4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
10 * Notes on the allocation strategy:
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
45 * dcache->d_inode->i_lock protects:
46 * - i_dentry, d_alias, d_inode of aliases
47 * dcache_hash_bucket lock protects:
48 * - the dcache hash table
49 * s_anon bl list spinlock protects:
50 * - the s_anon list (see __d_drop)
51 * dcache_lru_lock protects:
52 * - the dcache lru lists and counters
59 * - d_parent and d_subdirs
60 * - childrens' d_child and d_parent
64 * dentry->d_inode->i_lock
67 * dcache_hash_bucket lock
70 * If there is an ancestor relationship:
71 * dentry->d_parent->...->d_parent->d_lock
73 * dentry->d_parent->d_lock
76 * If no ancestor relationship:
77 * if (dentry1 < dentry2)
81 int sysctl_vfs_cache_pressure __read_mostly
= 100;
82 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure
);
84 static __cacheline_aligned_in_smp
DEFINE_SPINLOCK(dcache_lru_lock
);
85 __cacheline_aligned_in_smp
DEFINE_SEQLOCK(rename_lock
);
87 EXPORT_SYMBOL(rename_lock
);
89 static struct kmem_cache
*dentry_cache __read_mostly
;
92 * This is the single most critical data structure when it comes
93 * to the dcache: the hashtable for lookups. Somebody should try
94 * to make this good - I've just made it work.
96 * This hash-function tries to avoid losing too many bits of hash
97 * information, yet avoid using a prime hash-size or similar.
99 #define D_HASHBITS d_hash_shift
100 #define D_HASHMASK d_hash_mask
102 static unsigned int d_hash_mask __read_mostly
;
103 static unsigned int d_hash_shift __read_mostly
;
105 static struct hlist_bl_head
*dentry_hashtable __read_mostly
;
107 static inline struct hlist_bl_head
*d_hash(const struct dentry
*parent
,
110 hash
+= (unsigned long) parent
/ L1_CACHE_BYTES
;
111 hash
= hash
+ (hash
>> D_HASHBITS
);
112 return dentry_hashtable
+ (hash
& D_HASHMASK
);
115 /* Statistics gathering. */
116 struct dentry_stat_t dentry_stat
= {
120 static DEFINE_PER_CPU(unsigned int, nr_dentry
);
122 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
123 static int get_nr_dentry(void)
127 for_each_possible_cpu(i
)
128 sum
+= per_cpu(nr_dentry
, i
);
129 return sum
< 0 ? 0 : sum
;
132 int proc_nr_dentry(ctl_table
*table
, int write
, void __user
*buffer
,
133 size_t *lenp
, loff_t
*ppos
)
135 dentry_stat
.nr_dentry
= get_nr_dentry();
136 return proc_dointvec(table
, write
, buffer
, lenp
, ppos
);
141 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
142 * The strings are both count bytes long, and count is non-zero.
144 #ifdef CONFIG_DCACHE_WORD_ACCESS
146 #include <asm/word-at-a-time.h>
148 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
149 * aligned allocation for this particular component. We don't
150 * strictly need the load_unaligned_zeropad() safety, but it
151 * doesn't hurt either.
153 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
154 * need the careful unaligned handling.
156 static inline int dentry_string_cmp(const unsigned char *cs
, const unsigned char *ct
, unsigned tcount
)
158 unsigned long a
,b
,mask
;
161 a
= *(unsigned long *)cs
;
162 b
= load_unaligned_zeropad(ct
);
163 if (tcount
< sizeof(unsigned long))
165 if (unlikely(a
!= b
))
167 cs
+= sizeof(unsigned long);
168 ct
+= sizeof(unsigned long);
169 tcount
-= sizeof(unsigned long);
173 mask
= ~(~0ul << tcount
*8);
174 return unlikely(!!((a
^ b
) & mask
));
179 static inline int dentry_string_cmp(const unsigned char *cs
, const unsigned char *ct
, unsigned tcount
)
193 static inline int dentry_cmp(const struct dentry
*dentry
, const unsigned char *ct
, unsigned tcount
)
195 const unsigned char *cs
;
197 * Be careful about RCU walk racing with rename:
198 * use ACCESS_ONCE to fetch the name pointer.
200 * NOTE! Even if a rename will mean that the length
201 * was not loaded atomically, we don't care. The
202 * RCU walk will check the sequence count eventually,
203 * and catch it. And we won't overrun the buffer,
204 * because we're reading the name pointer atomically,
205 * and a dentry name is guaranteed to be properly
206 * terminated with a NUL byte.
208 * End result: even if 'len' is wrong, we'll exit
209 * early because the data cannot match (there can
210 * be no NUL in the ct/tcount data)
212 cs
= ACCESS_ONCE(dentry
->d_name
.name
);
213 smp_read_barrier_depends();
214 return dentry_string_cmp(cs
, ct
, tcount
);
217 static void __d_free(struct rcu_head
*head
)
219 struct dentry
*dentry
= container_of(head
, struct dentry
, d_u
.d_rcu
);
221 WARN_ON(!hlist_unhashed(&dentry
->d_alias
));
222 if (dname_external(dentry
))
223 kfree(dentry
->d_name
.name
);
224 kmem_cache_free(dentry_cache
, dentry
);
230 static void d_free(struct dentry
*dentry
)
232 BUG_ON(dentry
->d_lockref
.count
);
233 this_cpu_dec(nr_dentry
);
234 if (dentry
->d_op
&& dentry
->d_op
->d_release
)
235 dentry
->d_op
->d_release(dentry
);
237 /* if dentry was never visible to RCU, immediate free is OK */
238 if (!(dentry
->d_flags
& DCACHE_RCUACCESS
))
239 __d_free(&dentry
->d_u
.d_rcu
);
241 call_rcu(&dentry
->d_u
.d_rcu
, __d_free
);
245 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
246 * @dentry: the target dentry
247 * After this call, in-progress rcu-walk path lookup will fail. This
248 * should be called after unhashing, and after changing d_inode (if
249 * the dentry has not already been unhashed).
251 static inline void dentry_rcuwalk_barrier(struct dentry
*dentry
)
253 assert_spin_locked(&dentry
->d_lock
);
254 /* Go through a barrier */
255 write_seqcount_barrier(&dentry
->d_seq
);
259 * Release the dentry's inode, using the filesystem
260 * d_iput() operation if defined. Dentry has no refcount
263 static void dentry_iput(struct dentry
* dentry
)
264 __releases(dentry
->d_lock
)
265 __releases(dentry
->d_inode
->i_lock
)
267 struct inode
*inode
= dentry
->d_inode
;
269 dentry
->d_inode
= NULL
;
270 hlist_del_init(&dentry
->d_alias
);
271 spin_unlock(&dentry
->d_lock
);
272 spin_unlock(&inode
->i_lock
);
274 fsnotify_inoderemove(inode
);
275 if (dentry
->d_op
&& dentry
->d_op
->d_iput
)
276 dentry
->d_op
->d_iput(dentry
, inode
);
280 spin_unlock(&dentry
->d_lock
);
285 * Release the dentry's inode, using the filesystem
286 * d_iput() operation if defined. dentry remains in-use.
288 static void dentry_unlink_inode(struct dentry
* dentry
)
289 __releases(dentry
->d_lock
)
290 __releases(dentry
->d_inode
->i_lock
)
292 struct inode
*inode
= dentry
->d_inode
;
293 dentry
->d_inode
= NULL
;
294 hlist_del_init(&dentry
->d_alias
);
295 dentry_rcuwalk_barrier(dentry
);
296 spin_unlock(&dentry
->d_lock
);
297 spin_unlock(&inode
->i_lock
);
299 fsnotify_inoderemove(inode
);
300 if (dentry
->d_op
&& dentry
->d_op
->d_iput
)
301 dentry
->d_op
->d_iput(dentry
, inode
);
307 * dentry_lru_(add|del|prune|move_tail) must be called with d_lock held.
309 static void dentry_lru_add(struct dentry
*dentry
)
311 if (list_empty(&dentry
->d_lru
)) {
312 spin_lock(&dcache_lru_lock
);
313 list_add(&dentry
->d_lru
, &dentry
->d_sb
->s_dentry_lru
);
314 dentry
->d_sb
->s_nr_dentry_unused
++;
315 dentry_stat
.nr_unused
++;
316 spin_unlock(&dcache_lru_lock
);
320 static void __dentry_lru_del(struct dentry
*dentry
)
322 list_del_init(&dentry
->d_lru
);
323 dentry
->d_flags
&= ~DCACHE_SHRINK_LIST
;
324 dentry
->d_sb
->s_nr_dentry_unused
--;
325 dentry_stat
.nr_unused
--;
329 * Remove a dentry with references from the LRU.
331 static void dentry_lru_del(struct dentry
*dentry
)
333 if (!list_empty(&dentry
->d_lru
)) {
334 spin_lock(&dcache_lru_lock
);
335 __dentry_lru_del(dentry
);
336 spin_unlock(&dcache_lru_lock
);
340 static void dentry_lru_move_list(struct dentry
*dentry
, struct list_head
*list
)
342 spin_lock(&dcache_lru_lock
);
343 if (list_empty(&dentry
->d_lru
)) {
344 list_add_tail(&dentry
->d_lru
, list
);
345 dentry
->d_sb
->s_nr_dentry_unused
++;
346 dentry_stat
.nr_unused
++;
348 list_move_tail(&dentry
->d_lru
, list
);
350 spin_unlock(&dcache_lru_lock
);
354 * d_kill - kill dentry and return parent
355 * @dentry: dentry to kill
356 * @parent: parent dentry
358 * The dentry must already be unhashed and removed from the LRU.
360 * If this is the root of the dentry tree, return NULL.
362 * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
365 static struct dentry
*d_kill(struct dentry
*dentry
, struct dentry
*parent
)
366 __releases(dentry
->d_lock
)
367 __releases(parent
->d_lock
)
368 __releases(dentry
->d_inode
->i_lock
)
370 list_del(&dentry
->d_u
.d_child
);
372 * Inform try_to_ascend() that we are no longer attached to the
375 dentry
->d_flags
|= DCACHE_DENTRY_KILLED
;
377 spin_unlock(&parent
->d_lock
);
380 * dentry_iput drops the locks, at which point nobody (except
381 * transient RCU lookups) can reach this dentry.
388 * Unhash a dentry without inserting an RCU walk barrier or checking that
389 * dentry->d_lock is locked. The caller must take care of that, if
392 static void __d_shrink(struct dentry
*dentry
)
394 if (!d_unhashed(dentry
)) {
395 struct hlist_bl_head
*b
;
396 if (unlikely(dentry
->d_flags
& DCACHE_DISCONNECTED
))
397 b
= &dentry
->d_sb
->s_anon
;
399 b
= d_hash(dentry
->d_parent
, dentry
->d_name
.hash
);
402 __hlist_bl_del(&dentry
->d_hash
);
403 dentry
->d_hash
.pprev
= NULL
;
409 * d_drop - drop a dentry
410 * @dentry: dentry to drop
412 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
413 * be found through a VFS lookup any more. Note that this is different from
414 * deleting the dentry - d_delete will try to mark the dentry negative if
415 * possible, giving a successful _negative_ lookup, while d_drop will
416 * just make the cache lookup fail.
418 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
419 * reason (NFS timeouts or autofs deletes).
421 * __d_drop requires dentry->d_lock.
423 void __d_drop(struct dentry
*dentry
)
425 if (!d_unhashed(dentry
)) {
427 dentry_rcuwalk_barrier(dentry
);
430 EXPORT_SYMBOL(__d_drop
);
432 void d_drop(struct dentry
*dentry
)
434 spin_lock(&dentry
->d_lock
);
436 spin_unlock(&dentry
->d_lock
);
438 EXPORT_SYMBOL(d_drop
);
441 * Finish off a dentry we've decided to kill.
442 * dentry->d_lock must be held, returns with it unlocked.
443 * If ref is non-zero, then decrement the refcount too.
444 * Returns dentry requiring refcount drop, or NULL if we're done.
446 static inline struct dentry
*dentry_kill(struct dentry
*dentry
, int ref
)
447 __releases(dentry
->d_lock
)
450 struct dentry
*parent
;
452 inode
= dentry
->d_inode
;
453 if (inode
&& !spin_trylock(&inode
->i_lock
)) {
455 spin_unlock(&dentry
->d_lock
);
457 return dentry
; /* try again with same dentry */
462 parent
= dentry
->d_parent
;
463 if (parent
&& !spin_trylock(&parent
->d_lock
)) {
465 spin_unlock(&inode
->i_lock
);
470 dentry
->d_lockref
.count
--;
472 * inform the fs via d_prune that this dentry is about to be
473 * unhashed and destroyed.
475 if ((dentry
->d_flags
& DCACHE_OP_PRUNE
) && !d_unhashed(dentry
))
476 dentry
->d_op
->d_prune(dentry
);
478 dentry_lru_del(dentry
);
479 /* if it was on the hash then remove it */
481 return d_kill(dentry
, parent
);
487 * This is complicated by the fact that we do not want to put
488 * dentries that are no longer on any hash chain on the unused
489 * list: we'd much rather just get rid of them immediately.
491 * However, that implies that we have to traverse the dentry
492 * tree upwards to the parents which might _also_ now be
493 * scheduled for deletion (it may have been only waiting for
494 * its last child to go away).
496 * This tail recursion is done by hand as we don't want to depend
497 * on the compiler to always get this right (gcc generally doesn't).
498 * Real recursion would eat up our stack space.
502 * dput - release a dentry
503 * @dentry: dentry to release
505 * Release a dentry. This will drop the usage count and if appropriate
506 * call the dentry unlink method as well as removing it from the queues and
507 * releasing its resources. If the parent dentries were scheduled for release
508 * they too may now get deleted.
510 void dput(struct dentry
*dentry
)
516 if (dentry
->d_lockref
.count
== 1)
518 if (lockref_put_or_lock(&dentry
->d_lockref
))
521 if (dentry
->d_flags
& DCACHE_OP_DELETE
) {
522 if (dentry
->d_op
->d_delete(dentry
))
526 /* Unreachable? Get rid of it */
527 if (d_unhashed(dentry
))
530 dentry
->d_flags
|= DCACHE_REFERENCED
;
531 dentry_lru_add(dentry
);
533 dentry
->d_lockref
.count
--;
534 spin_unlock(&dentry
->d_lock
);
538 dentry
= dentry_kill(dentry
, 1);
545 * d_invalidate - invalidate a dentry
546 * @dentry: dentry to invalidate
548 * Try to invalidate the dentry if it turns out to be
549 * possible. If there are other dentries that can be
550 * reached through this one we can't delete it and we
551 * return -EBUSY. On success we return 0.
556 int d_invalidate(struct dentry
* dentry
)
559 * If it's already been dropped, return OK.
561 spin_lock(&dentry
->d_lock
);
562 if (d_unhashed(dentry
)) {
563 spin_unlock(&dentry
->d_lock
);
567 * Check whether to do a partial shrink_dcache
568 * to get rid of unused child entries.
570 if (!list_empty(&dentry
->d_subdirs
)) {
571 spin_unlock(&dentry
->d_lock
);
572 shrink_dcache_parent(dentry
);
573 spin_lock(&dentry
->d_lock
);
577 * Somebody else still using it?
579 * If it's a directory, we can't drop it
580 * for fear of somebody re-populating it
581 * with children (even though dropping it
582 * would make it unreachable from the root,
583 * we might still populate it if it was a
584 * working directory or similar).
585 * We also need to leave mountpoints alone,
588 if (dentry
->d_lockref
.count
> 1 && dentry
->d_inode
) {
589 if (S_ISDIR(dentry
->d_inode
->i_mode
) || d_mountpoint(dentry
)) {
590 spin_unlock(&dentry
->d_lock
);
596 spin_unlock(&dentry
->d_lock
);
599 EXPORT_SYMBOL(d_invalidate
);
601 /* This must be called with d_lock held */
602 static inline void __dget_dlock(struct dentry
*dentry
)
604 dentry
->d_lockref
.count
++;
607 static inline void __dget(struct dentry
*dentry
)
609 lockref_get(&dentry
->d_lockref
);
612 struct dentry
*dget_parent(struct dentry
*dentry
)
618 * Do optimistic parent lookup without any
622 ret
= ACCESS_ONCE(dentry
->d_parent
);
623 gotref
= lockref_get_not_zero(&ret
->d_lockref
);
625 if (likely(gotref
)) {
626 if (likely(ret
== ACCESS_ONCE(dentry
->d_parent
)))
633 * Don't need rcu_dereference because we re-check it was correct under
637 ret
= dentry
->d_parent
;
638 spin_lock(&ret
->d_lock
);
639 if (unlikely(ret
!= dentry
->d_parent
)) {
640 spin_unlock(&ret
->d_lock
);
645 BUG_ON(!ret
->d_lockref
.count
);
646 ret
->d_lockref
.count
++;
647 spin_unlock(&ret
->d_lock
);
650 EXPORT_SYMBOL(dget_parent
);
653 * d_find_alias - grab a hashed alias of inode
654 * @inode: inode in question
655 * @want_discon: flag, used by d_splice_alias, to request
656 * that only a DISCONNECTED alias be returned.
658 * If inode has a hashed alias, or is a directory and has any alias,
659 * acquire the reference to alias and return it. Otherwise return NULL.
660 * Notice that if inode is a directory there can be only one alias and
661 * it can be unhashed only if it has no children, or if it is the root
664 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
665 * any other hashed alias over that one unless @want_discon is set,
666 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
668 static struct dentry
*__d_find_alias(struct inode
*inode
, int want_discon
)
670 struct dentry
*alias
, *discon_alias
;
674 hlist_for_each_entry(alias
, &inode
->i_dentry
, d_alias
) {
675 spin_lock(&alias
->d_lock
);
676 if (S_ISDIR(inode
->i_mode
) || !d_unhashed(alias
)) {
677 if (IS_ROOT(alias
) &&
678 (alias
->d_flags
& DCACHE_DISCONNECTED
)) {
679 discon_alias
= alias
;
680 } else if (!want_discon
) {
682 spin_unlock(&alias
->d_lock
);
686 spin_unlock(&alias
->d_lock
);
689 alias
= discon_alias
;
690 spin_lock(&alias
->d_lock
);
691 if (S_ISDIR(inode
->i_mode
) || !d_unhashed(alias
)) {
692 if (IS_ROOT(alias
) &&
693 (alias
->d_flags
& DCACHE_DISCONNECTED
)) {
695 spin_unlock(&alias
->d_lock
);
699 spin_unlock(&alias
->d_lock
);
705 struct dentry
*d_find_alias(struct inode
*inode
)
707 struct dentry
*de
= NULL
;
709 if (!hlist_empty(&inode
->i_dentry
)) {
710 spin_lock(&inode
->i_lock
);
711 de
= __d_find_alias(inode
, 0);
712 spin_unlock(&inode
->i_lock
);
716 EXPORT_SYMBOL(d_find_alias
);
719 * Try to kill dentries associated with this inode.
720 * WARNING: you must own a reference to inode.
722 void d_prune_aliases(struct inode
*inode
)
724 struct dentry
*dentry
;
726 spin_lock(&inode
->i_lock
);
727 hlist_for_each_entry(dentry
, &inode
->i_dentry
, d_alias
) {
728 spin_lock(&dentry
->d_lock
);
729 if (!dentry
->d_lockref
.count
) {
731 * inform the fs via d_prune that this dentry
732 * is about to be unhashed and destroyed.
734 if ((dentry
->d_flags
& DCACHE_OP_PRUNE
) &&
736 dentry
->d_op
->d_prune(dentry
);
738 __dget_dlock(dentry
);
740 spin_unlock(&dentry
->d_lock
);
741 spin_unlock(&inode
->i_lock
);
745 spin_unlock(&dentry
->d_lock
);
747 spin_unlock(&inode
->i_lock
);
749 EXPORT_SYMBOL(d_prune_aliases
);
752 * Try to throw away a dentry - free the inode, dput the parent.
753 * Requires dentry->d_lock is held, and dentry->d_count == 0.
754 * Releases dentry->d_lock.
756 * This may fail if locks cannot be acquired no problem, just try again.
758 static void try_prune_one_dentry(struct dentry
*dentry
)
759 __releases(dentry
->d_lock
)
761 struct dentry
*parent
;
763 parent
= dentry_kill(dentry
, 0);
765 * If dentry_kill returns NULL, we have nothing more to do.
766 * if it returns the same dentry, trylocks failed. In either
767 * case, just loop again.
769 * Otherwise, we need to prune ancestors too. This is necessary
770 * to prevent quadratic behavior of shrink_dcache_parent(), but
771 * is also expected to be beneficial in reducing dentry cache
776 if (parent
== dentry
)
779 /* Prune ancestors. */
782 if (lockref_put_or_lock(&dentry
->d_lockref
))
784 dentry
= dentry_kill(dentry
, 1);
788 static void shrink_dentry_list(struct list_head
*list
)
790 struct dentry
*dentry
;
794 dentry
= list_entry_rcu(list
->prev
, struct dentry
, d_lru
);
795 if (&dentry
->d_lru
== list
)
797 spin_lock(&dentry
->d_lock
);
798 if (dentry
!= list_entry(list
->prev
, struct dentry
, d_lru
)) {
799 spin_unlock(&dentry
->d_lock
);
804 * We found an inuse dentry which was not removed from
805 * the LRU because of laziness during lookup. Do not free
806 * it - just keep it off the LRU list.
808 if (dentry
->d_lockref
.count
) {
809 dentry_lru_del(dentry
);
810 spin_unlock(&dentry
->d_lock
);
816 try_prune_one_dentry(dentry
);
824 * prune_dcache_sb - shrink the dcache
826 * @count: number of entries to try to free
828 * Attempt to shrink the superblock dcache LRU by @count entries. This is
829 * done when we need more memory an called from the superblock shrinker
832 * This function may fail to free any resources if all the dentries are in
835 void prune_dcache_sb(struct super_block
*sb
, int count
)
837 struct dentry
*dentry
;
838 LIST_HEAD(referenced
);
842 spin_lock(&dcache_lru_lock
);
843 while (!list_empty(&sb
->s_dentry_lru
)) {
844 dentry
= list_entry(sb
->s_dentry_lru
.prev
,
845 struct dentry
, d_lru
);
846 BUG_ON(dentry
->d_sb
!= sb
);
848 if (!spin_trylock(&dentry
->d_lock
)) {
849 spin_unlock(&dcache_lru_lock
);
854 if (dentry
->d_flags
& DCACHE_REFERENCED
) {
855 dentry
->d_flags
&= ~DCACHE_REFERENCED
;
856 list_move(&dentry
->d_lru
, &referenced
);
857 spin_unlock(&dentry
->d_lock
);
859 list_move_tail(&dentry
->d_lru
, &tmp
);
860 dentry
->d_flags
|= DCACHE_SHRINK_LIST
;
861 spin_unlock(&dentry
->d_lock
);
865 cond_resched_lock(&dcache_lru_lock
);
867 if (!list_empty(&referenced
))
868 list_splice(&referenced
, &sb
->s_dentry_lru
);
869 spin_unlock(&dcache_lru_lock
);
871 shrink_dentry_list(&tmp
);
875 * shrink_dcache_sb - shrink dcache for a superblock
878 * Shrink the dcache for the specified super block. This is used to free
879 * the dcache before unmounting a file system.
881 void shrink_dcache_sb(struct super_block
*sb
)
885 spin_lock(&dcache_lru_lock
);
886 while (!list_empty(&sb
->s_dentry_lru
)) {
887 list_splice_init(&sb
->s_dentry_lru
, &tmp
);
888 spin_unlock(&dcache_lru_lock
);
889 shrink_dentry_list(&tmp
);
890 spin_lock(&dcache_lru_lock
);
892 spin_unlock(&dcache_lru_lock
);
894 EXPORT_SYMBOL(shrink_dcache_sb
);
897 * destroy a single subtree of dentries for unmount
898 * - see the comments on shrink_dcache_for_umount() for a description of the
901 static void shrink_dcache_for_umount_subtree(struct dentry
*dentry
)
903 struct dentry
*parent
;
905 BUG_ON(!IS_ROOT(dentry
));
908 /* descend to the first leaf in the current subtree */
909 while (!list_empty(&dentry
->d_subdirs
))
910 dentry
= list_entry(dentry
->d_subdirs
.next
,
911 struct dentry
, d_u
.d_child
);
913 /* consume the dentries from this leaf up through its parents
914 * until we find one with children or run out altogether */
919 * inform the fs that this dentry is about to be
920 * unhashed and destroyed.
922 if ((dentry
->d_flags
& DCACHE_OP_PRUNE
) &&
924 dentry
->d_op
->d_prune(dentry
);
926 dentry_lru_del(dentry
);
929 if (dentry
->d_lockref
.count
!= 0) {
931 "BUG: Dentry %p{i=%lx,n=%s}"
933 " [unmount of %s %s]\n",
936 dentry
->d_inode
->i_ino
: 0UL,
938 dentry
->d_lockref
.count
,
939 dentry
->d_sb
->s_type
->name
,
944 if (IS_ROOT(dentry
)) {
946 list_del(&dentry
->d_u
.d_child
);
948 parent
= dentry
->d_parent
;
949 parent
->d_lockref
.count
--;
950 list_del(&dentry
->d_u
.d_child
);
953 inode
= dentry
->d_inode
;
955 dentry
->d_inode
= NULL
;
956 hlist_del_init(&dentry
->d_alias
);
957 if (dentry
->d_op
&& dentry
->d_op
->d_iput
)
958 dentry
->d_op
->d_iput(dentry
, inode
);
965 /* finished when we fall off the top of the tree,
966 * otherwise we ascend to the parent and move to the
967 * next sibling if there is one */
971 } while (list_empty(&dentry
->d_subdirs
));
973 dentry
= list_entry(dentry
->d_subdirs
.next
,
974 struct dentry
, d_u
.d_child
);
979 * destroy the dentries attached to a superblock on unmounting
980 * - we don't need to use dentry->d_lock because:
981 * - the superblock is detached from all mountings and open files, so the
982 * dentry trees will not be rearranged by the VFS
983 * - s_umount is write-locked, so the memory pressure shrinker will ignore
984 * any dentries belonging to this superblock that it comes across
985 * - the filesystem itself is no longer permitted to rearrange the dentries
988 void shrink_dcache_for_umount(struct super_block
*sb
)
990 struct dentry
*dentry
;
992 if (down_read_trylock(&sb
->s_umount
))
997 dentry
->d_lockref
.count
--;
998 shrink_dcache_for_umount_subtree(dentry
);
1000 while (!hlist_bl_empty(&sb
->s_anon
)) {
1001 dentry
= hlist_bl_entry(hlist_bl_first(&sb
->s_anon
), struct dentry
, d_hash
);
1002 shrink_dcache_for_umount_subtree(dentry
);
1007 * This tries to ascend one level of parenthood, but
1008 * we can race with renaming, so we need to re-check
1009 * the parenthood after dropping the lock and check
1010 * that the sequence number still matches.
1012 static struct dentry
*try_to_ascend(struct dentry
*old
, int locked
, unsigned seq
)
1014 struct dentry
*new = old
->d_parent
;
1017 spin_unlock(&old
->d_lock
);
1018 spin_lock(&new->d_lock
);
1021 * might go back up the wrong parent if we have had a rename
1024 if (new != old
->d_parent
||
1025 (old
->d_flags
& DCACHE_DENTRY_KILLED
) ||
1026 (!locked
&& read_seqretry(&rename_lock
, seq
))) {
1027 spin_unlock(&new->d_lock
);
1036 * Search for at least 1 mount point in the dentry's subdirs.
1037 * We descend to the next level whenever the d_subdirs
1038 * list is non-empty and continue searching.
1042 * have_submounts - check for mounts over a dentry
1043 * @parent: dentry to check.
1045 * Return true if the parent or its subdirectories contain
1048 int have_submounts(struct dentry
*parent
)
1050 struct dentry
*this_parent
;
1051 struct list_head
*next
;
1055 seq
= read_seqbegin(&rename_lock
);
1057 this_parent
= parent
;
1059 if (d_mountpoint(parent
))
1061 spin_lock(&this_parent
->d_lock
);
1063 next
= this_parent
->d_subdirs
.next
;
1065 while (next
!= &this_parent
->d_subdirs
) {
1066 struct list_head
*tmp
= next
;
1067 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_u
.d_child
);
1070 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
1071 /* Have we found a mount point ? */
1072 if (d_mountpoint(dentry
)) {
1073 spin_unlock(&dentry
->d_lock
);
1074 spin_unlock(&this_parent
->d_lock
);
1077 if (!list_empty(&dentry
->d_subdirs
)) {
1078 spin_unlock(&this_parent
->d_lock
);
1079 spin_release(&dentry
->d_lock
.dep_map
, 1, _RET_IP_
);
1080 this_parent
= dentry
;
1081 spin_acquire(&this_parent
->d_lock
.dep_map
, 0, 1, _RET_IP_
);
1084 spin_unlock(&dentry
->d_lock
);
1087 * All done at this level ... ascend and resume the search.
1089 if (this_parent
!= parent
) {
1090 struct dentry
*child
= this_parent
;
1091 this_parent
= try_to_ascend(this_parent
, locked
, seq
);
1094 next
= child
->d_u
.d_child
.next
;
1097 spin_unlock(&this_parent
->d_lock
);
1098 if (!locked
&& read_seqretry(&rename_lock
, seq
))
1101 write_sequnlock(&rename_lock
);
1102 return 0; /* No mount points found in tree */
1104 if (!locked
&& read_seqretry(&rename_lock
, seq
))
1107 write_sequnlock(&rename_lock
);
1114 write_seqlock(&rename_lock
);
1117 EXPORT_SYMBOL(have_submounts
);
1120 * Search the dentry child list of the specified parent,
1121 * and move any unused dentries to the end of the unused
1122 * list for prune_dcache(). We descend to the next level
1123 * whenever the d_subdirs list is non-empty and continue
1126 * It returns zero iff there are no unused children,
1127 * otherwise it returns the number of children moved to
1128 * the end of the unused list. This may not be the total
1129 * number of unused children, because select_parent can
1130 * drop the lock and return early due to latency
1133 static int select_parent(struct dentry
*parent
, struct list_head
*dispose
)
1135 struct dentry
*this_parent
;
1136 struct list_head
*next
;
1141 seq
= read_seqbegin(&rename_lock
);
1143 this_parent
= parent
;
1144 spin_lock(&this_parent
->d_lock
);
1146 next
= this_parent
->d_subdirs
.next
;
1148 while (next
!= &this_parent
->d_subdirs
) {
1149 struct list_head
*tmp
= next
;
1150 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_u
.d_child
);
1153 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
1156 * move only zero ref count dentries to the dispose list.
1158 * Those which are presently on the shrink list, being processed
1159 * by shrink_dentry_list(), shouldn't be moved. Otherwise the
1160 * loop in shrink_dcache_parent() might not make any progress
1163 if (dentry
->d_lockref
.count
) {
1164 dentry_lru_del(dentry
);
1165 } else if (!(dentry
->d_flags
& DCACHE_SHRINK_LIST
)) {
1166 dentry_lru_move_list(dentry
, dispose
);
1167 dentry
->d_flags
|= DCACHE_SHRINK_LIST
;
1171 * We can return to the caller if we have found some (this
1172 * ensures forward progress). We'll be coming back to find
1175 if (found
&& need_resched()) {
1176 spin_unlock(&dentry
->d_lock
);
1181 * Descend a level if the d_subdirs list is non-empty.
1183 if (!list_empty(&dentry
->d_subdirs
)) {
1184 spin_unlock(&this_parent
->d_lock
);
1185 spin_release(&dentry
->d_lock
.dep_map
, 1, _RET_IP_
);
1186 this_parent
= dentry
;
1187 spin_acquire(&this_parent
->d_lock
.dep_map
, 0, 1, _RET_IP_
);
1191 spin_unlock(&dentry
->d_lock
);
1194 * All done at this level ... ascend and resume the search.
1196 if (this_parent
!= parent
) {
1197 struct dentry
*child
= this_parent
;
1198 this_parent
= try_to_ascend(this_parent
, locked
, seq
);
1201 next
= child
->d_u
.d_child
.next
;
1205 spin_unlock(&this_parent
->d_lock
);
1206 if (!locked
&& read_seqretry(&rename_lock
, seq
))
1209 write_sequnlock(&rename_lock
);
1218 write_seqlock(&rename_lock
);
1223 * shrink_dcache_parent - prune dcache
1224 * @parent: parent of entries to prune
1226 * Prune the dcache to remove unused children of the parent dentry.
1228 void shrink_dcache_parent(struct dentry
* parent
)
1233 while ((found
= select_parent(parent
, &dispose
)) != 0) {
1234 shrink_dentry_list(&dispose
);
1238 EXPORT_SYMBOL(shrink_dcache_parent
);
1241 * __d_alloc - allocate a dcache entry
1242 * @sb: filesystem it will belong to
1243 * @name: qstr of the name
1245 * Allocates a dentry. It returns %NULL if there is insufficient memory
1246 * available. On a success the dentry is returned. The name passed in is
1247 * copied and the copy passed in may be reused after this call.
1250 struct dentry
*__d_alloc(struct super_block
*sb
, const struct qstr
*name
)
1252 struct dentry
*dentry
;
1255 dentry
= kmem_cache_alloc(dentry_cache
, GFP_KERNEL
);
1260 * We guarantee that the inline name is always NUL-terminated.
1261 * This way the memcpy() done by the name switching in rename
1262 * will still always have a NUL at the end, even if we might
1263 * be overwriting an internal NUL character
1265 dentry
->d_iname
[DNAME_INLINE_LEN
-1] = 0;
1266 if (name
->len
> DNAME_INLINE_LEN
-1) {
1267 dname
= kmalloc(name
->len
+ 1, GFP_KERNEL
);
1269 kmem_cache_free(dentry_cache
, dentry
);
1273 dname
= dentry
->d_iname
;
1276 dentry
->d_name
.len
= name
->len
;
1277 dentry
->d_name
.hash
= name
->hash
;
1278 memcpy(dname
, name
->name
, name
->len
);
1279 dname
[name
->len
] = 0;
1281 /* Make sure we always see the terminating NUL character */
1283 dentry
->d_name
.name
= dname
;
1285 dentry
->d_lockref
.count
= 1;
1286 dentry
->d_flags
= 0;
1287 spin_lock_init(&dentry
->d_lock
);
1288 seqcount_init(&dentry
->d_seq
);
1289 dentry
->d_inode
= NULL
;
1290 dentry
->d_parent
= dentry
;
1292 dentry
->d_op
= NULL
;
1293 dentry
->d_fsdata
= NULL
;
1294 INIT_HLIST_BL_NODE(&dentry
->d_hash
);
1295 INIT_LIST_HEAD(&dentry
->d_lru
);
1296 INIT_LIST_HEAD(&dentry
->d_subdirs
);
1297 INIT_HLIST_NODE(&dentry
->d_alias
);
1298 INIT_LIST_HEAD(&dentry
->d_u
.d_child
);
1299 d_set_d_op(dentry
, dentry
->d_sb
->s_d_op
);
1301 this_cpu_inc(nr_dentry
);
1307 * d_alloc - allocate a dcache entry
1308 * @parent: parent of entry to allocate
1309 * @name: qstr of the name
1311 * Allocates a dentry. It returns %NULL if there is insufficient memory
1312 * available. On a success the dentry is returned. The name passed in is
1313 * copied and the copy passed in may be reused after this call.
1315 struct dentry
*d_alloc(struct dentry
* parent
, const struct qstr
*name
)
1317 struct dentry
*dentry
= __d_alloc(parent
->d_sb
, name
);
1321 spin_lock(&parent
->d_lock
);
1323 * don't need child lock because it is not subject
1324 * to concurrency here
1326 __dget_dlock(parent
);
1327 dentry
->d_parent
= parent
;
1328 list_add(&dentry
->d_u
.d_child
, &parent
->d_subdirs
);
1329 spin_unlock(&parent
->d_lock
);
1333 EXPORT_SYMBOL(d_alloc
);
1335 struct dentry
*d_alloc_pseudo(struct super_block
*sb
, const struct qstr
*name
)
1337 struct dentry
*dentry
= __d_alloc(sb
, name
);
1339 dentry
->d_flags
|= DCACHE_DISCONNECTED
;
1342 EXPORT_SYMBOL(d_alloc_pseudo
);
1344 struct dentry
*d_alloc_name(struct dentry
*parent
, const char *name
)
1349 q
.len
= strlen(name
);
1350 q
.hash
= full_name_hash(q
.name
, q
.len
);
1351 return d_alloc(parent
, &q
);
1353 EXPORT_SYMBOL(d_alloc_name
);
1355 void d_set_d_op(struct dentry
*dentry
, const struct dentry_operations
*op
)
1357 WARN_ON_ONCE(dentry
->d_op
);
1358 WARN_ON_ONCE(dentry
->d_flags
& (DCACHE_OP_HASH
|
1360 DCACHE_OP_REVALIDATE
|
1361 DCACHE_OP_WEAK_REVALIDATE
|
1362 DCACHE_OP_DELETE
));
1367 dentry
->d_flags
|= DCACHE_OP_HASH
;
1369 dentry
->d_flags
|= DCACHE_OP_COMPARE
;
1370 if (op
->d_revalidate
)
1371 dentry
->d_flags
|= DCACHE_OP_REVALIDATE
;
1372 if (op
->d_weak_revalidate
)
1373 dentry
->d_flags
|= DCACHE_OP_WEAK_REVALIDATE
;
1375 dentry
->d_flags
|= DCACHE_OP_DELETE
;
1377 dentry
->d_flags
|= DCACHE_OP_PRUNE
;
1380 EXPORT_SYMBOL(d_set_d_op
);
1382 static void __d_instantiate(struct dentry
*dentry
, struct inode
*inode
)
1384 spin_lock(&dentry
->d_lock
);
1386 if (unlikely(IS_AUTOMOUNT(inode
)))
1387 dentry
->d_flags
|= DCACHE_NEED_AUTOMOUNT
;
1388 hlist_add_head(&dentry
->d_alias
, &inode
->i_dentry
);
1390 dentry
->d_inode
= inode
;
1391 dentry_rcuwalk_barrier(dentry
);
1392 spin_unlock(&dentry
->d_lock
);
1393 fsnotify_d_instantiate(dentry
, inode
);
1397 * d_instantiate - fill in inode information for a dentry
1398 * @entry: dentry to complete
1399 * @inode: inode to attach to this dentry
1401 * Fill in inode information in the entry.
1403 * This turns negative dentries into productive full members
1406 * NOTE! This assumes that the inode count has been incremented
1407 * (or otherwise set) by the caller to indicate that it is now
1408 * in use by the dcache.
1411 void d_instantiate(struct dentry
*entry
, struct inode
* inode
)
1413 BUG_ON(!hlist_unhashed(&entry
->d_alias
));
1415 spin_lock(&inode
->i_lock
);
1416 __d_instantiate(entry
, inode
);
1418 spin_unlock(&inode
->i_lock
);
1419 security_d_instantiate(entry
, inode
);
1421 EXPORT_SYMBOL(d_instantiate
);
1424 * d_instantiate_unique - instantiate a non-aliased dentry
1425 * @entry: dentry to instantiate
1426 * @inode: inode to attach to this dentry
1428 * Fill in inode information in the entry. On success, it returns NULL.
1429 * If an unhashed alias of "entry" already exists, then we return the
1430 * aliased dentry instead and drop one reference to inode.
1432 * Note that in order to avoid conflicts with rename() etc, the caller
1433 * had better be holding the parent directory semaphore.
1435 * This also assumes that the inode count has been incremented
1436 * (or otherwise set) by the caller to indicate that it is now
1437 * in use by the dcache.
1439 static struct dentry
*__d_instantiate_unique(struct dentry
*entry
,
1440 struct inode
*inode
)
1442 struct dentry
*alias
;
1443 int len
= entry
->d_name
.len
;
1444 const char *name
= entry
->d_name
.name
;
1445 unsigned int hash
= entry
->d_name
.hash
;
1448 __d_instantiate(entry
, NULL
);
1452 hlist_for_each_entry(alias
, &inode
->i_dentry
, d_alias
) {
1454 * Don't need alias->d_lock here, because aliases with
1455 * d_parent == entry->d_parent are not subject to name or
1456 * parent changes, because the parent inode i_mutex is held.
1458 if (alias
->d_name
.hash
!= hash
)
1460 if (alias
->d_parent
!= entry
->d_parent
)
1462 if (alias
->d_name
.len
!= len
)
1464 if (dentry_cmp(alias
, name
, len
))
1470 __d_instantiate(entry
, inode
);
1474 struct dentry
*d_instantiate_unique(struct dentry
*entry
, struct inode
*inode
)
1476 struct dentry
*result
;
1478 BUG_ON(!hlist_unhashed(&entry
->d_alias
));
1481 spin_lock(&inode
->i_lock
);
1482 result
= __d_instantiate_unique(entry
, inode
);
1484 spin_unlock(&inode
->i_lock
);
1487 security_d_instantiate(entry
, inode
);
1491 BUG_ON(!d_unhashed(result
));
1496 EXPORT_SYMBOL(d_instantiate_unique
);
1498 struct dentry
*d_make_root(struct inode
*root_inode
)
1500 struct dentry
*res
= NULL
;
1503 static const struct qstr name
= QSTR_INIT("/", 1);
1505 res
= __d_alloc(root_inode
->i_sb
, &name
);
1507 d_instantiate(res
, root_inode
);
1513 EXPORT_SYMBOL(d_make_root
);
1515 static struct dentry
* __d_find_any_alias(struct inode
*inode
)
1517 struct dentry
*alias
;
1519 if (hlist_empty(&inode
->i_dentry
))
1521 alias
= hlist_entry(inode
->i_dentry
.first
, struct dentry
, d_alias
);
1527 * d_find_any_alias - find any alias for a given inode
1528 * @inode: inode to find an alias for
1530 * If any aliases exist for the given inode, take and return a
1531 * reference for one of them. If no aliases exist, return %NULL.
1533 struct dentry
*d_find_any_alias(struct inode
*inode
)
1537 spin_lock(&inode
->i_lock
);
1538 de
= __d_find_any_alias(inode
);
1539 spin_unlock(&inode
->i_lock
);
1542 EXPORT_SYMBOL(d_find_any_alias
);
1545 * d_obtain_alias - find or allocate a dentry for a given inode
1546 * @inode: inode to allocate the dentry for
1548 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1549 * similar open by handle operations. The returned dentry may be anonymous,
1550 * or may have a full name (if the inode was already in the cache).
1552 * When called on a directory inode, we must ensure that the inode only ever
1553 * has one dentry. If a dentry is found, that is returned instead of
1554 * allocating a new one.
1556 * On successful return, the reference to the inode has been transferred
1557 * to the dentry. In case of an error the reference on the inode is released.
1558 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1559 * be passed in and will be the error will be propagate to the return value,
1560 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1562 struct dentry
*d_obtain_alias(struct inode
*inode
)
1564 static const struct qstr anonstring
= QSTR_INIT("/", 1);
1569 return ERR_PTR(-ESTALE
);
1571 return ERR_CAST(inode
);
1573 res
= d_find_any_alias(inode
);
1577 tmp
= __d_alloc(inode
->i_sb
, &anonstring
);
1579 res
= ERR_PTR(-ENOMEM
);
1583 spin_lock(&inode
->i_lock
);
1584 res
= __d_find_any_alias(inode
);
1586 spin_unlock(&inode
->i_lock
);
1591 /* attach a disconnected dentry */
1592 spin_lock(&tmp
->d_lock
);
1593 tmp
->d_inode
= inode
;
1594 tmp
->d_flags
|= DCACHE_DISCONNECTED
;
1595 hlist_add_head(&tmp
->d_alias
, &inode
->i_dentry
);
1596 hlist_bl_lock(&tmp
->d_sb
->s_anon
);
1597 hlist_bl_add_head(&tmp
->d_hash
, &tmp
->d_sb
->s_anon
);
1598 hlist_bl_unlock(&tmp
->d_sb
->s_anon
);
1599 spin_unlock(&tmp
->d_lock
);
1600 spin_unlock(&inode
->i_lock
);
1601 security_d_instantiate(tmp
, inode
);
1606 if (res
&& !IS_ERR(res
))
1607 security_d_instantiate(res
, inode
);
1611 EXPORT_SYMBOL(d_obtain_alias
);
1614 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1615 * @inode: the inode which may have a disconnected dentry
1616 * @dentry: a negative dentry which we want to point to the inode.
1618 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1619 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1620 * and return it, else simply d_add the inode to the dentry and return NULL.
1622 * This is needed in the lookup routine of any filesystem that is exportable
1623 * (via knfsd) so that we can build dcache paths to directories effectively.
1625 * If a dentry was found and moved, then it is returned. Otherwise NULL
1626 * is returned. This matches the expected return value of ->lookup.
1628 * Cluster filesystems may call this function with a negative, hashed dentry.
1629 * In that case, we know that the inode will be a regular file, and also this
1630 * will only occur during atomic_open. So we need to check for the dentry
1631 * being already hashed only in the final case.
1633 struct dentry
*d_splice_alias(struct inode
*inode
, struct dentry
*dentry
)
1635 struct dentry
*new = NULL
;
1638 return ERR_CAST(inode
);
1640 if (inode
&& S_ISDIR(inode
->i_mode
)) {
1641 spin_lock(&inode
->i_lock
);
1642 new = __d_find_alias(inode
, 1);
1644 BUG_ON(!(new->d_flags
& DCACHE_DISCONNECTED
));
1645 spin_unlock(&inode
->i_lock
);
1646 security_d_instantiate(new, inode
);
1647 d_move(new, dentry
);
1650 /* already taking inode->i_lock, so d_add() by hand */
1651 __d_instantiate(dentry
, inode
);
1652 spin_unlock(&inode
->i_lock
);
1653 security_d_instantiate(dentry
, inode
);
1657 d_instantiate(dentry
, inode
);
1658 if (d_unhashed(dentry
))
1663 EXPORT_SYMBOL(d_splice_alias
);
1666 * d_add_ci - lookup or allocate new dentry with case-exact name
1667 * @inode: the inode case-insensitive lookup has found
1668 * @dentry: the negative dentry that was passed to the parent's lookup func
1669 * @name: the case-exact name to be associated with the returned dentry
1671 * This is to avoid filling the dcache with case-insensitive names to the
1672 * same inode, only the actual correct case is stored in the dcache for
1673 * case-insensitive filesystems.
1675 * For a case-insensitive lookup match and if the the case-exact dentry
1676 * already exists in in the dcache, use it and return it.
1678 * If no entry exists with the exact case name, allocate new dentry with
1679 * the exact case, and return the spliced entry.
1681 struct dentry
*d_add_ci(struct dentry
*dentry
, struct inode
*inode
,
1684 struct dentry
*found
;
1688 * First check if a dentry matching the name already exists,
1689 * if not go ahead and create it now.
1691 found
= d_hash_and_lookup(dentry
->d_parent
, name
);
1692 if (unlikely(IS_ERR(found
)))
1695 new = d_alloc(dentry
->d_parent
, name
);
1697 found
= ERR_PTR(-ENOMEM
);
1701 found
= d_splice_alias(inode
, new);
1710 * If a matching dentry exists, and it's not negative use it.
1712 * Decrement the reference count to balance the iget() done
1715 if (found
->d_inode
) {
1716 if (unlikely(found
->d_inode
!= inode
)) {
1717 /* This can't happen because bad inodes are unhashed. */
1718 BUG_ON(!is_bad_inode(inode
));
1719 BUG_ON(!is_bad_inode(found
->d_inode
));
1726 * Negative dentry: instantiate it unless the inode is a directory and
1727 * already has a dentry.
1729 new = d_splice_alias(inode
, found
);
1740 EXPORT_SYMBOL(d_add_ci
);
1743 * Do the slow-case of the dentry name compare.
1745 * Unlike the dentry_cmp() function, we need to atomically
1746 * load the name and length information, so that the
1747 * filesystem can rely on them, and can use the 'name' and
1748 * 'len' information without worrying about walking off the
1749 * end of memory etc.
1751 * Thus the read_seqcount_retry() and the "duplicate" info
1752 * in arguments (the low-level filesystem should not look
1753 * at the dentry inode or name contents directly, since
1754 * rename can change them while we're in RCU mode).
1756 enum slow_d_compare
{
1762 static noinline
enum slow_d_compare
slow_dentry_cmp(
1763 const struct dentry
*parent
,
1764 struct dentry
*dentry
,
1766 const struct qstr
*name
)
1768 int tlen
= dentry
->d_name
.len
;
1769 const char *tname
= dentry
->d_name
.name
;
1771 if (read_seqcount_retry(&dentry
->d_seq
, seq
)) {
1773 return D_COMP_SEQRETRY
;
1775 if (parent
->d_op
->d_compare(parent
, dentry
, tlen
, tname
, name
))
1776 return D_COMP_NOMATCH
;
1781 * __d_lookup_rcu - search for a dentry (racy, store-free)
1782 * @parent: parent dentry
1783 * @name: qstr of name we wish to find
1784 * @seqp: returns d_seq value at the point where the dentry was found
1785 * Returns: dentry, or NULL
1787 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1788 * resolution (store-free path walking) design described in
1789 * Documentation/filesystems/path-lookup.txt.
1791 * This is not to be used outside core vfs.
1793 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
1794 * held, and rcu_read_lock held. The returned dentry must not be stored into
1795 * without taking d_lock and checking d_seq sequence count against @seq
1798 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
1801 * Alternatively, __d_lookup_rcu may be called again to look up the child of
1802 * the returned dentry, so long as its parent's seqlock is checked after the
1803 * child is looked up. Thus, an interlocking stepping of sequence lock checks
1804 * is formed, giving integrity down the path walk.
1806 * NOTE! The caller *has* to check the resulting dentry against the sequence
1807 * number we've returned before using any of the resulting dentry state!
1809 struct dentry
*__d_lookup_rcu(const struct dentry
*parent
,
1810 const struct qstr
*name
,
1813 u64 hashlen
= name
->hash_len
;
1814 const unsigned char *str
= name
->name
;
1815 struct hlist_bl_head
*b
= d_hash(parent
, hashlen_hash(hashlen
));
1816 struct hlist_bl_node
*node
;
1817 struct dentry
*dentry
;
1820 * Note: There is significant duplication with __d_lookup_rcu which is
1821 * required to prevent single threaded performance regressions
1822 * especially on architectures where smp_rmb (in seqcounts) are costly.
1823 * Keep the two functions in sync.
1827 * The hash list is protected using RCU.
1829 * Carefully use d_seq when comparing a candidate dentry, to avoid
1830 * races with d_move().
1832 * It is possible that concurrent renames can mess up our list
1833 * walk here and result in missing our dentry, resulting in the
1834 * false-negative result. d_lookup() protects against concurrent
1835 * renames using rename_lock seqlock.
1837 * See Documentation/filesystems/path-lookup.txt for more details.
1839 hlist_bl_for_each_entry_rcu(dentry
, node
, b
, d_hash
) {
1844 * The dentry sequence count protects us from concurrent
1845 * renames, and thus protects parent and name fields.
1847 * The caller must perform a seqcount check in order
1848 * to do anything useful with the returned dentry.
1850 * NOTE! We do a "raw" seqcount_begin here. That means that
1851 * we don't wait for the sequence count to stabilize if it
1852 * is in the middle of a sequence change. If we do the slow
1853 * dentry compare, we will do seqretries until it is stable,
1854 * and if we end up with a successful lookup, we actually
1855 * want to exit RCU lookup anyway.
1857 seq
= raw_seqcount_begin(&dentry
->d_seq
);
1858 if (dentry
->d_parent
!= parent
)
1860 if (d_unhashed(dentry
))
1863 if (unlikely(parent
->d_flags
& DCACHE_OP_COMPARE
)) {
1864 if (dentry
->d_name
.hash
!= hashlen_hash(hashlen
))
1867 switch (slow_dentry_cmp(parent
, dentry
, seq
, name
)) {
1870 case D_COMP_NOMATCH
:
1877 if (dentry
->d_name
.hash_len
!= hashlen
)
1880 if (!dentry_cmp(dentry
, str
, hashlen_len(hashlen
)))
1887 * d_lookup - search for a dentry
1888 * @parent: parent dentry
1889 * @name: qstr of name we wish to find
1890 * Returns: dentry, or NULL
1892 * d_lookup searches the children of the parent dentry for the name in
1893 * question. If the dentry is found its reference count is incremented and the
1894 * dentry is returned. The caller must use dput to free the entry when it has
1895 * finished using it. %NULL is returned if the dentry does not exist.
1897 struct dentry
*d_lookup(const struct dentry
*parent
, const struct qstr
*name
)
1899 struct dentry
*dentry
;
1903 seq
= read_seqbegin(&rename_lock
);
1904 dentry
= __d_lookup(parent
, name
);
1907 } while (read_seqretry(&rename_lock
, seq
));
1910 EXPORT_SYMBOL(d_lookup
);
1913 * __d_lookup - search for a dentry (racy)
1914 * @parent: parent dentry
1915 * @name: qstr of name we wish to find
1916 * Returns: dentry, or NULL
1918 * __d_lookup is like d_lookup, however it may (rarely) return a
1919 * false-negative result due to unrelated rename activity.
1921 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
1922 * however it must be used carefully, eg. with a following d_lookup in
1923 * the case of failure.
1925 * __d_lookup callers must be commented.
1927 struct dentry
*__d_lookup(const struct dentry
*parent
, const struct qstr
*name
)
1929 unsigned int len
= name
->len
;
1930 unsigned int hash
= name
->hash
;
1931 const unsigned char *str
= name
->name
;
1932 struct hlist_bl_head
*b
= d_hash(parent
, hash
);
1933 struct hlist_bl_node
*node
;
1934 struct dentry
*found
= NULL
;
1935 struct dentry
*dentry
;
1938 * Note: There is significant duplication with __d_lookup_rcu which is
1939 * required to prevent single threaded performance regressions
1940 * especially on architectures where smp_rmb (in seqcounts) are costly.
1941 * Keep the two functions in sync.
1945 * The hash list is protected using RCU.
1947 * Take d_lock when comparing a candidate dentry, to avoid races
1950 * It is possible that concurrent renames can mess up our list
1951 * walk here and result in missing our dentry, resulting in the
1952 * false-negative result. d_lookup() protects against concurrent
1953 * renames using rename_lock seqlock.
1955 * See Documentation/filesystems/path-lookup.txt for more details.
1959 hlist_bl_for_each_entry_rcu(dentry
, node
, b
, d_hash
) {
1961 if (dentry
->d_name
.hash
!= hash
)
1964 spin_lock(&dentry
->d_lock
);
1965 if (dentry
->d_parent
!= parent
)
1967 if (d_unhashed(dentry
))
1971 * It is safe to compare names since d_move() cannot
1972 * change the qstr (protected by d_lock).
1974 if (parent
->d_flags
& DCACHE_OP_COMPARE
) {
1975 int tlen
= dentry
->d_name
.len
;
1976 const char *tname
= dentry
->d_name
.name
;
1977 if (parent
->d_op
->d_compare(parent
, dentry
, tlen
, tname
, name
))
1980 if (dentry
->d_name
.len
!= len
)
1982 if (dentry_cmp(dentry
, str
, len
))
1986 dentry
->d_lockref
.count
++;
1988 spin_unlock(&dentry
->d_lock
);
1991 spin_unlock(&dentry
->d_lock
);
1999 * d_hash_and_lookup - hash the qstr then search for a dentry
2000 * @dir: Directory to search in
2001 * @name: qstr of name we wish to find
2003 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2005 struct dentry
*d_hash_and_lookup(struct dentry
*dir
, struct qstr
*name
)
2008 * Check for a fs-specific hash function. Note that we must
2009 * calculate the standard hash first, as the d_op->d_hash()
2010 * routine may choose to leave the hash value unchanged.
2012 name
->hash
= full_name_hash(name
->name
, name
->len
);
2013 if (dir
->d_flags
& DCACHE_OP_HASH
) {
2014 int err
= dir
->d_op
->d_hash(dir
, name
);
2015 if (unlikely(err
< 0))
2016 return ERR_PTR(err
);
2018 return d_lookup(dir
, name
);
2020 EXPORT_SYMBOL(d_hash_and_lookup
);
2023 * d_validate - verify dentry provided from insecure source (deprecated)
2024 * @dentry: The dentry alleged to be valid child of @dparent
2025 * @dparent: The parent dentry (known to be valid)
2027 * An insecure source has sent us a dentry, here we verify it and dget() it.
2028 * This is used by ncpfs in its readdir implementation.
2029 * Zero is returned in the dentry is invalid.
2031 * This function is slow for big directories, and deprecated, do not use it.
2033 int d_validate(struct dentry
*dentry
, struct dentry
*dparent
)
2035 struct dentry
*child
;
2037 spin_lock(&dparent
->d_lock
);
2038 list_for_each_entry(child
, &dparent
->d_subdirs
, d_u
.d_child
) {
2039 if (dentry
== child
) {
2040 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
2041 __dget_dlock(dentry
);
2042 spin_unlock(&dentry
->d_lock
);
2043 spin_unlock(&dparent
->d_lock
);
2047 spin_unlock(&dparent
->d_lock
);
2051 EXPORT_SYMBOL(d_validate
);
2054 * When a file is deleted, we have two options:
2055 * - turn this dentry into a negative dentry
2056 * - unhash this dentry and free it.
2058 * Usually, we want to just turn this into
2059 * a negative dentry, but if anybody else is
2060 * currently using the dentry or the inode
2061 * we can't do that and we fall back on removing
2062 * it from the hash queues and waiting for
2063 * it to be deleted later when it has no users
2067 * d_delete - delete a dentry
2068 * @dentry: The dentry to delete
2070 * Turn the dentry into a negative dentry if possible, otherwise
2071 * remove it from the hash queues so it can be deleted later
2074 void d_delete(struct dentry
* dentry
)
2076 struct inode
*inode
;
2079 * Are we the only user?
2082 spin_lock(&dentry
->d_lock
);
2083 inode
= dentry
->d_inode
;
2084 isdir
= S_ISDIR(inode
->i_mode
);
2085 if (dentry
->d_lockref
.count
== 1) {
2086 if (!spin_trylock(&inode
->i_lock
)) {
2087 spin_unlock(&dentry
->d_lock
);
2091 dentry
->d_flags
&= ~DCACHE_CANT_MOUNT
;
2092 dentry_unlink_inode(dentry
);
2093 fsnotify_nameremove(dentry
, isdir
);
2097 if (!d_unhashed(dentry
))
2100 spin_unlock(&dentry
->d_lock
);
2102 fsnotify_nameremove(dentry
, isdir
);
2104 EXPORT_SYMBOL(d_delete
);
2106 static void __d_rehash(struct dentry
* entry
, struct hlist_bl_head
*b
)
2108 BUG_ON(!d_unhashed(entry
));
2110 entry
->d_flags
|= DCACHE_RCUACCESS
;
2111 hlist_bl_add_head_rcu(&entry
->d_hash
, b
);
2115 static void _d_rehash(struct dentry
* entry
)
2117 __d_rehash(entry
, d_hash(entry
->d_parent
, entry
->d_name
.hash
));
2121 * d_rehash - add an entry back to the hash
2122 * @entry: dentry to add to the hash
2124 * Adds a dentry to the hash according to its name.
2127 void d_rehash(struct dentry
* entry
)
2129 spin_lock(&entry
->d_lock
);
2131 spin_unlock(&entry
->d_lock
);
2133 EXPORT_SYMBOL(d_rehash
);
2136 * dentry_update_name_case - update case insensitive dentry with a new name
2137 * @dentry: dentry to be updated
2140 * Update a case insensitive dentry with new case of name.
2142 * dentry must have been returned by d_lookup with name @name. Old and new
2143 * name lengths must match (ie. no d_compare which allows mismatched name
2146 * Parent inode i_mutex must be held over d_lookup and into this call (to
2147 * keep renames and concurrent inserts, and readdir(2) away).
2149 void dentry_update_name_case(struct dentry
*dentry
, struct qstr
*name
)
2151 BUG_ON(!mutex_is_locked(&dentry
->d_parent
->d_inode
->i_mutex
));
2152 BUG_ON(dentry
->d_name
.len
!= name
->len
); /* d_lookup gives this */
2154 spin_lock(&dentry
->d_lock
);
2155 write_seqcount_begin(&dentry
->d_seq
);
2156 memcpy((unsigned char *)dentry
->d_name
.name
, name
->name
, name
->len
);
2157 write_seqcount_end(&dentry
->d_seq
);
2158 spin_unlock(&dentry
->d_lock
);
2160 EXPORT_SYMBOL(dentry_update_name_case
);
2162 static void switch_names(struct dentry
*dentry
, struct dentry
*target
)
2164 if (dname_external(target
)) {
2165 if (dname_external(dentry
)) {
2167 * Both external: swap the pointers
2169 swap(target
->d_name
.name
, dentry
->d_name
.name
);
2172 * dentry:internal, target:external. Steal target's
2173 * storage and make target internal.
2175 memcpy(target
->d_iname
, dentry
->d_name
.name
,
2176 dentry
->d_name
.len
+ 1);
2177 dentry
->d_name
.name
= target
->d_name
.name
;
2178 target
->d_name
.name
= target
->d_iname
;
2181 if (dname_external(dentry
)) {
2183 * dentry:external, target:internal. Give dentry's
2184 * storage to target and make dentry internal
2186 memcpy(dentry
->d_iname
, target
->d_name
.name
,
2187 target
->d_name
.len
+ 1);
2188 target
->d_name
.name
= dentry
->d_name
.name
;
2189 dentry
->d_name
.name
= dentry
->d_iname
;
2192 * Both are internal. Just copy target to dentry
2194 memcpy(dentry
->d_iname
, target
->d_name
.name
,
2195 target
->d_name
.len
+ 1);
2196 dentry
->d_name
.len
= target
->d_name
.len
;
2200 swap(dentry
->d_name
.len
, target
->d_name
.len
);
2203 static void dentry_lock_for_move(struct dentry
*dentry
, struct dentry
*target
)
2206 * XXXX: do we really need to take target->d_lock?
2208 if (IS_ROOT(dentry
) || dentry
->d_parent
== target
->d_parent
)
2209 spin_lock(&target
->d_parent
->d_lock
);
2211 if (d_ancestor(dentry
->d_parent
, target
->d_parent
)) {
2212 spin_lock(&dentry
->d_parent
->d_lock
);
2213 spin_lock_nested(&target
->d_parent
->d_lock
,
2214 DENTRY_D_LOCK_NESTED
);
2216 spin_lock(&target
->d_parent
->d_lock
);
2217 spin_lock_nested(&dentry
->d_parent
->d_lock
,
2218 DENTRY_D_LOCK_NESTED
);
2221 if (target
< dentry
) {
2222 spin_lock_nested(&target
->d_lock
, 2);
2223 spin_lock_nested(&dentry
->d_lock
, 3);
2225 spin_lock_nested(&dentry
->d_lock
, 2);
2226 spin_lock_nested(&target
->d_lock
, 3);
2230 static void dentry_unlock_parents_for_move(struct dentry
*dentry
,
2231 struct dentry
*target
)
2233 if (target
->d_parent
!= dentry
->d_parent
)
2234 spin_unlock(&dentry
->d_parent
->d_lock
);
2235 if (target
->d_parent
!= target
)
2236 spin_unlock(&target
->d_parent
->d_lock
);
2240 * When switching names, the actual string doesn't strictly have to
2241 * be preserved in the target - because we're dropping the target
2242 * anyway. As such, we can just do a simple memcpy() to copy over
2243 * the new name before we switch.
2245 * Note that we have to be a lot more careful about getting the hash
2246 * switched - we have to switch the hash value properly even if it
2247 * then no longer matches the actual (corrupted) string of the target.
2248 * The hash value has to match the hash queue that the dentry is on..
2251 * __d_move - move a dentry
2252 * @dentry: entry to move
2253 * @target: new dentry
2255 * Update the dcache to reflect the move of a file name. Negative
2256 * dcache entries should not be moved in this way. Caller must hold
2257 * rename_lock, the i_mutex of the source and target directories,
2258 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2260 static void __d_move(struct dentry
* dentry
, struct dentry
* target
)
2262 if (!dentry
->d_inode
)
2263 printk(KERN_WARNING
"VFS: moving negative dcache entry\n");
2265 BUG_ON(d_ancestor(dentry
, target
));
2266 BUG_ON(d_ancestor(target
, dentry
));
2268 dentry_lock_for_move(dentry
, target
);
2270 write_seqcount_begin(&dentry
->d_seq
);
2271 write_seqcount_begin(&target
->d_seq
);
2273 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2276 * Move the dentry to the target hash queue. Don't bother checking
2277 * for the same hash queue because of how unlikely it is.
2280 __d_rehash(dentry
, d_hash(target
->d_parent
, target
->d_name
.hash
));
2282 /* Unhash the target: dput() will then get rid of it */
2285 list_del(&dentry
->d_u
.d_child
);
2286 list_del(&target
->d_u
.d_child
);
2288 /* Switch the names.. */
2289 switch_names(dentry
, target
);
2290 swap(dentry
->d_name
.hash
, target
->d_name
.hash
);
2292 /* ... and switch the parents */
2293 if (IS_ROOT(dentry
)) {
2294 dentry
->d_parent
= target
->d_parent
;
2295 target
->d_parent
= target
;
2296 INIT_LIST_HEAD(&target
->d_u
.d_child
);
2298 swap(dentry
->d_parent
, target
->d_parent
);
2300 /* And add them back to the (new) parent lists */
2301 list_add(&target
->d_u
.d_child
, &target
->d_parent
->d_subdirs
);
2304 list_add(&dentry
->d_u
.d_child
, &dentry
->d_parent
->d_subdirs
);
2306 write_seqcount_end(&target
->d_seq
);
2307 write_seqcount_end(&dentry
->d_seq
);
2309 dentry_unlock_parents_for_move(dentry
, target
);
2310 spin_unlock(&target
->d_lock
);
2311 fsnotify_d_move(dentry
);
2312 spin_unlock(&dentry
->d_lock
);
2316 * d_move - move a dentry
2317 * @dentry: entry to move
2318 * @target: new dentry
2320 * Update the dcache to reflect the move of a file name. Negative
2321 * dcache entries should not be moved in this way. See the locking
2322 * requirements for __d_move.
2324 void d_move(struct dentry
*dentry
, struct dentry
*target
)
2326 write_seqlock(&rename_lock
);
2327 __d_move(dentry
, target
);
2328 write_sequnlock(&rename_lock
);
2330 EXPORT_SYMBOL(d_move
);
2333 * d_ancestor - search for an ancestor
2334 * @p1: ancestor dentry
2337 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2338 * an ancestor of p2, else NULL.
2340 struct dentry
*d_ancestor(struct dentry
*p1
, struct dentry
*p2
)
2344 for (p
= p2
; !IS_ROOT(p
); p
= p
->d_parent
) {
2345 if (p
->d_parent
== p1
)
2352 * This helper attempts to cope with remotely renamed directories
2354 * It assumes that the caller is already holding
2355 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
2357 * Note: If ever the locking in lock_rename() changes, then please
2358 * remember to update this too...
2360 static struct dentry
*__d_unalias(struct inode
*inode
,
2361 struct dentry
*dentry
, struct dentry
*alias
)
2363 struct mutex
*m1
= NULL
, *m2
= NULL
;
2364 struct dentry
*ret
= ERR_PTR(-EBUSY
);
2366 /* If alias and dentry share a parent, then no extra locks required */
2367 if (alias
->d_parent
== dentry
->d_parent
)
2370 /* See lock_rename() */
2371 if (!mutex_trylock(&dentry
->d_sb
->s_vfs_rename_mutex
))
2373 m1
= &dentry
->d_sb
->s_vfs_rename_mutex
;
2374 if (!mutex_trylock(&alias
->d_parent
->d_inode
->i_mutex
))
2376 m2
= &alias
->d_parent
->d_inode
->i_mutex
;
2378 if (likely(!d_mountpoint(alias
))) {
2379 __d_move(alias
, dentry
);
2383 spin_unlock(&inode
->i_lock
);
2392 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2393 * named dentry in place of the dentry to be replaced.
2394 * returns with anon->d_lock held!
2396 static void __d_materialise_dentry(struct dentry
*dentry
, struct dentry
*anon
)
2398 struct dentry
*dparent
;
2400 dentry_lock_for_move(anon
, dentry
);
2402 write_seqcount_begin(&dentry
->d_seq
);
2403 write_seqcount_begin(&anon
->d_seq
);
2405 dparent
= dentry
->d_parent
;
2407 switch_names(dentry
, anon
);
2408 swap(dentry
->d_name
.hash
, anon
->d_name
.hash
);
2410 dentry
->d_parent
= dentry
;
2411 list_del_init(&dentry
->d_u
.d_child
);
2412 anon
->d_parent
= dparent
;
2413 list_move(&anon
->d_u
.d_child
, &dparent
->d_subdirs
);
2415 write_seqcount_end(&dentry
->d_seq
);
2416 write_seqcount_end(&anon
->d_seq
);
2418 dentry_unlock_parents_for_move(anon
, dentry
);
2419 spin_unlock(&dentry
->d_lock
);
2421 /* anon->d_lock still locked, returns locked */
2422 anon
->d_flags
&= ~DCACHE_DISCONNECTED
;
2426 * d_materialise_unique - introduce an inode into the tree
2427 * @dentry: candidate dentry
2428 * @inode: inode to bind to the dentry, to which aliases may be attached
2430 * Introduces an dentry into the tree, substituting an extant disconnected
2431 * root directory alias in its place if there is one. Caller must hold the
2432 * i_mutex of the parent directory.
2434 struct dentry
*d_materialise_unique(struct dentry
*dentry
, struct inode
*inode
)
2436 struct dentry
*actual
;
2438 BUG_ON(!d_unhashed(dentry
));
2442 __d_instantiate(dentry
, NULL
);
2447 spin_lock(&inode
->i_lock
);
2449 if (S_ISDIR(inode
->i_mode
)) {
2450 struct dentry
*alias
;
2452 /* Does an aliased dentry already exist? */
2453 alias
= __d_find_alias(inode
, 0);
2456 write_seqlock(&rename_lock
);
2458 if (d_ancestor(alias
, dentry
)) {
2459 /* Check for loops */
2460 actual
= ERR_PTR(-ELOOP
);
2461 spin_unlock(&inode
->i_lock
);
2462 } else if (IS_ROOT(alias
)) {
2463 /* Is this an anonymous mountpoint that we
2464 * could splice into our tree? */
2465 __d_materialise_dentry(dentry
, alias
);
2466 write_sequnlock(&rename_lock
);
2470 /* Nope, but we must(!) avoid directory
2471 * aliasing. This drops inode->i_lock */
2472 actual
= __d_unalias(inode
, dentry
, alias
);
2474 write_sequnlock(&rename_lock
);
2475 if (IS_ERR(actual
)) {
2476 if (PTR_ERR(actual
) == -ELOOP
)
2477 pr_warn_ratelimited(
2478 "VFS: Lookup of '%s' in %s %s"
2479 " would have caused loop\n",
2480 dentry
->d_name
.name
,
2481 inode
->i_sb
->s_type
->name
,
2489 /* Add a unique reference */
2490 actual
= __d_instantiate_unique(dentry
, inode
);
2494 BUG_ON(!d_unhashed(actual
));
2496 spin_lock(&actual
->d_lock
);
2499 spin_unlock(&actual
->d_lock
);
2500 spin_unlock(&inode
->i_lock
);
2502 if (actual
== dentry
) {
2503 security_d_instantiate(dentry
, inode
);
2510 EXPORT_SYMBOL_GPL(d_materialise_unique
);
2512 static int prepend(char **buffer
, int *buflen
, const char *str
, int namelen
)
2516 return -ENAMETOOLONG
;
2518 memcpy(*buffer
, str
, namelen
);
2522 static int prepend_name(char **buffer
, int *buflen
, struct qstr
*name
)
2524 return prepend(buffer
, buflen
, name
->name
, name
->len
);
2528 * prepend_path - Prepend path string to a buffer
2529 * @path: the dentry/vfsmount to report
2530 * @root: root vfsmnt/dentry
2531 * @buffer: pointer to the end of the buffer
2532 * @buflen: pointer to buffer length
2534 * Caller holds the rename_lock.
2536 static int prepend_path(const struct path
*path
,
2537 const struct path
*root
,
2538 char **buffer
, int *buflen
)
2540 struct dentry
*dentry
= path
->dentry
;
2541 struct vfsmount
*vfsmnt
= path
->mnt
;
2542 struct mount
*mnt
= real_mount(vfsmnt
);
2546 while (dentry
!= root
->dentry
|| vfsmnt
!= root
->mnt
) {
2547 struct dentry
* parent
;
2549 if (dentry
== vfsmnt
->mnt_root
|| IS_ROOT(dentry
)) {
2551 if (!mnt_has_parent(mnt
))
2553 dentry
= mnt
->mnt_mountpoint
;
2554 mnt
= mnt
->mnt_parent
;
2558 parent
= dentry
->d_parent
;
2560 spin_lock(&dentry
->d_lock
);
2561 error
= prepend_name(buffer
, buflen
, &dentry
->d_name
);
2562 spin_unlock(&dentry
->d_lock
);
2564 error
= prepend(buffer
, buflen
, "/", 1);
2572 if (!error
&& !slash
)
2573 error
= prepend(buffer
, buflen
, "/", 1);
2579 * Filesystems needing to implement special "root names"
2580 * should do so with ->d_dname()
2582 if (IS_ROOT(dentry
) &&
2583 (dentry
->d_name
.len
!= 1 || dentry
->d_name
.name
[0] != '/')) {
2584 WARN(1, "Root dentry has weird name <%.*s>\n",
2585 (int) dentry
->d_name
.len
, dentry
->d_name
.name
);
2588 error
= prepend(buffer
, buflen
, "/", 1);
2590 error
= is_mounted(vfsmnt
) ? 1 : 2;
2595 * __d_path - return the path of a dentry
2596 * @path: the dentry/vfsmount to report
2597 * @root: root vfsmnt/dentry
2598 * @buf: buffer to return value in
2599 * @buflen: buffer length
2601 * Convert a dentry into an ASCII path name.
2603 * Returns a pointer into the buffer or an error code if the
2604 * path was too long.
2606 * "buflen" should be positive.
2608 * If the path is not reachable from the supplied root, return %NULL.
2610 char *__d_path(const struct path
*path
,
2611 const struct path
*root
,
2612 char *buf
, int buflen
)
2614 char *res
= buf
+ buflen
;
2617 prepend(&res
, &buflen
, "\0", 1);
2618 br_read_lock(&vfsmount_lock
);
2619 write_seqlock(&rename_lock
);
2620 error
= prepend_path(path
, root
, &res
, &buflen
);
2621 write_sequnlock(&rename_lock
);
2622 br_read_unlock(&vfsmount_lock
);
2625 return ERR_PTR(error
);
2631 char *d_absolute_path(const struct path
*path
,
2632 char *buf
, int buflen
)
2634 struct path root
= {};
2635 char *res
= buf
+ buflen
;
2638 prepend(&res
, &buflen
, "\0", 1);
2639 br_read_lock(&vfsmount_lock
);
2640 write_seqlock(&rename_lock
);
2641 error
= prepend_path(path
, &root
, &res
, &buflen
);
2642 write_sequnlock(&rename_lock
);
2643 br_read_unlock(&vfsmount_lock
);
2648 return ERR_PTR(error
);
2653 * same as __d_path but appends "(deleted)" for unlinked files.
2655 static int path_with_deleted(const struct path
*path
,
2656 const struct path
*root
,
2657 char **buf
, int *buflen
)
2659 prepend(buf
, buflen
, "\0", 1);
2660 if (d_unlinked(path
->dentry
)) {
2661 int error
= prepend(buf
, buflen
, " (deleted)", 10);
2666 return prepend_path(path
, root
, buf
, buflen
);
2669 static int prepend_unreachable(char **buffer
, int *buflen
)
2671 return prepend(buffer
, buflen
, "(unreachable)", 13);
2675 * d_path - return the path of a dentry
2676 * @path: path to report
2677 * @buf: buffer to return value in
2678 * @buflen: buffer length
2680 * Convert a dentry into an ASCII path name. If the entry has been deleted
2681 * the string " (deleted)" is appended. Note that this is ambiguous.
2683 * Returns a pointer into the buffer or an error code if the path was
2684 * too long. Note: Callers should use the returned pointer, not the passed
2685 * in buffer, to use the name! The implementation often starts at an offset
2686 * into the buffer, and may leave 0 bytes at the start.
2688 * "buflen" should be positive.
2690 char *d_path(const struct path
*path
, char *buf
, int buflen
)
2692 char *res
= buf
+ buflen
;
2697 * We have various synthetic filesystems that never get mounted. On
2698 * these filesystems dentries are never used for lookup purposes, and
2699 * thus don't need to be hashed. They also don't need a name until a
2700 * user wants to identify the object in /proc/pid/fd/. The little hack
2701 * below allows us to generate a name for these objects on demand:
2703 if (path
->dentry
->d_op
&& path
->dentry
->d_op
->d_dname
)
2704 return path
->dentry
->d_op
->d_dname(path
->dentry
, buf
, buflen
);
2706 get_fs_root(current
->fs
, &root
);
2707 br_read_lock(&vfsmount_lock
);
2708 write_seqlock(&rename_lock
);
2709 error
= path_with_deleted(path
, &root
, &res
, &buflen
);
2710 write_sequnlock(&rename_lock
);
2711 br_read_unlock(&vfsmount_lock
);
2713 res
= ERR_PTR(error
);
2717 EXPORT_SYMBOL(d_path
);
2720 * Helper function for dentry_operations.d_dname() members
2722 char *dynamic_dname(struct dentry
*dentry
, char *buffer
, int buflen
,
2723 const char *fmt
, ...)
2729 va_start(args
, fmt
);
2730 sz
= vsnprintf(temp
, sizeof(temp
), fmt
, args
) + 1;
2733 if (sz
> sizeof(temp
) || sz
> buflen
)
2734 return ERR_PTR(-ENAMETOOLONG
);
2736 buffer
+= buflen
- sz
;
2737 return memcpy(buffer
, temp
, sz
);
2740 char *simple_dname(struct dentry
*dentry
, char *buffer
, int buflen
)
2742 char *end
= buffer
+ buflen
;
2743 /* these dentries are never renamed, so d_lock is not needed */
2744 if (prepend(&end
, &buflen
, " (deleted)", 11) ||
2745 prepend_name(&end
, &buflen
, &dentry
->d_name
) ||
2746 prepend(&end
, &buflen
, "/", 1))
2747 end
= ERR_PTR(-ENAMETOOLONG
);
2752 * Write full pathname from the root of the filesystem into the buffer.
2754 static char *__dentry_path(struct dentry
*dentry
, char *buf
, int buflen
)
2756 char *end
= buf
+ buflen
;
2759 prepend(&end
, &buflen
, "\0", 1);
2766 while (!IS_ROOT(dentry
)) {
2767 struct dentry
*parent
= dentry
->d_parent
;
2771 spin_lock(&dentry
->d_lock
);
2772 error
= prepend_name(&end
, &buflen
, &dentry
->d_name
);
2773 spin_unlock(&dentry
->d_lock
);
2774 if (error
!= 0 || prepend(&end
, &buflen
, "/", 1) != 0)
2782 return ERR_PTR(-ENAMETOOLONG
);
2785 char *dentry_path_raw(struct dentry
*dentry
, char *buf
, int buflen
)
2789 write_seqlock(&rename_lock
);
2790 retval
= __dentry_path(dentry
, buf
, buflen
);
2791 write_sequnlock(&rename_lock
);
2795 EXPORT_SYMBOL(dentry_path_raw
);
2797 char *dentry_path(struct dentry
*dentry
, char *buf
, int buflen
)
2802 write_seqlock(&rename_lock
);
2803 if (d_unlinked(dentry
)) {
2805 if (prepend(&p
, &buflen
, "//deleted", 10) != 0)
2809 retval
= __dentry_path(dentry
, buf
, buflen
);
2810 write_sequnlock(&rename_lock
);
2811 if (!IS_ERR(retval
) && p
)
2812 *p
= '/'; /* restore '/' overriden with '\0' */
2815 return ERR_PTR(-ENAMETOOLONG
);
2819 * NOTE! The user-level library version returns a
2820 * character pointer. The kernel system call just
2821 * returns the length of the buffer filled (which
2822 * includes the ending '\0' character), or a negative
2823 * error value. So libc would do something like
2825 * char *getcwd(char * buf, size_t size)
2829 * retval = sys_getcwd(buf, size);
2836 SYSCALL_DEFINE2(getcwd
, char __user
*, buf
, unsigned long, size
)
2839 struct path pwd
, root
;
2840 char *page
= (char *) __get_free_page(GFP_USER
);
2845 get_fs_root_and_pwd(current
->fs
, &root
, &pwd
);
2848 br_read_lock(&vfsmount_lock
);
2849 write_seqlock(&rename_lock
);
2850 if (!d_unlinked(pwd
.dentry
)) {
2852 char *cwd
= page
+ PAGE_SIZE
;
2853 int buflen
= PAGE_SIZE
;
2855 prepend(&cwd
, &buflen
, "\0", 1);
2856 error
= prepend_path(&pwd
, &root
, &cwd
, &buflen
);
2857 write_sequnlock(&rename_lock
);
2858 br_read_unlock(&vfsmount_lock
);
2863 /* Unreachable from current root */
2865 error
= prepend_unreachable(&cwd
, &buflen
);
2871 len
= PAGE_SIZE
+ page
- cwd
;
2874 if (copy_to_user(buf
, cwd
, len
))
2878 write_sequnlock(&rename_lock
);
2879 br_read_unlock(&vfsmount_lock
);
2885 free_page((unsigned long) page
);
2890 * Test whether new_dentry is a subdirectory of old_dentry.
2892 * Trivially implemented using the dcache structure
2896 * is_subdir - is new dentry a subdirectory of old_dentry
2897 * @new_dentry: new dentry
2898 * @old_dentry: old dentry
2900 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2901 * Returns 0 otherwise.
2902 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2905 int is_subdir(struct dentry
*new_dentry
, struct dentry
*old_dentry
)
2910 if (new_dentry
== old_dentry
)
2914 /* for restarting inner loop in case of seq retry */
2915 seq
= read_seqbegin(&rename_lock
);
2917 * Need rcu_readlock to protect against the d_parent trashing
2921 if (d_ancestor(old_dentry
, new_dentry
))
2926 } while (read_seqretry(&rename_lock
, seq
));
2931 void d_genocide(struct dentry
*root
)
2933 struct dentry
*this_parent
;
2934 struct list_head
*next
;
2938 seq
= read_seqbegin(&rename_lock
);
2941 spin_lock(&this_parent
->d_lock
);
2943 next
= this_parent
->d_subdirs
.next
;
2945 while (next
!= &this_parent
->d_subdirs
) {
2946 struct list_head
*tmp
= next
;
2947 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_u
.d_child
);
2950 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
2951 if (d_unhashed(dentry
) || !dentry
->d_inode
) {
2952 spin_unlock(&dentry
->d_lock
);
2955 if (!list_empty(&dentry
->d_subdirs
)) {
2956 spin_unlock(&this_parent
->d_lock
);
2957 spin_release(&dentry
->d_lock
.dep_map
, 1, _RET_IP_
);
2958 this_parent
= dentry
;
2959 spin_acquire(&this_parent
->d_lock
.dep_map
, 0, 1, _RET_IP_
);
2962 if (!(dentry
->d_flags
& DCACHE_GENOCIDE
)) {
2963 dentry
->d_flags
|= DCACHE_GENOCIDE
;
2964 dentry
->d_lockref
.count
--;
2966 spin_unlock(&dentry
->d_lock
);
2968 if (this_parent
!= root
) {
2969 struct dentry
*child
= this_parent
;
2970 if (!(this_parent
->d_flags
& DCACHE_GENOCIDE
)) {
2971 this_parent
->d_flags
|= DCACHE_GENOCIDE
;
2972 this_parent
->d_lockref
.count
--;
2974 this_parent
= try_to_ascend(this_parent
, locked
, seq
);
2977 next
= child
->d_u
.d_child
.next
;
2980 spin_unlock(&this_parent
->d_lock
);
2981 if (!locked
&& read_seqretry(&rename_lock
, seq
))
2984 write_sequnlock(&rename_lock
);
2991 write_seqlock(&rename_lock
);
2995 void d_tmpfile(struct dentry
*dentry
, struct inode
*inode
)
2997 inode_dec_link_count(inode
);
2998 BUG_ON(dentry
->d_name
.name
!= dentry
->d_iname
||
2999 !hlist_unhashed(&dentry
->d_alias
) ||
3000 !d_unlinked(dentry
));
3001 spin_lock(&dentry
->d_parent
->d_lock
);
3002 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
3003 dentry
->d_name
.len
= sprintf(dentry
->d_iname
, "#%llu",
3004 (unsigned long long)inode
->i_ino
);
3005 spin_unlock(&dentry
->d_lock
);
3006 spin_unlock(&dentry
->d_parent
->d_lock
);
3007 d_instantiate(dentry
, inode
);
3009 EXPORT_SYMBOL(d_tmpfile
);
3011 static __initdata
unsigned long dhash_entries
;
3012 static int __init
set_dhash_entries(char *str
)
3016 dhash_entries
= simple_strtoul(str
, &str
, 0);
3019 __setup("dhash_entries=", set_dhash_entries
);
3021 static void __init
dcache_init_early(void)
3025 /* If hashes are distributed across NUMA nodes, defer
3026 * hash allocation until vmalloc space is available.
3032 alloc_large_system_hash("Dentry cache",
3033 sizeof(struct hlist_bl_head
),
3042 for (loop
= 0; loop
< (1U << d_hash_shift
); loop
++)
3043 INIT_HLIST_BL_HEAD(dentry_hashtable
+ loop
);
3046 static void __init
dcache_init(void)
3051 * A constructor could be added for stable state like the lists,
3052 * but it is probably not worth it because of the cache nature
3055 dentry_cache
= KMEM_CACHE(dentry
,
3056 SLAB_RECLAIM_ACCOUNT
|SLAB_PANIC
|SLAB_MEM_SPREAD
);
3058 /* Hash may have been set up in dcache_init_early */
3063 alloc_large_system_hash("Dentry cache",
3064 sizeof(struct hlist_bl_head
),
3073 for (loop
= 0; loop
< (1U << d_hash_shift
); loop
++)
3074 INIT_HLIST_BL_HEAD(dentry_hashtable
+ loop
);
3077 /* SLAB cache for __getname() consumers */
3078 struct kmem_cache
*names_cachep __read_mostly
;
3079 EXPORT_SYMBOL(names_cachep
);
3081 EXPORT_SYMBOL(d_genocide
);
3083 void __init
vfs_caches_init_early(void)
3085 dcache_init_early();
3089 void __init
vfs_caches_init(unsigned long mempages
)
3091 unsigned long reserve
;
3093 /* Base hash sizes on available memory, with a reserve equal to
3094 150% of current kernel size */
3096 reserve
= min((mempages
- nr_free_pages()) * 3/2, mempages
- 1);
3097 mempages
-= reserve
;
3099 names_cachep
= kmem_cache_create("names_cache", PATH_MAX
, 0,
3100 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
);
3104 files_init(mempages
);