perf: Turn off compiler warnings for flex and bison generated files
[linux/fpc-iii.git] / mm / slub.c
blobffe13fdf8144adadfcc0a55b976f412009e87b38
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
8 * (C) 2007 SGI, Christoph Lameter
9 * (C) 2011 Linux Foundation, Christoph Lameter
12 #include <linux/mm.h>
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/kmemcheck.h>
22 #include <linux/cpu.h>
23 #include <linux/cpuset.h>
24 #include <linux/mempolicy.h>
25 #include <linux/ctype.h>
26 #include <linux/debugobjects.h>
27 #include <linux/kallsyms.h>
28 #include <linux/memory.h>
29 #include <linux/math64.h>
30 #include <linux/fault-inject.h>
31 #include <linux/stacktrace.h>
32 #include <linux/prefetch.h>
34 #include <trace/events/kmem.h>
37 * Lock order:
38 * 1. slub_lock (Global Semaphore)
39 * 2. node->list_lock
40 * 3. slab_lock(page) (Only on some arches and for debugging)
42 * slub_lock
44 * The role of the slub_lock is to protect the list of all the slabs
45 * and to synchronize major metadata changes to slab cache structures.
47 * The slab_lock is only used for debugging and on arches that do not
48 * have the ability to do a cmpxchg_double. It only protects the second
49 * double word in the page struct. Meaning
50 * A. page->freelist -> List of object free in a page
51 * B. page->counters -> Counters of objects
52 * C. page->frozen -> frozen state
54 * If a slab is frozen then it is exempt from list management. It is not
55 * on any list. The processor that froze the slab is the one who can
56 * perform list operations on the page. Other processors may put objects
57 * onto the freelist but the processor that froze the slab is the only
58 * one that can retrieve the objects from the page's freelist.
60 * The list_lock protects the partial and full list on each node and
61 * the partial slab counter. If taken then no new slabs may be added or
62 * removed from the lists nor make the number of partial slabs be modified.
63 * (Note that the total number of slabs is an atomic value that may be
64 * modified without taking the list lock).
66 * The list_lock is a centralized lock and thus we avoid taking it as
67 * much as possible. As long as SLUB does not have to handle partial
68 * slabs, operations can continue without any centralized lock. F.e.
69 * allocating a long series of objects that fill up slabs does not require
70 * the list lock.
71 * Interrupts are disabled during allocation and deallocation in order to
72 * make the slab allocator safe to use in the context of an irq. In addition
73 * interrupts are disabled to ensure that the processor does not change
74 * while handling per_cpu slabs, due to kernel preemption.
76 * SLUB assigns one slab for allocation to each processor.
77 * Allocations only occur from these slabs called cpu slabs.
79 * Slabs with free elements are kept on a partial list and during regular
80 * operations no list for full slabs is used. If an object in a full slab is
81 * freed then the slab will show up again on the partial lists.
82 * We track full slabs for debugging purposes though because otherwise we
83 * cannot scan all objects.
85 * Slabs are freed when they become empty. Teardown and setup is
86 * minimal so we rely on the page allocators per cpu caches for
87 * fast frees and allocs.
89 * Overloading of page flags that are otherwise used for LRU management.
91 * PageActive The slab is frozen and exempt from list processing.
92 * This means that the slab is dedicated to a purpose
93 * such as satisfying allocations for a specific
94 * processor. Objects may be freed in the slab while
95 * it is frozen but slab_free will then skip the usual
96 * list operations. It is up to the processor holding
97 * the slab to integrate the slab into the slab lists
98 * when the slab is no longer needed.
100 * One use of this flag is to mark slabs that are
101 * used for allocations. Then such a slab becomes a cpu
102 * slab. The cpu slab may be equipped with an additional
103 * freelist that allows lockless access to
104 * free objects in addition to the regular freelist
105 * that requires the slab lock.
107 * PageError Slab requires special handling due to debug
108 * options set. This moves slab handling out of
109 * the fast path and disables lockless freelists.
112 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
113 SLAB_TRACE | SLAB_DEBUG_FREE)
115 static inline int kmem_cache_debug(struct kmem_cache *s)
117 #ifdef CONFIG_SLUB_DEBUG
118 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
119 #else
120 return 0;
121 #endif
125 * Issues still to be resolved:
127 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
129 * - Variable sizing of the per node arrays
132 /* Enable to test recovery from slab corruption on boot */
133 #undef SLUB_RESILIENCY_TEST
135 /* Enable to log cmpxchg failures */
136 #undef SLUB_DEBUG_CMPXCHG
139 * Mininum number of partial slabs. These will be left on the partial
140 * lists even if they are empty. kmem_cache_shrink may reclaim them.
142 #define MIN_PARTIAL 5
145 * Maximum number of desirable partial slabs.
146 * The existence of more partial slabs makes kmem_cache_shrink
147 * sort the partial list by the number of objects in the.
149 #define MAX_PARTIAL 10
151 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
152 SLAB_POISON | SLAB_STORE_USER)
155 * Debugging flags that require metadata to be stored in the slab. These get
156 * disabled when slub_debug=O is used and a cache's min order increases with
157 * metadata.
159 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
162 * Set of flags that will prevent slab merging
164 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
165 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
166 SLAB_FAILSLAB)
168 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
169 SLAB_CACHE_DMA | SLAB_NOTRACK)
171 #define OO_SHIFT 16
172 #define OO_MASK ((1 << OO_SHIFT) - 1)
173 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
175 /* Internal SLUB flags */
176 #define __OBJECT_POISON 0x80000000UL /* Poison object */
177 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
179 static int kmem_size = sizeof(struct kmem_cache);
181 #ifdef CONFIG_SMP
182 static struct notifier_block slab_notifier;
183 #endif
185 static enum {
186 DOWN, /* No slab functionality available */
187 PARTIAL, /* Kmem_cache_node works */
188 UP, /* Everything works but does not show up in sysfs */
189 SYSFS /* Sysfs up */
190 } slab_state = DOWN;
192 /* A list of all slab caches on the system */
193 static DECLARE_RWSEM(slub_lock);
194 static LIST_HEAD(slab_caches);
197 * Tracking user of a slab.
199 #define TRACK_ADDRS_COUNT 16
200 struct track {
201 unsigned long addr; /* Called from address */
202 #ifdef CONFIG_STACKTRACE
203 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
204 #endif
205 int cpu; /* Was running on cpu */
206 int pid; /* Pid context */
207 unsigned long when; /* When did the operation occur */
210 enum track_item { TRACK_ALLOC, TRACK_FREE };
212 #ifdef CONFIG_SYSFS
213 static int sysfs_slab_add(struct kmem_cache *);
214 static int sysfs_slab_alias(struct kmem_cache *, const char *);
215 static void sysfs_slab_remove(struct kmem_cache *);
217 #else
218 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
219 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
220 { return 0; }
221 static inline void sysfs_slab_remove(struct kmem_cache *s)
223 kfree(s->name);
224 kfree(s);
227 #endif
229 static inline void stat(const struct kmem_cache *s, enum stat_item si)
231 #ifdef CONFIG_SLUB_STATS
232 __this_cpu_inc(s->cpu_slab->stat[si]);
233 #endif
236 /********************************************************************
237 * Core slab cache functions
238 *******************************************************************/
240 int slab_is_available(void)
242 return slab_state >= UP;
245 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
247 return s->node[node];
250 /* Verify that a pointer has an address that is valid within a slab page */
251 static inline int check_valid_pointer(struct kmem_cache *s,
252 struct page *page, const void *object)
254 void *base;
256 if (!object)
257 return 1;
259 base = page_address(page);
260 if (object < base || object >= base + page->objects * s->size ||
261 (object - base) % s->size) {
262 return 0;
265 return 1;
268 static inline void *get_freepointer(struct kmem_cache *s, void *object)
270 return *(void **)(object + s->offset);
273 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
275 prefetch(object + s->offset);
278 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
280 void *p;
282 #ifdef CONFIG_DEBUG_PAGEALLOC
283 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
284 #else
285 p = get_freepointer(s, object);
286 #endif
287 return p;
290 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
292 *(void **)(object + s->offset) = fp;
295 /* Loop over all objects in a slab */
296 #define for_each_object(__p, __s, __addr, __objects) \
297 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
298 __p += (__s)->size)
300 /* Determine object index from a given position */
301 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
303 return (p - addr) / s->size;
306 static inline size_t slab_ksize(const struct kmem_cache *s)
308 #ifdef CONFIG_SLUB_DEBUG
310 * Debugging requires use of the padding between object
311 * and whatever may come after it.
313 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
314 return s->objsize;
316 #endif
318 * If we have the need to store the freelist pointer
319 * back there or track user information then we can
320 * only use the space before that information.
322 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
323 return s->inuse;
325 * Else we can use all the padding etc for the allocation
327 return s->size;
330 static inline int order_objects(int order, unsigned long size, int reserved)
332 return ((PAGE_SIZE << order) - reserved) / size;
335 static inline struct kmem_cache_order_objects oo_make(int order,
336 unsigned long size, int reserved)
338 struct kmem_cache_order_objects x = {
339 (order << OO_SHIFT) + order_objects(order, size, reserved)
342 return x;
345 static inline int oo_order(struct kmem_cache_order_objects x)
347 return x.x >> OO_SHIFT;
350 static inline int oo_objects(struct kmem_cache_order_objects x)
352 return x.x & OO_MASK;
356 * Per slab locking using the pagelock
358 static __always_inline void slab_lock(struct page *page)
360 bit_spin_lock(PG_locked, &page->flags);
363 static __always_inline void slab_unlock(struct page *page)
365 __bit_spin_unlock(PG_locked, &page->flags);
368 /* Interrupts must be disabled (for the fallback code to work right) */
369 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
370 void *freelist_old, unsigned long counters_old,
371 void *freelist_new, unsigned long counters_new,
372 const char *n)
374 VM_BUG_ON(!irqs_disabled());
375 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
376 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
377 if (s->flags & __CMPXCHG_DOUBLE) {
378 if (cmpxchg_double(&page->freelist, &page->counters,
379 freelist_old, counters_old,
380 freelist_new, counters_new))
381 return 1;
382 } else
383 #endif
385 slab_lock(page);
386 if (page->freelist == freelist_old && page->counters == counters_old) {
387 page->freelist = freelist_new;
388 page->counters = counters_new;
389 slab_unlock(page);
390 return 1;
392 slab_unlock(page);
395 cpu_relax();
396 stat(s, CMPXCHG_DOUBLE_FAIL);
398 #ifdef SLUB_DEBUG_CMPXCHG
399 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
400 #endif
402 return 0;
405 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
406 void *freelist_old, unsigned long counters_old,
407 void *freelist_new, unsigned long counters_new,
408 const char *n)
410 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
411 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
412 if (s->flags & __CMPXCHG_DOUBLE) {
413 if (cmpxchg_double(&page->freelist, &page->counters,
414 freelist_old, counters_old,
415 freelist_new, counters_new))
416 return 1;
417 } else
418 #endif
420 unsigned long flags;
422 local_irq_save(flags);
423 slab_lock(page);
424 if (page->freelist == freelist_old && page->counters == counters_old) {
425 page->freelist = freelist_new;
426 page->counters = counters_new;
427 slab_unlock(page);
428 local_irq_restore(flags);
429 return 1;
431 slab_unlock(page);
432 local_irq_restore(flags);
435 cpu_relax();
436 stat(s, CMPXCHG_DOUBLE_FAIL);
438 #ifdef SLUB_DEBUG_CMPXCHG
439 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
440 #endif
442 return 0;
445 #ifdef CONFIG_SLUB_DEBUG
447 * Determine a map of object in use on a page.
449 * Node listlock must be held to guarantee that the page does
450 * not vanish from under us.
452 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
454 void *p;
455 void *addr = page_address(page);
457 for (p = page->freelist; p; p = get_freepointer(s, p))
458 set_bit(slab_index(p, s, addr), map);
462 * Debug settings:
464 #ifdef CONFIG_SLUB_DEBUG_ON
465 static int slub_debug = DEBUG_DEFAULT_FLAGS;
466 #else
467 static int slub_debug;
468 #endif
470 static char *slub_debug_slabs;
471 static int disable_higher_order_debug;
474 * Object debugging
476 static void print_section(char *text, u8 *addr, unsigned int length)
478 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
479 length, 1);
482 static struct track *get_track(struct kmem_cache *s, void *object,
483 enum track_item alloc)
485 struct track *p;
487 if (s->offset)
488 p = object + s->offset + sizeof(void *);
489 else
490 p = object + s->inuse;
492 return p + alloc;
495 static void set_track(struct kmem_cache *s, void *object,
496 enum track_item alloc, unsigned long addr)
498 struct track *p = get_track(s, object, alloc);
500 if (addr) {
501 #ifdef CONFIG_STACKTRACE
502 struct stack_trace trace;
503 int i;
505 trace.nr_entries = 0;
506 trace.max_entries = TRACK_ADDRS_COUNT;
507 trace.entries = p->addrs;
508 trace.skip = 3;
509 save_stack_trace(&trace);
511 /* See rant in lockdep.c */
512 if (trace.nr_entries != 0 &&
513 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
514 trace.nr_entries--;
516 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
517 p->addrs[i] = 0;
518 #endif
519 p->addr = addr;
520 p->cpu = smp_processor_id();
521 p->pid = current->pid;
522 p->when = jiffies;
523 } else
524 memset(p, 0, sizeof(struct track));
527 static void init_tracking(struct kmem_cache *s, void *object)
529 if (!(s->flags & SLAB_STORE_USER))
530 return;
532 set_track(s, object, TRACK_FREE, 0UL);
533 set_track(s, object, TRACK_ALLOC, 0UL);
536 static void print_track(const char *s, struct track *t)
538 if (!t->addr)
539 return;
541 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
542 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
543 #ifdef CONFIG_STACKTRACE
545 int i;
546 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
547 if (t->addrs[i])
548 printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
549 else
550 break;
552 #endif
555 static void print_tracking(struct kmem_cache *s, void *object)
557 if (!(s->flags & SLAB_STORE_USER))
558 return;
560 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
561 print_track("Freed", get_track(s, object, TRACK_FREE));
564 static void print_page_info(struct page *page)
566 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
567 page, page->objects, page->inuse, page->freelist, page->flags);
571 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
573 va_list args;
574 char buf[100];
576 va_start(args, fmt);
577 vsnprintf(buf, sizeof(buf), fmt, args);
578 va_end(args);
579 printk(KERN_ERR "========================================"
580 "=====================================\n");
581 printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
582 printk(KERN_ERR "----------------------------------------"
583 "-------------------------------------\n\n");
586 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
588 va_list args;
589 char buf[100];
591 va_start(args, fmt);
592 vsnprintf(buf, sizeof(buf), fmt, args);
593 va_end(args);
594 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
597 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
599 unsigned int off; /* Offset of last byte */
600 u8 *addr = page_address(page);
602 print_tracking(s, p);
604 print_page_info(page);
606 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
607 p, p - addr, get_freepointer(s, p));
609 if (p > addr + 16)
610 print_section("Bytes b4 ", p - 16, 16);
612 print_section("Object ", p, min_t(unsigned long, s->objsize,
613 PAGE_SIZE));
614 if (s->flags & SLAB_RED_ZONE)
615 print_section("Redzone ", p + s->objsize,
616 s->inuse - s->objsize);
618 if (s->offset)
619 off = s->offset + sizeof(void *);
620 else
621 off = s->inuse;
623 if (s->flags & SLAB_STORE_USER)
624 off += 2 * sizeof(struct track);
626 if (off != s->size)
627 /* Beginning of the filler is the free pointer */
628 print_section("Padding ", p + off, s->size - off);
630 dump_stack();
633 static void object_err(struct kmem_cache *s, struct page *page,
634 u8 *object, char *reason)
636 slab_bug(s, "%s", reason);
637 print_trailer(s, page, object);
640 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
642 va_list args;
643 char buf[100];
645 va_start(args, fmt);
646 vsnprintf(buf, sizeof(buf), fmt, args);
647 va_end(args);
648 slab_bug(s, "%s", buf);
649 print_page_info(page);
650 dump_stack();
653 static void init_object(struct kmem_cache *s, void *object, u8 val)
655 u8 *p = object;
657 if (s->flags & __OBJECT_POISON) {
658 memset(p, POISON_FREE, s->objsize - 1);
659 p[s->objsize - 1] = POISON_END;
662 if (s->flags & SLAB_RED_ZONE)
663 memset(p + s->objsize, val, s->inuse - s->objsize);
666 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
667 void *from, void *to)
669 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
670 memset(from, data, to - from);
673 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
674 u8 *object, char *what,
675 u8 *start, unsigned int value, unsigned int bytes)
677 u8 *fault;
678 u8 *end;
680 fault = memchr_inv(start, value, bytes);
681 if (!fault)
682 return 1;
684 end = start + bytes;
685 while (end > fault && end[-1] == value)
686 end--;
688 slab_bug(s, "%s overwritten", what);
689 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
690 fault, end - 1, fault[0], value);
691 print_trailer(s, page, object);
693 restore_bytes(s, what, value, fault, end);
694 return 0;
698 * Object layout:
700 * object address
701 * Bytes of the object to be managed.
702 * If the freepointer may overlay the object then the free
703 * pointer is the first word of the object.
705 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
706 * 0xa5 (POISON_END)
708 * object + s->objsize
709 * Padding to reach word boundary. This is also used for Redzoning.
710 * Padding is extended by another word if Redzoning is enabled and
711 * objsize == inuse.
713 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
714 * 0xcc (RED_ACTIVE) for objects in use.
716 * object + s->inuse
717 * Meta data starts here.
719 * A. Free pointer (if we cannot overwrite object on free)
720 * B. Tracking data for SLAB_STORE_USER
721 * C. Padding to reach required alignment boundary or at mininum
722 * one word if debugging is on to be able to detect writes
723 * before the word boundary.
725 * Padding is done using 0x5a (POISON_INUSE)
727 * object + s->size
728 * Nothing is used beyond s->size.
730 * If slabcaches are merged then the objsize and inuse boundaries are mostly
731 * ignored. And therefore no slab options that rely on these boundaries
732 * may be used with merged slabcaches.
735 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
737 unsigned long off = s->inuse; /* The end of info */
739 if (s->offset)
740 /* Freepointer is placed after the object. */
741 off += sizeof(void *);
743 if (s->flags & SLAB_STORE_USER)
744 /* We also have user information there */
745 off += 2 * sizeof(struct track);
747 if (s->size == off)
748 return 1;
750 return check_bytes_and_report(s, page, p, "Object padding",
751 p + off, POISON_INUSE, s->size - off);
754 /* Check the pad bytes at the end of a slab page */
755 static int slab_pad_check(struct kmem_cache *s, struct page *page)
757 u8 *start;
758 u8 *fault;
759 u8 *end;
760 int length;
761 int remainder;
763 if (!(s->flags & SLAB_POISON))
764 return 1;
766 start = page_address(page);
767 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
768 end = start + length;
769 remainder = length % s->size;
770 if (!remainder)
771 return 1;
773 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
774 if (!fault)
775 return 1;
776 while (end > fault && end[-1] == POISON_INUSE)
777 end--;
779 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
780 print_section("Padding ", end - remainder, remainder);
782 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
783 return 0;
786 static int check_object(struct kmem_cache *s, struct page *page,
787 void *object, u8 val)
789 u8 *p = object;
790 u8 *endobject = object + s->objsize;
792 if (s->flags & SLAB_RED_ZONE) {
793 if (!check_bytes_and_report(s, page, object, "Redzone",
794 endobject, val, s->inuse - s->objsize))
795 return 0;
796 } else {
797 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
798 check_bytes_and_report(s, page, p, "Alignment padding",
799 endobject, POISON_INUSE, s->inuse - s->objsize);
803 if (s->flags & SLAB_POISON) {
804 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
805 (!check_bytes_and_report(s, page, p, "Poison", p,
806 POISON_FREE, s->objsize - 1) ||
807 !check_bytes_and_report(s, page, p, "Poison",
808 p + s->objsize - 1, POISON_END, 1)))
809 return 0;
811 * check_pad_bytes cleans up on its own.
813 check_pad_bytes(s, page, p);
816 if (!s->offset && val == SLUB_RED_ACTIVE)
818 * Object and freepointer overlap. Cannot check
819 * freepointer while object is allocated.
821 return 1;
823 /* Check free pointer validity */
824 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
825 object_err(s, page, p, "Freepointer corrupt");
827 * No choice but to zap it and thus lose the remainder
828 * of the free objects in this slab. May cause
829 * another error because the object count is now wrong.
831 set_freepointer(s, p, NULL);
832 return 0;
834 return 1;
837 static int check_slab(struct kmem_cache *s, struct page *page)
839 int maxobj;
841 VM_BUG_ON(!irqs_disabled());
843 if (!PageSlab(page)) {
844 slab_err(s, page, "Not a valid slab page");
845 return 0;
848 maxobj = order_objects(compound_order(page), s->size, s->reserved);
849 if (page->objects > maxobj) {
850 slab_err(s, page, "objects %u > max %u",
851 s->name, page->objects, maxobj);
852 return 0;
854 if (page->inuse > page->objects) {
855 slab_err(s, page, "inuse %u > max %u",
856 s->name, page->inuse, page->objects);
857 return 0;
859 /* Slab_pad_check fixes things up after itself */
860 slab_pad_check(s, page);
861 return 1;
865 * Determine if a certain object on a page is on the freelist. Must hold the
866 * slab lock to guarantee that the chains are in a consistent state.
868 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
870 int nr = 0;
871 void *fp;
872 void *object = NULL;
873 unsigned long max_objects;
875 fp = page->freelist;
876 while (fp && nr <= page->objects) {
877 if (fp == search)
878 return 1;
879 if (!check_valid_pointer(s, page, fp)) {
880 if (object) {
881 object_err(s, page, object,
882 "Freechain corrupt");
883 set_freepointer(s, object, NULL);
884 break;
885 } else {
886 slab_err(s, page, "Freepointer corrupt");
887 page->freelist = NULL;
888 page->inuse = page->objects;
889 slab_fix(s, "Freelist cleared");
890 return 0;
892 break;
894 object = fp;
895 fp = get_freepointer(s, object);
896 nr++;
899 max_objects = order_objects(compound_order(page), s->size, s->reserved);
900 if (max_objects > MAX_OBJS_PER_PAGE)
901 max_objects = MAX_OBJS_PER_PAGE;
903 if (page->objects != max_objects) {
904 slab_err(s, page, "Wrong number of objects. Found %d but "
905 "should be %d", page->objects, max_objects);
906 page->objects = max_objects;
907 slab_fix(s, "Number of objects adjusted.");
909 if (page->inuse != page->objects - nr) {
910 slab_err(s, page, "Wrong object count. Counter is %d but "
911 "counted were %d", page->inuse, page->objects - nr);
912 page->inuse = page->objects - nr;
913 slab_fix(s, "Object count adjusted.");
915 return search == NULL;
918 static void trace(struct kmem_cache *s, struct page *page, void *object,
919 int alloc)
921 if (s->flags & SLAB_TRACE) {
922 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
923 s->name,
924 alloc ? "alloc" : "free",
925 object, page->inuse,
926 page->freelist);
928 if (!alloc)
929 print_section("Object ", (void *)object, s->objsize);
931 dump_stack();
936 * Hooks for other subsystems that check memory allocations. In a typical
937 * production configuration these hooks all should produce no code at all.
939 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
941 flags &= gfp_allowed_mask;
942 lockdep_trace_alloc(flags);
943 might_sleep_if(flags & __GFP_WAIT);
945 return should_failslab(s->objsize, flags, s->flags);
948 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
950 flags &= gfp_allowed_mask;
951 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
952 kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags);
955 static inline void slab_free_hook(struct kmem_cache *s, void *x)
957 kmemleak_free_recursive(x, s->flags);
960 * Trouble is that we may no longer disable interupts in the fast path
961 * So in order to make the debug calls that expect irqs to be
962 * disabled we need to disable interrupts temporarily.
964 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
966 unsigned long flags;
968 local_irq_save(flags);
969 kmemcheck_slab_free(s, x, s->objsize);
970 debug_check_no_locks_freed(x, s->objsize);
971 local_irq_restore(flags);
973 #endif
974 if (!(s->flags & SLAB_DEBUG_OBJECTS))
975 debug_check_no_obj_freed(x, s->objsize);
979 * Tracking of fully allocated slabs for debugging purposes.
981 * list_lock must be held.
983 static void add_full(struct kmem_cache *s,
984 struct kmem_cache_node *n, struct page *page)
986 if (!(s->flags & SLAB_STORE_USER))
987 return;
989 list_add(&page->lru, &n->full);
993 * list_lock must be held.
995 static void remove_full(struct kmem_cache *s, struct page *page)
997 if (!(s->flags & SLAB_STORE_USER))
998 return;
1000 list_del(&page->lru);
1003 /* Tracking of the number of slabs for debugging purposes */
1004 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1006 struct kmem_cache_node *n = get_node(s, node);
1008 return atomic_long_read(&n->nr_slabs);
1011 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1013 return atomic_long_read(&n->nr_slabs);
1016 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1018 struct kmem_cache_node *n = get_node(s, node);
1021 * May be called early in order to allocate a slab for the
1022 * kmem_cache_node structure. Solve the chicken-egg
1023 * dilemma by deferring the increment of the count during
1024 * bootstrap (see early_kmem_cache_node_alloc).
1026 if (n) {
1027 atomic_long_inc(&n->nr_slabs);
1028 atomic_long_add(objects, &n->total_objects);
1031 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1033 struct kmem_cache_node *n = get_node(s, node);
1035 atomic_long_dec(&n->nr_slabs);
1036 atomic_long_sub(objects, &n->total_objects);
1039 /* Object debug checks for alloc/free paths */
1040 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1041 void *object)
1043 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1044 return;
1046 init_object(s, object, SLUB_RED_INACTIVE);
1047 init_tracking(s, object);
1050 static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
1051 void *object, unsigned long addr)
1053 if (!check_slab(s, page))
1054 goto bad;
1056 if (!check_valid_pointer(s, page, object)) {
1057 object_err(s, page, object, "Freelist Pointer check fails");
1058 goto bad;
1061 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1062 goto bad;
1064 /* Success perform special debug activities for allocs */
1065 if (s->flags & SLAB_STORE_USER)
1066 set_track(s, object, TRACK_ALLOC, addr);
1067 trace(s, page, object, 1);
1068 init_object(s, object, SLUB_RED_ACTIVE);
1069 return 1;
1071 bad:
1072 if (PageSlab(page)) {
1074 * If this is a slab page then lets do the best we can
1075 * to avoid issues in the future. Marking all objects
1076 * as used avoids touching the remaining objects.
1078 slab_fix(s, "Marking all objects used");
1079 page->inuse = page->objects;
1080 page->freelist = NULL;
1082 return 0;
1085 static noinline int free_debug_processing(struct kmem_cache *s,
1086 struct page *page, void *object, unsigned long addr)
1088 unsigned long flags;
1089 int rc = 0;
1091 local_irq_save(flags);
1092 slab_lock(page);
1094 if (!check_slab(s, page))
1095 goto fail;
1097 if (!check_valid_pointer(s, page, object)) {
1098 slab_err(s, page, "Invalid object pointer 0x%p", object);
1099 goto fail;
1102 if (on_freelist(s, page, object)) {
1103 object_err(s, page, object, "Object already free");
1104 goto fail;
1107 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1108 goto out;
1110 if (unlikely(s != page->slab)) {
1111 if (!PageSlab(page)) {
1112 slab_err(s, page, "Attempt to free object(0x%p) "
1113 "outside of slab", object);
1114 } else if (!page->slab) {
1115 printk(KERN_ERR
1116 "SLUB <none>: no slab for object 0x%p.\n",
1117 object);
1118 dump_stack();
1119 } else
1120 object_err(s, page, object,
1121 "page slab pointer corrupt.");
1122 goto fail;
1125 if (s->flags & SLAB_STORE_USER)
1126 set_track(s, object, TRACK_FREE, addr);
1127 trace(s, page, object, 0);
1128 init_object(s, object, SLUB_RED_INACTIVE);
1129 rc = 1;
1130 out:
1131 slab_unlock(page);
1132 local_irq_restore(flags);
1133 return rc;
1135 fail:
1136 slab_fix(s, "Object at 0x%p not freed", object);
1137 goto out;
1140 static int __init setup_slub_debug(char *str)
1142 slub_debug = DEBUG_DEFAULT_FLAGS;
1143 if (*str++ != '=' || !*str)
1145 * No options specified. Switch on full debugging.
1147 goto out;
1149 if (*str == ',')
1151 * No options but restriction on slabs. This means full
1152 * debugging for slabs matching a pattern.
1154 goto check_slabs;
1156 if (tolower(*str) == 'o') {
1158 * Avoid enabling debugging on caches if its minimum order
1159 * would increase as a result.
1161 disable_higher_order_debug = 1;
1162 goto out;
1165 slub_debug = 0;
1166 if (*str == '-')
1168 * Switch off all debugging measures.
1170 goto out;
1173 * Determine which debug features should be switched on
1175 for (; *str && *str != ','; str++) {
1176 switch (tolower(*str)) {
1177 case 'f':
1178 slub_debug |= SLAB_DEBUG_FREE;
1179 break;
1180 case 'z':
1181 slub_debug |= SLAB_RED_ZONE;
1182 break;
1183 case 'p':
1184 slub_debug |= SLAB_POISON;
1185 break;
1186 case 'u':
1187 slub_debug |= SLAB_STORE_USER;
1188 break;
1189 case 't':
1190 slub_debug |= SLAB_TRACE;
1191 break;
1192 case 'a':
1193 slub_debug |= SLAB_FAILSLAB;
1194 break;
1195 default:
1196 printk(KERN_ERR "slub_debug option '%c' "
1197 "unknown. skipped\n", *str);
1201 check_slabs:
1202 if (*str == ',')
1203 slub_debug_slabs = str + 1;
1204 out:
1205 return 1;
1208 __setup("slub_debug", setup_slub_debug);
1210 static unsigned long kmem_cache_flags(unsigned long objsize,
1211 unsigned long flags, const char *name,
1212 void (*ctor)(void *))
1215 * Enable debugging if selected on the kernel commandline.
1217 if (slub_debug && (!slub_debug_slabs ||
1218 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1219 flags |= slub_debug;
1221 return flags;
1223 #else
1224 static inline void setup_object_debug(struct kmem_cache *s,
1225 struct page *page, void *object) {}
1227 static inline int alloc_debug_processing(struct kmem_cache *s,
1228 struct page *page, void *object, unsigned long addr) { return 0; }
1230 static inline int free_debug_processing(struct kmem_cache *s,
1231 struct page *page, void *object, unsigned long addr) { return 0; }
1233 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1234 { return 1; }
1235 static inline int check_object(struct kmem_cache *s, struct page *page,
1236 void *object, u8 val) { return 1; }
1237 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1238 struct page *page) {}
1239 static inline void remove_full(struct kmem_cache *s, struct page *page) {}
1240 static inline unsigned long kmem_cache_flags(unsigned long objsize,
1241 unsigned long flags, const char *name,
1242 void (*ctor)(void *))
1244 return flags;
1246 #define slub_debug 0
1248 #define disable_higher_order_debug 0
1250 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1251 { return 0; }
1252 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1253 { return 0; }
1254 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1255 int objects) {}
1256 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1257 int objects) {}
1259 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1260 { return 0; }
1262 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1263 void *object) {}
1265 static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1267 #endif /* CONFIG_SLUB_DEBUG */
1270 * Slab allocation and freeing
1272 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1273 struct kmem_cache_order_objects oo)
1275 int order = oo_order(oo);
1277 flags |= __GFP_NOTRACK;
1279 if (node == NUMA_NO_NODE)
1280 return alloc_pages(flags, order);
1281 else
1282 return alloc_pages_exact_node(node, flags, order);
1285 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1287 struct page *page;
1288 struct kmem_cache_order_objects oo = s->oo;
1289 gfp_t alloc_gfp;
1291 flags &= gfp_allowed_mask;
1293 if (flags & __GFP_WAIT)
1294 local_irq_enable();
1296 flags |= s->allocflags;
1299 * Let the initial higher-order allocation fail under memory pressure
1300 * so we fall-back to the minimum order allocation.
1302 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1304 page = alloc_slab_page(alloc_gfp, node, oo);
1305 if (unlikely(!page)) {
1306 oo = s->min;
1308 * Allocation may have failed due to fragmentation.
1309 * Try a lower order alloc if possible
1311 page = alloc_slab_page(flags, node, oo);
1313 if (page)
1314 stat(s, ORDER_FALLBACK);
1317 if (flags & __GFP_WAIT)
1318 local_irq_disable();
1320 if (!page)
1321 return NULL;
1323 if (kmemcheck_enabled
1324 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1325 int pages = 1 << oo_order(oo);
1327 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1330 * Objects from caches that have a constructor don't get
1331 * cleared when they're allocated, so we need to do it here.
1333 if (s->ctor)
1334 kmemcheck_mark_uninitialized_pages(page, pages);
1335 else
1336 kmemcheck_mark_unallocated_pages(page, pages);
1339 page->objects = oo_objects(oo);
1340 mod_zone_page_state(page_zone(page),
1341 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1342 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1343 1 << oo_order(oo));
1345 return page;
1348 static void setup_object(struct kmem_cache *s, struct page *page,
1349 void *object)
1351 setup_object_debug(s, page, object);
1352 if (unlikely(s->ctor))
1353 s->ctor(object);
1356 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1358 struct page *page;
1359 void *start;
1360 void *last;
1361 void *p;
1363 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1365 page = allocate_slab(s,
1366 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1367 if (!page)
1368 goto out;
1370 inc_slabs_node(s, page_to_nid(page), page->objects);
1371 page->slab = s;
1372 page->flags |= 1 << PG_slab;
1374 start = page_address(page);
1376 if (unlikely(s->flags & SLAB_POISON))
1377 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1379 last = start;
1380 for_each_object(p, s, start, page->objects) {
1381 setup_object(s, page, last);
1382 set_freepointer(s, last, p);
1383 last = p;
1385 setup_object(s, page, last);
1386 set_freepointer(s, last, NULL);
1388 page->freelist = start;
1389 page->inuse = page->objects;
1390 page->frozen = 1;
1391 out:
1392 return page;
1395 static void __free_slab(struct kmem_cache *s, struct page *page)
1397 int order = compound_order(page);
1398 int pages = 1 << order;
1400 if (kmem_cache_debug(s)) {
1401 void *p;
1403 slab_pad_check(s, page);
1404 for_each_object(p, s, page_address(page),
1405 page->objects)
1406 check_object(s, page, p, SLUB_RED_INACTIVE);
1409 kmemcheck_free_shadow(page, compound_order(page));
1411 mod_zone_page_state(page_zone(page),
1412 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1413 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1414 -pages);
1416 __ClearPageSlab(page);
1417 reset_page_mapcount(page);
1418 if (current->reclaim_state)
1419 current->reclaim_state->reclaimed_slab += pages;
1420 __free_pages(page, order);
1423 #define need_reserve_slab_rcu \
1424 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1426 static void rcu_free_slab(struct rcu_head *h)
1428 struct page *page;
1430 if (need_reserve_slab_rcu)
1431 page = virt_to_head_page(h);
1432 else
1433 page = container_of((struct list_head *)h, struct page, lru);
1435 __free_slab(page->slab, page);
1438 static void free_slab(struct kmem_cache *s, struct page *page)
1440 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1441 struct rcu_head *head;
1443 if (need_reserve_slab_rcu) {
1444 int order = compound_order(page);
1445 int offset = (PAGE_SIZE << order) - s->reserved;
1447 VM_BUG_ON(s->reserved != sizeof(*head));
1448 head = page_address(page) + offset;
1449 } else {
1451 * RCU free overloads the RCU head over the LRU
1453 head = (void *)&page->lru;
1456 call_rcu(head, rcu_free_slab);
1457 } else
1458 __free_slab(s, page);
1461 static void discard_slab(struct kmem_cache *s, struct page *page)
1463 dec_slabs_node(s, page_to_nid(page), page->objects);
1464 free_slab(s, page);
1468 * Management of partially allocated slabs.
1470 * list_lock must be held.
1472 static inline void add_partial(struct kmem_cache_node *n,
1473 struct page *page, int tail)
1475 n->nr_partial++;
1476 if (tail == DEACTIVATE_TO_TAIL)
1477 list_add_tail(&page->lru, &n->partial);
1478 else
1479 list_add(&page->lru, &n->partial);
1483 * list_lock must be held.
1485 static inline void remove_partial(struct kmem_cache_node *n,
1486 struct page *page)
1488 list_del(&page->lru);
1489 n->nr_partial--;
1493 * Lock slab, remove from the partial list and put the object into the
1494 * per cpu freelist.
1496 * Returns a list of objects or NULL if it fails.
1498 * Must hold list_lock.
1500 static inline void *acquire_slab(struct kmem_cache *s,
1501 struct kmem_cache_node *n, struct page *page,
1502 int mode)
1504 void *freelist;
1505 unsigned long counters;
1506 struct page new;
1509 * Zap the freelist and set the frozen bit.
1510 * The old freelist is the list of objects for the
1511 * per cpu allocation list.
1513 do {
1514 freelist = page->freelist;
1515 counters = page->counters;
1516 new.counters = counters;
1517 if (mode)
1518 new.inuse = page->objects;
1520 VM_BUG_ON(new.frozen);
1521 new.frozen = 1;
1523 } while (!__cmpxchg_double_slab(s, page,
1524 freelist, counters,
1525 NULL, new.counters,
1526 "lock and freeze"));
1528 remove_partial(n, page);
1529 return freelist;
1532 static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1535 * Try to allocate a partial slab from a specific node.
1537 static void *get_partial_node(struct kmem_cache *s,
1538 struct kmem_cache_node *n, struct kmem_cache_cpu *c)
1540 struct page *page, *page2;
1541 void *object = NULL;
1544 * Racy check. If we mistakenly see no partial slabs then we
1545 * just allocate an empty slab. If we mistakenly try to get a
1546 * partial slab and there is none available then get_partials()
1547 * will return NULL.
1549 if (!n || !n->nr_partial)
1550 return NULL;
1552 spin_lock(&n->list_lock);
1553 list_for_each_entry_safe(page, page2, &n->partial, lru) {
1554 void *t = acquire_slab(s, n, page, object == NULL);
1555 int available;
1557 if (!t)
1558 break;
1560 if (!object) {
1561 c->page = page;
1562 c->node = page_to_nid(page);
1563 stat(s, ALLOC_FROM_PARTIAL);
1564 object = t;
1565 available = page->objects - page->inuse;
1566 } else {
1567 page->freelist = t;
1568 available = put_cpu_partial(s, page, 0);
1569 stat(s, CPU_PARTIAL_NODE);
1571 if (kmem_cache_debug(s) || available > s->cpu_partial / 2)
1572 break;
1575 spin_unlock(&n->list_lock);
1576 return object;
1580 * Get a page from somewhere. Search in increasing NUMA distances.
1582 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags,
1583 struct kmem_cache_cpu *c)
1585 #ifdef CONFIG_NUMA
1586 struct zonelist *zonelist;
1587 struct zoneref *z;
1588 struct zone *zone;
1589 enum zone_type high_zoneidx = gfp_zone(flags);
1590 void *object;
1591 unsigned int cpuset_mems_cookie;
1594 * The defrag ratio allows a configuration of the tradeoffs between
1595 * inter node defragmentation and node local allocations. A lower
1596 * defrag_ratio increases the tendency to do local allocations
1597 * instead of attempting to obtain partial slabs from other nodes.
1599 * If the defrag_ratio is set to 0 then kmalloc() always
1600 * returns node local objects. If the ratio is higher then kmalloc()
1601 * may return off node objects because partial slabs are obtained
1602 * from other nodes and filled up.
1604 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1605 * defrag_ratio = 1000) then every (well almost) allocation will
1606 * first attempt to defrag slab caches on other nodes. This means
1607 * scanning over all nodes to look for partial slabs which may be
1608 * expensive if we do it every time we are trying to find a slab
1609 * with available objects.
1611 if (!s->remote_node_defrag_ratio ||
1612 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1613 return NULL;
1615 do {
1616 cpuset_mems_cookie = get_mems_allowed();
1617 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1618 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1619 struct kmem_cache_node *n;
1621 n = get_node(s, zone_to_nid(zone));
1623 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1624 n->nr_partial > s->min_partial) {
1625 object = get_partial_node(s, n, c);
1626 if (object) {
1628 * Return the object even if
1629 * put_mems_allowed indicated that
1630 * the cpuset mems_allowed was
1631 * updated in parallel. It's a
1632 * harmless race between the alloc
1633 * and the cpuset update.
1635 put_mems_allowed(cpuset_mems_cookie);
1636 return object;
1640 } while (!put_mems_allowed(cpuset_mems_cookie));
1641 #endif
1642 return NULL;
1646 * Get a partial page, lock it and return it.
1648 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1649 struct kmem_cache_cpu *c)
1651 void *object;
1652 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
1654 object = get_partial_node(s, get_node(s, searchnode), c);
1655 if (object || node != NUMA_NO_NODE)
1656 return object;
1658 return get_any_partial(s, flags, c);
1661 #ifdef CONFIG_PREEMPT
1663 * Calculate the next globally unique transaction for disambiguiation
1664 * during cmpxchg. The transactions start with the cpu number and are then
1665 * incremented by CONFIG_NR_CPUS.
1667 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1668 #else
1670 * No preemption supported therefore also no need to check for
1671 * different cpus.
1673 #define TID_STEP 1
1674 #endif
1676 static inline unsigned long next_tid(unsigned long tid)
1678 return tid + TID_STEP;
1681 static inline unsigned int tid_to_cpu(unsigned long tid)
1683 return tid % TID_STEP;
1686 static inline unsigned long tid_to_event(unsigned long tid)
1688 return tid / TID_STEP;
1691 static inline unsigned int init_tid(int cpu)
1693 return cpu;
1696 static inline void note_cmpxchg_failure(const char *n,
1697 const struct kmem_cache *s, unsigned long tid)
1699 #ifdef SLUB_DEBUG_CMPXCHG
1700 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1702 printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1704 #ifdef CONFIG_PREEMPT
1705 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1706 printk("due to cpu change %d -> %d\n",
1707 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1708 else
1709 #endif
1710 if (tid_to_event(tid) != tid_to_event(actual_tid))
1711 printk("due to cpu running other code. Event %ld->%ld\n",
1712 tid_to_event(tid), tid_to_event(actual_tid));
1713 else
1714 printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1715 actual_tid, tid, next_tid(tid));
1716 #endif
1717 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1720 void init_kmem_cache_cpus(struct kmem_cache *s)
1722 int cpu;
1724 for_each_possible_cpu(cpu)
1725 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1729 * Remove the cpu slab
1731 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1733 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1734 struct page *page = c->page;
1735 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1736 int lock = 0;
1737 enum slab_modes l = M_NONE, m = M_NONE;
1738 void *freelist;
1739 void *nextfree;
1740 int tail = DEACTIVATE_TO_HEAD;
1741 struct page new;
1742 struct page old;
1744 if (page->freelist) {
1745 stat(s, DEACTIVATE_REMOTE_FREES);
1746 tail = DEACTIVATE_TO_TAIL;
1749 c->tid = next_tid(c->tid);
1750 c->page = NULL;
1751 freelist = c->freelist;
1752 c->freelist = NULL;
1755 * Stage one: Free all available per cpu objects back
1756 * to the page freelist while it is still frozen. Leave the
1757 * last one.
1759 * There is no need to take the list->lock because the page
1760 * is still frozen.
1762 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1763 void *prior;
1764 unsigned long counters;
1766 do {
1767 prior = page->freelist;
1768 counters = page->counters;
1769 set_freepointer(s, freelist, prior);
1770 new.counters = counters;
1771 new.inuse--;
1772 VM_BUG_ON(!new.frozen);
1774 } while (!__cmpxchg_double_slab(s, page,
1775 prior, counters,
1776 freelist, new.counters,
1777 "drain percpu freelist"));
1779 freelist = nextfree;
1783 * Stage two: Ensure that the page is unfrozen while the
1784 * list presence reflects the actual number of objects
1785 * during unfreeze.
1787 * We setup the list membership and then perform a cmpxchg
1788 * with the count. If there is a mismatch then the page
1789 * is not unfrozen but the page is on the wrong list.
1791 * Then we restart the process which may have to remove
1792 * the page from the list that we just put it on again
1793 * because the number of objects in the slab may have
1794 * changed.
1796 redo:
1798 old.freelist = page->freelist;
1799 old.counters = page->counters;
1800 VM_BUG_ON(!old.frozen);
1802 /* Determine target state of the slab */
1803 new.counters = old.counters;
1804 if (freelist) {
1805 new.inuse--;
1806 set_freepointer(s, freelist, old.freelist);
1807 new.freelist = freelist;
1808 } else
1809 new.freelist = old.freelist;
1811 new.frozen = 0;
1813 if (!new.inuse && n->nr_partial > s->min_partial)
1814 m = M_FREE;
1815 else if (new.freelist) {
1816 m = M_PARTIAL;
1817 if (!lock) {
1818 lock = 1;
1820 * Taking the spinlock removes the possiblity
1821 * that acquire_slab() will see a slab page that
1822 * is frozen
1824 spin_lock(&n->list_lock);
1826 } else {
1827 m = M_FULL;
1828 if (kmem_cache_debug(s) && !lock) {
1829 lock = 1;
1831 * This also ensures that the scanning of full
1832 * slabs from diagnostic functions will not see
1833 * any frozen slabs.
1835 spin_lock(&n->list_lock);
1839 if (l != m) {
1841 if (l == M_PARTIAL)
1843 remove_partial(n, page);
1845 else if (l == M_FULL)
1847 remove_full(s, page);
1849 if (m == M_PARTIAL) {
1851 add_partial(n, page, tail);
1852 stat(s, tail);
1854 } else if (m == M_FULL) {
1856 stat(s, DEACTIVATE_FULL);
1857 add_full(s, n, page);
1862 l = m;
1863 if (!__cmpxchg_double_slab(s, page,
1864 old.freelist, old.counters,
1865 new.freelist, new.counters,
1866 "unfreezing slab"))
1867 goto redo;
1869 if (lock)
1870 spin_unlock(&n->list_lock);
1872 if (m == M_FREE) {
1873 stat(s, DEACTIVATE_EMPTY);
1874 discard_slab(s, page);
1875 stat(s, FREE_SLAB);
1879 /* Unfreeze all the cpu partial slabs */
1880 static void unfreeze_partials(struct kmem_cache *s)
1882 struct kmem_cache_node *n = NULL;
1883 struct kmem_cache_cpu *c = this_cpu_ptr(s->cpu_slab);
1884 struct page *page, *discard_page = NULL;
1886 while ((page = c->partial)) {
1887 enum slab_modes { M_PARTIAL, M_FREE };
1888 enum slab_modes l, m;
1889 struct page new;
1890 struct page old;
1892 c->partial = page->next;
1893 l = M_FREE;
1895 do {
1897 old.freelist = page->freelist;
1898 old.counters = page->counters;
1899 VM_BUG_ON(!old.frozen);
1901 new.counters = old.counters;
1902 new.freelist = old.freelist;
1904 new.frozen = 0;
1906 if (!new.inuse && (!n || n->nr_partial > s->min_partial))
1907 m = M_FREE;
1908 else {
1909 struct kmem_cache_node *n2 = get_node(s,
1910 page_to_nid(page));
1912 m = M_PARTIAL;
1913 if (n != n2) {
1914 if (n)
1915 spin_unlock(&n->list_lock);
1917 n = n2;
1918 spin_lock(&n->list_lock);
1922 if (l != m) {
1923 if (l == M_PARTIAL) {
1924 remove_partial(n, page);
1925 stat(s, FREE_REMOVE_PARTIAL);
1926 } else {
1927 add_partial(n, page,
1928 DEACTIVATE_TO_TAIL);
1929 stat(s, FREE_ADD_PARTIAL);
1932 l = m;
1935 } while (!cmpxchg_double_slab(s, page,
1936 old.freelist, old.counters,
1937 new.freelist, new.counters,
1938 "unfreezing slab"));
1940 if (m == M_FREE) {
1941 page->next = discard_page;
1942 discard_page = page;
1946 if (n)
1947 spin_unlock(&n->list_lock);
1949 while (discard_page) {
1950 page = discard_page;
1951 discard_page = discard_page->next;
1953 stat(s, DEACTIVATE_EMPTY);
1954 discard_slab(s, page);
1955 stat(s, FREE_SLAB);
1960 * Put a page that was just frozen (in __slab_free) into a partial page
1961 * slot if available. This is done without interrupts disabled and without
1962 * preemption disabled. The cmpxchg is racy and may put the partial page
1963 * onto a random cpus partial slot.
1965 * If we did not find a slot then simply move all the partials to the
1966 * per node partial list.
1968 int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
1970 struct page *oldpage;
1971 int pages;
1972 int pobjects;
1974 do {
1975 pages = 0;
1976 pobjects = 0;
1977 oldpage = this_cpu_read(s->cpu_slab->partial);
1979 if (oldpage) {
1980 pobjects = oldpage->pobjects;
1981 pages = oldpage->pages;
1982 if (drain && pobjects > s->cpu_partial) {
1983 unsigned long flags;
1985 * partial array is full. Move the existing
1986 * set to the per node partial list.
1988 local_irq_save(flags);
1989 unfreeze_partials(s);
1990 local_irq_restore(flags);
1991 pobjects = 0;
1992 pages = 0;
1993 stat(s, CPU_PARTIAL_DRAIN);
1997 pages++;
1998 pobjects += page->objects - page->inuse;
2000 page->pages = pages;
2001 page->pobjects = pobjects;
2002 page->next = oldpage;
2004 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage);
2005 return pobjects;
2008 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2010 stat(s, CPUSLAB_FLUSH);
2011 deactivate_slab(s, c);
2015 * Flush cpu slab.
2017 * Called from IPI handler with interrupts disabled.
2019 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2021 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2023 if (likely(c)) {
2024 if (c->page)
2025 flush_slab(s, c);
2027 unfreeze_partials(s);
2031 static void flush_cpu_slab(void *d)
2033 struct kmem_cache *s = d;
2035 __flush_cpu_slab(s, smp_processor_id());
2038 static bool has_cpu_slab(int cpu, void *info)
2040 struct kmem_cache *s = info;
2041 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2043 return !!(c->page);
2046 static void flush_all(struct kmem_cache *s)
2048 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2052 * Check if the objects in a per cpu structure fit numa
2053 * locality expectations.
2055 static inline int node_match(struct kmem_cache_cpu *c, int node)
2057 #ifdef CONFIG_NUMA
2058 if (node != NUMA_NO_NODE && c->node != node)
2059 return 0;
2060 #endif
2061 return 1;
2064 static int count_free(struct page *page)
2066 return page->objects - page->inuse;
2069 static unsigned long count_partial(struct kmem_cache_node *n,
2070 int (*get_count)(struct page *))
2072 unsigned long flags;
2073 unsigned long x = 0;
2074 struct page *page;
2076 spin_lock_irqsave(&n->list_lock, flags);
2077 list_for_each_entry(page, &n->partial, lru)
2078 x += get_count(page);
2079 spin_unlock_irqrestore(&n->list_lock, flags);
2080 return x;
2083 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2085 #ifdef CONFIG_SLUB_DEBUG
2086 return atomic_long_read(&n->total_objects);
2087 #else
2088 return 0;
2089 #endif
2092 static noinline void
2093 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2095 int node;
2097 printk(KERN_WARNING
2098 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2099 nid, gfpflags);
2100 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
2101 "default order: %d, min order: %d\n", s->name, s->objsize,
2102 s->size, oo_order(s->oo), oo_order(s->min));
2104 if (oo_order(s->min) > get_order(s->objsize))
2105 printk(KERN_WARNING " %s debugging increased min order, use "
2106 "slub_debug=O to disable.\n", s->name);
2108 for_each_online_node(node) {
2109 struct kmem_cache_node *n = get_node(s, node);
2110 unsigned long nr_slabs;
2111 unsigned long nr_objs;
2112 unsigned long nr_free;
2114 if (!n)
2115 continue;
2117 nr_free = count_partial(n, count_free);
2118 nr_slabs = node_nr_slabs(n);
2119 nr_objs = node_nr_objs(n);
2121 printk(KERN_WARNING
2122 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
2123 node, nr_slabs, nr_objs, nr_free);
2127 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2128 int node, struct kmem_cache_cpu **pc)
2130 void *object;
2131 struct kmem_cache_cpu *c;
2132 struct page *page = new_slab(s, flags, node);
2134 if (page) {
2135 c = __this_cpu_ptr(s->cpu_slab);
2136 if (c->page)
2137 flush_slab(s, c);
2140 * No other reference to the page yet so we can
2141 * muck around with it freely without cmpxchg
2143 object = page->freelist;
2144 page->freelist = NULL;
2146 stat(s, ALLOC_SLAB);
2147 c->node = page_to_nid(page);
2148 c->page = page;
2149 *pc = c;
2150 } else
2151 object = NULL;
2153 return object;
2157 * Check the page->freelist of a page and either transfer the freelist to the per cpu freelist
2158 * or deactivate the page.
2160 * The page is still frozen if the return value is not NULL.
2162 * If this function returns NULL then the page has been unfrozen.
2164 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2166 struct page new;
2167 unsigned long counters;
2168 void *freelist;
2170 do {
2171 freelist = page->freelist;
2172 counters = page->counters;
2173 new.counters = counters;
2174 VM_BUG_ON(!new.frozen);
2176 new.inuse = page->objects;
2177 new.frozen = freelist != NULL;
2179 } while (!cmpxchg_double_slab(s, page,
2180 freelist, counters,
2181 NULL, new.counters,
2182 "get_freelist"));
2184 return freelist;
2188 * Slow path. The lockless freelist is empty or we need to perform
2189 * debugging duties.
2191 * Processing is still very fast if new objects have been freed to the
2192 * regular freelist. In that case we simply take over the regular freelist
2193 * as the lockless freelist and zap the regular freelist.
2195 * If that is not working then we fall back to the partial lists. We take the
2196 * first element of the freelist as the object to allocate now and move the
2197 * rest of the freelist to the lockless freelist.
2199 * And if we were unable to get a new slab from the partial slab lists then
2200 * we need to allocate a new slab. This is the slowest path since it involves
2201 * a call to the page allocator and the setup of a new slab.
2203 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2204 unsigned long addr, struct kmem_cache_cpu *c)
2206 void **object;
2207 unsigned long flags;
2209 local_irq_save(flags);
2210 #ifdef CONFIG_PREEMPT
2212 * We may have been preempted and rescheduled on a different
2213 * cpu before disabling interrupts. Need to reload cpu area
2214 * pointer.
2216 c = this_cpu_ptr(s->cpu_slab);
2217 #endif
2219 if (!c->page)
2220 goto new_slab;
2221 redo:
2222 if (unlikely(!node_match(c, node))) {
2223 stat(s, ALLOC_NODE_MISMATCH);
2224 deactivate_slab(s, c);
2225 goto new_slab;
2228 /* must check again c->freelist in case of cpu migration or IRQ */
2229 object = c->freelist;
2230 if (object)
2231 goto load_freelist;
2233 stat(s, ALLOC_SLOWPATH);
2235 object = get_freelist(s, c->page);
2237 if (!object) {
2238 c->page = NULL;
2239 stat(s, DEACTIVATE_BYPASS);
2240 goto new_slab;
2243 stat(s, ALLOC_REFILL);
2245 load_freelist:
2246 c->freelist = get_freepointer(s, object);
2247 c->tid = next_tid(c->tid);
2248 local_irq_restore(flags);
2249 return object;
2251 new_slab:
2253 if (c->partial) {
2254 c->page = c->partial;
2255 c->partial = c->page->next;
2256 c->node = page_to_nid(c->page);
2257 stat(s, CPU_PARTIAL_ALLOC);
2258 c->freelist = NULL;
2259 goto redo;
2262 /* Then do expensive stuff like retrieving pages from the partial lists */
2263 object = get_partial(s, gfpflags, node, c);
2265 if (unlikely(!object)) {
2267 object = new_slab_objects(s, gfpflags, node, &c);
2269 if (unlikely(!object)) {
2270 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
2271 slab_out_of_memory(s, gfpflags, node);
2273 local_irq_restore(flags);
2274 return NULL;
2278 if (likely(!kmem_cache_debug(s)))
2279 goto load_freelist;
2281 /* Only entered in the debug case */
2282 if (!alloc_debug_processing(s, c->page, object, addr))
2283 goto new_slab; /* Slab failed checks. Next slab needed */
2285 c->freelist = get_freepointer(s, object);
2286 deactivate_slab(s, c);
2287 c->node = NUMA_NO_NODE;
2288 local_irq_restore(flags);
2289 return object;
2293 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2294 * have the fastpath folded into their functions. So no function call
2295 * overhead for requests that can be satisfied on the fastpath.
2297 * The fastpath works by first checking if the lockless freelist can be used.
2298 * If not then __slab_alloc is called for slow processing.
2300 * Otherwise we can simply pick the next object from the lockless free list.
2302 static __always_inline void *slab_alloc(struct kmem_cache *s,
2303 gfp_t gfpflags, int node, unsigned long addr)
2305 void **object;
2306 struct kmem_cache_cpu *c;
2307 unsigned long tid;
2309 if (slab_pre_alloc_hook(s, gfpflags))
2310 return NULL;
2312 redo:
2315 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2316 * enabled. We may switch back and forth between cpus while
2317 * reading from one cpu area. That does not matter as long
2318 * as we end up on the original cpu again when doing the cmpxchg.
2320 c = __this_cpu_ptr(s->cpu_slab);
2323 * The transaction ids are globally unique per cpu and per operation on
2324 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2325 * occurs on the right processor and that there was no operation on the
2326 * linked list in between.
2328 tid = c->tid;
2329 barrier();
2331 object = c->freelist;
2332 if (unlikely(!object || !node_match(c, node)))
2334 object = __slab_alloc(s, gfpflags, node, addr, c);
2336 else {
2337 void *next_object = get_freepointer_safe(s, object);
2340 * The cmpxchg will only match if there was no additional
2341 * operation and if we are on the right processor.
2343 * The cmpxchg does the following atomically (without lock semantics!)
2344 * 1. Relocate first pointer to the current per cpu area.
2345 * 2. Verify that tid and freelist have not been changed
2346 * 3. If they were not changed replace tid and freelist
2348 * Since this is without lock semantics the protection is only against
2349 * code executing on this cpu *not* from access by other cpus.
2351 if (unlikely(!this_cpu_cmpxchg_double(
2352 s->cpu_slab->freelist, s->cpu_slab->tid,
2353 object, tid,
2354 next_object, next_tid(tid)))) {
2356 note_cmpxchg_failure("slab_alloc", s, tid);
2357 goto redo;
2359 prefetch_freepointer(s, next_object);
2360 stat(s, ALLOC_FASTPATH);
2363 if (unlikely(gfpflags & __GFP_ZERO) && object)
2364 memset(object, 0, s->objsize);
2366 slab_post_alloc_hook(s, gfpflags, object);
2368 return object;
2371 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2373 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
2375 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
2377 return ret;
2379 EXPORT_SYMBOL(kmem_cache_alloc);
2381 #ifdef CONFIG_TRACING
2382 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2384 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
2385 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2386 return ret;
2388 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2390 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
2392 void *ret = kmalloc_order(size, flags, order);
2393 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
2394 return ret;
2396 EXPORT_SYMBOL(kmalloc_order_trace);
2397 #endif
2399 #ifdef CONFIG_NUMA
2400 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2402 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2404 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2405 s->objsize, s->size, gfpflags, node);
2407 return ret;
2409 EXPORT_SYMBOL(kmem_cache_alloc_node);
2411 #ifdef CONFIG_TRACING
2412 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2413 gfp_t gfpflags,
2414 int node, size_t size)
2416 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2418 trace_kmalloc_node(_RET_IP_, ret,
2419 size, s->size, gfpflags, node);
2420 return ret;
2422 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2423 #endif
2424 #endif
2427 * Slow patch handling. This may still be called frequently since objects
2428 * have a longer lifetime than the cpu slabs in most processing loads.
2430 * So we still attempt to reduce cache line usage. Just take the slab
2431 * lock and free the item. If there is no additional partial page
2432 * handling required then we can return immediately.
2434 static void __slab_free(struct kmem_cache *s, struct page *page,
2435 void *x, unsigned long addr)
2437 void *prior;
2438 void **object = (void *)x;
2439 int was_frozen;
2440 int inuse;
2441 struct page new;
2442 unsigned long counters;
2443 struct kmem_cache_node *n = NULL;
2444 unsigned long uninitialized_var(flags);
2446 stat(s, FREE_SLOWPATH);
2448 if (kmem_cache_debug(s) && !free_debug_processing(s, page, x, addr))
2449 return;
2451 do {
2452 prior = page->freelist;
2453 counters = page->counters;
2454 set_freepointer(s, object, prior);
2455 new.counters = counters;
2456 was_frozen = new.frozen;
2457 new.inuse--;
2458 if ((!new.inuse || !prior) && !was_frozen && !n) {
2460 if (!kmem_cache_debug(s) && !prior)
2463 * Slab was on no list before and will be partially empty
2464 * We can defer the list move and instead freeze it.
2466 new.frozen = 1;
2468 else { /* Needs to be taken off a list */
2470 n = get_node(s, page_to_nid(page));
2472 * Speculatively acquire the list_lock.
2473 * If the cmpxchg does not succeed then we may
2474 * drop the list_lock without any processing.
2476 * Otherwise the list_lock will synchronize with
2477 * other processors updating the list of slabs.
2479 spin_lock_irqsave(&n->list_lock, flags);
2483 inuse = new.inuse;
2485 } while (!cmpxchg_double_slab(s, page,
2486 prior, counters,
2487 object, new.counters,
2488 "__slab_free"));
2490 if (likely(!n)) {
2493 * If we just froze the page then put it onto the
2494 * per cpu partial list.
2496 if (new.frozen && !was_frozen) {
2497 put_cpu_partial(s, page, 1);
2498 stat(s, CPU_PARTIAL_FREE);
2501 * The list lock was not taken therefore no list
2502 * activity can be necessary.
2504 if (was_frozen)
2505 stat(s, FREE_FROZEN);
2506 return;
2510 * was_frozen may have been set after we acquired the list_lock in
2511 * an earlier loop. So we need to check it here again.
2513 if (was_frozen)
2514 stat(s, FREE_FROZEN);
2515 else {
2516 if (unlikely(!inuse && n->nr_partial > s->min_partial))
2517 goto slab_empty;
2520 * Objects left in the slab. If it was not on the partial list before
2521 * then add it.
2523 if (unlikely(!prior)) {
2524 remove_full(s, page);
2525 add_partial(n, page, DEACTIVATE_TO_TAIL);
2526 stat(s, FREE_ADD_PARTIAL);
2529 spin_unlock_irqrestore(&n->list_lock, flags);
2530 return;
2532 slab_empty:
2533 if (prior) {
2535 * Slab on the partial list.
2537 remove_partial(n, page);
2538 stat(s, FREE_REMOVE_PARTIAL);
2539 } else
2540 /* Slab must be on the full list */
2541 remove_full(s, page);
2543 spin_unlock_irqrestore(&n->list_lock, flags);
2544 stat(s, FREE_SLAB);
2545 discard_slab(s, page);
2549 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2550 * can perform fastpath freeing without additional function calls.
2552 * The fastpath is only possible if we are freeing to the current cpu slab
2553 * of this processor. This typically the case if we have just allocated
2554 * the item before.
2556 * If fastpath is not possible then fall back to __slab_free where we deal
2557 * with all sorts of special processing.
2559 static __always_inline void slab_free(struct kmem_cache *s,
2560 struct page *page, void *x, unsigned long addr)
2562 void **object = (void *)x;
2563 struct kmem_cache_cpu *c;
2564 unsigned long tid;
2566 slab_free_hook(s, x);
2568 redo:
2570 * Determine the currently cpus per cpu slab.
2571 * The cpu may change afterward. However that does not matter since
2572 * data is retrieved via this pointer. If we are on the same cpu
2573 * during the cmpxchg then the free will succedd.
2575 c = __this_cpu_ptr(s->cpu_slab);
2577 tid = c->tid;
2578 barrier();
2580 if (likely(page == c->page)) {
2581 set_freepointer(s, object, c->freelist);
2583 if (unlikely(!this_cpu_cmpxchg_double(
2584 s->cpu_slab->freelist, s->cpu_slab->tid,
2585 c->freelist, tid,
2586 object, next_tid(tid)))) {
2588 note_cmpxchg_failure("slab_free", s, tid);
2589 goto redo;
2591 stat(s, FREE_FASTPATH);
2592 } else
2593 __slab_free(s, page, x, addr);
2597 void kmem_cache_free(struct kmem_cache *s, void *x)
2599 struct page *page;
2601 page = virt_to_head_page(x);
2603 slab_free(s, page, x, _RET_IP_);
2605 trace_kmem_cache_free(_RET_IP_, x);
2607 EXPORT_SYMBOL(kmem_cache_free);
2610 * Object placement in a slab is made very easy because we always start at
2611 * offset 0. If we tune the size of the object to the alignment then we can
2612 * get the required alignment by putting one properly sized object after
2613 * another.
2615 * Notice that the allocation order determines the sizes of the per cpu
2616 * caches. Each processor has always one slab available for allocations.
2617 * Increasing the allocation order reduces the number of times that slabs
2618 * must be moved on and off the partial lists and is therefore a factor in
2619 * locking overhead.
2623 * Mininum / Maximum order of slab pages. This influences locking overhead
2624 * and slab fragmentation. A higher order reduces the number of partial slabs
2625 * and increases the number of allocations possible without having to
2626 * take the list_lock.
2628 static int slub_min_order;
2629 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2630 static int slub_min_objects;
2633 * Merge control. If this is set then no merging of slab caches will occur.
2634 * (Could be removed. This was introduced to pacify the merge skeptics.)
2636 static int slub_nomerge;
2639 * Calculate the order of allocation given an slab object size.
2641 * The order of allocation has significant impact on performance and other
2642 * system components. Generally order 0 allocations should be preferred since
2643 * order 0 does not cause fragmentation in the page allocator. Larger objects
2644 * be problematic to put into order 0 slabs because there may be too much
2645 * unused space left. We go to a higher order if more than 1/16th of the slab
2646 * would be wasted.
2648 * In order to reach satisfactory performance we must ensure that a minimum
2649 * number of objects is in one slab. Otherwise we may generate too much
2650 * activity on the partial lists which requires taking the list_lock. This is
2651 * less a concern for large slabs though which are rarely used.
2653 * slub_max_order specifies the order where we begin to stop considering the
2654 * number of objects in a slab as critical. If we reach slub_max_order then
2655 * we try to keep the page order as low as possible. So we accept more waste
2656 * of space in favor of a small page order.
2658 * Higher order allocations also allow the placement of more objects in a
2659 * slab and thereby reduce object handling overhead. If the user has
2660 * requested a higher mininum order then we start with that one instead of
2661 * the smallest order which will fit the object.
2663 static inline int slab_order(int size, int min_objects,
2664 int max_order, int fract_leftover, int reserved)
2666 int order;
2667 int rem;
2668 int min_order = slub_min_order;
2670 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2671 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2673 for (order = max(min_order,
2674 fls(min_objects * size - 1) - PAGE_SHIFT);
2675 order <= max_order; order++) {
2677 unsigned long slab_size = PAGE_SIZE << order;
2679 if (slab_size < min_objects * size + reserved)
2680 continue;
2682 rem = (slab_size - reserved) % size;
2684 if (rem <= slab_size / fract_leftover)
2685 break;
2689 return order;
2692 static inline int calculate_order(int size, int reserved)
2694 int order;
2695 int min_objects;
2696 int fraction;
2697 int max_objects;
2700 * Attempt to find best configuration for a slab. This
2701 * works by first attempting to generate a layout with
2702 * the best configuration and backing off gradually.
2704 * First we reduce the acceptable waste in a slab. Then
2705 * we reduce the minimum objects required in a slab.
2707 min_objects = slub_min_objects;
2708 if (!min_objects)
2709 min_objects = 4 * (fls(nr_cpu_ids) + 1);
2710 max_objects = order_objects(slub_max_order, size, reserved);
2711 min_objects = min(min_objects, max_objects);
2713 while (min_objects > 1) {
2714 fraction = 16;
2715 while (fraction >= 4) {
2716 order = slab_order(size, min_objects,
2717 slub_max_order, fraction, reserved);
2718 if (order <= slub_max_order)
2719 return order;
2720 fraction /= 2;
2722 min_objects--;
2726 * We were unable to place multiple objects in a slab. Now
2727 * lets see if we can place a single object there.
2729 order = slab_order(size, 1, slub_max_order, 1, reserved);
2730 if (order <= slub_max_order)
2731 return order;
2734 * Doh this slab cannot be placed using slub_max_order.
2736 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
2737 if (order < MAX_ORDER)
2738 return order;
2739 return -ENOSYS;
2743 * Figure out what the alignment of the objects will be.
2745 static unsigned long calculate_alignment(unsigned long flags,
2746 unsigned long align, unsigned long size)
2749 * If the user wants hardware cache aligned objects then follow that
2750 * suggestion if the object is sufficiently large.
2752 * The hardware cache alignment cannot override the specified
2753 * alignment though. If that is greater then use it.
2755 if (flags & SLAB_HWCACHE_ALIGN) {
2756 unsigned long ralign = cache_line_size();
2757 while (size <= ralign / 2)
2758 ralign /= 2;
2759 align = max(align, ralign);
2762 if (align < ARCH_SLAB_MINALIGN)
2763 align = ARCH_SLAB_MINALIGN;
2765 return ALIGN(align, sizeof(void *));
2768 static void
2769 init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
2771 n->nr_partial = 0;
2772 spin_lock_init(&n->list_lock);
2773 INIT_LIST_HEAD(&n->partial);
2774 #ifdef CONFIG_SLUB_DEBUG
2775 atomic_long_set(&n->nr_slabs, 0);
2776 atomic_long_set(&n->total_objects, 0);
2777 INIT_LIST_HEAD(&n->full);
2778 #endif
2781 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2783 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2784 SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
2787 * Must align to double word boundary for the double cmpxchg
2788 * instructions to work; see __pcpu_double_call_return_bool().
2790 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2791 2 * sizeof(void *));
2793 if (!s->cpu_slab)
2794 return 0;
2796 init_kmem_cache_cpus(s);
2798 return 1;
2801 static struct kmem_cache *kmem_cache_node;
2804 * No kmalloc_node yet so do it by hand. We know that this is the first
2805 * slab on the node for this slabcache. There are no concurrent accesses
2806 * possible.
2808 * Note that this function only works on the kmalloc_node_cache
2809 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2810 * memory on a fresh node that has no slab structures yet.
2812 static void early_kmem_cache_node_alloc(int node)
2814 struct page *page;
2815 struct kmem_cache_node *n;
2817 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
2819 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
2821 BUG_ON(!page);
2822 if (page_to_nid(page) != node) {
2823 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2824 "node %d\n", node);
2825 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2826 "in order to be able to continue\n");
2829 n = page->freelist;
2830 BUG_ON(!n);
2831 page->freelist = get_freepointer(kmem_cache_node, n);
2832 page->inuse = 1;
2833 page->frozen = 0;
2834 kmem_cache_node->node[node] = n;
2835 #ifdef CONFIG_SLUB_DEBUG
2836 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2837 init_tracking(kmem_cache_node, n);
2838 #endif
2839 init_kmem_cache_node(n, kmem_cache_node);
2840 inc_slabs_node(kmem_cache_node, node, page->objects);
2842 add_partial(n, page, DEACTIVATE_TO_HEAD);
2845 static void free_kmem_cache_nodes(struct kmem_cache *s)
2847 int node;
2849 for_each_node_state(node, N_NORMAL_MEMORY) {
2850 struct kmem_cache_node *n = s->node[node];
2852 if (n)
2853 kmem_cache_free(kmem_cache_node, n);
2855 s->node[node] = NULL;
2859 static int init_kmem_cache_nodes(struct kmem_cache *s)
2861 int node;
2863 for_each_node_state(node, N_NORMAL_MEMORY) {
2864 struct kmem_cache_node *n;
2866 if (slab_state == DOWN) {
2867 early_kmem_cache_node_alloc(node);
2868 continue;
2870 n = kmem_cache_alloc_node(kmem_cache_node,
2871 GFP_KERNEL, node);
2873 if (!n) {
2874 free_kmem_cache_nodes(s);
2875 return 0;
2878 s->node[node] = n;
2879 init_kmem_cache_node(n, s);
2881 return 1;
2884 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2886 if (min < MIN_PARTIAL)
2887 min = MIN_PARTIAL;
2888 else if (min > MAX_PARTIAL)
2889 min = MAX_PARTIAL;
2890 s->min_partial = min;
2894 * calculate_sizes() determines the order and the distribution of data within
2895 * a slab object.
2897 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2899 unsigned long flags = s->flags;
2900 unsigned long size = s->objsize;
2901 unsigned long align = s->align;
2902 int order;
2905 * Round up object size to the next word boundary. We can only
2906 * place the free pointer at word boundaries and this determines
2907 * the possible location of the free pointer.
2909 size = ALIGN(size, sizeof(void *));
2911 #ifdef CONFIG_SLUB_DEBUG
2913 * Determine if we can poison the object itself. If the user of
2914 * the slab may touch the object after free or before allocation
2915 * then we should never poison the object itself.
2917 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2918 !s->ctor)
2919 s->flags |= __OBJECT_POISON;
2920 else
2921 s->flags &= ~__OBJECT_POISON;
2925 * If we are Redzoning then check if there is some space between the
2926 * end of the object and the free pointer. If not then add an
2927 * additional word to have some bytes to store Redzone information.
2929 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2930 size += sizeof(void *);
2931 #endif
2934 * With that we have determined the number of bytes in actual use
2935 * by the object. This is the potential offset to the free pointer.
2937 s->inuse = size;
2939 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2940 s->ctor)) {
2942 * Relocate free pointer after the object if it is not
2943 * permitted to overwrite the first word of the object on
2944 * kmem_cache_free.
2946 * This is the case if we do RCU, have a constructor or
2947 * destructor or are poisoning the objects.
2949 s->offset = size;
2950 size += sizeof(void *);
2953 #ifdef CONFIG_SLUB_DEBUG
2954 if (flags & SLAB_STORE_USER)
2956 * Need to store information about allocs and frees after
2957 * the object.
2959 size += 2 * sizeof(struct track);
2961 if (flags & SLAB_RED_ZONE)
2963 * Add some empty padding so that we can catch
2964 * overwrites from earlier objects rather than let
2965 * tracking information or the free pointer be
2966 * corrupted if a user writes before the start
2967 * of the object.
2969 size += sizeof(void *);
2970 #endif
2973 * Determine the alignment based on various parameters that the
2974 * user specified and the dynamic determination of cache line size
2975 * on bootup.
2977 align = calculate_alignment(flags, align, s->objsize);
2978 s->align = align;
2981 * SLUB stores one object immediately after another beginning from
2982 * offset 0. In order to align the objects we have to simply size
2983 * each object to conform to the alignment.
2985 size = ALIGN(size, align);
2986 s->size = size;
2987 if (forced_order >= 0)
2988 order = forced_order;
2989 else
2990 order = calculate_order(size, s->reserved);
2992 if (order < 0)
2993 return 0;
2995 s->allocflags = 0;
2996 if (order)
2997 s->allocflags |= __GFP_COMP;
2999 if (s->flags & SLAB_CACHE_DMA)
3000 s->allocflags |= SLUB_DMA;
3002 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3003 s->allocflags |= __GFP_RECLAIMABLE;
3006 * Determine the number of objects per slab
3008 s->oo = oo_make(order, size, s->reserved);
3009 s->min = oo_make(get_order(size), size, s->reserved);
3010 if (oo_objects(s->oo) > oo_objects(s->max))
3011 s->max = s->oo;
3013 return !!oo_objects(s->oo);
3017 static int kmem_cache_open(struct kmem_cache *s,
3018 const char *name, size_t size,
3019 size_t align, unsigned long flags,
3020 void (*ctor)(void *))
3022 memset(s, 0, kmem_size);
3023 s->name = name;
3024 s->ctor = ctor;
3025 s->objsize = size;
3026 s->align = align;
3027 s->flags = kmem_cache_flags(size, flags, name, ctor);
3028 s->reserved = 0;
3030 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3031 s->reserved = sizeof(struct rcu_head);
3033 if (!calculate_sizes(s, -1))
3034 goto error;
3035 if (disable_higher_order_debug) {
3037 * Disable debugging flags that store metadata if the min slab
3038 * order increased.
3040 if (get_order(s->size) > get_order(s->objsize)) {
3041 s->flags &= ~DEBUG_METADATA_FLAGS;
3042 s->offset = 0;
3043 if (!calculate_sizes(s, -1))
3044 goto error;
3048 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3049 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3050 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3051 /* Enable fast mode */
3052 s->flags |= __CMPXCHG_DOUBLE;
3053 #endif
3056 * The larger the object size is, the more pages we want on the partial
3057 * list to avoid pounding the page allocator excessively.
3059 set_min_partial(s, ilog2(s->size) / 2);
3062 * cpu_partial determined the maximum number of objects kept in the
3063 * per cpu partial lists of a processor.
3065 * Per cpu partial lists mainly contain slabs that just have one
3066 * object freed. If they are used for allocation then they can be
3067 * filled up again with minimal effort. The slab will never hit the
3068 * per node partial lists and therefore no locking will be required.
3070 * This setting also determines
3072 * A) The number of objects from per cpu partial slabs dumped to the
3073 * per node list when we reach the limit.
3074 * B) The number of objects in cpu partial slabs to extract from the
3075 * per node list when we run out of per cpu objects. We only fetch 50%
3076 * to keep some capacity around for frees.
3078 if (kmem_cache_debug(s))
3079 s->cpu_partial = 0;
3080 else if (s->size >= PAGE_SIZE)
3081 s->cpu_partial = 2;
3082 else if (s->size >= 1024)
3083 s->cpu_partial = 6;
3084 else if (s->size >= 256)
3085 s->cpu_partial = 13;
3086 else
3087 s->cpu_partial = 30;
3089 s->refcount = 1;
3090 #ifdef CONFIG_NUMA
3091 s->remote_node_defrag_ratio = 1000;
3092 #endif
3093 if (!init_kmem_cache_nodes(s))
3094 goto error;
3096 if (alloc_kmem_cache_cpus(s))
3097 return 1;
3099 free_kmem_cache_nodes(s);
3100 error:
3101 if (flags & SLAB_PANIC)
3102 panic("Cannot create slab %s size=%lu realsize=%u "
3103 "order=%u offset=%u flags=%lx\n",
3104 s->name, (unsigned long)size, s->size, oo_order(s->oo),
3105 s->offset, flags);
3106 return 0;
3110 * Determine the size of a slab object
3112 unsigned int kmem_cache_size(struct kmem_cache *s)
3114 return s->objsize;
3116 EXPORT_SYMBOL(kmem_cache_size);
3118 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3119 const char *text)
3121 #ifdef CONFIG_SLUB_DEBUG
3122 void *addr = page_address(page);
3123 void *p;
3124 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3125 sizeof(long), GFP_ATOMIC);
3126 if (!map)
3127 return;
3128 slab_err(s, page, "%s", text);
3129 slab_lock(page);
3131 get_map(s, page, map);
3132 for_each_object(p, s, addr, page->objects) {
3134 if (!test_bit(slab_index(p, s, addr), map)) {
3135 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
3136 p, p - addr);
3137 print_tracking(s, p);
3140 slab_unlock(page);
3141 kfree(map);
3142 #endif
3146 * Attempt to free all partial slabs on a node.
3147 * This is called from kmem_cache_close(). We must be the last thread
3148 * using the cache and therefore we do not need to lock anymore.
3150 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3152 struct page *page, *h;
3154 list_for_each_entry_safe(page, h, &n->partial, lru) {
3155 if (!page->inuse) {
3156 remove_partial(n, page);
3157 discard_slab(s, page);
3158 } else {
3159 list_slab_objects(s, page,
3160 "Objects remaining on kmem_cache_close()");
3166 * Release all resources used by a slab cache.
3168 static inline int kmem_cache_close(struct kmem_cache *s)
3170 int node;
3172 flush_all(s);
3173 free_percpu(s->cpu_slab);
3174 /* Attempt to free all objects */
3175 for_each_node_state(node, N_NORMAL_MEMORY) {
3176 struct kmem_cache_node *n = get_node(s, node);
3178 free_partial(s, n);
3179 if (n->nr_partial || slabs_node(s, node))
3180 return 1;
3182 free_kmem_cache_nodes(s);
3183 return 0;
3187 * Close a cache and release the kmem_cache structure
3188 * (must be used for caches created using kmem_cache_create)
3190 void kmem_cache_destroy(struct kmem_cache *s)
3192 down_write(&slub_lock);
3193 s->refcount--;
3194 if (!s->refcount) {
3195 list_del(&s->list);
3196 up_write(&slub_lock);
3197 if (kmem_cache_close(s)) {
3198 printk(KERN_ERR "SLUB %s: %s called for cache that "
3199 "still has objects.\n", s->name, __func__);
3200 dump_stack();
3202 if (s->flags & SLAB_DESTROY_BY_RCU)
3203 rcu_barrier();
3204 sysfs_slab_remove(s);
3205 } else
3206 up_write(&slub_lock);
3208 EXPORT_SYMBOL(kmem_cache_destroy);
3210 /********************************************************************
3211 * Kmalloc subsystem
3212 *******************************************************************/
3214 struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
3215 EXPORT_SYMBOL(kmalloc_caches);
3217 static struct kmem_cache *kmem_cache;
3219 #ifdef CONFIG_ZONE_DMA
3220 static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
3221 #endif
3223 static int __init setup_slub_min_order(char *str)
3225 get_option(&str, &slub_min_order);
3227 return 1;
3230 __setup("slub_min_order=", setup_slub_min_order);
3232 static int __init setup_slub_max_order(char *str)
3234 get_option(&str, &slub_max_order);
3235 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3237 return 1;
3240 __setup("slub_max_order=", setup_slub_max_order);
3242 static int __init setup_slub_min_objects(char *str)
3244 get_option(&str, &slub_min_objects);
3246 return 1;
3249 __setup("slub_min_objects=", setup_slub_min_objects);
3251 static int __init setup_slub_nomerge(char *str)
3253 slub_nomerge = 1;
3254 return 1;
3257 __setup("slub_nomerge", setup_slub_nomerge);
3259 static struct kmem_cache *__init create_kmalloc_cache(const char *name,
3260 int size, unsigned int flags)
3262 struct kmem_cache *s;
3264 s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3267 * This function is called with IRQs disabled during early-boot on
3268 * single CPU so there's no need to take slub_lock here.
3270 if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
3271 flags, NULL))
3272 goto panic;
3274 list_add(&s->list, &slab_caches);
3275 return s;
3277 panic:
3278 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
3279 return NULL;
3283 * Conversion table for small slabs sizes / 8 to the index in the
3284 * kmalloc array. This is necessary for slabs < 192 since we have non power
3285 * of two cache sizes there. The size of larger slabs can be determined using
3286 * fls.
3288 static s8 size_index[24] = {
3289 3, /* 8 */
3290 4, /* 16 */
3291 5, /* 24 */
3292 5, /* 32 */
3293 6, /* 40 */
3294 6, /* 48 */
3295 6, /* 56 */
3296 6, /* 64 */
3297 1, /* 72 */
3298 1, /* 80 */
3299 1, /* 88 */
3300 1, /* 96 */
3301 7, /* 104 */
3302 7, /* 112 */
3303 7, /* 120 */
3304 7, /* 128 */
3305 2, /* 136 */
3306 2, /* 144 */
3307 2, /* 152 */
3308 2, /* 160 */
3309 2, /* 168 */
3310 2, /* 176 */
3311 2, /* 184 */
3312 2 /* 192 */
3315 static inline int size_index_elem(size_t bytes)
3317 return (bytes - 1) / 8;
3320 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
3322 int index;
3324 if (size <= 192) {
3325 if (!size)
3326 return ZERO_SIZE_PTR;
3328 index = size_index[size_index_elem(size)];
3329 } else
3330 index = fls(size - 1);
3332 #ifdef CONFIG_ZONE_DMA
3333 if (unlikely((flags & SLUB_DMA)))
3334 return kmalloc_dma_caches[index];
3336 #endif
3337 return kmalloc_caches[index];
3340 void *__kmalloc(size_t size, gfp_t flags)
3342 struct kmem_cache *s;
3343 void *ret;
3345 if (unlikely(size > SLUB_MAX_SIZE))
3346 return kmalloc_large(size, flags);
3348 s = get_slab(size, flags);
3350 if (unlikely(ZERO_OR_NULL_PTR(s)))
3351 return s;
3353 ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
3355 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3357 return ret;
3359 EXPORT_SYMBOL(__kmalloc);
3361 #ifdef CONFIG_NUMA
3362 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3364 struct page *page;
3365 void *ptr = NULL;
3367 flags |= __GFP_COMP | __GFP_NOTRACK;
3368 page = alloc_pages_node(node, flags, get_order(size));
3369 if (page)
3370 ptr = page_address(page);
3372 kmemleak_alloc(ptr, size, 1, flags);
3373 return ptr;
3376 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3378 struct kmem_cache *s;
3379 void *ret;
3381 if (unlikely(size > SLUB_MAX_SIZE)) {
3382 ret = kmalloc_large_node(size, flags, node);
3384 trace_kmalloc_node(_RET_IP_, ret,
3385 size, PAGE_SIZE << get_order(size),
3386 flags, node);
3388 return ret;
3391 s = get_slab(size, flags);
3393 if (unlikely(ZERO_OR_NULL_PTR(s)))
3394 return s;
3396 ret = slab_alloc(s, flags, node, _RET_IP_);
3398 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3400 return ret;
3402 EXPORT_SYMBOL(__kmalloc_node);
3403 #endif
3405 size_t ksize(const void *object)
3407 struct page *page;
3409 if (unlikely(object == ZERO_SIZE_PTR))
3410 return 0;
3412 page = virt_to_head_page(object);
3414 if (unlikely(!PageSlab(page))) {
3415 WARN_ON(!PageCompound(page));
3416 return PAGE_SIZE << compound_order(page);
3419 return slab_ksize(page->slab);
3421 EXPORT_SYMBOL(ksize);
3423 #ifdef CONFIG_SLUB_DEBUG
3424 bool verify_mem_not_deleted(const void *x)
3426 struct page *page;
3427 void *object = (void *)x;
3428 unsigned long flags;
3429 bool rv;
3431 if (unlikely(ZERO_OR_NULL_PTR(x)))
3432 return false;
3434 local_irq_save(flags);
3436 page = virt_to_head_page(x);
3437 if (unlikely(!PageSlab(page))) {
3438 /* maybe it was from stack? */
3439 rv = true;
3440 goto out_unlock;
3443 slab_lock(page);
3444 if (on_freelist(page->slab, page, object)) {
3445 object_err(page->slab, page, object, "Object is on free-list");
3446 rv = false;
3447 } else {
3448 rv = true;
3450 slab_unlock(page);
3452 out_unlock:
3453 local_irq_restore(flags);
3454 return rv;
3456 EXPORT_SYMBOL(verify_mem_not_deleted);
3457 #endif
3459 void kfree(const void *x)
3461 struct page *page;
3462 void *object = (void *)x;
3464 trace_kfree(_RET_IP_, x);
3466 if (unlikely(ZERO_OR_NULL_PTR(x)))
3467 return;
3469 page = virt_to_head_page(x);
3470 if (unlikely(!PageSlab(page))) {
3471 BUG_ON(!PageCompound(page));
3472 kmemleak_free(x);
3473 put_page(page);
3474 return;
3476 slab_free(page->slab, page, object, _RET_IP_);
3478 EXPORT_SYMBOL(kfree);
3481 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3482 * the remaining slabs by the number of items in use. The slabs with the
3483 * most items in use come first. New allocations will then fill those up
3484 * and thus they can be removed from the partial lists.
3486 * The slabs with the least items are placed last. This results in them
3487 * being allocated from last increasing the chance that the last objects
3488 * are freed in them.
3490 int kmem_cache_shrink(struct kmem_cache *s)
3492 int node;
3493 int i;
3494 struct kmem_cache_node *n;
3495 struct page *page;
3496 struct page *t;
3497 int objects = oo_objects(s->max);
3498 struct list_head *slabs_by_inuse =
3499 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
3500 unsigned long flags;
3502 if (!slabs_by_inuse)
3503 return -ENOMEM;
3505 flush_all(s);
3506 for_each_node_state(node, N_NORMAL_MEMORY) {
3507 n = get_node(s, node);
3509 if (!n->nr_partial)
3510 continue;
3512 for (i = 0; i < objects; i++)
3513 INIT_LIST_HEAD(slabs_by_inuse + i);
3515 spin_lock_irqsave(&n->list_lock, flags);
3518 * Build lists indexed by the items in use in each slab.
3520 * Note that concurrent frees may occur while we hold the
3521 * list_lock. page->inuse here is the upper limit.
3523 list_for_each_entry_safe(page, t, &n->partial, lru) {
3524 list_move(&page->lru, slabs_by_inuse + page->inuse);
3525 if (!page->inuse)
3526 n->nr_partial--;
3530 * Rebuild the partial list with the slabs filled up most
3531 * first and the least used slabs at the end.
3533 for (i = objects - 1; i > 0; i--)
3534 list_splice(slabs_by_inuse + i, n->partial.prev);
3536 spin_unlock_irqrestore(&n->list_lock, flags);
3538 /* Release empty slabs */
3539 list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3540 discard_slab(s, page);
3543 kfree(slabs_by_inuse);
3544 return 0;
3546 EXPORT_SYMBOL(kmem_cache_shrink);
3548 #if defined(CONFIG_MEMORY_HOTPLUG)
3549 static int slab_mem_going_offline_callback(void *arg)
3551 struct kmem_cache *s;
3553 down_read(&slub_lock);
3554 list_for_each_entry(s, &slab_caches, list)
3555 kmem_cache_shrink(s);
3556 up_read(&slub_lock);
3558 return 0;
3561 static void slab_mem_offline_callback(void *arg)
3563 struct kmem_cache_node *n;
3564 struct kmem_cache *s;
3565 struct memory_notify *marg = arg;
3566 int offline_node;
3568 offline_node = marg->status_change_nid;
3571 * If the node still has available memory. we need kmem_cache_node
3572 * for it yet.
3574 if (offline_node < 0)
3575 return;
3577 down_read(&slub_lock);
3578 list_for_each_entry(s, &slab_caches, list) {
3579 n = get_node(s, offline_node);
3580 if (n) {
3582 * if n->nr_slabs > 0, slabs still exist on the node
3583 * that is going down. We were unable to free them,
3584 * and offline_pages() function shouldn't call this
3585 * callback. So, we must fail.
3587 BUG_ON(slabs_node(s, offline_node));
3589 s->node[offline_node] = NULL;
3590 kmem_cache_free(kmem_cache_node, n);
3593 up_read(&slub_lock);
3596 static int slab_mem_going_online_callback(void *arg)
3598 struct kmem_cache_node *n;
3599 struct kmem_cache *s;
3600 struct memory_notify *marg = arg;
3601 int nid = marg->status_change_nid;
3602 int ret = 0;
3605 * If the node's memory is already available, then kmem_cache_node is
3606 * already created. Nothing to do.
3608 if (nid < 0)
3609 return 0;
3612 * We are bringing a node online. No memory is available yet. We must
3613 * allocate a kmem_cache_node structure in order to bring the node
3614 * online.
3616 down_read(&slub_lock);
3617 list_for_each_entry(s, &slab_caches, list) {
3619 * XXX: kmem_cache_alloc_node will fallback to other nodes
3620 * since memory is not yet available from the node that
3621 * is brought up.
3623 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3624 if (!n) {
3625 ret = -ENOMEM;
3626 goto out;
3628 init_kmem_cache_node(n, s);
3629 s->node[nid] = n;
3631 out:
3632 up_read(&slub_lock);
3633 return ret;
3636 static int slab_memory_callback(struct notifier_block *self,
3637 unsigned long action, void *arg)
3639 int ret = 0;
3641 switch (action) {
3642 case MEM_GOING_ONLINE:
3643 ret = slab_mem_going_online_callback(arg);
3644 break;
3645 case MEM_GOING_OFFLINE:
3646 ret = slab_mem_going_offline_callback(arg);
3647 break;
3648 case MEM_OFFLINE:
3649 case MEM_CANCEL_ONLINE:
3650 slab_mem_offline_callback(arg);
3651 break;
3652 case MEM_ONLINE:
3653 case MEM_CANCEL_OFFLINE:
3654 break;
3656 if (ret)
3657 ret = notifier_from_errno(ret);
3658 else
3659 ret = NOTIFY_OK;
3660 return ret;
3663 #endif /* CONFIG_MEMORY_HOTPLUG */
3665 /********************************************************************
3666 * Basic setup of slabs
3667 *******************************************************************/
3670 * Used for early kmem_cache structures that were allocated using
3671 * the page allocator
3674 static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
3676 int node;
3678 list_add(&s->list, &slab_caches);
3679 s->refcount = -1;
3681 for_each_node_state(node, N_NORMAL_MEMORY) {
3682 struct kmem_cache_node *n = get_node(s, node);
3683 struct page *p;
3685 if (n) {
3686 list_for_each_entry(p, &n->partial, lru)
3687 p->slab = s;
3689 #ifdef CONFIG_SLUB_DEBUG
3690 list_for_each_entry(p, &n->full, lru)
3691 p->slab = s;
3692 #endif
3697 void __init kmem_cache_init(void)
3699 int i;
3700 int caches = 0;
3701 struct kmem_cache *temp_kmem_cache;
3702 int order;
3703 struct kmem_cache *temp_kmem_cache_node;
3704 unsigned long kmalloc_size;
3706 if (debug_guardpage_minorder())
3707 slub_max_order = 0;
3709 kmem_size = offsetof(struct kmem_cache, node) +
3710 nr_node_ids * sizeof(struct kmem_cache_node *);
3712 /* Allocate two kmem_caches from the page allocator */
3713 kmalloc_size = ALIGN(kmem_size, cache_line_size());
3714 order = get_order(2 * kmalloc_size);
3715 kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
3718 * Must first have the slab cache available for the allocations of the
3719 * struct kmem_cache_node's. There is special bootstrap code in
3720 * kmem_cache_open for slab_state == DOWN.
3722 kmem_cache_node = (void *)kmem_cache + kmalloc_size;
3724 kmem_cache_open(kmem_cache_node, "kmem_cache_node",
3725 sizeof(struct kmem_cache_node),
3726 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3728 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
3730 /* Able to allocate the per node structures */
3731 slab_state = PARTIAL;
3733 temp_kmem_cache = kmem_cache;
3734 kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
3735 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3736 kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3737 memcpy(kmem_cache, temp_kmem_cache, kmem_size);
3740 * Allocate kmem_cache_node properly from the kmem_cache slab.
3741 * kmem_cache_node is separately allocated so no need to
3742 * update any list pointers.
3744 temp_kmem_cache_node = kmem_cache_node;
3746 kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3747 memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
3749 kmem_cache_bootstrap_fixup(kmem_cache_node);
3751 caches++;
3752 kmem_cache_bootstrap_fixup(kmem_cache);
3753 caches++;
3754 /* Free temporary boot structure */
3755 free_pages((unsigned long)temp_kmem_cache, order);
3757 /* Now we can use the kmem_cache to allocate kmalloc slabs */
3760 * Patch up the size_index table if we have strange large alignment
3761 * requirements for the kmalloc array. This is only the case for
3762 * MIPS it seems. The standard arches will not generate any code here.
3764 * Largest permitted alignment is 256 bytes due to the way we
3765 * handle the index determination for the smaller caches.
3767 * Make sure that nothing crazy happens if someone starts tinkering
3768 * around with ARCH_KMALLOC_MINALIGN
3770 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3771 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3773 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3774 int elem = size_index_elem(i);
3775 if (elem >= ARRAY_SIZE(size_index))
3776 break;
3777 size_index[elem] = KMALLOC_SHIFT_LOW;
3780 if (KMALLOC_MIN_SIZE == 64) {
3782 * The 96 byte size cache is not used if the alignment
3783 * is 64 byte.
3785 for (i = 64 + 8; i <= 96; i += 8)
3786 size_index[size_index_elem(i)] = 7;
3787 } else if (KMALLOC_MIN_SIZE == 128) {
3789 * The 192 byte sized cache is not used if the alignment
3790 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3791 * instead.
3793 for (i = 128 + 8; i <= 192; i += 8)
3794 size_index[size_index_elem(i)] = 8;
3797 /* Caches that are not of the two-to-the-power-of size */
3798 if (KMALLOC_MIN_SIZE <= 32) {
3799 kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3800 caches++;
3803 if (KMALLOC_MIN_SIZE <= 64) {
3804 kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3805 caches++;
3808 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3809 kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3810 caches++;
3813 slab_state = UP;
3815 /* Provide the correct kmalloc names now that the caches are up */
3816 if (KMALLOC_MIN_SIZE <= 32) {
3817 kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
3818 BUG_ON(!kmalloc_caches[1]->name);
3821 if (KMALLOC_MIN_SIZE <= 64) {
3822 kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
3823 BUG_ON(!kmalloc_caches[2]->name);
3826 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3827 char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3829 BUG_ON(!s);
3830 kmalloc_caches[i]->name = s;
3833 #ifdef CONFIG_SMP
3834 register_cpu_notifier(&slab_notifier);
3835 #endif
3837 #ifdef CONFIG_ZONE_DMA
3838 for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3839 struct kmem_cache *s = kmalloc_caches[i];
3841 if (s && s->size) {
3842 char *name = kasprintf(GFP_NOWAIT,
3843 "dma-kmalloc-%d", s->objsize);
3845 BUG_ON(!name);
3846 kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3847 s->objsize, SLAB_CACHE_DMA);
3850 #endif
3851 printk(KERN_INFO
3852 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3853 " CPUs=%d, Nodes=%d\n",
3854 caches, cache_line_size(),
3855 slub_min_order, slub_max_order, slub_min_objects,
3856 nr_cpu_ids, nr_node_ids);
3859 void __init kmem_cache_init_late(void)
3864 * Find a mergeable slab cache
3866 static int slab_unmergeable(struct kmem_cache *s)
3868 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3869 return 1;
3871 if (s->ctor)
3872 return 1;
3875 * We may have set a slab to be unmergeable during bootstrap.
3877 if (s->refcount < 0)
3878 return 1;
3880 return 0;
3883 static struct kmem_cache *find_mergeable(size_t size,
3884 size_t align, unsigned long flags, const char *name,
3885 void (*ctor)(void *))
3887 struct kmem_cache *s;
3889 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3890 return NULL;
3892 if (ctor)
3893 return NULL;
3895 size = ALIGN(size, sizeof(void *));
3896 align = calculate_alignment(flags, align, size);
3897 size = ALIGN(size, align);
3898 flags = kmem_cache_flags(size, flags, name, NULL);
3900 list_for_each_entry(s, &slab_caches, list) {
3901 if (slab_unmergeable(s))
3902 continue;
3904 if (size > s->size)
3905 continue;
3907 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3908 continue;
3910 * Check if alignment is compatible.
3911 * Courtesy of Adrian Drzewiecki
3913 if ((s->size & ~(align - 1)) != s->size)
3914 continue;
3916 if (s->size - size >= sizeof(void *))
3917 continue;
3919 return s;
3921 return NULL;
3924 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3925 size_t align, unsigned long flags, void (*ctor)(void *))
3927 struct kmem_cache *s;
3928 char *n;
3930 if (WARN_ON(!name))
3931 return NULL;
3933 down_write(&slub_lock);
3934 s = find_mergeable(size, align, flags, name, ctor);
3935 if (s) {
3936 s->refcount++;
3938 * Adjust the object sizes so that we clear
3939 * the complete object on kzalloc.
3941 s->objsize = max(s->objsize, (int)size);
3942 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3944 if (sysfs_slab_alias(s, name)) {
3945 s->refcount--;
3946 goto err;
3948 up_write(&slub_lock);
3949 return s;
3952 n = kstrdup(name, GFP_KERNEL);
3953 if (!n)
3954 goto err;
3956 s = kmalloc(kmem_size, GFP_KERNEL);
3957 if (s) {
3958 if (kmem_cache_open(s, n,
3959 size, align, flags, ctor)) {
3960 list_add(&s->list, &slab_caches);
3961 up_write(&slub_lock);
3962 if (sysfs_slab_add(s)) {
3963 down_write(&slub_lock);
3964 list_del(&s->list);
3965 kfree(n);
3966 kfree(s);
3967 goto err;
3969 return s;
3971 kfree(n);
3972 kfree(s);
3974 err:
3975 up_write(&slub_lock);
3977 if (flags & SLAB_PANIC)
3978 panic("Cannot create slabcache %s\n", name);
3979 else
3980 s = NULL;
3981 return s;
3983 EXPORT_SYMBOL(kmem_cache_create);
3985 #ifdef CONFIG_SMP
3987 * Use the cpu notifier to insure that the cpu slabs are flushed when
3988 * necessary.
3990 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3991 unsigned long action, void *hcpu)
3993 long cpu = (long)hcpu;
3994 struct kmem_cache *s;
3995 unsigned long flags;
3997 switch (action) {
3998 case CPU_UP_CANCELED:
3999 case CPU_UP_CANCELED_FROZEN:
4000 case CPU_DEAD:
4001 case CPU_DEAD_FROZEN:
4002 down_read(&slub_lock);
4003 list_for_each_entry(s, &slab_caches, list) {
4004 local_irq_save(flags);
4005 __flush_cpu_slab(s, cpu);
4006 local_irq_restore(flags);
4008 up_read(&slub_lock);
4009 break;
4010 default:
4011 break;
4013 return NOTIFY_OK;
4016 static struct notifier_block __cpuinitdata slab_notifier = {
4017 .notifier_call = slab_cpuup_callback
4020 #endif
4022 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4024 struct kmem_cache *s;
4025 void *ret;
4027 if (unlikely(size > SLUB_MAX_SIZE))
4028 return kmalloc_large(size, gfpflags);
4030 s = get_slab(size, gfpflags);
4032 if (unlikely(ZERO_OR_NULL_PTR(s)))
4033 return s;
4035 ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
4037 /* Honor the call site pointer we received. */
4038 trace_kmalloc(caller, ret, size, s->size, gfpflags);
4040 return ret;
4043 #ifdef CONFIG_NUMA
4044 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4045 int node, unsigned long caller)
4047 struct kmem_cache *s;
4048 void *ret;
4050 if (unlikely(size > SLUB_MAX_SIZE)) {
4051 ret = kmalloc_large_node(size, gfpflags, node);
4053 trace_kmalloc_node(caller, ret,
4054 size, PAGE_SIZE << get_order(size),
4055 gfpflags, node);
4057 return ret;
4060 s = get_slab(size, gfpflags);
4062 if (unlikely(ZERO_OR_NULL_PTR(s)))
4063 return s;
4065 ret = slab_alloc(s, gfpflags, node, caller);
4067 /* Honor the call site pointer we received. */
4068 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4070 return ret;
4072 #endif
4074 #ifdef CONFIG_SYSFS
4075 static int count_inuse(struct page *page)
4077 return page->inuse;
4080 static int count_total(struct page *page)
4082 return page->objects;
4084 #endif
4086 #ifdef CONFIG_SLUB_DEBUG
4087 static int validate_slab(struct kmem_cache *s, struct page *page,
4088 unsigned long *map)
4090 void *p;
4091 void *addr = page_address(page);
4093 if (!check_slab(s, page) ||
4094 !on_freelist(s, page, NULL))
4095 return 0;
4097 /* Now we know that a valid freelist exists */
4098 bitmap_zero(map, page->objects);
4100 get_map(s, page, map);
4101 for_each_object(p, s, addr, page->objects) {
4102 if (test_bit(slab_index(p, s, addr), map))
4103 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4104 return 0;
4107 for_each_object(p, s, addr, page->objects)
4108 if (!test_bit(slab_index(p, s, addr), map))
4109 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4110 return 0;
4111 return 1;
4114 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4115 unsigned long *map)
4117 slab_lock(page);
4118 validate_slab(s, page, map);
4119 slab_unlock(page);
4122 static int validate_slab_node(struct kmem_cache *s,
4123 struct kmem_cache_node *n, unsigned long *map)
4125 unsigned long count = 0;
4126 struct page *page;
4127 unsigned long flags;
4129 spin_lock_irqsave(&n->list_lock, flags);
4131 list_for_each_entry(page, &n->partial, lru) {
4132 validate_slab_slab(s, page, map);
4133 count++;
4135 if (count != n->nr_partial)
4136 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
4137 "counter=%ld\n", s->name, count, n->nr_partial);
4139 if (!(s->flags & SLAB_STORE_USER))
4140 goto out;
4142 list_for_each_entry(page, &n->full, lru) {
4143 validate_slab_slab(s, page, map);
4144 count++;
4146 if (count != atomic_long_read(&n->nr_slabs))
4147 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
4148 "counter=%ld\n", s->name, count,
4149 atomic_long_read(&n->nr_slabs));
4151 out:
4152 spin_unlock_irqrestore(&n->list_lock, flags);
4153 return count;
4156 static long validate_slab_cache(struct kmem_cache *s)
4158 int node;
4159 unsigned long count = 0;
4160 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4161 sizeof(unsigned long), GFP_KERNEL);
4163 if (!map)
4164 return -ENOMEM;
4166 flush_all(s);
4167 for_each_node_state(node, N_NORMAL_MEMORY) {
4168 struct kmem_cache_node *n = get_node(s, node);
4170 count += validate_slab_node(s, n, map);
4172 kfree(map);
4173 return count;
4176 * Generate lists of code addresses where slabcache objects are allocated
4177 * and freed.
4180 struct location {
4181 unsigned long count;
4182 unsigned long addr;
4183 long long sum_time;
4184 long min_time;
4185 long max_time;
4186 long min_pid;
4187 long max_pid;
4188 DECLARE_BITMAP(cpus, NR_CPUS);
4189 nodemask_t nodes;
4192 struct loc_track {
4193 unsigned long max;
4194 unsigned long count;
4195 struct location *loc;
4198 static void free_loc_track(struct loc_track *t)
4200 if (t->max)
4201 free_pages((unsigned long)t->loc,
4202 get_order(sizeof(struct location) * t->max));
4205 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4207 struct location *l;
4208 int order;
4210 order = get_order(sizeof(struct location) * max);
4212 l = (void *)__get_free_pages(flags, order);
4213 if (!l)
4214 return 0;
4216 if (t->count) {
4217 memcpy(l, t->loc, sizeof(struct location) * t->count);
4218 free_loc_track(t);
4220 t->max = max;
4221 t->loc = l;
4222 return 1;
4225 static int add_location(struct loc_track *t, struct kmem_cache *s,
4226 const struct track *track)
4228 long start, end, pos;
4229 struct location *l;
4230 unsigned long caddr;
4231 unsigned long age = jiffies - track->when;
4233 start = -1;
4234 end = t->count;
4236 for ( ; ; ) {
4237 pos = start + (end - start + 1) / 2;
4240 * There is nothing at "end". If we end up there
4241 * we need to add something to before end.
4243 if (pos == end)
4244 break;
4246 caddr = t->loc[pos].addr;
4247 if (track->addr == caddr) {
4249 l = &t->loc[pos];
4250 l->count++;
4251 if (track->when) {
4252 l->sum_time += age;
4253 if (age < l->min_time)
4254 l->min_time = age;
4255 if (age > l->max_time)
4256 l->max_time = age;
4258 if (track->pid < l->min_pid)
4259 l->min_pid = track->pid;
4260 if (track->pid > l->max_pid)
4261 l->max_pid = track->pid;
4263 cpumask_set_cpu(track->cpu,
4264 to_cpumask(l->cpus));
4266 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4267 return 1;
4270 if (track->addr < caddr)
4271 end = pos;
4272 else
4273 start = pos;
4277 * Not found. Insert new tracking element.
4279 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4280 return 0;
4282 l = t->loc + pos;
4283 if (pos < t->count)
4284 memmove(l + 1, l,
4285 (t->count - pos) * sizeof(struct location));
4286 t->count++;
4287 l->count = 1;
4288 l->addr = track->addr;
4289 l->sum_time = age;
4290 l->min_time = age;
4291 l->max_time = age;
4292 l->min_pid = track->pid;
4293 l->max_pid = track->pid;
4294 cpumask_clear(to_cpumask(l->cpus));
4295 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4296 nodes_clear(l->nodes);
4297 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4298 return 1;
4301 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4302 struct page *page, enum track_item alloc,
4303 unsigned long *map)
4305 void *addr = page_address(page);
4306 void *p;
4308 bitmap_zero(map, page->objects);
4309 get_map(s, page, map);
4311 for_each_object(p, s, addr, page->objects)
4312 if (!test_bit(slab_index(p, s, addr), map))
4313 add_location(t, s, get_track(s, p, alloc));
4316 static int list_locations(struct kmem_cache *s, char *buf,
4317 enum track_item alloc)
4319 int len = 0;
4320 unsigned long i;
4321 struct loc_track t = { 0, 0, NULL };
4322 int node;
4323 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4324 sizeof(unsigned long), GFP_KERNEL);
4326 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4327 GFP_TEMPORARY)) {
4328 kfree(map);
4329 return sprintf(buf, "Out of memory\n");
4331 /* Push back cpu slabs */
4332 flush_all(s);
4334 for_each_node_state(node, N_NORMAL_MEMORY) {
4335 struct kmem_cache_node *n = get_node(s, node);
4336 unsigned long flags;
4337 struct page *page;
4339 if (!atomic_long_read(&n->nr_slabs))
4340 continue;
4342 spin_lock_irqsave(&n->list_lock, flags);
4343 list_for_each_entry(page, &n->partial, lru)
4344 process_slab(&t, s, page, alloc, map);
4345 list_for_each_entry(page, &n->full, lru)
4346 process_slab(&t, s, page, alloc, map);
4347 spin_unlock_irqrestore(&n->list_lock, flags);
4350 for (i = 0; i < t.count; i++) {
4351 struct location *l = &t.loc[i];
4353 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4354 break;
4355 len += sprintf(buf + len, "%7ld ", l->count);
4357 if (l->addr)
4358 len += sprintf(buf + len, "%pS", (void *)l->addr);
4359 else
4360 len += sprintf(buf + len, "<not-available>");
4362 if (l->sum_time != l->min_time) {
4363 len += sprintf(buf + len, " age=%ld/%ld/%ld",
4364 l->min_time,
4365 (long)div_u64(l->sum_time, l->count),
4366 l->max_time);
4367 } else
4368 len += sprintf(buf + len, " age=%ld",
4369 l->min_time);
4371 if (l->min_pid != l->max_pid)
4372 len += sprintf(buf + len, " pid=%ld-%ld",
4373 l->min_pid, l->max_pid);
4374 else
4375 len += sprintf(buf + len, " pid=%ld",
4376 l->min_pid);
4378 if (num_online_cpus() > 1 &&
4379 !cpumask_empty(to_cpumask(l->cpus)) &&
4380 len < PAGE_SIZE - 60) {
4381 len += sprintf(buf + len, " cpus=");
4382 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
4383 to_cpumask(l->cpus));
4386 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4387 len < PAGE_SIZE - 60) {
4388 len += sprintf(buf + len, " nodes=");
4389 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
4390 l->nodes);
4393 len += sprintf(buf + len, "\n");
4396 free_loc_track(&t);
4397 kfree(map);
4398 if (!t.count)
4399 len += sprintf(buf, "No data\n");
4400 return len;
4402 #endif
4404 #ifdef SLUB_RESILIENCY_TEST
4405 static void resiliency_test(void)
4407 u8 *p;
4409 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
4411 printk(KERN_ERR "SLUB resiliency testing\n");
4412 printk(KERN_ERR "-----------------------\n");
4413 printk(KERN_ERR "A. Corruption after allocation\n");
4415 p = kzalloc(16, GFP_KERNEL);
4416 p[16] = 0x12;
4417 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
4418 " 0x12->0x%p\n\n", p + 16);
4420 validate_slab_cache(kmalloc_caches[4]);
4422 /* Hmmm... The next two are dangerous */
4423 p = kzalloc(32, GFP_KERNEL);
4424 p[32 + sizeof(void *)] = 0x34;
4425 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
4426 " 0x34 -> -0x%p\n", p);
4427 printk(KERN_ERR
4428 "If allocated object is overwritten then not detectable\n\n");
4430 validate_slab_cache(kmalloc_caches[5]);
4431 p = kzalloc(64, GFP_KERNEL);
4432 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4433 *p = 0x56;
4434 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4436 printk(KERN_ERR
4437 "If allocated object is overwritten then not detectable\n\n");
4438 validate_slab_cache(kmalloc_caches[6]);
4440 printk(KERN_ERR "\nB. Corruption after free\n");
4441 p = kzalloc(128, GFP_KERNEL);
4442 kfree(p);
4443 *p = 0x78;
4444 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4445 validate_slab_cache(kmalloc_caches[7]);
4447 p = kzalloc(256, GFP_KERNEL);
4448 kfree(p);
4449 p[50] = 0x9a;
4450 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4452 validate_slab_cache(kmalloc_caches[8]);
4454 p = kzalloc(512, GFP_KERNEL);
4455 kfree(p);
4456 p[512] = 0xab;
4457 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4458 validate_slab_cache(kmalloc_caches[9]);
4460 #else
4461 #ifdef CONFIG_SYSFS
4462 static void resiliency_test(void) {};
4463 #endif
4464 #endif
4466 #ifdef CONFIG_SYSFS
4467 enum slab_stat_type {
4468 SL_ALL, /* All slabs */
4469 SL_PARTIAL, /* Only partially allocated slabs */
4470 SL_CPU, /* Only slabs used for cpu caches */
4471 SL_OBJECTS, /* Determine allocated objects not slabs */
4472 SL_TOTAL /* Determine object capacity not slabs */
4475 #define SO_ALL (1 << SL_ALL)
4476 #define SO_PARTIAL (1 << SL_PARTIAL)
4477 #define SO_CPU (1 << SL_CPU)
4478 #define SO_OBJECTS (1 << SL_OBJECTS)
4479 #define SO_TOTAL (1 << SL_TOTAL)
4481 static ssize_t show_slab_objects(struct kmem_cache *s,
4482 char *buf, unsigned long flags)
4484 unsigned long total = 0;
4485 int node;
4486 int x;
4487 unsigned long *nodes;
4488 unsigned long *per_cpu;
4490 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4491 if (!nodes)
4492 return -ENOMEM;
4493 per_cpu = nodes + nr_node_ids;
4495 if (flags & SO_CPU) {
4496 int cpu;
4498 for_each_possible_cpu(cpu) {
4499 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
4500 int node = ACCESS_ONCE(c->node);
4501 struct page *page;
4503 if (node < 0)
4504 continue;
4505 page = ACCESS_ONCE(c->page);
4506 if (page) {
4507 if (flags & SO_TOTAL)
4508 x = page->objects;
4509 else if (flags & SO_OBJECTS)
4510 x = page->inuse;
4511 else
4512 x = 1;
4514 total += x;
4515 nodes[node] += x;
4517 page = c->partial;
4519 if (page) {
4520 x = page->pobjects;
4521 total += x;
4522 nodes[node] += x;
4524 per_cpu[node]++;
4528 lock_memory_hotplug();
4529 #ifdef CONFIG_SLUB_DEBUG
4530 if (flags & SO_ALL) {
4531 for_each_node_state(node, N_NORMAL_MEMORY) {
4532 struct kmem_cache_node *n = get_node(s, node);
4534 if (flags & SO_TOTAL)
4535 x = atomic_long_read(&n->total_objects);
4536 else if (flags & SO_OBJECTS)
4537 x = atomic_long_read(&n->total_objects) -
4538 count_partial(n, count_free);
4540 else
4541 x = atomic_long_read(&n->nr_slabs);
4542 total += x;
4543 nodes[node] += x;
4546 } else
4547 #endif
4548 if (flags & SO_PARTIAL) {
4549 for_each_node_state(node, N_NORMAL_MEMORY) {
4550 struct kmem_cache_node *n = get_node(s, node);
4552 if (flags & SO_TOTAL)
4553 x = count_partial(n, count_total);
4554 else if (flags & SO_OBJECTS)
4555 x = count_partial(n, count_inuse);
4556 else
4557 x = n->nr_partial;
4558 total += x;
4559 nodes[node] += x;
4562 x = sprintf(buf, "%lu", total);
4563 #ifdef CONFIG_NUMA
4564 for_each_node_state(node, N_NORMAL_MEMORY)
4565 if (nodes[node])
4566 x += sprintf(buf + x, " N%d=%lu",
4567 node, nodes[node]);
4568 #endif
4569 unlock_memory_hotplug();
4570 kfree(nodes);
4571 return x + sprintf(buf + x, "\n");
4574 #ifdef CONFIG_SLUB_DEBUG
4575 static int any_slab_objects(struct kmem_cache *s)
4577 int node;
4579 for_each_online_node(node) {
4580 struct kmem_cache_node *n = get_node(s, node);
4582 if (!n)
4583 continue;
4585 if (atomic_long_read(&n->total_objects))
4586 return 1;
4588 return 0;
4590 #endif
4592 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4593 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4595 struct slab_attribute {
4596 struct attribute attr;
4597 ssize_t (*show)(struct kmem_cache *s, char *buf);
4598 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4601 #define SLAB_ATTR_RO(_name) \
4602 static struct slab_attribute _name##_attr = \
4603 __ATTR(_name, 0400, _name##_show, NULL)
4605 #define SLAB_ATTR(_name) \
4606 static struct slab_attribute _name##_attr = \
4607 __ATTR(_name, 0600, _name##_show, _name##_store)
4609 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4611 return sprintf(buf, "%d\n", s->size);
4613 SLAB_ATTR_RO(slab_size);
4615 static ssize_t align_show(struct kmem_cache *s, char *buf)
4617 return sprintf(buf, "%d\n", s->align);
4619 SLAB_ATTR_RO(align);
4621 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4623 return sprintf(buf, "%d\n", s->objsize);
4625 SLAB_ATTR_RO(object_size);
4627 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4629 return sprintf(buf, "%d\n", oo_objects(s->oo));
4631 SLAB_ATTR_RO(objs_per_slab);
4633 static ssize_t order_store(struct kmem_cache *s,
4634 const char *buf, size_t length)
4636 unsigned long order;
4637 int err;
4639 err = strict_strtoul(buf, 10, &order);
4640 if (err)
4641 return err;
4643 if (order > slub_max_order || order < slub_min_order)
4644 return -EINVAL;
4646 calculate_sizes(s, order);
4647 return length;
4650 static ssize_t order_show(struct kmem_cache *s, char *buf)
4652 return sprintf(buf, "%d\n", oo_order(s->oo));
4654 SLAB_ATTR(order);
4656 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4658 return sprintf(buf, "%lu\n", s->min_partial);
4661 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4662 size_t length)
4664 unsigned long min;
4665 int err;
4667 err = strict_strtoul(buf, 10, &min);
4668 if (err)
4669 return err;
4671 set_min_partial(s, min);
4672 return length;
4674 SLAB_ATTR(min_partial);
4676 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4678 return sprintf(buf, "%u\n", s->cpu_partial);
4681 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4682 size_t length)
4684 unsigned long objects;
4685 int err;
4687 err = strict_strtoul(buf, 10, &objects);
4688 if (err)
4689 return err;
4690 if (objects && kmem_cache_debug(s))
4691 return -EINVAL;
4693 s->cpu_partial = objects;
4694 flush_all(s);
4695 return length;
4697 SLAB_ATTR(cpu_partial);
4699 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4701 if (!s->ctor)
4702 return 0;
4703 return sprintf(buf, "%pS\n", s->ctor);
4705 SLAB_ATTR_RO(ctor);
4707 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4709 return sprintf(buf, "%d\n", s->refcount - 1);
4711 SLAB_ATTR_RO(aliases);
4713 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4715 return show_slab_objects(s, buf, SO_PARTIAL);
4717 SLAB_ATTR_RO(partial);
4719 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4721 return show_slab_objects(s, buf, SO_CPU);
4723 SLAB_ATTR_RO(cpu_slabs);
4725 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4727 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4729 SLAB_ATTR_RO(objects);
4731 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4733 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4735 SLAB_ATTR_RO(objects_partial);
4737 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4739 int objects = 0;
4740 int pages = 0;
4741 int cpu;
4742 int len;
4744 for_each_online_cpu(cpu) {
4745 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4747 if (page) {
4748 pages += page->pages;
4749 objects += page->pobjects;
4753 len = sprintf(buf, "%d(%d)", objects, pages);
4755 #ifdef CONFIG_SMP
4756 for_each_online_cpu(cpu) {
4757 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4759 if (page && len < PAGE_SIZE - 20)
4760 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4761 page->pobjects, page->pages);
4763 #endif
4764 return len + sprintf(buf + len, "\n");
4766 SLAB_ATTR_RO(slabs_cpu_partial);
4768 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4770 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4773 static ssize_t reclaim_account_store(struct kmem_cache *s,
4774 const char *buf, size_t length)
4776 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4777 if (buf[0] == '1')
4778 s->flags |= SLAB_RECLAIM_ACCOUNT;
4779 return length;
4781 SLAB_ATTR(reclaim_account);
4783 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4785 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4787 SLAB_ATTR_RO(hwcache_align);
4789 #ifdef CONFIG_ZONE_DMA
4790 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4792 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4794 SLAB_ATTR_RO(cache_dma);
4795 #endif
4797 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4799 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4801 SLAB_ATTR_RO(destroy_by_rcu);
4803 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4805 return sprintf(buf, "%d\n", s->reserved);
4807 SLAB_ATTR_RO(reserved);
4809 #ifdef CONFIG_SLUB_DEBUG
4810 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4812 return show_slab_objects(s, buf, SO_ALL);
4814 SLAB_ATTR_RO(slabs);
4816 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4818 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4820 SLAB_ATTR_RO(total_objects);
4822 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4824 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4827 static ssize_t sanity_checks_store(struct kmem_cache *s,
4828 const char *buf, size_t length)
4830 s->flags &= ~SLAB_DEBUG_FREE;
4831 if (buf[0] == '1') {
4832 s->flags &= ~__CMPXCHG_DOUBLE;
4833 s->flags |= SLAB_DEBUG_FREE;
4835 return length;
4837 SLAB_ATTR(sanity_checks);
4839 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4841 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4844 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4845 size_t length)
4847 s->flags &= ~SLAB_TRACE;
4848 if (buf[0] == '1') {
4849 s->flags &= ~__CMPXCHG_DOUBLE;
4850 s->flags |= SLAB_TRACE;
4852 return length;
4854 SLAB_ATTR(trace);
4856 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4858 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4861 static ssize_t red_zone_store(struct kmem_cache *s,
4862 const char *buf, size_t length)
4864 if (any_slab_objects(s))
4865 return -EBUSY;
4867 s->flags &= ~SLAB_RED_ZONE;
4868 if (buf[0] == '1') {
4869 s->flags &= ~__CMPXCHG_DOUBLE;
4870 s->flags |= SLAB_RED_ZONE;
4872 calculate_sizes(s, -1);
4873 return length;
4875 SLAB_ATTR(red_zone);
4877 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4879 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4882 static ssize_t poison_store(struct kmem_cache *s,
4883 const char *buf, size_t length)
4885 if (any_slab_objects(s))
4886 return -EBUSY;
4888 s->flags &= ~SLAB_POISON;
4889 if (buf[0] == '1') {
4890 s->flags &= ~__CMPXCHG_DOUBLE;
4891 s->flags |= SLAB_POISON;
4893 calculate_sizes(s, -1);
4894 return length;
4896 SLAB_ATTR(poison);
4898 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4900 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4903 static ssize_t store_user_store(struct kmem_cache *s,
4904 const char *buf, size_t length)
4906 if (any_slab_objects(s))
4907 return -EBUSY;
4909 s->flags &= ~SLAB_STORE_USER;
4910 if (buf[0] == '1') {
4911 s->flags &= ~__CMPXCHG_DOUBLE;
4912 s->flags |= SLAB_STORE_USER;
4914 calculate_sizes(s, -1);
4915 return length;
4917 SLAB_ATTR(store_user);
4919 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4921 return 0;
4924 static ssize_t validate_store(struct kmem_cache *s,
4925 const char *buf, size_t length)
4927 int ret = -EINVAL;
4929 if (buf[0] == '1') {
4930 ret = validate_slab_cache(s);
4931 if (ret >= 0)
4932 ret = length;
4934 return ret;
4936 SLAB_ATTR(validate);
4938 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4940 if (!(s->flags & SLAB_STORE_USER))
4941 return -ENOSYS;
4942 return list_locations(s, buf, TRACK_ALLOC);
4944 SLAB_ATTR_RO(alloc_calls);
4946 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4948 if (!(s->flags & SLAB_STORE_USER))
4949 return -ENOSYS;
4950 return list_locations(s, buf, TRACK_FREE);
4952 SLAB_ATTR_RO(free_calls);
4953 #endif /* CONFIG_SLUB_DEBUG */
4955 #ifdef CONFIG_FAILSLAB
4956 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4958 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4961 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4962 size_t length)
4964 s->flags &= ~SLAB_FAILSLAB;
4965 if (buf[0] == '1')
4966 s->flags |= SLAB_FAILSLAB;
4967 return length;
4969 SLAB_ATTR(failslab);
4970 #endif
4972 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4974 return 0;
4977 static ssize_t shrink_store(struct kmem_cache *s,
4978 const char *buf, size_t length)
4980 if (buf[0] == '1') {
4981 int rc = kmem_cache_shrink(s);
4983 if (rc)
4984 return rc;
4985 } else
4986 return -EINVAL;
4987 return length;
4989 SLAB_ATTR(shrink);
4991 #ifdef CONFIG_NUMA
4992 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4994 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4997 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4998 const char *buf, size_t length)
5000 unsigned long ratio;
5001 int err;
5003 err = strict_strtoul(buf, 10, &ratio);
5004 if (err)
5005 return err;
5007 if (ratio <= 100)
5008 s->remote_node_defrag_ratio = ratio * 10;
5010 return length;
5012 SLAB_ATTR(remote_node_defrag_ratio);
5013 #endif
5015 #ifdef CONFIG_SLUB_STATS
5016 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5018 unsigned long sum = 0;
5019 int cpu;
5020 int len;
5021 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
5023 if (!data)
5024 return -ENOMEM;
5026 for_each_online_cpu(cpu) {
5027 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5029 data[cpu] = x;
5030 sum += x;
5033 len = sprintf(buf, "%lu", sum);
5035 #ifdef CONFIG_SMP
5036 for_each_online_cpu(cpu) {
5037 if (data[cpu] && len < PAGE_SIZE - 20)
5038 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5040 #endif
5041 kfree(data);
5042 return len + sprintf(buf + len, "\n");
5045 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5047 int cpu;
5049 for_each_online_cpu(cpu)
5050 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5053 #define STAT_ATTR(si, text) \
5054 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5056 return show_stat(s, buf, si); \
5058 static ssize_t text##_store(struct kmem_cache *s, \
5059 const char *buf, size_t length) \
5061 if (buf[0] != '0') \
5062 return -EINVAL; \
5063 clear_stat(s, si); \
5064 return length; \
5066 SLAB_ATTR(text); \
5068 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5069 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5070 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5071 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5072 STAT_ATTR(FREE_FROZEN, free_frozen);
5073 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5074 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5075 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5076 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5077 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5078 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5079 STAT_ATTR(FREE_SLAB, free_slab);
5080 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5081 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5082 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5083 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5084 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5085 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5086 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5087 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5088 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5089 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5090 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5091 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5092 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5093 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5094 #endif
5096 static struct attribute *slab_attrs[] = {
5097 &slab_size_attr.attr,
5098 &object_size_attr.attr,
5099 &objs_per_slab_attr.attr,
5100 &order_attr.attr,
5101 &min_partial_attr.attr,
5102 &cpu_partial_attr.attr,
5103 &objects_attr.attr,
5104 &objects_partial_attr.attr,
5105 &partial_attr.attr,
5106 &cpu_slabs_attr.attr,
5107 &ctor_attr.attr,
5108 &aliases_attr.attr,
5109 &align_attr.attr,
5110 &hwcache_align_attr.attr,
5111 &reclaim_account_attr.attr,
5112 &destroy_by_rcu_attr.attr,
5113 &shrink_attr.attr,
5114 &reserved_attr.attr,
5115 &slabs_cpu_partial_attr.attr,
5116 #ifdef CONFIG_SLUB_DEBUG
5117 &total_objects_attr.attr,
5118 &slabs_attr.attr,
5119 &sanity_checks_attr.attr,
5120 &trace_attr.attr,
5121 &red_zone_attr.attr,
5122 &poison_attr.attr,
5123 &store_user_attr.attr,
5124 &validate_attr.attr,
5125 &alloc_calls_attr.attr,
5126 &free_calls_attr.attr,
5127 #endif
5128 #ifdef CONFIG_ZONE_DMA
5129 &cache_dma_attr.attr,
5130 #endif
5131 #ifdef CONFIG_NUMA
5132 &remote_node_defrag_ratio_attr.attr,
5133 #endif
5134 #ifdef CONFIG_SLUB_STATS
5135 &alloc_fastpath_attr.attr,
5136 &alloc_slowpath_attr.attr,
5137 &free_fastpath_attr.attr,
5138 &free_slowpath_attr.attr,
5139 &free_frozen_attr.attr,
5140 &free_add_partial_attr.attr,
5141 &free_remove_partial_attr.attr,
5142 &alloc_from_partial_attr.attr,
5143 &alloc_slab_attr.attr,
5144 &alloc_refill_attr.attr,
5145 &alloc_node_mismatch_attr.attr,
5146 &free_slab_attr.attr,
5147 &cpuslab_flush_attr.attr,
5148 &deactivate_full_attr.attr,
5149 &deactivate_empty_attr.attr,
5150 &deactivate_to_head_attr.attr,
5151 &deactivate_to_tail_attr.attr,
5152 &deactivate_remote_frees_attr.attr,
5153 &deactivate_bypass_attr.attr,
5154 &order_fallback_attr.attr,
5155 &cmpxchg_double_fail_attr.attr,
5156 &cmpxchg_double_cpu_fail_attr.attr,
5157 &cpu_partial_alloc_attr.attr,
5158 &cpu_partial_free_attr.attr,
5159 &cpu_partial_node_attr.attr,
5160 &cpu_partial_drain_attr.attr,
5161 #endif
5162 #ifdef CONFIG_FAILSLAB
5163 &failslab_attr.attr,
5164 #endif
5166 NULL
5169 static struct attribute_group slab_attr_group = {
5170 .attrs = slab_attrs,
5173 static ssize_t slab_attr_show(struct kobject *kobj,
5174 struct attribute *attr,
5175 char *buf)
5177 struct slab_attribute *attribute;
5178 struct kmem_cache *s;
5179 int err;
5181 attribute = to_slab_attr(attr);
5182 s = to_slab(kobj);
5184 if (!attribute->show)
5185 return -EIO;
5187 err = attribute->show(s, buf);
5189 return err;
5192 static ssize_t slab_attr_store(struct kobject *kobj,
5193 struct attribute *attr,
5194 const char *buf, size_t len)
5196 struct slab_attribute *attribute;
5197 struct kmem_cache *s;
5198 int err;
5200 attribute = to_slab_attr(attr);
5201 s = to_slab(kobj);
5203 if (!attribute->store)
5204 return -EIO;
5206 err = attribute->store(s, buf, len);
5208 return err;
5211 static void kmem_cache_release(struct kobject *kobj)
5213 struct kmem_cache *s = to_slab(kobj);
5215 kfree(s->name);
5216 kfree(s);
5219 static const struct sysfs_ops slab_sysfs_ops = {
5220 .show = slab_attr_show,
5221 .store = slab_attr_store,
5224 static struct kobj_type slab_ktype = {
5225 .sysfs_ops = &slab_sysfs_ops,
5226 .release = kmem_cache_release
5229 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5231 struct kobj_type *ktype = get_ktype(kobj);
5233 if (ktype == &slab_ktype)
5234 return 1;
5235 return 0;
5238 static const struct kset_uevent_ops slab_uevent_ops = {
5239 .filter = uevent_filter,
5242 static struct kset *slab_kset;
5244 #define ID_STR_LENGTH 64
5246 /* Create a unique string id for a slab cache:
5248 * Format :[flags-]size
5250 static char *create_unique_id(struct kmem_cache *s)
5252 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5253 char *p = name;
5255 BUG_ON(!name);
5257 *p++ = ':';
5259 * First flags affecting slabcache operations. We will only
5260 * get here for aliasable slabs so we do not need to support
5261 * too many flags. The flags here must cover all flags that
5262 * are matched during merging to guarantee that the id is
5263 * unique.
5265 if (s->flags & SLAB_CACHE_DMA)
5266 *p++ = 'd';
5267 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5268 *p++ = 'a';
5269 if (s->flags & SLAB_DEBUG_FREE)
5270 *p++ = 'F';
5271 if (!(s->flags & SLAB_NOTRACK))
5272 *p++ = 't';
5273 if (p != name + 1)
5274 *p++ = '-';
5275 p += sprintf(p, "%07d", s->size);
5276 BUG_ON(p > name + ID_STR_LENGTH - 1);
5277 return name;
5280 static int sysfs_slab_add(struct kmem_cache *s)
5282 int err;
5283 const char *name;
5284 int unmergeable;
5286 if (slab_state < SYSFS)
5287 /* Defer until later */
5288 return 0;
5290 unmergeable = slab_unmergeable(s);
5291 if (unmergeable) {
5293 * Slabcache can never be merged so we can use the name proper.
5294 * This is typically the case for debug situations. In that
5295 * case we can catch duplicate names easily.
5297 sysfs_remove_link(&slab_kset->kobj, s->name);
5298 name = s->name;
5299 } else {
5301 * Create a unique name for the slab as a target
5302 * for the symlinks.
5304 name = create_unique_id(s);
5307 s->kobj.kset = slab_kset;
5308 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
5309 if (err) {
5310 kobject_put(&s->kobj);
5311 return err;
5314 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5315 if (err) {
5316 kobject_del(&s->kobj);
5317 kobject_put(&s->kobj);
5318 return err;
5320 kobject_uevent(&s->kobj, KOBJ_ADD);
5321 if (!unmergeable) {
5322 /* Setup first alias */
5323 sysfs_slab_alias(s, s->name);
5324 kfree(name);
5326 return 0;
5329 static void sysfs_slab_remove(struct kmem_cache *s)
5331 if (slab_state < SYSFS)
5333 * Sysfs has not been setup yet so no need to remove the
5334 * cache from sysfs.
5336 return;
5338 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5339 kobject_del(&s->kobj);
5340 kobject_put(&s->kobj);
5344 * Need to buffer aliases during bootup until sysfs becomes
5345 * available lest we lose that information.
5347 struct saved_alias {
5348 struct kmem_cache *s;
5349 const char *name;
5350 struct saved_alias *next;
5353 static struct saved_alias *alias_list;
5355 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5357 struct saved_alias *al;
5359 if (slab_state == SYSFS) {
5361 * If we have a leftover link then remove it.
5363 sysfs_remove_link(&slab_kset->kobj, name);
5364 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5367 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5368 if (!al)
5369 return -ENOMEM;
5371 al->s = s;
5372 al->name = name;
5373 al->next = alias_list;
5374 alias_list = al;
5375 return 0;
5378 static int __init slab_sysfs_init(void)
5380 struct kmem_cache *s;
5381 int err;
5383 down_write(&slub_lock);
5385 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5386 if (!slab_kset) {
5387 up_write(&slub_lock);
5388 printk(KERN_ERR "Cannot register slab subsystem.\n");
5389 return -ENOSYS;
5392 slab_state = SYSFS;
5394 list_for_each_entry(s, &slab_caches, list) {
5395 err = sysfs_slab_add(s);
5396 if (err)
5397 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
5398 " to sysfs\n", s->name);
5401 while (alias_list) {
5402 struct saved_alias *al = alias_list;
5404 alias_list = alias_list->next;
5405 err = sysfs_slab_alias(al->s, al->name);
5406 if (err)
5407 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
5408 " %s to sysfs\n", s->name);
5409 kfree(al);
5412 up_write(&slub_lock);
5413 resiliency_test();
5414 return 0;
5417 __initcall(slab_sysfs_init);
5418 #endif /* CONFIG_SYSFS */
5421 * The /proc/slabinfo ABI
5423 #ifdef CONFIG_SLABINFO
5424 static void print_slabinfo_header(struct seq_file *m)
5426 seq_puts(m, "slabinfo - version: 2.1\n");
5427 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
5428 "<objperslab> <pagesperslab>");
5429 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
5430 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
5431 seq_putc(m, '\n');
5434 static void *s_start(struct seq_file *m, loff_t *pos)
5436 loff_t n = *pos;
5438 down_read(&slub_lock);
5439 if (!n)
5440 print_slabinfo_header(m);
5442 return seq_list_start(&slab_caches, *pos);
5445 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
5447 return seq_list_next(p, &slab_caches, pos);
5450 static void s_stop(struct seq_file *m, void *p)
5452 up_read(&slub_lock);
5455 static int s_show(struct seq_file *m, void *p)
5457 unsigned long nr_partials = 0;
5458 unsigned long nr_slabs = 0;
5459 unsigned long nr_inuse = 0;
5460 unsigned long nr_objs = 0;
5461 unsigned long nr_free = 0;
5462 struct kmem_cache *s;
5463 int node;
5465 s = list_entry(p, struct kmem_cache, list);
5467 for_each_online_node(node) {
5468 struct kmem_cache_node *n = get_node(s, node);
5470 if (!n)
5471 continue;
5473 nr_partials += n->nr_partial;
5474 nr_slabs += atomic_long_read(&n->nr_slabs);
5475 nr_objs += atomic_long_read(&n->total_objects);
5476 nr_free += count_partial(n, count_free);
5479 nr_inuse = nr_objs - nr_free;
5481 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
5482 nr_objs, s->size, oo_objects(s->oo),
5483 (1 << oo_order(s->oo)));
5484 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
5485 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
5486 0UL);
5487 seq_putc(m, '\n');
5488 return 0;
5491 static const struct seq_operations slabinfo_op = {
5492 .start = s_start,
5493 .next = s_next,
5494 .stop = s_stop,
5495 .show = s_show,
5498 static int slabinfo_open(struct inode *inode, struct file *file)
5500 return seq_open(file, &slabinfo_op);
5503 static const struct file_operations proc_slabinfo_operations = {
5504 .open = slabinfo_open,
5505 .read = seq_read,
5506 .llseek = seq_lseek,
5507 .release = seq_release,
5510 static int __init slab_proc_init(void)
5512 proc_create("slabinfo", S_IRUSR, NULL, &proc_slabinfo_operations);
5513 return 0;
5515 module_init(slab_proc_init);
5516 #endif /* CONFIG_SLABINFO */