal_or_nonshareable
, 0xE),
301 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_inner_or_outershare_wback_wclean
, 0xF),
302 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_write_unique
, 0x10),
303 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_write_line_unique
, 0x11),
304 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_evict
, 0x12),
305 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_stall_tt_full
, 0x13),
306 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_stall_slave_id_hazard
, 0x14),
308 CCI_EVENT_EXT_ATTR_ENTRY(mi_retry_speculative_fetch
, 0x0),
309 CCI_EVENT_EXT_ATTR_ENTRY(mi_stall_cycle_addr_hazard
, 0x1),
310 CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_master_id_hazard
, 0x2),
311 CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_hi_prio_rtq_full
, 0x3),
312 CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_barrier_hazard
, 0x4),
313 CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_barrier_hazard
, 0x5),
314 CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_wtq_full
, 0x6),
315 CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_low_prio_rtq_full
, 0x7),
316 CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_mid_prio_rtq_full
, 0x8),
317 CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_qvn_vn0
, 0x9),
318 CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_qvn_vn1
, 0xA),
319 CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_qvn_vn2
, 0xB),
320 CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_qvn_vn3
, 0xC),
321 CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_qvn_vn0
, 0xD),
322 CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_qvn_vn1
, 0xE),
323 CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_qvn_vn2
, 0xF),
324 CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_qvn_vn3
, 0x10),
325 CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_unique_or_line_unique_addr_hazard
, 0x11),
326 /* Special event for cycles counter */
327 CCI400_CYCLE_EVENT_EXT_ATTR_ENTRY(cycles
, 0xff),
330 static ssize_t
cci400_pmu_cycle_event_show(struct device
*dev
,
331 struct device_attribute
*attr
, char *buf
)
333 struct dev_ext_attribute
*eattr
= container_of(attr
,
334 struct dev_ext_attribute
, attr
);
335 return snprintf(buf
, PAGE_SIZE
, "config=0x%lx\n", (unsigned long)eattr
->var
);
338 static int cci400_get_event_idx(struct cci_pmu
*cci_pmu
,
339 struct cci_pmu_hw_events
*hw
,
340 unsigned long cci_event
)
344 /* cycles event idx is fixed */
345 if (cci_event
== CCI400_PMU_CYCLES
) {
346 if (test_and_set_bit(CCI400_PMU_CYCLE_CNTR_IDX
, hw
->used_mask
))
349 return CCI400_PMU_CYCLE_CNTR_IDX
;
352 for (idx
= CCI400_PMU_CNTR0_IDX
; idx
<= CCI_PMU_CNTR_LAST(cci_pmu
); ++idx
)
353 if (!test_and_set_bit(idx
, hw
->used_mask
))
356 /* No counters available */
360 static int cci400_validate_hw_event(struct cci_pmu
*cci_pmu
, unsigned long hw_event
)
362 u8 ev_source
= CCI400_PMU_EVENT_SOURCE(hw_event
);
363 u8 ev_code
= CCI400_PMU_EVENT_CODE(hw_event
);
366 if (hw_event
& ~CCI400_PMU_EVENT_MASK
)
369 if (hw_event
== CCI400_PMU_CYCLES
)
378 /* Slave Interface */
379 if_type
= CCI_IF_SLAVE
;
384 /* Master Interface */
385 if_type
= CCI_IF_MASTER
;
391 if (ev_code
>= cci_pmu
->model
->event_ranges
[if_type
].min
&&
392 ev_code
<= cci_pmu
->model
->event_ranges
[if_type
].max
)
398 static int probe_cci400_revision(void)
401 rev
= readl_relaxed(cci_ctrl_base
+ CCI_PID2
) & CCI_PID2_REV_MASK
;
402 rev
>>= CCI_PID2_REV_SHIFT
;
404 if (rev
< CCI400_R1_PX
)
410 static const struct cci_pmu_model
*probe_cci_model(struct platform_device
*pdev
)
412 if (platform_has_secure_cci_access())
413 return &cci_pmu_models
[probe_cci400_revision()];
416 #else /* !CONFIG_ARM_CCI400_PMU */
417 static inline struct cci_pmu_model
*probe_cci_model(struct platform_device
*pdev
)
421 #endif /* CONFIG_ARM_CCI400_PMU */
423 #ifdef CONFIG_ARM_CCI500_PMU
426 * CCI500 provides 8 independent event counters that can count
427 * any of the events available.
429 * CCI500 PMU event id is an 9-bit value made of two parts.
430 * bits [8:5] - Source for the event
431 * 0x0-0x6 - Slave interfaces
432 * 0x8-0xD - Master interfaces
433 * 0xf - Global Events
436 * bits [4:0] - Event code (specific to type of interface)
440 #define CCI500_PORT_S0 0x0
441 #define CCI500_PORT_S1 0x1
442 #define CCI500_PORT_S2 0x2
443 #define CCI500_PORT_S3 0x3
444 #define CCI500_PORT_S4 0x4
445 #define CCI500_PORT_S5 0x5
446 #define CCI500_PORT_S6 0x6
448 #define CCI500_PORT_M0 0x8
449 #define CCI500_PORT_M1 0x9
450 #define CCI500_PORT_M2 0xa
451 #define CCI500_PORT_M3 0xb
452 #define CCI500_PORT_M4 0xc
453 #define CCI500_PORT_M5 0xd
455 #define CCI500_PORT_GLOBAL 0xf
457 #define CCI500_PMU_EVENT_MASK 0x1ffUL
458 #define CCI500_PMU_EVENT_SOURCE_SHIFT 0x5
459 #define CCI500_PMU_EVENT_SOURCE_MASK 0xf
460 #define CCI500_PMU_EVENT_CODE_SHIFT 0x0
461 #define CCI500_PMU_EVENT_CODE_MASK 0x1f
463 #define CCI500_PMU_EVENT_SOURCE(event) \
464 ((event >> CCI500_PMU_EVENT_SOURCE_SHIFT) & CCI500_PMU_EVENT_SOURCE_MASK)
465 #define CCI500_PMU_EVENT_CODE(event) \
466 ((event >> CCI500_PMU_EVENT_CODE_SHIFT) & CCI500_PMU_EVENT_CODE_MASK)
468 #define CCI500_SLAVE_PORT_MIN_EV 0x00
469 #define CCI500_SLAVE_PORT_MAX_EV 0x1f
470 #define CCI500_MASTER_PORT_MIN_EV 0x00
471 #define CCI500_MASTER_PORT_MAX_EV 0x06
472 #define CCI500_GLOBAL_PORT_MIN_EV 0x00
473 #define CCI500_GLOBAL_PORT_MAX_EV 0x0f
476 #define CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(_name, _config) \
477 CCI_EXT_ATTR_ENTRY(_name, cci500_pmu_global_event_show, \
478 (unsigned long) _config)
480 static ssize_t
cci500_pmu_global_event_show(struct device
*dev
,
481 struct device_attribute
*attr
, char *buf
);
483 static struct dev_ext_attribute cci500_pmu_format_attrs
[] = {
484 CCI_FORMAT_EXT_ATTR_ENTRY(event
, "config:0-4"),
485 CCI_FORMAT_EXT_ATTR_ENTRY(source
, "config:5-8"),
488 static struct dev_ext_attribute cci500_pmu_event_attrs
[] = {
490 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_arvalid
, 0x0),
491 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_dev
, 0x1),
492 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_nonshareable
, 0x2),
493 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_shareable_non_alloc
, 0x3),
494 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_shareable_alloc
, 0x4),
495 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_invalidate
, 0x5),
496 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_cache_maint
, 0x6),
497 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_dvm_msg
, 0x7),
498 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_rval
, 0x8),
499 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_rlast_snoop
, 0x9),
500 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_awalid
, 0xA),
501 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_dev
, 0xB),
502 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_non_shareable
, 0xC),
503 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_share_wb
, 0xD),
504 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_share_wlu
, 0xE),
505 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_share_wunique
, 0xF),
506 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_evict
, 0x10),
507 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_wrevict
, 0x11),
508 CCI_EVENT_EXT_ATTR_ENTRY(si_w_data_beat
, 0x12),
509 CCI_EVENT_EXT_ATTR_ENTRY(si_srq_acvalid
, 0x13),
510 CCI_EVENT_EXT_ATTR_ENTRY(si_srq_read
, 0x14),
511 CCI_EVENT_EXT_ATTR_ENTRY(si_srq_clean
, 0x15),
512 CCI_EVENT_EXT_ATTR_ENTRY(si_srq_data_transfer_low
, 0x16),
513 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_stall_arvalid
, 0x17),
514 CCI_EVENT_EXT_ATTR_ENTRY(si_r_data_stall
, 0x18),
515 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_stall
, 0x19),
516 CCI_EVENT_EXT_ATTR_ENTRY(si_w_data_stall
, 0x1A),
517 CCI_EVENT_EXT_ATTR_ENTRY(si_w_resp_stall
, 0x1B),
518 CCI_EVENT_EXT_ATTR_ENTRY(si_srq_stall
, 0x1C),
519 CCI_EVENT_EXT_ATTR_ENTRY(si_s_data_stall
, 0x1D),
520 CCI_EVENT_EXT_ATTR_ENTRY(si_rq_stall_ot_limit
, 0x1E),
521 CCI_EVENT_EXT_ATTR_ENTRY(si_r_stall_arbit
, 0x1F),
524 CCI_EVENT_EXT_ATTR_ENTRY(mi_r_data_beat_any
, 0x0),
525 CCI_EVENT_EXT_ATTR_ENTRY(mi_w_data_beat_any
, 0x1),
526 CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall
, 0x2),
527 CCI_EVENT_EXT_ATTR_ENTRY(mi_r_data_stall
, 0x3),
528 CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall
, 0x4),
529 CCI_EVENT_EXT_ATTR_ENTRY(mi_w_data_stall
, 0x5),
530 CCI_EVENT_EXT_ATTR_ENTRY(mi_w_resp_stall
, 0x6),
533 CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_filter_bank_0_1
, 0x0),
534 CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_filter_bank_2_3
, 0x1),
535 CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_filter_bank_4_5
, 0x2),
536 CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_filter_bank_6_7
, 0x3),
537 CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_miss_filter_bank_0_1
, 0x4),
538 CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_miss_filter_bank_2_3
, 0x5),
539 CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_miss_filter_bank_4_5
, 0x6),
540 CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_miss_filter_bank_6_7
, 0x7),
541 CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_back_invalidation
, 0x8),
542 CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_stall_alloc_busy
, 0x9),
543 CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_stall_tt_full
, 0xA),
544 CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_wrq
, 0xB),
545 CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_cd_hs
, 0xC),
546 CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_rq_stall_addr_hazard
, 0xD),
547 CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snopp_rq_stall_tt_full
, 0xE),
548 CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_rq_tzmp1_prot
, 0xF),
551 static ssize_t
cci500_pmu_global_event_show(struct device
*dev
,
552 struct device_attribute
*attr
, char *buf
)
554 struct dev_ext_attribute
*eattr
= container_of(attr
,
555 struct dev_ext_attribute
, attr
);
556 /* Global events have single fixed source code */
557 return snprintf(buf
, PAGE_SIZE
, "event=0x%lx,source=0x%x\n",
558 (unsigned long)eattr
->var
, CCI500_PORT_GLOBAL
);
561 static int cci500_validate_hw_event(struct cci_pmu
*cci_pmu
,
562 unsigned long hw_event
)
564 u32 ev_source
= CCI500_PMU_EVENT_SOURCE(hw_event
);
565 u32 ev_code
= CCI500_PMU_EVENT_CODE(hw_event
);
568 if (hw_event
& ~CCI500_PMU_EVENT_MASK
)
579 if_type
= CCI_IF_SLAVE
;
587 if_type
= CCI_IF_MASTER
;
589 case CCI500_PORT_GLOBAL
:
590 if_type
= CCI_IF_GLOBAL
;
596 if (ev_code
>= cci_pmu
->model
->event_ranges
[if_type
].min
&&
597 ev_code
<= cci_pmu
->model
->event_ranges
[if_type
].max
)
602 #endif /* CONFIG_ARM_CCI500_PMU */
604 static ssize_t
cci_pmu_format_show(struct device
*dev
,
605 struct device_attribute
*attr
, char *buf
)
607 struct dev_ext_attribute
*eattr
= container_of(attr
,
608 struct dev_ext_attribute
, attr
);
609 return snprintf(buf
, PAGE_SIZE
, "%s\n", (char *)eattr
->var
);
612 static ssize_t
cci_pmu_event_show(struct device
*dev
,
613 struct device_attribute
*attr
, char *buf
)
615 struct dev_ext_attribute
*eattr
= container_of(attr
,
616 struct dev_ext_attribute
, attr
);
617 /* source parameter is mandatory for normal PMU events */
618 return snprintf(buf
, PAGE_SIZE
, "source=?,event=0x%lx\n",
619 (unsigned long)eattr
->var
);
622 static int pmu_is_valid_counter(struct cci_pmu
*cci_pmu
, int idx
)
624 return 0 <= idx
&& idx
<= CCI_PMU_CNTR_LAST(cci_pmu
);
627 static u32
pmu_read_register(struct cci_pmu
*cci_pmu
, int idx
, unsigned int offset
)
629 return readl_relaxed(cci_pmu
->base
+
630 CCI_PMU_CNTR_BASE(cci_pmu
->model
, idx
) + offset
);
633 static void pmu_write_register(struct cci_pmu
*cci_pmu
, u32 value
,
634 int idx
, unsigned int offset
)
636 return writel_relaxed(value
, cci_pmu
->base
+
637 CCI_PMU_CNTR_BASE(cci_pmu
->model
, idx
) + offset
);
640 static void pmu_disable_counter(struct cci_pmu
*cci_pmu
, int idx
)
642 pmu_write_register(cci_pmu
, 0, idx
, CCI_PMU_CNTR_CTRL
);
645 static void pmu_enable_counter(struct cci_pmu
*cci_pmu
, int idx
)
647 pmu_write_register(cci_pmu
, 1, idx
, CCI_PMU_CNTR_CTRL
);
650 static void pmu_set_event(struct cci_pmu
*cci_pmu
, int idx
, unsigned long event
)
652 pmu_write_register(cci_pmu
, event
, idx
, CCI_PMU_EVT_SEL
);
656 * Returns the number of programmable counters actually implemented
659 static u32
pmu_get_max_counters(void)
661 return (readl_relaxed(cci_ctrl_base
+ CCI_PMCR
) &
662 CCI_PMCR_NCNT_MASK
) >> CCI_PMCR_NCNT_SHIFT
;
665 static int pmu_get_event_idx(struct cci_pmu_hw_events
*hw
, struct perf_event
*event
)
667 struct cci_pmu
*cci_pmu
= to_cci_pmu(event
->pmu
);
668 unsigned long cci_event
= event
->hw
.config_base
;
671 if (cci_pmu
->model
->get_event_idx
)
672 return cci_pmu
->model
->get_event_idx(cci_pmu
, hw
, cci_event
);
674 /* Generic code to find an unused idx from the mask */
675 for(idx
= 0; idx
<= CCI_PMU_CNTR_LAST(cci_pmu
); idx
++)
676 if (!test_and_set_bit(idx
, hw
->used_mask
))
679 /* No counters available */
683 static int pmu_map_event(struct perf_event
*event
)
685 struct cci_pmu
*cci_pmu
= to_cci_pmu(event
->pmu
);
687 if (event
->attr
.type
< PERF_TYPE_MAX
||
688 !cci_pmu
->model
->validate_hw_event
)
691 return cci_pmu
->model
->validate_hw_event(cci_pmu
, event
->attr
.config
);
694 static int pmu_request_irq(struct cci_pmu
*cci_pmu
, irq_handler_t handler
)
697 struct platform_device
*pmu_device
= cci_pmu
->plat_device
;
699 if (unlikely(!pmu_device
))
702 if (cci_pmu
->nr_irqs
< 1) {
703 dev_err(&pmu_device
->dev
, "no irqs for CCI PMUs defined\n");
708 * Register all available CCI PMU interrupts. In the interrupt handler
709 * we iterate over the counters checking for interrupt source (the
710 * overflowing counter) and clear it.
712 * This should allow handling of non-unique interrupt for the counters.
714 for (i
= 0; i
< cci_pmu
->nr_irqs
; i
++) {
715 int err
= request_irq(cci_pmu
->irqs
[i
], handler
, IRQF_SHARED
,
716 "arm-cci-pmu", cci_pmu
);
718 dev_err(&pmu_device
->dev
, "unable to request IRQ%d for ARM CCI PMU counters\n",
723 set_bit(i
, &cci_pmu
->active_irqs
);
729 static void pmu_free_irq(struct cci_pmu
*cci_pmu
)
733 for (i
= 0; i
< cci_pmu
->nr_irqs
; i
++) {
734 if (!test_and_clear_bit(i
, &cci_pmu
->active_irqs
))
737 free_irq(cci_pmu
->irqs
[i
], cci_pmu
);
741 static u32
pmu_read_counter(struct perf_event
*event
)
743 struct cci_pmu
*cci_pmu
= to_cci_pmu(event
->pmu
);
744 struct hw_perf_event
*hw_counter
= &event
->hw
;
745 int idx
= hw_counter
->idx
;
748 if (unlikely(!pmu_is_valid_counter(cci_pmu
, idx
))) {
749 dev_err(&cci_pmu
->plat_device
->dev
, "Invalid CCI PMU counter %d\n", idx
);
752 value
= pmu_read_register(cci_pmu
, idx
, CCI_PMU_CNTR
);
757 static void pmu_write_counter(struct perf_event
*event
, u32 value
)
759 struct cci_pmu
*cci_pmu
= to_cci_pmu(event
->pmu
);
760 struct hw_perf_event
*hw_counter
= &event
->hw
;
761 int idx
= hw_counter
->idx
;
763 if (unlikely(!pmu_is_valid_counter(cci_pmu
, idx
)))
764 dev_err(&cci_pmu
->plat_device
->dev
, "Invalid CCI PMU counter %d\n", idx
);
766 pmu_write_register(cci_pmu
, value
, idx
, CCI_PMU_CNTR
);
769 static u64
pmu_event_update(struct perf_event
*event
)
771 struct hw_perf_event
*hwc
= &event
->hw
;
772 u64 delta
, prev_raw_count
, new_raw_count
;
775 prev_raw_count
= local64_read(&hwc
->prev_count
);
776 new_raw_count
= pmu_read_counter(event
);
777 } while (local64_cmpxchg(&hwc
->prev_count
, prev_raw_count
,
778 new_raw_count
) != prev_raw_count
);
780 delta
= (new_raw_count
- prev_raw_count
) & CCI_PMU_CNTR_MASK
;
782 local64_add(delta
, &event
->count
);
784 return new_raw_count
;
787 static void pmu_read(struct perf_event
*event
)
789 pmu_event_update(event
);
792 void pmu_event_set_period(struct perf_event
*event
)
794 struct hw_perf_event
*hwc
= &event
->hw
;
796 * The CCI PMU counters have a period of 2^32. To account for the
797 * possiblity of extreme interrupt latency we program for a period of
798 * half that. Hopefully we can handle the interrupt before another 2^31
799 * events occur and the counter overtakes its previous value.
801 u64 val
= 1ULL << 31;
802 local64_set(&hwc
->prev_count
, val
);
803 pmu_write_counter(event
, val
);
806 static irqreturn_t
pmu_handle_irq(int irq_num
, void *dev
)
809 struct cci_pmu
*cci_pmu
= dev
;
810 struct cci_pmu_hw_events
*events
= &cci_pmu
->hw_events
;
811 int idx
, handled
= IRQ_NONE
;
813 raw_spin_lock_irqsave(&events
->pmu_lock
, flags
);
815 * Iterate over counters and update the corresponding perf events.
816 * This should work regardless of whether we have per-counter overflow
817 * interrupt or a combined overflow interrupt.
819 for (idx
= 0; idx
<= CCI_PMU_CNTR_LAST(cci_pmu
); idx
++) {
820 struct perf_event
*event
= events
->events
[idx
];
821 struct hw_perf_event
*hw_counter
;
826 hw_counter
= &event
->hw
;
828 /* Did this counter overflow? */
829 if (!(pmu_read_register(cci_pmu
, idx
, CCI_PMU_OVRFLW
) &
830 CCI_PMU_OVRFLW_FLAG
))
833 pmu_write_register(cci_pmu
, CCI_PMU_OVRFLW_FLAG
, idx
,
836 pmu_event_update(event
);
837 pmu_event_set_period(event
);
838 handled
= IRQ_HANDLED
;
840 raw_spin_unlock_irqrestore(&events
->pmu_lock
, flags
);
842 return IRQ_RETVAL(handled
);
845 static int cci_pmu_get_hw(struct cci_pmu
*cci_pmu
)
847 int ret
= pmu_request_irq(cci_pmu
, pmu_handle_irq
);
849 pmu_free_irq(cci_pmu
);
855 static void cci_pmu_put_hw(struct cci_pmu
*cci_pmu
)
857 pmu_free_irq(cci_pmu
);
860 static void hw_perf_event_destroy(struct perf_event
*event
)
862 struct cci_pmu
*cci_pmu
= to_cci_pmu(event
->pmu
);
863 atomic_t
*active_events
= &cci_pmu
->active_events
;
864 struct mutex
*reserve_mutex
= &cci_pmu
->reserve_mutex
;
866 if (atomic_dec_and_mutex_lock(active_events
, reserve_mutex
)) {
867 cci_pmu_put_hw(cci_pmu
);
868 mutex_unlock(reserve_mutex
);
872 static void cci_pmu_enable(struct pmu
*pmu
)
874 struct cci_pmu
*cci_pmu
= to_cci_pmu(pmu
);
875 struct cci_pmu_hw_events
*hw_events
= &cci_pmu
->hw_events
;
876 int enabled
= bitmap_weight(hw_events
->used_mask
, cci_pmu
->num_cntrs
);
883 raw_spin_lock_irqsave(&hw_events
->pmu_lock
, flags
);
885 /* Enable all the PMU counters. */
886 val
= readl_relaxed(cci_ctrl_base
+ CCI_PMCR
) | CCI_PMCR_CEN
;
887 writel(val
, cci_ctrl_base
+ CCI_PMCR
);
888 raw_spin_unlock_irqrestore(&hw_events
->pmu_lock
, flags
);
892 static void cci_pmu_disable(struct pmu
*pmu
)
894 struct cci_pmu
*cci_pmu
= to_cci_pmu(pmu
);
895 struct cci_pmu_hw_events
*hw_events
= &cci_pmu
->hw_events
;
899 raw_spin_lock_irqsave(&hw_events
->pmu_lock
, flags
);
901 /* Disable all the PMU counters. */
902 val
= readl_relaxed(cci_ctrl_base
+ CCI_PMCR
) & ~CCI_PMCR_CEN
;
903 writel(val
, cci_ctrl_base
+ CCI_PMCR
);
904 raw_spin_unlock_irqrestore(&hw_events
->pmu_lock
, flags
);
908 * Check if the idx represents a non-programmable counter.
909 * All the fixed event counters are mapped before the programmable
912 static bool pmu_fixed_hw_idx(struct cci_pmu
*cci_pmu
, int idx
)
914 return (idx
>= 0) && (idx
< cci_pmu
->model
->fixed_hw_cntrs
);
917 static void cci_pmu_start(struct perf_event
*event
, int pmu_flags
)
919 struct cci_pmu
*cci_pmu
= to_cci_pmu(event
->pmu
);
920 struct cci_pmu_hw_events
*hw_events
= &cci_pmu
->hw_events
;
921 struct hw_perf_event
*hwc
= &event
->hw
;
926 * To handle interrupt latency, we always reprogram the period
927 * regardlesss of PERF_EF_RELOAD.
929 if (pmu_flags
& PERF_EF_RELOAD
)
930 WARN_ON_ONCE(!(hwc
->state
& PERF_HES_UPTODATE
));
934 if (unlikely(!pmu_is_valid_counter(cci_pmu
, idx
))) {
935 dev_err(&cci_pmu
->plat_device
->dev
, "Invalid CCI PMU counter %d\n", idx
);
939 raw_spin_lock_irqsave(&hw_events
->pmu_lock
, flags
);
941 /* Configure the counter unless you are counting a fixed event */
942 if (!pmu_fixed_hw_idx(cci_pmu
, idx
))
943 pmu_set_event(cci_pmu
, idx
, hwc
->config_base
);
945 pmu_event_set_period(event
);
946 pmu_enable_counter(cci_pmu
, idx
);
948 raw_spin_unlock_irqrestore(&hw_events
->pmu_lock
, flags
);
951 static void cci_pmu_stop(struct perf_event
*event
, int pmu_flags
)
953 struct cci_pmu
*cci_pmu
= to_cci_pmu(event
->pmu
);
954 struct hw_perf_event
*hwc
= &event
->hw
;
957 if (hwc
->state
& PERF_HES_STOPPED
)
960 if (unlikely(!pmu_is_valid_counter(cci_pmu
, idx
))) {
961 dev_err(&cci_pmu
->plat_device
->dev
, "Invalid CCI PMU counter %d\n", idx
);
966 * We always reprogram the counter, so ignore PERF_EF_UPDATE. See
969 pmu_disable_counter(cci_pmu
, idx
);
970 pmu_event_update(event
);
971 hwc
->state
|= PERF_HES_STOPPED
| PERF_HES_UPTODATE
;
974 static int cci_pmu_add(struct perf_event
*event
, int flags
)
976 struct cci_pmu
*cci_pmu
= to_cci_pmu(event
->pmu
);
977 struct cci_pmu_hw_events
*hw_events
= &cci_pmu
->hw_events
;
978 struct hw_perf_event
*hwc
= &event
->hw
;
982 perf_pmu_disable(event
->pmu
);
984 /* If we don't have a space for the counter then finish early. */
985 idx
= pmu_get_event_idx(hw_events
, event
);
992 hw_events
->events
[idx
] = event
;
994 hwc
->state
= PERF_HES_STOPPED
| PERF_HES_UPTODATE
;
995 if (flags
& PERF_EF_START
)
996 cci_pmu_start(event
, PERF_EF_RELOAD
);
998 /* Propagate our changes to the userspace mapping. */
999 perf_event_update_userpage(event
);
1002 perf_pmu_enable(event
->pmu
);
1006 static void cci_pmu_del(struct perf_event
*event
, int flags
)
1008 struct cci_pmu
*cci_pmu
= to_cci_pmu(event
->pmu
);
1009 struct cci_pmu_hw_events
*hw_events
= &cci_pmu
->hw_events
;
1010 struct hw_perf_event
*hwc
= &event
->hw
;
1013 cci_pmu_stop(event
, PERF_EF_UPDATE
);
1014 hw_events
->events
[idx
] = NULL
;
1015 clear_bit(idx
, hw_events
->used_mask
);
1017 perf_event_update_userpage(event
);
1021 validate_event(struct pmu
*cci_pmu
,
1022 struct cci_pmu_hw_events
*hw_events
,
1023 struct perf_event
*event
)
1025 if (is_software_event(event
))
1029 * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The
1030 * core perf code won't check that the pmu->ctx == leader->ctx
1031 * until after pmu->event_init(event).
1033 if (event
->pmu
!= cci_pmu
)
1036 if (event
->state
< PERF_EVENT_STATE_OFF
)
1039 if (event
->state
== PERF_EVENT_STATE_OFF
&& !event
->attr
.enable_on_exec
)
1042 return pmu_get_event_idx(hw_events
, event
) >= 0;
1046 validate_group(struct perf_event
*event
)
1048 struct perf_event
*sibling
, *leader
= event
->group_leader
;
1049 struct cci_pmu
*cci_pmu
= to_cci_pmu(event
->pmu
);
1050 unsigned long mask
[BITS_TO_LONGS(cci_pmu
->num_cntrs
)];
1051 struct cci_pmu_hw_events fake_pmu
= {
1053 * Initialise the fake PMU. We only need to populate the
1054 * used_mask for the purposes of validation.
1058 memset(mask
, 0, BITS_TO_LONGS(cci_pmu
->num_cntrs
) * sizeof(unsigned long));
1060 if (!validate_event(event
->pmu
, &fake_pmu
, leader
))
1063 list_for_each_entry(sibling
, &leader
->sibling_list
, group_entry
) {
1064 if (!validate_event(event
->pmu
, &fake_pmu
, sibling
))
1068 if (!validate_event(event
->pmu
, &fake_pmu
, event
))
1075 __hw_perf_event_init(struct perf_event
*event
)
1077 struct hw_perf_event
*hwc
= &event
->hw
;
1080 mapping
= pmu_map_event(event
);
1083 pr_debug("event %x:%llx not supported\n", event
->attr
.type
,
1084 event
->attr
.config
);
1089 * We don't assign an index until we actually place the event onto
1090 * hardware. Use -1 to signify that we haven't decided where to put it
1094 hwc
->config_base
= 0;
1096 hwc
->event_base
= 0;
1099 * Store the event encoding into the config_base field.
1101 hwc
->config_base
|= (unsigned long)mapping
;
1104 * Limit the sample_period to half of the counter width. That way, the
1105 * new counter value is far less likely to overtake the previous one
1106 * unless you have some serious IRQ latency issues.
1108 hwc
->sample_period
= CCI_PMU_CNTR_MASK
>> 1;
1109 hwc
->last_period
= hwc
->sample_period
;
1110 local64_set(&hwc
->period_left
, hwc
->sample_period
);
1112 if (event
->group_leader
!= event
) {
1113 if (validate_group(event
) != 0)
1120 static int cci_pmu_event_init(struct perf_event
*event
)
1122 struct cci_pmu
*cci_pmu
= to_cci_pmu(event
->pmu
);
1123 atomic_t
*active_events
= &cci_pmu
->active_events
;
1127 if (event
->attr
.type
!= event
->pmu
->type
)
1130 /* Shared by all CPUs, no meaningful state to sample */
1131 if (is_sampling_event(event
) || event
->attach_state
& PERF_ATTACH_TASK
)
1134 /* We have no filtering of any kind */
1135 if (event
->attr
.exclude_user
||
1136 event
->attr
.exclude_kernel
||
1137 event
->attr
.exclude_hv
||
1138 event
->attr
.exclude_idle
||
1139 event
->attr
.exclude_host
||
1140 event
->attr
.exclude_guest
)
1144 * Following the example set by other "uncore" PMUs, we accept any CPU
1145 * and rewrite its affinity dynamically rather than having perf core
1146 * handle cpu == -1 and pid == -1 for this case.
1148 * The perf core will pin online CPUs for the duration of this call and
1149 * the event being installed into its context, so the PMU's CPU can't
1150 * change under our feet.
1152 cpu
= cpumask_first(&cci_pmu
->cpus
);
1153 if (event
->cpu
< 0 || cpu
< 0)
1157 event
->destroy
= hw_perf_event_destroy
;
1158 if (!atomic_inc_not_zero(active_events
)) {
1159 mutex_lock(&cci_pmu
->reserve_mutex
);
1160 if (atomic_read(active_events
) == 0)
1161 err
= cci_pmu_get_hw(cci_pmu
);
1163 atomic_inc(active_events
);
1164 mutex_unlock(&cci_pmu
->reserve_mutex
);
1169 err
= __hw_perf_event_init(event
);
1171 hw_perf_event_destroy(event
);
1176 static ssize_t
pmu_cpumask_attr_show(struct device
*dev
,
1177 struct device_attribute
*attr
, char *buf
)
1179 struct dev_ext_attribute
*eattr
= container_of(attr
,
1180 struct dev_ext_attribute
, attr
);
1181 struct cci_pmu
*cci_pmu
= eattr
->var
;
1183 int n
= scnprintf(buf
, PAGE_SIZE
- 1, "%*pbl",
1184 cpumask_pr_args(&cci_pmu
->cpus
));
1190 static struct dev_ext_attribute pmu_cpumask_attr
= {
1191 __ATTR(cpumask
, S_IRUGO
, pmu_cpumask_attr_show
, NULL
),
1192 NULL
, /* Populated in cci_pmu_init */
1195 static struct attribute
*pmu_attrs
[] = {
1196 &pmu_cpumask_attr
.attr
.attr
,
1200 static struct attribute_group pmu_attr_group
= {
1204 static struct attribute_group pmu_format_attr_group
= {
1206 .attrs
= NULL
, /* Filled in cci_pmu_init_attrs */
1209 static struct attribute_group pmu_event_attr_group
= {
1211 .attrs
= NULL
, /* Filled in cci_pmu_init_attrs */
1214 static const struct attribute_group
*pmu_attr_groups
[] = {
1216 &pmu_format_attr_group
,
1217 &pmu_event_attr_group
,
1221 static struct attribute
**alloc_attrs(struct platform_device
*pdev
,
1222 int n
, struct dev_ext_attribute
*source
)
1225 struct attribute
**attrs
;
1227 /* Alloc n + 1 (for terminating NULL) */
1228 attrs
= devm_kcalloc(&pdev
->dev
, n
+ 1, sizeof(struct attribute
*),
1232 for(i
= 0; i
< n
; i
++)
1233 attrs
[i
] = &source
[i
].attr
.attr
;
1237 static int cci_pmu_init_attrs(struct cci_pmu
*cci_pmu
, struct platform_device
*pdev
)
1239 const struct cci_pmu_model
*model
= cci_pmu
->model
;
1240 struct attribute
**attrs
;
1243 * All allocations below are managed, hence doesn't need to be
1244 * free'd explicitly in case of an error.
1247 if (model
->nevent_attrs
) {
1248 attrs
= alloc_attrs(pdev
, model
->nevent_attrs
,
1249 model
->event_attrs
);
1252 pmu_event_attr_group
.attrs
= attrs
;
1254 if (model
->nformat_attrs
) {
1255 attrs
= alloc_attrs(pdev
, model
->nformat_attrs
,
1256 model
->format_attrs
);
1259 pmu_format_attr_group
.attrs
= attrs
;
1261 pmu_cpumask_attr
.var
= cci_pmu
;
1266 static int cci_pmu_init(struct cci_pmu
*cci_pmu
, struct platform_device
*pdev
)
1268 char *name
= cci_pmu
->model
->name
;
1272 rc
= cci_pmu_init_attrs(cci_pmu
, pdev
);
1276 cci_pmu
->pmu
= (struct pmu
) {
1277 .name
= cci_pmu
->model
->name
,
1278 .task_ctx_nr
= perf_invalid_context
,
1279 .pmu_enable
= cci_pmu_enable
,
1280 .pmu_disable
= cci_pmu_disable
,
1281 .event_init
= cci_pmu_event_init
,
1284 .start
= cci_pmu_start
,
1285 .stop
= cci_pmu_stop
,
1287 .attr_groups
= pmu_attr_groups
,
1290 cci_pmu
->plat_device
= pdev
;
1291 num_cntrs
= pmu_get_max_counters();
1292 if (num_cntrs
> cci_pmu
->model
->num_hw_cntrs
) {
1293 dev_warn(&pdev
->dev
,
1294 "PMU implements more counters(%d) than supported by"
1295 " the model(%d), truncated.",
1296 num_cntrs
, cci_pmu
->model
->num_hw_cntrs
);
1297 num_cntrs
= cci_pmu
->model
->num_hw_cntrs
;
1299 cci_pmu
->num_cntrs
= num_cntrs
+ cci_pmu
->model
->fixed_hw_cntrs
;
1301 return perf_pmu_register(&cci_pmu
->pmu
, name
, -1);
1304 static int cci_pmu_cpu_notifier(struct notifier_block
*self
,
1305 unsigned long action
, void *hcpu
)
1307 struct cci_pmu
*cci_pmu
= container_of(self
,
1308 struct cci_pmu
, cpu_nb
);
1309 unsigned int cpu
= (long)hcpu
;
1310 unsigned int target
;
1312 switch (action
& ~CPU_TASKS_FROZEN
) {
1313 case CPU_DOWN_PREPARE
:
1314 if (!cpumask_test_and_clear_cpu(cpu
, &cci_pmu
->cpus
))
1316 target
= cpumask_any_but(cpu_online_mask
, cpu
);
1317 if (target
< 0) // UP, last CPU
1320 * TODO: migrate context once core races on event->ctx have
1323 cpumask_set_cpu(target
, &cci_pmu
->cpus
);
1331 static struct cci_pmu_model cci_pmu_models
[] = {
1332 #ifdef CONFIG_ARM_CCI400_PMU
1335 .fixed_hw_cntrs
= 1, /* Cycle counter */
1338 .format_attrs
= cci400_pmu_format_attrs
,
1339 .nformat_attrs
= ARRAY_SIZE(cci400_pmu_format_attrs
),
1340 .event_attrs
= cci400_r0_pmu_event_attrs
,
1341 .nevent_attrs
= ARRAY_SIZE(cci400_r0_pmu_event_attrs
),
1344 CCI400_R0_SLAVE_PORT_MIN_EV
,
1345 CCI400_R0_SLAVE_PORT_MAX_EV
,
1348 CCI400_R0_MASTER_PORT_MIN_EV
,
1349 CCI400_R0_MASTER_PORT_MAX_EV
,
1352 .validate_hw_event
= cci400_validate_hw_event
,
1353 .get_event_idx
= cci400_get_event_idx
,
1356 .name
= "CCI_400_r1",
1357 .fixed_hw_cntrs
= 1, /* Cycle counter */
1360 .format_attrs
= cci400_pmu_format_attrs
,
1361 .nformat_attrs
= ARRAY_SIZE(cci400_pmu_format_attrs
),
1362 .event_attrs
= cci400_r1_pmu_event_attrs
,
1363 .nevent_attrs
= ARRAY_SIZE(cci400_r1_pmu_event_attrs
),
1366 CCI400_R1_SLAVE_PORT_MIN_EV
,
1367 CCI400_R1_SLAVE_PORT_MAX_EV
,
1370 CCI400_R1_MASTER_PORT_MIN_EV
,
1371 CCI400_R1_MASTER_PORT_MAX_EV
,
1374 .validate_hw_event
= cci400_validate_hw_event
,
1375 .get_event_idx
= cci400_get_event_idx
,
1378 #ifdef CONFIG_ARM_CCI500_PMU
1381 .fixed_hw_cntrs
= 0,
1383 .cntr_size
= SZ_64K
,
1384 .format_attrs
= cci500_pmu_format_attrs
,
1385 .nformat_attrs
= ARRAY_SIZE(cci500_pmu_format_attrs
),
1386 .event_attrs
= cci500_pmu_event_attrs
,
1387 .nevent_attrs
= ARRAY_SIZE(cci500_pmu_event_attrs
),
1390 CCI500_SLAVE_PORT_MIN_EV
,
1391 CCI500_SLAVE_PORT_MAX_EV
,
1394 CCI500_MASTER_PORT_MIN_EV
,
1395 CCI500_MASTER_PORT_MAX_EV
,
1398 CCI500_GLOBAL_PORT_MIN_EV
,
1399 CCI500_GLOBAL_PORT_MAX_EV
,
1402 .validate_hw_event
= cci500_validate_hw_event
,
1407 static const struct of_device_id arm_cci_pmu_matches
[] = {
1408 #ifdef CONFIG_ARM_CCI400_PMU
1410 .compatible
= "arm,cci-400-pmu",
1414 .compatible
= "arm,cci-400-pmu,r0",
1415 .data
= &cci_pmu_models
[CCI400_R0
],
1418 .compatible
= "arm,cci-400-pmu,r1",
1419 .data
= &cci_pmu_models
[CCI400_R1
],
1422 #ifdef CONFIG_ARM_CCI500_PMU
1424 .compatible
= "arm,cci-500-pmu,r0",
1425 .data
= &cci_pmu_models
[CCI500_R0
],
1431 static inline const struct cci_pmu_model
*get_cci_model(struct platform_device
*pdev
)
1433 const struct of_device_id
*match
= of_match_node(arm_cci_pmu_matches
,
1440 dev_warn(&pdev
->dev
, "DEPRECATED compatible property,"
1441 "requires secure access to CCI registers");
1442 return probe_cci_model(pdev
);
1445 static bool is_duplicate_irq(int irq
, int *irqs
, int nr_irqs
)
1449 for (i
= 0; i
< nr_irqs
; i
++)
1456 static struct cci_pmu
*cci_pmu_alloc(struct platform_device
*pdev
)
1458 struct cci_pmu
*cci_pmu
;
1459 const struct cci_pmu_model
*model
;
1462 * All allocations are devm_* hence we don't have to free
1463 * them explicitly on an error, as it would end up in driver
1466 model
= get_cci_model(pdev
);
1468 dev_warn(&pdev
->dev
, "CCI PMU version not supported\n");
1469 return ERR_PTR(-ENODEV
);
1472 cci_pmu
= devm_kzalloc(&pdev
->dev
, sizeof(*cci_pmu
), GFP_KERNEL
);
1474 return ERR_PTR(-ENOMEM
);
1476 cci_pmu
->model
= model
;
1477 cci_pmu
->irqs
= devm_kcalloc(&pdev
->dev
, CCI_PMU_MAX_HW_CNTRS(model
),
1478 sizeof(*cci_pmu
->irqs
), GFP_KERNEL
);
1480 return ERR_PTR(-ENOMEM
);
1481 cci_pmu
->hw_events
.events
= devm_kcalloc(&pdev
->dev
,
1482 CCI_PMU_MAX_HW_CNTRS(model
),
1483 sizeof(*cci_pmu
->hw_events
.events
),
1485 if (!cci_pmu
->hw_events
.events
)
1486 return ERR_PTR(-ENOMEM
);
1487 cci_pmu
->hw_events
.used_mask
= devm_kcalloc(&pdev
->dev
,
1488 BITS_TO_LONGS(CCI_PMU_MAX_HW_CNTRS(model
)),
1489 sizeof(*cci_pmu
->hw_events
.used_mask
),
1491 if (!cci_pmu
->hw_events
.used_mask
)
1492 return ERR_PTR(-ENOMEM
);
1498 static int cci_pmu_probe(struct platform_device
*pdev
)
1500 struct resource
*res
;
1501 struct cci_pmu
*cci_pmu
;
1504 cci_pmu
= cci_pmu_alloc(pdev
);
1505 if (IS_ERR(cci_pmu
))
1506 return PTR_ERR(cci_pmu
);
1508 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1509 cci_pmu
->base
= devm_ioremap_resource(&pdev
->dev
, res
);
1510 if (IS_ERR(cci_pmu
->base
))
1514 * CCI PMU has one overflow interrupt per counter; but some may be tied
1515 * together to a common interrupt.
1517 cci_pmu
->nr_irqs
= 0;
1518 for (i
= 0; i
< CCI_PMU_MAX_HW_CNTRS(cci_pmu
->model
); i
++) {
1519 irq
= platform_get_irq(pdev
, i
);
1523 if (is_duplicate_irq(irq
, cci_pmu
->irqs
, cci_pmu
->nr_irqs
))
1526 cci_pmu
->irqs
[cci_pmu
->nr_irqs
++] = irq
;
1530 * Ensure that the device tree has as many interrupts as the number
1533 if (i
< CCI_PMU_MAX_HW_CNTRS(cci_pmu
->model
)) {
1534 dev_warn(&pdev
->dev
, "In-correct number of interrupts: %d, should be %d\n",
1535 i
, CCI_PMU_MAX_HW_CNTRS(cci_pmu
->model
));
1539 raw_spin_lock_init(&cci_pmu
->hw_events
.pmu_lock
);
1540 mutex_init(&cci_pmu
->reserve_mutex
);
1541 atomic_set(&cci_pmu
->active_events
, 0);
1542 cpumask_set_cpu(smp_processor_id(), &cci_pmu
->cpus
);
1544 cci_pmu
->cpu_nb
= (struct notifier_block
) {
1545 .notifier_call
= cci_pmu_cpu_notifier
,
1547 * to migrate uncore events, our notifier should be executed
1548 * before perf core's notifier.
1550 .priority
= CPU_PRI_PERF
+ 1,
1553 ret
= register_cpu_notifier(&cci_pmu
->cpu_nb
);
1557 ret
= cci_pmu_init(cci_pmu
, pdev
);
1559 unregister_cpu_notifier(&cci_pmu
->cpu_nb
);
1563 pr_info("ARM %s PMU driver probed", cci_pmu
->model
->name
);
1567 static int cci_platform_probe(struct platform_device
*pdev
)
1572 return of_platform_populate(pdev
->dev
.of_node
, NULL
, NULL
, &pdev
->dev
);
1575 static struct platform_driver cci_pmu_driver
= {
1577 .name
= DRIVER_NAME_PMU
,
1578 .of_match_table
= arm_cci_pmu_matches
,
1580 .probe
= cci_pmu_probe
,
1583 static struct platform_driver cci_platform_driver
= {
1585 .name
= DRIVER_NAME
,
1586 .of_match_table
= arm_cci_matches
,
1588 .probe
= cci_platform_probe
,
1591 static int __init
cci_platform_init(void)
1595 ret
= platform_driver_register(&cci_pmu_driver
);
1599 return platform_driver_register(&cci_platform_driver
);
1602 #else /* !CONFIG_ARM_CCI_PMU */
1604 static int __init
cci_platform_init(void)
1609 #endif /* CONFIG_ARM_CCI_PMU */
1611 #ifdef CONFIG_ARM_CCI400_PORT_CTRL
1613 #define CCI_PORT_CTRL 0x0
1614 #define CCI_CTRL_STATUS 0xc
1616 #define CCI_ENABLE_SNOOP_REQ 0x1
1617 #define CCI_ENABLE_DVM_REQ 0x2
1618 #define CCI_ENABLE_REQ (CCI_ENABLE_SNOOP_REQ | CCI_ENABLE_DVM_REQ)
1620 enum cci_ace_port_type
{
1621 ACE_INVALID_PORT
= 0x0,
1626 struct cci_ace_port
{
1629 enum cci_ace_port_type type
;
1630 struct device_node
*dn
;
1633 static struct cci_ace_port
*ports
;
1634 static unsigned int nb_cci_ports
;
1642 * Use the port MSB as valid flag, shift can be made dynamic
1643 * by computing number of bits required for port indexes.
1644 * Code disabling CCI cpu ports runs with D-cache invalidated
1645 * and SCTLR bit clear so data accesses must be kept to a minimum
1646 * to improve performance; for now shift is left static to
1647 * avoid one more data access while disabling the CCI port.
1649 #define PORT_VALID_SHIFT 31
1650 #define PORT_VALID (0x1 << PORT_VALID_SHIFT)
1652 static inline void init_cpu_port(struct cpu_port
*port
, u32 index
, u64 mpidr
)
1654 port
->port
= PORT_VALID
| index
;
1655 port
->mpidr
= mpidr
;
1658 static inline bool cpu_port_is_valid(struct cpu_port
*port
)
1660 return !!(port
->port
& PORT_VALID
);
1663 static inline bool cpu_port_match(struct cpu_port
*port
, u64 mpidr
)
1665 return port
->mpidr
== (mpidr
& MPIDR_HWID_BITMASK
);
1668 static struct cpu_port cpu_port
[NR_CPUS
];
1671 * __cci_ace_get_port - Function to retrieve the port index connected to
1674 * @dn: device node of the device to look-up
1678 * - CCI port index if success
1679 * - -ENODEV if failure
1681 static int __cci_ace_get_port(struct device_node
*dn
, int type
)
1685 struct device_node
*cci_portn
;
1687 cci_portn
= of_parse_phandle(dn
, "cci-control-port", 0);
1688 for (i
= 0; i
< nb_cci_ports
; i
++) {
1689 ace_match
= ports
[i
].type
== type
;
1690 if (ace_match
&& cci_portn
== ports
[i
].dn
)
1696 int cci_ace_get_port(struct device_node
*dn
)
1698 return __cci_ace_get_port(dn
, ACE_LITE_PORT
);
1700 EXPORT_SYMBOL_GPL(cci_ace_get_port
);
1702 static void cci_ace_init_ports(void)
1705 struct device_node
*cpun
;
1708 * Port index look-up speeds up the function disabling ports by CPU,
1709 * since the logical to port index mapping is done once and does
1710 * not change after system boot.
1711 * The stashed index array is initialized for all possible CPUs
1714 for_each_possible_cpu(cpu
) {
1715 /* too early to use cpu->of_node */
1716 cpun
= of_get_cpu_node(cpu
, NULL
);
1718 if (WARN(!cpun
, "Missing cpu device node\n"))
1721 port
= __cci_ace_get_port(cpun
, ACE_PORT
);
1725 init_cpu_port(&cpu_port
[cpu
], port
, cpu_logical_map(cpu
));
1728 for_each_possible_cpu(cpu
) {
1729 WARN(!cpu_port_is_valid(&cpu_port
[cpu
]),
1730 "CPU %u does not have an associated CCI port\n",
1735 * Functions to enable/disable a CCI interconnect slave port
1737 * They are called by low-level power management code to disable slave
1738 * interfaces snoops and DVM broadcast.
1739 * Since they may execute with cache data allocation disabled and
1740 * after the caches have been cleaned and invalidated the functions provide
1741 * no explicit locking since they may run with D-cache disabled, so normal
1742 * cacheable kernel locks based on ldrex/strex may not work.
1743 * Locking has to be provided by BSP implementations to ensure proper
1748 * cci_port_control() - function to control a CCI port
1750 * @port: index of the port to setup
1751 * @enable: if true enables the port, if false disables it
1753 static void notrace
cci_port_control(unsigned int port
, bool enable
)
1755 void __iomem
*base
= ports
[port
].base
;
1757 writel_relaxed(enable
? CCI_ENABLE_REQ
: 0, base
+ CCI_PORT_CTRL
);
1759 * This function is called from power down procedures
1760 * and must not execute any instruction that might
1761 * cause the processor to be put in a quiescent state
1762 * (eg wfi). Hence, cpu_relax() can not be added to this
1763 * read loop to optimize power, since it might hide possibly
1764 * disruptive operations.
1766 while (readl_relaxed(cci_ctrl_base
+ CCI_CTRL_STATUS
) & 0x1)
1771 * cci_disable_port_by_cpu() - function to disable a CCI port by CPU
1774 * @mpidr: mpidr of the CPU whose CCI port should be disabled
1776 * Disabling a CCI port for a CPU implies disabling the CCI port
1777 * controlling that CPU cluster. Code disabling CPU CCI ports
1778 * must make sure that the CPU running the code is the last active CPU
1779 * in the cluster ie all other CPUs are quiescent in a low power state.
1783 * -ENODEV on port look-up failure
1785 int notrace
cci_disable_port_by_cpu(u64 mpidr
)
1789 for (cpu
= 0; cpu
< nr_cpu_ids
; cpu
++) {
1790 is_valid
= cpu_port_is_valid(&cpu_port
[cpu
]);
1791 if (is_valid
&& cpu_port_match(&cpu_port
[cpu
], mpidr
)) {
1792 cci_port_control(cpu_port
[cpu
].port
, false);
1798 EXPORT_SYMBOL_GPL(cci_disable_port_by_cpu
);
1801 * cci_enable_port_for_self() - enable a CCI port for calling CPU
1803 * Enabling a CCI port for the calling CPU implies enabling the CCI
1804 * port controlling that CPU's cluster. Caller must make sure that the
1805 * CPU running the code is the first active CPU in the cluster and all
1806 * other CPUs are quiescent in a low power state or waiting for this CPU
1807 * to complete the CCI initialization.
1809 * Because this is called when the MMU is still off and with no stack,
1810 * the code must be position independent and ideally rely on callee
1811 * clobbered registers only. To achieve this we must code this function
1812 * entirely in assembler.
1814 * On success this returns with the proper CCI port enabled. In case of
1815 * any failure this never returns as the inability to enable the CCI is
1816 * fatal and there is no possible recovery at this stage.
1818 asmlinkage
void __naked
cci_enable_port_for_self(void)
1822 " mrc p15, 0, r0, c0, c0, 5 @ get MPIDR value \n"
1823 " and r0, r0, #"__stringify(MPIDR_HWID_BITMASK
)" \n"
1826 " add r1, r1, r2 @ &cpu_port \n"
1827 " add ip, r1, %[sizeof_cpu_port] \n"
1829 /* Loop over the cpu_port array looking for a matching MPIDR */
1830 "1: ldr r2, [r1, %[offsetof_cpu_port_mpidr_lsb]] \n"
1831 " cmp r2, r0 @ compare MPIDR \n"
1834 /* Found a match, now test port validity */
1835 " ldr r3, [r1, %[offsetof_cpu_port_port]] \n"
1836 " tst r3, #"__stringify(PORT_VALID
)" \n"
1839 /* no match, loop with the next cpu_port entry */
1840 "2: add r1, r1, %[sizeof_struct_cpu_port] \n"
1841 " cmp r1, ip @ done? \n"
1844 /* CCI port not found -- cheaply try to stall this CPU */
1845 "cci_port_not_found: \n"
1848 " b cci_port_not_found \n"
1850 /* Use matched port index to look up the corresponding ports entry */
1851 "3: bic r3, r3, #"__stringify(PORT_VALID
)" \n"
1853 " ldmia r0, {r1, r2} \n"
1854 " sub r1, r1, r0 @ virt - phys \n"
1855 " ldr r0, [r0, r2] @ *(&ports) \n"
1856 " mov r2, %[sizeof_struct_ace_port] \n"
1857 " mla r0, r2, r3, r0 @ &ports[index] \n"
1858 " sub r0, r0, r1 @ virt_to_phys() \n"
1860 /* Enable the CCI port */
1861 " ldr r0, [r0, %[offsetof_port_phys]] \n"
1862 " mov r3, %[cci_enable_req]\n"
1863 " str r3, [r0, #"__stringify(CCI_PORT_CTRL
)"] \n"
1865 /* poll the status reg for completion */
1868 " ldr r0, [r0, r1] @ cci_ctrl_base \n"
1869 "4: ldr r1, [r0, #"__stringify(CCI_CTRL_STATUS
)"] \n"
1870 " tst r1, %[cci_control_status_bits] \n"
1877 "5: .word cpu_port - . \n"
1879 " .word ports - 6b \n"
1880 "7: .word cci_ctrl_phys - . \n"
1882 [sizeof_cpu_port
] "i" (sizeof(cpu_port
)),
1883 [cci_enable_req
] "i" cpu_to_le32(CCI_ENABLE_REQ
),
1884 [cci_control_status_bits
] "i" cpu_to_le32(1),
1886 [offsetof_cpu_port_mpidr_lsb
] "i" (offsetof(struct cpu_port
, mpidr
)),
1888 [offsetof_cpu_port_mpidr_lsb
] "i" (offsetof(struct cpu_port
, mpidr
)+4),
1890 [offsetof_cpu_port_port
] "i" (offsetof(struct cpu_port
, port
)),
1891 [sizeof_struct_cpu_port
] "i" (sizeof(struct cpu_port
)),
1892 [sizeof_struct_ace_port
] "i" (sizeof(struct cci_ace_port
)),
1893 [offsetof_port_phys
] "i" (offsetof(struct cci_ace_port
, phys
)) );
1899 * __cci_control_port_by_device() - function to control a CCI port by device
1902 * @dn: device node pointer of the device whose CCI port should be
1904 * @enable: if true enables the port, if false disables it
1908 * -ENODEV on port look-up failure
1910 int notrace
__cci_control_port_by_device(struct device_node
*dn
, bool enable
)
1917 port
= __cci_ace_get_port(dn
, ACE_LITE_PORT
);
1918 if (WARN_ONCE(port
< 0, "node %s ACE lite port look-up failure\n",
1921 cci_port_control(port
, enable
);
1924 EXPORT_SYMBOL_GPL(__cci_control_port_by_device
);
1927 * __cci_control_port_by_index() - function to control a CCI port by port index
1929 * @port: port index previously retrieved with cci_ace_get_port()
1930 * @enable: if true enables the port, if false disables it
1934 * -ENODEV on port index out of range
1935 * -EPERM if operation carried out on an ACE PORT
1937 int notrace
__cci_control_port_by_index(u32 port
, bool enable
)
1939 if (port
>= nb_cci_ports
|| ports
[port
].type
== ACE_INVALID_PORT
)
1942 * CCI control for ports connected to CPUS is extremely fragile
1943 * and must be made to go through a specific and controlled
1944 * interface (ie cci_disable_port_by_cpu(); control by general purpose
1945 * indexing is therefore disabled for ACE ports.
1947 if (ports
[port
].type
== ACE_PORT
)
1950 cci_port_control(port
, enable
);
1953 EXPORT_SYMBOL_GPL(__cci_control_port_by_index
);
1955 static const struct of_device_id arm_cci_ctrl_if_matches
[] = {
1956 {.compatible
= "arm,cci-400-ctrl-if", },
1960 static int cci_probe_ports(struct device_node
*np
)
1962 struct cci_nb_ports
const *cci_config
;
1963 int ret
, i
, nb_ace
= 0, nb_ace_lite
= 0;
1964 struct device_node
*cp
;
1965 struct resource res
;
1966 const char *match_str
;
1970 cci_config
= of_match_node(arm_cci_matches
, np
)->data
;
1974 nb_cci_ports
= cci_config
->nb_ace
+ cci_config
->nb_ace_lite
;
1976 ports
= kcalloc(nb_cci_ports
, sizeof(*ports
), GFP_KERNEL
);
1980 for_each_child_of_node(np
, cp
) {
1981 if (!of_match_node(arm_cci_ctrl_if_matches
, cp
))
1984 i
= nb_ace
+ nb_ace_lite
;
1986 if (i
>= nb_cci_ports
)
1989 if (of_property_read_string(cp
, "interface-type",
1991 WARN(1, "node %s missing interface-type property\n",
1995 is_ace
= strcmp(match_str
, "ace") == 0;
1996 if (!is_ace
&& strcmp(match_str
, "ace-lite")) {
1997 WARN(1, "node %s containing invalid interface-type property, skipping it\n",
2002 ret
= of_address_to_resource(cp
, 0, &res
);
2004 ports
[i
].base
= ioremap(res
.start
, resource_size(&res
));
2005 ports
[i
].phys
= res
.start
;
2007 if (ret
|| !ports
[i
].base
) {
2008 WARN(1, "unable to ioremap CCI port %d\n", i
);
2013 if (WARN_ON(nb_ace
>= cci_config
->nb_ace
))
2015 ports
[i
].type
= ACE_PORT
;
2018 if (WARN_ON(nb_ace_lite
>= cci_config
->nb_ace_lite
))
2020 ports
[i
].type
= ACE_LITE_PORT
;
2026 /* initialize a stashed array of ACE ports to speed-up look-up */
2027 cci_ace_init_ports();
2030 * Multi-cluster systems may need this data when non-coherent, during
2031 * cluster power-up/power-down. Make sure it reaches main memory.
2033 sync_cache_w(&cci_ctrl_base
);
2034 sync_cache_w(&cci_ctrl_phys
);
2035 sync_cache_w(&ports
);
2036 sync_cache_w(&cpu_port
);
2037 __sync_cache_range_w(ports
, sizeof(*ports
) * nb_cci_ports
);
2038 pr_info("ARM CCI driver probed\n");
2042 #else /* !CONFIG_ARM_CCI400_PORT_CTRL */
2043 static inline int cci_probe_ports(struct device_node
*np
)
2047 #endif /* CONFIG_ARM_CCI400_PORT_CTRL */
2049 static int cci_probe(void)
2052 struct device_node
*np
;
2053 struct resource res
;
2055 np
= of_find_matching_node(NULL
, arm_cci_matches
);
2056 if(!np
|| !of_device_is_available(np
))
2059 ret
= of_address_to_resource(np
, 0, &res
);
2061 cci_ctrl_base
= ioremap(res
.start
, resource_size(&res
));
2062 cci_ctrl_phys
= res
.start
;
2064 if (ret
|| !cci_ctrl_base
) {
2065 WARN(1, "unable to ioremap CCI ctrl\n");
2069 return cci_probe_ports(np
);
2072 static int cci_init_status
= -EAGAIN
;
2073 static DEFINE_MUTEX(cci_probing
);
2075 static int cci_init(void)
2077 if (cci_init_status
!= -EAGAIN
)
2078 return cci_init_status
;
2080 mutex_lock(&cci_probing
);
2081 if (cci_init_status
== -EAGAIN
)
2082 cci_init_status
= cci_probe();
2083 mutex_unlock(&cci_probing
);
2084 return cci_init_status
;
2088 * To sort out early init calls ordering a helper function is provided to
2089 * check if the CCI driver has beed initialized. Function check if the driver
2090 * has been initialized, if not it calls the init function that probes
2091 * the driver and updates the return value.
2093 bool cci_probed(void)
2095 return cci_init() == 0;
2097 EXPORT_SYMBOL_GPL(cci_probed
);
2099 early_initcall(cci_init
);
2100 core_initcall(cci_platform_init
);
2101 MODULE_LICENSE("GPL");
2102 MODULE_DESCRIPTION("ARM CCI support");