4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * super.c contains code to handle: - mount structures
8 * - filesystem drivers list
10 * - umount system call
13 * GK 2/5/95 - Changed to support mounting the root fs via NFS
15 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17 * Added options to /proc/mounts:
18 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
19 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
20 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
23 #include <linux/export.h>
24 #include <linux/slab.h>
25 #include <linux/acct.h>
26 #include <linux/blkdev.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/writeback.h> /* for the emergency remount stuff */
30 #include <linux/idr.h>
31 #include <linux/mutex.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/cleancache.h>
35 #include <linux/fsnotify.h>
36 #include <linux/lockdep.h>
40 LIST_HEAD(super_blocks
);
41 DEFINE_SPINLOCK(sb_lock
);
43 static char *sb_writers_name
[SB_FREEZE_LEVELS
] = {
50 * One thing we have to be careful of with a per-sb shrinker is that we don't
51 * drop the last active reference to the superblock from within the shrinker.
52 * If that happens we could trigger unregistering the shrinker from within the
53 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
54 * take a passive reference to the superblock to avoid this from occurring.
56 static int prune_super(struct shrinker
*shrink
, struct shrink_control
*sc
)
58 struct super_block
*sb
;
62 sb
= container_of(shrink
, struct super_block
, s_shrink
);
65 * Deadlock avoidance. We may hold various FS locks, and we don't want
66 * to recurse into the FS that called us in clear_inode() and friends..
68 if (sc
->nr_to_scan
&& !(sc
->gfp_mask
& __GFP_FS
))
71 if (!grab_super_passive(sb
))
74 if (sb
->s_op
&& sb
->s_op
->nr_cached_objects
)
75 fs_objects
= sb
->s_op
->nr_cached_objects(sb
);
77 total_objects
= sb
->s_nr_dentry_unused
+
78 sb
->s_nr_inodes_unused
+ fs_objects
+ 1;
84 /* proportion the scan between the caches */
85 dentries
= (sc
->nr_to_scan
* sb
->s_nr_dentry_unused
) /
87 inodes
= (sc
->nr_to_scan
* sb
->s_nr_inodes_unused
) /
90 fs_objects
= (sc
->nr_to_scan
* fs_objects
) /
93 * prune the dcache first as the icache is pinned by it, then
94 * prune the icache, followed by the filesystem specific caches
96 prune_dcache_sb(sb
, dentries
);
97 prune_icache_sb(sb
, inodes
);
99 if (fs_objects
&& sb
->s_op
->free_cached_objects
) {
100 sb
->s_op
->free_cached_objects(sb
, fs_objects
);
101 fs_objects
= sb
->s_op
->nr_cached_objects(sb
);
103 total_objects
= sb
->s_nr_dentry_unused
+
104 sb
->s_nr_inodes_unused
+ fs_objects
;
107 total_objects
= (total_objects
/ 100) * sysctl_vfs_cache_pressure
;
109 return total_objects
;
112 static int init_sb_writers(struct super_block
*s
, struct file_system_type
*type
)
117 for (i
= 0; i
< SB_FREEZE_LEVELS
; i
++) {
118 err
= percpu_counter_init(&s
->s_writers
.counter
[i
], 0);
121 lockdep_init_map(&s
->s_writers
.lock_map
[i
], sb_writers_name
[i
],
122 &type
->s_writers_key
[i
], 0);
124 init_waitqueue_head(&s
->s_writers
.wait
);
125 init_waitqueue_head(&s
->s_writers
.wait_unfrozen
);
129 percpu_counter_destroy(&s
->s_writers
.counter
[i
]);
133 static void destroy_sb_writers(struct super_block
*s
)
137 for (i
= 0; i
< SB_FREEZE_LEVELS
; i
++)
138 percpu_counter_destroy(&s
->s_writers
.counter
[i
]);
142 * alloc_super - create new superblock
143 * @type: filesystem type superblock should belong to
144 * @flags: the mount flags
146 * Allocates and initializes a new &struct super_block. alloc_super()
147 * returns a pointer new superblock or %NULL if allocation had failed.
149 static struct super_block
*alloc_super(struct file_system_type
*type
, int flags
)
151 struct super_block
*s
= kzalloc(sizeof(struct super_block
), GFP_USER
);
152 static const struct super_operations default_op
;
155 if (security_sb_alloc(s
))
159 s
->s_files
= alloc_percpu(struct list_head
);
165 for_each_possible_cpu(i
)
166 INIT_LIST_HEAD(per_cpu_ptr(s
->s_files
, i
));
169 INIT_LIST_HEAD(&s
->s_files
);
171 if (init_sb_writers(s
, type
))
174 s
->s_bdi
= &default_backing_dev_info
;
175 INIT_HLIST_NODE(&s
->s_instances
);
176 INIT_HLIST_BL_HEAD(&s
->s_anon
);
177 INIT_LIST_HEAD(&s
->s_inodes
);
178 INIT_LIST_HEAD(&s
->s_dentry_lru
);
179 INIT_LIST_HEAD(&s
->s_inode_lru
);
180 spin_lock_init(&s
->s_inode_lru_lock
);
181 INIT_LIST_HEAD(&s
->s_mounts
);
182 init_rwsem(&s
->s_umount
);
183 lockdep_set_class(&s
->s_umount
, &type
->s_umount_key
);
185 * sget() can have s_umount recursion.
187 * When it cannot find a suitable sb, it allocates a new
188 * one (this one), and tries again to find a suitable old
191 * In case that succeeds, it will acquire the s_umount
192 * lock of the old one. Since these are clearly distrinct
193 * locks, and this object isn't exposed yet, there's no
196 * Annotate this by putting this lock in a different
199 down_write_nested(&s
->s_umount
, SINGLE_DEPTH_NESTING
);
201 atomic_set(&s
->s_active
, 1);
202 mutex_init(&s
->s_vfs_rename_mutex
);
203 lockdep_set_class(&s
->s_vfs_rename_mutex
, &type
->s_vfs_rename_key
);
204 mutex_init(&s
->s_dquot
.dqio_mutex
);
205 mutex_init(&s
->s_dquot
.dqonoff_mutex
);
206 init_rwsem(&s
->s_dquot
.dqptr_sem
);
207 s
->s_maxbytes
= MAX_NON_LFS
;
208 s
->s_op
= &default_op
;
209 s
->s_time_gran
= 1000000000;
210 s
->cleancache_poolid
= -1;
212 s
->s_shrink
.seeks
= DEFAULT_SEEKS
;
213 s
->s_shrink
.shrink
= prune_super
;
214 s
->s_shrink
.batch
= 1024;
222 free_percpu(s
->s_files
);
224 destroy_sb_writers(s
);
232 * destroy_super - frees a superblock
233 * @s: superblock to free
235 * Frees a superblock.
237 static inline void destroy_super(struct super_block
*s
)
240 free_percpu(s
->s_files
);
242 destroy_sb_writers(s
);
244 WARN_ON(!list_empty(&s
->s_mounts
));
250 /* Superblock refcounting */
253 * Drop a superblock's refcount. The caller must hold sb_lock.
255 static void __put_super(struct super_block
*sb
)
257 if (!--sb
->s_count
) {
258 list_del_init(&sb
->s_list
);
264 * put_super - drop a temporary reference to superblock
265 * @sb: superblock in question
267 * Drops a temporary reference, frees superblock if there's no
270 static void put_super(struct super_block
*sb
)
274 spin_unlock(&sb_lock
);
279 * deactivate_locked_super - drop an active reference to superblock
280 * @s: superblock to deactivate
282 * Drops an active reference to superblock, converting it into a temprory
283 * one if there is no other active references left. In that case we
284 * tell fs driver to shut it down and drop the temporary reference we
287 * Caller holds exclusive lock on superblock; that lock is released.
289 void deactivate_locked_super(struct super_block
*s
)
291 struct file_system_type
*fs
= s
->s_type
;
292 if (atomic_dec_and_test(&s
->s_active
)) {
293 cleancache_invalidate_fs(s
);
296 /* caches are now gone, we can safely kill the shrinker now */
297 unregister_shrinker(&s
->s_shrink
);
301 up_write(&s
->s_umount
);
305 EXPORT_SYMBOL(deactivate_locked_super
);
308 * deactivate_super - drop an active reference to superblock
309 * @s: superblock to deactivate
311 * Variant of deactivate_locked_super(), except that superblock is *not*
312 * locked by caller. If we are going to drop the final active reference,
313 * lock will be acquired prior to that.
315 void deactivate_super(struct super_block
*s
)
317 if (!atomic_add_unless(&s
->s_active
, -1, 1)) {
318 down_write(&s
->s_umount
);
319 deactivate_locked_super(s
);
323 EXPORT_SYMBOL(deactivate_super
);
326 * grab_super - acquire an active reference
327 * @s: reference we are trying to make active
329 * Tries to acquire an active reference. grab_super() is used when we
330 * had just found a superblock in super_blocks or fs_type->fs_supers
331 * and want to turn it into a full-blown active reference. grab_super()
332 * is called with sb_lock held and drops it. Returns 1 in case of
333 * success, 0 if we had failed (superblock contents was already dead or
334 * dying when grab_super() had been called). Note that this is only
335 * called for superblocks not in rundown mode (== ones still on ->fs_supers
336 * of their type), so increment of ->s_count is OK here.
338 static int grab_super(struct super_block
*s
) __releases(sb_lock
)
341 spin_unlock(&sb_lock
);
342 down_write(&s
->s_umount
);
343 if ((s
->s_flags
& MS_BORN
) && atomic_inc_not_zero(&s
->s_active
)) {
347 up_write(&s
->s_umount
);
353 * grab_super_passive - acquire a passive reference
354 * @sb: reference we are trying to grab
356 * Tries to acquire a passive reference. This is used in places where we
357 * cannot take an active reference but we need to ensure that the
358 * superblock does not go away while we are working on it. It returns
359 * false if a reference was not gained, and returns true with the s_umount
360 * lock held in read mode if a reference is gained. On successful return,
361 * the caller must drop the s_umount lock and the passive reference when
364 bool grab_super_passive(struct super_block
*sb
)
367 if (hlist_unhashed(&sb
->s_instances
)) {
368 spin_unlock(&sb_lock
);
373 spin_unlock(&sb_lock
);
375 if (down_read_trylock(&sb
->s_umount
)) {
376 if (sb
->s_root
&& (sb
->s_flags
& MS_BORN
))
378 up_read(&sb
->s_umount
);
386 * generic_shutdown_super - common helper for ->kill_sb()
387 * @sb: superblock to kill
389 * generic_shutdown_super() does all fs-independent work on superblock
390 * shutdown. Typical ->kill_sb() should pick all fs-specific objects
391 * that need destruction out of superblock, call generic_shutdown_super()
392 * and release aforementioned objects. Note: dentries and inodes _are_
393 * taken care of and do not need specific handling.
395 * Upon calling this function, the filesystem may no longer alter or
396 * rearrange the set of dentries belonging to this super_block, nor may it
397 * change the attachments of dentries to inodes.
399 void generic_shutdown_super(struct super_block
*sb
)
401 const struct super_operations
*sop
= sb
->s_op
;
404 shrink_dcache_for_umount(sb
);
406 sb
->s_flags
&= ~MS_ACTIVE
;
408 fsnotify_unmount_inodes(&sb
->s_inodes
);
412 if (sb
->s_dio_done_wq
) {
413 destroy_workqueue(sb
->s_dio_done_wq
);
414 sb
->s_dio_done_wq
= NULL
;
420 if (!list_empty(&sb
->s_inodes
)) {
421 printk("VFS: Busy inodes after unmount of %s. "
422 "Self-destruct in 5 seconds. Have a nice day...\n",
427 /* should be initialized for __put_super_and_need_restart() */
428 hlist_del_init(&sb
->s_instances
);
429 spin_unlock(&sb_lock
);
430 up_write(&sb
->s_umount
);
433 EXPORT_SYMBOL(generic_shutdown_super
);
436 * sget - find or create a superblock
437 * @type: filesystem type superblock should belong to
438 * @test: comparison callback
439 * @set: setup callback
440 * @flags: mount flags
441 * @data: argument to each of them
443 struct super_block
*sget(struct file_system_type
*type
,
444 int (*test
)(struct super_block
*,void *),
445 int (*set
)(struct super_block
*,void *),
449 struct super_block
*s
= NULL
;
450 struct super_block
*old
;
456 hlist_for_each_entry(old
, &type
->fs_supers
, s_instances
) {
457 if (!test(old
, data
))
459 if (!grab_super(old
))
462 up_write(&s
->s_umount
);
470 spin_unlock(&sb_lock
);
471 s
= alloc_super(type
, flags
);
473 return ERR_PTR(-ENOMEM
);
479 spin_unlock(&sb_lock
);
480 up_write(&s
->s_umount
);
485 strlcpy(s
->s_id
, type
->name
, sizeof(s
->s_id
));
486 list_add_tail(&s
->s_list
, &super_blocks
);
487 hlist_add_head(&s
->s_instances
, &type
->fs_supers
);
488 spin_unlock(&sb_lock
);
489 get_filesystem(type
);
490 register_shrinker(&s
->s_shrink
);
496 void drop_super(struct super_block
*sb
)
498 up_read(&sb
->s_umount
);
502 EXPORT_SYMBOL(drop_super
);
505 * iterate_supers - call function for all active superblocks
506 * @f: function to call
507 * @arg: argument to pass to it
509 * Scans the superblock list and calls given function, passing it
510 * locked superblock and given argument.
512 void iterate_supers(void (*f
)(struct super_block
*, void *), void *arg
)
514 struct super_block
*sb
, *p
= NULL
;
517 list_for_each_entry(sb
, &super_blocks
, s_list
) {
518 if (hlist_unhashed(&sb
->s_instances
))
521 spin_unlock(&sb_lock
);
523 down_read(&sb
->s_umount
);
524 if (sb
->s_root
&& (sb
->s_flags
& MS_BORN
))
526 up_read(&sb
->s_umount
);
535 spin_unlock(&sb_lock
);
539 * iterate_supers_type - call function for superblocks of given type
541 * @f: function to call
542 * @arg: argument to pass to it
544 * Scans the superblock list and calls given function, passing it
545 * locked superblock and given argument.
547 void iterate_supers_type(struct file_system_type
*type
,
548 void (*f
)(struct super_block
*, void *), void *arg
)
550 struct super_block
*sb
, *p
= NULL
;
553 hlist_for_each_entry(sb
, &type
->fs_supers
, s_instances
) {
555 spin_unlock(&sb_lock
);
557 down_read(&sb
->s_umount
);
558 if (sb
->s_root
&& (sb
->s_flags
& MS_BORN
))
560 up_read(&sb
->s_umount
);
569 spin_unlock(&sb_lock
);
572 EXPORT_SYMBOL(iterate_supers_type
);
575 * get_super - get the superblock of a device
576 * @bdev: device to get the superblock for
578 * Scans the superblock list and finds the superblock of the file system
579 * mounted on the device given. %NULL is returned if no match is found.
582 struct super_block
*get_super(struct block_device
*bdev
)
584 struct super_block
*sb
;
591 list_for_each_entry(sb
, &super_blocks
, s_list
) {
592 if (hlist_unhashed(&sb
->s_instances
))
594 if (sb
->s_bdev
== bdev
) {
596 spin_unlock(&sb_lock
);
597 down_read(&sb
->s_umount
);
599 if (sb
->s_root
&& (sb
->s_flags
& MS_BORN
))
601 up_read(&sb
->s_umount
);
602 /* nope, got unmounted */
608 spin_unlock(&sb_lock
);
612 EXPORT_SYMBOL(get_super
);
615 * get_super_thawed - get thawed superblock of a device
616 * @bdev: device to get the superblock for
618 * Scans the superblock list and finds the superblock of the file system
619 * mounted on the device. The superblock is returned once it is thawed
620 * (or immediately if it was not frozen). %NULL is returned if no match
623 struct super_block
*get_super_thawed(struct block_device
*bdev
)
626 struct super_block
*s
= get_super(bdev
);
627 if (!s
|| s
->s_writers
.frozen
== SB_UNFROZEN
)
629 up_read(&s
->s_umount
);
630 wait_event(s
->s_writers
.wait_unfrozen
,
631 s
->s_writers
.frozen
== SB_UNFROZEN
);
635 EXPORT_SYMBOL(get_super_thawed
);
638 * get_active_super - get an active reference to the superblock of a device
639 * @bdev: device to get the superblock for
641 * Scans the superblock list and finds the superblock of the file system
642 * mounted on the device given. Returns the superblock with an active
643 * reference or %NULL if none was found.
645 struct super_block
*get_active_super(struct block_device
*bdev
)
647 struct super_block
*sb
;
654 list_for_each_entry(sb
, &super_blocks
, s_list
) {
655 if (hlist_unhashed(&sb
->s_instances
))
657 if (sb
->s_bdev
== bdev
) {
660 up_write(&sb
->s_umount
);
664 spin_unlock(&sb_lock
);
668 struct super_block
*user_get_super(dev_t dev
)
670 struct super_block
*sb
;
674 list_for_each_entry(sb
, &super_blocks
, s_list
) {
675 if (hlist_unhashed(&sb
->s_instances
))
677 if (sb
->s_dev
== dev
) {
679 spin_unlock(&sb_lock
);
680 down_read(&sb
->s_umount
);
682 if (sb
->s_root
&& (sb
->s_flags
& MS_BORN
))
684 up_read(&sb
->s_umount
);
685 /* nope, got unmounted */
691 spin_unlock(&sb_lock
);
696 * do_remount_sb - asks filesystem to change mount options.
697 * @sb: superblock in question
698 * @flags: numeric part of options
699 * @data: the rest of options
700 * @force: whether or not to force the change
702 * Alters the mount options of a mounted file system.
704 int do_remount_sb(struct super_block
*sb
, int flags
, void *data
, int force
)
709 if (sb
->s_writers
.frozen
!= SB_UNFROZEN
)
713 if (!(flags
& MS_RDONLY
) && bdev_read_only(sb
->s_bdev
))
717 if (flags
& MS_RDONLY
)
719 shrink_dcache_sb(sb
);
722 remount_ro
= (flags
& MS_RDONLY
) && !(sb
->s_flags
& MS_RDONLY
);
724 /* If we are remounting RDONLY and current sb is read/write,
725 make sure there are no rw files opened */
730 retval
= sb_prepare_remount_readonly(sb
);
736 if (sb
->s_op
->remount_fs
) {
737 retval
= sb
->s_op
->remount_fs(sb
, &flags
, data
);
740 goto cancel_readonly
;
741 /* If forced remount, go ahead despite any errors */
742 WARN(1, "forced remount of a %s fs returned %i\n",
743 sb
->s_type
->name
, retval
);
746 sb
->s_flags
= (sb
->s_flags
& ~MS_RMT_MASK
) | (flags
& MS_RMT_MASK
);
747 /* Needs to be ordered wrt mnt_is_readonly() */
749 sb
->s_readonly_remount
= 0;
752 * Some filesystems modify their metadata via some other path than the
753 * bdev buffer cache (eg. use a private mapping, or directories in
754 * pagecache, etc). Also file data modifications go via their own
755 * mappings. So If we try to mount readonly then copy the filesystem
756 * from bdev, we could get stale data, so invalidate it to give a best
757 * effort at coherency.
759 if (remount_ro
&& sb
->s_bdev
)
760 invalidate_bdev(sb
->s_bdev
);
764 sb
->s_readonly_remount
= 0;
768 static void do_emergency_remount(struct work_struct
*work
)
770 struct super_block
*sb
, *p
= NULL
;
773 list_for_each_entry(sb
, &super_blocks
, s_list
) {
774 if (hlist_unhashed(&sb
->s_instances
))
777 spin_unlock(&sb_lock
);
778 down_write(&sb
->s_umount
);
779 if (sb
->s_root
&& sb
->s_bdev
&& (sb
->s_flags
& MS_BORN
) &&
780 !(sb
->s_flags
& MS_RDONLY
)) {
782 * What lock protects sb->s_flags??
784 do_remount_sb(sb
, MS_RDONLY
, NULL
, 1);
786 up_write(&sb
->s_umount
);
794 spin_unlock(&sb_lock
);
796 printk("Emergency Remount complete\n");
799 void emergency_remount(void)
801 struct work_struct
*work
;
803 work
= kmalloc(sizeof(*work
), GFP_ATOMIC
);
805 INIT_WORK(work
, do_emergency_remount
);
811 * Unnamed block devices are dummy devices used by virtual
812 * filesystems which don't use real block-devices. -- jrs
815 static DEFINE_IDA(unnamed_dev_ida
);
816 static DEFINE_SPINLOCK(unnamed_dev_lock
);/* protects the above */
817 static int unnamed_dev_start
= 0; /* don't bother trying below it */
819 int get_anon_bdev(dev_t
*p
)
825 if (ida_pre_get(&unnamed_dev_ida
, GFP_ATOMIC
) == 0)
827 spin_lock(&unnamed_dev_lock
);
828 error
= ida_get_new_above(&unnamed_dev_ida
, unnamed_dev_start
, &dev
);
830 unnamed_dev_start
= dev
+ 1;
831 spin_unlock(&unnamed_dev_lock
);
832 if (error
== -EAGAIN
)
833 /* We raced and lost with another CPU. */
838 if (dev
== (1 << MINORBITS
)) {
839 spin_lock(&unnamed_dev_lock
);
840 ida_remove(&unnamed_dev_ida
, dev
);
841 if (unnamed_dev_start
> dev
)
842 unnamed_dev_start
= dev
;
843 spin_unlock(&unnamed_dev_lock
);
846 *p
= MKDEV(0, dev
& MINORMASK
);
849 EXPORT_SYMBOL(get_anon_bdev
);
851 void free_anon_bdev(dev_t dev
)
853 int slot
= MINOR(dev
);
854 spin_lock(&unnamed_dev_lock
);
855 ida_remove(&unnamed_dev_ida
, slot
);
856 if (slot
< unnamed_dev_start
)
857 unnamed_dev_start
= slot
;
858 spin_unlock(&unnamed_dev_lock
);
860 EXPORT_SYMBOL(free_anon_bdev
);
862 int set_anon_super(struct super_block
*s
, void *data
)
864 int error
= get_anon_bdev(&s
->s_dev
);
866 s
->s_bdi
= &noop_backing_dev_info
;
870 EXPORT_SYMBOL(set_anon_super
);
872 void kill_anon_super(struct super_block
*sb
)
874 dev_t dev
= sb
->s_dev
;
875 generic_shutdown_super(sb
);
879 EXPORT_SYMBOL(kill_anon_super
);
881 void kill_litter_super(struct super_block
*sb
)
884 d_genocide(sb
->s_root
);
888 EXPORT_SYMBOL(kill_litter_super
);
890 static int ns_test_super(struct super_block
*sb
, void *data
)
892 return sb
->s_fs_info
== data
;
895 static int ns_set_super(struct super_block
*sb
, void *data
)
897 sb
->s_fs_info
= data
;
898 return set_anon_super(sb
, NULL
);
901 struct dentry
*mount_ns(struct file_system_type
*fs_type
, int flags
,
902 void *data
, int (*fill_super
)(struct super_block
*, void *, int))
904 struct super_block
*sb
;
906 sb
= sget(fs_type
, ns_test_super
, ns_set_super
, flags
, data
);
912 err
= fill_super(sb
, data
, flags
& MS_SILENT
? 1 : 0);
914 deactivate_locked_super(sb
);
918 sb
->s_flags
|= MS_ACTIVE
;
921 return dget(sb
->s_root
);
924 EXPORT_SYMBOL(mount_ns
);
927 static int set_bdev_super(struct super_block
*s
, void *data
)
930 s
->s_dev
= s
->s_bdev
->bd_dev
;
933 * We set the bdi here to the queue backing, file systems can
934 * overwrite this in ->fill_super()
936 s
->s_bdi
= &bdev_get_queue(s
->s_bdev
)->backing_dev_info
;
940 static int test_bdev_super(struct super_block
*s
, void *data
)
942 return (void *)s
->s_bdev
== data
;
945 struct dentry
*mount_bdev(struct file_system_type
*fs_type
,
946 int flags
, const char *dev_name
, void *data
,
947 int (*fill_super
)(struct super_block
*, void *, int))
949 struct block_device
*bdev
;
950 struct super_block
*s
;
951 fmode_t mode
= FMODE_READ
| FMODE_EXCL
;
954 if (!(flags
& MS_RDONLY
))
957 bdev
= blkdev_get_by_path(dev_name
, mode
, fs_type
);
959 return ERR_CAST(bdev
);
962 * once the super is inserted into the list by sget, s_umount
963 * will protect the lockfs code from trying to start a snapshot
964 * while we are mounting
966 mutex_lock(&bdev
->bd_fsfreeze_mutex
);
967 if (bdev
->bd_fsfreeze_count
> 0) {
968 mutex_unlock(&bdev
->bd_fsfreeze_mutex
);
972 s
= sget(fs_type
, test_bdev_super
, set_bdev_super
, flags
| MS_NOSEC
,
974 mutex_unlock(&bdev
->bd_fsfreeze_mutex
);
979 if ((flags
^ s
->s_flags
) & MS_RDONLY
) {
980 deactivate_locked_super(s
);
986 * s_umount nests inside bd_mutex during
987 * __invalidate_device(). blkdev_put() acquires
988 * bd_mutex and can't be called under s_umount. Drop
989 * s_umount temporarily. This is safe as we're
990 * holding an active reference.
992 up_write(&s
->s_umount
);
993 blkdev_put(bdev
, mode
);
994 down_write(&s
->s_umount
);
996 char b
[BDEVNAME_SIZE
];
999 strlcpy(s
->s_id
, bdevname(bdev
, b
), sizeof(s
->s_id
));
1000 sb_set_blocksize(s
, block_size(bdev
));
1001 error
= fill_super(s
, data
, flags
& MS_SILENT
? 1 : 0);
1003 deactivate_locked_super(s
);
1007 s
->s_flags
|= MS_ACTIVE
;
1011 return dget(s
->s_root
);
1016 blkdev_put(bdev
, mode
);
1018 return ERR_PTR(error
);
1020 EXPORT_SYMBOL(mount_bdev
);
1022 void kill_block_super(struct super_block
*sb
)
1024 struct block_device
*bdev
= sb
->s_bdev
;
1025 fmode_t mode
= sb
->s_mode
;
1027 bdev
->bd_super
= NULL
;
1028 generic_shutdown_super(sb
);
1029 sync_blockdev(bdev
);
1030 WARN_ON_ONCE(!(mode
& FMODE_EXCL
));
1031 blkdev_put(bdev
, mode
| FMODE_EXCL
);
1034 EXPORT_SYMBOL(kill_block_super
);
1037 struct dentry
*mount_nodev(struct file_system_type
*fs_type
,
1038 int flags
, void *data
,
1039 int (*fill_super
)(struct super_block
*, void *, int))
1042 struct super_block
*s
= sget(fs_type
, NULL
, set_anon_super
, flags
, NULL
);
1047 error
= fill_super(s
, data
, flags
& MS_SILENT
? 1 : 0);
1049 deactivate_locked_super(s
);
1050 return ERR_PTR(error
);
1052 s
->s_flags
|= MS_ACTIVE
;
1053 return dget(s
->s_root
);
1055 EXPORT_SYMBOL(mount_nodev
);
1057 static int compare_single(struct super_block
*s
, void *p
)
1062 struct dentry
*mount_single(struct file_system_type
*fs_type
,
1063 int flags
, void *data
,
1064 int (*fill_super
)(struct super_block
*, void *, int))
1066 struct super_block
*s
;
1069 s
= sget(fs_type
, compare_single
, set_anon_super
, flags
, NULL
);
1073 error
= fill_super(s
, data
, flags
& MS_SILENT
? 1 : 0);
1075 deactivate_locked_super(s
);
1076 return ERR_PTR(error
);
1078 s
->s_flags
|= MS_ACTIVE
;
1080 do_remount_sb(s
, flags
, data
, 0);
1082 return dget(s
->s_root
);
1084 EXPORT_SYMBOL(mount_single
);
1087 mount_fs(struct file_system_type
*type
, int flags
, const char *name
, void *data
)
1089 struct dentry
*root
;
1090 struct super_block
*sb
;
1091 char *secdata
= NULL
;
1092 int error
= -ENOMEM
;
1094 if (data
&& !(type
->fs_flags
& FS_BINARY_MOUNTDATA
)) {
1095 secdata
= alloc_secdata();
1099 error
= security_sb_copy_data(data
, secdata
);
1101 goto out_free_secdata
;
1104 root
= type
->mount(type
, flags
, name
, data
);
1106 error
= PTR_ERR(root
);
1107 goto out_free_secdata
;
1111 WARN_ON(!sb
->s_bdi
);
1112 WARN_ON(sb
->s_bdi
== &default_backing_dev_info
);
1113 sb
->s_flags
|= MS_BORN
;
1115 error
= security_sb_kern_mount(sb
, flags
, secdata
);
1120 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1121 * but s_maxbytes was an unsigned long long for many releases. Throw
1122 * this warning for a little while to try and catch filesystems that
1123 * violate this rule.
1125 WARN((sb
->s_maxbytes
< 0), "%s set sb->s_maxbytes to "
1126 "negative value (%lld)\n", type
->name
, sb
->s_maxbytes
);
1128 up_write(&sb
->s_umount
);
1129 free_secdata(secdata
);
1133 deactivate_locked_super(sb
);
1135 free_secdata(secdata
);
1137 return ERR_PTR(error
);
1141 * This is an internal function, please use sb_end_{write,pagefault,intwrite}
1144 void __sb_end_write(struct super_block
*sb
, int level
)
1146 percpu_counter_dec(&sb
->s_writers
.counter
[level
-1]);
1148 * Make sure s_writers are updated before we wake up waiters in
1152 if (waitqueue_active(&sb
->s_writers
.wait
))
1153 wake_up(&sb
->s_writers
.wait
);
1154 rwsem_release(&sb
->s_writers
.lock_map
[level
-1], 1, _RET_IP_
);
1156 EXPORT_SYMBOL(__sb_end_write
);
1158 #ifdef CONFIG_LOCKDEP
1160 * We want lockdep to tell us about possible deadlocks with freezing but
1161 * it's it bit tricky to properly instrument it. Getting a freeze protection
1162 * works as getting a read lock but there are subtle problems. XFS for example
1163 * gets freeze protection on internal level twice in some cases, which is OK
1164 * only because we already hold a freeze protection also on higher level. Due
1165 * to these cases we have to tell lockdep we are doing trylock when we
1166 * already hold a freeze protection for a higher freeze level.
1168 static void acquire_freeze_lock(struct super_block
*sb
, int level
, bool trylock
,
1174 for (i
= 0; i
< level
- 1; i
++)
1175 if (lock_is_held(&sb
->s_writers
.lock_map
[i
])) {
1180 rwsem_acquire_read(&sb
->s_writers
.lock_map
[level
-1], 0, trylock
, ip
);
1185 * This is an internal function, please use sb_start_{write,pagefault,intwrite}
1188 int __sb_start_write(struct super_block
*sb
, int level
, bool wait
)
1191 if (unlikely(sb
->s_writers
.frozen
>= level
)) {
1194 wait_event(sb
->s_writers
.wait_unfrozen
,
1195 sb
->s_writers
.frozen
< level
);
1198 #ifdef CONFIG_LOCKDEP
1199 acquire_freeze_lock(sb
, level
, !wait
, _RET_IP_
);
1201 percpu_counter_inc(&sb
->s_writers
.counter
[level
-1]);
1203 * Make sure counter is updated before we check for frozen.
1204 * freeze_super() first sets frozen and then checks the counter.
1207 if (unlikely(sb
->s_writers
.frozen
>= level
)) {
1208 __sb_end_write(sb
, level
);
1213 EXPORT_SYMBOL(__sb_start_write
);
1216 * sb_wait_write - wait until all writers to given file system finish
1217 * @sb: the super for which we wait
1218 * @level: type of writers we wait for (normal vs page fault)
1220 * This function waits until there are no writers of given type to given file
1221 * system. Caller of this function should make sure there can be no new writers
1222 * of type @level before calling this function. Otherwise this function can
1225 static void sb_wait_write(struct super_block
*sb
, int level
)
1230 * We just cycle-through lockdep here so that it does not complain
1231 * about returning with lock to userspace
1233 rwsem_acquire(&sb
->s_writers
.lock_map
[level
-1], 0, 0, _THIS_IP_
);
1234 rwsem_release(&sb
->s_writers
.lock_map
[level
-1], 1, _THIS_IP_
);
1240 * We use a barrier in prepare_to_wait() to separate setting
1241 * of frozen and checking of the counter
1243 prepare_to_wait(&sb
->s_writers
.wait
, &wait
,
1244 TASK_UNINTERRUPTIBLE
);
1246 writers
= percpu_counter_sum(&sb
->s_writers
.counter
[level
-1]);
1250 finish_wait(&sb
->s_writers
.wait
, &wait
);
1255 * freeze_super - lock the filesystem and force it into a consistent state
1256 * @sb: the super to lock
1258 * Syncs the super to make sure the filesystem is consistent and calls the fs's
1259 * freeze_fs. Subsequent calls to this without first thawing the fs will return
1262 * During this function, sb->s_writers.frozen goes through these values:
1264 * SB_UNFROZEN: File system is normal, all writes progress as usual.
1266 * SB_FREEZE_WRITE: The file system is in the process of being frozen. New
1267 * writes should be blocked, though page faults are still allowed. We wait for
1268 * all writes to complete and then proceed to the next stage.
1270 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1271 * but internal fs threads can still modify the filesystem (although they
1272 * should not dirty new pages or inodes), writeback can run etc. After waiting
1273 * for all running page faults we sync the filesystem which will clean all
1274 * dirty pages and inodes (no new dirty pages or inodes can be created when
1277 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1278 * modification are blocked (e.g. XFS preallocation truncation on inode
1279 * reclaim). This is usually implemented by blocking new transactions for
1280 * filesystems that have them and need this additional guard. After all
1281 * internal writers are finished we call ->freeze_fs() to finish filesystem
1282 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1283 * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1285 * sb->s_writers.frozen is protected by sb->s_umount.
1287 int freeze_super(struct super_block
*sb
)
1291 atomic_inc(&sb
->s_active
);
1292 down_write(&sb
->s_umount
);
1293 if (sb
->s_writers
.frozen
!= SB_UNFROZEN
) {
1294 deactivate_locked_super(sb
);
1298 if (!(sb
->s_flags
& MS_BORN
)) {
1299 up_write(&sb
->s_umount
);
1300 return 0; /* sic - it's "nothing to do" */
1303 if (sb
->s_flags
& MS_RDONLY
) {
1304 /* Nothing to do really... */
1305 sb
->s_writers
.frozen
= SB_FREEZE_COMPLETE
;
1306 up_write(&sb
->s_umount
);
1310 /* From now on, no new normal writers can start */
1311 sb
->s_writers
.frozen
= SB_FREEZE_WRITE
;
1314 /* Release s_umount to preserve sb_start_write -> s_umount ordering */
1315 up_write(&sb
->s_umount
);
1317 sb_wait_write(sb
, SB_FREEZE_WRITE
);
1319 /* Now we go and block page faults... */
1320 down_write(&sb
->s_umount
);
1321 sb
->s_writers
.frozen
= SB_FREEZE_PAGEFAULT
;
1324 sb_wait_write(sb
, SB_FREEZE_PAGEFAULT
);
1326 /* All writers are done so after syncing there won't be dirty data */
1327 sync_filesystem(sb
);
1329 /* Now wait for internal filesystem counter */
1330 sb
->s_writers
.frozen
= SB_FREEZE_FS
;
1332 sb_wait_write(sb
, SB_FREEZE_FS
);
1334 if (sb
->s_op
->freeze_fs
) {
1335 ret
= sb
->s_op
->freeze_fs(sb
);
1338 "VFS:Filesystem freeze failed\n");
1339 sb
->s_writers
.frozen
= SB_UNFROZEN
;
1341 wake_up(&sb
->s_writers
.wait_unfrozen
);
1342 deactivate_locked_super(sb
);
1347 * This is just for debugging purposes so that fs can warn if it
1348 * sees write activity when frozen is set to SB_FREEZE_COMPLETE.
1350 sb
->s_writers
.frozen
= SB_FREEZE_COMPLETE
;
1351 up_write(&sb
->s_umount
);
1354 EXPORT_SYMBOL(freeze_super
);
1357 * thaw_super -- unlock filesystem
1358 * @sb: the super to thaw
1360 * Unlocks the filesystem and marks it writeable again after freeze_super().
1362 int thaw_super(struct super_block
*sb
)
1366 down_write(&sb
->s_umount
);
1367 if (sb
->s_writers
.frozen
== SB_UNFROZEN
) {
1368 up_write(&sb
->s_umount
);
1372 if (sb
->s_flags
& MS_RDONLY
)
1375 if (sb
->s_op
->unfreeze_fs
) {
1376 error
= sb
->s_op
->unfreeze_fs(sb
);
1379 "VFS:Filesystem thaw failed\n");
1380 up_write(&sb
->s_umount
);
1386 sb
->s_writers
.frozen
= SB_UNFROZEN
;
1388 wake_up(&sb
->s_writers
.wait_unfrozen
);
1389 deactivate_locked_super(sb
);
1393 EXPORT_SYMBOL(thaw_super
);