2 * linux/fs/binfmt_elf.c
4 * These are the functions used to load ELF format executables as used
5 * on SVr4 machines. Information on the format may be found in the book
6 * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
9 * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com).
12 #include <linux/module.h>
13 #include <linux/kernel.h>
16 #include <linux/mman.h>
17 #include <linux/errno.h>
18 #include <linux/signal.h>
19 #include <linux/binfmts.h>
20 #include <linux/string.h>
21 #include <linux/file.h>
22 #include <linux/slab.h>
23 #include <linux/personality.h>
24 #include <linux/elfcore.h>
25 #include <linux/init.h>
26 #include <linux/highuid.h>
27 #include <linux/compiler.h>
28 #include <linux/highmem.h>
29 #include <linux/pagemap.h>
30 #include <linux/vmalloc.h>
31 #include <linux/security.h>
32 #include <linux/random.h>
33 #include <linux/elf.h>
34 #include <linux/utsname.h>
35 #include <linux/coredump.h>
36 #include <linux/sched.h>
37 #include <asm/uaccess.h>
38 #include <asm/param.h>
42 #define user_long_t long
44 #ifndef user_siginfo_t
45 #define user_siginfo_t siginfo_t
48 static int load_elf_binary(struct linux_binprm
*bprm
);
49 static int load_elf_library(struct file
*);
50 static unsigned long elf_map(struct file
*, unsigned long, struct elf_phdr
*,
51 int, int, unsigned long);
54 * If we don't support core dumping, then supply a NULL so we
57 #ifdef CONFIG_ELF_CORE
58 static int elf_core_dump(struct coredump_params
*cprm
);
60 #define elf_core_dump NULL
63 #if ELF_EXEC_PAGESIZE > PAGE_SIZE
64 #define ELF_MIN_ALIGN ELF_EXEC_PAGESIZE
66 #define ELF_MIN_ALIGN PAGE_SIZE
69 #ifndef ELF_CORE_EFLAGS
70 #define ELF_CORE_EFLAGS 0
73 #define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1))
74 #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
75 #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
77 static struct linux_binfmt elf_format
= {
78 .module
= THIS_MODULE
,
79 .load_binary
= load_elf_binary
,
80 .load_shlib
= load_elf_library
,
81 .core_dump
= elf_core_dump
,
82 .min_coredump
= ELF_EXEC_PAGESIZE
,
85 #define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE)
87 static int set_brk(unsigned long start
, unsigned long end
)
89 start
= ELF_PAGEALIGN(start
);
90 end
= ELF_PAGEALIGN(end
);
93 addr
= vm_brk(start
, end
- start
);
97 current
->mm
->start_brk
= current
->mm
->brk
= end
;
101 /* We need to explicitly zero any fractional pages
102 after the data section (i.e. bss). This would
103 contain the junk from the file that should not
106 static int padzero(unsigned long elf_bss
)
110 nbyte
= ELF_PAGEOFFSET(elf_bss
);
112 nbyte
= ELF_MIN_ALIGN
- nbyte
;
113 if (clear_user((void __user
*) elf_bss
, nbyte
))
119 /* Let's use some macros to make this stack manipulation a little clearer */
120 #ifdef CONFIG_STACK_GROWSUP
121 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
122 #define STACK_ROUND(sp, items) \
123 ((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
124 #define STACK_ALLOC(sp, len) ({ \
125 elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
128 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
129 #define STACK_ROUND(sp, items) \
130 (((unsigned long) (sp - items)) &~ 15UL)
131 #define STACK_ALLOC(sp, len) ({ sp -= len ; sp; })
134 #ifndef ELF_BASE_PLATFORM
136 * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture.
137 * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value
138 * will be copied to the user stack in the same manner as AT_PLATFORM.
140 #define ELF_BASE_PLATFORM NULL
144 create_elf_tables(struct linux_binprm
*bprm
, struct elfhdr
*exec
,
145 unsigned long load_addr
, unsigned long interp_load_addr
)
147 unsigned long p
= bprm
->p
;
148 int argc
= bprm
->argc
;
149 int envc
= bprm
->envc
;
150 elf_addr_t __user
*argv
;
151 elf_addr_t __user
*envp
;
152 elf_addr_t __user
*sp
;
153 elf_addr_t __user
*u_platform
;
154 elf_addr_t __user
*u_base_platform
;
155 elf_addr_t __user
*u_rand_bytes
;
156 const char *k_platform
= ELF_PLATFORM
;
157 const char *k_base_platform
= ELF_BASE_PLATFORM
;
158 unsigned char k_rand_bytes
[16];
160 elf_addr_t
*elf_info
;
162 const struct cred
*cred
= current_cred();
163 struct vm_area_struct
*vma
;
166 * In some cases (e.g. Hyper-Threading), we want to avoid L1
167 * evictions by the processes running on the same package. One
168 * thing we can do is to shuffle the initial stack for them.
171 p
= arch_align_stack(p
);
174 * If this architecture has a platform capability string, copy it
175 * to userspace. In some cases (Sparc), this info is impossible
176 * for userspace to get any other way, in others (i386) it is
181 size_t len
= strlen(k_platform
) + 1;
183 u_platform
= (elf_addr_t __user
*)STACK_ALLOC(p
, len
);
184 if (__copy_to_user(u_platform
, k_platform
, len
))
189 * If this architecture has a "base" platform capability
190 * string, copy it to userspace.
192 u_base_platform
= NULL
;
193 if (k_base_platform
) {
194 size_t len
= strlen(k_base_platform
) + 1;
196 u_base_platform
= (elf_addr_t __user
*)STACK_ALLOC(p
, len
);
197 if (__copy_to_user(u_base_platform
, k_base_platform
, len
))
202 * Generate 16 random bytes for userspace PRNG seeding.
204 get_random_bytes(k_rand_bytes
, sizeof(k_rand_bytes
));
205 u_rand_bytes
= (elf_addr_t __user
*)
206 STACK_ALLOC(p
, sizeof(k_rand_bytes
));
207 if (__copy_to_user(u_rand_bytes
, k_rand_bytes
, sizeof(k_rand_bytes
)))
210 /* Create the ELF interpreter info */
211 elf_info
= (elf_addr_t
*)current
->mm
->saved_auxv
;
212 /* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
213 #define NEW_AUX_ENT(id, val) \
215 elf_info[ei_index++] = id; \
216 elf_info[ei_index++] = val; \
221 * ARCH_DLINFO must come first so PPC can do its special alignment of
223 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
224 * ARCH_DLINFO changes
228 NEW_AUX_ENT(AT_HWCAP
, ELF_HWCAP
);
229 NEW_AUX_ENT(AT_PAGESZ
, ELF_EXEC_PAGESIZE
);
230 NEW_AUX_ENT(AT_CLKTCK
, CLOCKS_PER_SEC
);
231 NEW_AUX_ENT(AT_PHDR
, load_addr
+ exec
->e_phoff
);
232 NEW_AUX_ENT(AT_PHENT
, sizeof(struct elf_phdr
));
233 NEW_AUX_ENT(AT_PHNUM
, exec
->e_phnum
);
234 NEW_AUX_ENT(AT_BASE
, interp_load_addr
);
235 NEW_AUX_ENT(AT_FLAGS
, 0);
236 NEW_AUX_ENT(AT_ENTRY
, exec
->e_entry
);
237 NEW_AUX_ENT(AT_UID
, from_kuid_munged(cred
->user_ns
, cred
->uid
));
238 NEW_AUX_ENT(AT_EUID
, from_kuid_munged(cred
->user_ns
, cred
->euid
));
239 NEW_AUX_ENT(AT_GID
, from_kgid_munged(cred
->user_ns
, cred
->gid
));
240 NEW_AUX_ENT(AT_EGID
, from_kgid_munged(cred
->user_ns
, cred
->egid
));
241 NEW_AUX_ENT(AT_SECURE
, security_bprm_secureexec(bprm
));
242 NEW_AUX_ENT(AT_RANDOM
, (elf_addr_t
)(unsigned long)u_rand_bytes
);
243 NEW_AUX_ENT(AT_EXECFN
, bprm
->exec
);
245 NEW_AUX_ENT(AT_PLATFORM
,
246 (elf_addr_t
)(unsigned long)u_platform
);
248 if (k_base_platform
) {
249 NEW_AUX_ENT(AT_BASE_PLATFORM
,
250 (elf_addr_t
)(unsigned long)u_base_platform
);
252 if (bprm
->interp_flags
& BINPRM_FLAGS_EXECFD
) {
253 NEW_AUX_ENT(AT_EXECFD
, bprm
->interp_data
);
256 /* AT_NULL is zero; clear the rest too */
257 memset(&elf_info
[ei_index
], 0,
258 sizeof current
->mm
->saved_auxv
- ei_index
* sizeof elf_info
[0]);
260 /* And advance past the AT_NULL entry. */
263 sp
= STACK_ADD(p
, ei_index
);
265 items
= (argc
+ 1) + (envc
+ 1) + 1;
266 bprm
->p
= STACK_ROUND(sp
, items
);
268 /* Point sp at the lowest address on the stack */
269 #ifdef CONFIG_STACK_GROWSUP
270 sp
= (elf_addr_t __user
*)bprm
->p
- items
- ei_index
;
271 bprm
->exec
= (unsigned long)sp
; /* XXX: PARISC HACK */
273 sp
= (elf_addr_t __user
*)bprm
->p
;
278 * Grow the stack manually; some architectures have a limit on how
279 * far ahead a user-space access may be in order to grow the stack.
281 vma
= find_extend_vma(current
->mm
, bprm
->p
);
285 /* Now, let's put argc (and argv, envp if appropriate) on the stack */
286 if (__put_user(argc
, sp
++))
289 envp
= argv
+ argc
+ 1;
291 /* Populate argv and envp */
292 p
= current
->mm
->arg_end
= current
->mm
->arg_start
;
295 if (__put_user((elf_addr_t
)p
, argv
++))
297 len
= strnlen_user((void __user
*)p
, MAX_ARG_STRLEN
);
298 if (!len
|| len
> MAX_ARG_STRLEN
)
302 if (__put_user(0, argv
))
304 current
->mm
->arg_end
= current
->mm
->env_start
= p
;
307 if (__put_user((elf_addr_t
)p
, envp
++))
309 len
= strnlen_user((void __user
*)p
, MAX_ARG_STRLEN
);
310 if (!len
|| len
> MAX_ARG_STRLEN
)
314 if (__put_user(0, envp
))
316 current
->mm
->env_end
= p
;
318 /* Put the elf_info on the stack in the right place. */
319 sp
= (elf_addr_t __user
*)envp
+ 1;
320 if (copy_to_user(sp
, elf_info
, ei_index
* sizeof(elf_addr_t
)))
327 static unsigned long elf_map(struct file
*filep
, unsigned long addr
,
328 struct elf_phdr
*eppnt
, int prot
, int type
,
329 unsigned long total_size
)
331 unsigned long map_addr
;
332 unsigned long size
= eppnt
->p_filesz
+ ELF_PAGEOFFSET(eppnt
->p_vaddr
);
333 unsigned long off
= eppnt
->p_offset
- ELF_PAGEOFFSET(eppnt
->p_vaddr
);
334 addr
= ELF_PAGESTART(addr
);
335 size
= ELF_PAGEALIGN(size
);
337 /* mmap() will return -EINVAL if given a zero size, but a
338 * segment with zero filesize is perfectly valid */
343 * total_size is the size of the ELF (interpreter) image.
344 * The _first_ mmap needs to know the full size, otherwise
345 * randomization might put this image into an overlapping
346 * position with the ELF binary image. (since size < total_size)
347 * So we first map the 'big' image - and unmap the remainder at
348 * the end. (which unmap is needed for ELF images with holes.)
351 total_size
= ELF_PAGEALIGN(total_size
);
352 map_addr
= vm_mmap(filep
, addr
, total_size
, prot
, type
, off
);
353 if (!BAD_ADDR(map_addr
))
354 vm_munmap(map_addr
+size
, total_size
-size
);
356 map_addr
= vm_mmap(filep
, addr
, size
, prot
, type
, off
);
361 #endif /* !elf_map */
363 static unsigned long total_mapping_size(struct elf_phdr
*cmds
, int nr
)
365 int i
, first_idx
= -1, last_idx
= -1;
367 for (i
= 0; i
< nr
; i
++) {
368 if (cmds
[i
].p_type
== PT_LOAD
) {
377 return cmds
[last_idx
].p_vaddr
+ cmds
[last_idx
].p_memsz
-
378 ELF_PAGESTART(cmds
[first_idx
].p_vaddr
);
382 /* This is much more generalized than the library routine read function,
383 so we keep this separate. Technically the library read function
384 is only provided so that we can read a.out libraries that have
387 static unsigned long load_elf_interp(struct elfhdr
*interp_elf_ex
,
388 struct file
*interpreter
, unsigned long *interp_map_addr
,
389 unsigned long no_base
)
391 struct elf_phdr
*elf_phdata
;
392 struct elf_phdr
*eppnt
;
393 unsigned long load_addr
= 0;
394 int load_addr_set
= 0;
395 unsigned long last_bss
= 0, elf_bss
= 0;
396 unsigned long error
= ~0UL;
397 unsigned long total_size
;
400 /* First of all, some simple consistency checks */
401 if (interp_elf_ex
->e_type
!= ET_EXEC
&&
402 interp_elf_ex
->e_type
!= ET_DYN
)
404 if (!elf_check_arch(interp_elf_ex
))
406 if (!interpreter
->f_op
|| !interpreter
->f_op
->mmap
)
410 * If the size of this structure has changed, then punt, since
411 * we will be doing the wrong thing.
413 if (interp_elf_ex
->e_phentsize
!= sizeof(struct elf_phdr
))
415 if (interp_elf_ex
->e_phnum
< 1 ||
416 interp_elf_ex
->e_phnum
> 65536U / sizeof(struct elf_phdr
))
419 /* Now read in all of the header information */
420 size
= sizeof(struct elf_phdr
) * interp_elf_ex
->e_phnum
;
421 if (size
> ELF_MIN_ALIGN
)
423 elf_phdata
= kmalloc(size
, GFP_KERNEL
);
427 retval
= kernel_read(interpreter
, interp_elf_ex
->e_phoff
,
428 (char *)elf_phdata
, size
);
430 if (retval
!= size
) {
436 total_size
= total_mapping_size(elf_phdata
, interp_elf_ex
->e_phnum
);
443 for (i
= 0; i
< interp_elf_ex
->e_phnum
; i
++, eppnt
++) {
444 if (eppnt
->p_type
== PT_LOAD
) {
445 int elf_type
= MAP_PRIVATE
| MAP_DENYWRITE
;
447 unsigned long vaddr
= 0;
448 unsigned long k
, map_addr
;
450 if (eppnt
->p_flags
& PF_R
)
451 elf_prot
= PROT_READ
;
452 if (eppnt
->p_flags
& PF_W
)
453 elf_prot
|= PROT_WRITE
;
454 if (eppnt
->p_flags
& PF_X
)
455 elf_prot
|= PROT_EXEC
;
456 vaddr
= eppnt
->p_vaddr
;
457 if (interp_elf_ex
->e_type
== ET_EXEC
|| load_addr_set
)
458 elf_type
|= MAP_FIXED
;
459 else if (no_base
&& interp_elf_ex
->e_type
== ET_DYN
)
462 map_addr
= elf_map(interpreter
, load_addr
+ vaddr
,
463 eppnt
, elf_prot
, elf_type
, total_size
);
465 if (!*interp_map_addr
)
466 *interp_map_addr
= map_addr
;
468 if (BAD_ADDR(map_addr
))
471 if (!load_addr_set
&&
472 interp_elf_ex
->e_type
== ET_DYN
) {
473 load_addr
= map_addr
- ELF_PAGESTART(vaddr
);
478 * Check to see if the section's size will overflow the
479 * allowed task size. Note that p_filesz must always be
480 * <= p_memsize so it's only necessary to check p_memsz.
482 k
= load_addr
+ eppnt
->p_vaddr
;
484 eppnt
->p_filesz
> eppnt
->p_memsz
||
485 eppnt
->p_memsz
> TASK_SIZE
||
486 TASK_SIZE
- eppnt
->p_memsz
< k
) {
492 * Find the end of the file mapping for this phdr, and
493 * keep track of the largest address we see for this.
495 k
= load_addr
+ eppnt
->p_vaddr
+ eppnt
->p_filesz
;
500 * Do the same thing for the memory mapping - between
501 * elf_bss and last_bss is the bss section.
503 k
= load_addr
+ eppnt
->p_memsz
+ eppnt
->p_vaddr
;
509 if (last_bss
> elf_bss
) {
511 * Now fill out the bss section. First pad the last page up
512 * to the page boundary, and then perform a mmap to make sure
513 * that there are zero-mapped pages up to and including the
516 if (padzero(elf_bss
)) {
521 /* What we have mapped so far */
522 elf_bss
= ELF_PAGESTART(elf_bss
+ ELF_MIN_ALIGN
- 1);
524 /* Map the last of the bss segment */
525 error
= vm_brk(elf_bss
, last_bss
- elf_bss
);
539 * These are the functions used to load ELF style executables and shared
540 * libraries. There is no binary dependent code anywhere else.
543 #define INTERPRETER_NONE 0
544 #define INTERPRETER_ELF 2
546 #ifndef STACK_RND_MASK
547 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12)) /* 8MB of VA */
550 static unsigned long randomize_stack_top(unsigned long stack_top
)
552 unsigned int random_variable
= 0;
554 if ((current
->flags
& PF_RANDOMIZE
) &&
555 !(current
->personality
& ADDR_NO_RANDOMIZE
)) {
556 random_variable
= get_random_int() & STACK_RND_MASK
;
557 random_variable
<<= PAGE_SHIFT
;
559 #ifdef CONFIG_STACK_GROWSUP
560 return PAGE_ALIGN(stack_top
) + random_variable
;
562 return PAGE_ALIGN(stack_top
) - random_variable
;
566 static int load_elf_binary(struct linux_binprm
*bprm
)
568 struct file
*interpreter
= NULL
; /* to shut gcc up */
569 unsigned long load_addr
= 0, load_bias
= 0;
570 int load_addr_set
= 0;
571 char * elf_interpreter
= NULL
;
573 struct elf_phdr
*elf_ppnt
, *elf_phdata
;
574 unsigned long elf_bss
, elf_brk
;
577 unsigned long elf_entry
;
578 unsigned long interp_load_addr
= 0;
579 unsigned long start_code
, end_code
, start_data
, end_data
;
580 unsigned long reloc_func_desc __maybe_unused
= 0;
581 int executable_stack
= EXSTACK_DEFAULT
;
582 unsigned long def_flags
= 0;
583 struct pt_regs
*regs
= current_pt_regs();
585 struct elfhdr elf_ex
;
586 struct elfhdr interp_elf_ex
;
589 loc
= kmalloc(sizeof(*loc
), GFP_KERNEL
);
595 /* Get the exec-header */
596 loc
->elf_ex
= *((struct elfhdr
*)bprm
->buf
);
599 /* First of all, some simple consistency checks */
600 if (memcmp(loc
->elf_ex
.e_ident
, ELFMAG
, SELFMAG
) != 0)
603 if (loc
->elf_ex
.e_type
!= ET_EXEC
&& loc
->elf_ex
.e_type
!= ET_DYN
)
605 if (!elf_check_arch(&loc
->elf_ex
))
607 if (!bprm
->file
->f_op
|| !bprm
->file
->f_op
->mmap
)
610 /* Now read in all of the header information */
611 if (loc
->elf_ex
.e_phentsize
!= sizeof(struct elf_phdr
))
613 if (loc
->elf_ex
.e_phnum
< 1 ||
614 loc
->elf_ex
.e_phnum
> 65536U / sizeof(struct elf_phdr
))
616 size
= loc
->elf_ex
.e_phnum
* sizeof(struct elf_phdr
);
618 elf_phdata
= kmalloc(size
, GFP_KERNEL
);
622 retval
= kernel_read(bprm
->file
, loc
->elf_ex
.e_phoff
,
623 (char *)elf_phdata
, size
);
624 if (retval
!= size
) {
630 elf_ppnt
= elf_phdata
;
639 for (i
= 0; i
< loc
->elf_ex
.e_phnum
; i
++) {
640 if (elf_ppnt
->p_type
== PT_INTERP
) {
641 /* This is the program interpreter used for
642 * shared libraries - for now assume that this
643 * is an a.out format binary
646 if (elf_ppnt
->p_filesz
> PATH_MAX
||
647 elf_ppnt
->p_filesz
< 2)
651 elf_interpreter
= kmalloc(elf_ppnt
->p_filesz
,
653 if (!elf_interpreter
)
656 retval
= kernel_read(bprm
->file
, elf_ppnt
->p_offset
,
659 if (retval
!= elf_ppnt
->p_filesz
) {
662 goto out_free_interp
;
664 /* make sure path is NULL terminated */
666 if (elf_interpreter
[elf_ppnt
->p_filesz
- 1] != '\0')
667 goto out_free_interp
;
669 interpreter
= open_exec(elf_interpreter
);
670 retval
= PTR_ERR(interpreter
);
671 if (IS_ERR(interpreter
))
672 goto out_free_interp
;
675 * If the binary is not readable then enforce
676 * mm->dumpable = 0 regardless of the interpreter's
679 would_dump(bprm
, interpreter
);
681 retval
= kernel_read(interpreter
, 0, bprm
->buf
,
683 if (retval
!= BINPRM_BUF_SIZE
) {
686 goto out_free_dentry
;
689 /* Get the exec headers */
690 loc
->interp_elf_ex
= *((struct elfhdr
*)bprm
->buf
);
696 elf_ppnt
= elf_phdata
;
697 for (i
= 0; i
< loc
->elf_ex
.e_phnum
; i
++, elf_ppnt
++)
698 if (elf_ppnt
->p_type
== PT_GNU_STACK
) {
699 if (elf_ppnt
->p_flags
& PF_X
)
700 executable_stack
= EXSTACK_ENABLE_X
;
702 executable_stack
= EXSTACK_DISABLE_X
;
706 /* Some simple consistency checks for the interpreter */
707 if (elf_interpreter
) {
709 /* Not an ELF interpreter */
710 if (memcmp(loc
->interp_elf_ex
.e_ident
, ELFMAG
, SELFMAG
) != 0)
711 goto out_free_dentry
;
712 /* Verify the interpreter has a valid arch */
713 if (!elf_check_arch(&loc
->interp_elf_ex
))
714 goto out_free_dentry
;
717 /* Flush all traces of the currently running executable */
718 retval
= flush_old_exec(bprm
);
720 goto out_free_dentry
;
722 /* OK, This is the point of no return */
723 current
->mm
->def_flags
= def_flags
;
725 /* Do this immediately, since STACK_TOP as used in setup_arg_pages
726 may depend on the personality. */
727 SET_PERSONALITY(loc
->elf_ex
);
728 if (elf_read_implies_exec(loc
->elf_ex
, executable_stack
))
729 current
->personality
|= READ_IMPLIES_EXEC
;
731 if (!(current
->personality
& ADDR_NO_RANDOMIZE
) && randomize_va_space
)
732 current
->flags
|= PF_RANDOMIZE
;
734 setup_new_exec(bprm
);
736 /* Do this so that we can load the interpreter, if need be. We will
737 change some of these later */
738 current
->mm
->free_area_cache
= current
->mm
->mmap_base
;
739 current
->mm
->cached_hole_size
= 0;
740 retval
= setup_arg_pages(bprm
, randomize_stack_top(STACK_TOP
),
743 send_sig(SIGKILL
, current
, 0);
744 goto out_free_dentry
;
747 current
->mm
->start_stack
= bprm
->p
;
749 /* Now we do a little grungy work by mmapping the ELF image into
750 the correct location in memory. */
751 for(i
= 0, elf_ppnt
= elf_phdata
;
752 i
< loc
->elf_ex
.e_phnum
; i
++, elf_ppnt
++) {
753 int elf_prot
= 0, elf_flags
;
754 unsigned long k
, vaddr
;
756 if (elf_ppnt
->p_type
!= PT_LOAD
)
759 if (unlikely (elf_brk
> elf_bss
)) {
762 /* There was a PT_LOAD segment with p_memsz > p_filesz
763 before this one. Map anonymous pages, if needed,
764 and clear the area. */
765 retval
= set_brk(elf_bss
+ load_bias
,
766 elf_brk
+ load_bias
);
768 send_sig(SIGKILL
, current
, 0);
769 goto out_free_dentry
;
771 nbyte
= ELF_PAGEOFFSET(elf_bss
);
773 nbyte
= ELF_MIN_ALIGN
- nbyte
;
774 if (nbyte
> elf_brk
- elf_bss
)
775 nbyte
= elf_brk
- elf_bss
;
776 if (clear_user((void __user
*)elf_bss
+
779 * This bss-zeroing can fail if the ELF
780 * file specifies odd protections. So
781 * we don't check the return value
787 if (elf_ppnt
->p_flags
& PF_R
)
788 elf_prot
|= PROT_READ
;
789 if (elf_ppnt
->p_flags
& PF_W
)
790 elf_prot
|= PROT_WRITE
;
791 if (elf_ppnt
->p_flags
& PF_X
)
792 elf_prot
|= PROT_EXEC
;
794 elf_flags
= MAP_PRIVATE
| MAP_DENYWRITE
| MAP_EXECUTABLE
;
796 vaddr
= elf_ppnt
->p_vaddr
;
797 if (loc
->elf_ex
.e_type
== ET_EXEC
|| load_addr_set
) {
798 elf_flags
|= MAP_FIXED
;
799 } else if (loc
->elf_ex
.e_type
== ET_DYN
) {
800 /* Try and get dynamic programs out of the way of the
801 * default mmap base, as well as whatever program they
802 * might try to exec. This is because the brk will
803 * follow the loader, and is not movable. */
804 #ifdef CONFIG_ARCH_BINFMT_ELF_RANDOMIZE_PIE
805 /* Memory randomization might have been switched off
806 * in runtime via sysctl.
807 * If that is the case, retain the original non-zero
808 * load_bias value in order to establish proper
809 * non-randomized mappings.
811 if (current
->flags
& PF_RANDOMIZE
)
814 load_bias
= ELF_PAGESTART(ELF_ET_DYN_BASE
- vaddr
);
816 load_bias
= ELF_PAGESTART(ELF_ET_DYN_BASE
- vaddr
);
820 error
= elf_map(bprm
->file
, load_bias
+ vaddr
, elf_ppnt
,
821 elf_prot
, elf_flags
, 0);
822 if (BAD_ADDR(error
)) {
823 send_sig(SIGKILL
, current
, 0);
824 retval
= IS_ERR((void *)error
) ?
825 PTR_ERR((void*)error
) : -EINVAL
;
826 goto out_free_dentry
;
829 if (!load_addr_set
) {
831 load_addr
= (elf_ppnt
->p_vaddr
- elf_ppnt
->p_offset
);
832 if (loc
->elf_ex
.e_type
== ET_DYN
) {
834 ELF_PAGESTART(load_bias
+ vaddr
);
835 load_addr
+= load_bias
;
836 reloc_func_desc
= load_bias
;
839 k
= elf_ppnt
->p_vaddr
;
846 * Check to see if the section's size will overflow the
847 * allowed task size. Note that p_filesz must always be
848 * <= p_memsz so it is only necessary to check p_memsz.
850 if (BAD_ADDR(k
) || elf_ppnt
->p_filesz
> elf_ppnt
->p_memsz
||
851 elf_ppnt
->p_memsz
> TASK_SIZE
||
852 TASK_SIZE
- elf_ppnt
->p_memsz
< k
) {
853 /* set_brk can never work. Avoid overflows. */
854 send_sig(SIGKILL
, current
, 0);
856 goto out_free_dentry
;
859 k
= elf_ppnt
->p_vaddr
+ elf_ppnt
->p_filesz
;
863 if ((elf_ppnt
->p_flags
& PF_X
) && end_code
< k
)
867 k
= elf_ppnt
->p_vaddr
+ elf_ppnt
->p_memsz
;
872 loc
->elf_ex
.e_entry
+= load_bias
;
873 elf_bss
+= load_bias
;
874 elf_brk
+= load_bias
;
875 start_code
+= load_bias
;
876 end_code
+= load_bias
;
877 start_data
+= load_bias
;
878 end_data
+= load_bias
;
880 /* Calling set_brk effectively mmaps the pages that we need
881 * for the bss and break sections. We must do this before
882 * mapping in the interpreter, to make sure it doesn't wind
883 * up getting placed where the bss needs to go.
885 retval
= set_brk(elf_bss
, elf_brk
);
887 send_sig(SIGKILL
, current
, 0);
888 goto out_free_dentry
;
890 if (likely(elf_bss
!= elf_brk
) && unlikely(padzero(elf_bss
))) {
891 send_sig(SIGSEGV
, current
, 0);
892 retval
= -EFAULT
; /* Nobody gets to see this, but.. */
893 goto out_free_dentry
;
896 if (elf_interpreter
) {
897 unsigned long interp_map_addr
= 0;
899 elf_entry
= load_elf_interp(&loc
->interp_elf_ex
,
903 if (!IS_ERR((void *)elf_entry
)) {
905 * load_elf_interp() returns relocation
908 interp_load_addr
= elf_entry
;
909 elf_entry
+= loc
->interp_elf_ex
.e_entry
;
911 if (BAD_ADDR(elf_entry
)) {
912 force_sig(SIGSEGV
, current
);
913 retval
= IS_ERR((void *)elf_entry
) ?
914 (int)elf_entry
: -EINVAL
;
915 goto out_free_dentry
;
917 reloc_func_desc
= interp_load_addr
;
919 allow_write_access(interpreter
);
921 kfree(elf_interpreter
);
923 elf_entry
= loc
->elf_ex
.e_entry
;
924 if (BAD_ADDR(elf_entry
)) {
925 force_sig(SIGSEGV
, current
);
927 goto out_free_dentry
;
933 set_binfmt(&elf_format
);
935 #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
936 retval
= arch_setup_additional_pages(bprm
, !!elf_interpreter
);
938 send_sig(SIGKILL
, current
, 0);
941 #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
943 install_exec_creds(bprm
);
944 retval
= create_elf_tables(bprm
, &loc
->elf_ex
,
945 load_addr
, interp_load_addr
);
947 send_sig(SIGKILL
, current
, 0);
950 /* N.B. passed_fileno might not be initialized? */
951 current
->mm
->end_code
= end_code
;
952 current
->mm
->start_code
= start_code
;
953 current
->mm
->start_data
= start_data
;
954 current
->mm
->end_data
= end_data
;
955 current
->mm
->start_stack
= bprm
->p
;
957 #ifdef arch_randomize_brk
958 if ((current
->flags
& PF_RANDOMIZE
) && (randomize_va_space
> 1)) {
959 current
->mm
->brk
= current
->mm
->start_brk
=
960 arch_randomize_brk(current
->mm
);
961 #ifdef CONFIG_COMPAT_BRK
962 current
->brk_randomized
= 1;
967 if (current
->personality
& MMAP_PAGE_ZERO
) {
968 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
969 and some applications "depend" upon this behavior.
970 Since we do not have the power to recompile these, we
971 emulate the SVr4 behavior. Sigh. */
972 error
= vm_mmap(NULL
, 0, PAGE_SIZE
, PROT_READ
| PROT_EXEC
,
973 MAP_FIXED
| MAP_PRIVATE
, 0);
978 * The ABI may specify that certain registers be set up in special
979 * ways (on i386 %edx is the address of a DT_FINI function, for
980 * example. In addition, it may also specify (eg, PowerPC64 ELF)
981 * that the e_entry field is the address of the function descriptor
982 * for the startup routine, rather than the address of the startup
983 * routine itself. This macro performs whatever initialization to
984 * the regs structure is required as well as any relocations to the
985 * function descriptor entries when executing dynamically links apps.
987 ELF_PLAT_INIT(regs
, reloc_func_desc
);
990 start_thread(regs
, elf_entry
, bprm
->p
);
999 allow_write_access(interpreter
);
1003 kfree(elf_interpreter
);
1009 /* This is really simpleminded and specialized - we are loading an
1010 a.out library that is given an ELF header. */
1011 static int load_elf_library(struct file
*file
)
1013 struct elf_phdr
*elf_phdata
;
1014 struct elf_phdr
*eppnt
;
1015 unsigned long elf_bss
, bss
, len
;
1016 int retval
, error
, i
, j
;
1017 struct elfhdr elf_ex
;
1020 retval
= kernel_read(file
, 0, (char *)&elf_ex
, sizeof(elf_ex
));
1021 if (retval
!= sizeof(elf_ex
))
1024 if (memcmp(elf_ex
.e_ident
, ELFMAG
, SELFMAG
) != 0)
1027 /* First of all, some simple consistency checks */
1028 if (elf_ex
.e_type
!= ET_EXEC
|| elf_ex
.e_phnum
> 2 ||
1029 !elf_check_arch(&elf_ex
) || !file
->f_op
|| !file
->f_op
->mmap
)
1032 /* Now read in all of the header information */
1034 j
= sizeof(struct elf_phdr
) * elf_ex
.e_phnum
;
1035 /* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */
1038 elf_phdata
= kmalloc(j
, GFP_KERNEL
);
1044 retval
= kernel_read(file
, elf_ex
.e_phoff
, (char *)eppnt
, j
);
1048 for (j
= 0, i
= 0; i
<elf_ex
.e_phnum
; i
++)
1049 if ((eppnt
+ i
)->p_type
== PT_LOAD
)
1054 while (eppnt
->p_type
!= PT_LOAD
)
1057 /* Now use mmap to map the library into memory. */
1058 error
= vm_mmap(file
,
1059 ELF_PAGESTART(eppnt
->p_vaddr
),
1061 ELF_PAGEOFFSET(eppnt
->p_vaddr
)),
1062 PROT_READ
| PROT_WRITE
| PROT_EXEC
,
1063 MAP_FIXED
| MAP_PRIVATE
| MAP_DENYWRITE
,
1065 ELF_PAGEOFFSET(eppnt
->p_vaddr
)));
1066 if (error
!= ELF_PAGESTART(eppnt
->p_vaddr
))
1069 elf_bss
= eppnt
->p_vaddr
+ eppnt
->p_filesz
;
1070 if (padzero(elf_bss
)) {
1075 len
= ELF_PAGESTART(eppnt
->p_filesz
+ eppnt
->p_vaddr
+
1077 bss
= eppnt
->p_memsz
+ eppnt
->p_vaddr
;
1079 vm_brk(len
, bss
- len
);
1088 #ifdef CONFIG_ELF_CORE
1092 * Modelled on fs/exec.c:aout_core_dump()
1093 * Jeremy Fitzhardinge <jeremy@sw.oz.au>
1097 * The purpose of always_dump_vma() is to make sure that special kernel mappings
1098 * that are useful for post-mortem analysis are included in every core dump.
1099 * In that way we ensure that the core dump is fully interpretable later
1100 * without matching up the same kernel and hardware config to see what PC values
1101 * meant. These special mappings include - vDSO, vsyscall, and other
1102 * architecture specific mappings
1104 static bool always_dump_vma(struct vm_area_struct
*vma
)
1106 /* Any vsyscall mappings? */
1107 if (vma
== get_gate_vma(vma
->vm_mm
))
1110 * arch_vma_name() returns non-NULL for special architecture mappings,
1111 * such as vDSO sections.
1113 if (arch_vma_name(vma
))
1120 * Decide what to dump of a segment, part, all or none.
1122 static unsigned long vma_dump_size(struct vm_area_struct
*vma
,
1123 unsigned long mm_flags
)
1125 #define FILTER(type) (mm_flags & (1UL << MMF_DUMP_##type))
1127 /* always dump the vdso and vsyscall sections */
1128 if (always_dump_vma(vma
))
1131 if (vma
->vm_flags
& VM_DONTDUMP
)
1134 /* Hugetlb memory check */
1135 if (vma
->vm_flags
& VM_HUGETLB
) {
1136 if ((vma
->vm_flags
& VM_SHARED
) && FILTER(HUGETLB_SHARED
))
1138 if (!(vma
->vm_flags
& VM_SHARED
) && FILTER(HUGETLB_PRIVATE
))
1142 /* Do not dump I/O mapped devices or special mappings */
1143 if (vma
->vm_flags
& VM_IO
)
1146 /* By default, dump shared memory if mapped from an anonymous file. */
1147 if (vma
->vm_flags
& VM_SHARED
) {
1148 if (file_inode(vma
->vm_file
)->i_nlink
== 0 ?
1149 FILTER(ANON_SHARED
) : FILTER(MAPPED_SHARED
))
1154 /* Dump segments that have been written to. */
1155 if (vma
->anon_vma
&& FILTER(ANON_PRIVATE
))
1157 if (vma
->vm_file
== NULL
)
1160 if (FILTER(MAPPED_PRIVATE
))
1164 * If this looks like the beginning of a DSO or executable mapping,
1165 * check for an ELF header. If we find one, dump the first page to
1166 * aid in determining what was mapped here.
1168 if (FILTER(ELF_HEADERS
) &&
1169 vma
->vm_pgoff
== 0 && (vma
->vm_flags
& VM_READ
)) {
1170 u32 __user
*header
= (u32 __user
*) vma
->vm_start
;
1172 mm_segment_t fs
= get_fs();
1174 * Doing it this way gets the constant folded by GCC.
1178 char elfmag
[SELFMAG
];
1180 BUILD_BUG_ON(SELFMAG
!= sizeof word
);
1181 magic
.elfmag
[EI_MAG0
] = ELFMAG0
;
1182 magic
.elfmag
[EI_MAG1
] = ELFMAG1
;
1183 magic
.elfmag
[EI_MAG2
] = ELFMAG2
;
1184 magic
.elfmag
[EI_MAG3
] = ELFMAG3
;
1186 * Switch to the user "segment" for get_user(),
1187 * then put back what elf_core_dump() had in place.
1190 if (unlikely(get_user(word
, header
)))
1193 if (word
== magic
.cmp
)
1202 return vma
->vm_end
- vma
->vm_start
;
1205 /* An ELF note in memory */
1210 unsigned int datasz
;
1214 static int notesize(struct memelfnote
*en
)
1218 sz
= sizeof(struct elf_note
);
1219 sz
+= roundup(strlen(en
->name
) + 1, 4);
1220 sz
+= roundup(en
->datasz
, 4);
1225 #define DUMP_WRITE(addr, nr, foffset) \
1226 do { if (!dump_write(file, (addr), (nr))) return 0; *foffset += (nr); } while(0)
1228 static int alignfile(struct file
*file
, loff_t
*foffset
)
1230 static const char buf
[4] = { 0, };
1231 DUMP_WRITE(buf
, roundup(*foffset
, 4) - *foffset
, foffset
);
1235 static int writenote(struct memelfnote
*men
, struct file
*file
,
1239 en
.n_namesz
= strlen(men
->name
) + 1;
1240 en
.n_descsz
= men
->datasz
;
1241 en
.n_type
= men
->type
;
1243 DUMP_WRITE(&en
, sizeof(en
), foffset
);
1244 DUMP_WRITE(men
->name
, en
.n_namesz
, foffset
);
1245 if (!alignfile(file
, foffset
))
1247 DUMP_WRITE(men
->data
, men
->datasz
, foffset
);
1248 if (!alignfile(file
, foffset
))
1255 static void fill_elf_header(struct elfhdr
*elf
, int segs
,
1256 u16 machine
, u32 flags
)
1258 memset(elf
, 0, sizeof(*elf
));
1260 memcpy(elf
->e_ident
, ELFMAG
, SELFMAG
);
1261 elf
->e_ident
[EI_CLASS
] = ELF_CLASS
;
1262 elf
->e_ident
[EI_DATA
] = ELF_DATA
;
1263 elf
->e_ident
[EI_VERSION
] = EV_CURRENT
;
1264 elf
->e_ident
[EI_OSABI
] = ELF_OSABI
;
1266 elf
->e_type
= ET_CORE
;
1267 elf
->e_machine
= machine
;
1268 elf
->e_version
= EV_CURRENT
;
1269 elf
->e_phoff
= sizeof(struct elfhdr
);
1270 elf
->e_flags
= flags
;
1271 elf
->e_ehsize
= sizeof(struct elfhdr
);
1272 elf
->e_phentsize
= sizeof(struct elf_phdr
);
1273 elf
->e_phnum
= segs
;
1278 static void fill_elf_note_phdr(struct elf_phdr
*phdr
, int sz
, loff_t offset
)
1280 phdr
->p_type
= PT_NOTE
;
1281 phdr
->p_offset
= offset
;
1284 phdr
->p_filesz
= sz
;
1291 static void fill_note(struct memelfnote
*note
, const char *name
, int type
,
1292 unsigned int sz
, void *data
)
1302 * fill up all the fields in prstatus from the given task struct, except
1303 * registers which need to be filled up separately.
1305 static void fill_prstatus(struct elf_prstatus
*prstatus
,
1306 struct task_struct
*p
, long signr
)
1308 prstatus
->pr_info
.si_signo
= prstatus
->pr_cursig
= signr
;
1309 prstatus
->pr_sigpend
= p
->pending
.signal
.sig
[0];
1310 prstatus
->pr_sighold
= p
->blocked
.sig
[0];
1312 prstatus
->pr_ppid
= task_pid_vnr(rcu_dereference(p
->real_parent
));
1314 prstatus
->pr_pid
= task_pid_vnr(p
);
1315 prstatus
->pr_pgrp
= task_pgrp_vnr(p
);
1316 prstatus
->pr_sid
= task_session_vnr(p
);
1317 if (thread_group_leader(p
)) {
1318 struct task_cputime cputime
;
1321 * This is the record for the group leader. It shows the
1322 * group-wide total, not its individual thread total.
1324 thread_group_cputime(p
, &cputime
);
1325 cputime_to_timeval(cputime
.utime
, &prstatus
->pr_utime
);
1326 cputime_to_timeval(cputime
.stime
, &prstatus
->pr_stime
);
1328 cputime_t utime
, stime
;
1330 task_cputime(p
, &utime
, &stime
);
1331 cputime_to_timeval(utime
, &prstatus
->pr_utime
);
1332 cputime_to_timeval(stime
, &prstatus
->pr_stime
);
1334 cputime_to_timeval(p
->signal
->cutime
, &prstatus
->pr_cutime
);
1335 cputime_to_timeval(p
->signal
->cstime
, &prstatus
->pr_cstime
);
1338 static int fill_psinfo(struct elf_prpsinfo
*psinfo
, struct task_struct
*p
,
1339 struct mm_struct
*mm
)
1341 const struct cred
*cred
;
1342 unsigned int i
, len
;
1344 /* first copy the parameters from user space */
1345 memset(psinfo
, 0, sizeof(struct elf_prpsinfo
));
1347 len
= mm
->arg_end
- mm
->arg_start
;
1348 if (len
>= ELF_PRARGSZ
)
1349 len
= ELF_PRARGSZ
-1;
1350 if (copy_from_user(&psinfo
->pr_psargs
,
1351 (const char __user
*)mm
->arg_start
, len
))
1353 for(i
= 0; i
< len
; i
++)
1354 if (psinfo
->pr_psargs
[i
] == 0)
1355 psinfo
->pr_psargs
[i
] = ' ';
1356 psinfo
->pr_psargs
[len
] = 0;
1359 psinfo
->pr_ppid
= task_pid_vnr(rcu_dereference(p
->real_parent
));
1361 psinfo
->pr_pid
= task_pid_vnr(p
);
1362 psinfo
->pr_pgrp
= task_pgrp_vnr(p
);
1363 psinfo
->pr_sid
= task_session_vnr(p
);
1365 i
= p
->state
? ffz(~p
->state
) + 1 : 0;
1366 psinfo
->pr_state
= i
;
1367 psinfo
->pr_sname
= (i
> 5) ? '.' : "RSDTZW"[i
];
1368 psinfo
->pr_zomb
= psinfo
->pr_sname
== 'Z';
1369 psinfo
->pr_nice
= task_nice(p
);
1370 psinfo
->pr_flag
= p
->flags
;
1372 cred
= __task_cred(p
);
1373 SET_UID(psinfo
->pr_uid
, from_kuid_munged(cred
->user_ns
, cred
->uid
));
1374 SET_GID(psinfo
->pr_gid
, from_kgid_munged(cred
->user_ns
, cred
->gid
));
1376 strncpy(psinfo
->pr_fname
, p
->comm
, sizeof(psinfo
->pr_fname
));
1381 static void fill_auxv_note(struct memelfnote
*note
, struct mm_struct
*mm
)
1383 elf_addr_t
*auxv
= (elf_addr_t
*) mm
->saved_auxv
;
1387 while (auxv
[i
- 2] != AT_NULL
);
1388 fill_note(note
, "CORE", NT_AUXV
, i
* sizeof(elf_addr_t
), auxv
);
1391 static void fill_siginfo_note(struct memelfnote
*note
, user_siginfo_t
*csigdata
,
1394 mm_segment_t old_fs
= get_fs();
1396 copy_siginfo_to_user((user_siginfo_t __user
*) csigdata
, siginfo
);
1398 fill_note(note
, "CORE", NT_SIGINFO
, sizeof(*csigdata
), csigdata
);
1401 #define MAX_FILE_NOTE_SIZE (4*1024*1024)
1403 * Format of NT_FILE note:
1405 * long count -- how many files are mapped
1406 * long page_size -- units for file_ofs
1407 * array of [COUNT] elements of
1411 * followed by COUNT filenames in ASCII: "FILE1" NUL "FILE2" NUL...
1413 static void fill_files_note(struct memelfnote
*note
)
1415 struct vm_area_struct
*vma
;
1416 unsigned count
, size
, names_ofs
, remaining
, n
;
1418 user_long_t
*start_end_ofs
;
1419 char *name_base
, *name_curpos
;
1421 /* *Estimated* file count and total data size needed */
1422 count
= current
->mm
->map_count
;
1425 names_ofs
= (2 + 3 * count
) * sizeof(data
[0]);
1427 if (size
>= MAX_FILE_NOTE_SIZE
) /* paranoia check */
1429 size
= round_up(size
, PAGE_SIZE
);
1430 data
= vmalloc(size
);
1434 start_end_ofs
= data
+ 2;
1435 name_base
= name_curpos
= ((char *)data
) + names_ofs
;
1436 remaining
= size
- names_ofs
;
1438 for (vma
= current
->mm
->mmap
; vma
!= NULL
; vma
= vma
->vm_next
) {
1440 const char *filename
;
1442 file
= vma
->vm_file
;
1445 filename
= d_path(&file
->f_path
, name_curpos
, remaining
);
1446 if (IS_ERR(filename
)) {
1447 if (PTR_ERR(filename
) == -ENAMETOOLONG
) {
1449 size
= size
* 5 / 4;
1455 /* d_path() fills at the end, move name down */
1456 /* n = strlen(filename) + 1: */
1457 n
= (name_curpos
+ remaining
) - filename
;
1458 remaining
= filename
- name_curpos
;
1459 memmove(name_curpos
, filename
, n
);
1462 *start_end_ofs
++ = vma
->vm_start
;
1463 *start_end_ofs
++ = vma
->vm_end
;
1464 *start_end_ofs
++ = vma
->vm_pgoff
;
1468 /* Now we know exact count of files, can store it */
1470 data
[1] = PAGE_SIZE
;
1472 * Count usually is less than current->mm->map_count,
1473 * we need to move filenames down.
1475 n
= current
->mm
->map_count
- count
;
1477 unsigned shift_bytes
= n
* 3 * sizeof(data
[0]);
1478 memmove(name_base
- shift_bytes
, name_base
,
1479 name_curpos
- name_base
);
1480 name_curpos
-= shift_bytes
;
1483 size
= name_curpos
- (char *)data
;
1484 fill_note(note
, "CORE", NT_FILE
, size
, data
);
1488 #ifdef CORE_DUMP_USE_REGSET
1489 #include <linux/regset.h>
1491 struct elf_thread_core_info
{
1492 struct elf_thread_core_info
*next
;
1493 struct task_struct
*task
;
1494 struct elf_prstatus prstatus
;
1495 struct memelfnote notes
[0];
1498 struct elf_note_info
{
1499 struct elf_thread_core_info
*thread
;
1500 struct memelfnote psinfo
;
1501 struct memelfnote signote
;
1502 struct memelfnote auxv
;
1503 struct memelfnote files
;
1504 user_siginfo_t csigdata
;
1510 * When a regset has a writeback hook, we call it on each thread before
1511 * dumping user memory. On register window machines, this makes sure the
1512 * user memory backing the register data is up to date before we read it.
1514 static void do_thread_regset_writeback(struct task_struct
*task
,
1515 const struct user_regset
*regset
)
1517 if (regset
->writeback
)
1518 regset
->writeback(task
, regset
, 1);
1522 #define PR_REG_SIZE(S) sizeof(S)
1525 #ifndef PRSTATUS_SIZE
1526 #define PRSTATUS_SIZE(S) sizeof(S)
1530 #define PR_REG_PTR(S) (&((S)->pr_reg))
1533 #ifndef SET_PR_FPVALID
1534 #define SET_PR_FPVALID(S, V) ((S)->pr_fpvalid = (V))
1537 static int fill_thread_core_info(struct elf_thread_core_info
*t
,
1538 const struct user_regset_view
*view
,
1539 long signr
, size_t *total
)
1544 * NT_PRSTATUS is the one special case, because the regset data
1545 * goes into the pr_reg field inside the note contents, rather
1546 * than being the whole note contents. We fill the reset in here.
1547 * We assume that regset 0 is NT_PRSTATUS.
1549 fill_prstatus(&t
->prstatus
, t
->task
, signr
);
1550 (void) view
->regsets
[0].get(t
->task
, &view
->regsets
[0],
1551 0, PR_REG_SIZE(t
->prstatus
.pr_reg
),
1552 PR_REG_PTR(&t
->prstatus
), NULL
);
1554 fill_note(&t
->notes
[0], "CORE", NT_PRSTATUS
,
1555 PRSTATUS_SIZE(t
->prstatus
), &t
->prstatus
);
1556 *total
+= notesize(&t
->notes
[0]);
1558 do_thread_regset_writeback(t
->task
, &view
->regsets
[0]);
1561 * Each other regset might generate a note too. For each regset
1562 * that has no core_note_type or is inactive, we leave t->notes[i]
1563 * all zero and we'll know to skip writing it later.
1565 for (i
= 1; i
< view
->n
; ++i
) {
1566 const struct user_regset
*regset
= &view
->regsets
[i
];
1567 do_thread_regset_writeback(t
->task
, regset
);
1568 if (regset
->core_note_type
&& regset
->get
&&
1569 (!regset
->active
|| regset
->active(t
->task
, regset
))) {
1571 size_t size
= regset
->n
* regset
->size
;
1572 void *data
= kmalloc(size
, GFP_KERNEL
);
1573 if (unlikely(!data
))
1575 ret
= regset
->get(t
->task
, regset
,
1576 0, size
, data
, NULL
);
1580 if (regset
->core_note_type
!= NT_PRFPREG
)
1581 fill_note(&t
->notes
[i
], "LINUX",
1582 regset
->core_note_type
,
1585 SET_PR_FPVALID(&t
->prstatus
, 1);
1586 fill_note(&t
->notes
[i
], "CORE",
1587 NT_PRFPREG
, size
, data
);
1589 *total
+= notesize(&t
->notes
[i
]);
1597 static int fill_note_info(struct elfhdr
*elf
, int phdrs
,
1598 struct elf_note_info
*info
,
1599 siginfo_t
*siginfo
, struct pt_regs
*regs
)
1601 struct task_struct
*dump_task
= current
;
1602 const struct user_regset_view
*view
= task_user_regset_view(dump_task
);
1603 struct elf_thread_core_info
*t
;
1604 struct elf_prpsinfo
*psinfo
;
1605 struct core_thread
*ct
;
1609 info
->thread
= NULL
;
1611 psinfo
= kmalloc(sizeof(*psinfo
), GFP_KERNEL
);
1612 if (psinfo
== NULL
) {
1613 info
->psinfo
.data
= NULL
; /* So we don't free this wrongly */
1617 fill_note(&info
->psinfo
, "CORE", NT_PRPSINFO
, sizeof(*psinfo
), psinfo
);
1620 * Figure out how many notes we're going to need for each thread.
1622 info
->thread_notes
= 0;
1623 for (i
= 0; i
< view
->n
; ++i
)
1624 if (view
->regsets
[i
].core_note_type
!= 0)
1625 ++info
->thread_notes
;
1628 * Sanity check. We rely on regset 0 being in NT_PRSTATUS,
1629 * since it is our one special case.
1631 if (unlikely(info
->thread_notes
== 0) ||
1632 unlikely(view
->regsets
[0].core_note_type
!= NT_PRSTATUS
)) {
1638 * Initialize the ELF file header.
1640 fill_elf_header(elf
, phdrs
,
1641 view
->e_machine
, view
->e_flags
);
1644 * Allocate a structure for each thread.
1646 for (ct
= &dump_task
->mm
->core_state
->dumper
; ct
; ct
= ct
->next
) {
1647 t
= kzalloc(offsetof(struct elf_thread_core_info
,
1648 notes
[info
->thread_notes
]),
1654 if (ct
->task
== dump_task
|| !info
->thread
) {
1655 t
->next
= info
->thread
;
1659 * Make sure to keep the original task at
1660 * the head of the list.
1662 t
->next
= info
->thread
->next
;
1663 info
->thread
->next
= t
;
1668 * Now fill in each thread's information.
1670 for (t
= info
->thread
; t
!= NULL
; t
= t
->next
)
1671 if (!fill_thread_core_info(t
, view
, siginfo
->si_signo
, &info
->size
))
1675 * Fill in the two process-wide notes.
1677 fill_psinfo(psinfo
, dump_task
->group_leader
, dump_task
->mm
);
1678 info
->size
+= notesize(&info
->psinfo
);
1680 fill_siginfo_note(&info
->signote
, &info
->csigdata
, siginfo
);
1681 info
->size
+= notesize(&info
->signote
);
1683 fill_auxv_note(&info
->auxv
, current
->mm
);
1684 info
->size
+= notesize(&info
->auxv
);
1686 fill_files_note(&info
->files
);
1687 info
->size
+= notesize(&info
->files
);
1692 static size_t get_note_info_size(struct elf_note_info
*info
)
1698 * Write all the notes for each thread. When writing the first thread, the
1699 * process-wide notes are interleaved after the first thread-specific note.
1701 static int write_note_info(struct elf_note_info
*info
,
1702 struct file
*file
, loff_t
*foffset
)
1705 struct elf_thread_core_info
*t
= info
->thread
;
1710 if (!writenote(&t
->notes
[0], file
, foffset
))
1713 if (first
&& !writenote(&info
->psinfo
, file
, foffset
))
1715 if (first
&& !writenote(&info
->signote
, file
, foffset
))
1717 if (first
&& !writenote(&info
->auxv
, file
, foffset
))
1719 if (first
&& !writenote(&info
->files
, file
, foffset
))
1722 for (i
= 1; i
< info
->thread_notes
; ++i
)
1723 if (t
->notes
[i
].data
&&
1724 !writenote(&t
->notes
[i
], file
, foffset
))
1734 static void free_note_info(struct elf_note_info
*info
)
1736 struct elf_thread_core_info
*threads
= info
->thread
;
1739 struct elf_thread_core_info
*t
= threads
;
1741 WARN_ON(t
->notes
[0].data
&& t
->notes
[0].data
!= &t
->prstatus
);
1742 for (i
= 1; i
< info
->thread_notes
; ++i
)
1743 kfree(t
->notes
[i
].data
);
1746 kfree(info
->psinfo
.data
);
1747 vfree(info
->files
.data
);
1752 /* Here is the structure in which status of each thread is captured. */
1753 struct elf_thread_status
1755 struct list_head list
;
1756 struct elf_prstatus prstatus
; /* NT_PRSTATUS */
1757 elf_fpregset_t fpu
; /* NT_PRFPREG */
1758 struct task_struct
*thread
;
1759 #ifdef ELF_CORE_COPY_XFPREGS
1760 elf_fpxregset_t xfpu
; /* ELF_CORE_XFPREG_TYPE */
1762 struct memelfnote notes
[3];
1767 * In order to add the specific thread information for the elf file format,
1768 * we need to keep a linked list of every threads pr_status and then create
1769 * a single section for them in the final core file.
1771 static int elf_dump_thread_status(long signr
, struct elf_thread_status
*t
)
1774 struct task_struct
*p
= t
->thread
;
1777 fill_prstatus(&t
->prstatus
, p
, signr
);
1778 elf_core_copy_task_regs(p
, &t
->prstatus
.pr_reg
);
1780 fill_note(&t
->notes
[0], "CORE", NT_PRSTATUS
, sizeof(t
->prstatus
),
1783 sz
+= notesize(&t
->notes
[0]);
1785 if ((t
->prstatus
.pr_fpvalid
= elf_core_copy_task_fpregs(p
, NULL
,
1787 fill_note(&t
->notes
[1], "CORE", NT_PRFPREG
, sizeof(t
->fpu
),
1790 sz
+= notesize(&t
->notes
[1]);
1793 #ifdef ELF_CORE_COPY_XFPREGS
1794 if (elf_core_copy_task_xfpregs(p
, &t
->xfpu
)) {
1795 fill_note(&t
->notes
[2], "LINUX", ELF_CORE_XFPREG_TYPE
,
1796 sizeof(t
->xfpu
), &t
->xfpu
);
1798 sz
+= notesize(&t
->notes
[2]);
1804 struct elf_note_info
{
1805 struct memelfnote
*notes
;
1806 struct elf_prstatus
*prstatus
; /* NT_PRSTATUS */
1807 struct elf_prpsinfo
*psinfo
; /* NT_PRPSINFO */
1808 struct list_head thread_list
;
1809 elf_fpregset_t
*fpu
;
1810 #ifdef ELF_CORE_COPY_XFPREGS
1811 elf_fpxregset_t
*xfpu
;
1813 user_siginfo_t csigdata
;
1814 int thread_status_size
;
1818 static int elf_note_info_init(struct elf_note_info
*info
)
1820 memset(info
, 0, sizeof(*info
));
1821 INIT_LIST_HEAD(&info
->thread_list
);
1823 /* Allocate space for ELF notes */
1824 info
->notes
= kmalloc(8 * sizeof(struct memelfnote
), GFP_KERNEL
);
1827 info
->psinfo
= kmalloc(sizeof(*info
->psinfo
), GFP_KERNEL
);
1830 info
->prstatus
= kmalloc(sizeof(*info
->prstatus
), GFP_KERNEL
);
1831 if (!info
->prstatus
)
1833 info
->fpu
= kmalloc(sizeof(*info
->fpu
), GFP_KERNEL
);
1836 #ifdef ELF_CORE_COPY_XFPREGS
1837 info
->xfpu
= kmalloc(sizeof(*info
->xfpu
), GFP_KERNEL
);
1844 static int fill_note_info(struct elfhdr
*elf
, int phdrs
,
1845 struct elf_note_info
*info
,
1846 siginfo_t
*siginfo
, struct pt_regs
*regs
)
1848 struct list_head
*t
;
1850 if (!elf_note_info_init(info
))
1853 if (siginfo
->si_signo
) {
1854 struct core_thread
*ct
;
1855 struct elf_thread_status
*ets
;
1857 for (ct
= current
->mm
->core_state
->dumper
.next
;
1858 ct
; ct
= ct
->next
) {
1859 ets
= kzalloc(sizeof(*ets
), GFP_KERNEL
);
1863 ets
->thread
= ct
->task
;
1864 list_add(&ets
->list
, &info
->thread_list
);
1867 list_for_each(t
, &info
->thread_list
) {
1870 ets
= list_entry(t
, struct elf_thread_status
, list
);
1871 sz
= elf_dump_thread_status(siginfo
->si_signo
, ets
);
1872 info
->thread_status_size
+= sz
;
1875 /* now collect the dump for the current */
1876 memset(info
->prstatus
, 0, sizeof(*info
->prstatus
));
1877 fill_prstatus(info
->prstatus
, current
, siginfo
->si_signo
);
1878 elf_core_copy_regs(&info
->prstatus
->pr_reg
, regs
);
1881 fill_elf_header(elf
, phdrs
, ELF_ARCH
, ELF_CORE_EFLAGS
);
1884 * Set up the notes in similar form to SVR4 core dumps made
1885 * with info from their /proc.
1888 fill_note(info
->notes
+ 0, "CORE", NT_PRSTATUS
,
1889 sizeof(*info
->prstatus
), info
->prstatus
);
1890 fill_psinfo(info
->psinfo
, current
->group_leader
, current
->mm
);
1891 fill_note(info
->notes
+ 1, "CORE", NT_PRPSINFO
,
1892 sizeof(*info
->psinfo
), info
->psinfo
);
1894 fill_siginfo_note(info
->notes
+ 2, &info
->csigdata
, siginfo
);
1895 fill_auxv_note(info
->notes
+ 3, current
->mm
);
1896 fill_files_note(info
->notes
+ 4);
1900 /* Try to dump the FPU. */
1901 info
->prstatus
->pr_fpvalid
= elf_core_copy_task_fpregs(current
, regs
,
1903 if (info
->prstatus
->pr_fpvalid
)
1904 fill_note(info
->notes
+ info
->numnote
++,
1905 "CORE", NT_PRFPREG
, sizeof(*info
->fpu
), info
->fpu
);
1906 #ifdef ELF_CORE_COPY_XFPREGS
1907 if (elf_core_copy_task_xfpregs(current
, info
->xfpu
))
1908 fill_note(info
->notes
+ info
->numnote
++,
1909 "LINUX", ELF_CORE_XFPREG_TYPE
,
1910 sizeof(*info
->xfpu
), info
->xfpu
);
1916 static size_t get_note_info_size(struct elf_note_info
*info
)
1921 for (i
= 0; i
< info
->numnote
; i
++)
1922 sz
+= notesize(info
->notes
+ i
);
1924 sz
+= info
->thread_status_size
;
1929 static int write_note_info(struct elf_note_info
*info
,
1930 struct file
*file
, loff_t
*foffset
)
1933 struct list_head
*t
;
1935 for (i
= 0; i
< info
->numnote
; i
++)
1936 if (!writenote(info
->notes
+ i
, file
, foffset
))
1939 /* write out the thread status notes section */
1940 list_for_each(t
, &info
->thread_list
) {
1941 struct elf_thread_status
*tmp
=
1942 list_entry(t
, struct elf_thread_status
, list
);
1944 for (i
= 0; i
< tmp
->num_notes
; i
++)
1945 if (!writenote(&tmp
->notes
[i
], file
, foffset
))
1952 static void free_note_info(struct elf_note_info
*info
)
1954 while (!list_empty(&info
->thread_list
)) {
1955 struct list_head
*tmp
= info
->thread_list
.next
;
1957 kfree(list_entry(tmp
, struct elf_thread_status
, list
));
1960 /* Free data allocated by fill_files_note(): */
1961 vfree(info
->notes
[4].data
);
1963 kfree(info
->prstatus
);
1964 kfree(info
->psinfo
);
1967 #ifdef ELF_CORE_COPY_XFPREGS
1974 static struct vm_area_struct
*first_vma(struct task_struct
*tsk
,
1975 struct vm_area_struct
*gate_vma
)
1977 struct vm_area_struct
*ret
= tsk
->mm
->mmap
;
1984 * Helper function for iterating across a vma list. It ensures that the caller
1985 * will visit `gate_vma' prior to terminating the search.
1987 static struct vm_area_struct
*next_vma(struct vm_area_struct
*this_vma
,
1988 struct vm_area_struct
*gate_vma
)
1990 struct vm_area_struct
*ret
;
1992 ret
= this_vma
->vm_next
;
1995 if (this_vma
== gate_vma
)
2000 static void fill_extnum_info(struct elfhdr
*elf
, struct elf_shdr
*shdr4extnum
,
2001 elf_addr_t e_shoff
, int segs
)
2003 elf
->e_shoff
= e_shoff
;
2004 elf
->e_shentsize
= sizeof(*shdr4extnum
);
2006 elf
->e_shstrndx
= SHN_UNDEF
;
2008 memset(shdr4extnum
, 0, sizeof(*shdr4extnum
));
2010 shdr4extnum
->sh_type
= SHT_NULL
;
2011 shdr4extnum
->sh_size
= elf
->e_shnum
;
2012 shdr4extnum
->sh_link
= elf
->e_shstrndx
;
2013 shdr4extnum
->sh_info
= segs
;
2016 static size_t elf_core_vma_data_size(struct vm_area_struct
*gate_vma
,
2017 unsigned long mm_flags
)
2019 struct vm_area_struct
*vma
;
2022 for (vma
= first_vma(current
, gate_vma
); vma
!= NULL
;
2023 vma
= next_vma(vma
, gate_vma
))
2024 size
+= vma_dump_size(vma
, mm_flags
);
2031 * This is a two-pass process; first we find the offsets of the bits,
2032 * and then they are actually written out. If we run out of core limit
2035 static int elf_core_dump(struct coredump_params
*cprm
)
2041 struct vm_area_struct
*vma
, *gate_vma
;
2042 struct elfhdr
*elf
= NULL
;
2043 loff_t offset
= 0, dataoff
, foffset
;
2044 struct elf_note_info info
;
2045 struct elf_phdr
*phdr4note
= NULL
;
2046 struct elf_shdr
*shdr4extnum
= NULL
;
2051 * We no longer stop all VM operations.
2053 * This is because those proceses that could possibly change map_count
2054 * or the mmap / vma pages are now blocked in do_exit on current
2055 * finishing this core dump.
2057 * Only ptrace can touch these memory addresses, but it doesn't change
2058 * the map_count or the pages allocated. So no possibility of crashing
2059 * exists while dumping the mm->vm_next areas to the core file.
2062 /* alloc memory for large data structures: too large to be on stack */
2063 elf
= kmalloc(sizeof(*elf
), GFP_KERNEL
);
2067 * The number of segs are recored into ELF header as 16bit value.
2068 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here.
2070 segs
= current
->mm
->map_count
;
2071 segs
+= elf_core_extra_phdrs();
2073 gate_vma
= get_gate_vma(current
->mm
);
2074 if (gate_vma
!= NULL
)
2077 /* for notes section */
2080 /* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid
2081 * this, kernel supports extended numbering. Have a look at
2082 * include/linux/elf.h for further information. */
2083 e_phnum
= segs
> PN_XNUM
? PN_XNUM
: segs
;
2086 * Collect all the non-memory information about the process for the
2087 * notes. This also sets up the file header.
2089 if (!fill_note_info(elf
, e_phnum
, &info
, cprm
->siginfo
, cprm
->regs
))
2093 current
->flags
|= PF_DUMPCORE
;
2098 offset
+= sizeof(*elf
); /* Elf header */
2099 offset
+= segs
* sizeof(struct elf_phdr
); /* Program headers */
2102 /* Write notes phdr entry */
2104 size_t sz
= get_note_info_size(&info
);
2106 sz
+= elf_coredump_extra_notes_size();
2108 phdr4note
= kmalloc(sizeof(*phdr4note
), GFP_KERNEL
);
2112 fill_elf_note_phdr(phdr4note
, sz
, offset
);
2116 dataoff
= offset
= roundup(offset
, ELF_EXEC_PAGESIZE
);
2118 offset
+= elf_core_vma_data_size(gate_vma
, cprm
->mm_flags
);
2119 offset
+= elf_core_extra_data_size();
2122 if (e_phnum
== PN_XNUM
) {
2123 shdr4extnum
= kmalloc(sizeof(*shdr4extnum
), GFP_KERNEL
);
2126 fill_extnum_info(elf
, shdr4extnum
, e_shoff
, segs
);
2131 size
+= sizeof(*elf
);
2132 if (size
> cprm
->limit
|| !dump_write(cprm
->file
, elf
, sizeof(*elf
)))
2135 size
+= sizeof(*phdr4note
);
2136 if (size
> cprm
->limit
2137 || !dump_write(cprm
->file
, phdr4note
, sizeof(*phdr4note
)))
2140 /* Write program headers for segments dump */
2141 for (vma
= first_vma(current
, gate_vma
); vma
!= NULL
;
2142 vma
= next_vma(vma
, gate_vma
)) {
2143 struct elf_phdr phdr
;
2145 phdr
.p_type
= PT_LOAD
;
2146 phdr
.p_offset
= offset
;
2147 phdr
.p_vaddr
= vma
->vm_start
;
2149 phdr
.p_filesz
= vma_dump_size(vma
, cprm
->mm_flags
);
2150 phdr
.p_memsz
= vma
->vm_end
- vma
->vm_start
;
2151 offset
+= phdr
.p_filesz
;
2152 phdr
.p_flags
= vma
->vm_flags
& VM_READ
? PF_R
: 0;
2153 if (vma
->vm_flags
& VM_WRITE
)
2154 phdr
.p_flags
|= PF_W
;
2155 if (vma
->vm_flags
& VM_EXEC
)
2156 phdr
.p_flags
|= PF_X
;
2157 phdr
.p_align
= ELF_EXEC_PAGESIZE
;
2159 size
+= sizeof(phdr
);
2160 if (size
> cprm
->limit
2161 || !dump_write(cprm
->file
, &phdr
, sizeof(phdr
)))
2165 if (!elf_core_write_extra_phdrs(cprm
->file
, offset
, &size
, cprm
->limit
))
2168 /* write out the notes section */
2169 if (!write_note_info(&info
, cprm
->file
, &foffset
))
2172 if (elf_coredump_extra_notes_write(cprm
->file
, &foffset
))
2176 if (!dump_seek(cprm
->file
, dataoff
- foffset
))
2179 for (vma
= first_vma(current
, gate_vma
); vma
!= NULL
;
2180 vma
= next_vma(vma
, gate_vma
)) {
2184 end
= vma
->vm_start
+ vma_dump_size(vma
, cprm
->mm_flags
);
2186 for (addr
= vma
->vm_start
; addr
< end
; addr
+= PAGE_SIZE
) {
2190 page
= get_dump_page(addr
);
2192 void *kaddr
= kmap(page
);
2193 stop
= ((size
+= PAGE_SIZE
) > cprm
->limit
) ||
2194 !dump_write(cprm
->file
, kaddr
,
2197 page_cache_release(page
);
2199 stop
= !dump_seek(cprm
->file
, PAGE_SIZE
);
2205 if (!elf_core_write_extra_data(cprm
->file
, &size
, cprm
->limit
))
2208 if (e_phnum
== PN_XNUM
) {
2209 size
+= sizeof(*shdr4extnum
);
2210 if (size
> cprm
->limit
2211 || !dump_write(cprm
->file
, shdr4extnum
,
2212 sizeof(*shdr4extnum
)))
2220 free_note_info(&info
);
2228 #endif /* CONFIG_ELF_CORE */
2230 static int __init
init_elf_binfmt(void)
2232 register_binfmt(&elf_format
);
2236 static void __exit
exit_elf_binfmt(void)
2238 /* Remove the COFF and ELF loaders. */
2239 unregister_binfmt(&elf_format
);
2242 core_initcall(init_elf_binfmt
);
2243 module_exit(exit_elf_binfmt
);
2244 MODULE_LICENSE("GPL");