2 * Resizable virtual memory filesystem for Linux.
4 * Copyright (C) 2000 Linus Torvalds.
6 * 2000-2001 Christoph Rohland
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
21 * This file is released under the GPL.
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/uio.h>
36 static struct vfsmount
*shm_mnt
;
40 * This virtual memory filesystem is heavily based on the ramfs. It
41 * extends ramfs by the ability to use swap and honor resource limits
42 * which makes it a completely usable filesystem.
45 #include <linux/xattr.h>
46 #include <linux/exportfs.h>
47 #include <linux/posix_acl.h>
48 #include <linux/posix_acl_xattr.h>
49 #include <linux/mman.h>
50 #include <linux/string.h>
51 #include <linux/slab.h>
52 #include <linux/backing-dev.h>
53 #include <linux/shmem_fs.h>
54 #include <linux/writeback.h>
55 #include <linux/blkdev.h>
56 #include <linux/pagevec.h>
57 #include <linux/percpu_counter.h>
58 #include <linux/falloc.h>
59 #include <linux/splice.h>
60 #include <linux/security.h>
61 #include <linux/swapops.h>
62 #include <linux/mempolicy.h>
63 #include <linux/namei.h>
64 #include <linux/ctype.h>
65 #include <linux/migrate.h>
66 #include <linux/highmem.h>
67 #include <linux/seq_file.h>
68 #include <linux/magic.h>
69 #include <linux/syscalls.h>
70 #include <linux/fcntl.h>
71 #include <uapi/linux/memfd.h>
73 #include <asm/uaccess.h>
74 #include <asm/pgtable.h>
76 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
77 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
79 /* Pretend that each entry is of this size in directory's i_size */
80 #define BOGO_DIRENT_SIZE 20
82 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
83 #define SHORT_SYMLINK_LEN 128
86 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
87 * inode->i_private (with i_mutex making sure that it has only one user at
88 * a time): we would prefer not to enlarge the shmem inode just for that.
91 wait_queue_head_t
*waitq
; /* faults into hole wait for punch to end */
92 pgoff_t start
; /* start of range currently being fallocated */
93 pgoff_t next
; /* the next page offset to be fallocated */
94 pgoff_t nr_falloced
; /* how many new pages have been fallocated */
95 pgoff_t nr_unswapped
; /* how often writepage refused to swap out */
98 /* Flag allocation requirements to shmem_getpage */
100 SGP_READ
, /* don't exceed i_size, don't allocate page */
101 SGP_CACHE
, /* don't exceed i_size, may allocate page */
102 SGP_DIRTY
, /* like SGP_CACHE, but set new page dirty */
103 SGP_WRITE
, /* may exceed i_size, may allocate !Uptodate page */
104 SGP_FALLOC
, /* like SGP_WRITE, but make existing page Uptodate */
108 static unsigned long shmem_default_max_blocks(void)
110 return totalram_pages
/ 2;
113 static unsigned long shmem_default_max_inodes(void)
115 return min(totalram_pages
- totalhigh_pages
, totalram_pages
/ 2);
119 static bool shmem_should_replace_page(struct page
*page
, gfp_t gfp
);
120 static int shmem_replace_page(struct page
**pagep
, gfp_t gfp
,
121 struct shmem_inode_info
*info
, pgoff_t index
);
122 static int shmem_getpage_gfp(struct inode
*inode
, pgoff_t index
,
123 struct page
**pagep
, enum sgp_type sgp
, gfp_t gfp
, int *fault_type
);
125 static inline int shmem_getpage(struct inode
*inode
, pgoff_t index
,
126 struct page
**pagep
, enum sgp_type sgp
, int *fault_type
)
128 return shmem_getpage_gfp(inode
, index
, pagep
, sgp
,
129 mapping_gfp_mask(inode
->i_mapping
), fault_type
);
132 static inline struct shmem_sb_info
*SHMEM_SB(struct super_block
*sb
)
134 return sb
->s_fs_info
;
138 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
139 * for shared memory and for shared anonymous (/dev/zero) mappings
140 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
141 * consistent with the pre-accounting of private mappings ...
143 static inline int shmem_acct_size(unsigned long flags
, loff_t size
)
145 return (flags
& VM_NORESERVE
) ?
146 0 : security_vm_enough_memory_mm(current
->mm
, VM_ACCT(size
));
149 static inline void shmem_unacct_size(unsigned long flags
, loff_t size
)
151 if (!(flags
& VM_NORESERVE
))
152 vm_unacct_memory(VM_ACCT(size
));
155 static inline int shmem_reacct_size(unsigned long flags
,
156 loff_t oldsize
, loff_t newsize
)
158 if (!(flags
& VM_NORESERVE
)) {
159 if (VM_ACCT(newsize
) > VM_ACCT(oldsize
))
160 return security_vm_enough_memory_mm(current
->mm
,
161 VM_ACCT(newsize
) - VM_ACCT(oldsize
));
162 else if (VM_ACCT(newsize
) < VM_ACCT(oldsize
))
163 vm_unacct_memory(VM_ACCT(oldsize
) - VM_ACCT(newsize
));
169 * ... whereas tmpfs objects are accounted incrementally as
170 * pages are allocated, in order to allow huge sparse files.
171 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
172 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
174 static inline int shmem_acct_block(unsigned long flags
)
176 return (flags
& VM_NORESERVE
) ?
177 security_vm_enough_memory_mm(current
->mm
, VM_ACCT(PAGE_CACHE_SIZE
)) : 0;
180 static inline void shmem_unacct_blocks(unsigned long flags
, long pages
)
182 if (flags
& VM_NORESERVE
)
183 vm_unacct_memory(pages
* VM_ACCT(PAGE_CACHE_SIZE
));
186 static const struct super_operations shmem_ops
;
187 static const struct address_space_operations shmem_aops
;
188 static const struct file_operations shmem_file_operations
;
189 static const struct inode_operations shmem_inode_operations
;
190 static const struct inode_operations shmem_dir_inode_operations
;
191 static const struct inode_operations shmem_special_inode_operations
;
192 static const struct vm_operations_struct shmem_vm_ops
;
194 static LIST_HEAD(shmem_swaplist
);
195 static DEFINE_MUTEX(shmem_swaplist_mutex
);
197 static int shmem_reserve_inode(struct super_block
*sb
)
199 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
200 if (sbinfo
->max_inodes
) {
201 spin_lock(&sbinfo
->stat_lock
);
202 if (!sbinfo
->free_inodes
) {
203 spin_unlock(&sbinfo
->stat_lock
);
206 sbinfo
->free_inodes
--;
207 spin_unlock(&sbinfo
->stat_lock
);
212 static void shmem_free_inode(struct super_block
*sb
)
214 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
215 if (sbinfo
->max_inodes
) {
216 spin_lock(&sbinfo
->stat_lock
);
217 sbinfo
->free_inodes
++;
218 spin_unlock(&sbinfo
->stat_lock
);
223 * shmem_recalc_inode - recalculate the block usage of an inode
224 * @inode: inode to recalc
226 * We have to calculate the free blocks since the mm can drop
227 * undirtied hole pages behind our back.
229 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
230 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
232 * It has to be called with the spinlock held.
234 static void shmem_recalc_inode(struct inode
*inode
)
236 struct shmem_inode_info
*info
= SHMEM_I(inode
);
239 freed
= info
->alloced
- info
->swapped
- inode
->i_mapping
->nrpages
;
241 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
242 if (sbinfo
->max_blocks
)
243 percpu_counter_add(&sbinfo
->used_blocks
, -freed
);
244 info
->alloced
-= freed
;
245 inode
->i_blocks
-= freed
* BLOCKS_PER_PAGE
;
246 shmem_unacct_blocks(info
->flags
, freed
);
251 * Replace item expected in radix tree by a new item, while holding tree lock.
253 static int shmem_radix_tree_replace(struct address_space
*mapping
,
254 pgoff_t index
, void *expected
, void *replacement
)
259 VM_BUG_ON(!expected
);
260 VM_BUG_ON(!replacement
);
261 pslot
= radix_tree_lookup_slot(&mapping
->page_tree
, index
);
264 item
= radix_tree_deref_slot_protected(pslot
, &mapping
->tree_lock
);
265 if (item
!= expected
)
267 radix_tree_replace_slot(pslot
, replacement
);
272 * Sometimes, before we decide whether to proceed or to fail, we must check
273 * that an entry was not already brought back from swap by a racing thread.
275 * Checking page is not enough: by the time a SwapCache page is locked, it
276 * might be reused, and again be SwapCache, using the same swap as before.
278 static bool shmem_confirm_swap(struct address_space
*mapping
,
279 pgoff_t index
, swp_entry_t swap
)
284 item
= radix_tree_lookup(&mapping
->page_tree
, index
);
286 return item
== swp_to_radix_entry(swap
);
290 * Like add_to_page_cache_locked, but error if expected item has gone.
292 static int shmem_add_to_page_cache(struct page
*page
,
293 struct address_space
*mapping
,
294 pgoff_t index
, void *expected
)
298 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
299 VM_BUG_ON_PAGE(!PageSwapBacked(page
), page
);
301 page_cache_get(page
);
302 page
->mapping
= mapping
;
305 spin_lock_irq(&mapping
->tree_lock
);
307 error
= radix_tree_insert(&mapping
->page_tree
, index
, page
);
309 error
= shmem_radix_tree_replace(mapping
, index
, expected
,
313 __inc_zone_page_state(page
, NR_FILE_PAGES
);
314 __inc_zone_page_state(page
, NR_SHMEM
);
315 spin_unlock_irq(&mapping
->tree_lock
);
317 page
->mapping
= NULL
;
318 spin_unlock_irq(&mapping
->tree_lock
);
319 page_cache_release(page
);
325 * Like delete_from_page_cache, but substitutes swap for page.
327 static void shmem_delete_from_page_cache(struct page
*page
, void *radswap
)
329 struct address_space
*mapping
= page
->mapping
;
332 spin_lock_irq(&mapping
->tree_lock
);
333 error
= shmem_radix_tree_replace(mapping
, page
->index
, page
, radswap
);
334 page
->mapping
= NULL
;
336 __dec_zone_page_state(page
, NR_FILE_PAGES
);
337 __dec_zone_page_state(page
, NR_SHMEM
);
338 spin_unlock_irq(&mapping
->tree_lock
);
339 page_cache_release(page
);
344 * Remove swap entry from radix tree, free the swap and its page cache.
346 static int shmem_free_swap(struct address_space
*mapping
,
347 pgoff_t index
, void *radswap
)
351 spin_lock_irq(&mapping
->tree_lock
);
352 old
= radix_tree_delete_item(&mapping
->page_tree
, index
, radswap
);
353 spin_unlock_irq(&mapping
->tree_lock
);
356 free_swap_and_cache(radix_to_swp_entry(radswap
));
361 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
363 void shmem_unlock_mapping(struct address_space
*mapping
)
366 pgoff_t indices
[PAGEVEC_SIZE
];
369 pagevec_init(&pvec
, 0);
371 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
373 while (!mapping_unevictable(mapping
)) {
375 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
376 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
378 pvec
.nr
= find_get_entries(mapping
, index
,
379 PAGEVEC_SIZE
, pvec
.pages
, indices
);
382 index
= indices
[pvec
.nr
- 1] + 1;
383 pagevec_remove_exceptionals(&pvec
);
384 check_move_unevictable_pages(pvec
.pages
, pvec
.nr
);
385 pagevec_release(&pvec
);
391 * Remove range of pages and swap entries from radix tree, and free them.
392 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
394 static void shmem_undo_range(struct inode
*inode
, loff_t lstart
, loff_t lend
,
397 struct address_space
*mapping
= inode
->i_mapping
;
398 struct shmem_inode_info
*info
= SHMEM_I(inode
);
399 pgoff_t start
= (lstart
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
400 pgoff_t end
= (lend
+ 1) >> PAGE_CACHE_SHIFT
;
401 unsigned int partial_start
= lstart
& (PAGE_CACHE_SIZE
- 1);
402 unsigned int partial_end
= (lend
+ 1) & (PAGE_CACHE_SIZE
- 1);
404 pgoff_t indices
[PAGEVEC_SIZE
];
405 long nr_swaps_freed
= 0;
410 end
= -1; /* unsigned, so actually very big */
412 pagevec_init(&pvec
, 0);
414 while (index
< end
) {
415 pvec
.nr
= find_get_entries(mapping
, index
,
416 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
),
417 pvec
.pages
, indices
);
420 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
421 struct page
*page
= pvec
.pages
[i
];
427 if (radix_tree_exceptional_entry(page
)) {
430 nr_swaps_freed
+= !shmem_free_swap(mapping
,
435 if (!trylock_page(page
))
437 if (!unfalloc
|| !PageUptodate(page
)) {
438 if (page
->mapping
== mapping
) {
439 VM_BUG_ON_PAGE(PageWriteback(page
), page
);
440 truncate_inode_page(mapping
, page
);
445 pagevec_remove_exceptionals(&pvec
);
446 pagevec_release(&pvec
);
452 struct page
*page
= NULL
;
453 shmem_getpage(inode
, start
- 1, &page
, SGP_READ
, NULL
);
455 unsigned int top
= PAGE_CACHE_SIZE
;
460 zero_user_segment(page
, partial_start
, top
);
461 set_page_dirty(page
);
463 page_cache_release(page
);
467 struct page
*page
= NULL
;
468 shmem_getpage(inode
, end
, &page
, SGP_READ
, NULL
);
470 zero_user_segment(page
, 0, partial_end
);
471 set_page_dirty(page
);
473 page_cache_release(page
);
480 while (index
< end
) {
483 pvec
.nr
= find_get_entries(mapping
, index
,
484 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
),
485 pvec
.pages
, indices
);
487 /* If all gone or hole-punch or unfalloc, we're done */
488 if (index
== start
|| end
!= -1)
490 /* But if truncating, restart to make sure all gone */
494 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
495 struct page
*page
= pvec
.pages
[i
];
501 if (radix_tree_exceptional_entry(page
)) {
504 if (shmem_free_swap(mapping
, index
, page
)) {
505 /* Swap was replaced by page: retry */
514 if (!unfalloc
|| !PageUptodate(page
)) {
515 if (page
->mapping
== mapping
) {
516 VM_BUG_ON_PAGE(PageWriteback(page
), page
);
517 truncate_inode_page(mapping
, page
);
519 /* Page was replaced by swap: retry */
527 pagevec_remove_exceptionals(&pvec
);
528 pagevec_release(&pvec
);
532 spin_lock(&info
->lock
);
533 info
->swapped
-= nr_swaps_freed
;
534 shmem_recalc_inode(inode
);
535 spin_unlock(&info
->lock
);
538 void shmem_truncate_range(struct inode
*inode
, loff_t lstart
, loff_t lend
)
540 shmem_undo_range(inode
, lstart
, lend
, false);
541 inode
->i_ctime
= inode
->i_mtime
= CURRENT_TIME
;
543 EXPORT_SYMBOL_GPL(shmem_truncate_range
);
545 static int shmem_getattr(struct vfsmount
*mnt
, struct dentry
*dentry
,
548 struct inode
*inode
= dentry
->d_inode
;
549 struct shmem_inode_info
*info
= SHMEM_I(inode
);
551 spin_lock(&info
->lock
);
552 shmem_recalc_inode(inode
);
553 spin_unlock(&info
->lock
);
555 generic_fillattr(inode
, stat
);
560 static int shmem_setattr(struct dentry
*dentry
, struct iattr
*attr
)
562 struct inode
*inode
= d_inode(dentry
);
563 struct shmem_inode_info
*info
= SHMEM_I(inode
);
566 error
= inode_change_ok(inode
, attr
);
570 if (S_ISREG(inode
->i_mode
) && (attr
->ia_valid
& ATTR_SIZE
)) {
571 loff_t oldsize
= inode
->i_size
;
572 loff_t newsize
= attr
->ia_size
;
574 /* protected by i_mutex */
575 if ((newsize
< oldsize
&& (info
->seals
& F_SEAL_SHRINK
)) ||
576 (newsize
> oldsize
&& (info
->seals
& F_SEAL_GROW
)))
579 if (newsize
!= oldsize
) {
580 error
= shmem_reacct_size(SHMEM_I(inode
)->flags
,
584 i_size_write(inode
, newsize
);
585 inode
->i_ctime
= inode
->i_mtime
= CURRENT_TIME
;
587 if (newsize
<= oldsize
) {
588 loff_t holebegin
= round_up(newsize
, PAGE_SIZE
);
589 unmap_mapping_range(inode
->i_mapping
, holebegin
, 0, 1);
590 shmem_truncate_range(inode
, newsize
, (loff_t
)-1);
591 /* unmap again to remove racily COWed private pages */
592 unmap_mapping_range(inode
->i_mapping
, holebegin
, 0, 1);
596 setattr_copy(inode
, attr
);
597 if (attr
->ia_valid
& ATTR_MODE
)
598 error
= posix_acl_chmod(inode
, inode
->i_mode
);
602 static void shmem_evict_inode(struct inode
*inode
)
604 struct shmem_inode_info
*info
= SHMEM_I(inode
);
606 if (inode
->i_mapping
->a_ops
== &shmem_aops
) {
607 shmem_unacct_size(info
->flags
, inode
->i_size
);
609 shmem_truncate_range(inode
, 0, (loff_t
)-1);
610 if (!list_empty(&info
->swaplist
)) {
611 mutex_lock(&shmem_swaplist_mutex
);
612 list_del_init(&info
->swaplist
);
613 mutex_unlock(&shmem_swaplist_mutex
);
616 kfree(info
->symlink
);
618 simple_xattrs_free(&info
->xattrs
);
619 WARN_ON(inode
->i_blocks
);
620 shmem_free_inode(inode
->i_sb
);
625 * If swap found in inode, free it and move page from swapcache to filecache.
627 static int shmem_unuse_inode(struct shmem_inode_info
*info
,
628 swp_entry_t swap
, struct page
**pagep
)
630 struct address_space
*mapping
= info
->vfs_inode
.i_mapping
;
636 radswap
= swp_to_radix_entry(swap
);
637 index
= radix_tree_locate_item(&mapping
->page_tree
, radswap
);
639 return -EAGAIN
; /* tell shmem_unuse we found nothing */
642 * Move _head_ to start search for next from here.
643 * But be careful: shmem_evict_inode checks list_empty without taking
644 * mutex, and there's an instant in list_move_tail when info->swaplist
645 * would appear empty, if it were the only one on shmem_swaplist.
647 if (shmem_swaplist
.next
!= &info
->swaplist
)
648 list_move_tail(&shmem_swaplist
, &info
->swaplist
);
650 gfp
= mapping_gfp_mask(mapping
);
651 if (shmem_should_replace_page(*pagep
, gfp
)) {
652 mutex_unlock(&shmem_swaplist_mutex
);
653 error
= shmem_replace_page(pagep
, gfp
, info
, index
);
654 mutex_lock(&shmem_swaplist_mutex
);
656 * We needed to drop mutex to make that restrictive page
657 * allocation, but the inode might have been freed while we
658 * dropped it: although a racing shmem_evict_inode() cannot
659 * complete without emptying the radix_tree, our page lock
660 * on this swapcache page is not enough to prevent that -
661 * free_swap_and_cache() of our swap entry will only
662 * trylock_page(), removing swap from radix_tree whatever.
664 * We must not proceed to shmem_add_to_page_cache() if the
665 * inode has been freed, but of course we cannot rely on
666 * inode or mapping or info to check that. However, we can
667 * safely check if our swap entry is still in use (and here
668 * it can't have got reused for another page): if it's still
669 * in use, then the inode cannot have been freed yet, and we
670 * can safely proceed (if it's no longer in use, that tells
671 * nothing about the inode, but we don't need to unuse swap).
673 if (!page_swapcount(*pagep
))
678 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
679 * but also to hold up shmem_evict_inode(): so inode cannot be freed
680 * beneath us (pagelock doesn't help until the page is in pagecache).
683 error
= shmem_add_to_page_cache(*pagep
, mapping
, index
,
685 if (error
!= -ENOMEM
) {
687 * Truncation and eviction use free_swap_and_cache(), which
688 * only does trylock page: if we raced, best clean up here.
690 delete_from_swap_cache(*pagep
);
691 set_page_dirty(*pagep
);
693 spin_lock(&info
->lock
);
695 spin_unlock(&info
->lock
);
703 * Search through swapped inodes to find and replace swap by page.
705 int shmem_unuse(swp_entry_t swap
, struct page
*page
)
707 struct list_head
*this, *next
;
708 struct shmem_inode_info
*info
;
709 struct mem_cgroup
*memcg
;
713 * There's a faint possibility that swap page was replaced before
714 * caller locked it: caller will come back later with the right page.
716 if (unlikely(!PageSwapCache(page
) || page_private(page
) != swap
.val
))
720 * Charge page using GFP_KERNEL while we can wait, before taking
721 * the shmem_swaplist_mutex which might hold up shmem_writepage().
722 * Charged back to the user (not to caller) when swap account is used.
724 error
= mem_cgroup_try_charge(page
, current
->mm
, GFP_KERNEL
, &memcg
);
727 /* No radix_tree_preload: swap entry keeps a place for page in tree */
730 mutex_lock(&shmem_swaplist_mutex
);
731 list_for_each_safe(this, next
, &shmem_swaplist
) {
732 info
= list_entry(this, struct shmem_inode_info
, swaplist
);
734 error
= shmem_unuse_inode(info
, swap
, &page
);
736 list_del_init(&info
->swaplist
);
738 if (error
!= -EAGAIN
)
740 /* found nothing in this: move on to search the next */
742 mutex_unlock(&shmem_swaplist_mutex
);
745 if (error
!= -ENOMEM
)
747 mem_cgroup_cancel_charge(page
, memcg
);
749 mem_cgroup_commit_charge(page
, memcg
, true);
752 page_cache_release(page
);
757 * Move the page from the page cache to the swap cache.
759 static int shmem_writepage(struct page
*page
, struct writeback_control
*wbc
)
761 struct shmem_inode_info
*info
;
762 struct address_space
*mapping
;
767 BUG_ON(!PageLocked(page
));
768 mapping
= page
->mapping
;
770 inode
= mapping
->host
;
771 info
= SHMEM_I(inode
);
772 if (info
->flags
& VM_LOCKED
)
774 if (!total_swap_pages
)
778 * Our capabilities prevent regular writeback or sync from ever calling
779 * shmem_writepage; but a stacking filesystem might use ->writepage of
780 * its underlying filesystem, in which case tmpfs should write out to
781 * swap only in response to memory pressure, and not for the writeback
784 if (!wbc
->for_reclaim
) {
785 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
790 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
791 * value into swapfile.c, the only way we can correctly account for a
792 * fallocated page arriving here is now to initialize it and write it.
794 * That's okay for a page already fallocated earlier, but if we have
795 * not yet completed the fallocation, then (a) we want to keep track
796 * of this page in case we have to undo it, and (b) it may not be a
797 * good idea to continue anyway, once we're pushing into swap. So
798 * reactivate the page, and let shmem_fallocate() quit when too many.
800 if (!PageUptodate(page
)) {
801 if (inode
->i_private
) {
802 struct shmem_falloc
*shmem_falloc
;
803 spin_lock(&inode
->i_lock
);
804 shmem_falloc
= inode
->i_private
;
806 !shmem_falloc
->waitq
&&
807 index
>= shmem_falloc
->start
&&
808 index
< shmem_falloc
->next
)
809 shmem_falloc
->nr_unswapped
++;
812 spin_unlock(&inode
->i_lock
);
816 clear_highpage(page
);
817 flush_dcache_page(page
);
818 SetPageUptodate(page
);
821 swap
= get_swap_page();
826 * Add inode to shmem_unuse()'s list of swapped-out inodes,
827 * if it's not already there. Do it now before the page is
828 * moved to swap cache, when its pagelock no longer protects
829 * the inode from eviction. But don't unlock the mutex until
830 * we've incremented swapped, because shmem_unuse_inode() will
831 * prune a !swapped inode from the swaplist under this mutex.
833 mutex_lock(&shmem_swaplist_mutex
);
834 if (list_empty(&info
->swaplist
))
835 list_add_tail(&info
->swaplist
, &shmem_swaplist
);
837 if (add_to_swap_cache(page
, swap
, GFP_ATOMIC
) == 0) {
838 swap_shmem_alloc(swap
);
839 shmem_delete_from_page_cache(page
, swp_to_radix_entry(swap
));
841 spin_lock(&info
->lock
);
843 shmem_recalc_inode(inode
);
844 spin_unlock(&info
->lock
);
846 mutex_unlock(&shmem_swaplist_mutex
);
847 BUG_ON(page_mapped(page
));
848 swap_writepage(page
, wbc
);
852 mutex_unlock(&shmem_swaplist_mutex
);
853 swapcache_free(swap
);
855 set_page_dirty(page
);
856 if (wbc
->for_reclaim
)
857 return AOP_WRITEPAGE_ACTIVATE
; /* Return with page locked */
864 static void shmem_show_mpol(struct seq_file
*seq
, struct mempolicy
*mpol
)
868 if (!mpol
|| mpol
->mode
== MPOL_DEFAULT
)
869 return; /* show nothing */
871 mpol_to_str(buffer
, sizeof(buffer
), mpol
);
873 seq_printf(seq
, ",mpol=%s", buffer
);
876 static struct mempolicy
*shmem_get_sbmpol(struct shmem_sb_info
*sbinfo
)
878 struct mempolicy
*mpol
= NULL
;
880 spin_lock(&sbinfo
->stat_lock
); /* prevent replace/use races */
883 spin_unlock(&sbinfo
->stat_lock
);
887 #endif /* CONFIG_TMPFS */
889 static struct page
*shmem_swapin(swp_entry_t swap
, gfp_t gfp
,
890 struct shmem_inode_info
*info
, pgoff_t index
)
892 struct vm_area_struct pvma
;
895 /* Create a pseudo vma that just contains the policy */
897 /* Bias interleave by inode number to distribute better across nodes */
898 pvma
.vm_pgoff
= index
+ info
->vfs_inode
.i_ino
;
900 pvma
.vm_policy
= mpol_shared_policy_lookup(&info
->policy
, index
);
902 page
= swapin_readahead(swap
, gfp
, &pvma
, 0);
904 /* Drop reference taken by mpol_shared_policy_lookup() */
905 mpol_cond_put(pvma
.vm_policy
);
910 static struct page
*shmem_alloc_page(gfp_t gfp
,
911 struct shmem_inode_info
*info
, pgoff_t index
)
913 struct vm_area_struct pvma
;
916 /* Create a pseudo vma that just contains the policy */
918 /* Bias interleave by inode number to distribute better across nodes */
919 pvma
.vm_pgoff
= index
+ info
->vfs_inode
.i_ino
;
921 pvma
.vm_policy
= mpol_shared_policy_lookup(&info
->policy
, index
);
923 page
= alloc_page_vma(gfp
, &pvma
, 0);
925 /* Drop reference taken by mpol_shared_policy_lookup() */
926 mpol_cond_put(pvma
.vm_policy
);
930 #else /* !CONFIG_NUMA */
932 static inline void shmem_show_mpol(struct seq_file
*seq
, struct mempolicy
*mpol
)
935 #endif /* CONFIG_TMPFS */
937 static inline struct page
*shmem_swapin(swp_entry_t swap
, gfp_t gfp
,
938 struct shmem_inode_info
*info
, pgoff_t index
)
940 return swapin_readahead(swap
, gfp
, NULL
, 0);
943 static inline struct page
*shmem_alloc_page(gfp_t gfp
,
944 struct shmem_inode_info
*info
, pgoff_t index
)
946 return alloc_page(gfp
);
948 #endif /* CONFIG_NUMA */
950 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
951 static inline struct mempolicy
*shmem_get_sbmpol(struct shmem_sb_info
*sbinfo
)
958 * When a page is moved from swapcache to shmem filecache (either by the
959 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
960 * shmem_unuse_inode()), it may have been read in earlier from swap, in
961 * ignorance of the mapping it belongs to. If that mapping has special
962 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
963 * we may need to copy to a suitable page before moving to filecache.
965 * In a future release, this may well be extended to respect cpuset and
966 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
967 * but for now it is a simple matter of zone.
969 static bool shmem_should_replace_page(struct page
*page
, gfp_t gfp
)
971 return page_zonenum(page
) > gfp_zone(gfp
);
974 static int shmem_replace_page(struct page
**pagep
, gfp_t gfp
,
975 struct shmem_inode_info
*info
, pgoff_t index
)
977 struct page
*oldpage
, *newpage
;
978 struct address_space
*swap_mapping
;
983 swap_index
= page_private(oldpage
);
984 swap_mapping
= page_mapping(oldpage
);
987 * We have arrived here because our zones are constrained, so don't
988 * limit chance of success by further cpuset and node constraints.
990 gfp
&= ~GFP_CONSTRAINT_MASK
;
991 newpage
= shmem_alloc_page(gfp
, info
, index
);
995 page_cache_get(newpage
);
996 copy_highpage(newpage
, oldpage
);
997 flush_dcache_page(newpage
);
999 __set_page_locked(newpage
);
1000 SetPageUptodate(newpage
);
1001 SetPageSwapBacked(newpage
);
1002 set_page_private(newpage
, swap_index
);
1003 SetPageSwapCache(newpage
);
1006 * Our caller will very soon move newpage out of swapcache, but it's
1007 * a nice clean interface for us to replace oldpage by newpage there.
1009 spin_lock_irq(&swap_mapping
->tree_lock
);
1010 error
= shmem_radix_tree_replace(swap_mapping
, swap_index
, oldpage
,
1013 __inc_zone_page_state(newpage
, NR_FILE_PAGES
);
1014 __dec_zone_page_state(oldpage
, NR_FILE_PAGES
);
1016 spin_unlock_irq(&swap_mapping
->tree_lock
);
1018 if (unlikely(error
)) {
1020 * Is this possible? I think not, now that our callers check
1021 * both PageSwapCache and page_private after getting page lock;
1022 * but be defensive. Reverse old to newpage for clear and free.
1026 mem_cgroup_migrate(oldpage
, newpage
, true);
1027 lru_cache_add_anon(newpage
);
1031 ClearPageSwapCache(oldpage
);
1032 set_page_private(oldpage
, 0);
1034 unlock_page(oldpage
);
1035 page_cache_release(oldpage
);
1036 page_cache_release(oldpage
);
1041 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1043 * If we allocate a new one we do not mark it dirty. That's up to the
1044 * vm. If we swap it in we mark it dirty since we also free the swap
1045 * entry since a page cannot live in both the swap and page cache
1047 static int shmem_getpage_gfp(struct inode
*inode
, pgoff_t index
,
1048 struct page
**pagep
, enum sgp_type sgp
, gfp_t gfp
, int *fault_type
)
1050 struct address_space
*mapping
= inode
->i_mapping
;
1051 struct shmem_inode_info
*info
;
1052 struct shmem_sb_info
*sbinfo
;
1053 struct mem_cgroup
*memcg
;
1060 if (index
> (MAX_LFS_FILESIZE
>> PAGE_CACHE_SHIFT
))
1064 page
= find_lock_entry(mapping
, index
);
1065 if (radix_tree_exceptional_entry(page
)) {
1066 swap
= radix_to_swp_entry(page
);
1070 if (sgp
!= SGP_WRITE
&& sgp
!= SGP_FALLOC
&&
1071 ((loff_t
)index
<< PAGE_CACHE_SHIFT
) >= i_size_read(inode
)) {
1076 if (page
&& sgp
== SGP_WRITE
)
1077 mark_page_accessed(page
);
1079 /* fallocated page? */
1080 if (page
&& !PageUptodate(page
)) {
1081 if (sgp
!= SGP_READ
)
1084 page_cache_release(page
);
1087 if (page
|| (sgp
== SGP_READ
&& !swap
.val
)) {
1093 * Fast cache lookup did not find it:
1094 * bring it back from swap or allocate.
1096 info
= SHMEM_I(inode
);
1097 sbinfo
= SHMEM_SB(inode
->i_sb
);
1100 /* Look it up and read it in.. */
1101 page
= lookup_swap_cache(swap
);
1103 /* here we actually do the io */
1105 *fault_type
|= VM_FAULT_MAJOR
;
1106 page
= shmem_swapin(swap
, gfp
, info
, index
);
1113 /* We have to do this with page locked to prevent races */
1115 if (!PageSwapCache(page
) || page_private(page
) != swap
.val
||
1116 !shmem_confirm_swap(mapping
, index
, swap
)) {
1117 error
= -EEXIST
; /* try again */
1120 if (!PageUptodate(page
)) {
1124 wait_on_page_writeback(page
);
1126 if (shmem_should_replace_page(page
, gfp
)) {
1127 error
= shmem_replace_page(&page
, gfp
, info
, index
);
1132 error
= mem_cgroup_try_charge(page
, current
->mm
, gfp
, &memcg
);
1134 error
= shmem_add_to_page_cache(page
, mapping
, index
,
1135 swp_to_radix_entry(swap
));
1137 * We already confirmed swap under page lock, and make
1138 * no memory allocation here, so usually no possibility
1139 * of error; but free_swap_and_cache() only trylocks a
1140 * page, so it is just possible that the entry has been
1141 * truncated or holepunched since swap was confirmed.
1142 * shmem_undo_range() will have done some of the
1143 * unaccounting, now delete_from_swap_cache() will do
1145 * Reset swap.val? No, leave it so "failed" goes back to
1146 * "repeat": reading a hole and writing should succeed.
1149 mem_cgroup_cancel_charge(page
, memcg
);
1150 delete_from_swap_cache(page
);
1156 mem_cgroup_commit_charge(page
, memcg
, true);
1158 spin_lock(&info
->lock
);
1160 shmem_recalc_inode(inode
);
1161 spin_unlock(&info
->lock
);
1163 if (sgp
== SGP_WRITE
)
1164 mark_page_accessed(page
);
1166 delete_from_swap_cache(page
);
1167 set_page_dirty(page
);
1171 if (shmem_acct_block(info
->flags
)) {
1175 if (sbinfo
->max_blocks
) {
1176 if (percpu_counter_compare(&sbinfo
->used_blocks
,
1177 sbinfo
->max_blocks
) >= 0) {
1181 percpu_counter_inc(&sbinfo
->used_blocks
);
1184 page
= shmem_alloc_page(gfp
, info
, index
);
1190 __SetPageSwapBacked(page
);
1191 __set_page_locked(page
);
1192 if (sgp
== SGP_WRITE
)
1193 __SetPageReferenced(page
);
1195 error
= mem_cgroup_try_charge(page
, current
->mm
, gfp
, &memcg
);
1198 error
= radix_tree_maybe_preload(gfp
& GFP_RECLAIM_MASK
);
1200 error
= shmem_add_to_page_cache(page
, mapping
, index
,
1202 radix_tree_preload_end();
1205 mem_cgroup_cancel_charge(page
, memcg
);
1208 mem_cgroup_commit_charge(page
, memcg
, false);
1209 lru_cache_add_anon(page
);
1211 spin_lock(&info
->lock
);
1213 inode
->i_blocks
+= BLOCKS_PER_PAGE
;
1214 shmem_recalc_inode(inode
);
1215 spin_unlock(&info
->lock
);
1219 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1221 if (sgp
== SGP_FALLOC
)
1225 * Let SGP_WRITE caller clear ends if write does not fill page;
1226 * but SGP_FALLOC on a page fallocated earlier must initialize
1227 * it now, lest undo on failure cancel our earlier guarantee.
1229 if (sgp
!= SGP_WRITE
) {
1230 clear_highpage(page
);
1231 flush_dcache_page(page
);
1232 SetPageUptodate(page
);
1234 if (sgp
== SGP_DIRTY
)
1235 set_page_dirty(page
);
1238 /* Perhaps the file has been truncated since we checked */
1239 if (sgp
!= SGP_WRITE
&& sgp
!= SGP_FALLOC
&&
1240 ((loff_t
)index
<< PAGE_CACHE_SHIFT
) >= i_size_read(inode
)) {
1254 info
= SHMEM_I(inode
);
1255 ClearPageDirty(page
);
1256 delete_from_page_cache(page
);
1257 spin_lock(&info
->lock
);
1259 inode
->i_blocks
-= BLOCKS_PER_PAGE
;
1260 spin_unlock(&info
->lock
);
1262 sbinfo
= SHMEM_SB(inode
->i_sb
);
1263 if (sbinfo
->max_blocks
)
1264 percpu_counter_add(&sbinfo
->used_blocks
, -1);
1266 shmem_unacct_blocks(info
->flags
, 1);
1268 if (swap
.val
&& error
!= -EINVAL
&&
1269 !shmem_confirm_swap(mapping
, index
, swap
))
1274 page_cache_release(page
);
1276 if (error
== -ENOSPC
&& !once
++) {
1277 info
= SHMEM_I(inode
);
1278 spin_lock(&info
->lock
);
1279 shmem_recalc_inode(inode
);
1280 spin_unlock(&info
->lock
);
1283 if (error
== -EEXIST
) /* from above or from radix_tree_insert */
1288 static int shmem_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1290 struct inode
*inode
= file_inode(vma
->vm_file
);
1292 int ret
= VM_FAULT_LOCKED
;
1295 * Trinity finds that probing a hole which tmpfs is punching can
1296 * prevent the hole-punch from ever completing: which in turn
1297 * locks writers out with its hold on i_mutex. So refrain from
1298 * faulting pages into the hole while it's being punched. Although
1299 * shmem_undo_range() does remove the additions, it may be unable to
1300 * keep up, as each new page needs its own unmap_mapping_range() call,
1301 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1303 * It does not matter if we sometimes reach this check just before the
1304 * hole-punch begins, so that one fault then races with the punch:
1305 * we just need to make racing faults a rare case.
1307 * The implementation below would be much simpler if we just used a
1308 * standard mutex or completion: but we cannot take i_mutex in fault,
1309 * and bloating every shmem inode for this unlikely case would be sad.
1311 if (unlikely(inode
->i_private
)) {
1312 struct shmem_falloc
*shmem_falloc
;
1314 spin_lock(&inode
->i_lock
);
1315 shmem_falloc
= inode
->i_private
;
1317 shmem_falloc
->waitq
&&
1318 vmf
->pgoff
>= shmem_falloc
->start
&&
1319 vmf
->pgoff
< shmem_falloc
->next
) {
1320 wait_queue_head_t
*shmem_falloc_waitq
;
1321 DEFINE_WAIT(shmem_fault_wait
);
1323 ret
= VM_FAULT_NOPAGE
;
1324 if ((vmf
->flags
& FAULT_FLAG_ALLOW_RETRY
) &&
1325 !(vmf
->flags
& FAULT_FLAG_RETRY_NOWAIT
)) {
1326 /* It's polite to up mmap_sem if we can */
1327 up_read(&vma
->vm_mm
->mmap_sem
);
1328 ret
= VM_FAULT_RETRY
;
1331 shmem_falloc_waitq
= shmem_falloc
->waitq
;
1332 prepare_to_wait(shmem_falloc_waitq
, &shmem_fault_wait
,
1333 TASK_UNINTERRUPTIBLE
);
1334 spin_unlock(&inode
->i_lock
);
1338 * shmem_falloc_waitq points into the shmem_fallocate()
1339 * stack of the hole-punching task: shmem_falloc_waitq
1340 * is usually invalid by the time we reach here, but
1341 * finish_wait() does not dereference it in that case;
1342 * though i_lock needed lest racing with wake_up_all().
1344 spin_lock(&inode
->i_lock
);
1345 finish_wait(shmem_falloc_waitq
, &shmem_fault_wait
);
1346 spin_unlock(&inode
->i_lock
);
1349 spin_unlock(&inode
->i_lock
);
1352 error
= shmem_getpage(inode
, vmf
->pgoff
, &vmf
->page
, SGP_CACHE
, &ret
);
1354 return ((error
== -ENOMEM
) ? VM_FAULT_OOM
: VM_FAULT_SIGBUS
);
1356 if (ret
& VM_FAULT_MAJOR
) {
1357 count_vm_event(PGMAJFAULT
);
1358 mem_cgroup_count_vm_event(vma
->vm_mm
, PGMAJFAULT
);
1364 static int shmem_set_policy(struct vm_area_struct
*vma
, struct mempolicy
*mpol
)
1366 struct inode
*inode
= file_inode(vma
->vm_file
);
1367 return mpol_set_shared_policy(&SHMEM_I(inode
)->policy
, vma
, mpol
);
1370 static struct mempolicy
*shmem_get_policy(struct vm_area_struct
*vma
,
1373 struct inode
*inode
= file_inode(vma
->vm_file
);
1376 index
= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
) + vma
->vm_pgoff
;
1377 return mpol_shared_policy_lookup(&SHMEM_I(inode
)->policy
, index
);
1381 int shmem_lock(struct file
*file
, int lock
, struct user_struct
*user
)
1383 struct inode
*inode
= file_inode(file
);
1384 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1385 int retval
= -ENOMEM
;
1387 spin_lock(&info
->lock
);
1388 if (lock
&& !(info
->flags
& VM_LOCKED
)) {
1389 if (!user_shm_lock(inode
->i_size
, user
))
1391 info
->flags
|= VM_LOCKED
;
1392 mapping_set_unevictable(file
->f_mapping
);
1394 if (!lock
&& (info
->flags
& VM_LOCKED
) && user
) {
1395 user_shm_unlock(inode
->i_size
, user
);
1396 info
->flags
&= ~VM_LOCKED
;
1397 mapping_clear_unevictable(file
->f_mapping
);
1402 spin_unlock(&info
->lock
);
1406 static int shmem_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1408 file_accessed(file
);
1409 vma
->vm_ops
= &shmem_vm_ops
;
1413 static struct inode
*shmem_get_inode(struct super_block
*sb
, const struct inode
*dir
,
1414 umode_t mode
, dev_t dev
, unsigned long flags
)
1416 struct inode
*inode
;
1417 struct shmem_inode_info
*info
;
1418 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
1420 if (shmem_reserve_inode(sb
))
1423 inode
= new_inode(sb
);
1425 inode
->i_ino
= get_next_ino();
1426 inode_init_owner(inode
, dir
, mode
);
1427 inode
->i_blocks
= 0;
1428 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
= CURRENT_TIME
;
1429 inode
->i_generation
= get_seconds();
1430 info
= SHMEM_I(inode
);
1431 memset(info
, 0, (char *)inode
- (char *)info
);
1432 spin_lock_init(&info
->lock
);
1433 info
->seals
= F_SEAL_SEAL
;
1434 info
->flags
= flags
& VM_NORESERVE
;
1435 INIT_LIST_HEAD(&info
->swaplist
);
1436 simple_xattrs_init(&info
->xattrs
);
1437 cache_no_acl(inode
);
1439 switch (mode
& S_IFMT
) {
1441 inode
->i_op
= &shmem_special_inode_operations
;
1442 init_special_inode(inode
, mode
, dev
);
1445 inode
->i_mapping
->a_ops
= &shmem_aops
;
1446 inode
->i_op
= &shmem_inode_operations
;
1447 inode
->i_fop
= &shmem_file_operations
;
1448 mpol_shared_policy_init(&info
->policy
,
1449 shmem_get_sbmpol(sbinfo
));
1453 /* Some things misbehave if size == 0 on a directory */
1454 inode
->i_size
= 2 * BOGO_DIRENT_SIZE
;
1455 inode
->i_op
= &shmem_dir_inode_operations
;
1456 inode
->i_fop
= &simple_dir_operations
;
1460 * Must not load anything in the rbtree,
1461 * mpol_free_shared_policy will not be called.
1463 mpol_shared_policy_init(&info
->policy
, NULL
);
1467 shmem_free_inode(sb
);
1471 bool shmem_mapping(struct address_space
*mapping
)
1476 return mapping
->host
->i_sb
->s_op
== &shmem_ops
;
1480 static const struct inode_operations shmem_symlink_inode_operations
;
1481 static const struct inode_operations shmem_short_symlink_operations
;
1483 #ifdef CONFIG_TMPFS_XATTR
1484 static int shmem_initxattrs(struct inode
*, const struct xattr
*, void *);
1486 #define shmem_initxattrs NULL
1490 shmem_write_begin(struct file
*file
, struct address_space
*mapping
,
1491 loff_t pos
, unsigned len
, unsigned flags
,
1492 struct page
**pagep
, void **fsdata
)
1494 struct inode
*inode
= mapping
->host
;
1495 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1496 pgoff_t index
= pos
>> PAGE_CACHE_SHIFT
;
1498 /* i_mutex is held by caller */
1499 if (unlikely(info
->seals
)) {
1500 if (info
->seals
& F_SEAL_WRITE
)
1502 if ((info
->seals
& F_SEAL_GROW
) && pos
+ len
> inode
->i_size
)
1506 return shmem_getpage(inode
, index
, pagep
, SGP_WRITE
, NULL
);
1510 shmem_write_end(struct file
*file
, struct address_space
*mapping
,
1511 loff_t pos
, unsigned len
, unsigned copied
,
1512 struct page
*page
, void *fsdata
)
1514 struct inode
*inode
= mapping
->host
;
1516 if (pos
+ copied
> inode
->i_size
)
1517 i_size_write(inode
, pos
+ copied
);
1519 if (!PageUptodate(page
)) {
1520 if (copied
< PAGE_CACHE_SIZE
) {
1521 unsigned from
= pos
& (PAGE_CACHE_SIZE
- 1);
1522 zero_user_segments(page
, 0, from
,
1523 from
+ copied
, PAGE_CACHE_SIZE
);
1525 SetPageUptodate(page
);
1527 set_page_dirty(page
);
1529 page_cache_release(page
);
1534 static ssize_t
shmem_file_read_iter(struct kiocb
*iocb
, struct iov_iter
*to
)
1536 struct file
*file
= iocb
->ki_filp
;
1537 struct inode
*inode
= file_inode(file
);
1538 struct address_space
*mapping
= inode
->i_mapping
;
1540 unsigned long offset
;
1541 enum sgp_type sgp
= SGP_READ
;
1544 loff_t
*ppos
= &iocb
->ki_pos
;
1547 * Might this read be for a stacking filesystem? Then when reading
1548 * holes of a sparse file, we actually need to allocate those pages,
1549 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1551 if (!iter_is_iovec(to
))
1554 index
= *ppos
>> PAGE_CACHE_SHIFT
;
1555 offset
= *ppos
& ~PAGE_CACHE_MASK
;
1558 struct page
*page
= NULL
;
1560 unsigned long nr
, ret
;
1561 loff_t i_size
= i_size_read(inode
);
1563 end_index
= i_size
>> PAGE_CACHE_SHIFT
;
1564 if (index
> end_index
)
1566 if (index
== end_index
) {
1567 nr
= i_size
& ~PAGE_CACHE_MASK
;
1572 error
= shmem_getpage(inode
, index
, &page
, sgp
, NULL
);
1574 if (error
== -EINVAL
)
1582 * We must evaluate after, since reads (unlike writes)
1583 * are called without i_mutex protection against truncate
1585 nr
= PAGE_CACHE_SIZE
;
1586 i_size
= i_size_read(inode
);
1587 end_index
= i_size
>> PAGE_CACHE_SHIFT
;
1588 if (index
== end_index
) {
1589 nr
= i_size
& ~PAGE_CACHE_MASK
;
1592 page_cache_release(page
);
1600 * If users can be writing to this page using arbitrary
1601 * virtual addresses, take care about potential aliasing
1602 * before reading the page on the kernel side.
1604 if (mapping_writably_mapped(mapping
))
1605 flush_dcache_page(page
);
1607 * Mark the page accessed if we read the beginning.
1610 mark_page_accessed(page
);
1612 page
= ZERO_PAGE(0);
1613 page_cache_get(page
);
1617 * Ok, we have the page, and it's up-to-date, so
1618 * now we can copy it to user space...
1620 ret
= copy_page_to_iter(page
, offset
, nr
, to
);
1623 index
+= offset
>> PAGE_CACHE_SHIFT
;
1624 offset
&= ~PAGE_CACHE_MASK
;
1626 page_cache_release(page
);
1627 if (!iov_iter_count(to
))
1636 *ppos
= ((loff_t
) index
<< PAGE_CACHE_SHIFT
) + offset
;
1637 file_accessed(file
);
1638 return retval
? retval
: error
;
1641 static ssize_t
shmem_file_splice_read(struct file
*in
, loff_t
*ppos
,
1642 struct pipe_inode_info
*pipe
, size_t len
,
1645 struct address_space
*mapping
= in
->f_mapping
;
1646 struct inode
*inode
= mapping
->host
;
1647 unsigned int loff
, nr_pages
, req_pages
;
1648 struct page
*pages
[PIPE_DEF_BUFFERS
];
1649 struct partial_page partial
[PIPE_DEF_BUFFERS
];
1651 pgoff_t index
, end_index
;
1654 struct splice_pipe_desc spd
= {
1657 .nr_pages_max
= PIPE_DEF_BUFFERS
,
1659 .ops
= &page_cache_pipe_buf_ops
,
1660 .spd_release
= spd_release_page
,
1663 isize
= i_size_read(inode
);
1664 if (unlikely(*ppos
>= isize
))
1667 left
= isize
- *ppos
;
1668 if (unlikely(left
< len
))
1671 if (splice_grow_spd(pipe
, &spd
))
1674 index
= *ppos
>> PAGE_CACHE_SHIFT
;
1675 loff
= *ppos
& ~PAGE_CACHE_MASK
;
1676 req_pages
= (len
+ loff
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
1677 nr_pages
= min(req_pages
, spd
.nr_pages_max
);
1679 spd
.nr_pages
= find_get_pages_contig(mapping
, index
,
1680 nr_pages
, spd
.pages
);
1681 index
+= spd
.nr_pages
;
1684 while (spd
.nr_pages
< nr_pages
) {
1685 error
= shmem_getpage(inode
, index
, &page
, SGP_CACHE
, NULL
);
1689 spd
.pages
[spd
.nr_pages
++] = page
;
1693 index
= *ppos
>> PAGE_CACHE_SHIFT
;
1694 nr_pages
= spd
.nr_pages
;
1697 for (page_nr
= 0; page_nr
< nr_pages
; page_nr
++) {
1698 unsigned int this_len
;
1703 this_len
= min_t(unsigned long, len
, PAGE_CACHE_SIZE
- loff
);
1704 page
= spd
.pages
[page_nr
];
1706 if (!PageUptodate(page
) || page
->mapping
!= mapping
) {
1707 error
= shmem_getpage(inode
, index
, &page
,
1712 page_cache_release(spd
.pages
[page_nr
]);
1713 spd
.pages
[page_nr
] = page
;
1716 isize
= i_size_read(inode
);
1717 end_index
= (isize
- 1) >> PAGE_CACHE_SHIFT
;
1718 if (unlikely(!isize
|| index
> end_index
))
1721 if (end_index
== index
) {
1724 plen
= ((isize
- 1) & ~PAGE_CACHE_MASK
) + 1;
1728 this_len
= min(this_len
, plen
- loff
);
1732 spd
.partial
[page_nr
].offset
= loff
;
1733 spd
.partial
[page_nr
].len
= this_len
;
1740 while (page_nr
< nr_pages
)
1741 page_cache_release(spd
.pages
[page_nr
++]);
1744 error
= splice_to_pipe(pipe
, &spd
);
1746 splice_shrink_spd(&spd
);
1756 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1758 static pgoff_t
shmem_seek_hole_data(struct address_space
*mapping
,
1759 pgoff_t index
, pgoff_t end
, int whence
)
1762 struct pagevec pvec
;
1763 pgoff_t indices
[PAGEVEC_SIZE
];
1767 pagevec_init(&pvec
, 0);
1768 pvec
.nr
= 1; /* start small: we may be there already */
1770 pvec
.nr
= find_get_entries(mapping
, index
,
1771 pvec
.nr
, pvec
.pages
, indices
);
1773 if (whence
== SEEK_DATA
)
1777 for (i
= 0; i
< pvec
.nr
; i
++, index
++) {
1778 if (index
< indices
[i
]) {
1779 if (whence
== SEEK_HOLE
) {
1785 page
= pvec
.pages
[i
];
1786 if (page
&& !radix_tree_exceptional_entry(page
)) {
1787 if (!PageUptodate(page
))
1791 (page
&& whence
== SEEK_DATA
) ||
1792 (!page
&& whence
== SEEK_HOLE
)) {
1797 pagevec_remove_exceptionals(&pvec
);
1798 pagevec_release(&pvec
);
1799 pvec
.nr
= PAGEVEC_SIZE
;
1805 static loff_t
shmem_file_llseek(struct file
*file
, loff_t offset
, int whence
)
1807 struct address_space
*mapping
= file
->f_mapping
;
1808 struct inode
*inode
= mapping
->host
;
1812 if (whence
!= SEEK_DATA
&& whence
!= SEEK_HOLE
)
1813 return generic_file_llseek_size(file
, offset
, whence
,
1814 MAX_LFS_FILESIZE
, i_size_read(inode
));
1815 mutex_lock(&inode
->i_mutex
);
1816 /* We're holding i_mutex so we can access i_size directly */
1820 else if (offset
>= inode
->i_size
)
1823 start
= offset
>> PAGE_CACHE_SHIFT
;
1824 end
= (inode
->i_size
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
1825 new_offset
= shmem_seek_hole_data(mapping
, start
, end
, whence
);
1826 new_offset
<<= PAGE_CACHE_SHIFT
;
1827 if (new_offset
> offset
) {
1828 if (new_offset
< inode
->i_size
)
1829 offset
= new_offset
;
1830 else if (whence
== SEEK_DATA
)
1833 offset
= inode
->i_size
;
1838 offset
= vfs_setpos(file
, offset
, MAX_LFS_FILESIZE
);
1839 mutex_unlock(&inode
->i_mutex
);
1844 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
1845 * so reuse a tag which we firmly believe is never set or cleared on shmem.
1847 #define SHMEM_TAG_PINNED PAGECACHE_TAG_TOWRITE
1848 #define LAST_SCAN 4 /* about 150ms max */
1850 static void shmem_tag_pins(struct address_space
*mapping
)
1852 struct radix_tree_iter iter
;
1862 radix_tree_for_each_slot(slot
, &mapping
->page_tree
, &iter
, start
) {
1863 page
= radix_tree_deref_slot(slot
);
1864 if (!page
|| radix_tree_exception(page
)) {
1865 if (radix_tree_deref_retry(page
))
1867 } else if (page_count(page
) - page_mapcount(page
) > 1) {
1868 spin_lock_irq(&mapping
->tree_lock
);
1869 radix_tree_tag_set(&mapping
->page_tree
, iter
.index
,
1871 spin_unlock_irq(&mapping
->tree_lock
);
1874 if (need_resched()) {
1876 start
= iter
.index
+ 1;
1884 * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
1885 * via get_user_pages(), drivers might have some pending I/O without any active
1886 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
1887 * and see whether it has an elevated ref-count. If so, we tag them and wait for
1888 * them to be dropped.
1889 * The caller must guarantee that no new user will acquire writable references
1890 * to those pages to avoid races.
1892 static int shmem_wait_for_pins(struct address_space
*mapping
)
1894 struct radix_tree_iter iter
;
1900 shmem_tag_pins(mapping
);
1903 for (scan
= 0; scan
<= LAST_SCAN
; scan
++) {
1904 if (!radix_tree_tagged(&mapping
->page_tree
, SHMEM_TAG_PINNED
))
1908 lru_add_drain_all();
1909 else if (schedule_timeout_killable((HZ
<< scan
) / 200))
1915 radix_tree_for_each_tagged(slot
, &mapping
->page_tree
, &iter
,
1916 start
, SHMEM_TAG_PINNED
) {
1918 page
= radix_tree_deref_slot(slot
);
1919 if (radix_tree_exception(page
)) {
1920 if (radix_tree_deref_retry(page
))
1927 page_count(page
) - page_mapcount(page
) != 1) {
1928 if (scan
< LAST_SCAN
)
1929 goto continue_resched
;
1932 * On the last scan, we clean up all those tags
1933 * we inserted; but make a note that we still
1934 * found pages pinned.
1939 spin_lock_irq(&mapping
->tree_lock
);
1940 radix_tree_tag_clear(&mapping
->page_tree
,
1941 iter
.index
, SHMEM_TAG_PINNED
);
1942 spin_unlock_irq(&mapping
->tree_lock
);
1944 if (need_resched()) {
1946 start
= iter
.index
+ 1;
1956 #define F_ALL_SEALS (F_SEAL_SEAL | \
1961 int shmem_add_seals(struct file
*file
, unsigned int seals
)
1963 struct inode
*inode
= file_inode(file
);
1964 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1969 * Sealing allows multiple parties to share a shmem-file but restrict
1970 * access to a specific subset of file operations. Seals can only be
1971 * added, but never removed. This way, mutually untrusted parties can
1972 * share common memory regions with a well-defined policy. A malicious
1973 * peer can thus never perform unwanted operations on a shared object.
1975 * Seals are only supported on special shmem-files and always affect
1976 * the whole underlying inode. Once a seal is set, it may prevent some
1977 * kinds of access to the file. Currently, the following seals are
1979 * SEAL_SEAL: Prevent further seals from being set on this file
1980 * SEAL_SHRINK: Prevent the file from shrinking
1981 * SEAL_GROW: Prevent the file from growing
1982 * SEAL_WRITE: Prevent write access to the file
1984 * As we don't require any trust relationship between two parties, we
1985 * must prevent seals from being removed. Therefore, sealing a file
1986 * only adds a given set of seals to the file, it never touches
1987 * existing seals. Furthermore, the "setting seals"-operation can be
1988 * sealed itself, which basically prevents any further seal from being
1991 * Semantics of sealing are only defined on volatile files. Only
1992 * anonymous shmem files support sealing. More importantly, seals are
1993 * never written to disk. Therefore, there's no plan to support it on
1997 if (file
->f_op
!= &shmem_file_operations
)
1999 if (!(file
->f_mode
& FMODE_WRITE
))
2001 if (seals
& ~(unsigned int)F_ALL_SEALS
)
2004 mutex_lock(&inode
->i_mutex
);
2006 if (info
->seals
& F_SEAL_SEAL
) {
2011 if ((seals
& F_SEAL_WRITE
) && !(info
->seals
& F_SEAL_WRITE
)) {
2012 error
= mapping_deny_writable(file
->f_mapping
);
2016 error
= shmem_wait_for_pins(file
->f_mapping
);
2018 mapping_allow_writable(file
->f_mapping
);
2023 info
->seals
|= seals
;
2027 mutex_unlock(&inode
->i_mutex
);
2030 EXPORT_SYMBOL_GPL(shmem_add_seals
);
2032 int shmem_get_seals(struct file
*file
)
2034 if (file
->f_op
!= &shmem_file_operations
)
2037 return SHMEM_I(file_inode(file
))->seals
;
2039 EXPORT_SYMBOL_GPL(shmem_get_seals
);
2041 long shmem_fcntl(struct file
*file
, unsigned int cmd
, unsigned long arg
)
2047 /* disallow upper 32bit */
2051 error
= shmem_add_seals(file
, arg
);
2054 error
= shmem_get_seals(file
);
2064 static long shmem_fallocate(struct file
*file
, int mode
, loff_t offset
,
2067 struct inode
*inode
= file_inode(file
);
2068 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
2069 struct shmem_inode_info
*info
= SHMEM_I(inode
);
2070 struct shmem_falloc shmem_falloc
;
2071 pgoff_t start
, index
, end
;
2074 if (mode
& ~(FALLOC_FL_KEEP_SIZE
| FALLOC_FL_PUNCH_HOLE
))
2077 mutex_lock(&inode
->i_mutex
);
2079 if (mode
& FALLOC_FL_PUNCH_HOLE
) {
2080 struct address_space
*mapping
= file
->f_mapping
;
2081 loff_t unmap_start
= round_up(offset
, PAGE_SIZE
);
2082 loff_t unmap_end
= round_down(offset
+ len
, PAGE_SIZE
) - 1;
2083 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq
);
2085 /* protected by i_mutex */
2086 if (info
->seals
& F_SEAL_WRITE
) {
2091 shmem_falloc
.waitq
= &shmem_falloc_waitq
;
2092 shmem_falloc
.start
= unmap_start
>> PAGE_SHIFT
;
2093 shmem_falloc
.next
= (unmap_end
+ 1) >> PAGE_SHIFT
;
2094 spin_lock(&inode
->i_lock
);
2095 inode
->i_private
= &shmem_falloc
;
2096 spin_unlock(&inode
->i_lock
);
2098 if ((u64
)unmap_end
> (u64
)unmap_start
)
2099 unmap_mapping_range(mapping
, unmap_start
,
2100 1 + unmap_end
- unmap_start
, 0);
2101 shmem_truncate_range(inode
, offset
, offset
+ len
- 1);
2102 /* No need to unmap again: hole-punching leaves COWed pages */
2104 spin_lock(&inode
->i_lock
);
2105 inode
->i_private
= NULL
;
2106 wake_up_all(&shmem_falloc_waitq
);
2107 spin_unlock(&inode
->i_lock
);
2112 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2113 error
= inode_newsize_ok(inode
, offset
+ len
);
2117 if ((info
->seals
& F_SEAL_GROW
) && offset
+ len
> inode
->i_size
) {
2122 start
= offset
>> PAGE_CACHE_SHIFT
;
2123 end
= (offset
+ len
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
2124 /* Try to avoid a swapstorm if len is impossible to satisfy */
2125 if (sbinfo
->max_blocks
&& end
- start
> sbinfo
->max_blocks
) {
2130 shmem_falloc
.waitq
= NULL
;
2131 shmem_falloc
.start
= start
;
2132 shmem_falloc
.next
= start
;
2133 shmem_falloc
.nr_falloced
= 0;
2134 shmem_falloc
.nr_unswapped
= 0;
2135 spin_lock(&inode
->i_lock
);
2136 inode
->i_private
= &shmem_falloc
;
2137 spin_unlock(&inode
->i_lock
);
2139 for (index
= start
; index
< end
; index
++) {
2143 * Good, the fallocate(2) manpage permits EINTR: we may have
2144 * been interrupted because we are using up too much memory.
2146 if (signal_pending(current
))
2148 else if (shmem_falloc
.nr_unswapped
> shmem_falloc
.nr_falloced
)
2151 error
= shmem_getpage(inode
, index
, &page
, SGP_FALLOC
,
2154 /* Remove the !PageUptodate pages we added */
2155 shmem_undo_range(inode
,
2156 (loff_t
)start
<< PAGE_CACHE_SHIFT
,
2157 (loff_t
)index
<< PAGE_CACHE_SHIFT
, true);
2162 * Inform shmem_writepage() how far we have reached.
2163 * No need for lock or barrier: we have the page lock.
2165 shmem_falloc
.next
++;
2166 if (!PageUptodate(page
))
2167 shmem_falloc
.nr_falloced
++;
2170 * If !PageUptodate, leave it that way so that freeable pages
2171 * can be recognized if we need to rollback on error later.
2172 * But set_page_dirty so that memory pressure will swap rather
2173 * than free the pages we are allocating (and SGP_CACHE pages
2174 * might still be clean: we now need to mark those dirty too).
2176 set_page_dirty(page
);
2178 page_cache_release(page
);
2182 if (!(mode
& FALLOC_FL_KEEP_SIZE
) && offset
+ len
> inode
->i_size
)
2183 i_size_write(inode
, offset
+ len
);
2184 inode
->i_ctime
= CURRENT_TIME
;
2186 spin_lock(&inode
->i_lock
);
2187 inode
->i_private
= NULL
;
2188 spin_unlock(&inode
->i_lock
);
2190 mutex_unlock(&inode
->i_mutex
);
2194 static int shmem_statfs(struct dentry
*dentry
, struct kstatfs
*buf
)
2196 struct shmem_sb_info
*sbinfo
= SHMEM_SB(dentry
->d_sb
);
2198 buf
->f_type
= TMPFS_MAGIC
;
2199 buf
->f_bsize
= PAGE_CACHE_SIZE
;
2200 buf
->f_namelen
= NAME_MAX
;
2201 if (sbinfo
->max_blocks
) {
2202 buf
->f_blocks
= sbinfo
->max_blocks
;
2204 buf
->f_bfree
= sbinfo
->max_blocks
-
2205 percpu_counter_sum(&sbinfo
->used_blocks
);
2207 if (sbinfo
->max_inodes
) {
2208 buf
->f_files
= sbinfo
->max_inodes
;
2209 buf
->f_ffree
= sbinfo
->free_inodes
;
2211 /* else leave those fields 0 like simple_statfs */
2216 * File creation. Allocate an inode, and we're done..
2219 shmem_mknod(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
, dev_t dev
)
2221 struct inode
*inode
;
2222 int error
= -ENOSPC
;
2224 inode
= shmem_get_inode(dir
->i_sb
, dir
, mode
, dev
, VM_NORESERVE
);
2226 error
= simple_acl_create(dir
, inode
);
2229 error
= security_inode_init_security(inode
, dir
,
2231 shmem_initxattrs
, NULL
);
2232 if (error
&& error
!= -EOPNOTSUPP
)
2236 dir
->i_size
+= BOGO_DIRENT_SIZE
;
2237 dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
2238 d_instantiate(dentry
, inode
);
2239 dget(dentry
); /* Extra count - pin the dentry in core */
2248 shmem_tmpfile(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
2250 struct inode
*inode
;
2251 int error
= -ENOSPC
;
2253 inode
= shmem_get_inode(dir
->i_sb
, dir
, mode
, 0, VM_NORESERVE
);
2255 error
= security_inode_init_security(inode
, dir
,
2257 shmem_initxattrs
, NULL
);
2258 if (error
&& error
!= -EOPNOTSUPP
)
2260 error
= simple_acl_create(dir
, inode
);
2263 d_tmpfile(dentry
, inode
);
2271 static int shmem_mkdir(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
2275 if ((error
= shmem_mknod(dir
, dentry
, mode
| S_IFDIR
, 0)))
2281 static int shmem_create(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
,
2284 return shmem_mknod(dir
, dentry
, mode
| S_IFREG
, 0);
2290 static int shmem_link(struct dentry
*old_dentry
, struct inode
*dir
, struct dentry
*dentry
)
2292 struct inode
*inode
= d_inode(old_dentry
);
2296 * No ordinary (disk based) filesystem counts links as inodes;
2297 * but each new link needs a new dentry, pinning lowmem, and
2298 * tmpfs dentries cannot be pruned until they are unlinked.
2300 ret
= shmem_reserve_inode(inode
->i_sb
);
2304 dir
->i_size
+= BOGO_DIRENT_SIZE
;
2305 inode
->i_ctime
= dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
2307 ihold(inode
); /* New dentry reference */
2308 dget(dentry
); /* Extra pinning count for the created dentry */
2309 d_instantiate(dentry
, inode
);
2314 static int shmem_unlink(struct inode
*dir
, struct dentry
*dentry
)
2316 struct inode
*inode
= d_inode(dentry
);
2318 if (inode
->i_nlink
> 1 && !S_ISDIR(inode
->i_mode
))
2319 shmem_free_inode(inode
->i_sb
);
2321 dir
->i_size
-= BOGO_DIRENT_SIZE
;
2322 inode
->i_ctime
= dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
2324 dput(dentry
); /* Undo the count from "create" - this does all the work */
2328 static int shmem_rmdir(struct inode
*dir
, struct dentry
*dentry
)
2330 if (!simple_empty(dentry
))
2333 drop_nlink(d_inode(dentry
));
2335 return shmem_unlink(dir
, dentry
);
2338 static int shmem_exchange(struct inode
*old_dir
, struct dentry
*old_dentry
, struct inode
*new_dir
, struct dentry
*new_dentry
)
2340 bool old_is_dir
= d_is_dir(old_dentry
);
2341 bool new_is_dir
= d_is_dir(new_dentry
);
2343 if (old_dir
!= new_dir
&& old_is_dir
!= new_is_dir
) {
2345 drop_nlink(old_dir
);
2348 drop_nlink(new_dir
);
2352 old_dir
->i_ctime
= old_dir
->i_mtime
=
2353 new_dir
->i_ctime
= new_dir
->i_mtime
=
2354 d_inode(old_dentry
)->i_ctime
=
2355 d_inode(new_dentry
)->i_ctime
= CURRENT_TIME
;
2360 static int shmem_whiteout(struct inode
*old_dir
, struct dentry
*old_dentry
)
2362 struct dentry
*whiteout
;
2365 whiteout
= d_alloc(old_dentry
->d_parent
, &old_dentry
->d_name
);
2369 error
= shmem_mknod(old_dir
, whiteout
,
2370 S_IFCHR
| WHITEOUT_MODE
, WHITEOUT_DEV
);
2376 * Cheat and hash the whiteout while the old dentry is still in
2377 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2379 * d_lookup() will consistently find one of them at this point,
2380 * not sure which one, but that isn't even important.
2387 * The VFS layer already does all the dentry stuff for rename,
2388 * we just have to decrement the usage count for the target if
2389 * it exists so that the VFS layer correctly free's it when it
2392 static int shmem_rename2(struct inode
*old_dir
, struct dentry
*old_dentry
, struct inode
*new_dir
, struct dentry
*new_dentry
, unsigned int flags
)
2394 struct inode
*inode
= d_inode(old_dentry
);
2395 int they_are_dirs
= S_ISDIR(inode
->i_mode
);
2397 if (flags
& ~(RENAME_NOREPLACE
| RENAME_EXCHANGE
| RENAME_WHITEOUT
))
2400 if (flags
& RENAME_EXCHANGE
)
2401 return shmem_exchange(old_dir
, old_dentry
, new_dir
, new_dentry
);
2403 if (!simple_empty(new_dentry
))
2406 if (flags
& RENAME_WHITEOUT
) {
2409 error
= shmem_whiteout(old_dir
, old_dentry
);
2414 if (d_really_is_positive(new_dentry
)) {
2415 (void) shmem_unlink(new_dir
, new_dentry
);
2416 if (they_are_dirs
) {
2417 drop_nlink(d_inode(new_dentry
));
2418 drop_nlink(old_dir
);
2420 } else if (they_are_dirs
) {
2421 drop_nlink(old_dir
);
2425 old_dir
->i_size
-= BOGO_DIRENT_SIZE
;
2426 new_dir
->i_size
+= BOGO_DIRENT_SIZE
;
2427 old_dir
->i_ctime
= old_dir
->i_mtime
=
2428 new_dir
->i_ctime
= new_dir
->i_mtime
=
2429 inode
->i_ctime
= CURRENT_TIME
;
2433 static int shmem_symlink(struct inode
*dir
, struct dentry
*dentry
, const char *symname
)
2437 struct inode
*inode
;
2440 struct shmem_inode_info
*info
;
2442 len
= strlen(symname
) + 1;
2443 if (len
> PAGE_CACHE_SIZE
)
2444 return -ENAMETOOLONG
;
2446 inode
= shmem_get_inode(dir
->i_sb
, dir
, S_IFLNK
|S_IRWXUGO
, 0, VM_NORESERVE
);
2450 error
= security_inode_init_security(inode
, dir
, &dentry
->d_name
,
2451 shmem_initxattrs
, NULL
);
2453 if (error
!= -EOPNOTSUPP
) {
2460 info
= SHMEM_I(inode
);
2461 inode
->i_size
= len
-1;
2462 if (len
<= SHORT_SYMLINK_LEN
) {
2463 info
->symlink
= kmemdup(symname
, len
, GFP_KERNEL
);
2464 if (!info
->symlink
) {
2468 inode
->i_op
= &shmem_short_symlink_operations
;
2469 inode
->i_link
= info
->symlink
;
2471 error
= shmem_getpage(inode
, 0, &page
, SGP_WRITE
, NULL
);
2476 inode
->i_mapping
->a_ops
= &shmem_aops
;
2477 inode
->i_op
= &shmem_symlink_inode_operations
;
2478 kaddr
= kmap_atomic(page
);
2479 memcpy(kaddr
, symname
, len
);
2480 kunmap_atomic(kaddr
);
2481 SetPageUptodate(page
);
2482 set_page_dirty(page
);
2484 page_cache_release(page
);
2486 dir
->i_size
+= BOGO_DIRENT_SIZE
;
2487 dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
2488 d_instantiate(dentry
, inode
);
2493 static const char *shmem_follow_link(struct dentry
*dentry
, void **cookie
)
2495 struct page
*page
= NULL
;
2496 int error
= shmem_getpage(d_inode(dentry
), 0, &page
, SGP_READ
, NULL
);
2498 return ERR_PTR(error
);
2504 static void shmem_put_link(struct inode
*unused
, void *cookie
)
2506 struct page
*page
= cookie
;
2508 mark_page_accessed(page
);
2509 page_cache_release(page
);
2512 #ifdef CONFIG_TMPFS_XATTR
2514 * Superblocks without xattr inode operations may get some security.* xattr
2515 * support from the LSM "for free". As soon as we have any other xattrs
2516 * like ACLs, we also need to implement the security.* handlers at
2517 * filesystem level, though.
2521 * Callback for security_inode_init_security() for acquiring xattrs.
2523 static int shmem_initxattrs(struct inode
*inode
,
2524 const struct xattr
*xattr_array
,
2527 struct shmem_inode_info
*info
= SHMEM_I(inode
);
2528 const struct xattr
*xattr
;
2529 struct simple_xattr
*new_xattr
;
2532 for (xattr
= xattr_array
; xattr
->name
!= NULL
; xattr
++) {
2533 new_xattr
= simple_xattr_alloc(xattr
->value
, xattr
->value_len
);
2537 len
= strlen(xattr
->name
) + 1;
2538 new_xattr
->name
= kmalloc(XATTR_SECURITY_PREFIX_LEN
+ len
,
2540 if (!new_xattr
->name
) {
2545 memcpy(new_xattr
->name
, XATTR_SECURITY_PREFIX
,
2546 XATTR_SECURITY_PREFIX_LEN
);
2547 memcpy(new_xattr
->name
+ XATTR_SECURITY_PREFIX_LEN
,
2550 simple_xattr_list_add(&info
->xattrs
, new_xattr
);
2556 static const struct xattr_handler
*shmem_xattr_handlers
[] = {
2557 #ifdef CONFIG_TMPFS_POSIX_ACL
2558 &posix_acl_access_xattr_handler
,
2559 &posix_acl_default_xattr_handler
,
2564 static int shmem_xattr_validate(const char *name
)
2566 struct { const char *prefix
; size_t len
; } arr
[] = {
2567 { XATTR_SECURITY_PREFIX
, XATTR_SECURITY_PREFIX_LEN
},
2568 { XATTR_TRUSTED_PREFIX
, XATTR_TRUSTED_PREFIX_LEN
}
2572 for (i
= 0; i
< ARRAY_SIZE(arr
); i
++) {
2573 size_t preflen
= arr
[i
].len
;
2574 if (strncmp(name
, arr
[i
].prefix
, preflen
) == 0) {
2583 static ssize_t
shmem_getxattr(struct dentry
*dentry
, const char *name
,
2584 void *buffer
, size_t size
)
2586 struct shmem_inode_info
*info
= SHMEM_I(d_inode(dentry
));
2590 * If this is a request for a synthetic attribute in the system.*
2591 * namespace use the generic infrastructure to resolve a handler
2592 * for it via sb->s_xattr.
2594 if (!strncmp(name
, XATTR_SYSTEM_PREFIX
, XATTR_SYSTEM_PREFIX_LEN
))
2595 return generic_getxattr(dentry
, name
, buffer
, size
);
2597 err
= shmem_xattr_validate(name
);
2601 return simple_xattr_get(&info
->xattrs
, name
, buffer
, size
);
2604 static int shmem_setxattr(struct dentry
*dentry
, const char *name
,
2605 const void *value
, size_t size
, int flags
)
2607 struct shmem_inode_info
*info
= SHMEM_I(d_inode(dentry
));
2611 * If this is a request for a synthetic attribute in the system.*
2612 * namespace use the generic infrastructure to resolve a handler
2613 * for it via sb->s_xattr.
2615 if (!strncmp(name
, XATTR_SYSTEM_PREFIX
, XATTR_SYSTEM_PREFIX_LEN
))
2616 return generic_setxattr(dentry
, name
, value
, size
, flags
);
2618 err
= shmem_xattr_validate(name
);
2622 return simple_xattr_set(&info
->xattrs
, name
, value
, size
, flags
);
2625 static int shmem_removexattr(struct dentry
*dentry
, const char *name
)
2627 struct shmem_inode_info
*info
= SHMEM_I(d_inode(dentry
));
2631 * If this is a request for a synthetic attribute in the system.*
2632 * namespace use the generic infrastructure to resolve a handler
2633 * for it via sb->s_xattr.
2635 if (!strncmp(name
, XATTR_SYSTEM_PREFIX
, XATTR_SYSTEM_PREFIX_LEN
))
2636 return generic_removexattr(dentry
, name
);
2638 err
= shmem_xattr_validate(name
);
2642 return simple_xattr_remove(&info
->xattrs
, name
);
2645 static ssize_t
shmem_listxattr(struct dentry
*dentry
, char *buffer
, size_t size
)
2647 struct shmem_inode_info
*info
= SHMEM_I(d_inode(dentry
));
2648 return simple_xattr_list(&info
->xattrs
, buffer
, size
);
2650 #endif /* CONFIG_TMPFS_XATTR */
2652 static const struct inode_operations shmem_short_symlink_operations
= {
2653 .readlink
= generic_readlink
,
2654 .follow_link
= simple_follow_link
,
2655 #ifdef CONFIG_TMPFS_XATTR
2656 .setxattr
= shmem_setxattr
,
2657 .getxattr
= shmem_getxattr
,
2658 .listxattr
= shmem_listxattr
,
2659 .removexattr
= shmem_removexattr
,
2663 static const struct inode_operations shmem_symlink_inode_operations
= {
2664 .readlink
= generic_readlink
,
2665 .follow_link
= shmem_follow_link
,
2666 .put_link
= shmem_put_link
,
2667 #ifdef CONFIG_TMPFS_XATTR
2668 .setxattr
= shmem_setxattr
,
2669 .getxattr
= shmem_getxattr
,
2670 .listxattr
= shmem_listxattr
,
2671 .removexattr
= shmem_removexattr
,
2675 static struct dentry
*shmem_get_parent(struct dentry
*child
)
2677 return ERR_PTR(-ESTALE
);
2680 static int shmem_match(struct inode
*ino
, void *vfh
)
2684 inum
= (inum
<< 32) | fh
[1];
2685 return ino
->i_ino
== inum
&& fh
[0] == ino
->i_generation
;
2688 static struct dentry
*shmem_fh_to_dentry(struct super_block
*sb
,
2689 struct fid
*fid
, int fh_len
, int fh_type
)
2691 struct inode
*inode
;
2692 struct dentry
*dentry
= NULL
;
2699 inum
= (inum
<< 32) | fid
->raw
[1];
2701 inode
= ilookup5(sb
, (unsigned long)(inum
+ fid
->raw
[0]),
2702 shmem_match
, fid
->raw
);
2704 dentry
= d_find_alias(inode
);
2711 static int shmem_encode_fh(struct inode
*inode
, __u32
*fh
, int *len
,
2712 struct inode
*parent
)
2716 return FILEID_INVALID
;
2719 if (inode_unhashed(inode
)) {
2720 /* Unfortunately insert_inode_hash is not idempotent,
2721 * so as we hash inodes here rather than at creation
2722 * time, we need a lock to ensure we only try
2725 static DEFINE_SPINLOCK(lock
);
2727 if (inode_unhashed(inode
))
2728 __insert_inode_hash(inode
,
2729 inode
->i_ino
+ inode
->i_generation
);
2733 fh
[0] = inode
->i_generation
;
2734 fh
[1] = inode
->i_ino
;
2735 fh
[2] = ((__u64
)inode
->i_ino
) >> 32;
2741 static const struct export_operations shmem_export_ops
= {
2742 .get_parent
= shmem_get_parent
,
2743 .encode_fh
= shmem_encode_fh
,
2744 .fh_to_dentry
= shmem_fh_to_dentry
,
2747 static int shmem_parse_options(char *options
, struct shmem_sb_info
*sbinfo
,
2750 char *this_char
, *value
, *rest
;
2751 struct mempolicy
*mpol
= NULL
;
2755 while (options
!= NULL
) {
2756 this_char
= options
;
2759 * NUL-terminate this option: unfortunately,
2760 * mount options form a comma-separated list,
2761 * but mpol's nodelist may also contain commas.
2763 options
= strchr(options
, ',');
2764 if (options
== NULL
)
2767 if (!isdigit(*options
)) {
2774 if ((value
= strchr(this_char
,'=')) != NULL
) {
2778 "tmpfs: No value for mount option '%s'\n",
2783 if (!strcmp(this_char
,"size")) {
2784 unsigned long long size
;
2785 size
= memparse(value
,&rest
);
2787 size
<<= PAGE_SHIFT
;
2788 size
*= totalram_pages
;
2794 sbinfo
->max_blocks
=
2795 DIV_ROUND_UP(size
, PAGE_CACHE_SIZE
);
2796 } else if (!strcmp(this_char
,"nr_blocks")) {
2797 sbinfo
->max_blocks
= memparse(value
, &rest
);
2800 } else if (!strcmp(this_char
,"nr_inodes")) {
2801 sbinfo
->max_inodes
= memparse(value
, &rest
);
2804 } else if (!strcmp(this_char
,"mode")) {
2807 sbinfo
->mode
= simple_strtoul(value
, &rest
, 8) & 07777;
2810 } else if (!strcmp(this_char
,"uid")) {
2813 uid
= simple_strtoul(value
, &rest
, 0);
2816 sbinfo
->uid
= make_kuid(current_user_ns(), uid
);
2817 if (!uid_valid(sbinfo
->uid
))
2819 } else if (!strcmp(this_char
,"gid")) {
2822 gid
= simple_strtoul(value
, &rest
, 0);
2825 sbinfo
->gid
= make_kgid(current_user_ns(), gid
);
2826 if (!gid_valid(sbinfo
->gid
))
2828 } else if (!strcmp(this_char
,"mpol")) {
2831 if (mpol_parse_str(value
, &mpol
))
2834 printk(KERN_ERR
"tmpfs: Bad mount option %s\n",
2839 sbinfo
->mpol
= mpol
;
2843 printk(KERN_ERR
"tmpfs: Bad value '%s' for mount option '%s'\n",
2851 static int shmem_remount_fs(struct super_block
*sb
, int *flags
, char *data
)
2853 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
2854 struct shmem_sb_info config
= *sbinfo
;
2855 unsigned long inodes
;
2856 int error
= -EINVAL
;
2859 if (shmem_parse_options(data
, &config
, true))
2862 spin_lock(&sbinfo
->stat_lock
);
2863 inodes
= sbinfo
->max_inodes
- sbinfo
->free_inodes
;
2864 if (percpu_counter_compare(&sbinfo
->used_blocks
, config
.max_blocks
) > 0)
2866 if (config
.max_inodes
< inodes
)
2869 * Those tests disallow limited->unlimited while any are in use;
2870 * but we must separately disallow unlimited->limited, because
2871 * in that case we have no record of how much is already in use.
2873 if (config
.max_blocks
&& !sbinfo
->max_blocks
)
2875 if (config
.max_inodes
&& !sbinfo
->max_inodes
)
2879 sbinfo
->max_blocks
= config
.max_blocks
;
2880 sbinfo
->max_inodes
= config
.max_inodes
;
2881 sbinfo
->free_inodes
= config
.max_inodes
- inodes
;
2884 * Preserve previous mempolicy unless mpol remount option was specified.
2887 mpol_put(sbinfo
->mpol
);
2888 sbinfo
->mpol
= config
.mpol
; /* transfers initial ref */
2891 spin_unlock(&sbinfo
->stat_lock
);
2895 static int shmem_show_options(struct seq_file
*seq
, struct dentry
*root
)
2897 struct shmem_sb_info
*sbinfo
= SHMEM_SB(root
->d_sb
);
2899 if (sbinfo
->max_blocks
!= shmem_default_max_blocks())
2900 seq_printf(seq
, ",size=%luk",
2901 sbinfo
->max_blocks
<< (PAGE_CACHE_SHIFT
- 10));
2902 if (sbinfo
->max_inodes
!= shmem_default_max_inodes())
2903 seq_printf(seq
, ",nr_inodes=%lu", sbinfo
->max_inodes
);
2904 if (sbinfo
->mode
!= (S_IRWXUGO
| S_ISVTX
))
2905 seq_printf(seq
, ",mode=%03ho", sbinfo
->mode
);
2906 if (!uid_eq(sbinfo
->uid
, GLOBAL_ROOT_UID
))
2907 seq_printf(seq
, ",uid=%u",
2908 from_kuid_munged(&init_user_ns
, sbinfo
->uid
));
2909 if (!gid_eq(sbinfo
->gid
, GLOBAL_ROOT_GID
))
2910 seq_printf(seq
, ",gid=%u",
2911 from_kgid_munged(&init_user_ns
, sbinfo
->gid
));
2912 shmem_show_mpol(seq
, sbinfo
->mpol
);
2916 #define MFD_NAME_PREFIX "memfd:"
2917 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
2918 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
2920 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING)
2922 SYSCALL_DEFINE2(memfd_create
,
2923 const char __user
*, uname
,
2924 unsigned int, flags
)
2926 struct shmem_inode_info
*info
;
2932 if (flags
& ~(unsigned int)MFD_ALL_FLAGS
)
2935 /* length includes terminating zero */
2936 len
= strnlen_user(uname
, MFD_NAME_MAX_LEN
+ 1);
2939 if (len
> MFD_NAME_MAX_LEN
+ 1)
2942 name
= kmalloc(len
+ MFD_NAME_PREFIX_LEN
, GFP_TEMPORARY
);
2946 strcpy(name
, MFD_NAME_PREFIX
);
2947 if (copy_from_user(&name
[MFD_NAME_PREFIX_LEN
], uname
, len
)) {
2952 /* terminating-zero may have changed after strnlen_user() returned */
2953 if (name
[len
+ MFD_NAME_PREFIX_LEN
- 1]) {
2958 fd
= get_unused_fd_flags((flags
& MFD_CLOEXEC
) ? O_CLOEXEC
: 0);
2964 file
= shmem_file_setup(name
, 0, VM_NORESERVE
);
2966 error
= PTR_ERR(file
);
2969 info
= SHMEM_I(file_inode(file
));
2970 file
->f_mode
|= FMODE_LSEEK
| FMODE_PREAD
| FMODE_PWRITE
;
2971 file
->f_flags
|= O_RDWR
| O_LARGEFILE
;
2972 if (flags
& MFD_ALLOW_SEALING
)
2973 info
->seals
&= ~F_SEAL_SEAL
;
2975 fd_install(fd
, file
);
2986 #endif /* CONFIG_TMPFS */
2988 static void shmem_put_super(struct super_block
*sb
)
2990 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
2992 percpu_counter_destroy(&sbinfo
->used_blocks
);
2993 mpol_put(sbinfo
->mpol
);
2995 sb
->s_fs_info
= NULL
;
2998 int shmem_fill_super(struct super_block
*sb
, void *data
, int silent
)
3000 struct inode
*inode
;
3001 struct shmem_sb_info
*sbinfo
;
3004 /* Round up to L1_CACHE_BYTES to resist false sharing */
3005 sbinfo
= kzalloc(max((int)sizeof(struct shmem_sb_info
),
3006 L1_CACHE_BYTES
), GFP_KERNEL
);
3010 sbinfo
->mode
= S_IRWXUGO
| S_ISVTX
;
3011 sbinfo
->uid
= current_fsuid();
3012 sbinfo
->gid
= current_fsgid();
3013 sb
->s_fs_info
= sbinfo
;
3017 * Per default we only allow half of the physical ram per
3018 * tmpfs instance, limiting inodes to one per page of lowmem;
3019 * but the internal instance is left unlimited.
3021 if (!(sb
->s_flags
& MS_KERNMOUNT
)) {
3022 sbinfo
->max_blocks
= shmem_default_max_blocks();
3023 sbinfo
->max_inodes
= shmem_default_max_inodes();
3024 if (shmem_parse_options(data
, sbinfo
, false)) {
3029 sb
->s_flags
|= MS_NOUSER
;
3031 sb
->s_export_op
= &shmem_export_ops
;
3032 sb
->s_flags
|= MS_NOSEC
;
3034 sb
->s_flags
|= MS_NOUSER
;
3037 spin_lock_init(&sbinfo
->stat_lock
);
3038 if (percpu_counter_init(&sbinfo
->used_blocks
, 0, GFP_KERNEL
))
3040 sbinfo
->free_inodes
= sbinfo
->max_inodes
;
3042 sb
->s_maxbytes
= MAX_LFS_FILESIZE
;
3043 sb
->s_blocksize
= PAGE_CACHE_SIZE
;
3044 sb
->s_blocksize_bits
= PAGE_CACHE_SHIFT
;
3045 sb
->s_magic
= TMPFS_MAGIC
;
3046 sb
->s_op
= &shmem_ops
;
3047 sb
->s_time_gran
= 1;
3048 #ifdef CONFIG_TMPFS_XATTR
3049 sb
->s_xattr
= shmem_xattr_handlers
;
3051 #ifdef CONFIG_TMPFS_POSIX_ACL
3052 sb
->s_flags
|= MS_POSIXACL
;
3055 inode
= shmem_get_inode(sb
, NULL
, S_IFDIR
| sbinfo
->mode
, 0, VM_NORESERVE
);
3058 inode
->i_uid
= sbinfo
->uid
;
3059 inode
->i_gid
= sbinfo
->gid
;
3060 sb
->s_root
= d_make_root(inode
);
3066 shmem_put_super(sb
);
3070 static struct kmem_cache
*shmem_inode_cachep
;
3072 static struct inode
*shmem_alloc_inode(struct super_block
*sb
)
3074 struct shmem_inode_info
*info
;
3075 info
= kmem_cache_alloc(shmem_inode_cachep
, GFP_KERNEL
);
3078 return &info
->vfs_inode
;
3081 static void shmem_destroy_callback(struct rcu_head
*head
)
3083 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
3084 kmem_cache_free(shmem_inode_cachep
, SHMEM_I(inode
));
3087 static void shmem_destroy_inode(struct inode
*inode
)
3089 if (S_ISREG(inode
->i_mode
))
3090 mpol_free_shared_policy(&SHMEM_I(inode
)->policy
);
3091 call_rcu(&inode
->i_rcu
, shmem_destroy_callback
);
3094 static void shmem_init_inode(void *foo
)
3096 struct shmem_inode_info
*info
= foo
;
3097 inode_init_once(&info
->vfs_inode
);
3100 static int shmem_init_inodecache(void)
3102 shmem_inode_cachep
= kmem_cache_create("shmem_inode_cache",
3103 sizeof(struct shmem_inode_info
),
3104 0, SLAB_PANIC
, shmem_init_inode
);
3108 static void shmem_destroy_inodecache(void)
3110 kmem_cache_destroy(shmem_inode_cachep
);
3113 static const struct address_space_operations shmem_aops
= {
3114 .writepage
= shmem_writepage
,
3115 .set_page_dirty
= __set_page_dirty_no_writeback
,
3117 .write_begin
= shmem_write_begin
,
3118 .write_end
= shmem_write_end
,
3120 #ifdef CONFIG_MIGRATION
3121 .migratepage
= migrate_page
,
3123 .error_remove_page
= generic_error_remove_page
,
3126 static const struct file_operations shmem_file_operations
= {
3129 .llseek
= shmem_file_llseek
,
3130 .read_iter
= shmem_file_read_iter
,
3131 .write_iter
= generic_file_write_iter
,
3132 .fsync
= noop_fsync
,
3133 .splice_read
= shmem_file_splice_read
,
3134 .splice_write
= iter_file_splice_write
,
3135 .fallocate
= shmem_fallocate
,
3139 static const struct inode_operations shmem_inode_operations
= {
3140 .getattr
= shmem_getattr
,
3141 .setattr
= shmem_setattr
,
3142 #ifdef CONFIG_TMPFS_XATTR
3143 .setxattr
= shmem_setxattr
,
3144 .getxattr
= shmem_getxattr
,
3145 .listxattr
= shmem_listxattr
,
3146 .removexattr
= shmem_removexattr
,
3147 .set_acl
= simple_set_acl
,
3151 static const struct inode_operations shmem_dir_inode_operations
= {
3153 .create
= shmem_create
,
3154 .lookup
= simple_lookup
,
3156 .unlink
= shmem_unlink
,
3157 .symlink
= shmem_symlink
,
3158 .mkdir
= shmem_mkdir
,
3159 .rmdir
= shmem_rmdir
,
3160 .mknod
= shmem_mknod
,
3161 .rename2
= shmem_rename2
,
3162 .tmpfile
= shmem_tmpfile
,
3164 #ifdef CONFIG_TMPFS_XATTR
3165 .setxattr
= shmem_setxattr
,
3166 .getxattr
= shmem_getxattr
,
3167 .listxattr
= shmem_listxattr
,
3168 .removexattr
= shmem_removexattr
,
3170 #ifdef CONFIG_TMPFS_POSIX_ACL
3171 .setattr
= shmem_setattr
,
3172 .set_acl
= simple_set_acl
,
3176 static const struct inode_operations shmem_special_inode_operations
= {
3177 #ifdef CONFIG_TMPFS_XATTR
3178 .setxattr
= shmem_setxattr
,
3179 .getxattr
= shmem_getxattr
,
3180 .listxattr
= shmem_listxattr
,
3181 .removexattr
= shmem_removexattr
,
3183 #ifdef CONFIG_TMPFS_POSIX_ACL
3184 .setattr
= shmem_setattr
,
3185 .set_acl
= simple_set_acl
,
3189 static const struct super_operations shmem_ops
= {
3190 .alloc_inode
= shmem_alloc_inode
,
3191 .destroy_inode
= shmem_destroy_inode
,
3193 .statfs
= shmem_statfs
,
3194 .remount_fs
= shmem_remount_fs
,
3195 .show_options
= shmem_show_options
,
3197 .evict_inode
= shmem_evict_inode
,
3198 .drop_inode
= generic_delete_inode
,
3199 .put_super
= shmem_put_super
,
3202 static const struct vm_operations_struct shmem_vm_ops
= {
3203 .fault
= shmem_fault
,
3204 .map_pages
= filemap_map_pages
,
3206 .set_policy
= shmem_set_policy
,
3207 .get_policy
= shmem_get_policy
,
3211 static struct dentry
*shmem_mount(struct file_system_type
*fs_type
,
3212 int flags
, const char *dev_name
, void *data
)
3214 return mount_nodev(fs_type
, flags
, data
, shmem_fill_super
);
3217 static struct file_system_type shmem_fs_type
= {
3218 .owner
= THIS_MODULE
,
3220 .mount
= shmem_mount
,
3221 .kill_sb
= kill_litter_super
,
3222 .fs_flags
= FS_USERNS_MOUNT
,
3225 int __init
shmem_init(void)
3229 /* If rootfs called this, don't re-init */
3230 if (shmem_inode_cachep
)
3233 error
= shmem_init_inodecache();
3237 error
= register_filesystem(&shmem_fs_type
);
3239 printk(KERN_ERR
"Could not register tmpfs\n");
3243 shm_mnt
= kern_mount(&shmem_fs_type
);
3244 if (IS_ERR(shm_mnt
)) {
3245 error
= PTR_ERR(shm_mnt
);
3246 printk(KERN_ERR
"Could not kern_mount tmpfs\n");
3252 unregister_filesystem(&shmem_fs_type
);
3254 shmem_destroy_inodecache();
3256 shm_mnt
= ERR_PTR(error
);
3260 #else /* !CONFIG_SHMEM */
3263 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3265 * This is intended for small system where the benefits of the full
3266 * shmem code (swap-backed and resource-limited) are outweighed by
3267 * their complexity. On systems without swap this code should be
3268 * effectively equivalent, but much lighter weight.
3271 static struct file_system_type shmem_fs_type
= {
3273 .mount
= ramfs_mount
,
3274 .kill_sb
= kill_litter_super
,
3275 .fs_flags
= FS_USERNS_MOUNT
,
3278 int __init
shmem_init(void)
3280 BUG_ON(register_filesystem(&shmem_fs_type
) != 0);
3282 shm_mnt
= kern_mount(&shmem_fs_type
);
3283 BUG_ON(IS_ERR(shm_mnt
));
3288 int shmem_unuse(swp_entry_t swap
, struct page
*page
)
3293 int shmem_lock(struct file
*file
, int lock
, struct user_struct
*user
)
3298 void shmem_unlock_mapping(struct address_space
*mapping
)
3302 void shmem_truncate_range(struct inode
*inode
, loff_t lstart
, loff_t lend
)
3304 truncate_inode_pages_range(inode
->i_mapping
, lstart
, lend
);
3306 EXPORT_SYMBOL_GPL(shmem_truncate_range
);
3308 #define shmem_vm_ops generic_file_vm_ops
3309 #define shmem_file_operations ramfs_file_operations
3310 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
3311 #define shmem_acct_size(flags, size) 0
3312 #define shmem_unacct_size(flags, size) do {} while (0)
3314 #endif /* CONFIG_SHMEM */
3318 static struct dentry_operations anon_ops
= {
3319 .d_dname
= simple_dname
3322 static struct file
*__shmem_file_setup(const char *name
, loff_t size
,
3323 unsigned long flags
, unsigned int i_flags
)
3326 struct inode
*inode
;
3328 struct super_block
*sb
;
3331 if (IS_ERR(shm_mnt
))
3332 return ERR_CAST(shm_mnt
);
3334 if (size
< 0 || size
> MAX_LFS_FILESIZE
)
3335 return ERR_PTR(-EINVAL
);
3337 if (shmem_acct_size(flags
, size
))
3338 return ERR_PTR(-ENOMEM
);
3340 res
= ERR_PTR(-ENOMEM
);
3342 this.len
= strlen(name
);
3343 this.hash
= 0; /* will go */
3344 sb
= shm_mnt
->mnt_sb
;
3345 path
.mnt
= mntget(shm_mnt
);
3346 path
.dentry
= d_alloc_pseudo(sb
, &this);
3349 d_set_d_op(path
.dentry
, &anon_ops
);
3351 res
= ERR_PTR(-ENOSPC
);
3352 inode
= shmem_get_inode(sb
, NULL
, S_IFREG
| S_IRWXUGO
, 0, flags
);
3356 inode
->i_flags
|= i_flags
;
3357 d_instantiate(path
.dentry
, inode
);
3358 inode
->i_size
= size
;
3359 clear_nlink(inode
); /* It is unlinked */
3360 res
= ERR_PTR(ramfs_nommu_expand_for_mapping(inode
, size
));
3364 res
= alloc_file(&path
, FMODE_WRITE
| FMODE_READ
,
3365 &shmem_file_operations
);
3372 shmem_unacct_size(flags
, size
);
3379 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
3380 * kernel internal. There will be NO LSM permission checks against the
3381 * underlying inode. So users of this interface must do LSM checks at a
3382 * higher layer. The users are the big_key and shm implementations. LSM
3383 * checks are provided at the key or shm level rather than the inode.
3384 * @name: name for dentry (to be seen in /proc/<pid>/maps
3385 * @size: size to be set for the file
3386 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3388 struct file
*shmem_kernel_file_setup(const char *name
, loff_t size
, unsigned long flags
)
3390 return __shmem_file_setup(name
, size
, flags
, S_PRIVATE
);
3394 * shmem_file_setup - get an unlinked file living in tmpfs
3395 * @name: name for dentry (to be seen in /proc/<pid>/maps
3396 * @size: size to be set for the file
3397 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3399 struct file
*shmem_file_setup(const char *name
, loff_t size
, unsigned long flags
)
3401 return __shmem_file_setup(name
, size
, flags
, 0);
3403 EXPORT_SYMBOL_GPL(shmem_file_setup
);
3406 * shmem_zero_setup - setup a shared anonymous mapping
3407 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3409 int shmem_zero_setup(struct vm_area_struct
*vma
)
3412 loff_t size
= vma
->vm_end
- vma
->vm_start
;
3415 * Cloning a new file under mmap_sem leads to a lock ordering conflict
3416 * between XFS directory reading and selinux: since this file is only
3417 * accessible to the user through its mapping, use S_PRIVATE flag to
3418 * bypass file security, in the same way as shmem_kernel_file_setup().
3420 file
= __shmem_file_setup("dev/zero", size
, vma
->vm_flags
, S_PRIVATE
);
3422 return PTR_ERR(file
);
3426 vma
->vm_file
= file
;
3427 vma
->vm_ops
= &shmem_vm_ops
;
3432 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3433 * @mapping: the page's address_space
3434 * @index: the page index
3435 * @gfp: the page allocator flags to use if allocating
3437 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3438 * with any new page allocations done using the specified allocation flags.
3439 * But read_cache_page_gfp() uses the ->readpage() method: which does not
3440 * suit tmpfs, since it may have pages in swapcache, and needs to find those
3441 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3443 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3444 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
3446 struct page
*shmem_read_mapping_page_gfp(struct address_space
*mapping
,
3447 pgoff_t index
, gfp_t gfp
)
3450 struct inode
*inode
= mapping
->host
;
3454 BUG_ON(mapping
->a_ops
!= &shmem_aops
);
3455 error
= shmem_getpage_gfp(inode
, index
, &page
, SGP_CACHE
, gfp
, NULL
);
3457 page
= ERR_PTR(error
);
3463 * The tiny !SHMEM case uses ramfs without swap
3465 return read_cache_page_gfp(mapping
, index
, gfp
);
3468 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp
);