2 * TLB Management (flush/create/diagnostics) for ARC700
4 * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
11 * -Reintroduce duplicate PD fixup - some customer chips still have the issue
14 * -No need to flush_cache_page( ) for each call to update_mmu_cache()
15 * some of the LMBench tests improved amazingly
16 * = page-fault thrice as fast (75 usec to 28 usec)
17 * = mmap twice as fast (9.6 msec to 4.6 msec),
18 * = fork (5.3 msec to 3.7 msec)
20 * vineetg: April 2011 :
21 * -MMU v3: PD{0,1} bits layout changed: They don't overlap anymore,
22 * helps avoid a shift when preparing PD0 from PTE
24 * vineetg: April 2011 : Preparing for MMU V3
25 * -MMU v2/v3 BCRs decoded differently
26 * -Remove TLB_SIZE hardcoding as it's variable now: 256 or 512
27 * -tlb_entry_erase( ) can be void
28 * -local_flush_tlb_range( ):
29 * = need not "ceil" @end
30 * = walks MMU only if range spans < 32 entries, as opposed to 256
32 * Vineetg: Sept 10th 2008
33 * -Changes related to MMU v2 (Rel 4.8)
35 * Vineetg: Aug 29th 2008
36 * -In TLB Flush operations (Metal Fix MMU) there is a explict command to
37 * flush Micro-TLBS. If TLB Index Reg is invalid prior to TLBIVUTLB cmd,
38 * it fails. Thus need to load it with ANY valid value before invoking
41 * Vineetg: Aug 21th 2008:
42 * -Reduced the duration of IRQ lockouts in TLB Flush routines
43 * -Multiple copies of TLB erase code seperated into a "single" function
44 * -In TLB Flush routines, interrupt disabling moved UP to retrieve ASID
45 * in interrupt-safe region.
47 * Vineetg: April 23rd Bug #93131
48 * Problem: tlb_flush_kernel_range() doesnt do anything if the range to
49 * flush is more than the size of TLB itself.
51 * Rahul Trivedi : Codito Technologies 2004
54 #include <linux/module.h>
55 #include <linux/bug.h>
56 #include <asm/arcregs.h>
57 #include <asm/setup.h>
58 #include <asm/mmu_context.h>
61 /* Need for ARC MMU v2
63 * ARC700 MMU-v1 had a Joint-TLB for Code and Data and is 2 way set-assoc.
64 * For a memcpy operation with 3 players (src/dst/code) such that all 3 pages
65 * map into same set, there would be contention for the 2 ways causing severe
68 * Although J-TLB is 2 way set assoc, ARC700 caches J-TLB into uTLBS which has
69 * much higher associativity. u-D-TLB is 8 ways, u-I-TLB is 4 ways.
70 * Given this, the thrasing problem should never happen because once the 3
71 * J-TLB entries are created (even though 3rd will knock out one of the prev
72 * two), the u-D-TLB and u-I-TLB will have what is required to accomplish memcpy
74 * Yet we still see the Thrashing because a J-TLB Write cause flush of u-TLBs.
75 * This is a simple design for keeping them in sync. So what do we do?
76 * The solution which James came up was pretty neat. It utilised the assoc
77 * of uTLBs by not invalidating always but only when absolutely necessary.
79 * - Existing TLB commands work as before
80 * - New command (TLBWriteNI) for TLB write without clearing uTLBs
81 * - New command (TLBIVUTLB) to invalidate uTLBs.
83 * The uTLBs need only be invalidated when pages are being removed from the
84 * OS page table. If a 'victim' TLB entry is being overwritten in the main TLB
85 * as a result of a miss, the removed entry is still allowed to exist in the
86 * uTLBs as it is still valid and present in the OS page table. This allows the
87 * full associativity of the uTLBs to hide the limited associativity of the main
90 * During a miss handler, the new "TLBWriteNI" command is used to load
91 * entries without clearing the uTLBs.
93 * When the OS page table is updated, TLB entries that may be associated with a
94 * removed page are removed (flushed) from the TLB using TLBWrite. In this
95 * circumstance, the uTLBs must also be cleared. This is done by using the
96 * existing TLBWrite command. An explicit IVUTLB is also required for those
97 * corner cases when TLBWrite was not executed at all because the corresp
98 * J-TLB entry got evicted/replaced.
102 /* A copy of the ASID from the PID reg is kept in asid_cache */
103 DEFINE_PER_CPU(unsigned int, asid_cache
) = MM_CTXT_FIRST_CYCLE
;
106 * Utility Routine to erase a J-TLB entry
107 * Caller needs to setup Index Reg (manually or via getIndex)
109 static inline void __tlb_entry_erase(void)
111 write_aux_reg(ARC_REG_TLBPD1
, 0);
112 write_aux_reg(ARC_REG_TLBPD0
, 0);
113 write_aux_reg(ARC_REG_TLBCOMMAND
, TLBWrite
);
116 static inline unsigned int tlb_entry_lkup(unsigned long vaddr_n_asid
)
120 write_aux_reg(ARC_REG_TLBPD0
, vaddr_n_asid
);
122 write_aux_reg(ARC_REG_TLBCOMMAND
, TLBProbe
);
123 idx
= read_aux_reg(ARC_REG_TLBINDEX
);
128 static void tlb_entry_erase(unsigned int vaddr_n_asid
)
132 /* Locate the TLB entry for this vaddr + ASID */
133 idx
= tlb_entry_lkup(vaddr_n_asid
);
135 /* No error means entry found, zero it out */
136 if (likely(!(idx
& TLB_LKUP_ERR
))) {
139 /* Duplicate entry error */
140 WARN(idx
== TLB_DUP_ERR
, "Probe returned Dup PD for %x\n",
145 /****************************************************************************
146 * ARC700 MMU caches recently used J-TLB entries (RAM) as uTLBs (FLOPs)
148 * New IVUTLB cmd in MMU v2 explictly invalidates the uTLB
150 * utlb_invalidate ( )
151 * -For v2 MMU calls Flush uTLB Cmd
152 * -For v1 MMU does nothing (except for Metal Fix v1 MMU)
153 * This is because in v1 TLBWrite itself invalidate uTLBs
154 ***************************************************************************/
156 static void utlb_invalidate(void)
158 #if (CONFIG_ARC_MMU_VER >= 2)
160 #if (CONFIG_ARC_MMU_VER == 2)
161 /* MMU v2 introduced the uTLB Flush command.
162 * There was however an obscure hardware bug, where uTLB flush would
163 * fail when a prior probe for J-TLB (both totally unrelated) would
164 * return lkup err - because the entry didnt exist in MMU.
165 * The Workround was to set Index reg with some valid value, prior to
166 * flush. This was fixed in MMU v3 hence not needed any more
170 /* make sure INDEX Reg is valid */
171 idx
= read_aux_reg(ARC_REG_TLBINDEX
);
173 /* If not write some dummy val */
174 if (unlikely(idx
& TLB_LKUP_ERR
))
175 write_aux_reg(ARC_REG_TLBINDEX
, 0xa);
178 write_aux_reg(ARC_REG_TLBCOMMAND
, TLBIVUTLB
);
183 static void tlb_entry_insert(unsigned int pd0
, unsigned int pd1
)
188 * First verify if entry for this vaddr+ASID already exists
189 * This also sets up PD0 (vaddr, ASID..) for final commit
191 idx
= tlb_entry_lkup(pd0
);
194 * If Not already present get a free slot from MMU.
195 * Otherwise, Probe would have located the entry and set INDEX Reg
196 * with existing location. This will cause Write CMD to over-write
197 * existing entry with new PD0 and PD1
199 if (likely(idx
& TLB_LKUP_ERR
))
200 write_aux_reg(ARC_REG_TLBCOMMAND
, TLBGetIndex
);
202 /* setup the other half of TLB entry (pfn, rwx..) */
203 write_aux_reg(ARC_REG_TLBPD1
, pd1
);
206 * Commit the Entry to MMU
207 * It doesnt sound safe to use the TLBWriteNI cmd here
208 * which doesn't flush uTLBs. I'd rather be safe than sorry.
210 write_aux_reg(ARC_REG_TLBCOMMAND
, TLBWrite
);
214 * Un-conditionally (without lookup) erase the entire MMU contents
217 noinline
void local_flush_tlb_all(void)
221 struct cpuinfo_arc_mmu
*mmu
= &cpuinfo_arc700
[smp_processor_id()].mmu
;
223 local_irq_save(flags
);
225 /* Load PD0 and PD1 with template for a Blank Entry */
226 write_aux_reg(ARC_REG_TLBPD1
, 0);
227 write_aux_reg(ARC_REG_TLBPD0
, 0);
229 for (entry
= 0; entry
< mmu
->num_tlb
; entry
++) {
230 /* write this entry to the TLB */
231 write_aux_reg(ARC_REG_TLBINDEX
, entry
);
232 write_aux_reg(ARC_REG_TLBCOMMAND
, TLBWrite
);
237 local_irq_restore(flags
);
241 * Flush the entrie MM for userland. The fastest way is to move to Next ASID
243 noinline
void local_flush_tlb_mm(struct mm_struct
*mm
)
246 * Small optimisation courtesy IA64
247 * flush_mm called during fork,exit,munmap etc, multiple times as well.
248 * Only for fork( ) do we need to move parent to a new MMU ctxt,
249 * all other cases are NOPs, hence this check.
251 if (atomic_read(&mm
->mm_users
) == 0)
255 * - Move to a new ASID, but only if the mm is still wired in
256 * (Android Binder ended up calling this for vma->mm != tsk->mm,
257 * causing h/w - s/w ASID to get out of sync)
258 * - Also get_new_mmu_context() new implementation allocates a new
259 * ASID only if it is not allocated already - so unallocate first
262 if (current
->mm
== mm
)
263 get_new_mmu_context(mm
);
267 * Flush a Range of TLB entries for userland.
268 * @start is inclusive, while @end is exclusive
269 * Difference between this and Kernel Range Flush is
270 * -Here the fastest way (if range is too large) is to move to next ASID
271 * without doing any explicit Shootdown
272 * -In case of kernel Flush, entry has to be shot down explictly
274 void local_flush_tlb_range(struct vm_area_struct
*vma
, unsigned long start
,
277 const unsigned int cpu
= smp_processor_id();
280 /* If range @start to @end is more than 32 TLB entries deep,
281 * its better to move to a new ASID rather than searching for
282 * individual entries and then shooting them down
284 * The calc above is rough, doesn't account for unaligned parts,
285 * since this is heuristics based anyways
287 if (unlikely((end
- start
) >= PAGE_SIZE
* 32)) {
288 local_flush_tlb_mm(vma
->vm_mm
);
293 * @start moved to page start: this alone suffices for checking
294 * loop end condition below, w/o need for aligning @end to end
295 * e.g. 2000 to 4001 will anyhow loop twice
299 local_irq_save(flags
);
301 if (asid_mm(vma
->vm_mm
, cpu
) != MM_CTXT_NO_ASID
) {
302 while (start
< end
) {
303 tlb_entry_erase(start
| hw_pid(vma
->vm_mm
, cpu
));
310 local_irq_restore(flags
);
313 /* Flush the kernel TLB entries - vmalloc/modules (Global from MMU perspective)
314 * @start, @end interpreted as kvaddr
315 * Interestingly, shared TLB entries can also be flushed using just
316 * @start,@end alone (interpreted as user vaddr), although technically SASID
317 * is also needed. However our smart TLbProbe lookup takes care of that.
319 void local_flush_tlb_kernel_range(unsigned long start
, unsigned long end
)
323 /* exactly same as above, except for TLB entry not taking ASID */
325 if (unlikely((end
- start
) >= PAGE_SIZE
* 32)) {
326 local_flush_tlb_all();
332 local_irq_save(flags
);
333 while (start
< end
) {
334 tlb_entry_erase(start
);
340 local_irq_restore(flags
);
344 * Delete TLB entry in MMU for a given page (??? address)
345 * NOTE One TLB entry contains translation for single PAGE
348 void local_flush_tlb_page(struct vm_area_struct
*vma
, unsigned long page
)
350 const unsigned int cpu
= smp_processor_id();
353 /* Note that it is critical that interrupts are DISABLED between
354 * checking the ASID and using it flush the TLB entry
356 local_irq_save(flags
);
358 if (asid_mm(vma
->vm_mm
, cpu
) != MM_CTXT_NO_ASID
) {
359 tlb_entry_erase((page
& PAGE_MASK
) | hw_pid(vma
->vm_mm
, cpu
));
363 local_irq_restore(flags
);
369 struct vm_area_struct
*ta_vma
;
370 unsigned long ta_start
;
371 unsigned long ta_end
;
374 static inline void ipi_flush_tlb_page(void *arg
)
376 struct tlb_args
*ta
= arg
;
378 local_flush_tlb_page(ta
->ta_vma
, ta
->ta_start
);
381 static inline void ipi_flush_tlb_range(void *arg
)
383 struct tlb_args
*ta
= arg
;
385 local_flush_tlb_range(ta
->ta_vma
, ta
->ta_start
, ta
->ta_end
);
388 static inline void ipi_flush_tlb_kernel_range(void *arg
)
390 struct tlb_args
*ta
= (struct tlb_args
*)arg
;
392 local_flush_tlb_kernel_range(ta
->ta_start
, ta
->ta_end
);
395 void flush_tlb_all(void)
397 on_each_cpu((smp_call_func_t
)local_flush_tlb_all
, NULL
, 1);
400 void flush_tlb_mm(struct mm_struct
*mm
)
402 on_each_cpu_mask(mm_cpumask(mm
), (smp_call_func_t
)local_flush_tlb_mm
,
406 void flush_tlb_page(struct vm_area_struct
*vma
, unsigned long uaddr
)
408 struct tlb_args ta
= {
413 on_each_cpu_mask(mm_cpumask(vma
->vm_mm
), ipi_flush_tlb_page
, &ta
, 1);
416 void flush_tlb_range(struct vm_area_struct
*vma
, unsigned long start
,
419 struct tlb_args ta
= {
425 on_each_cpu_mask(mm_cpumask(vma
->vm_mm
), ipi_flush_tlb_range
, &ta
, 1);
428 void flush_tlb_kernel_range(unsigned long start
, unsigned long end
)
430 struct tlb_args ta
= {
435 on_each_cpu(ipi_flush_tlb_kernel_range
, &ta
, 1);
440 * Routine to create a TLB entry
442 void create_tlb(struct vm_area_struct
*vma
, unsigned long address
, pte_t
*ptep
)
445 unsigned int asid_or_sasid
, rwx
;
446 unsigned long pd0
, pd1
;
449 * create_tlb() assumes that current->mm == vma->mm, since
450 * -it ASID for TLB entry is fetched from MMU ASID reg (valid for curr)
451 * -completes the lazy write to SASID reg (again valid for curr tsk)
453 * Removing the assumption involves
454 * -Using vma->mm->context{ASID,SASID}, as opposed to MMU reg.
455 * -Fix the TLB paranoid debug code to not trigger false negatives.
456 * -More importantly it makes this handler inconsistent with fast-path
457 * TLB Refill handler which always deals with "current"
459 * Lets see the use cases when current->mm != vma->mm and we land here
460 * 1. execve->copy_strings()->__get_user_pages->handle_mm_fault
461 * Here VM wants to pre-install a TLB entry for user stack while
462 * current->mm still points to pre-execve mm (hence the condition).
463 * However the stack vaddr is soon relocated (randomization) and
464 * move_page_tables() tries to undo that TLB entry.
465 * Thus not creating TLB entry is not any worse.
467 * 2. ptrace(POKETEXT) causes a CoW - debugger(current) inserting a
468 * breakpoint in debugged task. Not creating a TLB now is not
469 * performance critical.
471 * Both the cases above are not good enough for code churn.
473 if (current
->active_mm
!= vma
->vm_mm
)
476 local_irq_save(flags
);
478 tlb_paranoid_check(asid_mm(vma
->vm_mm
, smp_processor_id()), address
);
480 address
&= PAGE_MASK
;
482 /* update this PTE credentials */
483 pte_val(*ptep
) |= (_PAGE_PRESENT
| _PAGE_ACCESSED
);
485 /* Create HW TLB(PD0,PD1) from PTE */
487 /* ASID for this task */
488 asid_or_sasid
= read_aux_reg(ARC_REG_PID
) & 0xff;
490 pd0
= address
| asid_or_sasid
| (pte_val(*ptep
) & PTE_BITS_IN_PD0
);
493 * ARC MMU provides fully orthogonal access bits for K/U mode,
494 * however Linux only saves 1 set to save PTE real-estate
495 * Here we convert 3 PTE bits into 6 MMU bits:
496 * -Kernel only entries have Kr Kw Kx 0 0 0
497 * -User entries have mirrored K and U bits
499 rwx
= pte_val(*ptep
) & PTE_BITS_RWX
;
501 if (pte_val(*ptep
) & _PAGE_GLOBAL
)
502 rwx
<<= 3; /* r w x => Kr Kw Kx 0 0 0 */
504 rwx
|= (rwx
<< 3); /* r w x => Kr Kw Kx Ur Uw Ux */
506 pd1
= rwx
| (pte_val(*ptep
) & PTE_BITS_NON_RWX_IN_PD1
);
508 tlb_entry_insert(pd0
, pd1
);
510 local_irq_restore(flags
);
514 * Called at the end of pagefault, for a userspace mapped page
515 * -pre-install the corresponding TLB entry into MMU
516 * -Finalize the delayed D-cache flush of kernel mapping of page due to
517 * flush_dcache_page(), copy_user_page()
519 * Note that flush (when done) involves both WBACK - so physical page is
520 * in sync as well as INV - so any non-congruent aliases don't remain
522 void update_mmu_cache(struct vm_area_struct
*vma
, unsigned long vaddr_unaligned
,
525 unsigned long vaddr
= vaddr_unaligned
& PAGE_MASK
;
526 unsigned long paddr
= pte_val(*ptep
) & PAGE_MASK
;
527 struct page
*page
= pfn_to_page(pte_pfn(*ptep
));
529 create_tlb(vma
, vaddr
, ptep
);
531 if (page
== ZERO_PAGE(0)) {
536 * Exec page : Independent of aliasing/page-color considerations,
537 * since icache doesn't snoop dcache on ARC, any dirty
538 * K-mapping of a code page needs to be wback+inv so that
539 * icache fetch by userspace sees code correctly.
540 * !EXEC page: If K-mapping is NOT congruent to U-mapping, flush it
541 * so userspace sees the right data.
542 * (Avoids the flush for Non-exec + congruent mapping case)
544 if ((vma
->vm_flags
& VM_EXEC
) ||
545 addr_not_cache_congruent(paddr
, vaddr
)) {
547 int dirty
= !test_and_set_bit(PG_dc_clean
, &page
->flags
);
549 /* wback + inv dcache lines */
550 __flush_dcache_page(paddr
, paddr
);
552 /* invalidate any existing icache lines */
553 if (vma
->vm_flags
& VM_EXEC
)
554 __inv_icache_page(paddr
, vaddr
);
559 /* Read the Cache Build Confuration Registers, Decode them and save into
560 * the cpuinfo structure for later use.
561 * No Validation is done here, simply read/convert the BCRs
563 void read_decode_mmu_bcr(void)
565 struct cpuinfo_arc_mmu
*mmu
= &cpuinfo_arc700
[smp_processor_id()].mmu
;
568 #ifdef CONFIG_CPU_BIG_ENDIAN
569 unsigned int ver
:8, ways
:4, sets
:4, u_itlb
:8, u_dtlb
:8;
571 unsigned int u_dtlb
:8, u_itlb
:8, sets
:4, ways
:4, ver
:8;
576 #ifdef CONFIG_CPU_BIG_ENDIAN
577 unsigned int ver
:8, ways
:4, sets
:4, osm
:1, reserv
:3, pg_sz
:4,
580 unsigned int u_dtlb
:4, u_itlb
:4, pg_sz
:4, reserv
:3, osm
:1, sets
:4,
585 tmp
= read_aux_reg(ARC_REG_MMU_BCR
);
586 mmu
->ver
= (tmp
>> 24);
589 mmu2
= (struct bcr_mmu_1_2
*)&tmp
;
590 mmu
->pg_sz
= PAGE_SIZE
;
591 mmu
->sets
= 1 << mmu2
->sets
;
592 mmu
->ways
= 1 << mmu2
->ways
;
593 mmu
->u_dtlb
= mmu2
->u_dtlb
;
594 mmu
->u_itlb
= mmu2
->u_itlb
;
596 mmu3
= (struct bcr_mmu_3
*)&tmp
;
597 mmu
->pg_sz
= 512 << mmu3
->pg_sz
;
598 mmu
->sets
= 1 << mmu3
->sets
;
599 mmu
->ways
= 1 << mmu3
->ways
;
600 mmu
->u_dtlb
= mmu3
->u_dtlb
;
601 mmu
->u_itlb
= mmu3
->u_itlb
;
604 mmu
->num_tlb
= mmu
->sets
* mmu
->ways
;
607 char *arc_mmu_mumbojumbo(int cpu_id
, char *buf
, int len
)
610 struct cpuinfo_arc_mmu
*p_mmu
= &cpuinfo_arc700
[cpu_id
].mmu
;
612 n
+= scnprintf(buf
+ n
, len
- n
,
613 "MMU [v%x]\t: %dk PAGE, JTLB %d (%dx%d), uDTLB %d, uITLB %d %s\n",
614 p_mmu
->ver
, TO_KB(p_mmu
->pg_sz
),
615 p_mmu
->num_tlb
, p_mmu
->sets
, p_mmu
->ways
,
616 p_mmu
->u_dtlb
, p_mmu
->u_itlb
,
617 IS_ENABLED(CONFIG_ARC_MMU_SASID
) ? ",SASID" : "");
622 void arc_mmu_init(void)
625 struct cpuinfo_arc_mmu
*mmu
= &cpuinfo_arc700
[smp_processor_id()].mmu
;
627 printk(arc_mmu_mumbojumbo(0, str
, sizeof(str
)));
629 /* For efficiency sake, kernel is compile time built for a MMU ver
630 * This must match the hardware it is running on.
631 * Linux built for MMU V2, if run on MMU V1 will break down because V1
632 * hardware doesn't understand cmds such as WriteNI, or IVUTLB
633 * On the other hand, Linux built for V1 if run on MMU V2 will do
634 * un-needed workarounds to prevent memcpy thrashing.
635 * Similarly MMU V3 has new features which won't work on older MMU
637 if (mmu
->ver
!= CONFIG_ARC_MMU_VER
) {
638 panic("MMU ver %d doesn't match kernel built for %d...\n",
639 mmu
->ver
, CONFIG_ARC_MMU_VER
);
642 if (mmu
->pg_sz
!= PAGE_SIZE
)
643 panic("MMU pg size != PAGE_SIZE (%luk)\n", TO_KB(PAGE_SIZE
));
646 write_aux_reg(ARC_REG_PID
, MMU_ENABLE
);
648 /* In smp we use this reg for interrupt 1 scratch */
650 /* swapper_pg_dir is the pgd for the kernel, used by vmalloc */
651 write_aux_reg(ARC_REG_SCRATCH_DATA0
, swapper_pg_dir
);
656 * TLB Programmer's Model uses Linear Indexes: 0 to {255, 511} for 128 x {2,4}
657 * The mapping is Column-first.
658 * --------------------- -----------
659 * |way0|way1|way2|way3| |way0|way1|
660 * --------------------- -----------
661 * [set0] | 0 | 1 | 2 | 3 | | 0 | 1 |
662 * [set1] | 4 | 5 | 6 | 7 | | 2 | 3 |
664 * [set127] | 508| 509| 510| 511| | 254| 255|
665 * --------------------- -----------
666 * For normal operations we don't(must not) care how above works since
667 * MMU cmd getIndex(vaddr) abstracts that out.
668 * However for walking WAYS of a SET, we need to know this
670 #define SET_WAY_TO_IDX(mmu, set, way) ((set) * mmu->ways + (way))
672 /* Handling of Duplicate PD (TLB entry) in MMU.
673 * -Could be due to buggy customer tapeouts or obscure kernel bugs
674 * -MMU complaints not at the time of duplicate PD installation, but at the
675 * time of lookup matching multiple ways.
676 * -Ideally these should never happen - but if they do - workaround by deleting
678 * -Knob to be verbose abt it.(TODO: hook them up to debugfs)
680 volatile int dup_pd_verbose
= 1;/* Be slient abt it or complain (default) */
682 void do_tlb_overlap_fault(unsigned long cause
, unsigned long address
,
683 struct pt_regs
*regs
)
686 unsigned long flags
, is_valid
;
687 struct cpuinfo_arc_mmu
*mmu
= &cpuinfo_arc700
[smp_processor_id()].mmu
;
688 unsigned int pd0
[mmu
->ways
], pd1
[mmu
->ways
];
690 local_irq_save(flags
);
692 /* re-enable the MMU */
693 write_aux_reg(ARC_REG_PID
, MMU_ENABLE
| read_aux_reg(ARC_REG_PID
));
695 /* loop thru all sets of TLB */
696 for (set
= 0; set
< mmu
->sets
; set
++) {
698 /* read out all the ways of current set */
699 for (way
= 0, is_valid
= 0; way
< mmu
->ways
; way
++) {
700 write_aux_reg(ARC_REG_TLBINDEX
,
701 SET_WAY_TO_IDX(mmu
, set
, way
));
702 write_aux_reg(ARC_REG_TLBCOMMAND
, TLBRead
);
703 pd0
[way
] = read_aux_reg(ARC_REG_TLBPD0
);
704 pd1
[way
] = read_aux_reg(ARC_REG_TLBPD1
);
705 is_valid
|= pd0
[way
] & _PAGE_PRESENT
;
708 /* If all the WAYS in SET are empty, skip to next SET */
712 /* Scan the set for duplicate ways: needs a nested loop */
713 for (way
= 0; way
< mmu
->ways
- 1; way
++) {
717 for (n
= way
+ 1; n
< mmu
->ways
; n
++) {
718 if ((pd0
[way
] & PAGE_MASK
) ==
719 (pd0
[n
] & PAGE_MASK
)) {
721 if (dup_pd_verbose
) {
722 pr_info("Duplicate PD's @"
725 pr_info("TLBPD0[%u]: %08x\n",
730 * clear entry @way and not @n. This is
731 * critical to our optimised loop
733 pd0
[way
] = pd1
[way
] = 0;
734 write_aux_reg(ARC_REG_TLBINDEX
,
735 SET_WAY_TO_IDX(mmu
, set
, way
));
742 local_irq_restore(flags
);
745 /***********************************************************************
746 * Diagnostic Routines
747 * -Called from Low Level TLB Hanlders if things don;t look good
748 **********************************************************************/
750 #ifdef CONFIG_ARC_DBG_TLB_PARANOIA
753 * Low Level ASM TLB handler calls this if it finds that HW and SW ASIDS
756 void print_asid_mismatch(int mm_asid
, int mmu_asid
, int is_fast_path
)
758 pr_emerg("ASID Mismatch in %s Path Handler: sw-pid=0x%x hw-pid=0x%x\n",
759 is_fast_path
? "Fast" : "Slow", mm_asid
, mmu_asid
);
761 __asm__
__volatile__("flag 1");
764 void tlb_paranoid_check(unsigned int mm_asid
, unsigned long addr
)
766 unsigned int mmu_asid
;
768 mmu_asid
= read_aux_reg(ARC_REG_PID
) & 0xff;
771 * At the time of a TLB miss/installation
772 * - HW version needs to match SW version
773 * - SW needs to have a valid ASID
775 if (addr
< 0x70000000 &&
776 ((mm_asid
== MM_CTXT_NO_ASID
) ||
777 (mmu_asid
!= (mm_asid
& MM_CTXT_ASID_MASK
))))
778 print_asid_mismatch(mm_asid
, mmu_asid
, 0);