Linux 3.4.102
[linux/fpc-iii.git] / drivers / block / cciss.c
blobd7ad86536b3e252c3c542ea95ecde35044b0dec8
1 /*
2 * Disk Array driver for HP Smart Array controllers.
3 * (C) Copyright 2000, 2007 Hewlett-Packard Development Company, L.P.
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; version 2 of the License.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
17 * 02111-1307, USA.
19 * Questions/Comments/Bugfixes to iss_storagedev@hp.com
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/types.h>
26 #include <linux/pci.h>
27 #include <linux/pci-aspm.h>
28 #include <linux/kernel.h>
29 #include <linux/slab.h>
30 #include <linux/delay.h>
31 #include <linux/major.h>
32 #include <linux/fs.h>
33 #include <linux/bio.h>
34 #include <linux/blkpg.h>
35 #include <linux/timer.h>
36 #include <linux/proc_fs.h>
37 #include <linux/seq_file.h>
38 #include <linux/init.h>
39 #include <linux/jiffies.h>
40 #include <linux/hdreg.h>
41 #include <linux/spinlock.h>
42 #include <linux/compat.h>
43 #include <linux/mutex.h>
44 #include <asm/uaccess.h>
45 #include <asm/io.h>
47 #include <linux/dma-mapping.h>
48 #include <linux/blkdev.h>
49 #include <linux/genhd.h>
50 #include <linux/completion.h>
51 #include <scsi/scsi.h>
52 #include <scsi/sg.h>
53 #include <scsi/scsi_ioctl.h>
54 #include <linux/cdrom.h>
55 #include <linux/scatterlist.h>
56 #include <linux/kthread.h>
58 #define CCISS_DRIVER_VERSION(maj,min,submin) ((maj<<16)|(min<<8)|(submin))
59 #define DRIVER_NAME "HP CISS Driver (v 3.6.26)"
60 #define DRIVER_VERSION CCISS_DRIVER_VERSION(3, 6, 26)
62 /* Embedded module documentation macros - see modules.h */
63 MODULE_AUTHOR("Hewlett-Packard Company");
64 MODULE_DESCRIPTION("Driver for HP Smart Array Controllers");
65 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
66 MODULE_VERSION("3.6.26");
67 MODULE_LICENSE("GPL");
68 static int cciss_tape_cmds = 6;
69 module_param(cciss_tape_cmds, int, 0644);
70 MODULE_PARM_DESC(cciss_tape_cmds,
71 "number of commands to allocate for tape devices (default: 6)");
72 static int cciss_simple_mode;
73 module_param(cciss_simple_mode, int, S_IRUGO|S_IWUSR);
74 MODULE_PARM_DESC(cciss_simple_mode,
75 "Use 'simple mode' rather than 'performant mode'");
77 static DEFINE_MUTEX(cciss_mutex);
78 static struct proc_dir_entry *proc_cciss;
80 #include "cciss_cmd.h"
81 #include "cciss.h"
82 #include <linux/cciss_ioctl.h>
84 /* define the PCI info for the cards we can control */
85 static const struct pci_device_id cciss_pci_device_id[] = {
86 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISS, 0x0E11, 0x4070},
87 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4080},
88 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4082},
89 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4083},
90 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x4091},
91 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409A},
92 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409B},
93 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409C},
94 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409D},
95 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSA, 0x103C, 0x3225},
96 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3223},
97 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3234},
98 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3235},
99 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3211},
100 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3212},
101 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3213},
102 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3214},
103 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3215},
104 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3237},
105 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x323D},
106 {0,}
109 MODULE_DEVICE_TABLE(pci, cciss_pci_device_id);
111 /* board_id = Subsystem Device ID & Vendor ID
112 * product = Marketing Name for the board
113 * access = Address of the struct of function pointers
115 static struct board_type products[] = {
116 {0x40700E11, "Smart Array 5300", &SA5_access},
117 {0x40800E11, "Smart Array 5i", &SA5B_access},
118 {0x40820E11, "Smart Array 532", &SA5B_access},
119 {0x40830E11, "Smart Array 5312", &SA5B_access},
120 {0x409A0E11, "Smart Array 641", &SA5_access},
121 {0x409B0E11, "Smart Array 642", &SA5_access},
122 {0x409C0E11, "Smart Array 6400", &SA5_access},
123 {0x409D0E11, "Smart Array 6400 EM", &SA5_access},
124 {0x40910E11, "Smart Array 6i", &SA5_access},
125 {0x3225103C, "Smart Array P600", &SA5_access},
126 {0x3223103C, "Smart Array P800", &SA5_access},
127 {0x3234103C, "Smart Array P400", &SA5_access},
128 {0x3235103C, "Smart Array P400i", &SA5_access},
129 {0x3211103C, "Smart Array E200i", &SA5_access},
130 {0x3212103C, "Smart Array E200", &SA5_access},
131 {0x3213103C, "Smart Array E200i", &SA5_access},
132 {0x3214103C, "Smart Array E200i", &SA5_access},
133 {0x3215103C, "Smart Array E200i", &SA5_access},
134 {0x3237103C, "Smart Array E500", &SA5_access},
135 {0x3223103C, "Smart Array P800", &SA5_access},
136 {0x3234103C, "Smart Array P400", &SA5_access},
137 {0x323D103C, "Smart Array P700m", &SA5_access},
140 /* How long to wait (in milliseconds) for board to go into simple mode */
141 #define MAX_CONFIG_WAIT 30000
142 #define MAX_IOCTL_CONFIG_WAIT 1000
144 /*define how many times we will try a command because of bus resets */
145 #define MAX_CMD_RETRIES 3
147 #define MAX_CTLR 32
149 /* Originally cciss driver only supports 8 major numbers */
150 #define MAX_CTLR_ORIG 8
152 static ctlr_info_t *hba[MAX_CTLR];
154 static struct task_struct *cciss_scan_thread;
155 static DEFINE_MUTEX(scan_mutex);
156 static LIST_HEAD(scan_q);
158 static void do_cciss_request(struct request_queue *q);
159 static irqreturn_t do_cciss_intx(int irq, void *dev_id);
160 static irqreturn_t do_cciss_msix_intr(int irq, void *dev_id);
161 static int cciss_open(struct block_device *bdev, fmode_t mode);
162 static int cciss_unlocked_open(struct block_device *bdev, fmode_t mode);
163 static int cciss_release(struct gendisk *disk, fmode_t mode);
164 static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
165 unsigned int cmd, unsigned long arg);
166 static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo);
168 static int cciss_revalidate(struct gendisk *disk);
169 static int rebuild_lun_table(ctlr_info_t *h, int first_time, int via_ioctl);
170 static int deregister_disk(ctlr_info_t *h, int drv_index,
171 int clear_all, int via_ioctl);
173 static void cciss_read_capacity(ctlr_info_t *h, int logvol,
174 sector_t *total_size, unsigned int *block_size);
175 static void cciss_read_capacity_16(ctlr_info_t *h, int logvol,
176 sector_t *total_size, unsigned int *block_size);
177 static void cciss_geometry_inquiry(ctlr_info_t *h, int logvol,
178 sector_t total_size,
179 unsigned int block_size, InquiryData_struct *inq_buff,
180 drive_info_struct *drv);
181 static void __devinit cciss_interrupt_mode(ctlr_info_t *);
182 static int __devinit cciss_enter_simple_mode(struct ctlr_info *h);
183 static void start_io(ctlr_info_t *h);
184 static int sendcmd_withirq(ctlr_info_t *h, __u8 cmd, void *buff, size_t size,
185 __u8 page_code, unsigned char scsi3addr[],
186 int cmd_type);
187 static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
188 int attempt_retry);
189 static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c);
191 static int add_to_scan_list(struct ctlr_info *h);
192 static int scan_thread(void *data);
193 static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c);
194 static void cciss_hba_release(struct device *dev);
195 static void cciss_device_release(struct device *dev);
196 static void cciss_free_gendisk(ctlr_info_t *h, int drv_index);
197 static void cciss_free_drive_info(ctlr_info_t *h, int drv_index);
198 static inline u32 next_command(ctlr_info_t *h);
199 static int __devinit cciss_find_cfg_addrs(struct pci_dev *pdev,
200 void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
201 u64 *cfg_offset);
202 static int __devinit cciss_pci_find_memory_BAR(struct pci_dev *pdev,
203 unsigned long *memory_bar);
204 static inline u32 cciss_tag_discard_error_bits(ctlr_info_t *h, u32 tag);
205 static __devinit int write_driver_ver_to_cfgtable(
206 CfgTable_struct __iomem *cfgtable);
208 /* performant mode helper functions */
209 static void calc_bucket_map(int *bucket, int num_buckets, int nsgs,
210 int *bucket_map);
211 static void cciss_put_controller_into_performant_mode(ctlr_info_t *h);
213 #ifdef CONFIG_PROC_FS
214 static void cciss_procinit(ctlr_info_t *h);
215 #else
216 static void cciss_procinit(ctlr_info_t *h)
219 #endif /* CONFIG_PROC_FS */
221 #ifdef CONFIG_COMPAT
222 static int cciss_compat_ioctl(struct block_device *, fmode_t,
223 unsigned, unsigned long);
224 #endif
226 static const struct block_device_operations cciss_fops = {
227 .owner = THIS_MODULE,
228 .open = cciss_unlocked_open,
229 .release = cciss_release,
230 .ioctl = cciss_ioctl,
231 .getgeo = cciss_getgeo,
232 #ifdef CONFIG_COMPAT
233 .compat_ioctl = cciss_compat_ioctl,
234 #endif
235 .revalidate_disk = cciss_revalidate,
238 /* set_performant_mode: Modify the tag for cciss performant
239 * set bit 0 for pull model, bits 3-1 for block fetch
240 * register number
242 static void set_performant_mode(ctlr_info_t *h, CommandList_struct *c)
244 if (likely(h->transMethod & CFGTBL_Trans_Performant))
245 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
249 * Enqueuing and dequeuing functions for cmdlists.
251 static inline void addQ(struct list_head *list, CommandList_struct *c)
253 list_add_tail(&c->list, list);
256 static inline void removeQ(CommandList_struct *c)
259 * After kexec/dump some commands might still
260 * be in flight, which the firmware will try
261 * to complete. Resetting the firmware doesn't work
262 * with old fw revisions, so we have to mark
263 * them off as 'stale' to prevent the driver from
264 * falling over.
266 if (WARN_ON(list_empty(&c->list))) {
267 c->cmd_type = CMD_MSG_STALE;
268 return;
271 list_del_init(&c->list);
274 static void enqueue_cmd_and_start_io(ctlr_info_t *h,
275 CommandList_struct *c)
277 unsigned long flags;
278 set_performant_mode(h, c);
279 spin_lock_irqsave(&h->lock, flags);
280 addQ(&h->reqQ, c);
281 h->Qdepth++;
282 if (h->Qdepth > h->maxQsinceinit)
283 h->maxQsinceinit = h->Qdepth;
284 start_io(h);
285 spin_unlock_irqrestore(&h->lock, flags);
288 static void cciss_free_sg_chain_blocks(SGDescriptor_struct **cmd_sg_list,
289 int nr_cmds)
291 int i;
293 if (!cmd_sg_list)
294 return;
295 for (i = 0; i < nr_cmds; i++) {
296 kfree(cmd_sg_list[i]);
297 cmd_sg_list[i] = NULL;
299 kfree(cmd_sg_list);
302 static SGDescriptor_struct **cciss_allocate_sg_chain_blocks(
303 ctlr_info_t *h, int chainsize, int nr_cmds)
305 int j;
306 SGDescriptor_struct **cmd_sg_list;
308 if (chainsize <= 0)
309 return NULL;
311 cmd_sg_list = kmalloc(sizeof(*cmd_sg_list) * nr_cmds, GFP_KERNEL);
312 if (!cmd_sg_list)
313 return NULL;
315 /* Build up chain blocks for each command */
316 for (j = 0; j < nr_cmds; j++) {
317 /* Need a block of chainsized s/g elements. */
318 cmd_sg_list[j] = kmalloc((chainsize *
319 sizeof(*cmd_sg_list[j])), GFP_KERNEL);
320 if (!cmd_sg_list[j]) {
321 dev_err(&h->pdev->dev, "Cannot get memory "
322 "for s/g chains.\n");
323 goto clean;
326 return cmd_sg_list;
327 clean:
328 cciss_free_sg_chain_blocks(cmd_sg_list, nr_cmds);
329 return NULL;
332 static void cciss_unmap_sg_chain_block(ctlr_info_t *h, CommandList_struct *c)
334 SGDescriptor_struct *chain_sg;
335 u64bit temp64;
337 if (c->Header.SGTotal <= h->max_cmd_sgentries)
338 return;
340 chain_sg = &c->SG[h->max_cmd_sgentries - 1];
341 temp64.val32.lower = chain_sg->Addr.lower;
342 temp64.val32.upper = chain_sg->Addr.upper;
343 pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
346 static void cciss_map_sg_chain_block(ctlr_info_t *h, CommandList_struct *c,
347 SGDescriptor_struct *chain_block, int len)
349 SGDescriptor_struct *chain_sg;
350 u64bit temp64;
352 chain_sg = &c->SG[h->max_cmd_sgentries - 1];
353 chain_sg->Ext = CCISS_SG_CHAIN;
354 chain_sg->Len = len;
355 temp64.val = pci_map_single(h->pdev, chain_block, len,
356 PCI_DMA_TODEVICE);
357 chain_sg->Addr.lower = temp64.val32.lower;
358 chain_sg->Addr.upper = temp64.val32.upper;
361 #include "cciss_scsi.c" /* For SCSI tape support */
363 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
364 "UNKNOWN"
366 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label)-1)
368 #ifdef CONFIG_PROC_FS
371 * Report information about this controller.
373 #define ENG_GIG 1000000000
374 #define ENG_GIG_FACTOR (ENG_GIG/512)
375 #define ENGAGE_SCSI "engage scsi"
377 static void cciss_seq_show_header(struct seq_file *seq)
379 ctlr_info_t *h = seq->private;
381 seq_printf(seq, "%s: HP %s Controller\n"
382 "Board ID: 0x%08lx\n"
383 "Firmware Version: %c%c%c%c\n"
384 "IRQ: %d\n"
385 "Logical drives: %d\n"
386 "Current Q depth: %d\n"
387 "Current # commands on controller: %d\n"
388 "Max Q depth since init: %d\n"
389 "Max # commands on controller since init: %d\n"
390 "Max SG entries since init: %d\n",
391 h->devname,
392 h->product_name,
393 (unsigned long)h->board_id,
394 h->firm_ver[0], h->firm_ver[1], h->firm_ver[2],
395 h->firm_ver[3], (unsigned int)h->intr[h->intr_mode],
396 h->num_luns,
397 h->Qdepth, h->commands_outstanding,
398 h->maxQsinceinit, h->max_outstanding, h->maxSG);
400 #ifdef CONFIG_CISS_SCSI_TAPE
401 cciss_seq_tape_report(seq, h);
402 #endif /* CONFIG_CISS_SCSI_TAPE */
405 static void *cciss_seq_start(struct seq_file *seq, loff_t *pos)
407 ctlr_info_t *h = seq->private;
408 unsigned long flags;
410 /* prevent displaying bogus info during configuration
411 * or deconfiguration of a logical volume
413 spin_lock_irqsave(&h->lock, flags);
414 if (h->busy_configuring) {
415 spin_unlock_irqrestore(&h->lock, flags);
416 return ERR_PTR(-EBUSY);
418 h->busy_configuring = 1;
419 spin_unlock_irqrestore(&h->lock, flags);
421 if (*pos == 0)
422 cciss_seq_show_header(seq);
424 return pos;
427 static int cciss_seq_show(struct seq_file *seq, void *v)
429 sector_t vol_sz, vol_sz_frac;
430 ctlr_info_t *h = seq->private;
431 unsigned ctlr = h->ctlr;
432 loff_t *pos = v;
433 drive_info_struct *drv = h->drv[*pos];
435 if (*pos > h->highest_lun)
436 return 0;
438 if (drv == NULL) /* it's possible for h->drv[] to have holes. */
439 return 0;
441 if (drv->heads == 0)
442 return 0;
444 vol_sz = drv->nr_blocks;
445 vol_sz_frac = sector_div(vol_sz, ENG_GIG_FACTOR);
446 vol_sz_frac *= 100;
447 sector_div(vol_sz_frac, ENG_GIG_FACTOR);
449 if (drv->raid_level < 0 || drv->raid_level > RAID_UNKNOWN)
450 drv->raid_level = RAID_UNKNOWN;
451 seq_printf(seq, "cciss/c%dd%d:"
452 "\t%4u.%02uGB\tRAID %s\n",
453 ctlr, (int) *pos, (int)vol_sz, (int)vol_sz_frac,
454 raid_label[drv->raid_level]);
455 return 0;
458 static void *cciss_seq_next(struct seq_file *seq, void *v, loff_t *pos)
460 ctlr_info_t *h = seq->private;
462 if (*pos > h->highest_lun)
463 return NULL;
464 *pos += 1;
466 return pos;
469 static void cciss_seq_stop(struct seq_file *seq, void *v)
471 ctlr_info_t *h = seq->private;
473 /* Only reset h->busy_configuring if we succeeded in setting
474 * it during cciss_seq_start. */
475 if (v == ERR_PTR(-EBUSY))
476 return;
478 h->busy_configuring = 0;
481 static const struct seq_operations cciss_seq_ops = {
482 .start = cciss_seq_start,
483 .show = cciss_seq_show,
484 .next = cciss_seq_next,
485 .stop = cciss_seq_stop,
488 static int cciss_seq_open(struct inode *inode, struct file *file)
490 int ret = seq_open(file, &cciss_seq_ops);
491 struct seq_file *seq = file->private_data;
493 if (!ret)
494 seq->private = PDE(inode)->data;
496 return ret;
499 static ssize_t
500 cciss_proc_write(struct file *file, const char __user *buf,
501 size_t length, loff_t *ppos)
503 int err;
504 char *buffer;
506 #ifndef CONFIG_CISS_SCSI_TAPE
507 return -EINVAL;
508 #endif
510 if (!buf || length > PAGE_SIZE - 1)
511 return -EINVAL;
513 buffer = (char *)__get_free_page(GFP_KERNEL);
514 if (!buffer)
515 return -ENOMEM;
517 err = -EFAULT;
518 if (copy_from_user(buffer, buf, length))
519 goto out;
520 buffer[length] = '\0';
522 #ifdef CONFIG_CISS_SCSI_TAPE
523 if (strncmp(ENGAGE_SCSI, buffer, sizeof ENGAGE_SCSI - 1) == 0) {
524 struct seq_file *seq = file->private_data;
525 ctlr_info_t *h = seq->private;
527 err = cciss_engage_scsi(h);
528 if (err == 0)
529 err = length;
530 } else
531 #endif /* CONFIG_CISS_SCSI_TAPE */
532 err = -EINVAL;
533 /* might be nice to have "disengage" too, but it's not
534 safely possible. (only 1 module use count, lock issues.) */
536 out:
537 free_page((unsigned long)buffer);
538 return err;
541 static const struct file_operations cciss_proc_fops = {
542 .owner = THIS_MODULE,
543 .open = cciss_seq_open,
544 .read = seq_read,
545 .llseek = seq_lseek,
546 .release = seq_release,
547 .write = cciss_proc_write,
550 static void __devinit cciss_procinit(ctlr_info_t *h)
552 struct proc_dir_entry *pde;
554 if (proc_cciss == NULL)
555 proc_cciss = proc_mkdir("driver/cciss", NULL);
556 if (!proc_cciss)
557 return;
558 pde = proc_create_data(h->devname, S_IWUSR | S_IRUSR | S_IRGRP |
559 S_IROTH, proc_cciss,
560 &cciss_proc_fops, h);
562 #endif /* CONFIG_PROC_FS */
564 #define MAX_PRODUCT_NAME_LEN 19
566 #define to_hba(n) container_of(n, struct ctlr_info, dev)
567 #define to_drv(n) container_of(n, drive_info_struct, dev)
569 /* List of controllers which cannot be hard reset on kexec with reset_devices */
570 static u32 unresettable_controller[] = {
571 0x324a103C, /* Smart Array P712m */
572 0x324b103C, /* SmartArray P711m */
573 0x3223103C, /* Smart Array P800 */
574 0x3234103C, /* Smart Array P400 */
575 0x3235103C, /* Smart Array P400i */
576 0x3211103C, /* Smart Array E200i */
577 0x3212103C, /* Smart Array E200 */
578 0x3213103C, /* Smart Array E200i */
579 0x3214103C, /* Smart Array E200i */
580 0x3215103C, /* Smart Array E200i */
581 0x3237103C, /* Smart Array E500 */
582 0x323D103C, /* Smart Array P700m */
583 0x409C0E11, /* Smart Array 6400 */
584 0x409D0E11, /* Smart Array 6400 EM */
587 /* List of controllers which cannot even be soft reset */
588 static u32 soft_unresettable_controller[] = {
589 0x409C0E11, /* Smart Array 6400 */
590 0x409D0E11, /* Smart Array 6400 EM */
593 static int ctlr_is_hard_resettable(u32 board_id)
595 int i;
597 for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
598 if (unresettable_controller[i] == board_id)
599 return 0;
600 return 1;
603 static int ctlr_is_soft_resettable(u32 board_id)
605 int i;
607 for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++)
608 if (soft_unresettable_controller[i] == board_id)
609 return 0;
610 return 1;
613 static int ctlr_is_resettable(u32 board_id)
615 return ctlr_is_hard_resettable(board_id) ||
616 ctlr_is_soft_resettable(board_id);
619 static ssize_t host_show_resettable(struct device *dev,
620 struct device_attribute *attr,
621 char *buf)
623 struct ctlr_info *h = to_hba(dev);
625 return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
627 static DEVICE_ATTR(resettable, S_IRUGO, host_show_resettable, NULL);
629 static ssize_t host_store_rescan(struct device *dev,
630 struct device_attribute *attr,
631 const char *buf, size_t count)
633 struct ctlr_info *h = to_hba(dev);
635 add_to_scan_list(h);
636 wake_up_process(cciss_scan_thread);
637 wait_for_completion_interruptible(&h->scan_wait);
639 return count;
641 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
643 static ssize_t host_show_transport_mode(struct device *dev,
644 struct device_attribute *attr,
645 char *buf)
647 struct ctlr_info *h = to_hba(dev);
649 return snprintf(buf, 20, "%s\n",
650 h->transMethod & CFGTBL_Trans_Performant ?
651 "performant" : "simple");
653 static DEVICE_ATTR(transport_mode, S_IRUGO, host_show_transport_mode, NULL);
655 static ssize_t dev_show_unique_id(struct device *dev,
656 struct device_attribute *attr,
657 char *buf)
659 drive_info_struct *drv = to_drv(dev);
660 struct ctlr_info *h = to_hba(drv->dev.parent);
661 __u8 sn[16];
662 unsigned long flags;
663 int ret = 0;
665 spin_lock_irqsave(&h->lock, flags);
666 if (h->busy_configuring)
667 ret = -EBUSY;
668 else
669 memcpy(sn, drv->serial_no, sizeof(sn));
670 spin_unlock_irqrestore(&h->lock, flags);
672 if (ret)
673 return ret;
674 else
675 return snprintf(buf, 16 * 2 + 2,
676 "%02X%02X%02X%02X%02X%02X%02X%02X"
677 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
678 sn[0], sn[1], sn[2], sn[3],
679 sn[4], sn[5], sn[6], sn[7],
680 sn[8], sn[9], sn[10], sn[11],
681 sn[12], sn[13], sn[14], sn[15]);
683 static DEVICE_ATTR(unique_id, S_IRUGO, dev_show_unique_id, NULL);
685 static ssize_t dev_show_vendor(struct device *dev,
686 struct device_attribute *attr,
687 char *buf)
689 drive_info_struct *drv = to_drv(dev);
690 struct ctlr_info *h = to_hba(drv->dev.parent);
691 char vendor[VENDOR_LEN + 1];
692 unsigned long flags;
693 int ret = 0;
695 spin_lock_irqsave(&h->lock, flags);
696 if (h->busy_configuring)
697 ret = -EBUSY;
698 else
699 memcpy(vendor, drv->vendor, VENDOR_LEN + 1);
700 spin_unlock_irqrestore(&h->lock, flags);
702 if (ret)
703 return ret;
704 else
705 return snprintf(buf, sizeof(vendor) + 1, "%s\n", drv->vendor);
707 static DEVICE_ATTR(vendor, S_IRUGO, dev_show_vendor, NULL);
709 static ssize_t dev_show_model(struct device *dev,
710 struct device_attribute *attr,
711 char *buf)
713 drive_info_struct *drv = to_drv(dev);
714 struct ctlr_info *h = to_hba(drv->dev.parent);
715 char model[MODEL_LEN + 1];
716 unsigned long flags;
717 int ret = 0;
719 spin_lock_irqsave(&h->lock, flags);
720 if (h->busy_configuring)
721 ret = -EBUSY;
722 else
723 memcpy(model, drv->model, MODEL_LEN + 1);
724 spin_unlock_irqrestore(&h->lock, flags);
726 if (ret)
727 return ret;
728 else
729 return snprintf(buf, sizeof(model) + 1, "%s\n", drv->model);
731 static DEVICE_ATTR(model, S_IRUGO, dev_show_model, NULL);
733 static ssize_t dev_show_rev(struct device *dev,
734 struct device_attribute *attr,
735 char *buf)
737 drive_info_struct *drv = to_drv(dev);
738 struct ctlr_info *h = to_hba(drv->dev.parent);
739 char rev[REV_LEN + 1];
740 unsigned long flags;
741 int ret = 0;
743 spin_lock_irqsave(&h->lock, flags);
744 if (h->busy_configuring)
745 ret = -EBUSY;
746 else
747 memcpy(rev, drv->rev, REV_LEN + 1);
748 spin_unlock_irqrestore(&h->lock, flags);
750 if (ret)
751 return ret;
752 else
753 return snprintf(buf, sizeof(rev) + 1, "%s\n", drv->rev);
755 static DEVICE_ATTR(rev, S_IRUGO, dev_show_rev, NULL);
757 static ssize_t cciss_show_lunid(struct device *dev,
758 struct device_attribute *attr, char *buf)
760 drive_info_struct *drv = to_drv(dev);
761 struct ctlr_info *h = to_hba(drv->dev.parent);
762 unsigned long flags;
763 unsigned char lunid[8];
765 spin_lock_irqsave(&h->lock, flags);
766 if (h->busy_configuring) {
767 spin_unlock_irqrestore(&h->lock, flags);
768 return -EBUSY;
770 if (!drv->heads) {
771 spin_unlock_irqrestore(&h->lock, flags);
772 return -ENOTTY;
774 memcpy(lunid, drv->LunID, sizeof(lunid));
775 spin_unlock_irqrestore(&h->lock, flags);
776 return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
777 lunid[0], lunid[1], lunid[2], lunid[3],
778 lunid[4], lunid[5], lunid[6], lunid[7]);
780 static DEVICE_ATTR(lunid, S_IRUGO, cciss_show_lunid, NULL);
782 static ssize_t cciss_show_raid_level(struct device *dev,
783 struct device_attribute *attr, char *buf)
785 drive_info_struct *drv = to_drv(dev);
786 struct ctlr_info *h = to_hba(drv->dev.parent);
787 int raid;
788 unsigned long flags;
790 spin_lock_irqsave(&h->lock, flags);
791 if (h->busy_configuring) {
792 spin_unlock_irqrestore(&h->lock, flags);
793 return -EBUSY;
795 raid = drv->raid_level;
796 spin_unlock_irqrestore(&h->lock, flags);
797 if (raid < 0 || raid > RAID_UNKNOWN)
798 raid = RAID_UNKNOWN;
800 return snprintf(buf, strlen(raid_label[raid]) + 7, "RAID %s\n",
801 raid_label[raid]);
803 static DEVICE_ATTR(raid_level, S_IRUGO, cciss_show_raid_level, NULL);
805 static ssize_t cciss_show_usage_count(struct device *dev,
806 struct device_attribute *attr, char *buf)
808 drive_info_struct *drv = to_drv(dev);
809 struct ctlr_info *h = to_hba(drv->dev.parent);
810 unsigned long flags;
811 int count;
813 spin_lock_irqsave(&h->lock, flags);
814 if (h->busy_configuring) {
815 spin_unlock_irqrestore(&h->lock, flags);
816 return -EBUSY;
818 count = drv->usage_count;
819 spin_unlock_irqrestore(&h->lock, flags);
820 return snprintf(buf, 20, "%d\n", count);
822 static DEVICE_ATTR(usage_count, S_IRUGO, cciss_show_usage_count, NULL);
824 static struct attribute *cciss_host_attrs[] = {
825 &dev_attr_rescan.attr,
826 &dev_attr_resettable.attr,
827 &dev_attr_transport_mode.attr,
828 NULL
831 static struct attribute_group cciss_host_attr_group = {
832 .attrs = cciss_host_attrs,
835 static const struct attribute_group *cciss_host_attr_groups[] = {
836 &cciss_host_attr_group,
837 NULL
840 static struct device_type cciss_host_type = {
841 .name = "cciss_host",
842 .groups = cciss_host_attr_groups,
843 .release = cciss_hba_release,
846 static struct attribute *cciss_dev_attrs[] = {
847 &dev_attr_unique_id.attr,
848 &dev_attr_model.attr,
849 &dev_attr_vendor.attr,
850 &dev_attr_rev.attr,
851 &dev_attr_lunid.attr,
852 &dev_attr_raid_level.attr,
853 &dev_attr_usage_count.attr,
854 NULL
857 static struct attribute_group cciss_dev_attr_group = {
858 .attrs = cciss_dev_attrs,
861 static const struct attribute_group *cciss_dev_attr_groups[] = {
862 &cciss_dev_attr_group,
863 NULL
866 static struct device_type cciss_dev_type = {
867 .name = "cciss_device",
868 .groups = cciss_dev_attr_groups,
869 .release = cciss_device_release,
872 static struct bus_type cciss_bus_type = {
873 .name = "cciss",
877 * cciss_hba_release is called when the reference count
878 * of h->dev goes to zero.
880 static void cciss_hba_release(struct device *dev)
883 * nothing to do, but need this to avoid a warning
884 * about not having a release handler from lib/kref.c.
889 * Initialize sysfs entry for each controller. This sets up and registers
890 * the 'cciss#' directory for each individual controller under
891 * /sys/bus/pci/devices/<dev>/.
893 static int cciss_create_hba_sysfs_entry(struct ctlr_info *h)
895 device_initialize(&h->dev);
896 h->dev.type = &cciss_host_type;
897 h->dev.bus = &cciss_bus_type;
898 dev_set_name(&h->dev, "%s", h->devname);
899 h->dev.parent = &h->pdev->dev;
901 return device_add(&h->dev);
905 * Remove sysfs entries for an hba.
907 static void cciss_destroy_hba_sysfs_entry(struct ctlr_info *h)
909 device_del(&h->dev);
910 put_device(&h->dev); /* final put. */
913 /* cciss_device_release is called when the reference count
914 * of h->drv[x]dev goes to zero.
916 static void cciss_device_release(struct device *dev)
918 drive_info_struct *drv = to_drv(dev);
919 kfree(drv);
923 * Initialize sysfs for each logical drive. This sets up and registers
924 * the 'c#d#' directory for each individual logical drive under
925 * /sys/bus/pci/devices/<dev/ccis#/. We also create a link from
926 * /sys/block/cciss!c#d# to this entry.
928 static long cciss_create_ld_sysfs_entry(struct ctlr_info *h,
929 int drv_index)
931 struct device *dev;
933 if (h->drv[drv_index]->device_initialized)
934 return 0;
936 dev = &h->drv[drv_index]->dev;
937 device_initialize(dev);
938 dev->type = &cciss_dev_type;
939 dev->bus = &cciss_bus_type;
940 dev_set_name(dev, "c%dd%d", h->ctlr, drv_index);
941 dev->parent = &h->dev;
942 h->drv[drv_index]->device_initialized = 1;
943 return device_add(dev);
947 * Remove sysfs entries for a logical drive.
949 static void cciss_destroy_ld_sysfs_entry(struct ctlr_info *h, int drv_index,
950 int ctlr_exiting)
952 struct device *dev = &h->drv[drv_index]->dev;
954 /* special case for c*d0, we only destroy it on controller exit */
955 if (drv_index == 0 && !ctlr_exiting)
956 return;
958 device_del(dev);
959 put_device(dev); /* the "final" put. */
960 h->drv[drv_index] = NULL;
964 * For operations that cannot sleep, a command block is allocated at init,
965 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
966 * which ones are free or in use.
968 static CommandList_struct *cmd_alloc(ctlr_info_t *h)
970 CommandList_struct *c;
971 int i;
972 u64bit temp64;
973 dma_addr_t cmd_dma_handle, err_dma_handle;
975 do {
976 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
977 if (i == h->nr_cmds)
978 return NULL;
979 } while (test_and_set_bit(i & (BITS_PER_LONG - 1),
980 h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
981 c = h->cmd_pool + i;
982 memset(c, 0, sizeof(CommandList_struct));
983 cmd_dma_handle = h->cmd_pool_dhandle + i * sizeof(CommandList_struct);
984 c->err_info = h->errinfo_pool + i;
985 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
986 err_dma_handle = h->errinfo_pool_dhandle
987 + i * sizeof(ErrorInfo_struct);
988 h->nr_allocs++;
990 c->cmdindex = i;
992 INIT_LIST_HEAD(&c->list);
993 c->busaddr = (__u32) cmd_dma_handle;
994 temp64.val = (__u64) err_dma_handle;
995 c->ErrDesc.Addr.lower = temp64.val32.lower;
996 c->ErrDesc.Addr.upper = temp64.val32.upper;
997 c->ErrDesc.Len = sizeof(ErrorInfo_struct);
999 c->ctlr = h->ctlr;
1000 return c;
1003 /* allocate a command using pci_alloc_consistent, used for ioctls,
1004 * etc., not for the main i/o path.
1006 static CommandList_struct *cmd_special_alloc(ctlr_info_t *h)
1008 CommandList_struct *c;
1009 u64bit temp64;
1010 dma_addr_t cmd_dma_handle, err_dma_handle;
1012 c = (CommandList_struct *) pci_alloc_consistent(h->pdev,
1013 sizeof(CommandList_struct), &cmd_dma_handle);
1014 if (c == NULL)
1015 return NULL;
1016 memset(c, 0, sizeof(CommandList_struct));
1018 c->cmdindex = -1;
1020 c->err_info = (ErrorInfo_struct *)
1021 pci_alloc_consistent(h->pdev, sizeof(ErrorInfo_struct),
1022 &err_dma_handle);
1024 if (c->err_info == NULL) {
1025 pci_free_consistent(h->pdev,
1026 sizeof(CommandList_struct), c, cmd_dma_handle);
1027 return NULL;
1029 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
1031 INIT_LIST_HEAD(&c->list);
1032 c->busaddr = (__u32) cmd_dma_handle;
1033 temp64.val = (__u64) err_dma_handle;
1034 c->ErrDesc.Addr.lower = temp64.val32.lower;
1035 c->ErrDesc.Addr.upper = temp64.val32.upper;
1036 c->ErrDesc.Len = sizeof(ErrorInfo_struct);
1038 c->ctlr = h->ctlr;
1039 return c;
1042 static void cmd_free(ctlr_info_t *h, CommandList_struct *c)
1044 int i;
1046 i = c - h->cmd_pool;
1047 clear_bit(i & (BITS_PER_LONG - 1),
1048 h->cmd_pool_bits + (i / BITS_PER_LONG));
1049 h->nr_frees++;
1052 static void cmd_special_free(ctlr_info_t *h, CommandList_struct *c)
1054 u64bit temp64;
1056 temp64.val32.lower = c->ErrDesc.Addr.lower;
1057 temp64.val32.upper = c->ErrDesc.Addr.upper;
1058 pci_free_consistent(h->pdev, sizeof(ErrorInfo_struct),
1059 c->err_info, (dma_addr_t) temp64.val);
1060 pci_free_consistent(h->pdev, sizeof(CommandList_struct), c,
1061 (dma_addr_t) cciss_tag_discard_error_bits(h, (u32) c->busaddr));
1064 static inline ctlr_info_t *get_host(struct gendisk *disk)
1066 return disk->queue->queuedata;
1069 static inline drive_info_struct *get_drv(struct gendisk *disk)
1071 return disk->private_data;
1075 * Open. Make sure the device is really there.
1077 static int cciss_open(struct block_device *bdev, fmode_t mode)
1079 ctlr_info_t *h = get_host(bdev->bd_disk);
1080 drive_info_struct *drv = get_drv(bdev->bd_disk);
1082 dev_dbg(&h->pdev->dev, "cciss_open %s\n", bdev->bd_disk->disk_name);
1083 if (drv->busy_configuring)
1084 return -EBUSY;
1086 * Root is allowed to open raw volume zero even if it's not configured
1087 * so array config can still work. Root is also allowed to open any
1088 * volume that has a LUN ID, so it can issue IOCTL to reread the
1089 * disk information. I don't think I really like this
1090 * but I'm already using way to many device nodes to claim another one
1091 * for "raw controller".
1093 if (drv->heads == 0) {
1094 if (MINOR(bdev->bd_dev) != 0) { /* not node 0? */
1095 /* if not node 0 make sure it is a partition = 0 */
1096 if (MINOR(bdev->bd_dev) & 0x0f) {
1097 return -ENXIO;
1098 /* if it is, make sure we have a LUN ID */
1099 } else if (memcmp(drv->LunID, CTLR_LUNID,
1100 sizeof(drv->LunID))) {
1101 return -ENXIO;
1104 if (!capable(CAP_SYS_ADMIN))
1105 return -EPERM;
1107 drv->usage_count++;
1108 h->usage_count++;
1109 return 0;
1112 static int cciss_unlocked_open(struct block_device *bdev, fmode_t mode)
1114 int ret;
1116 mutex_lock(&cciss_mutex);
1117 ret = cciss_open(bdev, mode);
1118 mutex_unlock(&cciss_mutex);
1120 return ret;
1124 * Close. Sync first.
1126 static int cciss_release(struct gendisk *disk, fmode_t mode)
1128 ctlr_info_t *h;
1129 drive_info_struct *drv;
1131 mutex_lock(&cciss_mutex);
1132 h = get_host(disk);
1133 drv = get_drv(disk);
1134 dev_dbg(&h->pdev->dev, "cciss_release %s\n", disk->disk_name);
1135 drv->usage_count--;
1136 h->usage_count--;
1137 mutex_unlock(&cciss_mutex);
1138 return 0;
1141 #ifdef CONFIG_COMPAT
1143 static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
1144 unsigned cmd, unsigned long arg);
1145 static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
1146 unsigned cmd, unsigned long arg);
1148 static int cciss_compat_ioctl(struct block_device *bdev, fmode_t mode,
1149 unsigned cmd, unsigned long arg)
1151 switch (cmd) {
1152 case CCISS_GETPCIINFO:
1153 case CCISS_GETINTINFO:
1154 case CCISS_SETINTINFO:
1155 case CCISS_GETNODENAME:
1156 case CCISS_SETNODENAME:
1157 case CCISS_GETHEARTBEAT:
1158 case CCISS_GETBUSTYPES:
1159 case CCISS_GETFIRMVER:
1160 case CCISS_GETDRIVVER:
1161 case CCISS_REVALIDVOLS:
1162 case CCISS_DEREGDISK:
1163 case CCISS_REGNEWDISK:
1164 case CCISS_REGNEWD:
1165 case CCISS_RESCANDISK:
1166 case CCISS_GETLUNINFO:
1167 return cciss_ioctl(bdev, mode, cmd, arg);
1169 case CCISS_PASSTHRU32:
1170 return cciss_ioctl32_passthru(bdev, mode, cmd, arg);
1171 case CCISS_BIG_PASSTHRU32:
1172 return cciss_ioctl32_big_passthru(bdev, mode, cmd, arg);
1174 default:
1175 return -ENOIOCTLCMD;
1179 static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
1180 unsigned cmd, unsigned long arg)
1182 IOCTL32_Command_struct __user *arg32 =
1183 (IOCTL32_Command_struct __user *) arg;
1184 IOCTL_Command_struct arg64;
1185 IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
1186 int err;
1187 u32 cp;
1189 memset(&arg64, 0, sizeof(arg64));
1190 err = 0;
1191 err |=
1192 copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
1193 sizeof(arg64.LUN_info));
1194 err |=
1195 copy_from_user(&arg64.Request, &arg32->Request,
1196 sizeof(arg64.Request));
1197 err |=
1198 copy_from_user(&arg64.error_info, &arg32->error_info,
1199 sizeof(arg64.error_info));
1200 err |= get_user(arg64.buf_size, &arg32->buf_size);
1201 err |= get_user(cp, &arg32->buf);
1202 arg64.buf = compat_ptr(cp);
1203 err |= copy_to_user(p, &arg64, sizeof(arg64));
1205 if (err)
1206 return -EFAULT;
1208 err = cciss_ioctl(bdev, mode, CCISS_PASSTHRU, (unsigned long)p);
1209 if (err)
1210 return err;
1211 err |=
1212 copy_in_user(&arg32->error_info, &p->error_info,
1213 sizeof(arg32->error_info));
1214 if (err)
1215 return -EFAULT;
1216 return err;
1219 static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
1220 unsigned cmd, unsigned long arg)
1222 BIG_IOCTL32_Command_struct __user *arg32 =
1223 (BIG_IOCTL32_Command_struct __user *) arg;
1224 BIG_IOCTL_Command_struct arg64;
1225 BIG_IOCTL_Command_struct __user *p =
1226 compat_alloc_user_space(sizeof(arg64));
1227 int err;
1228 u32 cp;
1230 memset(&arg64, 0, sizeof(arg64));
1231 err = 0;
1232 err |=
1233 copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
1234 sizeof(arg64.LUN_info));
1235 err |=
1236 copy_from_user(&arg64.Request, &arg32->Request,
1237 sizeof(arg64.Request));
1238 err |=
1239 copy_from_user(&arg64.error_info, &arg32->error_info,
1240 sizeof(arg64.error_info));
1241 err |= get_user(arg64.buf_size, &arg32->buf_size);
1242 err |= get_user(arg64.malloc_size, &arg32->malloc_size);
1243 err |= get_user(cp, &arg32->buf);
1244 arg64.buf = compat_ptr(cp);
1245 err |= copy_to_user(p, &arg64, sizeof(arg64));
1247 if (err)
1248 return -EFAULT;
1250 err = cciss_ioctl(bdev, mode, CCISS_BIG_PASSTHRU, (unsigned long)p);
1251 if (err)
1252 return err;
1253 err |=
1254 copy_in_user(&arg32->error_info, &p->error_info,
1255 sizeof(arg32->error_info));
1256 if (err)
1257 return -EFAULT;
1258 return err;
1260 #endif
1262 static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1264 drive_info_struct *drv = get_drv(bdev->bd_disk);
1266 if (!drv->cylinders)
1267 return -ENXIO;
1269 geo->heads = drv->heads;
1270 geo->sectors = drv->sectors;
1271 geo->cylinders = drv->cylinders;
1272 return 0;
1275 static void check_ioctl_unit_attention(ctlr_info_t *h, CommandList_struct *c)
1277 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
1278 c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
1279 (void)check_for_unit_attention(h, c);
1282 static int cciss_getpciinfo(ctlr_info_t *h, void __user *argp)
1284 cciss_pci_info_struct pciinfo;
1286 if (!argp)
1287 return -EINVAL;
1288 pciinfo.domain = pci_domain_nr(h->pdev->bus);
1289 pciinfo.bus = h->pdev->bus->number;
1290 pciinfo.dev_fn = h->pdev->devfn;
1291 pciinfo.board_id = h->board_id;
1292 if (copy_to_user(argp, &pciinfo, sizeof(cciss_pci_info_struct)))
1293 return -EFAULT;
1294 return 0;
1297 static int cciss_getintinfo(ctlr_info_t *h, void __user *argp)
1299 cciss_coalint_struct intinfo;
1300 unsigned long flags;
1302 if (!argp)
1303 return -EINVAL;
1304 spin_lock_irqsave(&h->lock, flags);
1305 intinfo.delay = readl(&h->cfgtable->HostWrite.CoalIntDelay);
1306 intinfo.count = readl(&h->cfgtable->HostWrite.CoalIntCount);
1307 spin_unlock_irqrestore(&h->lock, flags);
1308 if (copy_to_user
1309 (argp, &intinfo, sizeof(cciss_coalint_struct)))
1310 return -EFAULT;
1311 return 0;
1314 static int cciss_setintinfo(ctlr_info_t *h, void __user *argp)
1316 cciss_coalint_struct intinfo;
1317 unsigned long flags;
1318 int i;
1320 if (!argp)
1321 return -EINVAL;
1322 if (!capable(CAP_SYS_ADMIN))
1323 return -EPERM;
1324 if (copy_from_user(&intinfo, argp, sizeof(intinfo)))
1325 return -EFAULT;
1326 if ((intinfo.delay == 0) && (intinfo.count == 0))
1327 return -EINVAL;
1328 spin_lock_irqsave(&h->lock, flags);
1329 /* Update the field, and then ring the doorbell */
1330 writel(intinfo.delay, &(h->cfgtable->HostWrite.CoalIntDelay));
1331 writel(intinfo.count, &(h->cfgtable->HostWrite.CoalIntCount));
1332 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
1334 for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
1335 if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
1336 break;
1337 udelay(1000); /* delay and try again */
1339 spin_unlock_irqrestore(&h->lock, flags);
1340 if (i >= MAX_IOCTL_CONFIG_WAIT)
1341 return -EAGAIN;
1342 return 0;
1345 static int cciss_getnodename(ctlr_info_t *h, void __user *argp)
1347 NodeName_type NodeName;
1348 unsigned long flags;
1349 int i;
1351 if (!argp)
1352 return -EINVAL;
1353 spin_lock_irqsave(&h->lock, flags);
1354 for (i = 0; i < 16; i++)
1355 NodeName[i] = readb(&h->cfgtable->ServerName[i]);
1356 spin_unlock_irqrestore(&h->lock, flags);
1357 if (copy_to_user(argp, NodeName, sizeof(NodeName_type)))
1358 return -EFAULT;
1359 return 0;
1362 static int cciss_setnodename(ctlr_info_t *h, void __user *argp)
1364 NodeName_type NodeName;
1365 unsigned long flags;
1366 int i;
1368 if (!argp)
1369 return -EINVAL;
1370 if (!capable(CAP_SYS_ADMIN))
1371 return -EPERM;
1372 if (copy_from_user(NodeName, argp, sizeof(NodeName_type)))
1373 return -EFAULT;
1374 spin_lock_irqsave(&h->lock, flags);
1375 /* Update the field, and then ring the doorbell */
1376 for (i = 0; i < 16; i++)
1377 writeb(NodeName[i], &h->cfgtable->ServerName[i]);
1378 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
1379 for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
1380 if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
1381 break;
1382 udelay(1000); /* delay and try again */
1384 spin_unlock_irqrestore(&h->lock, flags);
1385 if (i >= MAX_IOCTL_CONFIG_WAIT)
1386 return -EAGAIN;
1387 return 0;
1390 static int cciss_getheartbeat(ctlr_info_t *h, void __user *argp)
1392 Heartbeat_type heartbeat;
1393 unsigned long flags;
1395 if (!argp)
1396 return -EINVAL;
1397 spin_lock_irqsave(&h->lock, flags);
1398 heartbeat = readl(&h->cfgtable->HeartBeat);
1399 spin_unlock_irqrestore(&h->lock, flags);
1400 if (copy_to_user(argp, &heartbeat, sizeof(Heartbeat_type)))
1401 return -EFAULT;
1402 return 0;
1405 static int cciss_getbustypes(ctlr_info_t *h, void __user *argp)
1407 BusTypes_type BusTypes;
1408 unsigned long flags;
1410 if (!argp)
1411 return -EINVAL;
1412 spin_lock_irqsave(&h->lock, flags);
1413 BusTypes = readl(&h->cfgtable->BusTypes);
1414 spin_unlock_irqrestore(&h->lock, flags);
1415 if (copy_to_user(argp, &BusTypes, sizeof(BusTypes_type)))
1416 return -EFAULT;
1417 return 0;
1420 static int cciss_getfirmver(ctlr_info_t *h, void __user *argp)
1422 FirmwareVer_type firmware;
1424 if (!argp)
1425 return -EINVAL;
1426 memcpy(firmware, h->firm_ver, 4);
1428 if (copy_to_user
1429 (argp, firmware, sizeof(FirmwareVer_type)))
1430 return -EFAULT;
1431 return 0;
1434 static int cciss_getdrivver(ctlr_info_t *h, void __user *argp)
1436 DriverVer_type DriverVer = DRIVER_VERSION;
1438 if (!argp)
1439 return -EINVAL;
1440 if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
1441 return -EFAULT;
1442 return 0;
1445 static int cciss_getluninfo(ctlr_info_t *h,
1446 struct gendisk *disk, void __user *argp)
1448 LogvolInfo_struct luninfo;
1449 drive_info_struct *drv = get_drv(disk);
1451 if (!argp)
1452 return -EINVAL;
1453 memcpy(&luninfo.LunID, drv->LunID, sizeof(luninfo.LunID));
1454 luninfo.num_opens = drv->usage_count;
1455 luninfo.num_parts = 0;
1456 if (copy_to_user(argp, &luninfo, sizeof(LogvolInfo_struct)))
1457 return -EFAULT;
1458 return 0;
1461 static int cciss_passthru(ctlr_info_t *h, void __user *argp)
1463 IOCTL_Command_struct iocommand;
1464 CommandList_struct *c;
1465 char *buff = NULL;
1466 u64bit temp64;
1467 DECLARE_COMPLETION_ONSTACK(wait);
1469 if (!argp)
1470 return -EINVAL;
1472 if (!capable(CAP_SYS_RAWIO))
1473 return -EPERM;
1475 if (copy_from_user
1476 (&iocommand, argp, sizeof(IOCTL_Command_struct)))
1477 return -EFAULT;
1478 if ((iocommand.buf_size < 1) &&
1479 (iocommand.Request.Type.Direction != XFER_NONE)) {
1480 return -EINVAL;
1482 if (iocommand.buf_size > 0) {
1483 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
1484 if (buff == NULL)
1485 return -EFAULT;
1487 if (iocommand.Request.Type.Direction == XFER_WRITE) {
1488 /* Copy the data into the buffer we created */
1489 if (copy_from_user(buff, iocommand.buf, iocommand.buf_size)) {
1490 kfree(buff);
1491 return -EFAULT;
1493 } else {
1494 memset(buff, 0, iocommand.buf_size);
1496 c = cmd_special_alloc(h);
1497 if (!c) {
1498 kfree(buff);
1499 return -ENOMEM;
1501 /* Fill in the command type */
1502 c->cmd_type = CMD_IOCTL_PEND;
1503 /* Fill in Command Header */
1504 c->Header.ReplyQueue = 0; /* unused in simple mode */
1505 if (iocommand.buf_size > 0) { /* buffer to fill */
1506 c->Header.SGList = 1;
1507 c->Header.SGTotal = 1;
1508 } else { /* no buffers to fill */
1509 c->Header.SGList = 0;
1510 c->Header.SGTotal = 0;
1512 c->Header.LUN = iocommand.LUN_info;
1513 /* use the kernel address the cmd block for tag */
1514 c->Header.Tag.lower = c->busaddr;
1516 /* Fill in Request block */
1517 c->Request = iocommand.Request;
1519 /* Fill in the scatter gather information */
1520 if (iocommand.buf_size > 0) {
1521 temp64.val = pci_map_single(h->pdev, buff,
1522 iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
1523 c->SG[0].Addr.lower = temp64.val32.lower;
1524 c->SG[0].Addr.upper = temp64.val32.upper;
1525 c->SG[0].Len = iocommand.buf_size;
1526 c->SG[0].Ext = 0; /* we are not chaining */
1528 c->waiting = &wait;
1530 enqueue_cmd_and_start_io(h, c);
1531 wait_for_completion(&wait);
1533 /* unlock the buffers from DMA */
1534 temp64.val32.lower = c->SG[0].Addr.lower;
1535 temp64.val32.upper = c->SG[0].Addr.upper;
1536 pci_unmap_single(h->pdev, (dma_addr_t) temp64.val, iocommand.buf_size,
1537 PCI_DMA_BIDIRECTIONAL);
1538 check_ioctl_unit_attention(h, c);
1540 /* Copy the error information out */
1541 iocommand.error_info = *(c->err_info);
1542 if (copy_to_user(argp, &iocommand, sizeof(IOCTL_Command_struct))) {
1543 kfree(buff);
1544 cmd_special_free(h, c);
1545 return -EFAULT;
1548 if (iocommand.Request.Type.Direction == XFER_READ) {
1549 /* Copy the data out of the buffer we created */
1550 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
1551 kfree(buff);
1552 cmd_special_free(h, c);
1553 return -EFAULT;
1556 kfree(buff);
1557 cmd_special_free(h, c);
1558 return 0;
1561 static int cciss_bigpassthru(ctlr_info_t *h, void __user *argp)
1563 BIG_IOCTL_Command_struct *ioc;
1564 CommandList_struct *c;
1565 unsigned char **buff = NULL;
1566 int *buff_size = NULL;
1567 u64bit temp64;
1568 BYTE sg_used = 0;
1569 int status = 0;
1570 int i;
1571 DECLARE_COMPLETION_ONSTACK(wait);
1572 __u32 left;
1573 __u32 sz;
1574 BYTE __user *data_ptr;
1576 if (!argp)
1577 return -EINVAL;
1578 if (!capable(CAP_SYS_RAWIO))
1579 return -EPERM;
1580 ioc = kmalloc(sizeof(*ioc), GFP_KERNEL);
1581 if (!ioc) {
1582 status = -ENOMEM;
1583 goto cleanup1;
1585 if (copy_from_user(ioc, argp, sizeof(*ioc))) {
1586 status = -EFAULT;
1587 goto cleanup1;
1589 if ((ioc->buf_size < 1) &&
1590 (ioc->Request.Type.Direction != XFER_NONE)) {
1591 status = -EINVAL;
1592 goto cleanup1;
1594 /* Check kmalloc limits using all SGs */
1595 if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
1596 status = -EINVAL;
1597 goto cleanup1;
1599 if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
1600 status = -EINVAL;
1601 goto cleanup1;
1603 buff = kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
1604 if (!buff) {
1605 status = -ENOMEM;
1606 goto cleanup1;
1608 buff_size = kmalloc(MAXSGENTRIES * sizeof(int), GFP_KERNEL);
1609 if (!buff_size) {
1610 status = -ENOMEM;
1611 goto cleanup1;
1613 left = ioc->buf_size;
1614 data_ptr = ioc->buf;
1615 while (left) {
1616 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
1617 buff_size[sg_used] = sz;
1618 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
1619 if (buff[sg_used] == NULL) {
1620 status = -ENOMEM;
1621 goto cleanup1;
1623 if (ioc->Request.Type.Direction == XFER_WRITE) {
1624 if (copy_from_user(buff[sg_used], data_ptr, sz)) {
1625 status = -EFAULT;
1626 goto cleanup1;
1628 } else {
1629 memset(buff[sg_used], 0, sz);
1631 left -= sz;
1632 data_ptr += sz;
1633 sg_used++;
1635 c = cmd_special_alloc(h);
1636 if (!c) {
1637 status = -ENOMEM;
1638 goto cleanup1;
1640 c->cmd_type = CMD_IOCTL_PEND;
1641 c->Header.ReplyQueue = 0;
1642 c->Header.SGList = sg_used;
1643 c->Header.SGTotal = sg_used;
1644 c->Header.LUN = ioc->LUN_info;
1645 c->Header.Tag.lower = c->busaddr;
1647 c->Request = ioc->Request;
1648 for (i = 0; i < sg_used; i++) {
1649 temp64.val = pci_map_single(h->pdev, buff[i], buff_size[i],
1650 PCI_DMA_BIDIRECTIONAL);
1651 c->SG[i].Addr.lower = temp64.val32.lower;
1652 c->SG[i].Addr.upper = temp64.val32.upper;
1653 c->SG[i].Len = buff_size[i];
1654 c->SG[i].Ext = 0; /* we are not chaining */
1656 c->waiting = &wait;
1657 enqueue_cmd_and_start_io(h, c);
1658 wait_for_completion(&wait);
1659 /* unlock the buffers from DMA */
1660 for (i = 0; i < sg_used; i++) {
1661 temp64.val32.lower = c->SG[i].Addr.lower;
1662 temp64.val32.upper = c->SG[i].Addr.upper;
1663 pci_unmap_single(h->pdev,
1664 (dma_addr_t) temp64.val, buff_size[i],
1665 PCI_DMA_BIDIRECTIONAL);
1667 check_ioctl_unit_attention(h, c);
1668 /* Copy the error information out */
1669 ioc->error_info = *(c->err_info);
1670 if (copy_to_user(argp, ioc, sizeof(*ioc))) {
1671 cmd_special_free(h, c);
1672 status = -EFAULT;
1673 goto cleanup1;
1675 if (ioc->Request.Type.Direction == XFER_READ) {
1676 /* Copy the data out of the buffer we created */
1677 BYTE __user *ptr = ioc->buf;
1678 for (i = 0; i < sg_used; i++) {
1679 if (copy_to_user(ptr, buff[i], buff_size[i])) {
1680 cmd_special_free(h, c);
1681 status = -EFAULT;
1682 goto cleanup1;
1684 ptr += buff_size[i];
1687 cmd_special_free(h, c);
1688 status = 0;
1689 cleanup1:
1690 if (buff) {
1691 for (i = 0; i < sg_used; i++)
1692 kfree(buff[i]);
1693 kfree(buff);
1695 kfree(buff_size);
1696 kfree(ioc);
1697 return status;
1700 static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
1701 unsigned int cmd, unsigned long arg)
1703 struct gendisk *disk = bdev->bd_disk;
1704 ctlr_info_t *h = get_host(disk);
1705 void __user *argp = (void __user *)arg;
1707 dev_dbg(&h->pdev->dev, "cciss_ioctl: Called with cmd=%x %lx\n",
1708 cmd, arg);
1709 switch (cmd) {
1710 case CCISS_GETPCIINFO:
1711 return cciss_getpciinfo(h, argp);
1712 case CCISS_GETINTINFO:
1713 return cciss_getintinfo(h, argp);
1714 case CCISS_SETINTINFO:
1715 return cciss_setintinfo(h, argp);
1716 case CCISS_GETNODENAME:
1717 return cciss_getnodename(h, argp);
1718 case CCISS_SETNODENAME:
1719 return cciss_setnodename(h, argp);
1720 case CCISS_GETHEARTBEAT:
1721 return cciss_getheartbeat(h, argp);
1722 case CCISS_GETBUSTYPES:
1723 return cciss_getbustypes(h, argp);
1724 case CCISS_GETFIRMVER:
1725 return cciss_getfirmver(h, argp);
1726 case CCISS_GETDRIVVER:
1727 return cciss_getdrivver(h, argp);
1728 case CCISS_DEREGDISK:
1729 case CCISS_REGNEWD:
1730 case CCISS_REVALIDVOLS:
1731 return rebuild_lun_table(h, 0, 1);
1732 case CCISS_GETLUNINFO:
1733 return cciss_getluninfo(h, disk, argp);
1734 case CCISS_PASSTHRU:
1735 return cciss_passthru(h, argp);
1736 case CCISS_BIG_PASSTHRU:
1737 return cciss_bigpassthru(h, argp);
1739 /* scsi_cmd_blk_ioctl handles these, below, though some are not */
1740 /* very meaningful for cciss. SG_IO is the main one people want. */
1742 case SG_GET_VERSION_NUM:
1743 case SG_SET_TIMEOUT:
1744 case SG_GET_TIMEOUT:
1745 case SG_GET_RESERVED_SIZE:
1746 case SG_SET_RESERVED_SIZE:
1747 case SG_EMULATED_HOST:
1748 case SG_IO:
1749 case SCSI_IOCTL_SEND_COMMAND:
1750 return scsi_cmd_blk_ioctl(bdev, mode, cmd, argp);
1752 /* scsi_cmd_blk_ioctl would normally handle these, below, but */
1753 /* they aren't a good fit for cciss, as CD-ROMs are */
1754 /* not supported, and we don't have any bus/target/lun */
1755 /* which we present to the kernel. */
1757 case CDROM_SEND_PACKET:
1758 case CDROMCLOSETRAY:
1759 case CDROMEJECT:
1760 case SCSI_IOCTL_GET_IDLUN:
1761 case SCSI_IOCTL_GET_BUS_NUMBER:
1762 default:
1763 return -ENOTTY;
1767 static void cciss_check_queues(ctlr_info_t *h)
1769 int start_queue = h->next_to_run;
1770 int i;
1772 /* check to see if we have maxed out the number of commands that can
1773 * be placed on the queue. If so then exit. We do this check here
1774 * in case the interrupt we serviced was from an ioctl and did not
1775 * free any new commands.
1777 if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds)
1778 return;
1780 /* We have room on the queue for more commands. Now we need to queue
1781 * them up. We will also keep track of the next queue to run so
1782 * that every queue gets a chance to be started first.
1784 for (i = 0; i < h->highest_lun + 1; i++) {
1785 int curr_queue = (start_queue + i) % (h->highest_lun + 1);
1786 /* make sure the disk has been added and the drive is real
1787 * because this can be called from the middle of init_one.
1789 if (!h->drv[curr_queue])
1790 continue;
1791 if (!(h->drv[curr_queue]->queue) ||
1792 !(h->drv[curr_queue]->heads))
1793 continue;
1794 blk_start_queue(h->gendisk[curr_queue]->queue);
1796 /* check to see if we have maxed out the number of commands
1797 * that can be placed on the queue.
1799 if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds) {
1800 if (curr_queue == start_queue) {
1801 h->next_to_run =
1802 (start_queue + 1) % (h->highest_lun + 1);
1803 break;
1804 } else {
1805 h->next_to_run = curr_queue;
1806 break;
1812 static void cciss_softirq_done(struct request *rq)
1814 CommandList_struct *c = rq->completion_data;
1815 ctlr_info_t *h = hba[c->ctlr];
1816 SGDescriptor_struct *curr_sg = c->SG;
1817 u64bit temp64;
1818 unsigned long flags;
1819 int i, ddir;
1820 int sg_index = 0;
1822 if (c->Request.Type.Direction == XFER_READ)
1823 ddir = PCI_DMA_FROMDEVICE;
1824 else
1825 ddir = PCI_DMA_TODEVICE;
1827 /* command did not need to be retried */
1828 /* unmap the DMA mapping for all the scatter gather elements */
1829 for (i = 0; i < c->Header.SGList; i++) {
1830 if (curr_sg[sg_index].Ext == CCISS_SG_CHAIN) {
1831 cciss_unmap_sg_chain_block(h, c);
1832 /* Point to the next block */
1833 curr_sg = h->cmd_sg_list[c->cmdindex];
1834 sg_index = 0;
1836 temp64.val32.lower = curr_sg[sg_index].Addr.lower;
1837 temp64.val32.upper = curr_sg[sg_index].Addr.upper;
1838 pci_unmap_page(h->pdev, temp64.val, curr_sg[sg_index].Len,
1839 ddir);
1840 ++sg_index;
1843 dev_dbg(&h->pdev->dev, "Done with %p\n", rq);
1845 /* set the residual count for pc requests */
1846 if (rq->cmd_type == REQ_TYPE_BLOCK_PC)
1847 rq->resid_len = c->err_info->ResidualCnt;
1849 blk_end_request_all(rq, (rq->errors == 0) ? 0 : -EIO);
1851 spin_lock_irqsave(&h->lock, flags);
1852 cmd_free(h, c);
1853 cciss_check_queues(h);
1854 spin_unlock_irqrestore(&h->lock, flags);
1857 static inline void log_unit_to_scsi3addr(ctlr_info_t *h,
1858 unsigned char scsi3addr[], uint32_t log_unit)
1860 memcpy(scsi3addr, h->drv[log_unit]->LunID,
1861 sizeof(h->drv[log_unit]->LunID));
1864 /* This function gets the SCSI vendor, model, and revision of a logical drive
1865 * via the inquiry page 0. Model, vendor, and rev are set to empty strings if
1866 * they cannot be read.
1868 static void cciss_get_device_descr(ctlr_info_t *h, int logvol,
1869 char *vendor, char *model, char *rev)
1871 int rc;
1872 InquiryData_struct *inq_buf;
1873 unsigned char scsi3addr[8];
1875 *vendor = '\0';
1876 *model = '\0';
1877 *rev = '\0';
1879 inq_buf = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
1880 if (!inq_buf)
1881 return;
1883 log_unit_to_scsi3addr(h, scsi3addr, logvol);
1884 rc = sendcmd_withirq(h, CISS_INQUIRY, inq_buf, sizeof(*inq_buf), 0,
1885 scsi3addr, TYPE_CMD);
1886 if (rc == IO_OK) {
1887 memcpy(vendor, &inq_buf->data_byte[8], VENDOR_LEN);
1888 vendor[VENDOR_LEN] = '\0';
1889 memcpy(model, &inq_buf->data_byte[16], MODEL_LEN);
1890 model[MODEL_LEN] = '\0';
1891 memcpy(rev, &inq_buf->data_byte[32], REV_LEN);
1892 rev[REV_LEN] = '\0';
1895 kfree(inq_buf);
1896 return;
1899 /* This function gets the serial number of a logical drive via
1900 * inquiry page 0x83. Serial no. is 16 bytes. If the serial
1901 * number cannot be had, for whatever reason, 16 bytes of 0xff
1902 * are returned instead.
1904 static void cciss_get_serial_no(ctlr_info_t *h, int logvol,
1905 unsigned char *serial_no, int buflen)
1907 #define PAGE_83_INQ_BYTES 64
1908 int rc;
1909 unsigned char *buf;
1910 unsigned char scsi3addr[8];
1912 if (buflen > 16)
1913 buflen = 16;
1914 memset(serial_no, 0xff, buflen);
1915 buf = kzalloc(PAGE_83_INQ_BYTES, GFP_KERNEL);
1916 if (!buf)
1917 return;
1918 memset(serial_no, 0, buflen);
1919 log_unit_to_scsi3addr(h, scsi3addr, logvol);
1920 rc = sendcmd_withirq(h, CISS_INQUIRY, buf,
1921 PAGE_83_INQ_BYTES, 0x83, scsi3addr, TYPE_CMD);
1922 if (rc == IO_OK)
1923 memcpy(serial_no, &buf[8], buflen);
1924 kfree(buf);
1925 return;
1929 * cciss_add_disk sets up the block device queue for a logical drive
1931 static int cciss_add_disk(ctlr_info_t *h, struct gendisk *disk,
1932 int drv_index)
1934 disk->queue = blk_init_queue(do_cciss_request, &h->lock);
1935 if (!disk->queue)
1936 goto init_queue_failure;
1937 sprintf(disk->disk_name, "cciss/c%dd%d", h->ctlr, drv_index);
1938 disk->major = h->major;
1939 disk->first_minor = drv_index << NWD_SHIFT;
1940 disk->fops = &cciss_fops;
1941 if (cciss_create_ld_sysfs_entry(h, drv_index))
1942 goto cleanup_queue;
1943 disk->private_data = h->drv[drv_index];
1944 disk->driverfs_dev = &h->drv[drv_index]->dev;
1946 /* Set up queue information */
1947 blk_queue_bounce_limit(disk->queue, h->pdev->dma_mask);
1949 /* This is a hardware imposed limit. */
1950 blk_queue_max_segments(disk->queue, h->maxsgentries);
1952 blk_queue_max_hw_sectors(disk->queue, h->cciss_max_sectors);
1954 blk_queue_softirq_done(disk->queue, cciss_softirq_done);
1956 disk->queue->queuedata = h;
1958 blk_queue_logical_block_size(disk->queue,
1959 h->drv[drv_index]->block_size);
1961 /* Make sure all queue data is written out before */
1962 /* setting h->drv[drv_index]->queue, as setting this */
1963 /* allows the interrupt handler to start the queue */
1964 wmb();
1965 h->drv[drv_index]->queue = disk->queue;
1966 add_disk(disk);
1967 return 0;
1969 cleanup_queue:
1970 blk_cleanup_queue(disk->queue);
1971 disk->queue = NULL;
1972 init_queue_failure:
1973 return -1;
1976 /* This function will check the usage_count of the drive to be updated/added.
1977 * If the usage_count is zero and it is a heretofore unknown drive, or,
1978 * the drive's capacity, geometry, or serial number has changed,
1979 * then the drive information will be updated and the disk will be
1980 * re-registered with the kernel. If these conditions don't hold,
1981 * then it will be left alone for the next reboot. The exception to this
1982 * is disk 0 which will always be left registered with the kernel since it
1983 * is also the controller node. Any changes to disk 0 will show up on
1984 * the next reboot.
1986 static void cciss_update_drive_info(ctlr_info_t *h, int drv_index,
1987 int first_time, int via_ioctl)
1989 struct gendisk *disk;
1990 InquiryData_struct *inq_buff = NULL;
1991 unsigned int block_size;
1992 sector_t total_size;
1993 unsigned long flags = 0;
1994 int ret = 0;
1995 drive_info_struct *drvinfo;
1997 /* Get information about the disk and modify the driver structure */
1998 inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
1999 drvinfo = kzalloc(sizeof(*drvinfo), GFP_KERNEL);
2000 if (inq_buff == NULL || drvinfo == NULL)
2001 goto mem_msg;
2003 /* testing to see if 16-byte CDBs are already being used */
2004 if (h->cciss_read == CCISS_READ_16) {
2005 cciss_read_capacity_16(h, drv_index,
2006 &total_size, &block_size);
2008 } else {
2009 cciss_read_capacity(h, drv_index, &total_size, &block_size);
2010 /* if read_capacity returns all F's this volume is >2TB */
2011 /* in size so we switch to 16-byte CDB's for all */
2012 /* read/write ops */
2013 if (total_size == 0xFFFFFFFFULL) {
2014 cciss_read_capacity_16(h, drv_index,
2015 &total_size, &block_size);
2016 h->cciss_read = CCISS_READ_16;
2017 h->cciss_write = CCISS_WRITE_16;
2018 } else {
2019 h->cciss_read = CCISS_READ_10;
2020 h->cciss_write = CCISS_WRITE_10;
2024 cciss_geometry_inquiry(h, drv_index, total_size, block_size,
2025 inq_buff, drvinfo);
2026 drvinfo->block_size = block_size;
2027 drvinfo->nr_blocks = total_size + 1;
2029 cciss_get_device_descr(h, drv_index, drvinfo->vendor,
2030 drvinfo->model, drvinfo->rev);
2031 cciss_get_serial_no(h, drv_index, drvinfo->serial_no,
2032 sizeof(drvinfo->serial_no));
2033 /* Save the lunid in case we deregister the disk, below. */
2034 memcpy(drvinfo->LunID, h->drv[drv_index]->LunID,
2035 sizeof(drvinfo->LunID));
2037 /* Is it the same disk we already know, and nothing's changed? */
2038 if (h->drv[drv_index]->raid_level != -1 &&
2039 ((memcmp(drvinfo->serial_no,
2040 h->drv[drv_index]->serial_no, 16) == 0) &&
2041 drvinfo->block_size == h->drv[drv_index]->block_size &&
2042 drvinfo->nr_blocks == h->drv[drv_index]->nr_blocks &&
2043 drvinfo->heads == h->drv[drv_index]->heads &&
2044 drvinfo->sectors == h->drv[drv_index]->sectors &&
2045 drvinfo->cylinders == h->drv[drv_index]->cylinders))
2046 /* The disk is unchanged, nothing to update */
2047 goto freeret;
2049 /* If we get here it's not the same disk, or something's changed,
2050 * so we need to * deregister it, and re-register it, if it's not
2051 * in use.
2052 * If the disk already exists then deregister it before proceeding
2053 * (unless it's the first disk (for the controller node).
2055 if (h->drv[drv_index]->raid_level != -1 && drv_index != 0) {
2056 dev_warn(&h->pdev->dev, "disk %d has changed.\n", drv_index);
2057 spin_lock_irqsave(&h->lock, flags);
2058 h->drv[drv_index]->busy_configuring = 1;
2059 spin_unlock_irqrestore(&h->lock, flags);
2061 /* deregister_disk sets h->drv[drv_index]->queue = NULL
2062 * which keeps the interrupt handler from starting
2063 * the queue.
2065 ret = deregister_disk(h, drv_index, 0, via_ioctl);
2068 /* If the disk is in use return */
2069 if (ret)
2070 goto freeret;
2072 /* Save the new information from cciss_geometry_inquiry
2073 * and serial number inquiry. If the disk was deregistered
2074 * above, then h->drv[drv_index] will be NULL.
2076 if (h->drv[drv_index] == NULL) {
2077 drvinfo->device_initialized = 0;
2078 h->drv[drv_index] = drvinfo;
2079 drvinfo = NULL; /* so it won't be freed below. */
2080 } else {
2081 /* special case for cxd0 */
2082 h->drv[drv_index]->block_size = drvinfo->block_size;
2083 h->drv[drv_index]->nr_blocks = drvinfo->nr_blocks;
2084 h->drv[drv_index]->heads = drvinfo->heads;
2085 h->drv[drv_index]->sectors = drvinfo->sectors;
2086 h->drv[drv_index]->cylinders = drvinfo->cylinders;
2087 h->drv[drv_index]->raid_level = drvinfo->raid_level;
2088 memcpy(h->drv[drv_index]->serial_no, drvinfo->serial_no, 16);
2089 memcpy(h->drv[drv_index]->vendor, drvinfo->vendor,
2090 VENDOR_LEN + 1);
2091 memcpy(h->drv[drv_index]->model, drvinfo->model, MODEL_LEN + 1);
2092 memcpy(h->drv[drv_index]->rev, drvinfo->rev, REV_LEN + 1);
2095 ++h->num_luns;
2096 disk = h->gendisk[drv_index];
2097 set_capacity(disk, h->drv[drv_index]->nr_blocks);
2099 /* If it's not disk 0 (drv_index != 0)
2100 * or if it was disk 0, but there was previously
2101 * no actual corresponding configured logical drive
2102 * (raid_leve == -1) then we want to update the
2103 * logical drive's information.
2105 if (drv_index || first_time) {
2106 if (cciss_add_disk(h, disk, drv_index) != 0) {
2107 cciss_free_gendisk(h, drv_index);
2108 cciss_free_drive_info(h, drv_index);
2109 dev_warn(&h->pdev->dev, "could not update disk %d\n",
2110 drv_index);
2111 --h->num_luns;
2115 freeret:
2116 kfree(inq_buff);
2117 kfree(drvinfo);
2118 return;
2119 mem_msg:
2120 dev_err(&h->pdev->dev, "out of memory\n");
2121 goto freeret;
2124 /* This function will find the first index of the controllers drive array
2125 * that has a null drv pointer and allocate the drive info struct and
2126 * will return that index This is where new drives will be added.
2127 * If the index to be returned is greater than the highest_lun index for
2128 * the controller then highest_lun is set * to this new index.
2129 * If there are no available indexes or if tha allocation fails, then -1
2130 * is returned. * "controller_node" is used to know if this is a real
2131 * logical drive, or just the controller node, which determines if this
2132 * counts towards highest_lun.
2134 static int cciss_alloc_drive_info(ctlr_info_t *h, int controller_node)
2136 int i;
2137 drive_info_struct *drv;
2139 /* Search for an empty slot for our drive info */
2140 for (i = 0; i < CISS_MAX_LUN; i++) {
2142 /* if not cxd0 case, and it's occupied, skip it. */
2143 if (h->drv[i] && i != 0)
2144 continue;
2146 * If it's cxd0 case, and drv is alloc'ed already, and a
2147 * disk is configured there, skip it.
2149 if (i == 0 && h->drv[i] && h->drv[i]->raid_level != -1)
2150 continue;
2153 * We've found an empty slot. Update highest_lun
2154 * provided this isn't just the fake cxd0 controller node.
2156 if (i > h->highest_lun && !controller_node)
2157 h->highest_lun = i;
2159 /* If adding a real disk at cxd0, and it's already alloc'ed */
2160 if (i == 0 && h->drv[i] != NULL)
2161 return i;
2164 * Found an empty slot, not already alloc'ed. Allocate it.
2165 * Mark it with raid_level == -1, so we know it's new later on.
2167 drv = kzalloc(sizeof(*drv), GFP_KERNEL);
2168 if (!drv)
2169 return -1;
2170 drv->raid_level = -1; /* so we know it's new */
2171 h->drv[i] = drv;
2172 return i;
2174 return -1;
2177 static void cciss_free_drive_info(ctlr_info_t *h, int drv_index)
2179 kfree(h->drv[drv_index]);
2180 h->drv[drv_index] = NULL;
2183 static void cciss_free_gendisk(ctlr_info_t *h, int drv_index)
2185 put_disk(h->gendisk[drv_index]);
2186 h->gendisk[drv_index] = NULL;
2189 /* cciss_add_gendisk finds a free hba[]->drv structure
2190 * and allocates a gendisk if needed, and sets the lunid
2191 * in the drvinfo structure. It returns the index into
2192 * the ->drv[] array, or -1 if none are free.
2193 * is_controller_node indicates whether highest_lun should
2194 * count this disk, or if it's only being added to provide
2195 * a means to talk to the controller in case no logical
2196 * drives have yet been configured.
2198 static int cciss_add_gendisk(ctlr_info_t *h, unsigned char lunid[],
2199 int controller_node)
2201 int drv_index;
2203 drv_index = cciss_alloc_drive_info(h, controller_node);
2204 if (drv_index == -1)
2205 return -1;
2207 /*Check if the gendisk needs to be allocated */
2208 if (!h->gendisk[drv_index]) {
2209 h->gendisk[drv_index] =
2210 alloc_disk(1 << NWD_SHIFT);
2211 if (!h->gendisk[drv_index]) {
2212 dev_err(&h->pdev->dev,
2213 "could not allocate a new disk %d\n",
2214 drv_index);
2215 goto err_free_drive_info;
2218 memcpy(h->drv[drv_index]->LunID, lunid,
2219 sizeof(h->drv[drv_index]->LunID));
2220 if (cciss_create_ld_sysfs_entry(h, drv_index))
2221 goto err_free_disk;
2222 /* Don't need to mark this busy because nobody */
2223 /* else knows about this disk yet to contend */
2224 /* for access to it. */
2225 h->drv[drv_index]->busy_configuring = 0;
2226 wmb();
2227 return drv_index;
2229 err_free_disk:
2230 cciss_free_gendisk(h, drv_index);
2231 err_free_drive_info:
2232 cciss_free_drive_info(h, drv_index);
2233 return -1;
2236 /* This is for the special case of a controller which
2237 * has no logical drives. In this case, we still need
2238 * to register a disk so the controller can be accessed
2239 * by the Array Config Utility.
2241 static void cciss_add_controller_node(ctlr_info_t *h)
2243 struct gendisk *disk;
2244 int drv_index;
2246 if (h->gendisk[0] != NULL) /* already did this? Then bail. */
2247 return;
2249 drv_index = cciss_add_gendisk(h, CTLR_LUNID, 1);
2250 if (drv_index == -1)
2251 goto error;
2252 h->drv[drv_index]->block_size = 512;
2253 h->drv[drv_index]->nr_blocks = 0;
2254 h->drv[drv_index]->heads = 0;
2255 h->drv[drv_index]->sectors = 0;
2256 h->drv[drv_index]->cylinders = 0;
2257 h->drv[drv_index]->raid_level = -1;
2258 memset(h->drv[drv_index]->serial_no, 0, 16);
2259 disk = h->gendisk[drv_index];
2260 if (cciss_add_disk(h, disk, drv_index) == 0)
2261 return;
2262 cciss_free_gendisk(h, drv_index);
2263 cciss_free_drive_info(h, drv_index);
2264 error:
2265 dev_warn(&h->pdev->dev, "could not add disk 0.\n");
2266 return;
2269 /* This function will add and remove logical drives from the Logical
2270 * drive array of the controller and maintain persistency of ordering
2271 * so that mount points are preserved until the next reboot. This allows
2272 * for the removal of logical drives in the middle of the drive array
2273 * without a re-ordering of those drives.
2274 * INPUT
2275 * h = The controller to perform the operations on
2277 static int rebuild_lun_table(ctlr_info_t *h, int first_time,
2278 int via_ioctl)
2280 int num_luns;
2281 ReportLunData_struct *ld_buff = NULL;
2282 int return_code;
2283 int listlength = 0;
2284 int i;
2285 int drv_found;
2286 int drv_index = 0;
2287 unsigned char lunid[8] = CTLR_LUNID;
2288 unsigned long flags;
2290 if (!capable(CAP_SYS_RAWIO))
2291 return -EPERM;
2293 /* Set busy_configuring flag for this operation */
2294 spin_lock_irqsave(&h->lock, flags);
2295 if (h->busy_configuring) {
2296 spin_unlock_irqrestore(&h->lock, flags);
2297 return -EBUSY;
2299 h->busy_configuring = 1;
2300 spin_unlock_irqrestore(&h->lock, flags);
2302 ld_buff = kzalloc(sizeof(ReportLunData_struct), GFP_KERNEL);
2303 if (ld_buff == NULL)
2304 goto mem_msg;
2306 return_code = sendcmd_withirq(h, CISS_REPORT_LOG, ld_buff,
2307 sizeof(ReportLunData_struct),
2308 0, CTLR_LUNID, TYPE_CMD);
2310 if (return_code == IO_OK)
2311 listlength = be32_to_cpu(*(__be32 *) ld_buff->LUNListLength);
2312 else { /* reading number of logical volumes failed */
2313 dev_warn(&h->pdev->dev,
2314 "report logical volume command failed\n");
2315 listlength = 0;
2316 goto freeret;
2319 num_luns = listlength / 8; /* 8 bytes per entry */
2320 if (num_luns > CISS_MAX_LUN) {
2321 num_luns = CISS_MAX_LUN;
2322 dev_warn(&h->pdev->dev, "more luns configured"
2323 " on controller than can be handled by"
2324 " this driver.\n");
2327 if (num_luns == 0)
2328 cciss_add_controller_node(h);
2330 /* Compare controller drive array to driver's drive array
2331 * to see if any drives are missing on the controller due
2332 * to action of Array Config Utility (user deletes drive)
2333 * and deregister logical drives which have disappeared.
2335 for (i = 0; i <= h->highest_lun; i++) {
2336 int j;
2337 drv_found = 0;
2339 /* skip holes in the array from already deleted drives */
2340 if (h->drv[i] == NULL)
2341 continue;
2343 for (j = 0; j < num_luns; j++) {
2344 memcpy(lunid, &ld_buff->LUN[j][0], sizeof(lunid));
2345 if (memcmp(h->drv[i]->LunID, lunid,
2346 sizeof(lunid)) == 0) {
2347 drv_found = 1;
2348 break;
2351 if (!drv_found) {
2352 /* Deregister it from the OS, it's gone. */
2353 spin_lock_irqsave(&h->lock, flags);
2354 h->drv[i]->busy_configuring = 1;
2355 spin_unlock_irqrestore(&h->lock, flags);
2356 return_code = deregister_disk(h, i, 1, via_ioctl);
2357 if (h->drv[i] != NULL)
2358 h->drv[i]->busy_configuring = 0;
2362 /* Compare controller drive array to driver's drive array.
2363 * Check for updates in the drive information and any new drives
2364 * on the controller due to ACU adding logical drives, or changing
2365 * a logical drive's size, etc. Reregister any new/changed drives
2367 for (i = 0; i < num_luns; i++) {
2368 int j;
2370 drv_found = 0;
2372 memcpy(lunid, &ld_buff->LUN[i][0], sizeof(lunid));
2373 /* Find if the LUN is already in the drive array
2374 * of the driver. If so then update its info
2375 * if not in use. If it does not exist then find
2376 * the first free index and add it.
2378 for (j = 0; j <= h->highest_lun; j++) {
2379 if (h->drv[j] != NULL &&
2380 memcmp(h->drv[j]->LunID, lunid,
2381 sizeof(h->drv[j]->LunID)) == 0) {
2382 drv_index = j;
2383 drv_found = 1;
2384 break;
2388 /* check if the drive was found already in the array */
2389 if (!drv_found) {
2390 drv_index = cciss_add_gendisk(h, lunid, 0);
2391 if (drv_index == -1)
2392 goto freeret;
2394 cciss_update_drive_info(h, drv_index, first_time, via_ioctl);
2395 } /* end for */
2397 freeret:
2398 kfree(ld_buff);
2399 h->busy_configuring = 0;
2400 /* We return -1 here to tell the ACU that we have registered/updated
2401 * all of the drives that we can and to keep it from calling us
2402 * additional times.
2404 return -1;
2405 mem_msg:
2406 dev_err(&h->pdev->dev, "out of memory\n");
2407 h->busy_configuring = 0;
2408 goto freeret;
2411 static void cciss_clear_drive_info(drive_info_struct *drive_info)
2413 /* zero out the disk size info */
2414 drive_info->nr_blocks = 0;
2415 drive_info->block_size = 0;
2416 drive_info->heads = 0;
2417 drive_info->sectors = 0;
2418 drive_info->cylinders = 0;
2419 drive_info->raid_level = -1;
2420 memset(drive_info->serial_no, 0, sizeof(drive_info->serial_no));
2421 memset(drive_info->model, 0, sizeof(drive_info->model));
2422 memset(drive_info->rev, 0, sizeof(drive_info->rev));
2423 memset(drive_info->vendor, 0, sizeof(drive_info->vendor));
2425 * don't clear the LUNID though, we need to remember which
2426 * one this one is.
2430 /* This function will deregister the disk and it's queue from the
2431 * kernel. It must be called with the controller lock held and the
2432 * drv structures busy_configuring flag set. It's parameters are:
2434 * disk = This is the disk to be deregistered
2435 * drv = This is the drive_info_struct associated with the disk to be
2436 * deregistered. It contains information about the disk used
2437 * by the driver.
2438 * clear_all = This flag determines whether or not the disk information
2439 * is going to be completely cleared out and the highest_lun
2440 * reset. Sometimes we want to clear out information about
2441 * the disk in preparation for re-adding it. In this case
2442 * the highest_lun should be left unchanged and the LunID
2443 * should not be cleared.
2444 * via_ioctl
2445 * This indicates whether we've reached this path via ioctl.
2446 * This affects the maximum usage count allowed for c0d0 to be messed with.
2447 * If this path is reached via ioctl(), then the max_usage_count will
2448 * be 1, as the process calling ioctl() has got to have the device open.
2449 * If we get here via sysfs, then the max usage count will be zero.
2451 static int deregister_disk(ctlr_info_t *h, int drv_index,
2452 int clear_all, int via_ioctl)
2454 int i;
2455 struct gendisk *disk;
2456 drive_info_struct *drv;
2457 int recalculate_highest_lun;
2459 if (!capable(CAP_SYS_RAWIO))
2460 return -EPERM;
2462 drv = h->drv[drv_index];
2463 disk = h->gendisk[drv_index];
2465 /* make sure logical volume is NOT is use */
2466 if (clear_all || (h->gendisk[0] == disk)) {
2467 if (drv->usage_count > via_ioctl)
2468 return -EBUSY;
2469 } else if (drv->usage_count > 0)
2470 return -EBUSY;
2472 recalculate_highest_lun = (drv == h->drv[h->highest_lun]);
2474 /* invalidate the devices and deregister the disk. If it is disk
2475 * zero do not deregister it but just zero out it's values. This
2476 * allows us to delete disk zero but keep the controller registered.
2478 if (h->gendisk[0] != disk) {
2479 struct request_queue *q = disk->queue;
2480 if (disk->flags & GENHD_FL_UP) {
2481 cciss_destroy_ld_sysfs_entry(h, drv_index, 0);
2482 del_gendisk(disk);
2484 if (q)
2485 blk_cleanup_queue(q);
2486 /* If clear_all is set then we are deleting the logical
2487 * drive, not just refreshing its info. For drives
2488 * other than disk 0 we will call put_disk. We do not
2489 * do this for disk 0 as we need it to be able to
2490 * configure the controller.
2492 if (clear_all){
2493 /* This isn't pretty, but we need to find the
2494 * disk in our array and NULL our the pointer.
2495 * This is so that we will call alloc_disk if
2496 * this index is used again later.
2498 for (i=0; i < CISS_MAX_LUN; i++){
2499 if (h->gendisk[i] == disk) {
2500 h->gendisk[i] = NULL;
2501 break;
2504 put_disk(disk);
2506 } else {
2507 set_capacity(disk, 0);
2508 cciss_clear_drive_info(drv);
2511 --h->num_luns;
2513 /* if it was the last disk, find the new hightest lun */
2514 if (clear_all && recalculate_highest_lun) {
2515 int newhighest = -1;
2516 for (i = 0; i <= h->highest_lun; i++) {
2517 /* if the disk has size > 0, it is available */
2518 if (h->drv[i] && h->drv[i]->heads)
2519 newhighest = i;
2521 h->highest_lun = newhighest;
2523 return 0;
2526 static int fill_cmd(ctlr_info_t *h, CommandList_struct *c, __u8 cmd, void *buff,
2527 size_t size, __u8 page_code, unsigned char *scsi3addr,
2528 int cmd_type)
2530 u64bit buff_dma_handle;
2531 int status = IO_OK;
2533 c->cmd_type = CMD_IOCTL_PEND;
2534 c->Header.ReplyQueue = 0;
2535 if (buff != NULL) {
2536 c->Header.SGList = 1;
2537 c->Header.SGTotal = 1;
2538 } else {
2539 c->Header.SGList = 0;
2540 c->Header.SGTotal = 0;
2542 c->Header.Tag.lower = c->busaddr;
2543 memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2545 c->Request.Type.Type = cmd_type;
2546 if (cmd_type == TYPE_CMD) {
2547 switch (cmd) {
2548 case CISS_INQUIRY:
2549 /* are we trying to read a vital product page */
2550 if (page_code != 0) {
2551 c->Request.CDB[1] = 0x01;
2552 c->Request.CDB[2] = page_code;
2554 c->Request.CDBLen = 6;
2555 c->Request.Type.Attribute = ATTR_SIMPLE;
2556 c->Request.Type.Direction = XFER_READ;
2557 c->Request.Timeout = 0;
2558 c->Request.CDB[0] = CISS_INQUIRY;
2559 c->Request.CDB[4] = size & 0xFF;
2560 break;
2561 case CISS_REPORT_LOG:
2562 case CISS_REPORT_PHYS:
2563 /* Talking to controller so It's a physical command
2564 mode = 00 target = 0. Nothing to write.
2566 c->Request.CDBLen = 12;
2567 c->Request.Type.Attribute = ATTR_SIMPLE;
2568 c->Request.Type.Direction = XFER_READ;
2569 c->Request.Timeout = 0;
2570 c->Request.CDB[0] = cmd;
2571 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
2572 c->Request.CDB[7] = (size >> 16) & 0xFF;
2573 c->Request.CDB[8] = (size >> 8) & 0xFF;
2574 c->Request.CDB[9] = size & 0xFF;
2575 break;
2577 case CCISS_READ_CAPACITY:
2578 c->Request.CDBLen = 10;
2579 c->Request.Type.Attribute = ATTR_SIMPLE;
2580 c->Request.Type.Direction = XFER_READ;
2581 c->Request.Timeout = 0;
2582 c->Request.CDB[0] = cmd;
2583 break;
2584 case CCISS_READ_CAPACITY_16:
2585 c->Request.CDBLen = 16;
2586 c->Request.Type.Attribute = ATTR_SIMPLE;
2587 c->Request.Type.Direction = XFER_READ;
2588 c->Request.Timeout = 0;
2589 c->Request.CDB[0] = cmd;
2590 c->Request.CDB[1] = 0x10;
2591 c->Request.CDB[10] = (size >> 24) & 0xFF;
2592 c->Request.CDB[11] = (size >> 16) & 0xFF;
2593 c->Request.CDB[12] = (size >> 8) & 0xFF;
2594 c->Request.CDB[13] = size & 0xFF;
2595 c->Request.Timeout = 0;
2596 c->Request.CDB[0] = cmd;
2597 break;
2598 case CCISS_CACHE_FLUSH:
2599 c->Request.CDBLen = 12;
2600 c->Request.Type.Attribute = ATTR_SIMPLE;
2601 c->Request.Type.Direction = XFER_WRITE;
2602 c->Request.Timeout = 0;
2603 c->Request.CDB[0] = BMIC_WRITE;
2604 c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2605 c->Request.CDB[7] = (size >> 8) & 0xFF;
2606 c->Request.CDB[8] = size & 0xFF;
2607 break;
2608 case TEST_UNIT_READY:
2609 c->Request.CDBLen = 6;
2610 c->Request.Type.Attribute = ATTR_SIMPLE;
2611 c->Request.Type.Direction = XFER_NONE;
2612 c->Request.Timeout = 0;
2613 break;
2614 default:
2615 dev_warn(&h->pdev->dev, "Unknown Command 0x%c\n", cmd);
2616 return IO_ERROR;
2618 } else if (cmd_type == TYPE_MSG) {
2619 switch (cmd) {
2620 case CCISS_ABORT_MSG:
2621 c->Request.CDBLen = 12;
2622 c->Request.Type.Attribute = ATTR_SIMPLE;
2623 c->Request.Type.Direction = XFER_WRITE;
2624 c->Request.Timeout = 0;
2625 c->Request.CDB[0] = cmd; /* abort */
2626 c->Request.CDB[1] = 0; /* abort a command */
2627 /* buff contains the tag of the command to abort */
2628 memcpy(&c->Request.CDB[4], buff, 8);
2629 break;
2630 case CCISS_RESET_MSG:
2631 c->Request.CDBLen = 16;
2632 c->Request.Type.Attribute = ATTR_SIMPLE;
2633 c->Request.Type.Direction = XFER_NONE;
2634 c->Request.Timeout = 0;
2635 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
2636 c->Request.CDB[0] = cmd; /* reset */
2637 c->Request.CDB[1] = CCISS_RESET_TYPE_TARGET;
2638 break;
2639 case CCISS_NOOP_MSG:
2640 c->Request.CDBLen = 1;
2641 c->Request.Type.Attribute = ATTR_SIMPLE;
2642 c->Request.Type.Direction = XFER_WRITE;
2643 c->Request.Timeout = 0;
2644 c->Request.CDB[0] = cmd;
2645 break;
2646 default:
2647 dev_warn(&h->pdev->dev,
2648 "unknown message type %d\n", cmd);
2649 return IO_ERROR;
2651 } else {
2652 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
2653 return IO_ERROR;
2655 /* Fill in the scatter gather information */
2656 if (size > 0) {
2657 buff_dma_handle.val = (__u64) pci_map_single(h->pdev,
2658 buff, size,
2659 PCI_DMA_BIDIRECTIONAL);
2660 c->SG[0].Addr.lower = buff_dma_handle.val32.lower;
2661 c->SG[0].Addr.upper = buff_dma_handle.val32.upper;
2662 c->SG[0].Len = size;
2663 c->SG[0].Ext = 0; /* we are not chaining */
2665 return status;
2668 static int __devinit cciss_send_reset(ctlr_info_t *h, unsigned char *scsi3addr,
2669 u8 reset_type)
2671 CommandList_struct *c;
2672 int return_status;
2674 c = cmd_alloc(h);
2675 if (!c)
2676 return -ENOMEM;
2677 return_status = fill_cmd(h, c, CCISS_RESET_MSG, NULL, 0, 0,
2678 CTLR_LUNID, TYPE_MSG);
2679 c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
2680 if (return_status != IO_OK) {
2681 cmd_special_free(h, c);
2682 return return_status;
2684 c->waiting = NULL;
2685 enqueue_cmd_and_start_io(h, c);
2686 /* Don't wait for completion, the reset won't complete. Don't free
2687 * the command either. This is the last command we will send before
2688 * re-initializing everything, so it doesn't matter and won't leak.
2690 return 0;
2693 static int check_target_status(ctlr_info_t *h, CommandList_struct *c)
2695 switch (c->err_info->ScsiStatus) {
2696 case SAM_STAT_GOOD:
2697 return IO_OK;
2698 case SAM_STAT_CHECK_CONDITION:
2699 switch (0xf & c->err_info->SenseInfo[2]) {
2700 case 0: return IO_OK; /* no sense */
2701 case 1: return IO_OK; /* recovered error */
2702 default:
2703 if (check_for_unit_attention(h, c))
2704 return IO_NEEDS_RETRY;
2705 dev_warn(&h->pdev->dev, "cmd 0x%02x "
2706 "check condition, sense key = 0x%02x\n",
2707 c->Request.CDB[0], c->err_info->SenseInfo[2]);
2709 break;
2710 default:
2711 dev_warn(&h->pdev->dev, "cmd 0x%02x"
2712 "scsi status = 0x%02x\n",
2713 c->Request.CDB[0], c->err_info->ScsiStatus);
2714 break;
2716 return IO_ERROR;
2719 static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c)
2721 int return_status = IO_OK;
2723 if (c->err_info->CommandStatus == CMD_SUCCESS)
2724 return IO_OK;
2726 switch (c->err_info->CommandStatus) {
2727 case CMD_TARGET_STATUS:
2728 return_status = check_target_status(h, c);
2729 break;
2730 case CMD_DATA_UNDERRUN:
2731 case CMD_DATA_OVERRUN:
2732 /* expected for inquiry and report lun commands */
2733 break;
2734 case CMD_INVALID:
2735 dev_warn(&h->pdev->dev, "cmd 0x%02x is "
2736 "reported invalid\n", c->Request.CDB[0]);
2737 return_status = IO_ERROR;
2738 break;
2739 case CMD_PROTOCOL_ERR:
2740 dev_warn(&h->pdev->dev, "cmd 0x%02x has "
2741 "protocol error\n", c->Request.CDB[0]);
2742 return_status = IO_ERROR;
2743 break;
2744 case CMD_HARDWARE_ERR:
2745 dev_warn(&h->pdev->dev, "cmd 0x%02x had "
2746 " hardware error\n", c->Request.CDB[0]);
2747 return_status = IO_ERROR;
2748 break;
2749 case CMD_CONNECTION_LOST:
2750 dev_warn(&h->pdev->dev, "cmd 0x%02x had "
2751 "connection lost\n", c->Request.CDB[0]);
2752 return_status = IO_ERROR;
2753 break;
2754 case CMD_ABORTED:
2755 dev_warn(&h->pdev->dev, "cmd 0x%02x was "
2756 "aborted\n", c->Request.CDB[0]);
2757 return_status = IO_ERROR;
2758 break;
2759 case CMD_ABORT_FAILED:
2760 dev_warn(&h->pdev->dev, "cmd 0x%02x reports "
2761 "abort failed\n", c->Request.CDB[0]);
2762 return_status = IO_ERROR;
2763 break;
2764 case CMD_UNSOLICITED_ABORT:
2765 dev_warn(&h->pdev->dev, "unsolicited abort 0x%02x\n",
2766 c->Request.CDB[0]);
2767 return_status = IO_NEEDS_RETRY;
2768 break;
2769 case CMD_UNABORTABLE:
2770 dev_warn(&h->pdev->dev, "cmd unabortable\n");
2771 return_status = IO_ERROR;
2772 break;
2773 default:
2774 dev_warn(&h->pdev->dev, "cmd 0x%02x returned "
2775 "unknown status %x\n", c->Request.CDB[0],
2776 c->err_info->CommandStatus);
2777 return_status = IO_ERROR;
2779 return return_status;
2782 static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
2783 int attempt_retry)
2785 DECLARE_COMPLETION_ONSTACK(wait);
2786 u64bit buff_dma_handle;
2787 int return_status = IO_OK;
2789 resend_cmd2:
2790 c->waiting = &wait;
2791 enqueue_cmd_and_start_io(h, c);
2793 wait_for_completion(&wait);
2795 if (c->err_info->CommandStatus == 0 || !attempt_retry)
2796 goto command_done;
2798 return_status = process_sendcmd_error(h, c);
2800 if (return_status == IO_NEEDS_RETRY &&
2801 c->retry_count < MAX_CMD_RETRIES) {
2802 dev_warn(&h->pdev->dev, "retrying 0x%02x\n",
2803 c->Request.CDB[0]);
2804 c->retry_count++;
2805 /* erase the old error information */
2806 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
2807 return_status = IO_OK;
2808 INIT_COMPLETION(wait);
2809 goto resend_cmd2;
2812 command_done:
2813 /* unlock the buffers from DMA */
2814 buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
2815 buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
2816 pci_unmap_single(h->pdev, (dma_addr_t) buff_dma_handle.val,
2817 c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
2818 return return_status;
2821 static int sendcmd_withirq(ctlr_info_t *h, __u8 cmd, void *buff, size_t size,
2822 __u8 page_code, unsigned char scsi3addr[],
2823 int cmd_type)
2825 CommandList_struct *c;
2826 int return_status;
2828 c = cmd_special_alloc(h);
2829 if (!c)
2830 return -ENOMEM;
2831 return_status = fill_cmd(h, c, cmd, buff, size, page_code,
2832 scsi3addr, cmd_type);
2833 if (return_status == IO_OK)
2834 return_status = sendcmd_withirq_core(h, c, 1);
2836 cmd_special_free(h, c);
2837 return return_status;
2840 static void cciss_geometry_inquiry(ctlr_info_t *h, int logvol,
2841 sector_t total_size,
2842 unsigned int block_size,
2843 InquiryData_struct *inq_buff,
2844 drive_info_struct *drv)
2846 int return_code;
2847 unsigned long t;
2848 unsigned char scsi3addr[8];
2850 memset(inq_buff, 0, sizeof(InquiryData_struct));
2851 log_unit_to_scsi3addr(h, scsi3addr, logvol);
2852 return_code = sendcmd_withirq(h, CISS_INQUIRY, inq_buff,
2853 sizeof(*inq_buff), 0xC1, scsi3addr, TYPE_CMD);
2854 if (return_code == IO_OK) {
2855 if (inq_buff->data_byte[8] == 0xFF) {
2856 dev_warn(&h->pdev->dev,
2857 "reading geometry failed, volume "
2858 "does not support reading geometry\n");
2859 drv->heads = 255;
2860 drv->sectors = 32; /* Sectors per track */
2861 drv->cylinders = total_size + 1;
2862 drv->raid_level = RAID_UNKNOWN;
2863 } else {
2864 drv->heads = inq_buff->data_byte[6];
2865 drv->sectors = inq_buff->data_byte[7];
2866 drv->cylinders = (inq_buff->data_byte[4] & 0xff) << 8;
2867 drv->cylinders += inq_buff->data_byte[5];
2868 drv->raid_level = inq_buff->data_byte[8];
2870 drv->block_size = block_size;
2871 drv->nr_blocks = total_size + 1;
2872 t = drv->heads * drv->sectors;
2873 if (t > 1) {
2874 sector_t real_size = total_size + 1;
2875 unsigned long rem = sector_div(real_size, t);
2876 if (rem)
2877 real_size++;
2878 drv->cylinders = real_size;
2880 } else { /* Get geometry failed */
2881 dev_warn(&h->pdev->dev, "reading geometry failed\n");
2885 static void
2886 cciss_read_capacity(ctlr_info_t *h, int logvol, sector_t *total_size,
2887 unsigned int *block_size)
2889 ReadCapdata_struct *buf;
2890 int return_code;
2891 unsigned char scsi3addr[8];
2893 buf = kzalloc(sizeof(ReadCapdata_struct), GFP_KERNEL);
2894 if (!buf) {
2895 dev_warn(&h->pdev->dev, "out of memory\n");
2896 return;
2899 log_unit_to_scsi3addr(h, scsi3addr, logvol);
2900 return_code = sendcmd_withirq(h, CCISS_READ_CAPACITY, buf,
2901 sizeof(ReadCapdata_struct), 0, scsi3addr, TYPE_CMD);
2902 if (return_code == IO_OK) {
2903 *total_size = be32_to_cpu(*(__be32 *) buf->total_size);
2904 *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2905 } else { /* read capacity command failed */
2906 dev_warn(&h->pdev->dev, "read capacity failed\n");
2907 *total_size = 0;
2908 *block_size = BLOCK_SIZE;
2910 kfree(buf);
2913 static void cciss_read_capacity_16(ctlr_info_t *h, int logvol,
2914 sector_t *total_size, unsigned int *block_size)
2916 ReadCapdata_struct_16 *buf;
2917 int return_code;
2918 unsigned char scsi3addr[8];
2920 buf = kzalloc(sizeof(ReadCapdata_struct_16), GFP_KERNEL);
2921 if (!buf) {
2922 dev_warn(&h->pdev->dev, "out of memory\n");
2923 return;
2926 log_unit_to_scsi3addr(h, scsi3addr, logvol);
2927 return_code = sendcmd_withirq(h, CCISS_READ_CAPACITY_16,
2928 buf, sizeof(ReadCapdata_struct_16),
2929 0, scsi3addr, TYPE_CMD);
2930 if (return_code == IO_OK) {
2931 *total_size = be64_to_cpu(*(__be64 *) buf->total_size);
2932 *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2933 } else { /* read capacity command failed */
2934 dev_warn(&h->pdev->dev, "read capacity failed\n");
2935 *total_size = 0;
2936 *block_size = BLOCK_SIZE;
2938 dev_info(&h->pdev->dev, " blocks= %llu block_size= %d\n",
2939 (unsigned long long)*total_size+1, *block_size);
2940 kfree(buf);
2943 static int cciss_revalidate(struct gendisk *disk)
2945 ctlr_info_t *h = get_host(disk);
2946 drive_info_struct *drv = get_drv(disk);
2947 int logvol;
2948 int FOUND = 0;
2949 unsigned int block_size;
2950 sector_t total_size;
2951 InquiryData_struct *inq_buff = NULL;
2953 for (logvol = 0; logvol <= h->highest_lun; logvol++) {
2954 if (!h->drv[logvol])
2955 continue;
2956 if (memcmp(h->drv[logvol]->LunID, drv->LunID,
2957 sizeof(drv->LunID)) == 0) {
2958 FOUND = 1;
2959 break;
2963 if (!FOUND)
2964 return 1;
2966 inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
2967 if (inq_buff == NULL) {
2968 dev_warn(&h->pdev->dev, "out of memory\n");
2969 return 1;
2971 if (h->cciss_read == CCISS_READ_10) {
2972 cciss_read_capacity(h, logvol,
2973 &total_size, &block_size);
2974 } else {
2975 cciss_read_capacity_16(h, logvol,
2976 &total_size, &block_size);
2978 cciss_geometry_inquiry(h, logvol, total_size, block_size,
2979 inq_buff, drv);
2981 blk_queue_logical_block_size(drv->queue, drv->block_size);
2982 set_capacity(disk, drv->nr_blocks);
2984 kfree(inq_buff);
2985 return 0;
2989 * Map (physical) PCI mem into (virtual) kernel space
2991 static void __iomem *remap_pci_mem(ulong base, ulong size)
2993 ulong page_base = ((ulong) base) & PAGE_MASK;
2994 ulong page_offs = ((ulong) base) - page_base;
2995 void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2997 return page_remapped ? (page_remapped + page_offs) : NULL;
3001 * Takes jobs of the Q and sends them to the hardware, then puts it on
3002 * the Q to wait for completion.
3004 static void start_io(ctlr_info_t *h)
3006 CommandList_struct *c;
3008 while (!list_empty(&h->reqQ)) {
3009 c = list_entry(h->reqQ.next, CommandList_struct, list);
3010 /* can't do anything if fifo is full */
3011 if ((h->access.fifo_full(h))) {
3012 dev_warn(&h->pdev->dev, "fifo full\n");
3013 break;
3016 /* Get the first entry from the Request Q */
3017 removeQ(c);
3018 h->Qdepth--;
3020 /* Tell the controller execute command */
3021 h->access.submit_command(h, c);
3023 /* Put job onto the completed Q */
3024 addQ(&h->cmpQ, c);
3028 /* Assumes that h->lock is held. */
3029 /* Zeros out the error record and then resends the command back */
3030 /* to the controller */
3031 static inline void resend_cciss_cmd(ctlr_info_t *h, CommandList_struct *c)
3033 /* erase the old error information */
3034 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
3036 /* add it to software queue and then send it to the controller */
3037 addQ(&h->reqQ, c);
3038 h->Qdepth++;
3039 if (h->Qdepth > h->maxQsinceinit)
3040 h->maxQsinceinit = h->Qdepth;
3042 start_io(h);
3045 static inline unsigned int make_status_bytes(unsigned int scsi_status_byte,
3046 unsigned int msg_byte, unsigned int host_byte,
3047 unsigned int driver_byte)
3049 /* inverse of macros in scsi.h */
3050 return (scsi_status_byte & 0xff) |
3051 ((msg_byte & 0xff) << 8) |
3052 ((host_byte & 0xff) << 16) |
3053 ((driver_byte & 0xff) << 24);
3056 static inline int evaluate_target_status(ctlr_info_t *h,
3057 CommandList_struct *cmd, int *retry_cmd)
3059 unsigned char sense_key;
3060 unsigned char status_byte, msg_byte, host_byte, driver_byte;
3061 int error_value;
3063 *retry_cmd = 0;
3064 /* If we get in here, it means we got "target status", that is, scsi status */
3065 status_byte = cmd->err_info->ScsiStatus;
3066 driver_byte = DRIVER_OK;
3067 msg_byte = cmd->err_info->CommandStatus; /* correct? seems too device specific */
3069 if (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC)
3070 host_byte = DID_PASSTHROUGH;
3071 else
3072 host_byte = DID_OK;
3074 error_value = make_status_bytes(status_byte, msg_byte,
3075 host_byte, driver_byte);
3077 if (cmd->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION) {
3078 if (cmd->rq->cmd_type != REQ_TYPE_BLOCK_PC)
3079 dev_warn(&h->pdev->dev, "cmd %p "
3080 "has SCSI Status 0x%x\n",
3081 cmd, cmd->err_info->ScsiStatus);
3082 return error_value;
3085 /* check the sense key */
3086 sense_key = 0xf & cmd->err_info->SenseInfo[2];
3087 /* no status or recovered error */
3088 if (((sense_key == 0x0) || (sense_key == 0x1)) &&
3089 (cmd->rq->cmd_type != REQ_TYPE_BLOCK_PC))
3090 error_value = 0;
3092 if (check_for_unit_attention(h, cmd)) {
3093 *retry_cmd = !(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC);
3094 return 0;
3097 /* Not SG_IO or similar? */
3098 if (cmd->rq->cmd_type != REQ_TYPE_BLOCK_PC) {
3099 if (error_value != 0)
3100 dev_warn(&h->pdev->dev, "cmd %p has CHECK CONDITION"
3101 " sense key = 0x%x\n", cmd, sense_key);
3102 return error_value;
3105 /* SG_IO or similar, copy sense data back */
3106 if (cmd->rq->sense) {
3107 if (cmd->rq->sense_len > cmd->err_info->SenseLen)
3108 cmd->rq->sense_len = cmd->err_info->SenseLen;
3109 memcpy(cmd->rq->sense, cmd->err_info->SenseInfo,
3110 cmd->rq->sense_len);
3111 } else
3112 cmd->rq->sense_len = 0;
3114 return error_value;
3117 /* checks the status of the job and calls complete buffers to mark all
3118 * buffers for the completed job. Note that this function does not need
3119 * to hold the hba/queue lock.
3121 static inline void complete_command(ctlr_info_t *h, CommandList_struct *cmd,
3122 int timeout)
3124 int retry_cmd = 0;
3125 struct request *rq = cmd->rq;
3127 rq->errors = 0;
3129 if (timeout)
3130 rq->errors = make_status_bytes(0, 0, 0, DRIVER_TIMEOUT);
3132 if (cmd->err_info->CommandStatus == 0) /* no error has occurred */
3133 goto after_error_processing;
3135 switch (cmd->err_info->CommandStatus) {
3136 case CMD_TARGET_STATUS:
3137 rq->errors = evaluate_target_status(h, cmd, &retry_cmd);
3138 break;
3139 case CMD_DATA_UNDERRUN:
3140 if (cmd->rq->cmd_type == REQ_TYPE_FS) {
3141 dev_warn(&h->pdev->dev, "cmd %p has"
3142 " completed with data underrun "
3143 "reported\n", cmd);
3144 cmd->rq->resid_len = cmd->err_info->ResidualCnt;
3146 break;
3147 case CMD_DATA_OVERRUN:
3148 if (cmd->rq->cmd_type == REQ_TYPE_FS)
3149 dev_warn(&h->pdev->dev, "cciss: cmd %p has"
3150 " completed with data overrun "
3151 "reported\n", cmd);
3152 break;
3153 case CMD_INVALID:
3154 dev_warn(&h->pdev->dev, "cciss: cmd %p is "
3155 "reported invalid\n", cmd);
3156 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3157 cmd->err_info->CommandStatus, DRIVER_OK,
3158 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3159 DID_PASSTHROUGH : DID_ERROR);
3160 break;
3161 case CMD_PROTOCOL_ERR:
3162 dev_warn(&h->pdev->dev, "cciss: cmd %p has "
3163 "protocol error\n", cmd);
3164 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3165 cmd->err_info->CommandStatus, DRIVER_OK,
3166 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3167 DID_PASSTHROUGH : DID_ERROR);
3168 break;
3169 case CMD_HARDWARE_ERR:
3170 dev_warn(&h->pdev->dev, "cciss: cmd %p had "
3171 " hardware error\n", cmd);
3172 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3173 cmd->err_info->CommandStatus, DRIVER_OK,
3174 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3175 DID_PASSTHROUGH : DID_ERROR);
3176 break;
3177 case CMD_CONNECTION_LOST:
3178 dev_warn(&h->pdev->dev, "cciss: cmd %p had "
3179 "connection lost\n", cmd);
3180 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3181 cmd->err_info->CommandStatus, DRIVER_OK,
3182 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3183 DID_PASSTHROUGH : DID_ERROR);
3184 break;
3185 case CMD_ABORTED:
3186 dev_warn(&h->pdev->dev, "cciss: cmd %p was "
3187 "aborted\n", cmd);
3188 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3189 cmd->err_info->CommandStatus, DRIVER_OK,
3190 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3191 DID_PASSTHROUGH : DID_ABORT);
3192 break;
3193 case CMD_ABORT_FAILED:
3194 dev_warn(&h->pdev->dev, "cciss: cmd %p reports "
3195 "abort failed\n", cmd);
3196 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3197 cmd->err_info->CommandStatus, DRIVER_OK,
3198 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3199 DID_PASSTHROUGH : DID_ERROR);
3200 break;
3201 case CMD_UNSOLICITED_ABORT:
3202 dev_warn(&h->pdev->dev, "cciss%d: unsolicited "
3203 "abort %p\n", h->ctlr, cmd);
3204 if (cmd->retry_count < MAX_CMD_RETRIES) {
3205 retry_cmd = 1;
3206 dev_warn(&h->pdev->dev, "retrying %p\n", cmd);
3207 cmd->retry_count++;
3208 } else
3209 dev_warn(&h->pdev->dev,
3210 "%p retried too many times\n", cmd);
3211 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3212 cmd->err_info->CommandStatus, DRIVER_OK,
3213 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3214 DID_PASSTHROUGH : DID_ABORT);
3215 break;
3216 case CMD_TIMEOUT:
3217 dev_warn(&h->pdev->dev, "cmd %p timedout\n", cmd);
3218 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3219 cmd->err_info->CommandStatus, DRIVER_OK,
3220 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3221 DID_PASSTHROUGH : DID_ERROR);
3222 break;
3223 case CMD_UNABORTABLE:
3224 dev_warn(&h->pdev->dev, "cmd %p unabortable\n", cmd);
3225 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3226 cmd->err_info->CommandStatus, DRIVER_OK,
3227 cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC ?
3228 DID_PASSTHROUGH : DID_ERROR);
3229 break;
3230 default:
3231 dev_warn(&h->pdev->dev, "cmd %p returned "
3232 "unknown status %x\n", cmd,
3233 cmd->err_info->CommandStatus);
3234 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3235 cmd->err_info->CommandStatus, DRIVER_OK,
3236 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3237 DID_PASSTHROUGH : DID_ERROR);
3240 after_error_processing:
3242 /* We need to return this command */
3243 if (retry_cmd) {
3244 resend_cciss_cmd(h, cmd);
3245 return;
3247 cmd->rq->completion_data = cmd;
3248 blk_complete_request(cmd->rq);
3251 static inline u32 cciss_tag_contains_index(u32 tag)
3253 #define DIRECT_LOOKUP_BIT 0x10
3254 return tag & DIRECT_LOOKUP_BIT;
3257 static inline u32 cciss_tag_to_index(u32 tag)
3259 #define DIRECT_LOOKUP_SHIFT 5
3260 return tag >> DIRECT_LOOKUP_SHIFT;
3263 static inline u32 cciss_tag_discard_error_bits(ctlr_info_t *h, u32 tag)
3265 #define CCISS_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
3266 #define CCISS_SIMPLE_ERROR_BITS 0x03
3267 if (likely(h->transMethod & CFGTBL_Trans_Performant))
3268 return tag & ~CCISS_PERF_ERROR_BITS;
3269 return tag & ~CCISS_SIMPLE_ERROR_BITS;
3272 static inline void cciss_mark_tag_indexed(u32 *tag)
3274 *tag |= DIRECT_LOOKUP_BIT;
3277 static inline void cciss_set_tag_index(u32 *tag, u32 index)
3279 *tag |= (index << DIRECT_LOOKUP_SHIFT);
3283 * Get a request and submit it to the controller.
3285 static void do_cciss_request(struct request_queue *q)
3287 ctlr_info_t *h = q->queuedata;
3288 CommandList_struct *c;
3289 sector_t start_blk;
3290 int seg;
3291 struct request *creq;
3292 u64bit temp64;
3293 struct scatterlist *tmp_sg;
3294 SGDescriptor_struct *curr_sg;
3295 drive_info_struct *drv;
3296 int i, dir;
3297 int sg_index = 0;
3298 int chained = 0;
3300 queue:
3301 creq = blk_peek_request(q);
3302 if (!creq)
3303 goto startio;
3305 BUG_ON(creq->nr_phys_segments > h->maxsgentries);
3307 c = cmd_alloc(h);
3308 if (!c)
3309 goto full;
3311 blk_start_request(creq);
3313 tmp_sg = h->scatter_list[c->cmdindex];
3314 spin_unlock_irq(q->queue_lock);
3316 c->cmd_type = CMD_RWREQ;
3317 c->rq = creq;
3319 /* fill in the request */
3320 drv = creq->rq_disk->private_data;
3321 c->Header.ReplyQueue = 0; /* unused in simple mode */
3322 /* got command from pool, so use the command block index instead */
3323 /* for direct lookups. */
3324 /* The first 2 bits are reserved for controller error reporting. */
3325 cciss_set_tag_index(&c->Header.Tag.lower, c->cmdindex);
3326 cciss_mark_tag_indexed(&c->Header.Tag.lower);
3327 memcpy(&c->Header.LUN, drv->LunID, sizeof(drv->LunID));
3328 c->Request.CDBLen = 10; /* 12 byte commands not in FW yet; */
3329 c->Request.Type.Type = TYPE_CMD; /* It is a command. */
3330 c->Request.Type.Attribute = ATTR_SIMPLE;
3331 c->Request.Type.Direction =
3332 (rq_data_dir(creq) == READ) ? XFER_READ : XFER_WRITE;
3333 c->Request.Timeout = 0; /* Don't time out */
3334 c->Request.CDB[0] =
3335 (rq_data_dir(creq) == READ) ? h->cciss_read : h->cciss_write;
3336 start_blk = blk_rq_pos(creq);
3337 dev_dbg(&h->pdev->dev, "sector =%d nr_sectors=%d\n",
3338 (int)blk_rq_pos(creq), (int)blk_rq_sectors(creq));
3339 sg_init_table(tmp_sg, h->maxsgentries);
3340 seg = blk_rq_map_sg(q, creq, tmp_sg);
3342 /* get the DMA records for the setup */
3343 if (c->Request.Type.Direction == XFER_READ)
3344 dir = PCI_DMA_FROMDEVICE;
3345 else
3346 dir = PCI_DMA_TODEVICE;
3348 curr_sg = c->SG;
3349 sg_index = 0;
3350 chained = 0;
3352 for (i = 0; i < seg; i++) {
3353 if (((sg_index+1) == (h->max_cmd_sgentries)) &&
3354 !chained && ((seg - i) > 1)) {
3355 /* Point to next chain block. */
3356 curr_sg = h->cmd_sg_list[c->cmdindex];
3357 sg_index = 0;
3358 chained = 1;
3360 curr_sg[sg_index].Len = tmp_sg[i].length;
3361 temp64.val = (__u64) pci_map_page(h->pdev, sg_page(&tmp_sg[i]),
3362 tmp_sg[i].offset,
3363 tmp_sg[i].length, dir);
3364 curr_sg[sg_index].Addr.lower = temp64.val32.lower;
3365 curr_sg[sg_index].Addr.upper = temp64.val32.upper;
3366 curr_sg[sg_index].Ext = 0; /* we are not chaining */
3367 ++sg_index;
3369 if (chained)
3370 cciss_map_sg_chain_block(h, c, h->cmd_sg_list[c->cmdindex],
3371 (seg - (h->max_cmd_sgentries - 1)) *
3372 sizeof(SGDescriptor_struct));
3374 /* track how many SG entries we are using */
3375 if (seg > h->maxSG)
3376 h->maxSG = seg;
3378 dev_dbg(&h->pdev->dev, "Submitting %u sectors in %d segments "
3379 "chained[%d]\n",
3380 blk_rq_sectors(creq), seg, chained);
3382 c->Header.SGTotal = seg + chained;
3383 if (seg <= h->max_cmd_sgentries)
3384 c->Header.SGList = c->Header.SGTotal;
3385 else
3386 c->Header.SGList = h->max_cmd_sgentries;
3387 set_performant_mode(h, c);
3389 if (likely(creq->cmd_type == REQ_TYPE_FS)) {
3390 if(h->cciss_read == CCISS_READ_10) {
3391 c->Request.CDB[1] = 0;
3392 c->Request.CDB[2] = (start_blk >> 24) & 0xff; /* MSB */
3393 c->Request.CDB[3] = (start_blk >> 16) & 0xff;
3394 c->Request.CDB[4] = (start_blk >> 8) & 0xff;
3395 c->Request.CDB[5] = start_blk & 0xff;
3396 c->Request.CDB[6] = 0; /* (sect >> 24) & 0xff; MSB */
3397 c->Request.CDB[7] = (blk_rq_sectors(creq) >> 8) & 0xff;
3398 c->Request.CDB[8] = blk_rq_sectors(creq) & 0xff;
3399 c->Request.CDB[9] = c->Request.CDB[11] = c->Request.CDB[12] = 0;
3400 } else {
3401 u32 upper32 = upper_32_bits(start_blk);
3403 c->Request.CDBLen = 16;
3404 c->Request.CDB[1]= 0;
3405 c->Request.CDB[2]= (upper32 >> 24) & 0xff; /* MSB */
3406 c->Request.CDB[3]= (upper32 >> 16) & 0xff;
3407 c->Request.CDB[4]= (upper32 >> 8) & 0xff;
3408 c->Request.CDB[5]= upper32 & 0xff;
3409 c->Request.CDB[6]= (start_blk >> 24) & 0xff;
3410 c->Request.CDB[7]= (start_blk >> 16) & 0xff;
3411 c->Request.CDB[8]= (start_blk >> 8) & 0xff;
3412 c->Request.CDB[9]= start_blk & 0xff;
3413 c->Request.CDB[10]= (blk_rq_sectors(creq) >> 24) & 0xff;
3414 c->Request.CDB[11]= (blk_rq_sectors(creq) >> 16) & 0xff;
3415 c->Request.CDB[12]= (blk_rq_sectors(creq) >> 8) & 0xff;
3416 c->Request.CDB[13]= blk_rq_sectors(creq) & 0xff;
3417 c->Request.CDB[14] = c->Request.CDB[15] = 0;
3419 } else if (creq->cmd_type == REQ_TYPE_BLOCK_PC) {
3420 c->Request.CDBLen = creq->cmd_len;
3421 memcpy(c->Request.CDB, creq->cmd, BLK_MAX_CDB);
3422 } else {
3423 dev_warn(&h->pdev->dev, "bad request type %d\n",
3424 creq->cmd_type);
3425 BUG();
3428 spin_lock_irq(q->queue_lock);
3430 addQ(&h->reqQ, c);
3431 h->Qdepth++;
3432 if (h->Qdepth > h->maxQsinceinit)
3433 h->maxQsinceinit = h->Qdepth;
3435 goto queue;
3436 full:
3437 blk_stop_queue(q);
3438 startio:
3439 /* We will already have the driver lock here so not need
3440 * to lock it.
3442 start_io(h);
3445 static inline unsigned long get_next_completion(ctlr_info_t *h)
3447 return h->access.command_completed(h);
3450 static inline int interrupt_pending(ctlr_info_t *h)
3452 return h->access.intr_pending(h);
3455 static inline long interrupt_not_for_us(ctlr_info_t *h)
3457 return ((h->access.intr_pending(h) == 0) ||
3458 (h->interrupts_enabled == 0));
3461 static inline int bad_tag(ctlr_info_t *h, u32 tag_index,
3462 u32 raw_tag)
3464 if (unlikely(tag_index >= h->nr_cmds)) {
3465 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
3466 return 1;
3468 return 0;
3471 static inline void finish_cmd(ctlr_info_t *h, CommandList_struct *c,
3472 u32 raw_tag)
3474 removeQ(c);
3475 if (likely(c->cmd_type == CMD_RWREQ))
3476 complete_command(h, c, 0);
3477 else if (c->cmd_type == CMD_IOCTL_PEND)
3478 complete(c->waiting);
3479 #ifdef CONFIG_CISS_SCSI_TAPE
3480 else if (c->cmd_type == CMD_SCSI)
3481 complete_scsi_command(c, 0, raw_tag);
3482 #endif
3485 static inline u32 next_command(ctlr_info_t *h)
3487 u32 a;
3489 if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
3490 return h->access.command_completed(h);
3492 if ((*(h->reply_pool_head) & 1) == (h->reply_pool_wraparound)) {
3493 a = *(h->reply_pool_head); /* Next cmd in ring buffer */
3494 (h->reply_pool_head)++;
3495 h->commands_outstanding--;
3496 } else {
3497 a = FIFO_EMPTY;
3499 /* Check for wraparound */
3500 if (h->reply_pool_head == (h->reply_pool + h->max_commands)) {
3501 h->reply_pool_head = h->reply_pool;
3502 h->reply_pool_wraparound ^= 1;
3504 return a;
3507 /* process completion of an indexed ("direct lookup") command */
3508 static inline u32 process_indexed_cmd(ctlr_info_t *h, u32 raw_tag)
3510 u32 tag_index;
3511 CommandList_struct *c;
3513 tag_index = cciss_tag_to_index(raw_tag);
3514 if (bad_tag(h, tag_index, raw_tag))
3515 return next_command(h);
3516 c = h->cmd_pool + tag_index;
3517 finish_cmd(h, c, raw_tag);
3518 return next_command(h);
3521 /* process completion of a non-indexed command */
3522 static inline u32 process_nonindexed_cmd(ctlr_info_t *h, u32 raw_tag)
3524 CommandList_struct *c = NULL;
3525 __u32 busaddr_masked, tag_masked;
3527 tag_masked = cciss_tag_discard_error_bits(h, raw_tag);
3528 list_for_each_entry(c, &h->cmpQ, list) {
3529 busaddr_masked = cciss_tag_discard_error_bits(h, c->busaddr);
3530 if (busaddr_masked == tag_masked) {
3531 finish_cmd(h, c, raw_tag);
3532 return next_command(h);
3535 bad_tag(h, h->nr_cmds + 1, raw_tag);
3536 return next_command(h);
3539 /* Some controllers, like p400, will give us one interrupt
3540 * after a soft reset, even if we turned interrupts off.
3541 * Only need to check for this in the cciss_xxx_discard_completions
3542 * functions.
3544 static int ignore_bogus_interrupt(ctlr_info_t *h)
3546 if (likely(!reset_devices))
3547 return 0;
3549 if (likely(h->interrupts_enabled))
3550 return 0;
3552 dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
3553 "(known firmware bug.) Ignoring.\n");
3555 return 1;
3558 static irqreturn_t cciss_intx_discard_completions(int irq, void *dev_id)
3560 ctlr_info_t *h = dev_id;
3561 unsigned long flags;
3562 u32 raw_tag;
3564 if (ignore_bogus_interrupt(h))
3565 return IRQ_NONE;
3567 if (interrupt_not_for_us(h))
3568 return IRQ_NONE;
3569 spin_lock_irqsave(&h->lock, flags);
3570 while (interrupt_pending(h)) {
3571 raw_tag = get_next_completion(h);
3572 while (raw_tag != FIFO_EMPTY)
3573 raw_tag = next_command(h);
3575 spin_unlock_irqrestore(&h->lock, flags);
3576 return IRQ_HANDLED;
3579 static irqreturn_t cciss_msix_discard_completions(int irq, void *dev_id)
3581 ctlr_info_t *h = dev_id;
3582 unsigned long flags;
3583 u32 raw_tag;
3585 if (ignore_bogus_interrupt(h))
3586 return IRQ_NONE;
3588 spin_lock_irqsave(&h->lock, flags);
3589 raw_tag = get_next_completion(h);
3590 while (raw_tag != FIFO_EMPTY)
3591 raw_tag = next_command(h);
3592 spin_unlock_irqrestore(&h->lock, flags);
3593 return IRQ_HANDLED;
3596 static irqreturn_t do_cciss_intx(int irq, void *dev_id)
3598 ctlr_info_t *h = dev_id;
3599 unsigned long flags;
3600 u32 raw_tag;
3602 if (interrupt_not_for_us(h))
3603 return IRQ_NONE;
3604 spin_lock_irqsave(&h->lock, flags);
3605 while (interrupt_pending(h)) {
3606 raw_tag = get_next_completion(h);
3607 while (raw_tag != FIFO_EMPTY) {
3608 if (cciss_tag_contains_index(raw_tag))
3609 raw_tag = process_indexed_cmd(h, raw_tag);
3610 else
3611 raw_tag = process_nonindexed_cmd(h, raw_tag);
3614 spin_unlock_irqrestore(&h->lock, flags);
3615 return IRQ_HANDLED;
3618 /* Add a second interrupt handler for MSI/MSI-X mode. In this mode we never
3619 * check the interrupt pending register because it is not set.
3621 static irqreturn_t do_cciss_msix_intr(int irq, void *dev_id)
3623 ctlr_info_t *h = dev_id;
3624 unsigned long flags;
3625 u32 raw_tag;
3627 spin_lock_irqsave(&h->lock, flags);
3628 raw_tag = get_next_completion(h);
3629 while (raw_tag != FIFO_EMPTY) {
3630 if (cciss_tag_contains_index(raw_tag))
3631 raw_tag = process_indexed_cmd(h, raw_tag);
3632 else
3633 raw_tag = process_nonindexed_cmd(h, raw_tag);
3635 spin_unlock_irqrestore(&h->lock, flags);
3636 return IRQ_HANDLED;
3640 * add_to_scan_list() - add controller to rescan queue
3641 * @h: Pointer to the controller.
3643 * Adds the controller to the rescan queue if not already on the queue.
3645 * returns 1 if added to the queue, 0 if skipped (could be on the
3646 * queue already, or the controller could be initializing or shutting
3647 * down).
3649 static int add_to_scan_list(struct ctlr_info *h)
3651 struct ctlr_info *test_h;
3652 int found = 0;
3653 int ret = 0;
3655 if (h->busy_initializing)
3656 return 0;
3658 if (!mutex_trylock(&h->busy_shutting_down))
3659 return 0;
3661 mutex_lock(&scan_mutex);
3662 list_for_each_entry(test_h, &scan_q, scan_list) {
3663 if (test_h == h) {
3664 found = 1;
3665 break;
3668 if (!found && !h->busy_scanning) {
3669 INIT_COMPLETION(h->scan_wait);
3670 list_add_tail(&h->scan_list, &scan_q);
3671 ret = 1;
3673 mutex_unlock(&scan_mutex);
3674 mutex_unlock(&h->busy_shutting_down);
3676 return ret;
3680 * remove_from_scan_list() - remove controller from rescan queue
3681 * @h: Pointer to the controller.
3683 * Removes the controller from the rescan queue if present. Blocks if
3684 * the controller is currently conducting a rescan. The controller
3685 * can be in one of three states:
3686 * 1. Doesn't need a scan
3687 * 2. On the scan list, but not scanning yet (we remove it)
3688 * 3. Busy scanning (and not on the list). In this case we want to wait for
3689 * the scan to complete to make sure the scanning thread for this
3690 * controller is completely idle.
3692 static void remove_from_scan_list(struct ctlr_info *h)
3694 struct ctlr_info *test_h, *tmp_h;
3696 mutex_lock(&scan_mutex);
3697 list_for_each_entry_safe(test_h, tmp_h, &scan_q, scan_list) {
3698 if (test_h == h) { /* state 2. */
3699 list_del(&h->scan_list);
3700 complete_all(&h->scan_wait);
3701 mutex_unlock(&scan_mutex);
3702 return;
3705 if (h->busy_scanning) { /* state 3. */
3706 mutex_unlock(&scan_mutex);
3707 wait_for_completion(&h->scan_wait);
3708 } else { /* state 1, nothing to do. */
3709 mutex_unlock(&scan_mutex);
3714 * scan_thread() - kernel thread used to rescan controllers
3715 * @data: Ignored.
3717 * A kernel thread used scan for drive topology changes on
3718 * controllers. The thread processes only one controller at a time
3719 * using a queue. Controllers are added to the queue using
3720 * add_to_scan_list() and removed from the queue either after done
3721 * processing or using remove_from_scan_list().
3723 * returns 0.
3725 static int scan_thread(void *data)
3727 struct ctlr_info *h;
3729 while (1) {
3730 set_current_state(TASK_INTERRUPTIBLE);
3731 schedule();
3732 if (kthread_should_stop())
3733 break;
3735 while (1) {
3736 mutex_lock(&scan_mutex);
3737 if (list_empty(&scan_q)) {
3738 mutex_unlock(&scan_mutex);
3739 break;
3742 h = list_entry(scan_q.next,
3743 struct ctlr_info,
3744 scan_list);
3745 list_del(&h->scan_list);
3746 h->busy_scanning = 1;
3747 mutex_unlock(&scan_mutex);
3749 rebuild_lun_table(h, 0, 0);
3750 complete_all(&h->scan_wait);
3751 mutex_lock(&scan_mutex);
3752 h->busy_scanning = 0;
3753 mutex_unlock(&scan_mutex);
3757 return 0;
3760 static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c)
3762 if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
3763 return 0;
3765 switch (c->err_info->SenseInfo[12]) {
3766 case STATE_CHANGED:
3767 dev_warn(&h->pdev->dev, "a state change "
3768 "detected, command retried\n");
3769 return 1;
3770 break;
3771 case LUN_FAILED:
3772 dev_warn(&h->pdev->dev, "LUN failure "
3773 "detected, action required\n");
3774 return 1;
3775 break;
3776 case REPORT_LUNS_CHANGED:
3777 dev_warn(&h->pdev->dev, "report LUN data changed\n");
3779 * Here, we could call add_to_scan_list and wake up the scan thread,
3780 * except that it's quite likely that we will get more than one
3781 * REPORT_LUNS_CHANGED condition in quick succession, which means
3782 * that those which occur after the first one will likely happen
3783 * *during* the scan_thread's rescan. And the rescan code is not
3784 * robust enough to restart in the middle, undoing what it has already
3785 * done, and it's not clear that it's even possible to do this, since
3786 * part of what it does is notify the block layer, which starts
3787 * doing it's own i/o to read partition tables and so on, and the
3788 * driver doesn't have visibility to know what might need undoing.
3789 * In any event, if possible, it is horribly complicated to get right
3790 * so we just don't do it for now.
3792 * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012.
3794 return 1;
3795 break;
3796 case POWER_OR_RESET:
3797 dev_warn(&h->pdev->dev,
3798 "a power on or device reset detected\n");
3799 return 1;
3800 break;
3801 case UNIT_ATTENTION_CLEARED:
3802 dev_warn(&h->pdev->dev,
3803 "unit attention cleared by another initiator\n");
3804 return 1;
3805 break;
3806 default:
3807 dev_warn(&h->pdev->dev, "unknown unit attention detected\n");
3808 return 1;
3813 * We cannot read the structure directly, for portability we must use
3814 * the io functions.
3815 * This is for debug only.
3817 static void print_cfg_table(ctlr_info_t *h)
3819 int i;
3820 char temp_name[17];
3821 CfgTable_struct *tb = h->cfgtable;
3823 dev_dbg(&h->pdev->dev, "Controller Configuration information\n");
3824 dev_dbg(&h->pdev->dev, "------------------------------------\n");
3825 for (i = 0; i < 4; i++)
3826 temp_name[i] = readb(&(tb->Signature[i]));
3827 temp_name[4] = '\0';
3828 dev_dbg(&h->pdev->dev, " Signature = %s\n", temp_name);
3829 dev_dbg(&h->pdev->dev, " Spec Number = %d\n",
3830 readl(&(tb->SpecValence)));
3831 dev_dbg(&h->pdev->dev, " Transport methods supported = 0x%x\n",
3832 readl(&(tb->TransportSupport)));
3833 dev_dbg(&h->pdev->dev, " Transport methods active = 0x%x\n",
3834 readl(&(tb->TransportActive)));
3835 dev_dbg(&h->pdev->dev, " Requested transport Method = 0x%x\n",
3836 readl(&(tb->HostWrite.TransportRequest)));
3837 dev_dbg(&h->pdev->dev, " Coalesce Interrupt Delay = 0x%x\n",
3838 readl(&(tb->HostWrite.CoalIntDelay)));
3839 dev_dbg(&h->pdev->dev, " Coalesce Interrupt Count = 0x%x\n",
3840 readl(&(tb->HostWrite.CoalIntCount)));
3841 dev_dbg(&h->pdev->dev, " Max outstanding commands = 0x%d\n",
3842 readl(&(tb->CmdsOutMax)));
3843 dev_dbg(&h->pdev->dev, " Bus Types = 0x%x\n",
3844 readl(&(tb->BusTypes)));
3845 for (i = 0; i < 16; i++)
3846 temp_name[i] = readb(&(tb->ServerName[i]));
3847 temp_name[16] = '\0';
3848 dev_dbg(&h->pdev->dev, " Server Name = %s\n", temp_name);
3849 dev_dbg(&h->pdev->dev, " Heartbeat Counter = 0x%x\n\n\n",
3850 readl(&(tb->HeartBeat)));
3853 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3855 int i, offset, mem_type, bar_type;
3856 if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
3857 return 0;
3858 offset = 0;
3859 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3860 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3861 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3862 offset += 4;
3863 else {
3864 mem_type = pci_resource_flags(pdev, i) &
3865 PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3866 switch (mem_type) {
3867 case PCI_BASE_ADDRESS_MEM_TYPE_32:
3868 case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3869 offset += 4; /* 32 bit */
3870 break;
3871 case PCI_BASE_ADDRESS_MEM_TYPE_64:
3872 offset += 8;
3873 break;
3874 default: /* reserved in PCI 2.2 */
3875 dev_warn(&pdev->dev,
3876 "Base address is invalid\n");
3877 return -1;
3878 break;
3881 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3882 return i + 1;
3884 return -1;
3887 /* Fill in bucket_map[], given nsgs (the max number of
3888 * scatter gather elements supported) and bucket[],
3889 * which is an array of 8 integers. The bucket[] array
3890 * contains 8 different DMA transfer sizes (in 16
3891 * byte increments) which the controller uses to fetch
3892 * commands. This function fills in bucket_map[], which
3893 * maps a given number of scatter gather elements to one of
3894 * the 8 DMA transfer sizes. The point of it is to allow the
3895 * controller to only do as much DMA as needed to fetch the
3896 * command, with the DMA transfer size encoded in the lower
3897 * bits of the command address.
3899 static void calc_bucket_map(int bucket[], int num_buckets,
3900 int nsgs, int *bucket_map)
3902 int i, j, b, size;
3904 /* even a command with 0 SGs requires 4 blocks */
3905 #define MINIMUM_TRANSFER_BLOCKS 4
3906 #define NUM_BUCKETS 8
3907 /* Note, bucket_map must have nsgs+1 entries. */
3908 for (i = 0; i <= nsgs; i++) {
3909 /* Compute size of a command with i SG entries */
3910 size = i + MINIMUM_TRANSFER_BLOCKS;
3911 b = num_buckets; /* Assume the biggest bucket */
3912 /* Find the bucket that is just big enough */
3913 for (j = 0; j < 8; j++) {
3914 if (bucket[j] >= size) {
3915 b = j;
3916 break;
3919 /* for a command with i SG entries, use bucket b. */
3920 bucket_map[i] = b;
3924 static void __devinit cciss_wait_for_mode_change_ack(ctlr_info_t *h)
3926 int i;
3928 /* under certain very rare conditions, this can take awhile.
3929 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3930 * as we enter this code.) */
3931 for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3932 if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
3933 break;
3934 usleep_range(10000, 20000);
3938 static __devinit void cciss_enter_performant_mode(ctlr_info_t *h,
3939 u32 use_short_tags)
3941 /* This is a bit complicated. There are 8 registers on
3942 * the controller which we write to to tell it 8 different
3943 * sizes of commands which there may be. It's a way of
3944 * reducing the DMA done to fetch each command. Encoded into
3945 * each command's tag are 3 bits which communicate to the controller
3946 * which of the eight sizes that command fits within. The size of
3947 * each command depends on how many scatter gather entries there are.
3948 * Each SG entry requires 16 bytes. The eight registers are programmed
3949 * with the number of 16-byte blocks a command of that size requires.
3950 * The smallest command possible requires 5 such 16 byte blocks.
3951 * the largest command possible requires MAXSGENTRIES + 4 16-byte
3952 * blocks. Note, this only extends to the SG entries contained
3953 * within the command block, and does not extend to chained blocks
3954 * of SG elements. bft[] contains the eight values we write to
3955 * the registers. They are not evenly distributed, but have more
3956 * sizes for small commands, and fewer sizes for larger commands.
3958 __u32 trans_offset;
3959 int bft[8] = { 5, 6, 8, 10, 12, 20, 28, MAXSGENTRIES + 4};
3961 * 5 = 1 s/g entry or 4k
3962 * 6 = 2 s/g entry or 8k
3963 * 8 = 4 s/g entry or 16k
3964 * 10 = 6 s/g entry or 24k
3966 unsigned long register_value;
3967 BUILD_BUG_ON(28 > MAXSGENTRIES + 4);
3969 h->reply_pool_wraparound = 1; /* spec: init to 1 */
3971 /* Controller spec: zero out this buffer. */
3972 memset(h->reply_pool, 0, h->max_commands * sizeof(__u64));
3973 h->reply_pool_head = h->reply_pool;
3975 trans_offset = readl(&(h->cfgtable->TransMethodOffset));
3976 calc_bucket_map(bft, ARRAY_SIZE(bft), h->maxsgentries,
3977 h->blockFetchTable);
3978 writel(bft[0], &h->transtable->BlockFetch0);
3979 writel(bft[1], &h->transtable->BlockFetch1);
3980 writel(bft[2], &h->transtable->BlockFetch2);
3981 writel(bft[3], &h->transtable->BlockFetch3);
3982 writel(bft[4], &h->transtable->BlockFetch4);
3983 writel(bft[5], &h->transtable->BlockFetch5);
3984 writel(bft[6], &h->transtable->BlockFetch6);
3985 writel(bft[7], &h->transtable->BlockFetch7);
3987 /* size of controller ring buffer */
3988 writel(h->max_commands, &h->transtable->RepQSize);
3989 writel(1, &h->transtable->RepQCount);
3990 writel(0, &h->transtable->RepQCtrAddrLow32);
3991 writel(0, &h->transtable->RepQCtrAddrHigh32);
3992 writel(h->reply_pool_dhandle, &h->transtable->RepQAddr0Low32);
3993 writel(0, &h->transtable->RepQAddr0High32);
3994 writel(CFGTBL_Trans_Performant | use_short_tags,
3995 &(h->cfgtable->HostWrite.TransportRequest));
3997 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
3998 cciss_wait_for_mode_change_ack(h);
3999 register_value = readl(&(h->cfgtable->TransportActive));
4000 if (!(register_value & CFGTBL_Trans_Performant))
4001 dev_warn(&h->pdev->dev, "cciss: unable to get board into"
4002 " performant mode\n");
4005 static void __devinit cciss_put_controller_into_performant_mode(ctlr_info_t *h)
4007 __u32 trans_support;
4009 if (cciss_simple_mode)
4010 return;
4012 dev_dbg(&h->pdev->dev, "Trying to put board into Performant mode\n");
4013 /* Attempt to put controller into performant mode if supported */
4014 /* Does board support performant mode? */
4015 trans_support = readl(&(h->cfgtable->TransportSupport));
4016 if (!(trans_support & PERFORMANT_MODE))
4017 return;
4019 dev_dbg(&h->pdev->dev, "Placing controller into performant mode\n");
4020 /* Performant mode demands commands on a 32 byte boundary
4021 * pci_alloc_consistent aligns on page boundarys already.
4022 * Just need to check if divisible by 32
4024 if ((sizeof(CommandList_struct) % 32) != 0) {
4025 dev_warn(&h->pdev->dev, "%s %d %s\n",
4026 "cciss info: command size[",
4027 (int)sizeof(CommandList_struct),
4028 "] not divisible by 32, no performant mode..\n");
4029 return;
4032 /* Performant mode ring buffer and supporting data structures */
4033 h->reply_pool = (__u64 *)pci_alloc_consistent(
4034 h->pdev, h->max_commands * sizeof(__u64),
4035 &(h->reply_pool_dhandle));
4037 /* Need a block fetch table for performant mode */
4038 h->blockFetchTable = kmalloc(((h->maxsgentries+1) *
4039 sizeof(__u32)), GFP_KERNEL);
4041 if ((h->reply_pool == NULL) || (h->blockFetchTable == NULL))
4042 goto clean_up;
4044 cciss_enter_performant_mode(h,
4045 trans_support & CFGTBL_Trans_use_short_tags);
4047 /* Change the access methods to the performant access methods */
4048 h->access = SA5_performant_access;
4049 h->transMethod = CFGTBL_Trans_Performant;
4051 return;
4052 clean_up:
4053 kfree(h->blockFetchTable);
4054 if (h->reply_pool)
4055 pci_free_consistent(h->pdev,
4056 h->max_commands * sizeof(__u64),
4057 h->reply_pool,
4058 h->reply_pool_dhandle);
4059 return;
4061 } /* cciss_put_controller_into_performant_mode */
4063 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
4064 * controllers that are capable. If not, we use IO-APIC mode.
4067 static void __devinit cciss_interrupt_mode(ctlr_info_t *h)
4069 #ifdef CONFIG_PCI_MSI
4070 int err;
4071 struct msix_entry cciss_msix_entries[4] = { {0, 0}, {0, 1},
4072 {0, 2}, {0, 3}
4075 /* Some boards advertise MSI but don't really support it */
4076 if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
4077 (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
4078 goto default_int_mode;
4080 if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
4081 err = pci_enable_msix(h->pdev, cciss_msix_entries, 4);
4082 if (!err) {
4083 h->intr[0] = cciss_msix_entries[0].vector;
4084 h->intr[1] = cciss_msix_entries[1].vector;
4085 h->intr[2] = cciss_msix_entries[2].vector;
4086 h->intr[3] = cciss_msix_entries[3].vector;
4087 h->msix_vector = 1;
4088 return;
4090 if (err > 0) {
4091 dev_warn(&h->pdev->dev,
4092 "only %d MSI-X vectors available\n", err);
4093 goto default_int_mode;
4094 } else {
4095 dev_warn(&h->pdev->dev,
4096 "MSI-X init failed %d\n", err);
4097 goto default_int_mode;
4100 if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
4101 if (!pci_enable_msi(h->pdev))
4102 h->msi_vector = 1;
4103 else
4104 dev_warn(&h->pdev->dev, "MSI init failed\n");
4106 default_int_mode:
4107 #endif /* CONFIG_PCI_MSI */
4108 /* if we get here we're going to use the default interrupt mode */
4109 h->intr[h->intr_mode] = h->pdev->irq;
4110 return;
4113 static int __devinit cciss_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
4115 int i;
4116 u32 subsystem_vendor_id, subsystem_device_id;
4118 subsystem_vendor_id = pdev->subsystem_vendor;
4119 subsystem_device_id = pdev->subsystem_device;
4120 *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
4121 subsystem_vendor_id;
4123 for (i = 0; i < ARRAY_SIZE(products); i++)
4124 if (*board_id == products[i].board_id)
4125 return i;
4126 dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x, ignoring.\n",
4127 *board_id);
4128 return -ENODEV;
4131 static inline bool cciss_board_disabled(ctlr_info_t *h)
4133 u16 command;
4135 (void) pci_read_config_word(h->pdev, PCI_COMMAND, &command);
4136 return ((command & PCI_COMMAND_MEMORY) == 0);
4139 static int __devinit cciss_pci_find_memory_BAR(struct pci_dev *pdev,
4140 unsigned long *memory_bar)
4142 int i;
4144 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
4145 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
4146 /* addressing mode bits already removed */
4147 *memory_bar = pci_resource_start(pdev, i);
4148 dev_dbg(&pdev->dev, "memory BAR = %lx\n",
4149 *memory_bar);
4150 return 0;
4152 dev_warn(&pdev->dev, "no memory BAR found\n");
4153 return -ENODEV;
4156 static int __devinit cciss_wait_for_board_state(struct pci_dev *pdev,
4157 void __iomem *vaddr, int wait_for_ready)
4158 #define BOARD_READY 1
4159 #define BOARD_NOT_READY 0
4161 int i, iterations;
4162 u32 scratchpad;
4164 if (wait_for_ready)
4165 iterations = CCISS_BOARD_READY_ITERATIONS;
4166 else
4167 iterations = CCISS_BOARD_NOT_READY_ITERATIONS;
4169 for (i = 0; i < iterations; i++) {
4170 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
4171 if (wait_for_ready) {
4172 if (scratchpad == CCISS_FIRMWARE_READY)
4173 return 0;
4174 } else {
4175 if (scratchpad != CCISS_FIRMWARE_READY)
4176 return 0;
4178 msleep(CCISS_BOARD_READY_POLL_INTERVAL_MSECS);
4180 dev_warn(&pdev->dev, "board not ready, timed out.\n");
4181 return -ENODEV;
4184 static int __devinit cciss_find_cfg_addrs(struct pci_dev *pdev,
4185 void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
4186 u64 *cfg_offset)
4188 *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
4189 *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
4190 *cfg_base_addr &= (u32) 0x0000ffff;
4191 *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
4192 if (*cfg_base_addr_index == -1) {
4193 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index, "
4194 "*cfg_base_addr = 0x%08x\n", *cfg_base_addr);
4195 return -ENODEV;
4197 return 0;
4200 static int __devinit cciss_find_cfgtables(ctlr_info_t *h)
4202 u64 cfg_offset;
4203 u32 cfg_base_addr;
4204 u64 cfg_base_addr_index;
4205 u32 trans_offset;
4206 int rc;
4208 rc = cciss_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
4209 &cfg_base_addr_index, &cfg_offset);
4210 if (rc)
4211 return rc;
4212 h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
4213 cfg_base_addr_index) + cfg_offset, sizeof(h->cfgtable));
4214 if (!h->cfgtable)
4215 return -ENOMEM;
4216 rc = write_driver_ver_to_cfgtable(h->cfgtable);
4217 if (rc)
4218 return rc;
4219 /* Find performant mode table. */
4220 trans_offset = readl(&h->cfgtable->TransMethodOffset);
4221 h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
4222 cfg_base_addr_index)+cfg_offset+trans_offset,
4223 sizeof(*h->transtable));
4224 if (!h->transtable)
4225 return -ENOMEM;
4226 return 0;
4229 static void __devinit cciss_get_max_perf_mode_cmds(struct ctlr_info *h)
4231 h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
4233 /* Limit commands in memory limited kdump scenario. */
4234 if (reset_devices && h->max_commands > 32)
4235 h->max_commands = 32;
4237 if (h->max_commands < 16) {
4238 dev_warn(&h->pdev->dev, "Controller reports "
4239 "max supported commands of %d, an obvious lie. "
4240 "Using 16. Ensure that firmware is up to date.\n",
4241 h->max_commands);
4242 h->max_commands = 16;
4246 /* Interrogate the hardware for some limits:
4247 * max commands, max SG elements without chaining, and with chaining,
4248 * SG chain block size, etc.
4250 static void __devinit cciss_find_board_params(ctlr_info_t *h)
4252 cciss_get_max_perf_mode_cmds(h);
4253 h->nr_cmds = h->max_commands - 4 - cciss_tape_cmds;
4254 h->maxsgentries = readl(&(h->cfgtable->MaxSGElements));
4256 * Limit in-command s/g elements to 32 save dma'able memory.
4257 * Howvever spec says if 0, use 31
4259 h->max_cmd_sgentries = 31;
4260 if (h->maxsgentries > 512) {
4261 h->max_cmd_sgentries = 32;
4262 h->chainsize = h->maxsgentries - h->max_cmd_sgentries + 1;
4263 h->maxsgentries--; /* save one for chain pointer */
4264 } else {
4265 h->maxsgentries = 31; /* default to traditional values */
4266 h->chainsize = 0;
4270 static inline bool CISS_signature_present(ctlr_info_t *h)
4272 if ((readb(&h->cfgtable->Signature[0]) != 'C') ||
4273 (readb(&h->cfgtable->Signature[1]) != 'I') ||
4274 (readb(&h->cfgtable->Signature[2]) != 'S') ||
4275 (readb(&h->cfgtable->Signature[3]) != 'S')) {
4276 dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
4277 return false;
4279 return true;
4282 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
4283 static inline void cciss_enable_scsi_prefetch(ctlr_info_t *h)
4285 #ifdef CONFIG_X86
4286 u32 prefetch;
4288 prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
4289 prefetch |= 0x100;
4290 writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
4291 #endif
4294 /* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result
4295 * in a prefetch beyond physical memory.
4297 static inline void cciss_p600_dma_prefetch_quirk(ctlr_info_t *h)
4299 u32 dma_prefetch;
4300 __u32 dma_refetch;
4302 if (h->board_id != 0x3225103C)
4303 return;
4304 dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
4305 dma_prefetch |= 0x8000;
4306 writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
4307 pci_read_config_dword(h->pdev, PCI_COMMAND_PARITY, &dma_refetch);
4308 dma_refetch |= 0x1;
4309 pci_write_config_dword(h->pdev, PCI_COMMAND_PARITY, dma_refetch);
4312 static int __devinit cciss_pci_init(ctlr_info_t *h)
4314 int prod_index, err;
4316 prod_index = cciss_lookup_board_id(h->pdev, &h->board_id);
4317 if (prod_index < 0)
4318 return -ENODEV;
4319 h->product_name = products[prod_index].product_name;
4320 h->access = *(products[prod_index].access);
4322 if (cciss_board_disabled(h)) {
4323 dev_warn(&h->pdev->dev, "controller appears to be disabled\n");
4324 return -ENODEV;
4327 pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
4328 PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
4330 err = pci_enable_device(h->pdev);
4331 if (err) {
4332 dev_warn(&h->pdev->dev, "Unable to Enable PCI device\n");
4333 return err;
4336 err = pci_request_regions(h->pdev, "cciss");
4337 if (err) {
4338 dev_warn(&h->pdev->dev,
4339 "Cannot obtain PCI resources, aborting\n");
4340 return err;
4343 dev_dbg(&h->pdev->dev, "irq = %x\n", h->pdev->irq);
4344 dev_dbg(&h->pdev->dev, "board_id = %x\n", h->board_id);
4346 /* If the kernel supports MSI/MSI-X we will try to enable that functionality,
4347 * else we use the IO-APIC interrupt assigned to us by system ROM.
4349 cciss_interrupt_mode(h);
4350 err = cciss_pci_find_memory_BAR(h->pdev, &h->paddr);
4351 if (err)
4352 goto err_out_free_res;
4353 h->vaddr = remap_pci_mem(h->paddr, 0x250);
4354 if (!h->vaddr) {
4355 err = -ENOMEM;
4356 goto err_out_free_res;
4358 err = cciss_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
4359 if (err)
4360 goto err_out_free_res;
4361 err = cciss_find_cfgtables(h);
4362 if (err)
4363 goto err_out_free_res;
4364 print_cfg_table(h);
4365 cciss_find_board_params(h);
4367 if (!CISS_signature_present(h)) {
4368 err = -ENODEV;
4369 goto err_out_free_res;
4371 cciss_enable_scsi_prefetch(h);
4372 cciss_p600_dma_prefetch_quirk(h);
4373 err = cciss_enter_simple_mode(h);
4374 if (err)
4375 goto err_out_free_res;
4376 cciss_put_controller_into_performant_mode(h);
4377 return 0;
4379 err_out_free_res:
4381 * Deliberately omit pci_disable_device(): it does something nasty to
4382 * Smart Array controllers that pci_enable_device does not undo
4384 if (h->transtable)
4385 iounmap(h->transtable);
4386 if (h->cfgtable)
4387 iounmap(h->cfgtable);
4388 if (h->vaddr)
4389 iounmap(h->vaddr);
4390 pci_release_regions(h->pdev);
4391 return err;
4394 /* Function to find the first free pointer into our hba[] array
4395 * Returns -1 if no free entries are left.
4397 static int alloc_cciss_hba(struct pci_dev *pdev)
4399 int i;
4401 for (i = 0; i < MAX_CTLR; i++) {
4402 if (!hba[i]) {
4403 ctlr_info_t *h;
4405 h = kzalloc(sizeof(ctlr_info_t), GFP_KERNEL);
4406 if (!h)
4407 goto Enomem;
4408 hba[i] = h;
4409 return i;
4412 dev_warn(&pdev->dev, "This driver supports a maximum"
4413 " of %d controllers.\n", MAX_CTLR);
4414 return -1;
4415 Enomem:
4416 dev_warn(&pdev->dev, "out of memory.\n");
4417 return -1;
4420 static void free_hba(ctlr_info_t *h)
4422 int i;
4424 hba[h->ctlr] = NULL;
4425 for (i = 0; i < h->highest_lun + 1; i++)
4426 if (h->gendisk[i] != NULL)
4427 put_disk(h->gendisk[i]);
4428 kfree(h);
4431 /* Send a message CDB to the firmware. */
4432 static __devinit int cciss_message(struct pci_dev *pdev, unsigned char opcode, unsigned char type)
4434 typedef struct {
4435 CommandListHeader_struct CommandHeader;
4436 RequestBlock_struct Request;
4437 ErrDescriptor_struct ErrorDescriptor;
4438 } Command;
4439 static const size_t cmd_sz = sizeof(Command) + sizeof(ErrorInfo_struct);
4440 Command *cmd;
4441 dma_addr_t paddr64;
4442 uint32_t paddr32, tag;
4443 void __iomem *vaddr;
4444 int i, err;
4446 vaddr = ioremap_nocache(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0));
4447 if (vaddr == NULL)
4448 return -ENOMEM;
4450 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
4451 CCISS commands, so they must be allocated from the lower 4GiB of
4452 memory. */
4453 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
4454 if (err) {
4455 iounmap(vaddr);
4456 return -ENOMEM;
4459 cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
4460 if (cmd == NULL) {
4461 iounmap(vaddr);
4462 return -ENOMEM;
4465 /* This must fit, because of the 32-bit consistent DMA mask. Also,
4466 although there's no guarantee, we assume that the address is at
4467 least 4-byte aligned (most likely, it's page-aligned). */
4468 paddr32 = paddr64;
4470 cmd->CommandHeader.ReplyQueue = 0;
4471 cmd->CommandHeader.SGList = 0;
4472 cmd->CommandHeader.SGTotal = 0;
4473 cmd->CommandHeader.Tag.lower = paddr32;
4474 cmd->CommandHeader.Tag.upper = 0;
4475 memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
4477 cmd->Request.CDBLen = 16;
4478 cmd->Request.Type.Type = TYPE_MSG;
4479 cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
4480 cmd->Request.Type.Direction = XFER_NONE;
4481 cmd->Request.Timeout = 0; /* Don't time out */
4482 cmd->Request.CDB[0] = opcode;
4483 cmd->Request.CDB[1] = type;
4484 memset(&cmd->Request.CDB[2], 0, 14); /* the rest of the CDB is reserved */
4486 cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(Command);
4487 cmd->ErrorDescriptor.Addr.upper = 0;
4488 cmd->ErrorDescriptor.Len = sizeof(ErrorInfo_struct);
4490 writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
4492 for (i = 0; i < 10; i++) {
4493 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
4494 if ((tag & ~3) == paddr32)
4495 break;
4496 msleep(CCISS_POST_RESET_NOOP_TIMEOUT_MSECS);
4499 iounmap(vaddr);
4501 /* we leak the DMA buffer here ... no choice since the controller could
4502 still complete the command. */
4503 if (i == 10) {
4504 dev_err(&pdev->dev,
4505 "controller message %02x:%02x timed out\n",
4506 opcode, type);
4507 return -ETIMEDOUT;
4510 pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
4512 if (tag & 2) {
4513 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
4514 opcode, type);
4515 return -EIO;
4518 dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
4519 opcode, type);
4520 return 0;
4523 #define cciss_noop(p) cciss_message(p, 3, 0)
4525 static int cciss_controller_hard_reset(struct pci_dev *pdev,
4526 void * __iomem vaddr, u32 use_doorbell)
4528 u16 pmcsr;
4529 int pos;
4531 if (use_doorbell) {
4532 /* For everything after the P600, the PCI power state method
4533 * of resetting the controller doesn't work, so we have this
4534 * other way using the doorbell register.
4536 dev_info(&pdev->dev, "using doorbell to reset controller\n");
4537 writel(use_doorbell, vaddr + SA5_DOORBELL);
4538 } else { /* Try to do it the PCI power state way */
4540 /* Quoting from the Open CISS Specification: "The Power
4541 * Management Control/Status Register (CSR) controls the power
4542 * state of the device. The normal operating state is D0,
4543 * CSR=00h. The software off state is D3, CSR=03h. To reset
4544 * the controller, place the interface device in D3 then to D0,
4545 * this causes a secondary PCI reset which will reset the
4546 * controller." */
4548 pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
4549 if (pos == 0) {
4550 dev_err(&pdev->dev,
4551 "cciss_controller_hard_reset: "
4552 "PCI PM not supported\n");
4553 return -ENODEV;
4555 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
4556 /* enter the D3hot power management state */
4557 pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
4558 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
4559 pmcsr |= PCI_D3hot;
4560 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
4562 msleep(500);
4564 /* enter the D0 power management state */
4565 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
4566 pmcsr |= PCI_D0;
4567 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
4570 * The P600 requires a small delay when changing states.
4571 * Otherwise we may think the board did not reset and we bail.
4572 * This for kdump only and is particular to the P600.
4574 msleep(500);
4576 return 0;
4579 static __devinit void init_driver_version(char *driver_version, int len)
4581 memset(driver_version, 0, len);
4582 strncpy(driver_version, "cciss " DRIVER_NAME, len - 1);
4585 static __devinit int write_driver_ver_to_cfgtable(
4586 CfgTable_struct __iomem *cfgtable)
4588 char *driver_version;
4589 int i, size = sizeof(cfgtable->driver_version);
4591 driver_version = kmalloc(size, GFP_KERNEL);
4592 if (!driver_version)
4593 return -ENOMEM;
4595 init_driver_version(driver_version, size);
4596 for (i = 0; i < size; i++)
4597 writeb(driver_version[i], &cfgtable->driver_version[i]);
4598 kfree(driver_version);
4599 return 0;
4602 static __devinit void read_driver_ver_from_cfgtable(
4603 CfgTable_struct __iomem *cfgtable, unsigned char *driver_ver)
4605 int i;
4607 for (i = 0; i < sizeof(cfgtable->driver_version); i++)
4608 driver_ver[i] = readb(&cfgtable->driver_version[i]);
4611 static __devinit int controller_reset_failed(
4612 CfgTable_struct __iomem *cfgtable)
4615 char *driver_ver, *old_driver_ver;
4616 int rc, size = sizeof(cfgtable->driver_version);
4618 old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
4619 if (!old_driver_ver)
4620 return -ENOMEM;
4621 driver_ver = old_driver_ver + size;
4623 /* After a reset, the 32 bytes of "driver version" in the cfgtable
4624 * should have been changed, otherwise we know the reset failed.
4626 init_driver_version(old_driver_ver, size);
4627 read_driver_ver_from_cfgtable(cfgtable, driver_ver);
4628 rc = !memcmp(driver_ver, old_driver_ver, size);
4629 kfree(old_driver_ver);
4630 return rc;
4633 /* This does a hard reset of the controller using PCI power management
4634 * states or using the doorbell register. */
4635 static __devinit int cciss_kdump_hard_reset_controller(struct pci_dev *pdev)
4637 u64 cfg_offset;
4638 u32 cfg_base_addr;
4639 u64 cfg_base_addr_index;
4640 void __iomem *vaddr;
4641 unsigned long paddr;
4642 u32 misc_fw_support;
4643 int rc;
4644 CfgTable_struct __iomem *cfgtable;
4645 u32 use_doorbell;
4646 u32 board_id;
4647 u16 command_register;
4649 /* For controllers as old a the p600, this is very nearly
4650 * the same thing as
4652 * pci_save_state(pci_dev);
4653 * pci_set_power_state(pci_dev, PCI_D3hot);
4654 * pci_set_power_state(pci_dev, PCI_D0);
4655 * pci_restore_state(pci_dev);
4657 * For controllers newer than the P600, the pci power state
4658 * method of resetting doesn't work so we have another way
4659 * using the doorbell register.
4662 /* Exclude 640x boards. These are two pci devices in one slot
4663 * which share a battery backed cache module. One controls the
4664 * cache, the other accesses the cache through the one that controls
4665 * it. If we reset the one controlling the cache, the other will
4666 * likely not be happy. Just forbid resetting this conjoined mess.
4668 cciss_lookup_board_id(pdev, &board_id);
4669 if (!ctlr_is_resettable(board_id)) {
4670 dev_warn(&pdev->dev, "Cannot reset Smart Array 640x "
4671 "due to shared cache module.");
4672 return -ENODEV;
4675 /* if controller is soft- but not hard resettable... */
4676 if (!ctlr_is_hard_resettable(board_id))
4677 return -ENOTSUPP; /* try soft reset later. */
4679 /* Save the PCI command register */
4680 pci_read_config_word(pdev, 4, &command_register);
4681 /* Turn the board off. This is so that later pci_restore_state()
4682 * won't turn the board on before the rest of config space is ready.
4684 pci_disable_device(pdev);
4685 pci_save_state(pdev);
4687 /* find the first memory BAR, so we can find the cfg table */
4688 rc = cciss_pci_find_memory_BAR(pdev, &paddr);
4689 if (rc)
4690 return rc;
4691 vaddr = remap_pci_mem(paddr, 0x250);
4692 if (!vaddr)
4693 return -ENOMEM;
4695 /* find cfgtable in order to check if reset via doorbell is supported */
4696 rc = cciss_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
4697 &cfg_base_addr_index, &cfg_offset);
4698 if (rc)
4699 goto unmap_vaddr;
4700 cfgtable = remap_pci_mem(pci_resource_start(pdev,
4701 cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
4702 if (!cfgtable) {
4703 rc = -ENOMEM;
4704 goto unmap_vaddr;
4706 rc = write_driver_ver_to_cfgtable(cfgtable);
4707 if (rc)
4708 goto unmap_vaddr;
4710 /* If reset via doorbell register is supported, use that.
4711 * There are two such methods. Favor the newest method.
4713 misc_fw_support = readl(&cfgtable->misc_fw_support);
4714 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
4715 if (use_doorbell) {
4716 use_doorbell = DOORBELL_CTLR_RESET2;
4717 } else {
4718 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
4719 if (use_doorbell) {
4720 dev_warn(&pdev->dev, "Controller claims that "
4721 "'Bit 2 doorbell reset' is "
4722 "supported, but not 'bit 5 doorbell reset'. "
4723 "Firmware update is recommended.\n");
4724 rc = -ENOTSUPP; /* use the soft reset */
4725 goto unmap_cfgtable;
4729 rc = cciss_controller_hard_reset(pdev, vaddr, use_doorbell);
4730 if (rc)
4731 goto unmap_cfgtable;
4732 pci_restore_state(pdev);
4733 rc = pci_enable_device(pdev);
4734 if (rc) {
4735 dev_warn(&pdev->dev, "failed to enable device.\n");
4736 goto unmap_cfgtable;
4738 pci_write_config_word(pdev, 4, command_register);
4740 /* Some devices (notably the HP Smart Array 5i Controller)
4741 need a little pause here */
4742 msleep(CCISS_POST_RESET_PAUSE_MSECS);
4744 /* Wait for board to become not ready, then ready. */
4745 dev_info(&pdev->dev, "Waiting for board to reset.\n");
4746 rc = cciss_wait_for_board_state(pdev, vaddr, BOARD_NOT_READY);
4747 if (rc) {
4748 dev_warn(&pdev->dev, "Failed waiting for board to hard reset."
4749 " Will try soft reset.\n");
4750 rc = -ENOTSUPP; /* Not expected, but try soft reset later */
4751 goto unmap_cfgtable;
4753 rc = cciss_wait_for_board_state(pdev, vaddr, BOARD_READY);
4754 if (rc) {
4755 dev_warn(&pdev->dev,
4756 "failed waiting for board to become ready "
4757 "after hard reset\n");
4758 goto unmap_cfgtable;
4761 rc = controller_reset_failed(vaddr);
4762 if (rc < 0)
4763 goto unmap_cfgtable;
4764 if (rc) {
4765 dev_warn(&pdev->dev, "Unable to successfully hard reset "
4766 "controller. Will try soft reset.\n");
4767 rc = -ENOTSUPP; /* Not expected, but try soft reset later */
4768 } else {
4769 dev_info(&pdev->dev, "Board ready after hard reset.\n");
4772 unmap_cfgtable:
4773 iounmap(cfgtable);
4775 unmap_vaddr:
4776 iounmap(vaddr);
4777 return rc;
4780 static __devinit int cciss_init_reset_devices(struct pci_dev *pdev)
4782 int rc, i;
4784 if (!reset_devices)
4785 return 0;
4787 /* Reset the controller with a PCI power-cycle or via doorbell */
4788 rc = cciss_kdump_hard_reset_controller(pdev);
4790 /* -ENOTSUPP here means we cannot reset the controller
4791 * but it's already (and still) up and running in
4792 * "performant mode". Or, it might be 640x, which can't reset
4793 * due to concerns about shared bbwc between 6402/6404 pair.
4795 if (rc == -ENOTSUPP)
4796 return rc; /* just try to do the kdump anyhow. */
4797 if (rc)
4798 return -ENODEV;
4800 /* Now try to get the controller to respond to a no-op */
4801 dev_warn(&pdev->dev, "Waiting for controller to respond to no-op\n");
4802 for (i = 0; i < CCISS_POST_RESET_NOOP_RETRIES; i++) {
4803 if (cciss_noop(pdev) == 0)
4804 break;
4805 else
4806 dev_warn(&pdev->dev, "no-op failed%s\n",
4807 (i < CCISS_POST_RESET_NOOP_RETRIES - 1 ?
4808 "; re-trying" : ""));
4809 msleep(CCISS_POST_RESET_NOOP_INTERVAL_MSECS);
4811 return 0;
4814 static __devinit int cciss_allocate_cmd_pool(ctlr_info_t *h)
4816 h->cmd_pool_bits = kmalloc(
4817 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
4818 sizeof(unsigned long), GFP_KERNEL);
4819 h->cmd_pool = pci_alloc_consistent(h->pdev,
4820 h->nr_cmds * sizeof(CommandList_struct),
4821 &(h->cmd_pool_dhandle));
4822 h->errinfo_pool = pci_alloc_consistent(h->pdev,
4823 h->nr_cmds * sizeof(ErrorInfo_struct),
4824 &(h->errinfo_pool_dhandle));
4825 if ((h->cmd_pool_bits == NULL)
4826 || (h->cmd_pool == NULL)
4827 || (h->errinfo_pool == NULL)) {
4828 dev_err(&h->pdev->dev, "out of memory");
4829 return -ENOMEM;
4831 return 0;
4834 static __devinit int cciss_allocate_scatterlists(ctlr_info_t *h)
4836 int i;
4838 /* zero it, so that on free we need not know how many were alloc'ed */
4839 h->scatter_list = kzalloc(h->max_commands *
4840 sizeof(struct scatterlist *), GFP_KERNEL);
4841 if (!h->scatter_list)
4842 return -ENOMEM;
4844 for (i = 0; i < h->nr_cmds; i++) {
4845 h->scatter_list[i] = kmalloc(sizeof(struct scatterlist) *
4846 h->maxsgentries, GFP_KERNEL);
4847 if (h->scatter_list[i] == NULL) {
4848 dev_err(&h->pdev->dev, "could not allocate "
4849 "s/g lists\n");
4850 return -ENOMEM;
4853 return 0;
4856 static void cciss_free_scatterlists(ctlr_info_t *h)
4858 int i;
4860 if (h->scatter_list) {
4861 for (i = 0; i < h->nr_cmds; i++)
4862 kfree(h->scatter_list[i]);
4863 kfree(h->scatter_list);
4867 static void cciss_free_cmd_pool(ctlr_info_t *h)
4869 kfree(h->cmd_pool_bits);
4870 if (h->cmd_pool)
4871 pci_free_consistent(h->pdev,
4872 h->nr_cmds * sizeof(CommandList_struct),
4873 h->cmd_pool, h->cmd_pool_dhandle);
4874 if (h->errinfo_pool)
4875 pci_free_consistent(h->pdev,
4876 h->nr_cmds * sizeof(ErrorInfo_struct),
4877 h->errinfo_pool, h->errinfo_pool_dhandle);
4880 static int cciss_request_irq(ctlr_info_t *h,
4881 irqreturn_t (*msixhandler)(int, void *),
4882 irqreturn_t (*intxhandler)(int, void *))
4884 if (h->msix_vector || h->msi_vector) {
4885 if (!request_irq(h->intr[h->intr_mode], msixhandler,
4886 0, h->devname, h))
4887 return 0;
4888 dev_err(&h->pdev->dev, "Unable to get msi irq %d"
4889 " for %s\n", h->intr[h->intr_mode],
4890 h->devname);
4891 return -1;
4894 if (!request_irq(h->intr[h->intr_mode], intxhandler,
4895 IRQF_SHARED, h->devname, h))
4896 return 0;
4897 dev_err(&h->pdev->dev, "Unable to get irq %d for %s\n",
4898 h->intr[h->intr_mode], h->devname);
4899 return -1;
4902 static int __devinit cciss_kdump_soft_reset(ctlr_info_t *h)
4904 if (cciss_send_reset(h, CTLR_LUNID, CCISS_RESET_TYPE_CONTROLLER)) {
4905 dev_warn(&h->pdev->dev, "Resetting array controller failed.\n");
4906 return -EIO;
4909 dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
4910 if (cciss_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
4911 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
4912 return -1;
4915 dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
4916 if (cciss_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
4917 dev_warn(&h->pdev->dev, "Board failed to become ready "
4918 "after soft reset.\n");
4919 return -1;
4922 return 0;
4925 static void cciss_undo_allocations_after_kdump_soft_reset(ctlr_info_t *h)
4927 int ctlr = h->ctlr;
4929 free_irq(h->intr[h->intr_mode], h);
4930 #ifdef CONFIG_PCI_MSI
4931 if (h->msix_vector)
4932 pci_disable_msix(h->pdev);
4933 else if (h->msi_vector)
4934 pci_disable_msi(h->pdev);
4935 #endif /* CONFIG_PCI_MSI */
4936 cciss_free_sg_chain_blocks(h->cmd_sg_list, h->nr_cmds);
4937 cciss_free_scatterlists(h);
4938 cciss_free_cmd_pool(h);
4939 kfree(h->blockFetchTable);
4940 if (h->reply_pool)
4941 pci_free_consistent(h->pdev, h->max_commands * sizeof(__u64),
4942 h->reply_pool, h->reply_pool_dhandle);
4943 if (h->transtable)
4944 iounmap(h->transtable);
4945 if (h->cfgtable)
4946 iounmap(h->cfgtable);
4947 if (h->vaddr)
4948 iounmap(h->vaddr);
4949 unregister_blkdev(h->major, h->devname);
4950 cciss_destroy_hba_sysfs_entry(h);
4951 pci_release_regions(h->pdev);
4952 kfree(h);
4953 hba[ctlr] = NULL;
4957 * This is it. Find all the controllers and register them. I really hate
4958 * stealing all these major device numbers.
4959 * returns the number of block devices registered.
4961 static int __devinit cciss_init_one(struct pci_dev *pdev,
4962 const struct pci_device_id *ent)
4964 int i;
4965 int j = 0;
4966 int rc;
4967 int try_soft_reset = 0;
4968 int dac, return_code;
4969 InquiryData_struct *inq_buff;
4970 ctlr_info_t *h;
4971 unsigned long flags;
4973 rc = cciss_init_reset_devices(pdev);
4974 if (rc) {
4975 if (rc != -ENOTSUPP)
4976 return rc;
4977 /* If the reset fails in a particular way (it has no way to do
4978 * a proper hard reset, so returns -ENOTSUPP) we can try to do
4979 * a soft reset once we get the controller configured up to the
4980 * point that it can accept a command.
4982 try_soft_reset = 1;
4983 rc = 0;
4986 reinit_after_soft_reset:
4988 i = alloc_cciss_hba(pdev);
4989 if (i < 0)
4990 return -1;
4992 h = hba[i];
4993 h->pdev = pdev;
4994 h->busy_initializing = 1;
4995 h->intr_mode = cciss_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
4996 INIT_LIST_HEAD(&h->cmpQ);
4997 INIT_LIST_HEAD(&h->reqQ);
4998 mutex_init(&h->busy_shutting_down);
5000 if (cciss_pci_init(h) != 0)
5001 goto clean_no_release_regions;
5003 sprintf(h->devname, "cciss%d", i);
5004 h->ctlr = i;
5006 if (cciss_tape_cmds < 2)
5007 cciss_tape_cmds = 2;
5008 if (cciss_tape_cmds > 16)
5009 cciss_tape_cmds = 16;
5011 init_completion(&h->scan_wait);
5013 if (cciss_create_hba_sysfs_entry(h))
5014 goto clean0;
5016 /* configure PCI DMA stuff */
5017 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64)))
5018 dac = 1;
5019 else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))
5020 dac = 0;
5021 else {
5022 dev_err(&h->pdev->dev, "no suitable DMA available\n");
5023 goto clean1;
5027 * register with the major number, or get a dynamic major number
5028 * by passing 0 as argument. This is done for greater than
5029 * 8 controller support.
5031 if (i < MAX_CTLR_ORIG)
5032 h->major = COMPAQ_CISS_MAJOR + i;
5033 rc = register_blkdev(h->major, h->devname);
5034 if (rc == -EBUSY || rc == -EINVAL) {
5035 dev_err(&h->pdev->dev,
5036 "Unable to get major number %d for %s "
5037 "on hba %d\n", h->major, h->devname, i);
5038 goto clean1;
5039 } else {
5040 if (i >= MAX_CTLR_ORIG)
5041 h->major = rc;
5044 /* make sure the board interrupts are off */
5045 h->access.set_intr_mask(h, CCISS_INTR_OFF);
5046 rc = cciss_request_irq(h, do_cciss_msix_intr, do_cciss_intx);
5047 if (rc)
5048 goto clean2;
5050 dev_info(&h->pdev->dev, "%s: <0x%x> at PCI %s IRQ %d%s using DAC\n",
5051 h->devname, pdev->device, pci_name(pdev),
5052 h->intr[h->intr_mode], dac ? "" : " not");
5054 if (cciss_allocate_cmd_pool(h))
5055 goto clean4;
5057 if (cciss_allocate_scatterlists(h))
5058 goto clean4;
5060 h->cmd_sg_list = cciss_allocate_sg_chain_blocks(h,
5061 h->chainsize, h->nr_cmds);
5062 if (!h->cmd_sg_list && h->chainsize > 0)
5063 goto clean4;
5065 spin_lock_init(&h->lock);
5067 /* Initialize the pdev driver private data.
5068 have it point to h. */
5069 pci_set_drvdata(pdev, h);
5070 /* command and error info recs zeroed out before
5071 they are used */
5072 memset(h->cmd_pool_bits, 0,
5073 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG)
5074 * sizeof(unsigned long));
5076 h->num_luns = 0;
5077 h->highest_lun = -1;
5078 for (j = 0; j < CISS_MAX_LUN; j++) {
5079 h->drv[j] = NULL;
5080 h->gendisk[j] = NULL;
5083 /* At this point, the controller is ready to take commands.
5084 * Now, if reset_devices and the hard reset didn't work, try
5085 * the soft reset and see if that works.
5087 if (try_soft_reset) {
5089 /* This is kind of gross. We may or may not get a completion
5090 * from the soft reset command, and if we do, then the value
5091 * from the fifo may or may not be valid. So, we wait 10 secs
5092 * after the reset throwing away any completions we get during
5093 * that time. Unregister the interrupt handler and register
5094 * fake ones to scoop up any residual completions.
5096 spin_lock_irqsave(&h->lock, flags);
5097 h->access.set_intr_mask(h, CCISS_INTR_OFF);
5098 spin_unlock_irqrestore(&h->lock, flags);
5099 free_irq(h->intr[h->intr_mode], h);
5100 rc = cciss_request_irq(h, cciss_msix_discard_completions,
5101 cciss_intx_discard_completions);
5102 if (rc) {
5103 dev_warn(&h->pdev->dev, "Failed to request_irq after "
5104 "soft reset.\n");
5105 goto clean4;
5108 rc = cciss_kdump_soft_reset(h);
5109 if (rc) {
5110 dev_warn(&h->pdev->dev, "Soft reset failed.\n");
5111 goto clean4;
5114 dev_info(&h->pdev->dev, "Board READY.\n");
5115 dev_info(&h->pdev->dev,
5116 "Waiting for stale completions to drain.\n");
5117 h->access.set_intr_mask(h, CCISS_INTR_ON);
5118 msleep(10000);
5119 h->access.set_intr_mask(h, CCISS_INTR_OFF);
5121 rc = controller_reset_failed(h->cfgtable);
5122 if (rc)
5123 dev_info(&h->pdev->dev,
5124 "Soft reset appears to have failed.\n");
5126 /* since the controller's reset, we have to go back and re-init
5127 * everything. Easiest to just forget what we've done and do it
5128 * all over again.
5130 cciss_undo_allocations_after_kdump_soft_reset(h);
5131 try_soft_reset = 0;
5132 if (rc)
5133 /* don't go to clean4, we already unallocated */
5134 return -ENODEV;
5136 goto reinit_after_soft_reset;
5139 cciss_scsi_setup(h);
5141 /* Turn the interrupts on so we can service requests */
5142 h->access.set_intr_mask(h, CCISS_INTR_ON);
5144 /* Get the firmware version */
5145 inq_buff = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
5146 if (inq_buff == NULL) {
5147 dev_err(&h->pdev->dev, "out of memory\n");
5148 goto clean4;
5151 return_code = sendcmd_withirq(h, CISS_INQUIRY, inq_buff,
5152 sizeof(InquiryData_struct), 0, CTLR_LUNID, TYPE_CMD);
5153 if (return_code == IO_OK) {
5154 h->firm_ver[0] = inq_buff->data_byte[32];
5155 h->firm_ver[1] = inq_buff->data_byte[33];
5156 h->firm_ver[2] = inq_buff->data_byte[34];
5157 h->firm_ver[3] = inq_buff->data_byte[35];
5158 } else { /* send command failed */
5159 dev_warn(&h->pdev->dev, "unable to determine firmware"
5160 " version of controller\n");
5162 kfree(inq_buff);
5164 cciss_procinit(h);
5166 h->cciss_max_sectors = 8192;
5168 rebuild_lun_table(h, 1, 0);
5169 cciss_engage_scsi(h);
5170 h->busy_initializing = 0;
5171 return 1;
5173 clean4:
5174 cciss_free_cmd_pool(h);
5175 cciss_free_scatterlists(h);
5176 cciss_free_sg_chain_blocks(h->cmd_sg_list, h->nr_cmds);
5177 free_irq(h->intr[h->intr_mode], h);
5178 clean2:
5179 unregister_blkdev(h->major, h->devname);
5180 clean1:
5181 cciss_destroy_hba_sysfs_entry(h);
5182 clean0:
5183 pci_release_regions(pdev);
5184 clean_no_release_regions:
5185 h->busy_initializing = 0;
5188 * Deliberately omit pci_disable_device(): it does something nasty to
5189 * Smart Array controllers that pci_enable_device does not undo
5191 pci_set_drvdata(pdev, NULL);
5192 free_hba(h);
5193 return -1;
5196 static void cciss_shutdown(struct pci_dev *pdev)
5198 ctlr_info_t *h;
5199 char *flush_buf;
5200 int return_code;
5202 h = pci_get_drvdata(pdev);
5203 flush_buf = kzalloc(4, GFP_KERNEL);
5204 if (!flush_buf) {
5205 dev_warn(&h->pdev->dev, "cache not flushed, out of memory.\n");
5206 return;
5208 /* write all data in the battery backed cache to disk */
5209 memset(flush_buf, 0, 4);
5210 return_code = sendcmd_withirq(h, CCISS_CACHE_FLUSH, flush_buf,
5211 4, 0, CTLR_LUNID, TYPE_CMD);
5212 kfree(flush_buf);
5213 if (return_code != IO_OK)
5214 dev_warn(&h->pdev->dev, "Error flushing cache\n");
5215 h->access.set_intr_mask(h, CCISS_INTR_OFF);
5216 free_irq(h->intr[h->intr_mode], h);
5219 static int __devinit cciss_enter_simple_mode(struct ctlr_info *h)
5221 u32 trans_support;
5223 trans_support = readl(&(h->cfgtable->TransportSupport));
5224 if (!(trans_support & SIMPLE_MODE))
5225 return -ENOTSUPP;
5227 h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
5228 writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
5229 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
5230 cciss_wait_for_mode_change_ack(h);
5231 print_cfg_table(h);
5232 if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
5233 dev_warn(&h->pdev->dev, "unable to get board into simple mode\n");
5234 return -ENODEV;
5236 h->transMethod = CFGTBL_Trans_Simple;
5237 return 0;
5241 static void __devexit cciss_remove_one(struct pci_dev *pdev)
5243 ctlr_info_t *h;
5244 int i, j;
5246 if (pci_get_drvdata(pdev) == NULL) {
5247 dev_err(&pdev->dev, "Unable to remove device\n");
5248 return;
5251 h = pci_get_drvdata(pdev);
5252 i = h->ctlr;
5253 if (hba[i] == NULL) {
5254 dev_err(&pdev->dev, "device appears to already be removed\n");
5255 return;
5258 mutex_lock(&h->busy_shutting_down);
5260 remove_from_scan_list(h);
5261 remove_proc_entry(h->devname, proc_cciss);
5262 unregister_blkdev(h->major, h->devname);
5264 /* remove it from the disk list */
5265 for (j = 0; j < CISS_MAX_LUN; j++) {
5266 struct gendisk *disk = h->gendisk[j];
5267 if (disk) {
5268 struct request_queue *q = disk->queue;
5270 if (disk->flags & GENHD_FL_UP) {
5271 cciss_destroy_ld_sysfs_entry(h, j, 1);
5272 del_gendisk(disk);
5274 if (q)
5275 blk_cleanup_queue(q);
5279 #ifdef CONFIG_CISS_SCSI_TAPE
5280 cciss_unregister_scsi(h); /* unhook from SCSI subsystem */
5281 #endif
5283 cciss_shutdown(pdev);
5285 #ifdef CONFIG_PCI_MSI
5286 if (h->msix_vector)
5287 pci_disable_msix(h->pdev);
5288 else if (h->msi_vector)
5289 pci_disable_msi(h->pdev);
5290 #endif /* CONFIG_PCI_MSI */
5292 iounmap(h->transtable);
5293 iounmap(h->cfgtable);
5294 iounmap(h->vaddr);
5296 cciss_free_cmd_pool(h);
5297 /* Free up sg elements */
5298 for (j = 0; j < h->nr_cmds; j++)
5299 kfree(h->scatter_list[j]);
5300 kfree(h->scatter_list);
5301 cciss_free_sg_chain_blocks(h->cmd_sg_list, h->nr_cmds);
5302 kfree(h->blockFetchTable);
5303 if (h->reply_pool)
5304 pci_free_consistent(h->pdev, h->max_commands * sizeof(__u64),
5305 h->reply_pool, h->reply_pool_dhandle);
5307 * Deliberately omit pci_disable_device(): it does something nasty to
5308 * Smart Array controllers that pci_enable_device does not undo
5310 pci_release_regions(pdev);
5311 pci_set_drvdata(pdev, NULL);
5312 cciss_destroy_hba_sysfs_entry(h);
5313 mutex_unlock(&h->busy_shutting_down);
5314 free_hba(h);
5317 static struct pci_driver cciss_pci_driver = {
5318 .name = "cciss",
5319 .probe = cciss_init_one,
5320 .remove = __devexit_p(cciss_remove_one),
5321 .id_table = cciss_pci_device_id, /* id_table */
5322 .shutdown = cciss_shutdown,
5326 * This is it. Register the PCI driver information for the cards we control
5327 * the OS will call our registered routines when it finds one of our cards.
5329 static int __init cciss_init(void)
5331 int err;
5334 * The hardware requires that commands are aligned on a 64-bit
5335 * boundary. Given that we use pci_alloc_consistent() to allocate an
5336 * array of them, the size must be a multiple of 8 bytes.
5338 BUILD_BUG_ON(sizeof(CommandList_struct) % COMMANDLIST_ALIGNMENT);
5339 printk(KERN_INFO DRIVER_NAME "\n");
5341 err = bus_register(&cciss_bus_type);
5342 if (err)
5343 return err;
5345 /* Start the scan thread */
5346 cciss_scan_thread = kthread_run(scan_thread, NULL, "cciss_scan");
5347 if (IS_ERR(cciss_scan_thread)) {
5348 err = PTR_ERR(cciss_scan_thread);
5349 goto err_bus_unregister;
5352 /* Register for our PCI devices */
5353 err = pci_register_driver(&cciss_pci_driver);
5354 if (err)
5355 goto err_thread_stop;
5357 return err;
5359 err_thread_stop:
5360 kthread_stop(cciss_scan_thread);
5361 err_bus_unregister:
5362 bus_unregister(&cciss_bus_type);
5364 return err;
5367 static void __exit cciss_cleanup(void)
5369 int i;
5371 pci_unregister_driver(&cciss_pci_driver);
5372 /* double check that all controller entrys have been removed */
5373 for (i = 0; i < MAX_CTLR; i++) {
5374 if (hba[i] != NULL) {
5375 dev_warn(&hba[i]->pdev->dev,
5376 "had to remove controller\n");
5377 cciss_remove_one(hba[i]->pdev);
5380 kthread_stop(cciss_scan_thread);
5381 if (proc_cciss)
5382 remove_proc_entry("driver/cciss", NULL);
5383 bus_unregister(&cciss_bus_type);
5386 module_init(cciss_init);
5387 module_exit(cciss_cleanup);