2 * Generic hugetlb support.
3 * (C) Nadia Yvette Chambers, April 2004
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
26 #include <asm/pgtable.h>
30 #include <linux/hugetlb.h>
31 #include <linux/hugetlb_cgroup.h>
32 #include <linux/node.h>
35 const unsigned long hugetlb_zero
= 0, hugetlb_infinity
= ~0UL;
36 static gfp_t htlb_alloc_mask
= GFP_HIGHUSER
;
37 unsigned long hugepages_treat_as_movable
;
39 int hugetlb_max_hstate __read_mostly
;
40 unsigned int default_hstate_idx
;
41 struct hstate hstates
[HUGE_MAX_HSTATE
];
43 __initdata
LIST_HEAD(huge_boot_pages
);
45 /* for command line parsing */
46 static struct hstate
* __initdata parsed_hstate
;
47 static unsigned long __initdata default_hstate_max_huge_pages
;
48 static unsigned long __initdata default_hstate_size
;
51 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
53 DEFINE_SPINLOCK(hugetlb_lock
);
55 static inline void unlock_or_release_subpool(struct hugepage_subpool
*spool
)
57 bool free
= (spool
->count
== 0) && (spool
->used_hpages
== 0);
59 spin_unlock(&spool
->lock
);
61 /* If no pages are used, and no other handles to the subpool
62 * remain, free the subpool the subpool remain */
67 struct hugepage_subpool
*hugepage_new_subpool(long nr_blocks
)
69 struct hugepage_subpool
*spool
;
71 spool
= kmalloc(sizeof(*spool
), GFP_KERNEL
);
75 spin_lock_init(&spool
->lock
);
77 spool
->max_hpages
= nr_blocks
;
78 spool
->used_hpages
= 0;
83 void hugepage_put_subpool(struct hugepage_subpool
*spool
)
85 spin_lock(&spool
->lock
);
86 BUG_ON(!spool
->count
);
88 unlock_or_release_subpool(spool
);
91 static int hugepage_subpool_get_pages(struct hugepage_subpool
*spool
,
99 spin_lock(&spool
->lock
);
100 if ((spool
->used_hpages
+ delta
) <= spool
->max_hpages
) {
101 spool
->used_hpages
+= delta
;
105 spin_unlock(&spool
->lock
);
110 static void hugepage_subpool_put_pages(struct hugepage_subpool
*spool
,
116 spin_lock(&spool
->lock
);
117 spool
->used_hpages
-= delta
;
118 /* If hugetlbfs_put_super couldn't free spool due to
119 * an outstanding quota reference, free it now. */
120 unlock_or_release_subpool(spool
);
123 static inline struct hugepage_subpool
*subpool_inode(struct inode
*inode
)
125 return HUGETLBFS_SB(inode
->i_sb
)->spool
;
128 static inline struct hugepage_subpool
*subpool_vma(struct vm_area_struct
*vma
)
130 return subpool_inode(file_inode(vma
->vm_file
));
134 * Region tracking -- allows tracking of reservations and instantiated pages
135 * across the pages in a mapping.
137 * The region data structures are protected by a combination of the mmap_sem
138 * and the hugetlb_instantion_mutex. To access or modify a region the caller
139 * must either hold the mmap_sem for write, or the mmap_sem for read and
140 * the hugetlb_instantiation mutex:
142 * down_write(&mm->mmap_sem);
144 * down_read(&mm->mmap_sem);
145 * mutex_lock(&hugetlb_instantiation_mutex);
148 struct list_head link
;
153 static long region_add(struct list_head
*head
, long f
, long t
)
155 struct file_region
*rg
, *nrg
, *trg
;
157 /* Locate the region we are either in or before. */
158 list_for_each_entry(rg
, head
, link
)
162 /* Round our left edge to the current segment if it encloses us. */
166 /* Check for and consume any regions we now overlap with. */
168 list_for_each_entry_safe(rg
, trg
, rg
->link
.prev
, link
) {
169 if (&rg
->link
== head
)
174 /* If this area reaches higher then extend our area to
175 * include it completely. If this is not the first area
176 * which we intend to reuse, free it. */
189 static long region_chg(struct list_head
*head
, long f
, long t
)
191 struct file_region
*rg
, *nrg
;
194 /* Locate the region we are before or in. */
195 list_for_each_entry(rg
, head
, link
)
199 /* If we are below the current region then a new region is required.
200 * Subtle, allocate a new region at the position but make it zero
201 * size such that we can guarantee to record the reservation. */
202 if (&rg
->link
== head
|| t
< rg
->from
) {
203 nrg
= kmalloc(sizeof(*nrg
), GFP_KERNEL
);
208 INIT_LIST_HEAD(&nrg
->link
);
209 list_add(&nrg
->link
, rg
->link
.prev
);
214 /* Round our left edge to the current segment if it encloses us. */
219 /* Check for and consume any regions we now overlap with. */
220 list_for_each_entry(rg
, rg
->link
.prev
, link
) {
221 if (&rg
->link
== head
)
226 /* We overlap with this area, if it extends further than
227 * us then we must extend ourselves. Account for its
228 * existing reservation. */
233 chg
-= rg
->to
- rg
->from
;
238 static long region_truncate(struct list_head
*head
, long end
)
240 struct file_region
*rg
, *trg
;
243 /* Locate the region we are either in or before. */
244 list_for_each_entry(rg
, head
, link
)
247 if (&rg
->link
== head
)
250 /* If we are in the middle of a region then adjust it. */
251 if (end
> rg
->from
) {
254 rg
= list_entry(rg
->link
.next
, typeof(*rg
), link
);
257 /* Drop any remaining regions. */
258 list_for_each_entry_safe(rg
, trg
, rg
->link
.prev
, link
) {
259 if (&rg
->link
== head
)
261 chg
+= rg
->to
- rg
->from
;
268 static long region_count(struct list_head
*head
, long f
, long t
)
270 struct file_region
*rg
;
273 /* Locate each segment we overlap with, and count that overlap. */
274 list_for_each_entry(rg
, head
, link
) {
283 seg_from
= max(rg
->from
, f
);
284 seg_to
= min(rg
->to
, t
);
286 chg
+= seg_to
- seg_from
;
293 * Convert the address within this vma to the page offset within
294 * the mapping, in pagecache page units; huge pages here.
296 static pgoff_t
vma_hugecache_offset(struct hstate
*h
,
297 struct vm_area_struct
*vma
, unsigned long address
)
299 return ((address
- vma
->vm_start
) >> huge_page_shift(h
)) +
300 (vma
->vm_pgoff
>> huge_page_order(h
));
303 pgoff_t
linear_hugepage_index(struct vm_area_struct
*vma
,
304 unsigned long address
)
306 return vma_hugecache_offset(hstate_vma(vma
), vma
, address
);
310 * Return the size of the pages allocated when backing a VMA. In the majority
311 * cases this will be same size as used by the page table entries.
313 unsigned long vma_kernel_pagesize(struct vm_area_struct
*vma
)
315 struct hstate
*hstate
;
317 if (!is_vm_hugetlb_page(vma
))
320 hstate
= hstate_vma(vma
);
322 return 1UL << huge_page_shift(hstate
);
324 EXPORT_SYMBOL_GPL(vma_kernel_pagesize
);
327 * Return the page size being used by the MMU to back a VMA. In the majority
328 * of cases, the page size used by the kernel matches the MMU size. On
329 * architectures where it differs, an architecture-specific version of this
330 * function is required.
332 #ifndef vma_mmu_pagesize
333 unsigned long vma_mmu_pagesize(struct vm_area_struct
*vma
)
335 return vma_kernel_pagesize(vma
);
340 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
341 * bits of the reservation map pointer, which are always clear due to
344 #define HPAGE_RESV_OWNER (1UL << 0)
345 #define HPAGE_RESV_UNMAPPED (1UL << 1)
346 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
349 * These helpers are used to track how many pages are reserved for
350 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
351 * is guaranteed to have their future faults succeed.
353 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
354 * the reserve counters are updated with the hugetlb_lock held. It is safe
355 * to reset the VMA at fork() time as it is not in use yet and there is no
356 * chance of the global counters getting corrupted as a result of the values.
358 * The private mapping reservation is represented in a subtly different
359 * manner to a shared mapping. A shared mapping has a region map associated
360 * with the underlying file, this region map represents the backing file
361 * pages which have ever had a reservation assigned which this persists even
362 * after the page is instantiated. A private mapping has a region map
363 * associated with the original mmap which is attached to all VMAs which
364 * reference it, this region map represents those offsets which have consumed
365 * reservation ie. where pages have been instantiated.
367 static unsigned long get_vma_private_data(struct vm_area_struct
*vma
)
369 return (unsigned long)vma
->vm_private_data
;
372 static void set_vma_private_data(struct vm_area_struct
*vma
,
375 vma
->vm_private_data
= (void *)value
;
380 struct list_head regions
;
383 static struct resv_map
*resv_map_alloc(void)
385 struct resv_map
*resv_map
= kmalloc(sizeof(*resv_map
), GFP_KERNEL
);
389 kref_init(&resv_map
->refs
);
390 INIT_LIST_HEAD(&resv_map
->regions
);
395 static void resv_map_release(struct kref
*ref
)
397 struct resv_map
*resv_map
= container_of(ref
, struct resv_map
, refs
);
399 /* Clear out any active regions before we release the map. */
400 region_truncate(&resv_map
->regions
, 0);
404 static struct resv_map
*vma_resv_map(struct vm_area_struct
*vma
)
406 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
407 if (!(vma
->vm_flags
& VM_MAYSHARE
))
408 return (struct resv_map
*)(get_vma_private_data(vma
) &
413 static void set_vma_resv_map(struct vm_area_struct
*vma
, struct resv_map
*map
)
415 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
416 VM_BUG_ON(vma
->vm_flags
& VM_MAYSHARE
);
418 set_vma_private_data(vma
, (get_vma_private_data(vma
) &
419 HPAGE_RESV_MASK
) | (unsigned long)map
);
422 static void set_vma_resv_flags(struct vm_area_struct
*vma
, unsigned long flags
)
424 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
425 VM_BUG_ON(vma
->vm_flags
& VM_MAYSHARE
);
427 set_vma_private_data(vma
, get_vma_private_data(vma
) | flags
);
430 static int is_vma_resv_set(struct vm_area_struct
*vma
, unsigned long flag
)
432 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
434 return (get_vma_private_data(vma
) & flag
) != 0;
437 /* Decrement the reserved pages in the hugepage pool by one */
438 static void decrement_hugepage_resv_vma(struct hstate
*h
,
439 struct vm_area_struct
*vma
)
441 if (vma
->vm_flags
& VM_NORESERVE
)
444 if (vma
->vm_flags
& VM_MAYSHARE
) {
445 /* Shared mappings always use reserves */
446 h
->resv_huge_pages
--;
447 } else if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
)) {
449 * Only the process that called mmap() has reserves for
452 h
->resv_huge_pages
--;
456 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
457 void reset_vma_resv_huge_pages(struct vm_area_struct
*vma
)
459 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
460 if (!(vma
->vm_flags
& VM_MAYSHARE
))
461 vma
->vm_private_data
= (void *)0;
464 /* Returns true if the VMA has associated reserve pages */
465 static int vma_has_reserves(struct vm_area_struct
*vma
)
467 if (vma
->vm_flags
& VM_MAYSHARE
)
469 if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
))
474 static void copy_gigantic_page(struct page
*dst
, struct page
*src
)
477 struct hstate
*h
= page_hstate(src
);
478 struct page
*dst_base
= dst
;
479 struct page
*src_base
= src
;
481 for (i
= 0; i
< pages_per_huge_page(h
); ) {
483 copy_highpage(dst
, src
);
486 dst
= mem_map_next(dst
, dst_base
, i
);
487 src
= mem_map_next(src
, src_base
, i
);
491 void copy_huge_page(struct page
*dst
, struct page
*src
)
494 struct hstate
*h
= page_hstate(src
);
496 if (unlikely(pages_per_huge_page(h
) > MAX_ORDER_NR_PAGES
)) {
497 copy_gigantic_page(dst
, src
);
502 for (i
= 0; i
< pages_per_huge_page(h
); i
++) {
504 copy_highpage(dst
+ i
, src
+ i
);
508 static void enqueue_huge_page(struct hstate
*h
, struct page
*page
)
510 int nid
= page_to_nid(page
);
511 list_move(&page
->lru
, &h
->hugepage_freelists
[nid
]);
512 h
->free_huge_pages
++;
513 h
->free_huge_pages_node
[nid
]++;
516 static struct page
*dequeue_huge_page_node(struct hstate
*h
, int nid
)
520 if (list_empty(&h
->hugepage_freelists
[nid
]))
522 page
= list_entry(h
->hugepage_freelists
[nid
].next
, struct page
, lru
);
523 list_move(&page
->lru
, &h
->hugepage_activelist
);
524 set_page_refcounted(page
);
525 h
->free_huge_pages
--;
526 h
->free_huge_pages_node
[nid
]--;
530 static struct page
*dequeue_huge_page_vma(struct hstate
*h
,
531 struct vm_area_struct
*vma
,
532 unsigned long address
, int avoid_reserve
)
534 struct page
*page
= NULL
;
535 struct mempolicy
*mpol
;
536 nodemask_t
*nodemask
;
537 struct zonelist
*zonelist
;
540 unsigned int cpuset_mems_cookie
;
543 cpuset_mems_cookie
= get_mems_allowed();
544 zonelist
= huge_zonelist(vma
, address
,
545 htlb_alloc_mask
, &mpol
, &nodemask
);
547 * A child process with MAP_PRIVATE mappings created by their parent
548 * have no page reserves. This check ensures that reservations are
549 * not "stolen". The child may still get SIGKILLed
551 if (!vma_has_reserves(vma
) &&
552 h
->free_huge_pages
- h
->resv_huge_pages
== 0)
555 /* If reserves cannot be used, ensure enough pages are in the pool */
556 if (avoid_reserve
&& h
->free_huge_pages
- h
->resv_huge_pages
== 0)
559 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
560 MAX_NR_ZONES
- 1, nodemask
) {
561 if (cpuset_zone_allowed_softwall(zone
, htlb_alloc_mask
)) {
562 page
= dequeue_huge_page_node(h
, zone_to_nid(zone
));
565 decrement_hugepage_resv_vma(h
, vma
);
572 if (unlikely(!put_mems_allowed(cpuset_mems_cookie
) && !page
))
581 static void update_and_free_page(struct hstate
*h
, struct page
*page
)
585 VM_BUG_ON(h
->order
>= MAX_ORDER
);
588 h
->nr_huge_pages_node
[page_to_nid(page
)]--;
589 for (i
= 0; i
< pages_per_huge_page(h
); i
++) {
590 page
[i
].flags
&= ~(1 << PG_locked
| 1 << PG_error
|
591 1 << PG_referenced
| 1 << PG_dirty
|
592 1 << PG_active
| 1 << PG_reserved
|
593 1 << PG_private
| 1 << PG_writeback
);
595 VM_BUG_ON(hugetlb_cgroup_from_page(page
));
596 set_compound_page_dtor(page
, NULL
);
597 set_page_refcounted(page
);
598 arch_release_hugepage(page
);
599 __free_pages(page
, huge_page_order(h
));
602 struct hstate
*size_to_hstate(unsigned long size
)
607 if (huge_page_size(h
) == size
)
613 static void free_huge_page(struct page
*page
)
616 * Can't pass hstate in here because it is called from the
617 * compound page destructor.
619 struct hstate
*h
= page_hstate(page
);
620 int nid
= page_to_nid(page
);
621 struct hugepage_subpool
*spool
=
622 (struct hugepage_subpool
*)page_private(page
);
624 set_page_private(page
, 0);
625 page
->mapping
= NULL
;
626 BUG_ON(page_count(page
));
627 BUG_ON(page_mapcount(page
));
629 spin_lock(&hugetlb_lock
);
630 hugetlb_cgroup_uncharge_page(hstate_index(h
),
631 pages_per_huge_page(h
), page
);
632 if (h
->surplus_huge_pages_node
[nid
] && huge_page_order(h
) < MAX_ORDER
) {
633 /* remove the page from active list */
634 list_del(&page
->lru
);
635 update_and_free_page(h
, page
);
636 h
->surplus_huge_pages
--;
637 h
->surplus_huge_pages_node
[nid
]--;
639 arch_clear_hugepage_flags(page
);
640 enqueue_huge_page(h
, page
);
642 spin_unlock(&hugetlb_lock
);
643 hugepage_subpool_put_pages(spool
, 1);
646 static void prep_new_huge_page(struct hstate
*h
, struct page
*page
, int nid
)
648 INIT_LIST_HEAD(&page
->lru
);
649 set_compound_page_dtor(page
, free_huge_page
);
650 spin_lock(&hugetlb_lock
);
651 set_hugetlb_cgroup(page
, NULL
);
653 h
->nr_huge_pages_node
[nid
]++;
654 spin_unlock(&hugetlb_lock
);
655 put_page(page
); /* free it into the hugepage allocator */
658 static void prep_compound_gigantic_page(struct page
*page
, unsigned long order
)
661 int nr_pages
= 1 << order
;
662 struct page
*p
= page
+ 1;
664 /* we rely on prep_new_huge_page to set the destructor */
665 set_compound_order(page
, order
);
667 for (i
= 1; i
< nr_pages
; i
++, p
= mem_map_next(p
, page
, i
)) {
669 set_page_count(p
, 0);
670 p
->first_page
= page
;
675 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
676 * transparent huge pages. See the PageTransHuge() documentation for more
679 int PageHuge(struct page
*page
)
681 compound_page_dtor
*dtor
;
683 if (!PageCompound(page
))
686 page
= compound_head(page
);
687 dtor
= get_compound_page_dtor(page
);
689 return dtor
== free_huge_page
;
691 EXPORT_SYMBOL_GPL(PageHuge
);
693 pgoff_t
__basepage_index(struct page
*page
)
695 struct page
*page_head
= compound_head(page
);
696 pgoff_t index
= page_index(page_head
);
697 unsigned long compound_idx
;
699 if (!PageHuge(page_head
))
700 return page_index(page
);
702 if (compound_order(page_head
) >= MAX_ORDER
)
703 compound_idx
= page_to_pfn(page
) - page_to_pfn(page_head
);
705 compound_idx
= page
- page_head
;
707 return (index
<< compound_order(page_head
)) + compound_idx
;
710 static struct page
*alloc_fresh_huge_page_node(struct hstate
*h
, int nid
)
714 if (h
->order
>= MAX_ORDER
)
717 page
= alloc_pages_exact_node(nid
,
718 htlb_alloc_mask
|__GFP_COMP
|__GFP_THISNODE
|
719 __GFP_REPEAT
|__GFP_NOWARN
,
722 if (arch_prepare_hugepage(page
)) {
723 __free_pages(page
, huge_page_order(h
));
726 prep_new_huge_page(h
, page
, nid
);
733 * common helper functions for hstate_next_node_to_{alloc|free}.
734 * We may have allocated or freed a huge page based on a different
735 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
736 * be outside of *nodes_allowed. Ensure that we use an allowed
737 * node for alloc or free.
739 static int next_node_allowed(int nid
, nodemask_t
*nodes_allowed
)
741 nid
= next_node(nid
, *nodes_allowed
);
742 if (nid
== MAX_NUMNODES
)
743 nid
= first_node(*nodes_allowed
);
744 VM_BUG_ON(nid
>= MAX_NUMNODES
);
749 static int get_valid_node_allowed(int nid
, nodemask_t
*nodes_allowed
)
751 if (!node_isset(nid
, *nodes_allowed
))
752 nid
= next_node_allowed(nid
, nodes_allowed
);
757 * returns the previously saved node ["this node"] from which to
758 * allocate a persistent huge page for the pool and advance the
759 * next node from which to allocate, handling wrap at end of node
762 static int hstate_next_node_to_alloc(struct hstate
*h
,
763 nodemask_t
*nodes_allowed
)
767 VM_BUG_ON(!nodes_allowed
);
769 nid
= get_valid_node_allowed(h
->next_nid_to_alloc
, nodes_allowed
);
770 h
->next_nid_to_alloc
= next_node_allowed(nid
, nodes_allowed
);
775 static int alloc_fresh_huge_page(struct hstate
*h
, nodemask_t
*nodes_allowed
)
782 start_nid
= hstate_next_node_to_alloc(h
, nodes_allowed
);
783 next_nid
= start_nid
;
786 page
= alloc_fresh_huge_page_node(h
, next_nid
);
791 next_nid
= hstate_next_node_to_alloc(h
, nodes_allowed
);
792 } while (next_nid
!= start_nid
);
795 count_vm_event(HTLB_BUDDY_PGALLOC
);
797 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL
);
803 * helper for free_pool_huge_page() - return the previously saved
804 * node ["this node"] from which to free a huge page. Advance the
805 * next node id whether or not we find a free huge page to free so
806 * that the next attempt to free addresses the next node.
808 static int hstate_next_node_to_free(struct hstate
*h
, nodemask_t
*nodes_allowed
)
812 VM_BUG_ON(!nodes_allowed
);
814 nid
= get_valid_node_allowed(h
->next_nid_to_free
, nodes_allowed
);
815 h
->next_nid_to_free
= next_node_allowed(nid
, nodes_allowed
);
821 * Free huge page from pool from next node to free.
822 * Attempt to keep persistent huge pages more or less
823 * balanced over allowed nodes.
824 * Called with hugetlb_lock locked.
826 static int free_pool_huge_page(struct hstate
*h
, nodemask_t
*nodes_allowed
,
833 start_nid
= hstate_next_node_to_free(h
, nodes_allowed
);
834 next_nid
= start_nid
;
838 * If we're returning unused surplus pages, only examine
839 * nodes with surplus pages.
841 if ((!acct_surplus
|| h
->surplus_huge_pages_node
[next_nid
]) &&
842 !list_empty(&h
->hugepage_freelists
[next_nid
])) {
844 list_entry(h
->hugepage_freelists
[next_nid
].next
,
846 list_del(&page
->lru
);
847 h
->free_huge_pages
--;
848 h
->free_huge_pages_node
[next_nid
]--;
850 h
->surplus_huge_pages
--;
851 h
->surplus_huge_pages_node
[next_nid
]--;
853 update_and_free_page(h
, page
);
857 next_nid
= hstate_next_node_to_free(h
, nodes_allowed
);
858 } while (next_nid
!= start_nid
);
863 static struct page
*alloc_buddy_huge_page(struct hstate
*h
, int nid
)
868 if (h
->order
>= MAX_ORDER
)
872 * Assume we will successfully allocate the surplus page to
873 * prevent racing processes from causing the surplus to exceed
876 * This however introduces a different race, where a process B
877 * tries to grow the static hugepage pool while alloc_pages() is
878 * called by process A. B will only examine the per-node
879 * counters in determining if surplus huge pages can be
880 * converted to normal huge pages in adjust_pool_surplus(). A
881 * won't be able to increment the per-node counter, until the
882 * lock is dropped by B, but B doesn't drop hugetlb_lock until
883 * no more huge pages can be converted from surplus to normal
884 * state (and doesn't try to convert again). Thus, we have a
885 * case where a surplus huge page exists, the pool is grown, and
886 * the surplus huge page still exists after, even though it
887 * should just have been converted to a normal huge page. This
888 * does not leak memory, though, as the hugepage will be freed
889 * once it is out of use. It also does not allow the counters to
890 * go out of whack in adjust_pool_surplus() as we don't modify
891 * the node values until we've gotten the hugepage and only the
892 * per-node value is checked there.
894 spin_lock(&hugetlb_lock
);
895 if (h
->surplus_huge_pages
>= h
->nr_overcommit_huge_pages
) {
896 spin_unlock(&hugetlb_lock
);
900 h
->surplus_huge_pages
++;
902 spin_unlock(&hugetlb_lock
);
904 if (nid
== NUMA_NO_NODE
)
905 page
= alloc_pages(htlb_alloc_mask
|__GFP_COMP
|
906 __GFP_REPEAT
|__GFP_NOWARN
,
909 page
= alloc_pages_exact_node(nid
,
910 htlb_alloc_mask
|__GFP_COMP
|__GFP_THISNODE
|
911 __GFP_REPEAT
|__GFP_NOWARN
, huge_page_order(h
));
913 if (page
&& arch_prepare_hugepage(page
)) {
914 __free_pages(page
, huge_page_order(h
));
918 spin_lock(&hugetlb_lock
);
920 INIT_LIST_HEAD(&page
->lru
);
921 r_nid
= page_to_nid(page
);
922 set_compound_page_dtor(page
, free_huge_page
);
923 set_hugetlb_cgroup(page
, NULL
);
925 * We incremented the global counters already
927 h
->nr_huge_pages_node
[r_nid
]++;
928 h
->surplus_huge_pages_node
[r_nid
]++;
929 __count_vm_event(HTLB_BUDDY_PGALLOC
);
932 h
->surplus_huge_pages
--;
933 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL
);
935 spin_unlock(&hugetlb_lock
);
941 * This allocation function is useful in the context where vma is irrelevant.
942 * E.g. soft-offlining uses this function because it only cares physical
943 * address of error page.
945 struct page
*alloc_huge_page_node(struct hstate
*h
, int nid
)
949 spin_lock(&hugetlb_lock
);
950 page
= dequeue_huge_page_node(h
, nid
);
951 spin_unlock(&hugetlb_lock
);
954 page
= alloc_buddy_huge_page(h
, nid
);
960 * Increase the hugetlb pool such that it can accommodate a reservation
963 static int gather_surplus_pages(struct hstate
*h
, int delta
)
965 struct list_head surplus_list
;
966 struct page
*page
, *tmp
;
968 int needed
, allocated
;
969 bool alloc_ok
= true;
971 needed
= (h
->resv_huge_pages
+ delta
) - h
->free_huge_pages
;
973 h
->resv_huge_pages
+= delta
;
978 INIT_LIST_HEAD(&surplus_list
);
982 spin_unlock(&hugetlb_lock
);
983 for (i
= 0; i
< needed
; i
++) {
984 page
= alloc_buddy_huge_page(h
, NUMA_NO_NODE
);
989 list_add(&page
->lru
, &surplus_list
);
994 * After retaking hugetlb_lock, we need to recalculate 'needed'
995 * because either resv_huge_pages or free_huge_pages may have changed.
997 spin_lock(&hugetlb_lock
);
998 needed
= (h
->resv_huge_pages
+ delta
) -
999 (h
->free_huge_pages
+ allocated
);
1004 * We were not able to allocate enough pages to
1005 * satisfy the entire reservation so we free what
1006 * we've allocated so far.
1011 * The surplus_list now contains _at_least_ the number of extra pages
1012 * needed to accommodate the reservation. Add the appropriate number
1013 * of pages to the hugetlb pool and free the extras back to the buddy
1014 * allocator. Commit the entire reservation here to prevent another
1015 * process from stealing the pages as they are added to the pool but
1016 * before they are reserved.
1018 needed
+= allocated
;
1019 h
->resv_huge_pages
+= delta
;
1022 /* Free the needed pages to the hugetlb pool */
1023 list_for_each_entry_safe(page
, tmp
, &surplus_list
, lru
) {
1027 * This page is now managed by the hugetlb allocator and has
1028 * no users -- drop the buddy allocator's reference.
1030 put_page_testzero(page
);
1031 VM_BUG_ON(page_count(page
));
1032 enqueue_huge_page(h
, page
);
1035 spin_unlock(&hugetlb_lock
);
1037 /* Free unnecessary surplus pages to the buddy allocator */
1038 if (!list_empty(&surplus_list
)) {
1039 list_for_each_entry_safe(page
, tmp
, &surplus_list
, lru
) {
1043 spin_lock(&hugetlb_lock
);
1049 * When releasing a hugetlb pool reservation, any surplus pages that were
1050 * allocated to satisfy the reservation must be explicitly freed if they were
1052 * Called with hugetlb_lock held.
1054 static void return_unused_surplus_pages(struct hstate
*h
,
1055 unsigned long unused_resv_pages
)
1057 unsigned long nr_pages
;
1059 /* Uncommit the reservation */
1060 h
->resv_huge_pages
-= unused_resv_pages
;
1062 /* Cannot return gigantic pages currently */
1063 if (h
->order
>= MAX_ORDER
)
1066 nr_pages
= min(unused_resv_pages
, h
->surplus_huge_pages
);
1069 * We want to release as many surplus pages as possible, spread
1070 * evenly across all nodes with memory. Iterate across these nodes
1071 * until we can no longer free unreserved surplus pages. This occurs
1072 * when the nodes with surplus pages have no free pages.
1073 * free_pool_huge_page() will balance the the freed pages across the
1074 * on-line nodes with memory and will handle the hstate accounting.
1076 while (nr_pages
--) {
1077 if (!free_pool_huge_page(h
, &node_states
[N_MEMORY
], 1))
1083 * Determine if the huge page at addr within the vma has an associated
1084 * reservation. Where it does not we will need to logically increase
1085 * reservation and actually increase subpool usage before an allocation
1086 * can occur. Where any new reservation would be required the
1087 * reservation change is prepared, but not committed. Once the page
1088 * has been allocated from the subpool and instantiated the change should
1089 * be committed via vma_commit_reservation. No action is required on
1092 static long vma_needs_reservation(struct hstate
*h
,
1093 struct vm_area_struct
*vma
, unsigned long addr
)
1095 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
1096 struct inode
*inode
= mapping
->host
;
1098 if (vma
->vm_flags
& VM_MAYSHARE
) {
1099 pgoff_t idx
= vma_hugecache_offset(h
, vma
, addr
);
1100 return region_chg(&inode
->i_mapping
->private_list
,
1103 } else if (!is_vma_resv_set(vma
, HPAGE_RESV_OWNER
)) {
1108 pgoff_t idx
= vma_hugecache_offset(h
, vma
, addr
);
1109 struct resv_map
*reservations
= vma_resv_map(vma
);
1111 err
= region_chg(&reservations
->regions
, idx
, idx
+ 1);
1117 static void vma_commit_reservation(struct hstate
*h
,
1118 struct vm_area_struct
*vma
, unsigned long addr
)
1120 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
1121 struct inode
*inode
= mapping
->host
;
1123 if (vma
->vm_flags
& VM_MAYSHARE
) {
1124 pgoff_t idx
= vma_hugecache_offset(h
, vma
, addr
);
1125 region_add(&inode
->i_mapping
->private_list
, idx
, idx
+ 1);
1127 } else if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
)) {
1128 pgoff_t idx
= vma_hugecache_offset(h
, vma
, addr
);
1129 struct resv_map
*reservations
= vma_resv_map(vma
);
1131 /* Mark this page used in the map. */
1132 region_add(&reservations
->regions
, idx
, idx
+ 1);
1136 static struct page
*alloc_huge_page(struct vm_area_struct
*vma
,
1137 unsigned long addr
, int avoid_reserve
)
1139 struct hugepage_subpool
*spool
= subpool_vma(vma
);
1140 struct hstate
*h
= hstate_vma(vma
);
1144 struct hugetlb_cgroup
*h_cg
;
1146 idx
= hstate_index(h
);
1148 * Processes that did not create the mapping will have no
1149 * reserves and will not have accounted against subpool
1150 * limit. Check that the subpool limit can be made before
1151 * satisfying the allocation MAP_NORESERVE mappings may also
1152 * need pages and subpool limit allocated allocated if no reserve
1155 chg
= vma_needs_reservation(h
, vma
, addr
);
1157 return ERR_PTR(-ENOMEM
);
1159 if (hugepage_subpool_get_pages(spool
, chg
))
1160 return ERR_PTR(-ENOSPC
);
1162 ret
= hugetlb_cgroup_charge_cgroup(idx
, pages_per_huge_page(h
), &h_cg
);
1164 hugepage_subpool_put_pages(spool
, chg
);
1165 return ERR_PTR(-ENOSPC
);
1167 spin_lock(&hugetlb_lock
);
1168 page
= dequeue_huge_page_vma(h
, vma
, addr
, avoid_reserve
);
1170 /* update page cgroup details */
1171 hugetlb_cgroup_commit_charge(idx
, pages_per_huge_page(h
),
1173 spin_unlock(&hugetlb_lock
);
1175 spin_unlock(&hugetlb_lock
);
1176 page
= alloc_buddy_huge_page(h
, NUMA_NO_NODE
);
1178 hugetlb_cgroup_uncharge_cgroup(idx
,
1179 pages_per_huge_page(h
),
1181 hugepage_subpool_put_pages(spool
, chg
);
1182 return ERR_PTR(-ENOSPC
);
1184 spin_lock(&hugetlb_lock
);
1185 hugetlb_cgroup_commit_charge(idx
, pages_per_huge_page(h
),
1187 list_move(&page
->lru
, &h
->hugepage_activelist
);
1188 spin_unlock(&hugetlb_lock
);
1191 set_page_private(page
, (unsigned long)spool
);
1193 vma_commit_reservation(h
, vma
, addr
);
1197 int __weak
alloc_bootmem_huge_page(struct hstate
*h
)
1199 struct huge_bootmem_page
*m
;
1200 int nr_nodes
= nodes_weight(node_states
[N_MEMORY
]);
1205 addr
= __alloc_bootmem_node_nopanic(
1206 NODE_DATA(hstate_next_node_to_alloc(h
,
1207 &node_states
[N_MEMORY
])),
1208 huge_page_size(h
), huge_page_size(h
), 0);
1212 * Use the beginning of the huge page to store the
1213 * huge_bootmem_page struct (until gather_bootmem
1214 * puts them into the mem_map).
1224 BUG_ON((unsigned long)virt_to_phys(m
) & (huge_page_size(h
) - 1));
1225 /* Put them into a private list first because mem_map is not up yet */
1226 list_add(&m
->list
, &huge_boot_pages
);
1231 static void prep_compound_huge_page(struct page
*page
, int order
)
1233 if (unlikely(order
> (MAX_ORDER
- 1)))
1234 prep_compound_gigantic_page(page
, order
);
1236 prep_compound_page(page
, order
);
1239 /* Put bootmem huge pages into the standard lists after mem_map is up */
1240 static void __init
gather_bootmem_prealloc(void)
1242 struct huge_bootmem_page
*m
;
1244 list_for_each_entry(m
, &huge_boot_pages
, list
) {
1245 struct hstate
*h
= m
->hstate
;
1248 #ifdef CONFIG_HIGHMEM
1249 page
= pfn_to_page(m
->phys
>> PAGE_SHIFT
);
1250 free_bootmem_late((unsigned long)m
,
1251 sizeof(struct huge_bootmem_page
));
1253 page
= virt_to_page(m
);
1255 __ClearPageReserved(page
);
1256 WARN_ON(page_count(page
) != 1);
1257 prep_compound_huge_page(page
, h
->order
);
1258 prep_new_huge_page(h
, page
, page_to_nid(page
));
1260 * If we had gigantic hugepages allocated at boot time, we need
1261 * to restore the 'stolen' pages to totalram_pages in order to
1262 * fix confusing memory reports from free(1) and another
1263 * side-effects, like CommitLimit going negative.
1265 if (h
->order
> (MAX_ORDER
- 1))
1266 adjust_managed_page_count(page
, 1 << h
->order
);
1270 static void __init
hugetlb_hstate_alloc_pages(struct hstate
*h
)
1274 for (i
= 0; i
< h
->max_huge_pages
; ++i
) {
1275 if (h
->order
>= MAX_ORDER
) {
1276 if (!alloc_bootmem_huge_page(h
))
1278 } else if (!alloc_fresh_huge_page(h
,
1279 &node_states
[N_MEMORY
]))
1282 h
->max_huge_pages
= i
;
1285 static void __init
hugetlb_init_hstates(void)
1289 for_each_hstate(h
) {
1290 /* oversize hugepages were init'ed in early boot */
1291 if (h
->order
< MAX_ORDER
)
1292 hugetlb_hstate_alloc_pages(h
);
1296 static char * __init
memfmt(char *buf
, unsigned long n
)
1298 if (n
>= (1UL << 30))
1299 sprintf(buf
, "%lu GB", n
>> 30);
1300 else if (n
>= (1UL << 20))
1301 sprintf(buf
, "%lu MB", n
>> 20);
1303 sprintf(buf
, "%lu KB", n
>> 10);
1307 static void __init
report_hugepages(void)
1311 for_each_hstate(h
) {
1313 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
1314 memfmt(buf
, huge_page_size(h
)),
1315 h
->free_huge_pages
);
1319 #ifdef CONFIG_HIGHMEM
1320 static void try_to_free_low(struct hstate
*h
, unsigned long count
,
1321 nodemask_t
*nodes_allowed
)
1325 if (h
->order
>= MAX_ORDER
)
1328 for_each_node_mask(i
, *nodes_allowed
) {
1329 struct page
*page
, *next
;
1330 struct list_head
*freel
= &h
->hugepage_freelists
[i
];
1331 list_for_each_entry_safe(page
, next
, freel
, lru
) {
1332 if (count
>= h
->nr_huge_pages
)
1334 if (PageHighMem(page
))
1336 list_del(&page
->lru
);
1337 update_and_free_page(h
, page
);
1338 h
->free_huge_pages
--;
1339 h
->free_huge_pages_node
[page_to_nid(page
)]--;
1344 static inline void try_to_free_low(struct hstate
*h
, unsigned long count
,
1345 nodemask_t
*nodes_allowed
)
1351 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1352 * balanced by operating on them in a round-robin fashion.
1353 * Returns 1 if an adjustment was made.
1355 static int adjust_pool_surplus(struct hstate
*h
, nodemask_t
*nodes_allowed
,
1358 int start_nid
, next_nid
;
1361 VM_BUG_ON(delta
!= -1 && delta
!= 1);
1364 start_nid
= hstate_next_node_to_alloc(h
, nodes_allowed
);
1366 start_nid
= hstate_next_node_to_free(h
, nodes_allowed
);
1367 next_nid
= start_nid
;
1373 * To shrink on this node, there must be a surplus page
1375 if (!h
->surplus_huge_pages_node
[nid
]) {
1376 next_nid
= hstate_next_node_to_alloc(h
,
1383 * Surplus cannot exceed the total number of pages
1385 if (h
->surplus_huge_pages_node
[nid
] >=
1386 h
->nr_huge_pages_node
[nid
]) {
1387 next_nid
= hstate_next_node_to_free(h
,
1393 h
->surplus_huge_pages
+= delta
;
1394 h
->surplus_huge_pages_node
[nid
] += delta
;
1397 } while (next_nid
!= start_nid
);
1402 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1403 static unsigned long set_max_huge_pages(struct hstate
*h
, unsigned long count
,
1404 nodemask_t
*nodes_allowed
)
1406 unsigned long min_count
, ret
;
1408 if (h
->order
>= MAX_ORDER
)
1409 return h
->max_huge_pages
;
1412 * Increase the pool size
1413 * First take pages out of surplus state. Then make up the
1414 * remaining difference by allocating fresh huge pages.
1416 * We might race with alloc_buddy_huge_page() here and be unable
1417 * to convert a surplus huge page to a normal huge page. That is
1418 * not critical, though, it just means the overall size of the
1419 * pool might be one hugepage larger than it needs to be, but
1420 * within all the constraints specified by the sysctls.
1422 spin_lock(&hugetlb_lock
);
1423 while (h
->surplus_huge_pages
&& count
> persistent_huge_pages(h
)) {
1424 if (!adjust_pool_surplus(h
, nodes_allowed
, -1))
1428 while (count
> persistent_huge_pages(h
)) {
1430 * If this allocation races such that we no longer need the
1431 * page, free_huge_page will handle it by freeing the page
1432 * and reducing the surplus.
1434 spin_unlock(&hugetlb_lock
);
1435 ret
= alloc_fresh_huge_page(h
, nodes_allowed
);
1436 spin_lock(&hugetlb_lock
);
1440 /* Bail for signals. Probably ctrl-c from user */
1441 if (signal_pending(current
))
1446 * Decrease the pool size
1447 * First return free pages to the buddy allocator (being careful
1448 * to keep enough around to satisfy reservations). Then place
1449 * pages into surplus state as needed so the pool will shrink
1450 * to the desired size as pages become free.
1452 * By placing pages into the surplus state independent of the
1453 * overcommit value, we are allowing the surplus pool size to
1454 * exceed overcommit. There are few sane options here. Since
1455 * alloc_buddy_huge_page() is checking the global counter,
1456 * though, we'll note that we're not allowed to exceed surplus
1457 * and won't grow the pool anywhere else. Not until one of the
1458 * sysctls are changed, or the surplus pages go out of use.
1460 min_count
= h
->resv_huge_pages
+ h
->nr_huge_pages
- h
->free_huge_pages
;
1461 min_count
= max(count
, min_count
);
1462 try_to_free_low(h
, min_count
, nodes_allowed
);
1463 while (min_count
< persistent_huge_pages(h
)) {
1464 if (!free_pool_huge_page(h
, nodes_allowed
, 0))
1467 while (count
< persistent_huge_pages(h
)) {
1468 if (!adjust_pool_surplus(h
, nodes_allowed
, 1))
1472 ret
= persistent_huge_pages(h
);
1473 spin_unlock(&hugetlb_lock
);
1477 #define HSTATE_ATTR_RO(_name) \
1478 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1480 #define HSTATE_ATTR(_name) \
1481 static struct kobj_attribute _name##_attr = \
1482 __ATTR(_name, 0644, _name##_show, _name##_store)
1484 static struct kobject
*hugepages_kobj
;
1485 static struct kobject
*hstate_kobjs
[HUGE_MAX_HSTATE
];
1487 static struct hstate
*kobj_to_node_hstate(struct kobject
*kobj
, int *nidp
);
1489 static struct hstate
*kobj_to_hstate(struct kobject
*kobj
, int *nidp
)
1493 for (i
= 0; i
< HUGE_MAX_HSTATE
; i
++)
1494 if (hstate_kobjs
[i
] == kobj
) {
1496 *nidp
= NUMA_NO_NODE
;
1500 return kobj_to_node_hstate(kobj
, nidp
);
1503 static ssize_t
nr_hugepages_show_common(struct kobject
*kobj
,
1504 struct kobj_attribute
*attr
, char *buf
)
1507 unsigned long nr_huge_pages
;
1510 h
= kobj_to_hstate(kobj
, &nid
);
1511 if (nid
== NUMA_NO_NODE
)
1512 nr_huge_pages
= h
->nr_huge_pages
;
1514 nr_huge_pages
= h
->nr_huge_pages_node
[nid
];
1516 return sprintf(buf
, "%lu\n", nr_huge_pages
);
1519 static ssize_t
nr_hugepages_store_common(bool obey_mempolicy
,
1520 struct kobject
*kobj
, struct kobj_attribute
*attr
,
1521 const char *buf
, size_t len
)
1525 unsigned long count
;
1527 NODEMASK_ALLOC(nodemask_t
, nodes_allowed
, GFP_KERNEL
| __GFP_NORETRY
);
1529 err
= strict_strtoul(buf
, 10, &count
);
1533 h
= kobj_to_hstate(kobj
, &nid
);
1534 if (h
->order
>= MAX_ORDER
) {
1539 if (nid
== NUMA_NO_NODE
) {
1541 * global hstate attribute
1543 if (!(obey_mempolicy
&&
1544 init_nodemask_of_mempolicy(nodes_allowed
))) {
1545 NODEMASK_FREE(nodes_allowed
);
1546 nodes_allowed
= &node_states
[N_MEMORY
];
1548 } else if (nodes_allowed
) {
1550 * per node hstate attribute: adjust count to global,
1551 * but restrict alloc/free to the specified node.
1553 count
+= h
->nr_huge_pages
- h
->nr_huge_pages_node
[nid
];
1554 init_nodemask_of_node(nodes_allowed
, nid
);
1556 nodes_allowed
= &node_states
[N_MEMORY
];
1558 h
->max_huge_pages
= set_max_huge_pages(h
, count
, nodes_allowed
);
1560 if (nodes_allowed
!= &node_states
[N_MEMORY
])
1561 NODEMASK_FREE(nodes_allowed
);
1565 NODEMASK_FREE(nodes_allowed
);
1569 static ssize_t
nr_hugepages_show(struct kobject
*kobj
,
1570 struct kobj_attribute
*attr
, char *buf
)
1572 return nr_hugepages_show_common(kobj
, attr
, buf
);
1575 static ssize_t
nr_hugepages_store(struct kobject
*kobj
,
1576 struct kobj_attribute
*attr
, const char *buf
, size_t len
)
1578 return nr_hugepages_store_common(false, kobj
, attr
, buf
, len
);
1580 HSTATE_ATTR(nr_hugepages
);
1585 * hstate attribute for optionally mempolicy-based constraint on persistent
1586 * huge page alloc/free.
1588 static ssize_t
nr_hugepages_mempolicy_show(struct kobject
*kobj
,
1589 struct kobj_attribute
*attr
, char *buf
)
1591 return nr_hugepages_show_common(kobj
, attr
, buf
);
1594 static ssize_t
nr_hugepages_mempolicy_store(struct kobject
*kobj
,
1595 struct kobj_attribute
*attr
, const char *buf
, size_t len
)
1597 return nr_hugepages_store_common(true, kobj
, attr
, buf
, len
);
1599 HSTATE_ATTR(nr_hugepages_mempolicy
);
1603 static ssize_t
nr_overcommit_hugepages_show(struct kobject
*kobj
,
1604 struct kobj_attribute
*attr
, char *buf
)
1606 struct hstate
*h
= kobj_to_hstate(kobj
, NULL
);
1607 return sprintf(buf
, "%lu\n", h
->nr_overcommit_huge_pages
);
1610 static ssize_t
nr_overcommit_hugepages_store(struct kobject
*kobj
,
1611 struct kobj_attribute
*attr
, const char *buf
, size_t count
)
1614 unsigned long input
;
1615 struct hstate
*h
= kobj_to_hstate(kobj
, NULL
);
1617 if (h
->order
>= MAX_ORDER
)
1620 err
= strict_strtoul(buf
, 10, &input
);
1624 spin_lock(&hugetlb_lock
);
1625 h
->nr_overcommit_huge_pages
= input
;
1626 spin_unlock(&hugetlb_lock
);
1630 HSTATE_ATTR(nr_overcommit_hugepages
);
1632 static ssize_t
free_hugepages_show(struct kobject
*kobj
,
1633 struct kobj_attribute
*attr
, char *buf
)
1636 unsigned long free_huge_pages
;
1639 h
= kobj_to_hstate(kobj
, &nid
);
1640 if (nid
== NUMA_NO_NODE
)
1641 free_huge_pages
= h
->free_huge_pages
;
1643 free_huge_pages
= h
->free_huge_pages_node
[nid
];
1645 return sprintf(buf
, "%lu\n", free_huge_pages
);
1647 HSTATE_ATTR_RO(free_hugepages
);
1649 static ssize_t
resv_hugepages_show(struct kobject
*kobj
,
1650 struct kobj_attribute
*attr
, char *buf
)
1652 struct hstate
*h
= kobj_to_hstate(kobj
, NULL
);
1653 return sprintf(buf
, "%lu\n", h
->resv_huge_pages
);
1655 HSTATE_ATTR_RO(resv_hugepages
);
1657 static ssize_t
surplus_hugepages_show(struct kobject
*kobj
,
1658 struct kobj_attribute
*attr
, char *buf
)
1661 unsigned long surplus_huge_pages
;
1664 h
= kobj_to_hstate(kobj
, &nid
);
1665 if (nid
== NUMA_NO_NODE
)
1666 surplus_huge_pages
= h
->surplus_huge_pages
;
1668 surplus_huge_pages
= h
->surplus_huge_pages_node
[nid
];
1670 return sprintf(buf
, "%lu\n", surplus_huge_pages
);
1672 HSTATE_ATTR_RO(surplus_hugepages
);
1674 static struct attribute
*hstate_attrs
[] = {
1675 &nr_hugepages_attr
.attr
,
1676 &nr_overcommit_hugepages_attr
.attr
,
1677 &free_hugepages_attr
.attr
,
1678 &resv_hugepages_attr
.attr
,
1679 &surplus_hugepages_attr
.attr
,
1681 &nr_hugepages_mempolicy_attr
.attr
,
1686 static struct attribute_group hstate_attr_group
= {
1687 .attrs
= hstate_attrs
,
1690 static int hugetlb_sysfs_add_hstate(struct hstate
*h
, struct kobject
*parent
,
1691 struct kobject
**hstate_kobjs
,
1692 struct attribute_group
*hstate_attr_group
)
1695 int hi
= hstate_index(h
);
1697 hstate_kobjs
[hi
] = kobject_create_and_add(h
->name
, parent
);
1698 if (!hstate_kobjs
[hi
])
1701 retval
= sysfs_create_group(hstate_kobjs
[hi
], hstate_attr_group
);
1703 kobject_put(hstate_kobjs
[hi
]);
1708 static void __init
hugetlb_sysfs_init(void)
1713 hugepages_kobj
= kobject_create_and_add("hugepages", mm_kobj
);
1714 if (!hugepages_kobj
)
1717 for_each_hstate(h
) {
1718 err
= hugetlb_sysfs_add_hstate(h
, hugepages_kobj
,
1719 hstate_kobjs
, &hstate_attr_group
);
1721 pr_err("Hugetlb: Unable to add hstate %s", h
->name
);
1728 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1729 * with node devices in node_devices[] using a parallel array. The array
1730 * index of a node device or _hstate == node id.
1731 * This is here to avoid any static dependency of the node device driver, in
1732 * the base kernel, on the hugetlb module.
1734 struct node_hstate
{
1735 struct kobject
*hugepages_kobj
;
1736 struct kobject
*hstate_kobjs
[HUGE_MAX_HSTATE
];
1738 struct node_hstate node_hstates
[MAX_NUMNODES
];
1741 * A subset of global hstate attributes for node devices
1743 static struct attribute
*per_node_hstate_attrs
[] = {
1744 &nr_hugepages_attr
.attr
,
1745 &free_hugepages_attr
.attr
,
1746 &surplus_hugepages_attr
.attr
,
1750 static struct attribute_group per_node_hstate_attr_group
= {
1751 .attrs
= per_node_hstate_attrs
,
1755 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1756 * Returns node id via non-NULL nidp.
1758 static struct hstate
*kobj_to_node_hstate(struct kobject
*kobj
, int *nidp
)
1762 for (nid
= 0; nid
< nr_node_ids
; nid
++) {
1763 struct node_hstate
*nhs
= &node_hstates
[nid
];
1765 for (i
= 0; i
< HUGE_MAX_HSTATE
; i
++)
1766 if (nhs
->hstate_kobjs
[i
] == kobj
) {
1778 * Unregister hstate attributes from a single node device.
1779 * No-op if no hstate attributes attached.
1781 static void hugetlb_unregister_node(struct node
*node
)
1784 struct node_hstate
*nhs
= &node_hstates
[node
->dev
.id
];
1786 if (!nhs
->hugepages_kobj
)
1787 return; /* no hstate attributes */
1789 for_each_hstate(h
) {
1790 int idx
= hstate_index(h
);
1791 if (nhs
->hstate_kobjs
[idx
]) {
1792 kobject_put(nhs
->hstate_kobjs
[idx
]);
1793 nhs
->hstate_kobjs
[idx
] = NULL
;
1797 kobject_put(nhs
->hugepages_kobj
);
1798 nhs
->hugepages_kobj
= NULL
;
1802 * hugetlb module exit: unregister hstate attributes from node devices
1805 static void hugetlb_unregister_all_nodes(void)
1810 * disable node device registrations.
1812 register_hugetlbfs_with_node(NULL
, NULL
);
1815 * remove hstate attributes from any nodes that have them.
1817 for (nid
= 0; nid
< nr_node_ids
; nid
++)
1818 hugetlb_unregister_node(node_devices
[nid
]);
1822 * Register hstate attributes for a single node device.
1823 * No-op if attributes already registered.
1825 static void hugetlb_register_node(struct node
*node
)
1828 struct node_hstate
*nhs
= &node_hstates
[node
->dev
.id
];
1831 if (nhs
->hugepages_kobj
)
1832 return; /* already allocated */
1834 nhs
->hugepages_kobj
= kobject_create_and_add("hugepages",
1836 if (!nhs
->hugepages_kobj
)
1839 for_each_hstate(h
) {
1840 err
= hugetlb_sysfs_add_hstate(h
, nhs
->hugepages_kobj
,
1842 &per_node_hstate_attr_group
);
1844 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
1845 h
->name
, node
->dev
.id
);
1846 hugetlb_unregister_node(node
);
1853 * hugetlb init time: register hstate attributes for all registered node
1854 * devices of nodes that have memory. All on-line nodes should have
1855 * registered their associated device by this time.
1857 static void hugetlb_register_all_nodes(void)
1861 for_each_node_state(nid
, N_MEMORY
) {
1862 struct node
*node
= node_devices
[nid
];
1863 if (node
->dev
.id
== nid
)
1864 hugetlb_register_node(node
);
1868 * Let the node device driver know we're here so it can
1869 * [un]register hstate attributes on node hotplug.
1871 register_hugetlbfs_with_node(hugetlb_register_node
,
1872 hugetlb_unregister_node
);
1874 #else /* !CONFIG_NUMA */
1876 static struct hstate
*kobj_to_node_hstate(struct kobject
*kobj
, int *nidp
)
1884 static void hugetlb_unregister_all_nodes(void) { }
1886 static void hugetlb_register_all_nodes(void) { }
1890 static void __exit
hugetlb_exit(void)
1894 hugetlb_unregister_all_nodes();
1896 for_each_hstate(h
) {
1897 kobject_put(hstate_kobjs
[hstate_index(h
)]);
1900 kobject_put(hugepages_kobj
);
1902 module_exit(hugetlb_exit
);
1904 static int __init
hugetlb_init(void)
1906 /* Some platform decide whether they support huge pages at boot
1907 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1908 * there is no such support
1910 if (HPAGE_SHIFT
== 0)
1913 if (!size_to_hstate(default_hstate_size
)) {
1914 default_hstate_size
= HPAGE_SIZE
;
1915 if (!size_to_hstate(default_hstate_size
))
1916 hugetlb_add_hstate(HUGETLB_PAGE_ORDER
);
1918 default_hstate_idx
= hstate_index(size_to_hstate(default_hstate_size
));
1919 if (default_hstate_max_huge_pages
)
1920 default_hstate
.max_huge_pages
= default_hstate_max_huge_pages
;
1922 hugetlb_init_hstates();
1923 gather_bootmem_prealloc();
1926 hugetlb_sysfs_init();
1927 hugetlb_register_all_nodes();
1928 hugetlb_cgroup_file_init();
1932 module_init(hugetlb_init
);
1934 /* Should be called on processing a hugepagesz=... option */
1935 void __init
hugetlb_add_hstate(unsigned order
)
1940 if (size_to_hstate(PAGE_SIZE
<< order
)) {
1941 pr_warning("hugepagesz= specified twice, ignoring\n");
1944 BUG_ON(hugetlb_max_hstate
>= HUGE_MAX_HSTATE
);
1946 h
= &hstates
[hugetlb_max_hstate
++];
1948 h
->mask
= ~((1ULL << (order
+ PAGE_SHIFT
)) - 1);
1949 h
->nr_huge_pages
= 0;
1950 h
->free_huge_pages
= 0;
1951 for (i
= 0; i
< MAX_NUMNODES
; ++i
)
1952 INIT_LIST_HEAD(&h
->hugepage_freelists
[i
]);
1953 INIT_LIST_HEAD(&h
->hugepage_activelist
);
1954 h
->next_nid_to_alloc
= first_node(node_states
[N_MEMORY
]);
1955 h
->next_nid_to_free
= first_node(node_states
[N_MEMORY
]);
1956 snprintf(h
->name
, HSTATE_NAME_LEN
, "hugepages-%lukB",
1957 huge_page_size(h
)/1024);
1962 static int __init
hugetlb_nrpages_setup(char *s
)
1965 static unsigned long *last_mhp
;
1968 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
1969 * so this hugepages= parameter goes to the "default hstate".
1971 if (!hugetlb_max_hstate
)
1972 mhp
= &default_hstate_max_huge_pages
;
1974 mhp
= &parsed_hstate
->max_huge_pages
;
1976 if (mhp
== last_mhp
) {
1977 pr_warning("hugepages= specified twice without "
1978 "interleaving hugepagesz=, ignoring\n");
1982 if (sscanf(s
, "%lu", mhp
) <= 0)
1986 * Global state is always initialized later in hugetlb_init.
1987 * But we need to allocate >= MAX_ORDER hstates here early to still
1988 * use the bootmem allocator.
1990 if (hugetlb_max_hstate
&& parsed_hstate
->order
>= MAX_ORDER
)
1991 hugetlb_hstate_alloc_pages(parsed_hstate
);
1997 __setup("hugepages=", hugetlb_nrpages_setup
);
1999 static int __init
hugetlb_default_setup(char *s
)
2001 default_hstate_size
= memparse(s
, &s
);
2004 __setup("default_hugepagesz=", hugetlb_default_setup
);
2006 static unsigned int cpuset_mems_nr(unsigned int *array
)
2009 unsigned int nr
= 0;
2011 for_each_node_mask(node
, cpuset_current_mems_allowed
)
2017 #ifdef CONFIG_SYSCTL
2018 static int hugetlb_sysctl_handler_common(bool obey_mempolicy
,
2019 struct ctl_table
*table
, int write
,
2020 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
2022 struct hstate
*h
= &default_hstate
;
2026 tmp
= h
->max_huge_pages
;
2028 if (write
&& h
->order
>= MAX_ORDER
)
2032 table
->maxlen
= sizeof(unsigned long);
2033 ret
= proc_doulongvec_minmax(table
, write
, buffer
, length
, ppos
);
2038 NODEMASK_ALLOC(nodemask_t
, nodes_allowed
,
2039 GFP_KERNEL
| __GFP_NORETRY
);
2040 if (!(obey_mempolicy
&&
2041 init_nodemask_of_mempolicy(nodes_allowed
))) {
2042 NODEMASK_FREE(nodes_allowed
);
2043 nodes_allowed
= &node_states
[N_MEMORY
];
2045 h
->max_huge_pages
= set_max_huge_pages(h
, tmp
, nodes_allowed
);
2047 if (nodes_allowed
!= &node_states
[N_MEMORY
])
2048 NODEMASK_FREE(nodes_allowed
);
2054 int hugetlb_sysctl_handler(struct ctl_table
*table
, int write
,
2055 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
2058 return hugetlb_sysctl_handler_common(false, table
, write
,
2059 buffer
, length
, ppos
);
2063 int hugetlb_mempolicy_sysctl_handler(struct ctl_table
*table
, int write
,
2064 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
2066 return hugetlb_sysctl_handler_common(true, table
, write
,
2067 buffer
, length
, ppos
);
2069 #endif /* CONFIG_NUMA */
2071 int hugetlb_treat_movable_handler(struct ctl_table
*table
, int write
,
2072 void __user
*buffer
,
2073 size_t *length
, loff_t
*ppos
)
2075 proc_dointvec(table
, write
, buffer
, length
, ppos
);
2076 if (hugepages_treat_as_movable
)
2077 htlb_alloc_mask
= GFP_HIGHUSER_MOVABLE
;
2079 htlb_alloc_mask
= GFP_HIGHUSER
;
2083 int hugetlb_overcommit_handler(struct ctl_table
*table
, int write
,
2084 void __user
*buffer
,
2085 size_t *length
, loff_t
*ppos
)
2087 struct hstate
*h
= &default_hstate
;
2091 tmp
= h
->nr_overcommit_huge_pages
;
2093 if (write
&& h
->order
>= MAX_ORDER
)
2097 table
->maxlen
= sizeof(unsigned long);
2098 ret
= proc_doulongvec_minmax(table
, write
, buffer
, length
, ppos
);
2103 spin_lock(&hugetlb_lock
);
2104 h
->nr_overcommit_huge_pages
= tmp
;
2105 spin_unlock(&hugetlb_lock
);
2111 #endif /* CONFIG_SYSCTL */
2113 void hugetlb_report_meminfo(struct seq_file
*m
)
2115 struct hstate
*h
= &default_hstate
;
2117 "HugePages_Total: %5lu\n"
2118 "HugePages_Free: %5lu\n"
2119 "HugePages_Rsvd: %5lu\n"
2120 "HugePages_Surp: %5lu\n"
2121 "Hugepagesize: %8lu kB\n",
2125 h
->surplus_huge_pages
,
2126 1UL << (huge_page_order(h
) + PAGE_SHIFT
- 10));
2129 int hugetlb_report_node_meminfo(int nid
, char *buf
)
2131 struct hstate
*h
= &default_hstate
;
2133 "Node %d HugePages_Total: %5u\n"
2134 "Node %d HugePages_Free: %5u\n"
2135 "Node %d HugePages_Surp: %5u\n",
2136 nid
, h
->nr_huge_pages_node
[nid
],
2137 nid
, h
->free_huge_pages_node
[nid
],
2138 nid
, h
->surplus_huge_pages_node
[nid
]);
2141 void hugetlb_show_meminfo(void)
2146 for_each_node_state(nid
, N_MEMORY
)
2148 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2150 h
->nr_huge_pages_node
[nid
],
2151 h
->free_huge_pages_node
[nid
],
2152 h
->surplus_huge_pages_node
[nid
],
2153 1UL << (huge_page_order(h
) + PAGE_SHIFT
- 10));
2156 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2157 unsigned long hugetlb_total_pages(void)
2160 unsigned long nr_total_pages
= 0;
2163 nr_total_pages
+= h
->nr_huge_pages
* pages_per_huge_page(h
);
2164 return nr_total_pages
;
2167 static int hugetlb_acct_memory(struct hstate
*h
, long delta
)
2171 spin_lock(&hugetlb_lock
);
2173 * When cpuset is configured, it breaks the strict hugetlb page
2174 * reservation as the accounting is done on a global variable. Such
2175 * reservation is completely rubbish in the presence of cpuset because
2176 * the reservation is not checked against page availability for the
2177 * current cpuset. Application can still potentially OOM'ed by kernel
2178 * with lack of free htlb page in cpuset that the task is in.
2179 * Attempt to enforce strict accounting with cpuset is almost
2180 * impossible (or too ugly) because cpuset is too fluid that
2181 * task or memory node can be dynamically moved between cpusets.
2183 * The change of semantics for shared hugetlb mapping with cpuset is
2184 * undesirable. However, in order to preserve some of the semantics,
2185 * we fall back to check against current free page availability as
2186 * a best attempt and hopefully to minimize the impact of changing
2187 * semantics that cpuset has.
2190 if (gather_surplus_pages(h
, delta
) < 0)
2193 if (delta
> cpuset_mems_nr(h
->free_huge_pages_node
)) {
2194 return_unused_surplus_pages(h
, delta
);
2201 return_unused_surplus_pages(h
, (unsigned long) -delta
);
2204 spin_unlock(&hugetlb_lock
);
2208 static void hugetlb_vm_op_open(struct vm_area_struct
*vma
)
2210 struct resv_map
*reservations
= vma_resv_map(vma
);
2213 * This new VMA should share its siblings reservation map if present.
2214 * The VMA will only ever have a valid reservation map pointer where
2215 * it is being copied for another still existing VMA. As that VMA
2216 * has a reference to the reservation map it cannot disappear until
2217 * after this open call completes. It is therefore safe to take a
2218 * new reference here without additional locking.
2221 kref_get(&reservations
->refs
);
2224 static void resv_map_put(struct vm_area_struct
*vma
)
2226 struct resv_map
*reservations
= vma_resv_map(vma
);
2230 kref_put(&reservations
->refs
, resv_map_release
);
2233 static void hugetlb_vm_op_close(struct vm_area_struct
*vma
)
2235 struct hstate
*h
= hstate_vma(vma
);
2236 struct resv_map
*reservations
= vma_resv_map(vma
);
2237 struct hugepage_subpool
*spool
= subpool_vma(vma
);
2238 unsigned long reserve
;
2239 unsigned long start
;
2243 start
= vma_hugecache_offset(h
, vma
, vma
->vm_start
);
2244 end
= vma_hugecache_offset(h
, vma
, vma
->vm_end
);
2246 reserve
= (end
- start
) -
2247 region_count(&reservations
->regions
, start
, end
);
2252 hugetlb_acct_memory(h
, -reserve
);
2253 hugepage_subpool_put_pages(spool
, reserve
);
2259 * We cannot handle pagefaults against hugetlb pages at all. They cause
2260 * handle_mm_fault() to try to instantiate regular-sized pages in the
2261 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2264 static int hugetlb_vm_op_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
2270 const struct vm_operations_struct hugetlb_vm_ops
= {
2271 .fault
= hugetlb_vm_op_fault
,
2272 .open
= hugetlb_vm_op_open
,
2273 .close
= hugetlb_vm_op_close
,
2276 static pte_t
make_huge_pte(struct vm_area_struct
*vma
, struct page
*page
,
2282 entry
= huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page
,
2283 vma
->vm_page_prot
)));
2285 entry
= huge_pte_wrprotect(mk_huge_pte(page
,
2286 vma
->vm_page_prot
));
2288 entry
= pte_mkyoung(entry
);
2289 entry
= pte_mkhuge(entry
);
2290 entry
= arch_make_huge_pte(entry
, vma
, page
, writable
);
2295 static void set_huge_ptep_writable(struct vm_area_struct
*vma
,
2296 unsigned long address
, pte_t
*ptep
)
2300 entry
= huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep
)));
2301 if (huge_ptep_set_access_flags(vma
, address
, ptep
, entry
, 1))
2302 update_mmu_cache(vma
, address
, ptep
);
2306 int copy_hugetlb_page_range(struct mm_struct
*dst
, struct mm_struct
*src
,
2307 struct vm_area_struct
*vma
)
2309 pte_t
*src_pte
, *dst_pte
, entry
;
2310 struct page
*ptepage
;
2313 struct hstate
*h
= hstate_vma(vma
);
2314 unsigned long sz
= huge_page_size(h
);
2316 cow
= (vma
->vm_flags
& (VM_SHARED
| VM_MAYWRITE
)) == VM_MAYWRITE
;
2318 for (addr
= vma
->vm_start
; addr
< vma
->vm_end
; addr
+= sz
) {
2319 src_pte
= huge_pte_offset(src
, addr
);
2322 dst_pte
= huge_pte_alloc(dst
, addr
, sz
);
2326 /* If the pagetables are shared don't copy or take references */
2327 if (dst_pte
== src_pte
)
2330 spin_lock(&dst
->page_table_lock
);
2331 spin_lock_nested(&src
->page_table_lock
, SINGLE_DEPTH_NESTING
);
2332 if (!huge_pte_none(huge_ptep_get(src_pte
))) {
2334 huge_ptep_set_wrprotect(src
, addr
, src_pte
);
2335 entry
= huge_ptep_get(src_pte
);
2336 ptepage
= pte_page(entry
);
2338 page_dup_rmap(ptepage
);
2339 set_huge_pte_at(dst
, addr
, dst_pte
, entry
);
2341 spin_unlock(&src
->page_table_lock
);
2342 spin_unlock(&dst
->page_table_lock
);
2350 static int is_hugetlb_entry_migration(pte_t pte
)
2354 if (huge_pte_none(pte
) || pte_present(pte
))
2356 swp
= pte_to_swp_entry(pte
);
2357 if (non_swap_entry(swp
) && is_migration_entry(swp
))
2363 static int is_hugetlb_entry_hwpoisoned(pte_t pte
)
2367 if (huge_pte_none(pte
) || pte_present(pte
))
2369 swp
= pte_to_swp_entry(pte
);
2370 if (non_swap_entry(swp
) && is_hwpoison_entry(swp
))
2376 void __unmap_hugepage_range(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
2377 unsigned long start
, unsigned long end
,
2378 struct page
*ref_page
)
2380 int force_flush
= 0;
2381 struct mm_struct
*mm
= vma
->vm_mm
;
2382 unsigned long address
;
2386 struct hstate
*h
= hstate_vma(vma
);
2387 unsigned long sz
= huge_page_size(h
);
2388 const unsigned long mmun_start
= start
; /* For mmu_notifiers */
2389 const unsigned long mmun_end
= end
; /* For mmu_notifiers */
2391 WARN_ON(!is_vm_hugetlb_page(vma
));
2392 BUG_ON(start
& ~huge_page_mask(h
));
2393 BUG_ON(end
& ~huge_page_mask(h
));
2395 tlb_start_vma(tlb
, vma
);
2396 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
2398 spin_lock(&mm
->page_table_lock
);
2399 for (address
= start
; address
< end
; address
+= sz
) {
2400 ptep
= huge_pte_offset(mm
, address
);
2404 if (huge_pmd_unshare(mm
, &address
, ptep
))
2407 pte
= huge_ptep_get(ptep
);
2408 if (huge_pte_none(pte
))
2412 * HWPoisoned hugepage is already unmapped and dropped reference
2414 if (unlikely(is_hugetlb_entry_hwpoisoned(pte
))) {
2415 huge_pte_clear(mm
, address
, ptep
);
2419 page
= pte_page(pte
);
2421 * If a reference page is supplied, it is because a specific
2422 * page is being unmapped, not a range. Ensure the page we
2423 * are about to unmap is the actual page of interest.
2426 if (page
!= ref_page
)
2430 * Mark the VMA as having unmapped its page so that
2431 * future faults in this VMA will fail rather than
2432 * looking like data was lost
2434 set_vma_resv_flags(vma
, HPAGE_RESV_UNMAPPED
);
2437 pte
= huge_ptep_get_and_clear(mm
, address
, ptep
);
2438 tlb_remove_tlb_entry(tlb
, ptep
, address
);
2439 if (huge_pte_dirty(pte
))
2440 set_page_dirty(page
);
2442 page_remove_rmap(page
);
2443 force_flush
= !__tlb_remove_page(tlb
, page
);
2446 /* Bail out after unmapping reference page if supplied */
2450 spin_unlock(&mm
->page_table_lock
);
2452 * mmu_gather ran out of room to batch pages, we break out of
2453 * the PTE lock to avoid doing the potential expensive TLB invalidate
2454 * and page-free while holding it.
2459 if (address
< end
&& !ref_page
)
2462 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
2463 tlb_end_vma(tlb
, vma
);
2466 void __unmap_hugepage_range_final(struct mmu_gather
*tlb
,
2467 struct vm_area_struct
*vma
, unsigned long start
,
2468 unsigned long end
, struct page
*ref_page
)
2470 __unmap_hugepage_range(tlb
, vma
, start
, end
, ref_page
);
2473 * Clear this flag so that x86's huge_pmd_share page_table_shareable
2474 * test will fail on a vma being torn down, and not grab a page table
2475 * on its way out. We're lucky that the flag has such an appropriate
2476 * name, and can in fact be safely cleared here. We could clear it
2477 * before the __unmap_hugepage_range above, but all that's necessary
2478 * is to clear it before releasing the i_mmap_mutex. This works
2479 * because in the context this is called, the VMA is about to be
2480 * destroyed and the i_mmap_mutex is held.
2482 vma
->vm_flags
&= ~VM_MAYSHARE
;
2485 void unmap_hugepage_range(struct vm_area_struct
*vma
, unsigned long start
,
2486 unsigned long end
, struct page
*ref_page
)
2488 struct mm_struct
*mm
;
2489 struct mmu_gather tlb
;
2493 tlb_gather_mmu(&tlb
, mm
, start
, end
);
2494 __unmap_hugepage_range(&tlb
, vma
, start
, end
, ref_page
);
2495 tlb_finish_mmu(&tlb
, start
, end
);
2499 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2500 * mappping it owns the reserve page for. The intention is to unmap the page
2501 * from other VMAs and let the children be SIGKILLed if they are faulting the
2504 static int unmap_ref_private(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2505 struct page
*page
, unsigned long address
)
2507 struct hstate
*h
= hstate_vma(vma
);
2508 struct vm_area_struct
*iter_vma
;
2509 struct address_space
*mapping
;
2513 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2514 * from page cache lookup which is in HPAGE_SIZE units.
2516 address
= address
& huge_page_mask(h
);
2517 pgoff
= ((address
- vma
->vm_start
) >> PAGE_SHIFT
) +
2519 mapping
= file_inode(vma
->vm_file
)->i_mapping
;
2522 * Take the mapping lock for the duration of the table walk. As
2523 * this mapping should be shared between all the VMAs,
2524 * __unmap_hugepage_range() is called as the lock is already held
2526 mutex_lock(&mapping
->i_mmap_mutex
);
2527 vma_interval_tree_foreach(iter_vma
, &mapping
->i_mmap
, pgoff
, pgoff
) {
2528 /* Do not unmap the current VMA */
2529 if (iter_vma
== vma
)
2533 * Unmap the page from other VMAs without their own reserves.
2534 * They get marked to be SIGKILLed if they fault in these
2535 * areas. This is because a future no-page fault on this VMA
2536 * could insert a zeroed page instead of the data existing
2537 * from the time of fork. This would look like data corruption
2539 if (!is_vma_resv_set(iter_vma
, HPAGE_RESV_OWNER
))
2540 unmap_hugepage_range(iter_vma
, address
,
2541 address
+ huge_page_size(h
), page
);
2543 mutex_unlock(&mapping
->i_mmap_mutex
);
2549 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2550 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2551 * cannot race with other handlers or page migration.
2552 * Keep the pte_same checks anyway to make transition from the mutex easier.
2554 static int hugetlb_cow(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2555 unsigned long address
, pte_t
*ptep
, pte_t pte
,
2556 struct page
*pagecache_page
)
2558 struct hstate
*h
= hstate_vma(vma
);
2559 struct page
*old_page
, *new_page
;
2561 int outside_reserve
= 0;
2562 unsigned long mmun_start
; /* For mmu_notifiers */
2563 unsigned long mmun_end
; /* For mmu_notifiers */
2565 old_page
= pte_page(pte
);
2568 /* If no-one else is actually using this page, avoid the copy
2569 * and just make the page writable */
2570 avoidcopy
= (page_mapcount(old_page
) == 1);
2572 if (PageAnon(old_page
))
2573 page_move_anon_rmap(old_page
, vma
, address
);
2574 set_huge_ptep_writable(vma
, address
, ptep
);
2579 * If the process that created a MAP_PRIVATE mapping is about to
2580 * perform a COW due to a shared page count, attempt to satisfy
2581 * the allocation without using the existing reserves. The pagecache
2582 * page is used to determine if the reserve at this address was
2583 * consumed or not. If reserves were used, a partial faulted mapping
2584 * at the time of fork() could consume its reserves on COW instead
2585 * of the full address range.
2587 if (!(vma
->vm_flags
& VM_MAYSHARE
) &&
2588 is_vma_resv_set(vma
, HPAGE_RESV_OWNER
) &&
2589 old_page
!= pagecache_page
)
2590 outside_reserve
= 1;
2592 page_cache_get(old_page
);
2594 /* Drop page_table_lock as buddy allocator may be called */
2595 spin_unlock(&mm
->page_table_lock
);
2596 new_page
= alloc_huge_page(vma
, address
, outside_reserve
);
2598 if (IS_ERR(new_page
)) {
2599 long err
= PTR_ERR(new_page
);
2600 page_cache_release(old_page
);
2603 * If a process owning a MAP_PRIVATE mapping fails to COW,
2604 * it is due to references held by a child and an insufficient
2605 * huge page pool. To guarantee the original mappers
2606 * reliability, unmap the page from child processes. The child
2607 * may get SIGKILLed if it later faults.
2609 if (outside_reserve
) {
2610 BUG_ON(huge_pte_none(pte
));
2611 if (unmap_ref_private(mm
, vma
, old_page
, address
)) {
2612 BUG_ON(huge_pte_none(pte
));
2613 spin_lock(&mm
->page_table_lock
);
2614 ptep
= huge_pte_offset(mm
, address
& huge_page_mask(h
));
2615 if (likely(pte_same(huge_ptep_get(ptep
), pte
)))
2616 goto retry_avoidcopy
;
2618 * race occurs while re-acquiring page_table_lock, and
2626 /* Caller expects lock to be held */
2627 spin_lock(&mm
->page_table_lock
);
2629 return VM_FAULT_OOM
;
2631 return VM_FAULT_SIGBUS
;
2635 * When the original hugepage is shared one, it does not have
2636 * anon_vma prepared.
2638 if (unlikely(anon_vma_prepare(vma
))) {
2639 page_cache_release(new_page
);
2640 page_cache_release(old_page
);
2641 /* Caller expects lock to be held */
2642 spin_lock(&mm
->page_table_lock
);
2643 return VM_FAULT_OOM
;
2646 copy_user_huge_page(new_page
, old_page
, address
, vma
,
2647 pages_per_huge_page(h
));
2648 __SetPageUptodate(new_page
);
2650 mmun_start
= address
& huge_page_mask(h
);
2651 mmun_end
= mmun_start
+ huge_page_size(h
);
2652 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
2654 * Retake the page_table_lock to check for racing updates
2655 * before the page tables are altered
2657 spin_lock(&mm
->page_table_lock
);
2658 ptep
= huge_pte_offset(mm
, address
& huge_page_mask(h
));
2659 if (likely(pte_same(huge_ptep_get(ptep
), pte
))) {
2661 huge_ptep_clear_flush(vma
, address
, ptep
);
2662 set_huge_pte_at(mm
, address
, ptep
,
2663 make_huge_pte(vma
, new_page
, 1));
2664 page_remove_rmap(old_page
);
2665 hugepage_add_new_anon_rmap(new_page
, vma
, address
);
2666 /* Make the old page be freed below */
2667 new_page
= old_page
;
2669 spin_unlock(&mm
->page_table_lock
);
2670 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
2671 /* Caller expects lock to be held */
2672 spin_lock(&mm
->page_table_lock
);
2673 page_cache_release(new_page
);
2674 page_cache_release(old_page
);
2678 /* Return the pagecache page at a given address within a VMA */
2679 static struct page
*hugetlbfs_pagecache_page(struct hstate
*h
,
2680 struct vm_area_struct
*vma
, unsigned long address
)
2682 struct address_space
*mapping
;
2685 mapping
= vma
->vm_file
->f_mapping
;
2686 idx
= vma_hugecache_offset(h
, vma
, address
);
2688 return find_lock_page(mapping
, idx
);
2692 * Return whether there is a pagecache page to back given address within VMA.
2693 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2695 static bool hugetlbfs_pagecache_present(struct hstate
*h
,
2696 struct vm_area_struct
*vma
, unsigned long address
)
2698 struct address_space
*mapping
;
2702 mapping
= vma
->vm_file
->f_mapping
;
2703 idx
= vma_hugecache_offset(h
, vma
, address
);
2705 page
= find_get_page(mapping
, idx
);
2708 return page
!= NULL
;
2711 static int hugetlb_no_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2712 unsigned long address
, pte_t
*ptep
, unsigned int flags
)
2714 struct hstate
*h
= hstate_vma(vma
);
2715 int ret
= VM_FAULT_SIGBUS
;
2720 struct address_space
*mapping
;
2724 * Currently, we are forced to kill the process in the event the
2725 * original mapper has unmapped pages from the child due to a failed
2726 * COW. Warn that such a situation has occurred as it may not be obvious
2728 if (is_vma_resv_set(vma
, HPAGE_RESV_UNMAPPED
)) {
2729 pr_warning("PID %d killed due to inadequate hugepage pool\n",
2734 mapping
= vma
->vm_file
->f_mapping
;
2735 idx
= vma_hugecache_offset(h
, vma
, address
);
2738 * Use page lock to guard against racing truncation
2739 * before we get page_table_lock.
2742 page
= find_lock_page(mapping
, idx
);
2744 size
= i_size_read(mapping
->host
) >> huge_page_shift(h
);
2747 page
= alloc_huge_page(vma
, address
, 0);
2749 ret
= PTR_ERR(page
);
2753 ret
= VM_FAULT_SIGBUS
;
2756 clear_huge_page(page
, address
, pages_per_huge_page(h
));
2757 __SetPageUptodate(page
);
2759 if (vma
->vm_flags
& VM_MAYSHARE
) {
2761 struct inode
*inode
= mapping
->host
;
2763 err
= add_to_page_cache(page
, mapping
, idx
, GFP_KERNEL
);
2771 spin_lock(&inode
->i_lock
);
2772 inode
->i_blocks
+= blocks_per_huge_page(h
);
2773 spin_unlock(&inode
->i_lock
);
2776 if (unlikely(anon_vma_prepare(vma
))) {
2778 goto backout_unlocked
;
2784 * If memory error occurs between mmap() and fault, some process
2785 * don't have hwpoisoned swap entry for errored virtual address.
2786 * So we need to block hugepage fault by PG_hwpoison bit check.
2788 if (unlikely(PageHWPoison(page
))) {
2789 ret
= VM_FAULT_HWPOISON
|
2790 VM_FAULT_SET_HINDEX(hstate_index(h
));
2791 goto backout_unlocked
;
2796 * If we are going to COW a private mapping later, we examine the
2797 * pending reservations for this page now. This will ensure that
2798 * any allocations necessary to record that reservation occur outside
2801 if ((flags
& FAULT_FLAG_WRITE
) && !(vma
->vm_flags
& VM_SHARED
))
2802 if (vma_needs_reservation(h
, vma
, address
) < 0) {
2804 goto backout_unlocked
;
2807 spin_lock(&mm
->page_table_lock
);
2808 size
= i_size_read(mapping
->host
) >> huge_page_shift(h
);
2813 if (!huge_pte_none(huge_ptep_get(ptep
)))
2817 hugepage_add_new_anon_rmap(page
, vma
, address
);
2819 page_dup_rmap(page
);
2820 new_pte
= make_huge_pte(vma
, page
, ((vma
->vm_flags
& VM_WRITE
)
2821 && (vma
->vm_flags
& VM_SHARED
)));
2822 set_huge_pte_at(mm
, address
, ptep
, new_pte
);
2824 if ((flags
& FAULT_FLAG_WRITE
) && !(vma
->vm_flags
& VM_SHARED
)) {
2825 /* Optimization, do the COW without a second fault */
2826 ret
= hugetlb_cow(mm
, vma
, address
, ptep
, new_pte
, page
);
2829 spin_unlock(&mm
->page_table_lock
);
2835 spin_unlock(&mm
->page_table_lock
);
2842 int hugetlb_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2843 unsigned long address
, unsigned int flags
)
2848 struct page
*page
= NULL
;
2849 struct page
*pagecache_page
= NULL
;
2850 static DEFINE_MUTEX(hugetlb_instantiation_mutex
);
2851 struct hstate
*h
= hstate_vma(vma
);
2853 address
&= huge_page_mask(h
);
2855 ptep
= huge_pte_offset(mm
, address
);
2857 entry
= huge_ptep_get(ptep
);
2858 if (unlikely(is_hugetlb_entry_migration(entry
))) {
2859 migration_entry_wait_huge(mm
, ptep
);
2861 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry
)))
2862 return VM_FAULT_HWPOISON_LARGE
|
2863 VM_FAULT_SET_HINDEX(hstate_index(h
));
2866 ptep
= huge_pte_alloc(mm
, address
, huge_page_size(h
));
2868 return VM_FAULT_OOM
;
2871 * Serialize hugepage allocation and instantiation, so that we don't
2872 * get spurious allocation failures if two CPUs race to instantiate
2873 * the same page in the page cache.
2875 mutex_lock(&hugetlb_instantiation_mutex
);
2876 entry
= huge_ptep_get(ptep
);
2877 if (huge_pte_none(entry
)) {
2878 ret
= hugetlb_no_page(mm
, vma
, address
, ptep
, flags
);
2885 * If we are going to COW the mapping later, we examine the pending
2886 * reservations for this page now. This will ensure that any
2887 * allocations necessary to record that reservation occur outside the
2888 * spinlock. For private mappings, we also lookup the pagecache
2889 * page now as it is used to determine if a reservation has been
2892 if ((flags
& FAULT_FLAG_WRITE
) && !huge_pte_write(entry
)) {
2893 if (vma_needs_reservation(h
, vma
, address
) < 0) {
2898 if (!(vma
->vm_flags
& VM_MAYSHARE
))
2899 pagecache_page
= hugetlbfs_pagecache_page(h
,
2904 * hugetlb_cow() requires page locks of pte_page(entry) and
2905 * pagecache_page, so here we need take the former one
2906 * when page != pagecache_page or !pagecache_page.
2907 * Note that locking order is always pagecache_page -> page,
2908 * so no worry about deadlock.
2910 page
= pte_page(entry
);
2912 if (page
!= pagecache_page
)
2915 spin_lock(&mm
->page_table_lock
);
2916 /* Check for a racing update before calling hugetlb_cow */
2917 if (unlikely(!pte_same(entry
, huge_ptep_get(ptep
))))
2918 goto out_page_table_lock
;
2921 if (flags
& FAULT_FLAG_WRITE
) {
2922 if (!huge_pte_write(entry
)) {
2923 ret
= hugetlb_cow(mm
, vma
, address
, ptep
, entry
,
2925 goto out_page_table_lock
;
2927 entry
= huge_pte_mkdirty(entry
);
2929 entry
= pte_mkyoung(entry
);
2930 if (huge_ptep_set_access_flags(vma
, address
, ptep
, entry
,
2931 flags
& FAULT_FLAG_WRITE
))
2932 update_mmu_cache(vma
, address
, ptep
);
2934 out_page_table_lock
:
2935 spin_unlock(&mm
->page_table_lock
);
2937 if (pagecache_page
) {
2938 unlock_page(pagecache_page
);
2939 put_page(pagecache_page
);
2941 if (page
!= pagecache_page
)
2946 mutex_unlock(&hugetlb_instantiation_mutex
);
2951 long follow_hugetlb_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2952 struct page
**pages
, struct vm_area_struct
**vmas
,
2953 unsigned long *position
, unsigned long *nr_pages
,
2954 long i
, unsigned int flags
)
2956 unsigned long pfn_offset
;
2957 unsigned long vaddr
= *position
;
2958 unsigned long remainder
= *nr_pages
;
2959 struct hstate
*h
= hstate_vma(vma
);
2961 spin_lock(&mm
->page_table_lock
);
2962 while (vaddr
< vma
->vm_end
&& remainder
) {
2968 * Some archs (sparc64, sh*) have multiple pte_ts to
2969 * each hugepage. We have to make sure we get the
2970 * first, for the page indexing below to work.
2972 pte
= huge_pte_offset(mm
, vaddr
& huge_page_mask(h
));
2973 absent
= !pte
|| huge_pte_none(huge_ptep_get(pte
));
2976 * When coredumping, it suits get_dump_page if we just return
2977 * an error where there's an empty slot with no huge pagecache
2978 * to back it. This way, we avoid allocating a hugepage, and
2979 * the sparse dumpfile avoids allocating disk blocks, but its
2980 * huge holes still show up with zeroes where they need to be.
2982 if (absent
&& (flags
& FOLL_DUMP
) &&
2983 !hugetlbfs_pagecache_present(h
, vma
, vaddr
)) {
2989 * We need call hugetlb_fault for both hugepages under migration
2990 * (in which case hugetlb_fault waits for the migration,) and
2991 * hwpoisoned hugepages (in which case we need to prevent the
2992 * caller from accessing to them.) In order to do this, we use
2993 * here is_swap_pte instead of is_hugetlb_entry_migration and
2994 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
2995 * both cases, and because we can't follow correct pages
2996 * directly from any kind of swap entries.
2998 if (absent
|| is_swap_pte(huge_ptep_get(pte
)) ||
2999 ((flags
& FOLL_WRITE
) &&
3000 !huge_pte_write(huge_ptep_get(pte
)))) {
3003 spin_unlock(&mm
->page_table_lock
);
3004 ret
= hugetlb_fault(mm
, vma
, vaddr
,
3005 (flags
& FOLL_WRITE
) ? FAULT_FLAG_WRITE
: 0);
3006 spin_lock(&mm
->page_table_lock
);
3007 if (!(ret
& VM_FAULT_ERROR
))
3014 pfn_offset
= (vaddr
& ~huge_page_mask(h
)) >> PAGE_SHIFT
;
3015 page
= pte_page(huge_ptep_get(pte
));
3018 pages
[i
] = mem_map_offset(page
, pfn_offset
);
3029 if (vaddr
< vma
->vm_end
&& remainder
&&
3030 pfn_offset
< pages_per_huge_page(h
)) {
3032 * We use pfn_offset to avoid touching the pageframes
3033 * of this compound page.
3038 spin_unlock(&mm
->page_table_lock
);
3039 *nr_pages
= remainder
;
3042 return i
? i
: -EFAULT
;
3045 unsigned long hugetlb_change_protection(struct vm_area_struct
*vma
,
3046 unsigned long address
, unsigned long end
, pgprot_t newprot
)
3048 struct mm_struct
*mm
= vma
->vm_mm
;
3049 unsigned long start
= address
;
3052 struct hstate
*h
= hstate_vma(vma
);
3053 unsigned long pages
= 0;
3055 BUG_ON(address
>= end
);
3056 flush_cache_range(vma
, address
, end
);
3058 mutex_lock(&vma
->vm_file
->f_mapping
->i_mmap_mutex
);
3059 spin_lock(&mm
->page_table_lock
);
3060 for (; address
< end
; address
+= huge_page_size(h
)) {
3061 ptep
= huge_pte_offset(mm
, address
);
3064 if (huge_pmd_unshare(mm
, &address
, ptep
)) {
3068 if (!huge_pte_none(huge_ptep_get(ptep
))) {
3069 pte
= huge_ptep_get_and_clear(mm
, address
, ptep
);
3070 pte
= pte_mkhuge(huge_pte_modify(pte
, newprot
));
3071 pte
= arch_make_huge_pte(pte
, vma
, NULL
, 0);
3072 set_huge_pte_at(mm
, address
, ptep
, pte
);
3076 spin_unlock(&mm
->page_table_lock
);
3078 * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3079 * may have cleared our pud entry and done put_page on the page table:
3080 * once we release i_mmap_mutex, another task can do the final put_page
3081 * and that page table be reused and filled with junk.
3083 flush_tlb_range(vma
, start
, end
);
3084 mutex_unlock(&vma
->vm_file
->f_mapping
->i_mmap_mutex
);
3086 return pages
<< h
->order
;
3089 int hugetlb_reserve_pages(struct inode
*inode
,
3091 struct vm_area_struct
*vma
,
3092 vm_flags_t vm_flags
)
3095 struct hstate
*h
= hstate_inode(inode
);
3096 struct hugepage_subpool
*spool
= subpool_inode(inode
);
3099 * Only apply hugepage reservation if asked. At fault time, an
3100 * attempt will be made for VM_NORESERVE to allocate a page
3101 * without using reserves
3103 if (vm_flags
& VM_NORESERVE
)
3107 * Shared mappings base their reservation on the number of pages that
3108 * are already allocated on behalf of the file. Private mappings need
3109 * to reserve the full area even if read-only as mprotect() may be
3110 * called to make the mapping read-write. Assume !vma is a shm mapping
3112 if (!vma
|| vma
->vm_flags
& VM_MAYSHARE
)
3113 chg
= region_chg(&inode
->i_mapping
->private_list
, from
, to
);
3115 struct resv_map
*resv_map
= resv_map_alloc();
3121 set_vma_resv_map(vma
, resv_map
);
3122 set_vma_resv_flags(vma
, HPAGE_RESV_OWNER
);
3130 /* There must be enough pages in the subpool for the mapping */
3131 if (hugepage_subpool_get_pages(spool
, chg
)) {
3137 * Check enough hugepages are available for the reservation.
3138 * Hand the pages back to the subpool if there are not
3140 ret
= hugetlb_acct_memory(h
, chg
);
3142 hugepage_subpool_put_pages(spool
, chg
);
3147 * Account for the reservations made. Shared mappings record regions
3148 * that have reservations as they are shared by multiple VMAs.
3149 * When the last VMA disappears, the region map says how much
3150 * the reservation was and the page cache tells how much of
3151 * the reservation was consumed. Private mappings are per-VMA and
3152 * only the consumed reservations are tracked. When the VMA
3153 * disappears, the original reservation is the VMA size and the
3154 * consumed reservations are stored in the map. Hence, nothing
3155 * else has to be done for private mappings here
3157 if (!vma
|| vma
->vm_flags
& VM_MAYSHARE
)
3158 region_add(&inode
->i_mapping
->private_list
, from
, to
);
3166 void hugetlb_unreserve_pages(struct inode
*inode
, long offset
, long freed
)
3168 struct hstate
*h
= hstate_inode(inode
);
3169 long chg
= region_truncate(&inode
->i_mapping
->private_list
, offset
);
3170 struct hugepage_subpool
*spool
= subpool_inode(inode
);
3172 spin_lock(&inode
->i_lock
);
3173 inode
->i_blocks
-= (blocks_per_huge_page(h
) * freed
);
3174 spin_unlock(&inode
->i_lock
);
3176 hugepage_subpool_put_pages(spool
, (chg
- freed
));
3177 hugetlb_acct_memory(h
, -(chg
- freed
));
3180 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
3181 static unsigned long page_table_shareable(struct vm_area_struct
*svma
,
3182 struct vm_area_struct
*vma
,
3183 unsigned long addr
, pgoff_t idx
)
3185 unsigned long saddr
= ((idx
- svma
->vm_pgoff
) << PAGE_SHIFT
) +
3187 unsigned long sbase
= saddr
& PUD_MASK
;
3188 unsigned long s_end
= sbase
+ PUD_SIZE
;
3190 /* Allow segments to share if only one is marked locked */
3191 unsigned long vm_flags
= vma
->vm_flags
& ~VM_LOCKED
;
3192 unsigned long svm_flags
= svma
->vm_flags
& ~VM_LOCKED
;
3195 * match the virtual addresses, permission and the alignment of the
3198 if (pmd_index(addr
) != pmd_index(saddr
) ||
3199 vm_flags
!= svm_flags
||
3200 sbase
< svma
->vm_start
|| svma
->vm_end
< s_end
)
3206 static int vma_shareable(struct vm_area_struct
*vma
, unsigned long addr
)
3208 unsigned long base
= addr
& PUD_MASK
;
3209 unsigned long end
= base
+ PUD_SIZE
;
3212 * check on proper vm_flags and page table alignment
3214 if (vma
->vm_flags
& VM_MAYSHARE
&&
3215 vma
->vm_start
<= base
&& end
<= vma
->vm_end
)
3221 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
3222 * and returns the corresponding pte. While this is not necessary for the
3223 * !shared pmd case because we can allocate the pmd later as well, it makes the
3224 * code much cleaner. pmd allocation is essential for the shared case because
3225 * pud has to be populated inside the same i_mmap_mutex section - otherwise
3226 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
3227 * bad pmd for sharing.
3229 pte_t
*huge_pmd_share(struct mm_struct
*mm
, unsigned long addr
, pud_t
*pud
)
3231 struct vm_area_struct
*vma
= find_vma(mm
, addr
);
3232 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
3233 pgoff_t idx
= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
) +
3235 struct vm_area_struct
*svma
;
3236 unsigned long saddr
;
3240 if (!vma_shareable(vma
, addr
))
3241 return (pte_t
*)pmd_alloc(mm
, pud
, addr
);
3243 mutex_lock(&mapping
->i_mmap_mutex
);
3244 vma_interval_tree_foreach(svma
, &mapping
->i_mmap
, idx
, idx
) {
3248 saddr
= page_table_shareable(svma
, vma
, addr
, idx
);
3250 spte
= huge_pte_offset(svma
->vm_mm
, saddr
);
3252 get_page(virt_to_page(spte
));
3261 spin_lock(&mm
->page_table_lock
);
3263 pud_populate(mm
, pud
,
3264 (pmd_t
*)((unsigned long)spte
& PAGE_MASK
));
3266 put_page(virt_to_page(spte
));
3267 spin_unlock(&mm
->page_table_lock
);
3269 pte
= (pte_t
*)pmd_alloc(mm
, pud
, addr
);
3270 mutex_unlock(&mapping
->i_mmap_mutex
);
3275 * unmap huge page backed by shared pte.
3277 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
3278 * indicated by page_count > 1, unmap is achieved by clearing pud and
3279 * decrementing the ref count. If count == 1, the pte page is not shared.
3281 * called with vma->vm_mm->page_table_lock held.
3283 * returns: 1 successfully unmapped a shared pte page
3284 * 0 the underlying pte page is not shared, or it is the last user
3286 int huge_pmd_unshare(struct mm_struct
*mm
, unsigned long *addr
, pte_t
*ptep
)
3288 pgd_t
*pgd
= pgd_offset(mm
, *addr
);
3289 pud_t
*pud
= pud_offset(pgd
, *addr
);
3291 BUG_ON(page_count(virt_to_page(ptep
)) == 0);
3292 if (page_count(virt_to_page(ptep
)) == 1)
3296 put_page(virt_to_page(ptep
));
3297 *addr
= ALIGN(*addr
, HPAGE_SIZE
* PTRS_PER_PTE
) - HPAGE_SIZE
;
3300 #define want_pmd_share() (1)
3301 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3302 pte_t
*huge_pmd_share(struct mm_struct
*mm
, unsigned long addr
, pud_t
*pud
)
3306 #define want_pmd_share() (0)
3307 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3309 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
3310 pte_t
*huge_pte_alloc(struct mm_struct
*mm
,
3311 unsigned long addr
, unsigned long sz
)
3317 pgd
= pgd_offset(mm
, addr
);
3318 pud
= pud_alloc(mm
, pgd
, addr
);
3320 if (sz
== PUD_SIZE
) {
3323 BUG_ON(sz
!= PMD_SIZE
);
3324 if (want_pmd_share() && pud_none(*pud
))
3325 pte
= huge_pmd_share(mm
, addr
, pud
);
3327 pte
= (pte_t
*)pmd_alloc(mm
, pud
, addr
);
3330 BUG_ON(pte
&& !pte_none(*pte
) && !pte_huge(*pte
));
3335 pte_t
*huge_pte_offset(struct mm_struct
*mm
, unsigned long addr
)
3341 pgd
= pgd_offset(mm
, addr
);
3342 if (pgd_present(*pgd
)) {
3343 pud
= pud_offset(pgd
, addr
);
3344 if (pud_present(*pud
)) {
3346 return (pte_t
*)pud
;
3347 pmd
= pmd_offset(pud
, addr
);
3350 return (pte_t
*) pmd
;
3354 follow_huge_pmd(struct mm_struct
*mm
, unsigned long address
,
3355 pmd_t
*pmd
, int write
)
3359 page
= pte_page(*(pte_t
*)pmd
);
3361 page
+= ((address
& ~PMD_MASK
) >> PAGE_SHIFT
);
3366 follow_huge_pud(struct mm_struct
*mm
, unsigned long address
,
3367 pud_t
*pud
, int write
)
3371 page
= pte_page(*(pte_t
*)pud
);
3373 page
+= ((address
& ~PUD_MASK
) >> PAGE_SHIFT
);
3377 #else /* !CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3379 /* Can be overriden by architectures */
3380 __attribute__((weak
)) struct page
*
3381 follow_huge_pud(struct mm_struct
*mm
, unsigned long address
,
3382 pud_t
*pud
, int write
)
3388 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3390 #ifdef CONFIG_MEMORY_FAILURE
3392 /* Should be called in hugetlb_lock */
3393 static int is_hugepage_on_freelist(struct page
*hpage
)
3397 struct hstate
*h
= page_hstate(hpage
);
3398 int nid
= page_to_nid(hpage
);
3400 list_for_each_entry_safe(page
, tmp
, &h
->hugepage_freelists
[nid
], lru
)
3407 * This function is called from memory failure code.
3408 * Assume the caller holds page lock of the head page.
3410 int dequeue_hwpoisoned_huge_page(struct page
*hpage
)
3412 struct hstate
*h
= page_hstate(hpage
);
3413 int nid
= page_to_nid(hpage
);
3416 spin_lock(&hugetlb_lock
);
3417 if (is_hugepage_on_freelist(hpage
)) {
3419 * Hwpoisoned hugepage isn't linked to activelist or freelist,
3420 * but dangling hpage->lru can trigger list-debug warnings
3421 * (this happens when we call unpoison_memory() on it),
3422 * so let it point to itself with list_del_init().
3424 list_del_init(&hpage
->lru
);
3425 set_page_refcounted(hpage
);
3426 h
->free_huge_pages
--;
3427 h
->free_huge_pages_node
[nid
]--;
3430 spin_unlock(&hugetlb_lock
);