Linux 3.4.102
[linux/fpc-iii.git] / drivers / dma / ep93xx_dma.c
blobf6e9b572b998919ee117cf154e560788da439de3
1 /*
2 * Driver for the Cirrus Logic EP93xx DMA Controller
4 * Copyright (C) 2011 Mika Westerberg
6 * DMA M2P implementation is based on the original
7 * arch/arm/mach-ep93xx/dma-m2p.c which has following copyrights:
9 * Copyright (C) 2006 Lennert Buytenhek <buytenh@wantstofly.org>
10 * Copyright (C) 2006 Applied Data Systems
11 * Copyright (C) 2009 Ryan Mallon <rmallon@gmail.com>
13 * This driver is based on dw_dmac and amba-pl08x drivers.
15 * This program is free software; you can redistribute it and/or modify
16 * it under the terms of the GNU General Public License as published by
17 * the Free Software Foundation; either version 2 of the License, or
18 * (at your option) any later version.
21 #include <linux/clk.h>
22 #include <linux/init.h>
23 #include <linux/interrupt.h>
24 #include <linux/dmaengine.h>
25 #include <linux/module.h>
26 #include <linux/platform_device.h>
27 #include <linux/slab.h>
29 #include <mach/dma.h>
31 #include "dmaengine.h"
33 /* M2P registers */
34 #define M2P_CONTROL 0x0000
35 #define M2P_CONTROL_STALLINT BIT(0)
36 #define M2P_CONTROL_NFBINT BIT(1)
37 #define M2P_CONTROL_CH_ERROR_INT BIT(3)
38 #define M2P_CONTROL_ENABLE BIT(4)
39 #define M2P_CONTROL_ICE BIT(6)
41 #define M2P_INTERRUPT 0x0004
42 #define M2P_INTERRUPT_STALL BIT(0)
43 #define M2P_INTERRUPT_NFB BIT(1)
44 #define M2P_INTERRUPT_ERROR BIT(3)
46 #define M2P_PPALLOC 0x0008
47 #define M2P_STATUS 0x000c
49 #define M2P_MAXCNT0 0x0020
50 #define M2P_BASE0 0x0024
51 #define M2P_MAXCNT1 0x0030
52 #define M2P_BASE1 0x0034
54 #define M2P_STATE_IDLE 0
55 #define M2P_STATE_STALL 1
56 #define M2P_STATE_ON 2
57 #define M2P_STATE_NEXT 3
59 /* M2M registers */
60 #define M2M_CONTROL 0x0000
61 #define M2M_CONTROL_DONEINT BIT(2)
62 #define M2M_CONTROL_ENABLE BIT(3)
63 #define M2M_CONTROL_START BIT(4)
64 #define M2M_CONTROL_DAH BIT(11)
65 #define M2M_CONTROL_SAH BIT(12)
66 #define M2M_CONTROL_PW_SHIFT 9
67 #define M2M_CONTROL_PW_8 (0 << M2M_CONTROL_PW_SHIFT)
68 #define M2M_CONTROL_PW_16 (1 << M2M_CONTROL_PW_SHIFT)
69 #define M2M_CONTROL_PW_32 (2 << M2M_CONTROL_PW_SHIFT)
70 #define M2M_CONTROL_PW_MASK (3 << M2M_CONTROL_PW_SHIFT)
71 #define M2M_CONTROL_TM_SHIFT 13
72 #define M2M_CONTROL_TM_TX (1 << M2M_CONTROL_TM_SHIFT)
73 #define M2M_CONTROL_TM_RX (2 << M2M_CONTROL_TM_SHIFT)
74 #define M2M_CONTROL_RSS_SHIFT 22
75 #define M2M_CONTROL_RSS_SSPRX (1 << M2M_CONTROL_RSS_SHIFT)
76 #define M2M_CONTROL_RSS_SSPTX (2 << M2M_CONTROL_RSS_SHIFT)
77 #define M2M_CONTROL_RSS_IDE (3 << M2M_CONTROL_RSS_SHIFT)
78 #define M2M_CONTROL_NO_HDSK BIT(24)
79 #define M2M_CONTROL_PWSC_SHIFT 25
81 #define M2M_INTERRUPT 0x0004
82 #define M2M_INTERRUPT_DONEINT BIT(1)
84 #define M2M_BCR0 0x0010
85 #define M2M_BCR1 0x0014
86 #define M2M_SAR_BASE0 0x0018
87 #define M2M_SAR_BASE1 0x001c
88 #define M2M_DAR_BASE0 0x002c
89 #define M2M_DAR_BASE1 0x0030
91 #define DMA_MAX_CHAN_BYTES 0xffff
92 #define DMA_MAX_CHAN_DESCRIPTORS 32
94 struct ep93xx_dma_engine;
96 /**
97 * struct ep93xx_dma_desc - EP93xx specific transaction descriptor
98 * @src_addr: source address of the transaction
99 * @dst_addr: destination address of the transaction
100 * @size: size of the transaction (in bytes)
101 * @complete: this descriptor is completed
102 * @txd: dmaengine API descriptor
103 * @tx_list: list of linked descriptors
104 * @node: link used for putting this into a channel queue
106 struct ep93xx_dma_desc {
107 u32 src_addr;
108 u32 dst_addr;
109 size_t size;
110 bool complete;
111 struct dma_async_tx_descriptor txd;
112 struct list_head tx_list;
113 struct list_head node;
117 * struct ep93xx_dma_chan - an EP93xx DMA M2P/M2M channel
118 * @chan: dmaengine API channel
119 * @edma: pointer to to the engine device
120 * @regs: memory mapped registers
121 * @irq: interrupt number of the channel
122 * @clk: clock used by this channel
123 * @tasklet: channel specific tasklet used for callbacks
124 * @lock: lock protecting the fields following
125 * @flags: flags for the channel
126 * @buffer: which buffer to use next (0/1)
127 * @active: flattened chain of descriptors currently being processed
128 * @queue: pending descriptors which are handled next
129 * @free_list: list of free descriptors which can be used
130 * @runtime_addr: physical address currently used as dest/src (M2M only). This
131 * is set via %DMA_SLAVE_CONFIG before slave operation is
132 * prepared
133 * @runtime_ctrl: M2M runtime values for the control register.
135 * As EP93xx DMA controller doesn't support real chained DMA descriptors we
136 * will have slightly different scheme here: @active points to a head of
137 * flattened DMA descriptor chain.
139 * @queue holds pending transactions. These are linked through the first
140 * descriptor in the chain. When a descriptor is moved to the @active queue,
141 * the first and chained descriptors are flattened into a single list.
143 * @chan.private holds pointer to &struct ep93xx_dma_data which contains
144 * necessary channel configuration information. For memcpy channels this must
145 * be %NULL.
147 struct ep93xx_dma_chan {
148 struct dma_chan chan;
149 const struct ep93xx_dma_engine *edma;
150 void __iomem *regs;
151 int irq;
152 struct clk *clk;
153 struct tasklet_struct tasklet;
154 /* protects the fields following */
155 spinlock_t lock;
156 unsigned long flags;
157 /* Channel is configured for cyclic transfers */
158 #define EP93XX_DMA_IS_CYCLIC 0
160 int buffer;
161 struct list_head active;
162 struct list_head queue;
163 struct list_head free_list;
164 u32 runtime_addr;
165 u32 runtime_ctrl;
169 * struct ep93xx_dma_engine - the EP93xx DMA engine instance
170 * @dma_dev: holds the dmaengine device
171 * @m2m: is this an M2M or M2P device
172 * @hw_setup: method which sets the channel up for operation
173 * @hw_shutdown: shuts the channel down and flushes whatever is left
174 * @hw_submit: pushes active descriptor(s) to the hardware
175 * @hw_interrupt: handle the interrupt
176 * @num_channels: number of channels for this instance
177 * @channels: array of channels
179 * There is one instance of this struct for the M2P channels and one for the
180 * M2M channels. hw_xxx() methods are used to perform operations which are
181 * different on M2M and M2P channels. These methods are called with channel
182 * lock held and interrupts disabled so they cannot sleep.
184 struct ep93xx_dma_engine {
185 struct dma_device dma_dev;
186 bool m2m;
187 int (*hw_setup)(struct ep93xx_dma_chan *);
188 void (*hw_shutdown)(struct ep93xx_dma_chan *);
189 void (*hw_submit)(struct ep93xx_dma_chan *);
190 int (*hw_interrupt)(struct ep93xx_dma_chan *);
191 #define INTERRUPT_UNKNOWN 0
192 #define INTERRUPT_DONE 1
193 #define INTERRUPT_NEXT_BUFFER 2
195 size_t num_channels;
196 struct ep93xx_dma_chan channels[];
199 static inline struct device *chan2dev(struct ep93xx_dma_chan *edmac)
201 return &edmac->chan.dev->device;
204 static struct ep93xx_dma_chan *to_ep93xx_dma_chan(struct dma_chan *chan)
206 return container_of(chan, struct ep93xx_dma_chan, chan);
210 * ep93xx_dma_set_active - set new active descriptor chain
211 * @edmac: channel
212 * @desc: head of the new active descriptor chain
214 * Sets @desc to be the head of the new active descriptor chain. This is the
215 * chain which is processed next. The active list must be empty before calling
216 * this function.
218 * Called with @edmac->lock held and interrupts disabled.
220 static void ep93xx_dma_set_active(struct ep93xx_dma_chan *edmac,
221 struct ep93xx_dma_desc *desc)
223 BUG_ON(!list_empty(&edmac->active));
225 list_add_tail(&desc->node, &edmac->active);
227 /* Flatten the @desc->tx_list chain into @edmac->active list */
228 while (!list_empty(&desc->tx_list)) {
229 struct ep93xx_dma_desc *d = list_first_entry(&desc->tx_list,
230 struct ep93xx_dma_desc, node);
233 * We copy the callback parameters from the first descriptor
234 * to all the chained descriptors. This way we can call the
235 * callback without having to find out the first descriptor in
236 * the chain. Useful for cyclic transfers.
238 d->txd.callback = desc->txd.callback;
239 d->txd.callback_param = desc->txd.callback_param;
241 list_move_tail(&d->node, &edmac->active);
245 /* Called with @edmac->lock held and interrupts disabled */
246 static struct ep93xx_dma_desc *
247 ep93xx_dma_get_active(struct ep93xx_dma_chan *edmac)
249 if (list_empty(&edmac->active))
250 return NULL;
252 return list_first_entry(&edmac->active, struct ep93xx_dma_desc, node);
256 * ep93xx_dma_advance_active - advances to the next active descriptor
257 * @edmac: channel
259 * Function advances active descriptor to the next in the @edmac->active and
260 * returns %true if we still have descriptors in the chain to process.
261 * Otherwise returns %false.
263 * When the channel is in cyclic mode always returns %true.
265 * Called with @edmac->lock held and interrupts disabled.
267 static bool ep93xx_dma_advance_active(struct ep93xx_dma_chan *edmac)
269 struct ep93xx_dma_desc *desc;
271 list_rotate_left(&edmac->active);
273 if (test_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags))
274 return true;
276 desc = ep93xx_dma_get_active(edmac);
277 if (!desc)
278 return false;
281 * If txd.cookie is set it means that we are back in the first
282 * descriptor in the chain and hence done with it.
284 return !desc->txd.cookie;
288 * M2P DMA implementation
291 static void m2p_set_control(struct ep93xx_dma_chan *edmac, u32 control)
293 writel(control, edmac->regs + M2P_CONTROL);
295 * EP93xx User's Guide states that we must perform a dummy read after
296 * write to the control register.
298 readl(edmac->regs + M2P_CONTROL);
301 static int m2p_hw_setup(struct ep93xx_dma_chan *edmac)
303 struct ep93xx_dma_data *data = edmac->chan.private;
304 u32 control;
306 writel(data->port & 0xf, edmac->regs + M2P_PPALLOC);
308 control = M2P_CONTROL_CH_ERROR_INT | M2P_CONTROL_ICE
309 | M2P_CONTROL_ENABLE;
310 m2p_set_control(edmac, control);
312 return 0;
315 static inline u32 m2p_channel_state(struct ep93xx_dma_chan *edmac)
317 return (readl(edmac->regs + M2P_STATUS) >> 4) & 0x3;
320 static void m2p_hw_shutdown(struct ep93xx_dma_chan *edmac)
322 u32 control;
324 control = readl(edmac->regs + M2P_CONTROL);
325 control &= ~(M2P_CONTROL_STALLINT | M2P_CONTROL_NFBINT);
326 m2p_set_control(edmac, control);
328 while (m2p_channel_state(edmac) >= M2P_STATE_ON)
329 cpu_relax();
331 m2p_set_control(edmac, 0);
333 while (m2p_channel_state(edmac) == M2P_STATE_STALL)
334 cpu_relax();
337 static void m2p_fill_desc(struct ep93xx_dma_chan *edmac)
339 struct ep93xx_dma_desc *desc;
340 u32 bus_addr;
342 desc = ep93xx_dma_get_active(edmac);
343 if (!desc) {
344 dev_warn(chan2dev(edmac), "M2P: empty descriptor list\n");
345 return;
348 if (ep93xx_dma_chan_direction(&edmac->chan) == DMA_MEM_TO_DEV)
349 bus_addr = desc->src_addr;
350 else
351 bus_addr = desc->dst_addr;
353 if (edmac->buffer == 0) {
354 writel(desc->size, edmac->regs + M2P_MAXCNT0);
355 writel(bus_addr, edmac->regs + M2P_BASE0);
356 } else {
357 writel(desc->size, edmac->regs + M2P_MAXCNT1);
358 writel(bus_addr, edmac->regs + M2P_BASE1);
361 edmac->buffer ^= 1;
364 static void m2p_hw_submit(struct ep93xx_dma_chan *edmac)
366 u32 control = readl(edmac->regs + M2P_CONTROL);
368 m2p_fill_desc(edmac);
369 control |= M2P_CONTROL_STALLINT;
371 if (ep93xx_dma_advance_active(edmac)) {
372 m2p_fill_desc(edmac);
373 control |= M2P_CONTROL_NFBINT;
376 m2p_set_control(edmac, control);
379 static int m2p_hw_interrupt(struct ep93xx_dma_chan *edmac)
381 u32 irq_status = readl(edmac->regs + M2P_INTERRUPT);
382 u32 control;
384 if (irq_status & M2P_INTERRUPT_ERROR) {
385 struct ep93xx_dma_desc *desc = ep93xx_dma_get_active(edmac);
387 /* Clear the error interrupt */
388 writel(1, edmac->regs + M2P_INTERRUPT);
391 * It seems that there is no easy way of reporting errors back
392 * to client so we just report the error here and continue as
393 * usual.
395 * Revisit this when there is a mechanism to report back the
396 * errors.
398 dev_err(chan2dev(edmac),
399 "DMA transfer failed! Details:\n"
400 "\tcookie : %d\n"
401 "\tsrc_addr : 0x%08x\n"
402 "\tdst_addr : 0x%08x\n"
403 "\tsize : %zu\n",
404 desc->txd.cookie, desc->src_addr, desc->dst_addr,
405 desc->size);
408 switch (irq_status & (M2P_INTERRUPT_STALL | M2P_INTERRUPT_NFB)) {
409 case M2P_INTERRUPT_STALL:
410 /* Disable interrupts */
411 control = readl(edmac->regs + M2P_CONTROL);
412 control &= ~(M2P_CONTROL_STALLINT | M2P_CONTROL_NFBINT);
413 m2p_set_control(edmac, control);
415 return INTERRUPT_DONE;
417 case M2P_INTERRUPT_NFB:
418 if (ep93xx_dma_advance_active(edmac))
419 m2p_fill_desc(edmac);
421 return INTERRUPT_NEXT_BUFFER;
424 return INTERRUPT_UNKNOWN;
428 * M2M DMA implementation
430 * For the M2M transfers we don't use NFB at all. This is because it simply
431 * doesn't work well with memcpy transfers. When you submit both buffers it is
432 * extremely unlikely that you get an NFB interrupt, but it instead reports
433 * DONE interrupt and both buffers are already transferred which means that we
434 * weren't able to update the next buffer.
436 * So for now we "simulate" NFB by just submitting buffer after buffer
437 * without double buffering.
440 static int m2m_hw_setup(struct ep93xx_dma_chan *edmac)
442 const struct ep93xx_dma_data *data = edmac->chan.private;
443 u32 control = 0;
445 if (!data) {
446 /* This is memcpy channel, nothing to configure */
447 writel(control, edmac->regs + M2M_CONTROL);
448 return 0;
451 switch (data->port) {
452 case EP93XX_DMA_SSP:
454 * This was found via experimenting - anything less than 5
455 * causes the channel to perform only a partial transfer which
456 * leads to problems since we don't get DONE interrupt then.
458 control = (5 << M2M_CONTROL_PWSC_SHIFT);
459 control |= M2M_CONTROL_NO_HDSK;
461 if (data->direction == DMA_MEM_TO_DEV) {
462 control |= M2M_CONTROL_DAH;
463 control |= M2M_CONTROL_TM_TX;
464 control |= M2M_CONTROL_RSS_SSPTX;
465 } else {
466 control |= M2M_CONTROL_SAH;
467 control |= M2M_CONTROL_TM_RX;
468 control |= M2M_CONTROL_RSS_SSPRX;
470 break;
472 case EP93XX_DMA_IDE:
474 * This IDE part is totally untested. Values below are taken
475 * from the EP93xx Users's Guide and might not be correct.
477 if (data->direction == DMA_MEM_TO_DEV) {
478 /* Worst case from the UG */
479 control = (3 << M2M_CONTROL_PWSC_SHIFT);
480 control |= M2M_CONTROL_DAH;
481 control |= M2M_CONTROL_TM_TX;
482 } else {
483 control = (2 << M2M_CONTROL_PWSC_SHIFT);
484 control |= M2M_CONTROL_SAH;
485 control |= M2M_CONTROL_TM_RX;
488 control |= M2M_CONTROL_NO_HDSK;
489 control |= M2M_CONTROL_RSS_IDE;
490 control |= M2M_CONTROL_PW_16;
491 break;
493 default:
494 return -EINVAL;
497 writel(control, edmac->regs + M2M_CONTROL);
498 return 0;
501 static void m2m_hw_shutdown(struct ep93xx_dma_chan *edmac)
503 /* Just disable the channel */
504 writel(0, edmac->regs + M2M_CONTROL);
507 static void m2m_fill_desc(struct ep93xx_dma_chan *edmac)
509 struct ep93xx_dma_desc *desc;
511 desc = ep93xx_dma_get_active(edmac);
512 if (!desc) {
513 dev_warn(chan2dev(edmac), "M2M: empty descriptor list\n");
514 return;
517 if (edmac->buffer == 0) {
518 writel(desc->src_addr, edmac->regs + M2M_SAR_BASE0);
519 writel(desc->dst_addr, edmac->regs + M2M_DAR_BASE0);
520 writel(desc->size, edmac->regs + M2M_BCR0);
521 } else {
522 writel(desc->src_addr, edmac->regs + M2M_SAR_BASE1);
523 writel(desc->dst_addr, edmac->regs + M2M_DAR_BASE1);
524 writel(desc->size, edmac->regs + M2M_BCR1);
527 edmac->buffer ^= 1;
530 static void m2m_hw_submit(struct ep93xx_dma_chan *edmac)
532 struct ep93xx_dma_data *data = edmac->chan.private;
533 u32 control = readl(edmac->regs + M2M_CONTROL);
536 * Since we allow clients to configure PW (peripheral width) we always
537 * clear PW bits here and then set them according what is given in
538 * the runtime configuration.
540 control &= ~M2M_CONTROL_PW_MASK;
541 control |= edmac->runtime_ctrl;
543 m2m_fill_desc(edmac);
544 control |= M2M_CONTROL_DONEINT;
547 * Now we can finally enable the channel. For M2M channel this must be
548 * done _after_ the BCRx registers are programmed.
550 control |= M2M_CONTROL_ENABLE;
551 writel(control, edmac->regs + M2M_CONTROL);
553 if (!data) {
555 * For memcpy channels the software trigger must be asserted
556 * in order to start the memcpy operation.
558 control |= M2M_CONTROL_START;
559 writel(control, edmac->regs + M2M_CONTROL);
563 static int m2m_hw_interrupt(struct ep93xx_dma_chan *edmac)
565 u32 control;
567 if (!(readl(edmac->regs + M2M_INTERRUPT) & M2M_INTERRUPT_DONEINT))
568 return INTERRUPT_UNKNOWN;
570 /* Clear the DONE bit */
571 writel(0, edmac->regs + M2M_INTERRUPT);
573 /* Disable interrupts and the channel */
574 control = readl(edmac->regs + M2M_CONTROL);
575 control &= ~(M2M_CONTROL_DONEINT | M2M_CONTROL_ENABLE);
576 writel(control, edmac->regs + M2M_CONTROL);
579 * Since we only get DONE interrupt we have to find out ourselves
580 * whether there still is something to process. So we try to advance
581 * the chain an see whether it succeeds.
583 if (ep93xx_dma_advance_active(edmac)) {
584 edmac->edma->hw_submit(edmac);
585 return INTERRUPT_NEXT_BUFFER;
588 return INTERRUPT_DONE;
592 * DMA engine API implementation
595 static struct ep93xx_dma_desc *
596 ep93xx_dma_desc_get(struct ep93xx_dma_chan *edmac)
598 struct ep93xx_dma_desc *desc, *_desc;
599 struct ep93xx_dma_desc *ret = NULL;
600 unsigned long flags;
602 spin_lock_irqsave(&edmac->lock, flags);
603 list_for_each_entry_safe(desc, _desc, &edmac->free_list, node) {
604 if (async_tx_test_ack(&desc->txd)) {
605 list_del_init(&desc->node);
607 /* Re-initialize the descriptor */
608 desc->src_addr = 0;
609 desc->dst_addr = 0;
610 desc->size = 0;
611 desc->complete = false;
612 desc->txd.cookie = 0;
613 desc->txd.callback = NULL;
614 desc->txd.callback_param = NULL;
616 ret = desc;
617 break;
620 spin_unlock_irqrestore(&edmac->lock, flags);
621 return ret;
624 static void ep93xx_dma_desc_put(struct ep93xx_dma_chan *edmac,
625 struct ep93xx_dma_desc *desc)
627 if (desc) {
628 unsigned long flags;
630 spin_lock_irqsave(&edmac->lock, flags);
631 list_splice_init(&desc->tx_list, &edmac->free_list);
632 list_add(&desc->node, &edmac->free_list);
633 spin_unlock_irqrestore(&edmac->lock, flags);
638 * ep93xx_dma_advance_work - start processing the next pending transaction
639 * @edmac: channel
641 * If we have pending transactions queued and we are currently idling, this
642 * function takes the next queued transaction from the @edmac->queue and
643 * pushes it to the hardware for execution.
645 static void ep93xx_dma_advance_work(struct ep93xx_dma_chan *edmac)
647 struct ep93xx_dma_desc *new;
648 unsigned long flags;
650 spin_lock_irqsave(&edmac->lock, flags);
651 if (!list_empty(&edmac->active) || list_empty(&edmac->queue)) {
652 spin_unlock_irqrestore(&edmac->lock, flags);
653 return;
656 /* Take the next descriptor from the pending queue */
657 new = list_first_entry(&edmac->queue, struct ep93xx_dma_desc, node);
658 list_del_init(&new->node);
660 ep93xx_dma_set_active(edmac, new);
662 /* Push it to the hardware */
663 edmac->edma->hw_submit(edmac);
664 spin_unlock_irqrestore(&edmac->lock, flags);
667 static void ep93xx_dma_unmap_buffers(struct ep93xx_dma_desc *desc)
669 struct device *dev = desc->txd.chan->device->dev;
671 if (!(desc->txd.flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
672 if (desc->txd.flags & DMA_COMPL_SRC_UNMAP_SINGLE)
673 dma_unmap_single(dev, desc->src_addr, desc->size,
674 DMA_TO_DEVICE);
675 else
676 dma_unmap_page(dev, desc->src_addr, desc->size,
677 DMA_TO_DEVICE);
679 if (!(desc->txd.flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
680 if (desc->txd.flags & DMA_COMPL_DEST_UNMAP_SINGLE)
681 dma_unmap_single(dev, desc->dst_addr, desc->size,
682 DMA_FROM_DEVICE);
683 else
684 dma_unmap_page(dev, desc->dst_addr, desc->size,
685 DMA_FROM_DEVICE);
689 static void ep93xx_dma_tasklet(unsigned long data)
691 struct ep93xx_dma_chan *edmac = (struct ep93xx_dma_chan *)data;
692 struct ep93xx_dma_desc *desc, *d;
693 dma_async_tx_callback callback = NULL;
694 void *callback_param = NULL;
695 LIST_HEAD(list);
697 spin_lock_irq(&edmac->lock);
699 * If dma_terminate_all() was called before we get to run, the active
700 * list has become empty. If that happens we aren't supposed to do
701 * anything more than call ep93xx_dma_advance_work().
703 desc = ep93xx_dma_get_active(edmac);
704 if (desc) {
705 if (desc->complete) {
706 /* mark descriptor complete for non cyclic case only */
707 if (!test_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags))
708 dma_cookie_complete(&desc->txd);
709 list_splice_init(&edmac->active, &list);
711 callback = desc->txd.callback;
712 callback_param = desc->txd.callback_param;
714 spin_unlock_irq(&edmac->lock);
716 /* Pick up the next descriptor from the queue */
717 ep93xx_dma_advance_work(edmac);
719 /* Now we can release all the chained descriptors */
720 list_for_each_entry_safe(desc, d, &list, node) {
722 * For the memcpy channels the API requires us to unmap the
723 * buffers unless requested otherwise.
725 if (!edmac->chan.private)
726 ep93xx_dma_unmap_buffers(desc);
728 ep93xx_dma_desc_put(edmac, desc);
731 if (callback)
732 callback(callback_param);
735 static irqreturn_t ep93xx_dma_interrupt(int irq, void *dev_id)
737 struct ep93xx_dma_chan *edmac = dev_id;
738 struct ep93xx_dma_desc *desc;
739 irqreturn_t ret = IRQ_HANDLED;
741 spin_lock(&edmac->lock);
743 desc = ep93xx_dma_get_active(edmac);
744 if (!desc) {
745 dev_warn(chan2dev(edmac),
746 "got interrupt while active list is empty\n");
747 spin_unlock(&edmac->lock);
748 return IRQ_NONE;
751 switch (edmac->edma->hw_interrupt(edmac)) {
752 case INTERRUPT_DONE:
753 desc->complete = true;
754 tasklet_schedule(&edmac->tasklet);
755 break;
757 case INTERRUPT_NEXT_BUFFER:
758 if (test_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags))
759 tasklet_schedule(&edmac->tasklet);
760 break;
762 default:
763 dev_warn(chan2dev(edmac), "unknown interrupt!\n");
764 ret = IRQ_NONE;
765 break;
768 spin_unlock(&edmac->lock);
769 return ret;
773 * ep93xx_dma_tx_submit - set the prepared descriptor(s) to be executed
774 * @tx: descriptor to be executed
776 * Function will execute given descriptor on the hardware or if the hardware
777 * is busy, queue the descriptor to be executed later on. Returns cookie which
778 * can be used to poll the status of the descriptor.
780 static dma_cookie_t ep93xx_dma_tx_submit(struct dma_async_tx_descriptor *tx)
782 struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(tx->chan);
783 struct ep93xx_dma_desc *desc;
784 dma_cookie_t cookie;
785 unsigned long flags;
787 spin_lock_irqsave(&edmac->lock, flags);
788 cookie = dma_cookie_assign(tx);
790 desc = container_of(tx, struct ep93xx_dma_desc, txd);
793 * If nothing is currently prosessed, we push this descriptor
794 * directly to the hardware. Otherwise we put the descriptor
795 * to the pending queue.
797 if (list_empty(&edmac->active)) {
798 ep93xx_dma_set_active(edmac, desc);
799 edmac->edma->hw_submit(edmac);
800 } else {
801 list_add_tail(&desc->node, &edmac->queue);
804 spin_unlock_irqrestore(&edmac->lock, flags);
805 return cookie;
809 * ep93xx_dma_alloc_chan_resources - allocate resources for the channel
810 * @chan: channel to allocate resources
812 * Function allocates necessary resources for the given DMA channel and
813 * returns number of allocated descriptors for the channel. Negative errno
814 * is returned in case of failure.
816 static int ep93xx_dma_alloc_chan_resources(struct dma_chan *chan)
818 struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
819 struct ep93xx_dma_data *data = chan->private;
820 const char *name = dma_chan_name(chan);
821 int ret, i;
823 /* Sanity check the channel parameters */
824 if (!edmac->edma->m2m) {
825 if (!data)
826 return -EINVAL;
827 if (data->port < EP93XX_DMA_I2S1 ||
828 data->port > EP93XX_DMA_IRDA)
829 return -EINVAL;
830 if (data->direction != ep93xx_dma_chan_direction(chan))
831 return -EINVAL;
832 } else {
833 if (data) {
834 switch (data->port) {
835 case EP93XX_DMA_SSP:
836 case EP93XX_DMA_IDE:
837 if (data->direction != DMA_MEM_TO_DEV &&
838 data->direction != DMA_DEV_TO_MEM)
839 return -EINVAL;
840 break;
841 default:
842 return -EINVAL;
847 if (data && data->name)
848 name = data->name;
850 ret = clk_enable(edmac->clk);
851 if (ret)
852 return ret;
854 ret = request_irq(edmac->irq, ep93xx_dma_interrupt, 0, name, edmac);
855 if (ret)
856 goto fail_clk_disable;
858 spin_lock_irq(&edmac->lock);
859 dma_cookie_init(&edmac->chan);
860 ret = edmac->edma->hw_setup(edmac);
861 spin_unlock_irq(&edmac->lock);
863 if (ret)
864 goto fail_free_irq;
866 for (i = 0; i < DMA_MAX_CHAN_DESCRIPTORS; i++) {
867 struct ep93xx_dma_desc *desc;
869 desc = kzalloc(sizeof(*desc), GFP_KERNEL);
870 if (!desc) {
871 dev_warn(chan2dev(edmac), "not enough descriptors\n");
872 break;
875 INIT_LIST_HEAD(&desc->tx_list);
877 dma_async_tx_descriptor_init(&desc->txd, chan);
878 desc->txd.flags = DMA_CTRL_ACK;
879 desc->txd.tx_submit = ep93xx_dma_tx_submit;
881 ep93xx_dma_desc_put(edmac, desc);
884 return i;
886 fail_free_irq:
887 free_irq(edmac->irq, edmac);
888 fail_clk_disable:
889 clk_disable(edmac->clk);
891 return ret;
895 * ep93xx_dma_free_chan_resources - release resources for the channel
896 * @chan: channel
898 * Function releases all the resources allocated for the given channel.
899 * The channel must be idle when this is called.
901 static void ep93xx_dma_free_chan_resources(struct dma_chan *chan)
903 struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
904 struct ep93xx_dma_desc *desc, *d;
905 unsigned long flags;
906 LIST_HEAD(list);
908 BUG_ON(!list_empty(&edmac->active));
909 BUG_ON(!list_empty(&edmac->queue));
911 spin_lock_irqsave(&edmac->lock, flags);
912 edmac->edma->hw_shutdown(edmac);
913 edmac->runtime_addr = 0;
914 edmac->runtime_ctrl = 0;
915 edmac->buffer = 0;
916 list_splice_init(&edmac->free_list, &list);
917 spin_unlock_irqrestore(&edmac->lock, flags);
919 list_for_each_entry_safe(desc, d, &list, node)
920 kfree(desc);
922 clk_disable(edmac->clk);
923 free_irq(edmac->irq, edmac);
927 * ep93xx_dma_prep_dma_memcpy - prepare a memcpy DMA operation
928 * @chan: channel
929 * @dest: destination bus address
930 * @src: source bus address
931 * @len: size of the transaction
932 * @flags: flags for the descriptor
934 * Returns a valid DMA descriptor or %NULL in case of failure.
936 static struct dma_async_tx_descriptor *
937 ep93xx_dma_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest,
938 dma_addr_t src, size_t len, unsigned long flags)
940 struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
941 struct ep93xx_dma_desc *desc, *first;
942 size_t bytes, offset;
944 first = NULL;
945 for (offset = 0; offset < len; offset += bytes) {
946 desc = ep93xx_dma_desc_get(edmac);
947 if (!desc) {
948 dev_warn(chan2dev(edmac), "couln't get descriptor\n");
949 goto fail;
952 bytes = min_t(size_t, len - offset, DMA_MAX_CHAN_BYTES);
954 desc->src_addr = src + offset;
955 desc->dst_addr = dest + offset;
956 desc->size = bytes;
958 if (!first)
959 first = desc;
960 else
961 list_add_tail(&desc->node, &first->tx_list);
964 first->txd.cookie = -EBUSY;
965 first->txd.flags = flags;
967 return &first->txd;
968 fail:
969 ep93xx_dma_desc_put(edmac, first);
970 return NULL;
974 * ep93xx_dma_prep_slave_sg - prepare a slave DMA operation
975 * @chan: channel
976 * @sgl: list of buffers to transfer
977 * @sg_len: number of entries in @sgl
978 * @dir: direction of tha DMA transfer
979 * @flags: flags for the descriptor
980 * @context: operation context (ignored)
982 * Returns a valid DMA descriptor or %NULL in case of failure.
984 static struct dma_async_tx_descriptor *
985 ep93xx_dma_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
986 unsigned int sg_len, enum dma_transfer_direction dir,
987 unsigned long flags, void *context)
989 struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
990 struct ep93xx_dma_desc *desc, *first;
991 struct scatterlist *sg;
992 int i;
994 if (!edmac->edma->m2m && dir != ep93xx_dma_chan_direction(chan)) {
995 dev_warn(chan2dev(edmac),
996 "channel was configured with different direction\n");
997 return NULL;
1000 if (test_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags)) {
1001 dev_warn(chan2dev(edmac),
1002 "channel is already used for cyclic transfers\n");
1003 return NULL;
1006 first = NULL;
1007 for_each_sg(sgl, sg, sg_len, i) {
1008 size_t sg_len = sg_dma_len(sg);
1010 if (sg_len > DMA_MAX_CHAN_BYTES) {
1011 dev_warn(chan2dev(edmac), "too big transfer size %d\n",
1012 sg_len);
1013 goto fail;
1016 desc = ep93xx_dma_desc_get(edmac);
1017 if (!desc) {
1018 dev_warn(chan2dev(edmac), "couln't get descriptor\n");
1019 goto fail;
1022 if (dir == DMA_MEM_TO_DEV) {
1023 desc->src_addr = sg_dma_address(sg);
1024 desc->dst_addr = edmac->runtime_addr;
1025 } else {
1026 desc->src_addr = edmac->runtime_addr;
1027 desc->dst_addr = sg_dma_address(sg);
1029 desc->size = sg_len;
1031 if (!first)
1032 first = desc;
1033 else
1034 list_add_tail(&desc->node, &first->tx_list);
1037 first->txd.cookie = -EBUSY;
1038 first->txd.flags = flags;
1040 return &first->txd;
1042 fail:
1043 ep93xx_dma_desc_put(edmac, first);
1044 return NULL;
1048 * ep93xx_dma_prep_dma_cyclic - prepare a cyclic DMA operation
1049 * @chan: channel
1050 * @dma_addr: DMA mapped address of the buffer
1051 * @buf_len: length of the buffer (in bytes)
1052 * @period_len: lenght of a single period
1053 * @dir: direction of the operation
1054 * @context: operation context (ignored)
1056 * Prepares a descriptor for cyclic DMA operation. This means that once the
1057 * descriptor is submitted, we will be submitting in a @period_len sized
1058 * buffers and calling callback once the period has been elapsed. Transfer
1059 * terminates only when client calls dmaengine_terminate_all() for this
1060 * channel.
1062 * Returns a valid DMA descriptor or %NULL in case of failure.
1064 static struct dma_async_tx_descriptor *
1065 ep93xx_dma_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
1066 size_t buf_len, size_t period_len,
1067 enum dma_transfer_direction dir, void *context)
1069 struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
1070 struct ep93xx_dma_desc *desc, *first;
1071 size_t offset = 0;
1073 if (!edmac->edma->m2m && dir != ep93xx_dma_chan_direction(chan)) {
1074 dev_warn(chan2dev(edmac),
1075 "channel was configured with different direction\n");
1076 return NULL;
1079 if (test_and_set_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags)) {
1080 dev_warn(chan2dev(edmac),
1081 "channel is already used for cyclic transfers\n");
1082 return NULL;
1085 if (period_len > DMA_MAX_CHAN_BYTES) {
1086 dev_warn(chan2dev(edmac), "too big period length %d\n",
1087 period_len);
1088 return NULL;
1091 /* Split the buffer into period size chunks */
1092 first = NULL;
1093 for (offset = 0; offset < buf_len; offset += period_len) {
1094 desc = ep93xx_dma_desc_get(edmac);
1095 if (!desc) {
1096 dev_warn(chan2dev(edmac), "couln't get descriptor\n");
1097 goto fail;
1100 if (dir == DMA_MEM_TO_DEV) {
1101 desc->src_addr = dma_addr + offset;
1102 desc->dst_addr = edmac->runtime_addr;
1103 } else {
1104 desc->src_addr = edmac->runtime_addr;
1105 desc->dst_addr = dma_addr + offset;
1108 desc->size = period_len;
1110 if (!first)
1111 first = desc;
1112 else
1113 list_add_tail(&desc->node, &first->tx_list);
1116 first->txd.cookie = -EBUSY;
1118 return &first->txd;
1120 fail:
1121 ep93xx_dma_desc_put(edmac, first);
1122 return NULL;
1126 * ep93xx_dma_terminate_all - terminate all transactions
1127 * @edmac: channel
1129 * Stops all DMA transactions. All descriptors are put back to the
1130 * @edmac->free_list and callbacks are _not_ called.
1132 static int ep93xx_dma_terminate_all(struct ep93xx_dma_chan *edmac)
1134 struct ep93xx_dma_desc *desc, *_d;
1135 unsigned long flags;
1136 LIST_HEAD(list);
1138 spin_lock_irqsave(&edmac->lock, flags);
1139 /* First we disable and flush the DMA channel */
1140 edmac->edma->hw_shutdown(edmac);
1141 clear_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags);
1142 list_splice_init(&edmac->active, &list);
1143 list_splice_init(&edmac->queue, &list);
1145 * We then re-enable the channel. This way we can continue submitting
1146 * the descriptors by just calling ->hw_submit() again.
1148 edmac->edma->hw_setup(edmac);
1149 spin_unlock_irqrestore(&edmac->lock, flags);
1151 list_for_each_entry_safe(desc, _d, &list, node)
1152 ep93xx_dma_desc_put(edmac, desc);
1154 return 0;
1157 static int ep93xx_dma_slave_config(struct ep93xx_dma_chan *edmac,
1158 struct dma_slave_config *config)
1160 enum dma_slave_buswidth width;
1161 unsigned long flags;
1162 u32 addr, ctrl;
1164 if (!edmac->edma->m2m)
1165 return -EINVAL;
1167 switch (config->direction) {
1168 case DMA_DEV_TO_MEM:
1169 width = config->src_addr_width;
1170 addr = config->src_addr;
1171 break;
1173 case DMA_MEM_TO_DEV:
1174 width = config->dst_addr_width;
1175 addr = config->dst_addr;
1176 break;
1178 default:
1179 return -EINVAL;
1182 switch (width) {
1183 case DMA_SLAVE_BUSWIDTH_1_BYTE:
1184 ctrl = 0;
1185 break;
1186 case DMA_SLAVE_BUSWIDTH_2_BYTES:
1187 ctrl = M2M_CONTROL_PW_16;
1188 break;
1189 case DMA_SLAVE_BUSWIDTH_4_BYTES:
1190 ctrl = M2M_CONTROL_PW_32;
1191 break;
1192 default:
1193 return -EINVAL;
1196 spin_lock_irqsave(&edmac->lock, flags);
1197 edmac->runtime_addr = addr;
1198 edmac->runtime_ctrl = ctrl;
1199 spin_unlock_irqrestore(&edmac->lock, flags);
1201 return 0;
1205 * ep93xx_dma_control - manipulate all pending operations on a channel
1206 * @chan: channel
1207 * @cmd: control command to perform
1208 * @arg: optional argument
1210 * Controls the channel. Function returns %0 in case of success or negative
1211 * error in case of failure.
1213 static int ep93xx_dma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
1214 unsigned long arg)
1216 struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
1217 struct dma_slave_config *config;
1219 switch (cmd) {
1220 case DMA_TERMINATE_ALL:
1221 return ep93xx_dma_terminate_all(edmac);
1223 case DMA_SLAVE_CONFIG:
1224 config = (struct dma_slave_config *)arg;
1225 return ep93xx_dma_slave_config(edmac, config);
1227 default:
1228 break;
1231 return -ENOSYS;
1235 * ep93xx_dma_tx_status - check if a transaction is completed
1236 * @chan: channel
1237 * @cookie: transaction specific cookie
1238 * @state: state of the transaction is stored here if given
1240 * This function can be used to query state of a given transaction.
1242 static enum dma_status ep93xx_dma_tx_status(struct dma_chan *chan,
1243 dma_cookie_t cookie,
1244 struct dma_tx_state *state)
1246 struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
1247 enum dma_status ret;
1248 unsigned long flags;
1250 spin_lock_irqsave(&edmac->lock, flags);
1251 ret = dma_cookie_status(chan, cookie, state);
1252 spin_unlock_irqrestore(&edmac->lock, flags);
1254 return ret;
1258 * ep93xx_dma_issue_pending - push pending transactions to the hardware
1259 * @chan: channel
1261 * When this function is called, all pending transactions are pushed to the
1262 * hardware and executed.
1264 static void ep93xx_dma_issue_pending(struct dma_chan *chan)
1266 ep93xx_dma_advance_work(to_ep93xx_dma_chan(chan));
1269 static int __init ep93xx_dma_probe(struct platform_device *pdev)
1271 struct ep93xx_dma_platform_data *pdata = dev_get_platdata(&pdev->dev);
1272 struct ep93xx_dma_engine *edma;
1273 struct dma_device *dma_dev;
1274 size_t edma_size;
1275 int ret, i;
1277 edma_size = pdata->num_channels * sizeof(struct ep93xx_dma_chan);
1278 edma = kzalloc(sizeof(*edma) + edma_size, GFP_KERNEL);
1279 if (!edma)
1280 return -ENOMEM;
1282 dma_dev = &edma->dma_dev;
1283 edma->m2m = platform_get_device_id(pdev)->driver_data;
1284 edma->num_channels = pdata->num_channels;
1286 INIT_LIST_HEAD(&dma_dev->channels);
1287 for (i = 0; i < pdata->num_channels; i++) {
1288 const struct ep93xx_dma_chan_data *cdata = &pdata->channels[i];
1289 struct ep93xx_dma_chan *edmac = &edma->channels[i];
1291 edmac->chan.device = dma_dev;
1292 edmac->regs = cdata->base;
1293 edmac->irq = cdata->irq;
1294 edmac->edma = edma;
1296 edmac->clk = clk_get(NULL, cdata->name);
1297 if (IS_ERR(edmac->clk)) {
1298 dev_warn(&pdev->dev, "failed to get clock for %s\n",
1299 cdata->name);
1300 continue;
1303 spin_lock_init(&edmac->lock);
1304 INIT_LIST_HEAD(&edmac->active);
1305 INIT_LIST_HEAD(&edmac->queue);
1306 INIT_LIST_HEAD(&edmac->free_list);
1307 tasklet_init(&edmac->tasklet, ep93xx_dma_tasklet,
1308 (unsigned long)edmac);
1310 list_add_tail(&edmac->chan.device_node,
1311 &dma_dev->channels);
1314 dma_cap_zero(dma_dev->cap_mask);
1315 dma_cap_set(DMA_SLAVE, dma_dev->cap_mask);
1316 dma_cap_set(DMA_CYCLIC, dma_dev->cap_mask);
1318 dma_dev->dev = &pdev->dev;
1319 dma_dev->device_alloc_chan_resources = ep93xx_dma_alloc_chan_resources;
1320 dma_dev->device_free_chan_resources = ep93xx_dma_free_chan_resources;
1321 dma_dev->device_prep_slave_sg = ep93xx_dma_prep_slave_sg;
1322 dma_dev->device_prep_dma_cyclic = ep93xx_dma_prep_dma_cyclic;
1323 dma_dev->device_control = ep93xx_dma_control;
1324 dma_dev->device_issue_pending = ep93xx_dma_issue_pending;
1325 dma_dev->device_tx_status = ep93xx_dma_tx_status;
1327 dma_set_max_seg_size(dma_dev->dev, DMA_MAX_CHAN_BYTES);
1329 if (edma->m2m) {
1330 dma_cap_set(DMA_MEMCPY, dma_dev->cap_mask);
1331 dma_dev->device_prep_dma_memcpy = ep93xx_dma_prep_dma_memcpy;
1333 edma->hw_setup = m2m_hw_setup;
1334 edma->hw_shutdown = m2m_hw_shutdown;
1335 edma->hw_submit = m2m_hw_submit;
1336 edma->hw_interrupt = m2m_hw_interrupt;
1337 } else {
1338 dma_cap_set(DMA_PRIVATE, dma_dev->cap_mask);
1340 edma->hw_setup = m2p_hw_setup;
1341 edma->hw_shutdown = m2p_hw_shutdown;
1342 edma->hw_submit = m2p_hw_submit;
1343 edma->hw_interrupt = m2p_hw_interrupt;
1346 ret = dma_async_device_register(dma_dev);
1347 if (unlikely(ret)) {
1348 for (i = 0; i < edma->num_channels; i++) {
1349 struct ep93xx_dma_chan *edmac = &edma->channels[i];
1350 if (!IS_ERR_OR_NULL(edmac->clk))
1351 clk_put(edmac->clk);
1353 kfree(edma);
1354 } else {
1355 dev_info(dma_dev->dev, "EP93xx M2%s DMA ready\n",
1356 edma->m2m ? "M" : "P");
1359 return ret;
1362 static struct platform_device_id ep93xx_dma_driver_ids[] = {
1363 { "ep93xx-dma-m2p", 0 },
1364 { "ep93xx-dma-m2m", 1 },
1365 { },
1368 static struct platform_driver ep93xx_dma_driver = {
1369 .driver = {
1370 .name = "ep93xx-dma",
1372 .id_table = ep93xx_dma_driver_ids,
1375 static int __init ep93xx_dma_module_init(void)
1377 return platform_driver_probe(&ep93xx_dma_driver, ep93xx_dma_probe);
1379 subsys_initcall(ep93xx_dma_module_init);
1381 MODULE_AUTHOR("Mika Westerberg <mika.westerberg@iki.fi>");
1382 MODULE_DESCRIPTION("EP93xx DMA driver");
1383 MODULE_LICENSE("GPL");