1 #include "amd64_edac.h"
2 #include <asm/amd_nb.h>
4 static struct edac_pci_ctl_info
*amd64_ctl_pci
;
6 static int report_gart_errors
;
7 module_param(report_gart_errors
, int, 0644);
10 * Set by command line parameter. If BIOS has enabled the ECC, this override is
11 * cleared to prevent re-enabling the hardware by this driver.
13 static int ecc_enable_override
;
14 module_param(ecc_enable_override
, int, 0644);
16 static struct msr __percpu
*msrs
;
19 * count successfully initialized driver instances for setup_pci_device()
21 static atomic_t drv_instances
= ATOMIC_INIT(0);
23 /* Per-node driver instances */
24 static struct mem_ctl_info
**mcis
;
25 static struct ecc_settings
**ecc_stngs
;
28 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
29 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
32 *FIXME: Produce a better mapping/linearisation.
35 u32 scrubval
; /* bit pattern for scrub rate */
36 u32 bandwidth
; /* bandwidth consumed (bytes/sec) */
38 { 0x01, 1600000000UL},
60 { 0x00, 0UL}, /* scrubbing off */
63 static int __amd64_read_pci_cfg_dword(struct pci_dev
*pdev
, int offset
,
64 u32
*val
, const char *func
)
68 err
= pci_read_config_dword(pdev
, offset
, val
);
70 amd64_warn("%s: error reading F%dx%03x.\n",
71 func
, PCI_FUNC(pdev
->devfn
), offset
);
76 int __amd64_write_pci_cfg_dword(struct pci_dev
*pdev
, int offset
,
77 u32 val
, const char *func
)
81 err
= pci_write_config_dword(pdev
, offset
, val
);
83 amd64_warn("%s: error writing to F%dx%03x.\n",
84 func
, PCI_FUNC(pdev
->devfn
), offset
);
91 * Depending on the family, F2 DCT reads need special handling:
93 * K8: has a single DCT only
95 * F10h: each DCT has its own set of regs
99 * F15h: we select which DCT we access using F1x10C[DctCfgSel]
102 static int k8_read_dct_pci_cfg(struct amd64_pvt
*pvt
, int addr
, u32
*val
,
108 return __amd64_read_pci_cfg_dword(pvt
->F2
, addr
, val
, func
);
111 static int f10_read_dct_pci_cfg(struct amd64_pvt
*pvt
, int addr
, u32
*val
,
114 return __amd64_read_pci_cfg_dword(pvt
->F2
, addr
, val
, func
);
118 * Select DCT to which PCI cfg accesses are routed
120 static void f15h_select_dct(struct amd64_pvt
*pvt
, u8 dct
)
124 amd64_read_pci_cfg(pvt
->F1
, DCT_CFG_SEL
, ®
);
127 amd64_write_pci_cfg(pvt
->F1
, DCT_CFG_SEL
, reg
);
130 static int f15_read_dct_pci_cfg(struct amd64_pvt
*pvt
, int addr
, u32
*val
,
135 if (addr
>= 0x140 && addr
<= 0x1a0) {
140 f15h_select_dct(pvt
, dct
);
142 return __amd64_read_pci_cfg_dword(pvt
->F2
, addr
, val
, func
);
146 * Memory scrubber control interface. For K8, memory scrubbing is handled by
147 * hardware and can involve L2 cache, dcache as well as the main memory. With
148 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
151 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
152 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
153 * bytes/sec for the setting.
155 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
156 * other archs, we might not have access to the caches directly.
160 * scan the scrub rate mapping table for a close or matching bandwidth value to
161 * issue. If requested is too big, then use last maximum value found.
163 static int __amd64_set_scrub_rate(struct pci_dev
*ctl
, u32 new_bw
, u32 min_rate
)
169 * map the configured rate (new_bw) to a value specific to the AMD64
170 * memory controller and apply to register. Search for the first
171 * bandwidth entry that is greater or equal than the setting requested
172 * and program that. If at last entry, turn off DRAM scrubbing.
174 * If no suitable bandwidth is found, turn off DRAM scrubbing entirely
175 * by falling back to the last element in scrubrates[].
177 for (i
= 0; i
< ARRAY_SIZE(scrubrates
) - 1; i
++) {
179 * skip scrub rates which aren't recommended
180 * (see F10 BKDG, F3x58)
182 if (scrubrates
[i
].scrubval
< min_rate
)
185 if (scrubrates
[i
].bandwidth
<= new_bw
)
189 scrubval
= scrubrates
[i
].scrubval
;
191 pci_write_bits32(ctl
, SCRCTRL
, scrubval
, 0x001F);
194 return scrubrates
[i
].bandwidth
;
199 static int amd64_set_scrub_rate(struct mem_ctl_info
*mci
, u32 bw
)
201 struct amd64_pvt
*pvt
= mci
->pvt_info
;
202 u32 min_scrubrate
= 0x5;
204 if (boot_cpu_data
.x86
== 0xf)
207 /* F15h Erratum #505 */
208 if (boot_cpu_data
.x86
== 0x15)
209 f15h_select_dct(pvt
, 0);
211 return __amd64_set_scrub_rate(pvt
->F3
, bw
, min_scrubrate
);
214 static int amd64_get_scrub_rate(struct mem_ctl_info
*mci
)
216 struct amd64_pvt
*pvt
= mci
->pvt_info
;
218 int i
, retval
= -EINVAL
;
220 /* F15h Erratum #505 */
221 if (boot_cpu_data
.x86
== 0x15)
222 f15h_select_dct(pvt
, 0);
224 amd64_read_pci_cfg(pvt
->F3
, SCRCTRL
, &scrubval
);
226 scrubval
= scrubval
& 0x001F;
228 for (i
= 0; i
< ARRAY_SIZE(scrubrates
); i
++) {
229 if (scrubrates
[i
].scrubval
== scrubval
) {
230 retval
= scrubrates
[i
].bandwidth
;
238 * returns true if the SysAddr given by sys_addr matches the
239 * DRAM base/limit associated with node_id
241 static bool amd64_base_limit_match(struct amd64_pvt
*pvt
, u64 sys_addr
,
246 /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
247 * all ones if the most significant implemented address bit is 1.
248 * Here we discard bits 63-40. See section 3.4.2 of AMD publication
249 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
250 * Application Programming.
252 addr
= sys_addr
& 0x000000ffffffffffull
;
254 return ((addr
>= get_dram_base(pvt
, nid
)) &&
255 (addr
<= get_dram_limit(pvt
, nid
)));
259 * Attempt to map a SysAddr to a node. On success, return a pointer to the
260 * mem_ctl_info structure for the node that the SysAddr maps to.
262 * On failure, return NULL.
264 static struct mem_ctl_info
*find_mc_by_sys_addr(struct mem_ctl_info
*mci
,
267 struct amd64_pvt
*pvt
;
272 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
273 * 3.4.4.2) registers to map the SysAddr to a node ID.
278 * The value of this field should be the same for all DRAM Base
279 * registers. Therefore we arbitrarily choose to read it from the
280 * register for node 0.
282 intlv_en
= dram_intlv_en(pvt
, 0);
285 for (node_id
= 0; node_id
< DRAM_RANGES
; node_id
++) {
286 if (amd64_base_limit_match(pvt
, sys_addr
, node_id
))
292 if (unlikely((intlv_en
!= 0x01) &&
293 (intlv_en
!= 0x03) &&
294 (intlv_en
!= 0x07))) {
295 amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en
);
299 bits
= (((u32
) sys_addr
) >> 12) & intlv_en
;
301 for (node_id
= 0; ; ) {
302 if ((dram_intlv_sel(pvt
, node_id
) & intlv_en
) == bits
)
303 break; /* intlv_sel field matches */
305 if (++node_id
>= DRAM_RANGES
)
309 /* sanity test for sys_addr */
310 if (unlikely(!amd64_base_limit_match(pvt
, sys_addr
, node_id
))) {
311 amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
312 "range for node %d with node interleaving enabled.\n",
313 __func__
, sys_addr
, node_id
);
318 return edac_mc_find((int)node_id
);
321 debugf2("sys_addr 0x%lx doesn't match any node\n",
322 (unsigned long)sys_addr
);
328 * compute the CS base address of the @csrow on the DRAM controller @dct.
329 * For details see F2x[5C:40] in the processor's BKDG
331 static void get_cs_base_and_mask(struct amd64_pvt
*pvt
, int csrow
, u8 dct
,
332 u64
*base
, u64
*mask
)
334 u64 csbase
, csmask
, base_bits
, mask_bits
;
337 if (boot_cpu_data
.x86
== 0xf && pvt
->ext_model
< K8_REV_F
) {
338 csbase
= pvt
->csels
[dct
].csbases
[csrow
];
339 csmask
= pvt
->csels
[dct
].csmasks
[csrow
];
340 base_bits
= GENMASK(21, 31) | GENMASK(9, 15);
341 mask_bits
= GENMASK(21, 29) | GENMASK(9, 15);
344 csbase
= pvt
->csels
[dct
].csbases
[csrow
];
345 csmask
= pvt
->csels
[dct
].csmasks
[csrow
>> 1];
348 if (boot_cpu_data
.x86
== 0x15)
349 base_bits
= mask_bits
= GENMASK(19,30) | GENMASK(5,13);
351 base_bits
= mask_bits
= GENMASK(19,28) | GENMASK(5,13);
354 *base
= (csbase
& base_bits
) << addr_shift
;
357 /* poke holes for the csmask */
358 *mask
&= ~(mask_bits
<< addr_shift
);
360 *mask
|= (csmask
& mask_bits
) << addr_shift
;
363 #define for_each_chip_select(i, dct, pvt) \
364 for (i = 0; i < pvt->csels[dct].b_cnt; i++)
366 #define chip_select_base(i, dct, pvt) \
367 pvt->csels[dct].csbases[i]
369 #define for_each_chip_select_mask(i, dct, pvt) \
370 for (i = 0; i < pvt->csels[dct].m_cnt; i++)
373 * @input_addr is an InputAddr associated with the node given by mci. Return the
374 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
376 static int input_addr_to_csrow(struct mem_ctl_info
*mci
, u64 input_addr
)
378 struct amd64_pvt
*pvt
;
384 for_each_chip_select(csrow
, 0, pvt
) {
385 if (!csrow_enabled(csrow
, 0, pvt
))
388 get_cs_base_and_mask(pvt
, csrow
, 0, &base
, &mask
);
392 if ((input_addr
& mask
) == (base
& mask
)) {
393 debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
394 (unsigned long)input_addr
, csrow
,
400 debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
401 (unsigned long)input_addr
, pvt
->mc_node_id
);
407 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
408 * for the node represented by mci. Info is passed back in *hole_base,
409 * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
410 * info is invalid. Info may be invalid for either of the following reasons:
412 * - The revision of the node is not E or greater. In this case, the DRAM Hole
413 * Address Register does not exist.
415 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
416 * indicating that its contents are not valid.
418 * The values passed back in *hole_base, *hole_offset, and *hole_size are
419 * complete 32-bit values despite the fact that the bitfields in the DHAR
420 * only represent bits 31-24 of the base and offset values.
422 int amd64_get_dram_hole_info(struct mem_ctl_info
*mci
, u64
*hole_base
,
423 u64
*hole_offset
, u64
*hole_size
)
425 struct amd64_pvt
*pvt
= mci
->pvt_info
;
428 /* only revE and later have the DRAM Hole Address Register */
429 if (boot_cpu_data
.x86
== 0xf && pvt
->ext_model
< K8_REV_E
) {
430 debugf1(" revision %d for node %d does not support DHAR\n",
431 pvt
->ext_model
, pvt
->mc_node_id
);
435 /* valid for Fam10h and above */
436 if (boot_cpu_data
.x86
>= 0x10 && !dhar_mem_hoist_valid(pvt
)) {
437 debugf1(" Dram Memory Hoisting is DISABLED on this system\n");
441 if (!dhar_valid(pvt
)) {
442 debugf1(" Dram Memory Hoisting is DISABLED on this node %d\n",
447 /* This node has Memory Hoisting */
449 /* +------------------+--------------------+--------------------+-----
450 * | memory | DRAM hole | relocated |
451 * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
453 * | | | [0x100000000, |
454 * | | | (0x100000000+ |
455 * | | | (0xffffffff-x))] |
456 * +------------------+--------------------+--------------------+-----
458 * Above is a diagram of physical memory showing the DRAM hole and the
459 * relocated addresses from the DRAM hole. As shown, the DRAM hole
460 * starts at address x (the base address) and extends through address
461 * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
462 * addresses in the hole so that they start at 0x100000000.
465 base
= dhar_base(pvt
);
468 *hole_size
= (0x1ull
<< 32) - base
;
470 if (boot_cpu_data
.x86
> 0xf)
471 *hole_offset
= f10_dhar_offset(pvt
);
473 *hole_offset
= k8_dhar_offset(pvt
);
475 debugf1(" DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
476 pvt
->mc_node_id
, (unsigned long)*hole_base
,
477 (unsigned long)*hole_offset
, (unsigned long)*hole_size
);
481 EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info
);
484 * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
485 * assumed that sys_addr maps to the node given by mci.
487 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
488 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
489 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
490 * then it is also involved in translating a SysAddr to a DramAddr. Sections
491 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
492 * These parts of the documentation are unclear. I interpret them as follows:
494 * When node n receives a SysAddr, it processes the SysAddr as follows:
496 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
497 * Limit registers for node n. If the SysAddr is not within the range
498 * specified by the base and limit values, then node n ignores the Sysaddr
499 * (since it does not map to node n). Otherwise continue to step 2 below.
501 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
502 * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
503 * the range of relocated addresses (starting at 0x100000000) from the DRAM
504 * hole. If not, skip to step 3 below. Else get the value of the
505 * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
506 * offset defined by this value from the SysAddr.
508 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
509 * Base register for node n. To obtain the DramAddr, subtract the base
510 * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
512 static u64
sys_addr_to_dram_addr(struct mem_ctl_info
*mci
, u64 sys_addr
)
514 struct amd64_pvt
*pvt
= mci
->pvt_info
;
515 u64 dram_base
, hole_base
, hole_offset
, hole_size
, dram_addr
;
518 dram_base
= get_dram_base(pvt
, pvt
->mc_node_id
);
520 ret
= amd64_get_dram_hole_info(mci
, &hole_base
, &hole_offset
,
523 if ((sys_addr
>= (1ull << 32)) &&
524 (sys_addr
< ((1ull << 32) + hole_size
))) {
525 /* use DHAR to translate SysAddr to DramAddr */
526 dram_addr
= sys_addr
- hole_offset
;
528 debugf2("using DHAR to translate SysAddr 0x%lx to "
530 (unsigned long)sys_addr
,
531 (unsigned long)dram_addr
);
538 * Translate the SysAddr to a DramAddr as shown near the start of
539 * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
540 * only deals with 40-bit values. Therefore we discard bits 63-40 of
541 * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
542 * discard are all 1s. Otherwise the bits we discard are all 0s. See
543 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
544 * Programmer's Manual Volume 1 Application Programming.
546 dram_addr
= (sys_addr
& GENMASK(0, 39)) - dram_base
;
548 debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
549 "DramAddr 0x%lx\n", (unsigned long)sys_addr
,
550 (unsigned long)dram_addr
);
555 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
556 * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
557 * for node interleaving.
559 static int num_node_interleave_bits(unsigned intlv_en
)
561 static const int intlv_shift_table
[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
564 BUG_ON(intlv_en
> 7);
565 n
= intlv_shift_table
[intlv_en
];
569 /* Translate the DramAddr given by @dram_addr to an InputAddr. */
570 static u64
dram_addr_to_input_addr(struct mem_ctl_info
*mci
, u64 dram_addr
)
572 struct amd64_pvt
*pvt
;
579 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
580 * concerning translating a DramAddr to an InputAddr.
582 intlv_shift
= num_node_interleave_bits(dram_intlv_en(pvt
, 0));
583 input_addr
= ((dram_addr
>> intlv_shift
) & GENMASK(12, 35)) +
586 debugf2(" Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
587 intlv_shift
, (unsigned long)dram_addr
,
588 (unsigned long)input_addr
);
594 * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
595 * assumed that @sys_addr maps to the node given by mci.
597 static u64
sys_addr_to_input_addr(struct mem_ctl_info
*mci
, u64 sys_addr
)
602 dram_addr_to_input_addr(mci
, sys_addr_to_dram_addr(mci
, sys_addr
));
604 debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
605 (unsigned long)sys_addr
, (unsigned long)input_addr
);
612 * @input_addr is an InputAddr associated with the node represented by mci.
613 * Translate @input_addr to a DramAddr and return the result.
615 static u64
input_addr_to_dram_addr(struct mem_ctl_info
*mci
, u64 input_addr
)
617 struct amd64_pvt
*pvt
;
618 unsigned node_id
, intlv_shift
;
623 * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
624 * shows how to translate a DramAddr to an InputAddr. Here we reverse
625 * this procedure. When translating from a DramAddr to an InputAddr, the
626 * bits used for node interleaving are discarded. Here we recover these
627 * bits from the IntlvSel field of the DRAM Limit register (section
628 * 3.4.4.2) for the node that input_addr is associated with.
631 node_id
= pvt
->mc_node_id
;
635 intlv_shift
= num_node_interleave_bits(dram_intlv_en(pvt
, 0));
636 if (intlv_shift
== 0) {
637 debugf1(" InputAddr 0x%lx translates to DramAddr of "
638 "same value\n", (unsigned long)input_addr
);
643 bits
= ((input_addr
& GENMASK(12, 35)) << intlv_shift
) +
644 (input_addr
& 0xfff);
646 intlv_sel
= dram_intlv_sel(pvt
, node_id
) & ((1 << intlv_shift
) - 1);
647 dram_addr
= bits
+ (intlv_sel
<< 12);
649 debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
650 "(%d node interleave bits)\n", (unsigned long)input_addr
,
651 (unsigned long)dram_addr
, intlv_shift
);
657 * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
658 * @dram_addr to a SysAddr.
660 static u64
dram_addr_to_sys_addr(struct mem_ctl_info
*mci
, u64 dram_addr
)
662 struct amd64_pvt
*pvt
= mci
->pvt_info
;
663 u64 hole_base
, hole_offset
, hole_size
, base
, sys_addr
;
666 ret
= amd64_get_dram_hole_info(mci
, &hole_base
, &hole_offset
,
669 if ((dram_addr
>= hole_base
) &&
670 (dram_addr
< (hole_base
+ hole_size
))) {
671 sys_addr
= dram_addr
+ hole_offset
;
673 debugf1("using DHAR to translate DramAddr 0x%lx to "
674 "SysAddr 0x%lx\n", (unsigned long)dram_addr
,
675 (unsigned long)sys_addr
);
681 base
= get_dram_base(pvt
, pvt
->mc_node_id
);
682 sys_addr
= dram_addr
+ base
;
685 * The sys_addr we have computed up to this point is a 40-bit value
686 * because the k8 deals with 40-bit values. However, the value we are
687 * supposed to return is a full 64-bit physical address. The AMD
688 * x86-64 architecture specifies that the most significant implemented
689 * address bit through bit 63 of a physical address must be either all
690 * 0s or all 1s. Therefore we sign-extend the 40-bit sys_addr to a
691 * 64-bit value below. See section 3.4.2 of AMD publication 24592:
692 * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
695 sys_addr
|= ~((sys_addr
& (1ull << 39)) - 1);
697 debugf1(" Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
698 pvt
->mc_node_id
, (unsigned long)dram_addr
,
699 (unsigned long)sys_addr
);
705 * @input_addr is an InputAddr associated with the node given by mci. Translate
706 * @input_addr to a SysAddr.
708 static inline u64
input_addr_to_sys_addr(struct mem_ctl_info
*mci
,
711 return dram_addr_to_sys_addr(mci
,
712 input_addr_to_dram_addr(mci
, input_addr
));
716 * Find the minimum and maximum InputAddr values that map to the given @csrow.
717 * Pass back these values in *input_addr_min and *input_addr_max.
719 static void find_csrow_limits(struct mem_ctl_info
*mci
, int csrow
,
720 u64
*input_addr_min
, u64
*input_addr_max
)
722 struct amd64_pvt
*pvt
;
726 BUG_ON((csrow
< 0) || (csrow
>= pvt
->csels
[0].b_cnt
));
728 get_cs_base_and_mask(pvt
, csrow
, 0, &base
, &mask
);
730 *input_addr_min
= base
& ~mask
;
731 *input_addr_max
= base
| mask
;
734 /* Map the Error address to a PAGE and PAGE OFFSET. */
735 static inline void error_address_to_page_and_offset(u64 error_address
,
736 u32
*page
, u32
*offset
)
738 *page
= (u32
) (error_address
>> PAGE_SHIFT
);
739 *offset
= ((u32
) error_address
) & ~PAGE_MASK
;
743 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
744 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
745 * of a node that detected an ECC memory error. mci represents the node that
746 * the error address maps to (possibly different from the node that detected
747 * the error). Return the number of the csrow that sys_addr maps to, or -1 on
750 static int sys_addr_to_csrow(struct mem_ctl_info
*mci
, u64 sys_addr
)
754 csrow
= input_addr_to_csrow(mci
, sys_addr_to_input_addr(mci
, sys_addr
));
757 amd64_mc_err(mci
, "Failed to translate InputAddr to csrow for "
758 "address 0x%lx\n", (unsigned long)sys_addr
);
762 static int get_channel_from_ecc_syndrome(struct mem_ctl_info
*, u16
);
765 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
768 static unsigned long amd64_determine_edac_cap(struct amd64_pvt
*pvt
)
771 unsigned long edac_cap
= EDAC_FLAG_NONE
;
773 bit
= (boot_cpu_data
.x86
> 0xf || pvt
->ext_model
>= K8_REV_F
)
777 if (pvt
->dclr0
& BIT(bit
))
778 edac_cap
= EDAC_FLAG_SECDED
;
783 static void amd64_debug_display_dimm_sizes(struct amd64_pvt
*, u8
);
785 static void amd64_dump_dramcfg_low(u32 dclr
, int chan
)
787 debugf1("F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan
, dclr
);
789 debugf1(" DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
790 (dclr
& BIT(16)) ? "un" : "",
791 (dclr
& BIT(19)) ? "yes" : "no");
793 debugf1(" PAR/ERR parity: %s\n",
794 (dclr
& BIT(8)) ? "enabled" : "disabled");
796 if (boot_cpu_data
.x86
== 0x10)
797 debugf1(" DCT 128bit mode width: %s\n",
798 (dclr
& BIT(11)) ? "128b" : "64b");
800 debugf1(" x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
801 (dclr
& BIT(12)) ? "yes" : "no",
802 (dclr
& BIT(13)) ? "yes" : "no",
803 (dclr
& BIT(14)) ? "yes" : "no",
804 (dclr
& BIT(15)) ? "yes" : "no");
807 /* Display and decode various NB registers for debug purposes. */
808 static void dump_misc_regs(struct amd64_pvt
*pvt
)
810 debugf1("F3xE8 (NB Cap): 0x%08x\n", pvt
->nbcap
);
812 debugf1(" NB two channel DRAM capable: %s\n",
813 (pvt
->nbcap
& NBCAP_DCT_DUAL
) ? "yes" : "no");
815 debugf1(" ECC capable: %s, ChipKill ECC capable: %s\n",
816 (pvt
->nbcap
& NBCAP_SECDED
) ? "yes" : "no",
817 (pvt
->nbcap
& NBCAP_CHIPKILL
) ? "yes" : "no");
819 amd64_dump_dramcfg_low(pvt
->dclr0
, 0);
821 debugf1("F3xB0 (Online Spare): 0x%08x\n", pvt
->online_spare
);
823 debugf1("F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, "
825 pvt
->dhar
, dhar_base(pvt
),
826 (boot_cpu_data
.x86
== 0xf) ? k8_dhar_offset(pvt
)
827 : f10_dhar_offset(pvt
));
829 debugf1(" DramHoleValid: %s\n", dhar_valid(pvt
) ? "yes" : "no");
831 amd64_debug_display_dimm_sizes(pvt
, 0);
833 /* everything below this point is Fam10h and above */
834 if (boot_cpu_data
.x86
== 0xf)
837 amd64_debug_display_dimm_sizes(pvt
, 1);
839 amd64_info("using %s syndromes.\n", ((pvt
->ecc_sym_sz
== 8) ? "x8" : "x4"));
841 /* Only if NOT ganged does dclr1 have valid info */
842 if (!dct_ganging_enabled(pvt
))
843 amd64_dump_dramcfg_low(pvt
->dclr1
, 1);
847 * see BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
849 static void prep_chip_selects(struct amd64_pvt
*pvt
)
851 if (boot_cpu_data
.x86
== 0xf && pvt
->ext_model
< K8_REV_F
) {
852 pvt
->csels
[0].b_cnt
= pvt
->csels
[1].b_cnt
= 8;
853 pvt
->csels
[0].m_cnt
= pvt
->csels
[1].m_cnt
= 8;
855 pvt
->csels
[0].b_cnt
= pvt
->csels
[1].b_cnt
= 8;
856 pvt
->csels
[0].m_cnt
= pvt
->csels
[1].m_cnt
= 4;
861 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
863 static void read_dct_base_mask(struct amd64_pvt
*pvt
)
867 prep_chip_selects(pvt
);
869 for_each_chip_select(cs
, 0, pvt
) {
870 int reg0
= DCSB0
+ (cs
* 4);
871 int reg1
= DCSB1
+ (cs
* 4);
872 u32
*base0
= &pvt
->csels
[0].csbases
[cs
];
873 u32
*base1
= &pvt
->csels
[1].csbases
[cs
];
875 if (!amd64_read_dct_pci_cfg(pvt
, reg0
, base0
))
876 debugf0(" DCSB0[%d]=0x%08x reg: F2x%x\n",
879 if (boot_cpu_data
.x86
== 0xf || dct_ganging_enabled(pvt
))
882 if (!amd64_read_dct_pci_cfg(pvt
, reg1
, base1
))
883 debugf0(" DCSB1[%d]=0x%08x reg: F2x%x\n",
887 for_each_chip_select_mask(cs
, 0, pvt
) {
888 int reg0
= DCSM0
+ (cs
* 4);
889 int reg1
= DCSM1
+ (cs
* 4);
890 u32
*mask0
= &pvt
->csels
[0].csmasks
[cs
];
891 u32
*mask1
= &pvt
->csels
[1].csmasks
[cs
];
893 if (!amd64_read_dct_pci_cfg(pvt
, reg0
, mask0
))
894 debugf0(" DCSM0[%d]=0x%08x reg: F2x%x\n",
897 if (boot_cpu_data
.x86
== 0xf || dct_ganging_enabled(pvt
))
900 if (!amd64_read_dct_pci_cfg(pvt
, reg1
, mask1
))
901 debugf0(" DCSM1[%d]=0x%08x reg: F2x%x\n",
906 static enum mem_type
amd64_determine_memory_type(struct amd64_pvt
*pvt
, int cs
)
910 /* F15h supports only DDR3 */
911 if (boot_cpu_data
.x86
>= 0x15)
912 type
= (pvt
->dclr0
& BIT(16)) ? MEM_DDR3
: MEM_RDDR3
;
913 else if (boot_cpu_data
.x86
== 0x10 || pvt
->ext_model
>= K8_REV_F
) {
914 if (pvt
->dchr0
& DDR3_MODE
)
915 type
= (pvt
->dclr0
& BIT(16)) ? MEM_DDR3
: MEM_RDDR3
;
917 type
= (pvt
->dclr0
& BIT(16)) ? MEM_DDR2
: MEM_RDDR2
;
919 type
= (pvt
->dclr0
& BIT(18)) ? MEM_DDR
: MEM_RDDR
;
922 amd64_info("CS%d: %s\n", cs
, edac_mem_types
[type
]);
927 /* Get the number of DCT channels the memory controller is using. */
928 static int k8_early_channel_count(struct amd64_pvt
*pvt
)
932 if (pvt
->ext_model
>= K8_REV_F
)
933 /* RevF (NPT) and later */
934 flag
= pvt
->dclr0
& WIDTH_128
;
936 /* RevE and earlier */
937 flag
= pvt
->dclr0
& REVE_WIDTH_128
;
942 return (flag
) ? 2 : 1;
945 /* On F10h and later ErrAddr is MC4_ADDR[47:1] */
946 static u64
get_error_address(struct mce
*m
)
948 struct cpuinfo_x86
*c
= &boot_cpu_data
;
958 addr
= m
->addr
& GENMASK(start_bit
, end_bit
);
961 * Erratum 637 workaround
963 if (c
->x86
== 0x15) {
964 struct amd64_pvt
*pvt
;
965 u64 cc6_base
, tmp_addr
;
967 u8 mce_nid
, intlv_en
;
969 if ((addr
& GENMASK(24, 47)) >> 24 != 0x00fdf7)
972 mce_nid
= amd_get_nb_id(m
->extcpu
);
973 pvt
= mcis
[mce_nid
]->pvt_info
;
975 amd64_read_pci_cfg(pvt
->F1
, DRAM_LOCAL_NODE_LIM
, &tmp
);
976 intlv_en
= tmp
>> 21 & 0x7;
978 /* add [47:27] + 3 trailing bits */
979 cc6_base
= (tmp
& GENMASK(0, 20)) << 3;
981 /* reverse and add DramIntlvEn */
982 cc6_base
|= intlv_en
^ 0x7;
988 return cc6_base
| (addr
& GENMASK(0, 23));
990 amd64_read_pci_cfg(pvt
->F1
, DRAM_LOCAL_NODE_BASE
, &tmp
);
993 tmp_addr
= (addr
& GENMASK(12, 23)) << __fls(intlv_en
+ 1);
995 /* OR DramIntlvSel into bits [14:12] */
996 tmp_addr
|= (tmp
& GENMASK(21, 23)) >> 9;
998 /* add remaining [11:0] bits from original MC4_ADDR */
999 tmp_addr
|= addr
& GENMASK(0, 11);
1001 return cc6_base
| tmp_addr
;
1007 static void read_dram_base_limit_regs(struct amd64_pvt
*pvt
, unsigned range
)
1009 struct cpuinfo_x86
*c
= &boot_cpu_data
;
1010 int off
= range
<< 3;
1012 amd64_read_pci_cfg(pvt
->F1
, DRAM_BASE_LO
+ off
, &pvt
->ranges
[range
].base
.lo
);
1013 amd64_read_pci_cfg(pvt
->F1
, DRAM_LIMIT_LO
+ off
, &pvt
->ranges
[range
].lim
.lo
);
1018 if (!dram_rw(pvt
, range
))
1021 amd64_read_pci_cfg(pvt
->F1
, DRAM_BASE_HI
+ off
, &pvt
->ranges
[range
].base
.hi
);
1022 amd64_read_pci_cfg(pvt
->F1
, DRAM_LIMIT_HI
+ off
, &pvt
->ranges
[range
].lim
.hi
);
1024 /* Factor in CC6 save area by reading dst node's limit reg */
1025 if (c
->x86
== 0x15) {
1026 struct pci_dev
*f1
= NULL
;
1027 u8 nid
= dram_dst_node(pvt
, range
);
1030 f1
= pci_get_domain_bus_and_slot(0, 0, PCI_DEVFN(0x18 + nid
, 1));
1034 amd64_read_pci_cfg(f1
, DRAM_LOCAL_NODE_LIM
, &llim
);
1036 pvt
->ranges
[range
].lim
.lo
&= GENMASK(0, 15);
1038 /* {[39:27],111b} */
1039 pvt
->ranges
[range
].lim
.lo
|= ((llim
& 0x1fff) << 3 | 0x7) << 16;
1041 pvt
->ranges
[range
].lim
.hi
&= GENMASK(0, 7);
1044 pvt
->ranges
[range
].lim
.hi
|= llim
>> 13;
1050 static void k8_map_sysaddr_to_csrow(struct mem_ctl_info
*mci
, u64 sys_addr
,
1053 struct mem_ctl_info
*src_mci
;
1054 struct amd64_pvt
*pvt
= mci
->pvt_info
;
1058 /* CHIPKILL enabled */
1059 if (pvt
->nbcfg
& NBCFG_CHIPKILL
) {
1060 channel
= get_channel_from_ecc_syndrome(mci
, syndrome
);
1063 * Syndrome didn't map, so we don't know which of the
1064 * 2 DIMMs is in error. So we need to ID 'both' of them
1067 amd64_mc_warn(mci
, "unknown syndrome 0x%04x - possible "
1068 "error reporting race\n", syndrome
);
1069 edac_mc_handle_ce_no_info(mci
, EDAC_MOD_STR
);
1074 * non-chipkill ecc mode
1076 * The k8 documentation is unclear about how to determine the
1077 * channel number when using non-chipkill memory. This method
1078 * was obtained from email communication with someone at AMD.
1079 * (Wish the email was placed in this comment - norsk)
1081 channel
= ((sys_addr
& BIT(3)) != 0);
1085 * Find out which node the error address belongs to. This may be
1086 * different from the node that detected the error.
1088 src_mci
= find_mc_by_sys_addr(mci
, sys_addr
);
1090 amd64_mc_err(mci
, "failed to map error addr 0x%lx to a node\n",
1091 (unsigned long)sys_addr
);
1092 edac_mc_handle_ce_no_info(mci
, EDAC_MOD_STR
);
1096 /* Now map the sys_addr to a CSROW */
1097 csrow
= sys_addr_to_csrow(src_mci
, sys_addr
);
1099 edac_mc_handle_ce_no_info(src_mci
, EDAC_MOD_STR
);
1101 error_address_to_page_and_offset(sys_addr
, &page
, &offset
);
1103 edac_mc_handle_ce(src_mci
, page
, offset
, syndrome
, csrow
,
1104 channel
, EDAC_MOD_STR
);
1108 static int ddr2_cs_size(unsigned i
, bool dct_width
)
1114 else if (!(i
& 0x1))
1117 shift
= (i
+ 1) >> 1;
1119 return 128 << (shift
+ !!dct_width
);
1122 static int k8_dbam_to_chip_select(struct amd64_pvt
*pvt
, u8 dct
,
1125 u32 dclr
= dct
? pvt
->dclr1
: pvt
->dclr0
;
1127 if (pvt
->ext_model
>= K8_REV_F
) {
1128 WARN_ON(cs_mode
> 11);
1129 return ddr2_cs_size(cs_mode
, dclr
& WIDTH_128
);
1131 else if (pvt
->ext_model
>= K8_REV_D
) {
1133 WARN_ON(cs_mode
> 10);
1136 * the below calculation, besides trying to win an obfuscated C
1137 * contest, maps cs_mode values to DIMM chip select sizes. The
1140 * cs_mode CS size (mb)
1141 * ======= ============
1154 * Basically, it calculates a value with which to shift the
1155 * smallest CS size of 32MB.
1157 * ddr[23]_cs_size have a similar purpose.
1159 diff
= cs_mode
/3 + (unsigned)(cs_mode
> 5);
1161 return 32 << (cs_mode
- diff
);
1164 WARN_ON(cs_mode
> 6);
1165 return 32 << cs_mode
;
1170 * Get the number of DCT channels in use.
1173 * number of Memory Channels in operation
1175 * contents of the DCL0_LOW register
1177 static int f1x_early_channel_count(struct amd64_pvt
*pvt
)
1179 int i
, j
, channels
= 0;
1181 /* On F10h, if we are in 128 bit mode, then we are using 2 channels */
1182 if (boot_cpu_data
.x86
== 0x10 && (pvt
->dclr0
& WIDTH_128
))
1186 * Need to check if in unganged mode: In such, there are 2 channels,
1187 * but they are not in 128 bit mode and thus the above 'dclr0' status
1190 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
1191 * their CSEnable bit on. If so, then SINGLE DIMM case.
1193 debugf0("Data width is not 128 bits - need more decoding\n");
1196 * Check DRAM Bank Address Mapping values for each DIMM to see if there
1197 * is more than just one DIMM present in unganged mode. Need to check
1198 * both controllers since DIMMs can be placed in either one.
1200 for (i
= 0; i
< 2; i
++) {
1201 u32 dbam
= (i
? pvt
->dbam1
: pvt
->dbam0
);
1203 for (j
= 0; j
< 4; j
++) {
1204 if (DBAM_DIMM(j
, dbam
) > 0) {
1214 amd64_info("MCT channel count: %d\n", channels
);
1219 static int ddr3_cs_size(unsigned i
, bool dct_width
)
1224 if (i
== 0 || i
== 3 || i
== 4)
1230 else if (!(i
& 0x1))
1233 shift
= (i
+ 1) >> 1;
1236 cs_size
= (128 * (1 << !!dct_width
)) << shift
;
1241 static int f10_dbam_to_chip_select(struct amd64_pvt
*pvt
, u8 dct
,
1244 u32 dclr
= dct
? pvt
->dclr1
: pvt
->dclr0
;
1246 WARN_ON(cs_mode
> 11);
1248 if (pvt
->dchr0
& DDR3_MODE
|| pvt
->dchr1
& DDR3_MODE
)
1249 return ddr3_cs_size(cs_mode
, dclr
& WIDTH_128
);
1251 return ddr2_cs_size(cs_mode
, dclr
& WIDTH_128
);
1255 * F15h supports only 64bit DCT interfaces
1257 static int f15_dbam_to_chip_select(struct amd64_pvt
*pvt
, u8 dct
,
1260 WARN_ON(cs_mode
> 12);
1262 return ddr3_cs_size(cs_mode
, false);
1265 static void read_dram_ctl_register(struct amd64_pvt
*pvt
)
1268 if (boot_cpu_data
.x86
== 0xf)
1271 if (!amd64_read_dct_pci_cfg(pvt
, DCT_SEL_LO
, &pvt
->dct_sel_lo
)) {
1272 debugf0("F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
1273 pvt
->dct_sel_lo
, dct_sel_baseaddr(pvt
));
1275 debugf0(" DCTs operate in %s mode.\n",
1276 (dct_ganging_enabled(pvt
) ? "ganged" : "unganged"));
1278 if (!dct_ganging_enabled(pvt
))
1279 debugf0(" Address range split per DCT: %s\n",
1280 (dct_high_range_enabled(pvt
) ? "yes" : "no"));
1282 debugf0(" data interleave for ECC: %s, "
1283 "DRAM cleared since last warm reset: %s\n",
1284 (dct_data_intlv_enabled(pvt
) ? "enabled" : "disabled"),
1285 (dct_memory_cleared(pvt
) ? "yes" : "no"));
1287 debugf0(" channel interleave: %s, "
1288 "interleave bits selector: 0x%x\n",
1289 (dct_interleave_enabled(pvt
) ? "enabled" : "disabled"),
1290 dct_sel_interleave_addr(pvt
));
1293 amd64_read_dct_pci_cfg(pvt
, DCT_SEL_HI
, &pvt
->dct_sel_hi
);
1297 * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
1298 * Interleaving Modes.
1300 static u8
f1x_determine_channel(struct amd64_pvt
*pvt
, u64 sys_addr
,
1301 bool hi_range_sel
, u8 intlv_en
)
1303 u8 dct_sel_high
= (pvt
->dct_sel_lo
>> 1) & 1;
1305 if (dct_ganging_enabled(pvt
))
1309 return dct_sel_high
;
1312 * see F2x110[DctSelIntLvAddr] - channel interleave mode
1314 if (dct_interleave_enabled(pvt
)) {
1315 u8 intlv_addr
= dct_sel_interleave_addr(pvt
);
1317 /* return DCT select function: 0=DCT0, 1=DCT1 */
1319 return sys_addr
>> 6 & 1;
1321 if (intlv_addr
& 0x2) {
1322 u8 shift
= intlv_addr
& 0x1 ? 9 : 6;
1323 u32 temp
= hweight_long((u32
) ((sys_addr
>> 16) & 0x1F)) % 2;
1325 return ((sys_addr
>> shift
) & 1) ^ temp
;
1328 return (sys_addr
>> (12 + hweight8(intlv_en
))) & 1;
1331 if (dct_high_range_enabled(pvt
))
1332 return ~dct_sel_high
& 1;
1337 /* Convert the sys_addr to the normalized DCT address */
1338 static u64
f1x_get_norm_dct_addr(struct amd64_pvt
*pvt
, unsigned range
,
1339 u64 sys_addr
, bool hi_rng
,
1340 u32 dct_sel_base_addr
)
1343 u64 dram_base
= get_dram_base(pvt
, range
);
1344 u64 hole_off
= f10_dhar_offset(pvt
);
1345 u64 dct_sel_base_off
= (pvt
->dct_sel_hi
& 0xFFFFFC00) << 16;
1350 * base address of high range is below 4Gb
1351 * (bits [47:27] at [31:11])
1352 * DRAM address space on this DCT is hoisted above 4Gb &&
1355 * remove hole offset from sys_addr
1357 * remove high range offset from sys_addr
1359 if ((!(dct_sel_base_addr
>> 16) ||
1360 dct_sel_base_addr
< dhar_base(pvt
)) &&
1362 (sys_addr
>= BIT_64(32)))
1363 chan_off
= hole_off
;
1365 chan_off
= dct_sel_base_off
;
1369 * we have a valid hole &&
1374 * remove dram base to normalize to DCT address
1376 if (dhar_valid(pvt
) && (sys_addr
>= BIT_64(32)))
1377 chan_off
= hole_off
;
1379 chan_off
= dram_base
;
1382 return (sys_addr
& GENMASK(6,47)) - (chan_off
& GENMASK(23,47));
1386 * checks if the csrow passed in is marked as SPARED, if so returns the new
1389 static int f10_process_possible_spare(struct amd64_pvt
*pvt
, u8 dct
, int csrow
)
1393 if (online_spare_swap_done(pvt
, dct
) &&
1394 csrow
== online_spare_bad_dramcs(pvt
, dct
)) {
1396 for_each_chip_select(tmp_cs
, dct
, pvt
) {
1397 if (chip_select_base(tmp_cs
, dct
, pvt
) & 0x2) {
1407 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
1408 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
1411 * -EINVAL: NOT FOUND
1412 * 0..csrow = Chip-Select Row
1414 static int f1x_lookup_addr_in_dct(u64 in_addr
, u32 nid
, u8 dct
)
1416 struct mem_ctl_info
*mci
;
1417 struct amd64_pvt
*pvt
;
1418 u64 cs_base
, cs_mask
;
1419 int cs_found
= -EINVAL
;
1426 pvt
= mci
->pvt_info
;
1428 debugf1("input addr: 0x%llx, DCT: %d\n", in_addr
, dct
);
1430 for_each_chip_select(csrow
, dct
, pvt
) {
1431 if (!csrow_enabled(csrow
, dct
, pvt
))
1434 get_cs_base_and_mask(pvt
, csrow
, dct
, &cs_base
, &cs_mask
);
1436 debugf1(" CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
1437 csrow
, cs_base
, cs_mask
);
1441 debugf1(" (InputAddr & ~CSMask)=0x%llx "
1442 "(CSBase & ~CSMask)=0x%llx\n",
1443 (in_addr
& cs_mask
), (cs_base
& cs_mask
));
1445 if ((in_addr
& cs_mask
) == (cs_base
& cs_mask
)) {
1446 cs_found
= f10_process_possible_spare(pvt
, dct
, csrow
);
1448 debugf1(" MATCH csrow=%d\n", cs_found
);
1456 * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
1457 * swapped with a region located at the bottom of memory so that the GPU can use
1458 * the interleaved region and thus two channels.
1460 static u64
f1x_swap_interleaved_region(struct amd64_pvt
*pvt
, u64 sys_addr
)
1462 u32 swap_reg
, swap_base
, swap_limit
, rgn_size
, tmp_addr
;
1464 if (boot_cpu_data
.x86
== 0x10) {
1465 /* only revC3 and revE have that feature */
1466 if (boot_cpu_data
.x86_model
< 4 ||
1467 (boot_cpu_data
.x86_model
< 0xa &&
1468 boot_cpu_data
.x86_mask
< 3))
1472 amd64_read_dct_pci_cfg(pvt
, SWAP_INTLV_REG
, &swap_reg
);
1474 if (!(swap_reg
& 0x1))
1477 swap_base
= (swap_reg
>> 3) & 0x7f;
1478 swap_limit
= (swap_reg
>> 11) & 0x7f;
1479 rgn_size
= (swap_reg
>> 20) & 0x7f;
1480 tmp_addr
= sys_addr
>> 27;
1482 if (!(sys_addr
>> 34) &&
1483 (((tmp_addr
>= swap_base
) &&
1484 (tmp_addr
<= swap_limit
)) ||
1485 (tmp_addr
< rgn_size
)))
1486 return sys_addr
^ (u64
)swap_base
<< 27;
1491 /* For a given @dram_range, check if @sys_addr falls within it. */
1492 static int f1x_match_to_this_node(struct amd64_pvt
*pvt
, unsigned range
,
1493 u64 sys_addr
, int *nid
, int *chan_sel
)
1495 int cs_found
= -EINVAL
;
1499 bool high_range
= false;
1501 u8 node_id
= dram_dst_node(pvt
, range
);
1502 u8 intlv_en
= dram_intlv_en(pvt
, range
);
1503 u32 intlv_sel
= dram_intlv_sel(pvt
, range
);
1505 debugf1("(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
1506 range
, sys_addr
, get_dram_limit(pvt
, range
));
1508 if (dhar_valid(pvt
) &&
1509 dhar_base(pvt
) <= sys_addr
&&
1510 sys_addr
< BIT_64(32)) {
1511 amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
1516 if (intlv_en
&& (intlv_sel
!= ((sys_addr
>> 12) & intlv_en
)))
1519 sys_addr
= f1x_swap_interleaved_region(pvt
, sys_addr
);
1521 dct_sel_base
= dct_sel_baseaddr(pvt
);
1524 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
1525 * select between DCT0 and DCT1.
1527 if (dct_high_range_enabled(pvt
) &&
1528 !dct_ganging_enabled(pvt
) &&
1529 ((sys_addr
>> 27) >= (dct_sel_base
>> 11)))
1532 channel
= f1x_determine_channel(pvt
, sys_addr
, high_range
, intlv_en
);
1534 chan_addr
= f1x_get_norm_dct_addr(pvt
, range
, sys_addr
,
1535 high_range
, dct_sel_base
);
1537 /* Remove node interleaving, see F1x120 */
1539 chan_addr
= ((chan_addr
>> (12 + hweight8(intlv_en
))) << 12) |
1540 (chan_addr
& 0xfff);
1542 /* remove channel interleave */
1543 if (dct_interleave_enabled(pvt
) &&
1544 !dct_high_range_enabled(pvt
) &&
1545 !dct_ganging_enabled(pvt
)) {
1547 if (dct_sel_interleave_addr(pvt
) != 1) {
1548 if (dct_sel_interleave_addr(pvt
) == 0x3)
1550 chan_addr
= ((chan_addr
>> 10) << 9) |
1551 (chan_addr
& 0x1ff);
1553 /* A[6] or hash 6 */
1554 chan_addr
= ((chan_addr
>> 7) << 6) |
1558 chan_addr
= ((chan_addr
>> 13) << 12) |
1559 (chan_addr
& 0xfff);
1562 debugf1(" Normalized DCT addr: 0x%llx\n", chan_addr
);
1564 cs_found
= f1x_lookup_addr_in_dct(chan_addr
, node_id
, channel
);
1566 if (cs_found
>= 0) {
1568 *chan_sel
= channel
;
1573 static int f1x_translate_sysaddr_to_cs(struct amd64_pvt
*pvt
, u64 sys_addr
,
1574 int *node
, int *chan_sel
)
1576 int cs_found
= -EINVAL
;
1579 for (range
= 0; range
< DRAM_RANGES
; range
++) {
1581 if (!dram_rw(pvt
, range
))
1584 if ((get_dram_base(pvt
, range
) <= sys_addr
) &&
1585 (get_dram_limit(pvt
, range
) >= sys_addr
)) {
1587 cs_found
= f1x_match_to_this_node(pvt
, range
,
1598 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
1599 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
1601 * The @sys_addr is usually an error address received from the hardware
1604 static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info
*mci
, u64 sys_addr
,
1607 struct amd64_pvt
*pvt
= mci
->pvt_info
;
1609 int nid
, csrow
, chan
= 0;
1611 csrow
= f1x_translate_sysaddr_to_cs(pvt
, sys_addr
, &nid
, &chan
);
1614 edac_mc_handle_ce_no_info(mci
, EDAC_MOD_STR
);
1618 error_address_to_page_and_offset(sys_addr
, &page
, &offset
);
1621 * We need the syndromes for channel detection only when we're
1622 * ganged. Otherwise @chan should already contain the channel at
1625 if (dct_ganging_enabled(pvt
))
1626 chan
= get_channel_from_ecc_syndrome(mci
, syndrome
);
1629 edac_mc_handle_ce(mci
, page
, offset
, syndrome
, csrow
, chan
,
1633 * Channel unknown, report all channels on this CSROW as failed.
1635 for (chan
= 0; chan
< mci
->csrows
[csrow
].nr_channels
; chan
++)
1636 edac_mc_handle_ce(mci
, page
, offset
, syndrome
,
1637 csrow
, chan
, EDAC_MOD_STR
);
1641 * debug routine to display the memory sizes of all logical DIMMs and its
1644 static void amd64_debug_display_dimm_sizes(struct amd64_pvt
*pvt
, u8 ctrl
)
1646 int dimm
, size0
, size1
, factor
= 0;
1647 u32
*dcsb
= ctrl
? pvt
->csels
[1].csbases
: pvt
->csels
[0].csbases
;
1648 u32 dbam
= ctrl
? pvt
->dbam1
: pvt
->dbam0
;
1650 if (boot_cpu_data
.x86
== 0xf) {
1651 if (pvt
->dclr0
& WIDTH_128
)
1654 /* K8 families < revF not supported yet */
1655 if (pvt
->ext_model
< K8_REV_F
)
1661 dbam
= (ctrl
&& !dct_ganging_enabled(pvt
)) ? pvt
->dbam1
: pvt
->dbam0
;
1662 dcsb
= (ctrl
&& !dct_ganging_enabled(pvt
)) ? pvt
->csels
[1].csbases
1663 : pvt
->csels
[0].csbases
;
1665 debugf1("F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n", ctrl
, dbam
);
1667 edac_printk(KERN_DEBUG
, EDAC_MC
, "DCT%d chip selects:\n", ctrl
);
1669 /* Dump memory sizes for DIMM and its CSROWs */
1670 for (dimm
= 0; dimm
< 4; dimm
++) {
1673 if (dcsb
[dimm
*2] & DCSB_CS_ENABLE
)
1674 size0
= pvt
->ops
->dbam_to_cs(pvt
, ctrl
,
1675 DBAM_DIMM(dimm
, dbam
));
1678 if (dcsb
[dimm
*2 + 1] & DCSB_CS_ENABLE
)
1679 size1
= pvt
->ops
->dbam_to_cs(pvt
, ctrl
,
1680 DBAM_DIMM(dimm
, dbam
));
1682 amd64_info(EDAC_MC
": %d: %5dMB %d: %5dMB\n",
1683 dimm
* 2, size0
<< factor
,
1684 dimm
* 2 + 1, size1
<< factor
);
1688 static struct amd64_family_type amd64_family_types
[] = {
1691 .f1_id
= PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP
,
1692 .f3_id
= PCI_DEVICE_ID_AMD_K8_NB_MISC
,
1694 .early_channel_count
= k8_early_channel_count
,
1695 .map_sysaddr_to_csrow
= k8_map_sysaddr_to_csrow
,
1696 .dbam_to_cs
= k8_dbam_to_chip_select
,
1697 .read_dct_pci_cfg
= k8_read_dct_pci_cfg
,
1702 .f1_id
= PCI_DEVICE_ID_AMD_10H_NB_MAP
,
1703 .f3_id
= PCI_DEVICE_ID_AMD_10H_NB_MISC
,
1705 .early_channel_count
= f1x_early_channel_count
,
1706 .map_sysaddr_to_csrow
= f1x_map_sysaddr_to_csrow
,
1707 .dbam_to_cs
= f10_dbam_to_chip_select
,
1708 .read_dct_pci_cfg
= f10_read_dct_pci_cfg
,
1713 .f1_id
= PCI_DEVICE_ID_AMD_15H_NB_F1
,
1714 .f3_id
= PCI_DEVICE_ID_AMD_15H_NB_F3
,
1716 .early_channel_count
= f1x_early_channel_count
,
1717 .map_sysaddr_to_csrow
= f1x_map_sysaddr_to_csrow
,
1718 .dbam_to_cs
= f15_dbam_to_chip_select
,
1719 .read_dct_pci_cfg
= f15_read_dct_pci_cfg
,
1724 static struct pci_dev
*pci_get_related_function(unsigned int vendor
,
1725 unsigned int device
,
1726 struct pci_dev
*related
)
1728 struct pci_dev
*dev
= NULL
;
1730 dev
= pci_get_device(vendor
, device
, dev
);
1732 if ((dev
->bus
->number
== related
->bus
->number
) &&
1733 (PCI_SLOT(dev
->devfn
) == PCI_SLOT(related
->devfn
)))
1735 dev
= pci_get_device(vendor
, device
, dev
);
1742 * These are tables of eigenvectors (one per line) which can be used for the
1743 * construction of the syndrome tables. The modified syndrome search algorithm
1744 * uses those to find the symbol in error and thus the DIMM.
1746 * Algorithm courtesy of Ross LaFetra from AMD.
1748 static u16 x4_vectors
[] = {
1749 0x2f57, 0x1afe, 0x66cc, 0xdd88,
1750 0x11eb, 0x3396, 0x7f4c, 0xeac8,
1751 0x0001, 0x0002, 0x0004, 0x0008,
1752 0x1013, 0x3032, 0x4044, 0x8088,
1753 0x106b, 0x30d6, 0x70fc, 0xe0a8,
1754 0x4857, 0xc4fe, 0x13cc, 0x3288,
1755 0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
1756 0x1f39, 0x251e, 0xbd6c, 0x6bd8,
1757 0x15c1, 0x2a42, 0x89ac, 0x4758,
1758 0x2b03, 0x1602, 0x4f0c, 0xca08,
1759 0x1f07, 0x3a0e, 0x6b04, 0xbd08,
1760 0x8ba7, 0x465e, 0x244c, 0x1cc8,
1761 0x2b87, 0x164e, 0x642c, 0xdc18,
1762 0x40b9, 0x80de, 0x1094, 0x20e8,
1763 0x27db, 0x1eb6, 0x9dac, 0x7b58,
1764 0x11c1, 0x2242, 0x84ac, 0x4c58,
1765 0x1be5, 0x2d7a, 0x5e34, 0xa718,
1766 0x4b39, 0x8d1e, 0x14b4, 0x28d8,
1767 0x4c97, 0xc87e, 0x11fc, 0x33a8,
1768 0x8e97, 0x497e, 0x2ffc, 0x1aa8,
1769 0x16b3, 0x3d62, 0x4f34, 0x8518,
1770 0x1e2f, 0x391a, 0x5cac, 0xf858,
1771 0x1d9f, 0x3b7a, 0x572c, 0xfe18,
1772 0x15f5, 0x2a5a, 0x5264, 0xa3b8,
1773 0x1dbb, 0x3b66, 0x715c, 0xe3f8,
1774 0x4397, 0xc27e, 0x17fc, 0x3ea8,
1775 0x1617, 0x3d3e, 0x6464, 0xb8b8,
1776 0x23ff, 0x12aa, 0xab6c, 0x56d8,
1777 0x2dfb, 0x1ba6, 0x913c, 0x7328,
1778 0x185d, 0x2ca6, 0x7914, 0x9e28,
1779 0x171b, 0x3e36, 0x7d7c, 0xebe8,
1780 0x4199, 0x82ee, 0x19f4, 0x2e58,
1781 0x4807, 0xc40e, 0x130c, 0x3208,
1782 0x1905, 0x2e0a, 0x5804, 0xac08,
1783 0x213f, 0x132a, 0xadfc, 0x5ba8,
1784 0x19a9, 0x2efe, 0xb5cc, 0x6f88,
1787 static u16 x8_vectors
[] = {
1788 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
1789 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
1790 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
1791 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
1792 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
1793 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
1794 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
1795 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
1796 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
1797 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
1798 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
1799 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
1800 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
1801 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
1802 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
1803 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
1804 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
1805 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
1806 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
1809 static int decode_syndrome(u16 syndrome
, u16
*vectors
, unsigned num_vecs
,
1812 unsigned int i
, err_sym
;
1814 for (err_sym
= 0; err_sym
< num_vecs
/ v_dim
; err_sym
++) {
1816 unsigned v_idx
= err_sym
* v_dim
;
1817 unsigned v_end
= (err_sym
+ 1) * v_dim
;
1819 /* walk over all 16 bits of the syndrome */
1820 for (i
= 1; i
< (1U << 16); i
<<= 1) {
1822 /* if bit is set in that eigenvector... */
1823 if (v_idx
< v_end
&& vectors
[v_idx
] & i
) {
1824 u16 ev_comp
= vectors
[v_idx
++];
1826 /* ... and bit set in the modified syndrome, */
1836 /* can't get to zero, move to next symbol */
1841 debugf0("syndrome(%x) not found\n", syndrome
);
1845 static int map_err_sym_to_channel(int err_sym
, int sym_size
)
1858 return err_sym
>> 4;
1864 /* imaginary bits not in a DIMM */
1866 WARN(1, KERN_ERR
"Invalid error symbol: 0x%x\n",
1878 return err_sym
>> 3;
1884 static int get_channel_from_ecc_syndrome(struct mem_ctl_info
*mci
, u16 syndrome
)
1886 struct amd64_pvt
*pvt
= mci
->pvt_info
;
1889 if (pvt
->ecc_sym_sz
== 8)
1890 err_sym
= decode_syndrome(syndrome
, x8_vectors
,
1891 ARRAY_SIZE(x8_vectors
),
1893 else if (pvt
->ecc_sym_sz
== 4)
1894 err_sym
= decode_syndrome(syndrome
, x4_vectors
,
1895 ARRAY_SIZE(x4_vectors
),
1898 amd64_warn("Illegal syndrome type: %u\n", pvt
->ecc_sym_sz
);
1902 return map_err_sym_to_channel(err_sym
, pvt
->ecc_sym_sz
);
1906 * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
1907 * ADDRESS and process.
1909 static void amd64_handle_ce(struct mem_ctl_info
*mci
, struct mce
*m
)
1911 struct amd64_pvt
*pvt
= mci
->pvt_info
;
1915 /* Ensure that the Error Address is VALID */
1916 if (!(m
->status
& MCI_STATUS_ADDRV
)) {
1917 amd64_mc_err(mci
, "HW has no ERROR_ADDRESS available\n");
1918 edac_mc_handle_ce_no_info(mci
, EDAC_MOD_STR
);
1922 sys_addr
= get_error_address(m
);
1923 syndrome
= extract_syndrome(m
->status
);
1925 amd64_mc_err(mci
, "CE ERROR_ADDRESS= 0x%llx\n", sys_addr
);
1927 pvt
->ops
->map_sysaddr_to_csrow(mci
, sys_addr
, syndrome
);
1930 /* Handle any Un-correctable Errors (UEs) */
1931 static void amd64_handle_ue(struct mem_ctl_info
*mci
, struct mce
*m
)
1933 struct mem_ctl_info
*log_mci
, *src_mci
= NULL
;
1940 if (!(m
->status
& MCI_STATUS_ADDRV
)) {
1941 amd64_mc_err(mci
, "HW has no ERROR_ADDRESS available\n");
1942 edac_mc_handle_ue_no_info(log_mci
, EDAC_MOD_STR
);
1946 sys_addr
= get_error_address(m
);
1949 * Find out which node the error address belongs to. This may be
1950 * different from the node that detected the error.
1952 src_mci
= find_mc_by_sys_addr(mci
, sys_addr
);
1954 amd64_mc_err(mci
, "ERROR ADDRESS (0x%lx) NOT mapped to a MC\n",
1955 (unsigned long)sys_addr
);
1956 edac_mc_handle_ue_no_info(log_mci
, EDAC_MOD_STR
);
1962 csrow
= sys_addr_to_csrow(log_mci
, sys_addr
);
1964 amd64_mc_err(mci
, "ERROR_ADDRESS (0x%lx) NOT mapped to CS\n",
1965 (unsigned long)sys_addr
);
1966 edac_mc_handle_ue_no_info(log_mci
, EDAC_MOD_STR
);
1968 error_address_to_page_and_offset(sys_addr
, &page
, &offset
);
1969 edac_mc_handle_ue(log_mci
, page
, offset
, csrow
, EDAC_MOD_STR
);
1973 static inline void __amd64_decode_bus_error(struct mem_ctl_info
*mci
,
1976 u16 ec
= EC(m
->status
);
1977 u8 xec
= XEC(m
->status
, 0x1f);
1978 u8 ecc_type
= (m
->status
>> 45) & 0x3;
1980 /* Bail early out if this was an 'observed' error */
1981 if (PP(ec
) == NBSL_PP_OBS
)
1984 /* Do only ECC errors */
1985 if (xec
&& xec
!= F10_NBSL_EXT_ERR_ECC
)
1989 amd64_handle_ce(mci
, m
);
1990 else if (ecc_type
== 1)
1991 amd64_handle_ue(mci
, m
);
1994 void amd64_decode_bus_error(int node_id
, struct mce
*m
)
1996 __amd64_decode_bus_error(mcis
[node_id
], m
);
2000 * Use pvt->F2 which contains the F2 CPU PCI device to get the related
2001 * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error.
2003 static int reserve_mc_sibling_devs(struct amd64_pvt
*pvt
, u16 f1_id
, u16 f3_id
)
2005 /* Reserve the ADDRESS MAP Device */
2006 pvt
->F1
= pci_get_related_function(pvt
->F2
->vendor
, f1_id
, pvt
->F2
);
2008 amd64_err("error address map device not found: "
2009 "vendor %x device 0x%x (broken BIOS?)\n",
2010 PCI_VENDOR_ID_AMD
, f1_id
);
2014 /* Reserve the MISC Device */
2015 pvt
->F3
= pci_get_related_function(pvt
->F2
->vendor
, f3_id
, pvt
->F2
);
2017 pci_dev_put(pvt
->F1
);
2020 amd64_err("error F3 device not found: "
2021 "vendor %x device 0x%x (broken BIOS?)\n",
2022 PCI_VENDOR_ID_AMD
, f3_id
);
2026 debugf1("F1: %s\n", pci_name(pvt
->F1
));
2027 debugf1("F2: %s\n", pci_name(pvt
->F2
));
2028 debugf1("F3: %s\n", pci_name(pvt
->F3
));
2033 static void free_mc_sibling_devs(struct amd64_pvt
*pvt
)
2035 pci_dev_put(pvt
->F1
);
2036 pci_dev_put(pvt
->F3
);
2040 * Retrieve the hardware registers of the memory controller (this includes the
2041 * 'Address Map' and 'Misc' device regs)
2043 static void read_mc_regs(struct amd64_pvt
*pvt
)
2045 struct cpuinfo_x86
*c
= &boot_cpu_data
;
2051 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
2052 * those are Read-As-Zero
2054 rdmsrl(MSR_K8_TOP_MEM1
, pvt
->top_mem
);
2055 debugf0(" TOP_MEM: 0x%016llx\n", pvt
->top_mem
);
2057 /* check first whether TOP_MEM2 is enabled */
2058 rdmsrl(MSR_K8_SYSCFG
, msr_val
);
2059 if (msr_val
& (1U << 21)) {
2060 rdmsrl(MSR_K8_TOP_MEM2
, pvt
->top_mem2
);
2061 debugf0(" TOP_MEM2: 0x%016llx\n", pvt
->top_mem2
);
2063 debugf0(" TOP_MEM2 disabled.\n");
2065 amd64_read_pci_cfg(pvt
->F3
, NBCAP
, &pvt
->nbcap
);
2067 read_dram_ctl_register(pvt
);
2069 for (range
= 0; range
< DRAM_RANGES
; range
++) {
2072 /* read settings for this DRAM range */
2073 read_dram_base_limit_regs(pvt
, range
);
2075 rw
= dram_rw(pvt
, range
);
2079 debugf1(" DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
2081 get_dram_base(pvt
, range
),
2082 get_dram_limit(pvt
, range
));
2084 debugf1(" IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
2085 dram_intlv_en(pvt
, range
) ? "Enabled" : "Disabled",
2086 (rw
& 0x1) ? "R" : "-",
2087 (rw
& 0x2) ? "W" : "-",
2088 dram_intlv_sel(pvt
, range
),
2089 dram_dst_node(pvt
, range
));
2092 read_dct_base_mask(pvt
);
2094 amd64_read_pci_cfg(pvt
->F1
, DHAR
, &pvt
->dhar
);
2095 amd64_read_dct_pci_cfg(pvt
, DBAM0
, &pvt
->dbam0
);
2097 amd64_read_pci_cfg(pvt
->F3
, F10_ONLINE_SPARE
, &pvt
->online_spare
);
2099 amd64_read_dct_pci_cfg(pvt
, DCLR0
, &pvt
->dclr0
);
2100 amd64_read_dct_pci_cfg(pvt
, DCHR0
, &pvt
->dchr0
);
2102 if (!dct_ganging_enabled(pvt
)) {
2103 amd64_read_dct_pci_cfg(pvt
, DCLR1
, &pvt
->dclr1
);
2104 amd64_read_dct_pci_cfg(pvt
, DCHR1
, &pvt
->dchr1
);
2107 pvt
->ecc_sym_sz
= 4;
2109 if (c
->x86
>= 0x10) {
2110 amd64_read_pci_cfg(pvt
->F3
, EXT_NB_MCA_CFG
, &tmp
);
2111 amd64_read_dct_pci_cfg(pvt
, DBAM1
, &pvt
->dbam1
);
2113 /* F10h, revD and later can do x8 ECC too */
2114 if ((c
->x86
> 0x10 || c
->x86_model
> 7) && tmp
& BIT(25))
2115 pvt
->ecc_sym_sz
= 8;
2117 dump_misc_regs(pvt
);
2121 * NOTE: CPU Revision Dependent code
2124 * @csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
2125 * k8 private pointer to -->
2126 * DRAM Bank Address mapping register
2128 * DCL register where dual_channel_active is
2130 * The DBAM register consists of 4 sets of 4 bits each definitions:
2133 * 0-3 CSROWs 0 and 1
2134 * 4-7 CSROWs 2 and 3
2135 * 8-11 CSROWs 4 and 5
2136 * 12-15 CSROWs 6 and 7
2138 * Values range from: 0 to 15
2139 * The meaning of the values depends on CPU revision and dual-channel state,
2140 * see relevant BKDG more info.
2142 * The memory controller provides for total of only 8 CSROWs in its current
2143 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
2144 * single channel or two (2) DIMMs in dual channel mode.
2146 * The following code logic collapses the various tables for CSROW based on CPU
2150 * The number of PAGE_SIZE pages on the specified CSROW number it
2154 static u32
amd64_csrow_nr_pages(struct amd64_pvt
*pvt
, u8 dct
, int csrow_nr
)
2156 u32 cs_mode
, nr_pages
;
2157 u32 dbam
= dct
? pvt
->dbam1
: pvt
->dbam0
;
2160 * The math on this doesn't look right on the surface because x/2*4 can
2161 * be simplified to x*2 but this expression makes use of the fact that
2162 * it is integral math where 1/2=0. This intermediate value becomes the
2163 * number of bits to shift the DBAM register to extract the proper CSROW
2166 cs_mode
= (dbam
>> ((csrow_nr
/ 2) * 4)) & 0xF;
2168 nr_pages
= pvt
->ops
->dbam_to_cs(pvt
, dct
, cs_mode
) << (20 - PAGE_SHIFT
);
2170 debugf0(" (csrow=%d) DBAM map index= %d\n", csrow_nr
, cs_mode
);
2171 debugf0(" nr_pages= %u channel-count = %d\n",
2172 nr_pages
, pvt
->channel_count
);
2178 * Initialize the array of csrow attribute instances, based on the values
2179 * from pci config hardware registers.
2181 static int init_csrows(struct mem_ctl_info
*mci
)
2183 struct csrow_info
*csrow
;
2184 struct amd64_pvt
*pvt
= mci
->pvt_info
;
2185 u64 input_addr_min
, input_addr_max
, sys_addr
, base
, mask
;
2189 amd64_read_pci_cfg(pvt
->F3
, NBCFG
, &val
);
2193 debugf0("node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
2194 pvt
->mc_node_id
, val
,
2195 !!(val
& NBCFG_CHIPKILL
), !!(val
& NBCFG_ECC_ENABLE
));
2197 for_each_chip_select(i
, 0, pvt
) {
2198 csrow
= &mci
->csrows
[i
];
2200 if (!csrow_enabled(i
, 0, pvt
) && !csrow_enabled(i
, 1, pvt
)) {
2201 debugf1("----CSROW %d EMPTY for node %d\n", i
,
2206 debugf1("----CSROW %d VALID for MC node %d\n",
2207 i
, pvt
->mc_node_id
);
2210 if (csrow_enabled(i
, 0, pvt
))
2211 csrow
->nr_pages
= amd64_csrow_nr_pages(pvt
, 0, i
);
2212 if (csrow_enabled(i
, 1, pvt
))
2213 csrow
->nr_pages
+= amd64_csrow_nr_pages(pvt
, 1, i
);
2214 find_csrow_limits(mci
, i
, &input_addr_min
, &input_addr_max
);
2215 sys_addr
= input_addr_to_sys_addr(mci
, input_addr_min
);
2216 csrow
->first_page
= (u32
) (sys_addr
>> PAGE_SHIFT
);
2217 sys_addr
= input_addr_to_sys_addr(mci
, input_addr_max
);
2218 csrow
->last_page
= (u32
) (sys_addr
>> PAGE_SHIFT
);
2220 get_cs_base_and_mask(pvt
, i
, 0, &base
, &mask
);
2221 csrow
->page_mask
= ~mask
;
2222 /* 8 bytes of resolution */
2224 csrow
->mtype
= amd64_determine_memory_type(pvt
, i
);
2226 debugf1(" for MC node %d csrow %d:\n", pvt
->mc_node_id
, i
);
2227 debugf1(" input_addr_min: 0x%lx input_addr_max: 0x%lx\n",
2228 (unsigned long)input_addr_min
,
2229 (unsigned long)input_addr_max
);
2230 debugf1(" sys_addr: 0x%lx page_mask: 0x%lx\n",
2231 (unsigned long)sys_addr
, csrow
->page_mask
);
2232 debugf1(" nr_pages: %u first_page: 0x%lx "
2233 "last_page: 0x%lx\n",
2234 (unsigned)csrow
->nr_pages
,
2235 csrow
->first_page
, csrow
->last_page
);
2238 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
2240 if (pvt
->nbcfg
& NBCFG_ECC_ENABLE
)
2242 (pvt
->nbcfg
& NBCFG_CHIPKILL
) ?
2243 EDAC_S4ECD4ED
: EDAC_SECDED
;
2245 csrow
->edac_mode
= EDAC_NONE
;
2251 /* get all cores on this DCT */
2252 static void get_cpus_on_this_dct_cpumask(struct cpumask
*mask
, unsigned nid
)
2256 for_each_online_cpu(cpu
)
2257 if (amd_get_nb_id(cpu
) == nid
)
2258 cpumask_set_cpu(cpu
, mask
);
2261 /* check MCG_CTL on all the cpus on this node */
2262 static bool amd64_nb_mce_bank_enabled_on_node(unsigned nid
)
2268 if (!zalloc_cpumask_var(&mask
, GFP_KERNEL
)) {
2269 amd64_warn("%s: Error allocating mask\n", __func__
);
2273 get_cpus_on_this_dct_cpumask(mask
, nid
);
2275 rdmsr_on_cpus(mask
, MSR_IA32_MCG_CTL
, msrs
);
2277 for_each_cpu(cpu
, mask
) {
2278 struct msr
*reg
= per_cpu_ptr(msrs
, cpu
);
2279 nbe
= reg
->l
& MSR_MCGCTL_NBE
;
2281 debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
2283 (nbe
? "enabled" : "disabled"));
2291 free_cpumask_var(mask
);
2295 static int toggle_ecc_err_reporting(struct ecc_settings
*s
, u8 nid
, bool on
)
2297 cpumask_var_t cmask
;
2300 if (!zalloc_cpumask_var(&cmask
, GFP_KERNEL
)) {
2301 amd64_warn("%s: error allocating mask\n", __func__
);
2305 get_cpus_on_this_dct_cpumask(cmask
, nid
);
2307 rdmsr_on_cpus(cmask
, MSR_IA32_MCG_CTL
, msrs
);
2309 for_each_cpu(cpu
, cmask
) {
2311 struct msr
*reg
= per_cpu_ptr(msrs
, cpu
);
2314 if (reg
->l
& MSR_MCGCTL_NBE
)
2315 s
->flags
.nb_mce_enable
= 1;
2317 reg
->l
|= MSR_MCGCTL_NBE
;
2320 * Turn off NB MCE reporting only when it was off before
2322 if (!s
->flags
.nb_mce_enable
)
2323 reg
->l
&= ~MSR_MCGCTL_NBE
;
2326 wrmsr_on_cpus(cmask
, MSR_IA32_MCG_CTL
, msrs
);
2328 free_cpumask_var(cmask
);
2333 static bool enable_ecc_error_reporting(struct ecc_settings
*s
, u8 nid
,
2337 u32 value
, mask
= 0x3; /* UECC/CECC enable */
2339 if (toggle_ecc_err_reporting(s
, nid
, ON
)) {
2340 amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
2344 amd64_read_pci_cfg(F3
, NBCTL
, &value
);
2346 s
->old_nbctl
= value
& mask
;
2347 s
->nbctl_valid
= true;
2350 amd64_write_pci_cfg(F3
, NBCTL
, value
);
2352 amd64_read_pci_cfg(F3
, NBCFG
, &value
);
2354 debugf0("1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2355 nid
, value
, !!(value
& NBCFG_ECC_ENABLE
));
2357 if (!(value
& NBCFG_ECC_ENABLE
)) {
2358 amd64_warn("DRAM ECC disabled on this node, enabling...\n");
2360 s
->flags
.nb_ecc_prev
= 0;
2362 /* Attempt to turn on DRAM ECC Enable */
2363 value
|= NBCFG_ECC_ENABLE
;
2364 amd64_write_pci_cfg(F3
, NBCFG
, value
);
2366 amd64_read_pci_cfg(F3
, NBCFG
, &value
);
2368 if (!(value
& NBCFG_ECC_ENABLE
)) {
2369 amd64_warn("Hardware rejected DRAM ECC enable,"
2370 "check memory DIMM configuration.\n");
2373 amd64_info("Hardware accepted DRAM ECC Enable\n");
2376 s
->flags
.nb_ecc_prev
= 1;
2379 debugf0("2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2380 nid
, value
, !!(value
& NBCFG_ECC_ENABLE
));
2385 static void restore_ecc_error_reporting(struct ecc_settings
*s
, u8 nid
,
2388 u32 value
, mask
= 0x3; /* UECC/CECC enable */
2391 if (!s
->nbctl_valid
)
2394 amd64_read_pci_cfg(F3
, NBCTL
, &value
);
2396 value
|= s
->old_nbctl
;
2398 amd64_write_pci_cfg(F3
, NBCTL
, value
);
2400 /* restore previous BIOS DRAM ECC "off" setting we force-enabled */
2401 if (!s
->flags
.nb_ecc_prev
) {
2402 amd64_read_pci_cfg(F3
, NBCFG
, &value
);
2403 value
&= ~NBCFG_ECC_ENABLE
;
2404 amd64_write_pci_cfg(F3
, NBCFG
, value
);
2407 /* restore the NB Enable MCGCTL bit */
2408 if (toggle_ecc_err_reporting(s
, nid
, OFF
))
2409 amd64_warn("Error restoring NB MCGCTL settings!\n");
2413 * EDAC requires that the BIOS have ECC enabled before
2414 * taking over the processing of ECC errors. A command line
2415 * option allows to force-enable hardware ECC later in
2416 * enable_ecc_error_reporting().
2418 static const char *ecc_msg
=
2419 "ECC disabled in the BIOS or no ECC capability, module will not load.\n"
2420 " Either enable ECC checking or force module loading by setting "
2421 "'ecc_enable_override'.\n"
2422 " (Note that use of the override may cause unknown side effects.)\n";
2424 static bool ecc_enabled(struct pci_dev
*F3
, u8 nid
)
2428 bool nb_mce_en
= false;
2430 amd64_read_pci_cfg(F3
, NBCFG
, &value
);
2432 ecc_en
= !!(value
& NBCFG_ECC_ENABLE
);
2433 amd64_info("DRAM ECC %s.\n", (ecc_en
? "enabled" : "disabled"));
2435 nb_mce_en
= amd64_nb_mce_bank_enabled_on_node(nid
);
2437 amd64_notice("NB MCE bank disabled, set MSR "
2438 "0x%08x[4] on node %d to enable.\n",
2439 MSR_IA32_MCG_CTL
, nid
);
2441 if (!ecc_en
|| !nb_mce_en
) {
2442 amd64_notice("%s", ecc_msg
);
2448 struct mcidev_sysfs_attribute sysfs_attrs
[ARRAY_SIZE(amd64_dbg_attrs
) +
2449 ARRAY_SIZE(amd64_inj_attrs
) +
2452 struct mcidev_sysfs_attribute terminator
= { .attr
= { .name
= NULL
} };
2454 static void set_mc_sysfs_attrs(struct mem_ctl_info
*mci
)
2456 unsigned int i
= 0, j
= 0;
2458 for (; i
< ARRAY_SIZE(amd64_dbg_attrs
); i
++)
2459 sysfs_attrs
[i
] = amd64_dbg_attrs
[i
];
2461 if (boot_cpu_data
.x86
>= 0x10)
2462 for (j
= 0; j
< ARRAY_SIZE(amd64_inj_attrs
); j
++, i
++)
2463 sysfs_attrs
[i
] = amd64_inj_attrs
[j
];
2465 sysfs_attrs
[i
] = terminator
;
2467 mci
->mc_driver_sysfs_attributes
= sysfs_attrs
;
2470 static void setup_mci_misc_attrs(struct mem_ctl_info
*mci
,
2471 struct amd64_family_type
*fam
)
2473 struct amd64_pvt
*pvt
= mci
->pvt_info
;
2475 mci
->mtype_cap
= MEM_FLAG_DDR2
| MEM_FLAG_RDDR2
;
2476 mci
->edac_ctl_cap
= EDAC_FLAG_NONE
;
2478 if (pvt
->nbcap
& NBCAP_SECDED
)
2479 mci
->edac_ctl_cap
|= EDAC_FLAG_SECDED
;
2481 if (pvt
->nbcap
& NBCAP_CHIPKILL
)
2482 mci
->edac_ctl_cap
|= EDAC_FLAG_S4ECD4ED
;
2484 mci
->edac_cap
= amd64_determine_edac_cap(pvt
);
2485 mci
->mod_name
= EDAC_MOD_STR
;
2486 mci
->mod_ver
= EDAC_AMD64_VERSION
;
2487 mci
->ctl_name
= fam
->ctl_name
;
2488 mci
->dev_name
= pci_name(pvt
->F2
);
2489 mci
->ctl_page_to_phys
= NULL
;
2491 /* memory scrubber interface */
2492 mci
->set_sdram_scrub_rate
= amd64_set_scrub_rate
;
2493 mci
->get_sdram_scrub_rate
= amd64_get_scrub_rate
;
2497 * returns a pointer to the family descriptor on success, NULL otherwise.
2499 static struct amd64_family_type
*amd64_per_family_init(struct amd64_pvt
*pvt
)
2501 u8 fam
= boot_cpu_data
.x86
;
2502 struct amd64_family_type
*fam_type
= NULL
;
2506 fam_type
= &amd64_family_types
[K8_CPUS
];
2507 pvt
->ops
= &amd64_family_types
[K8_CPUS
].ops
;
2511 fam_type
= &amd64_family_types
[F10_CPUS
];
2512 pvt
->ops
= &amd64_family_types
[F10_CPUS
].ops
;
2516 fam_type
= &amd64_family_types
[F15_CPUS
];
2517 pvt
->ops
= &amd64_family_types
[F15_CPUS
].ops
;
2521 amd64_err("Unsupported family!\n");
2525 pvt
->ext_model
= boot_cpu_data
.x86_model
>> 4;
2527 amd64_info("%s %sdetected (node %d).\n", fam_type
->ctl_name
,
2529 (pvt
->ext_model
>= K8_REV_F
? "revF or later "
2530 : "revE or earlier ")
2531 : ""), pvt
->mc_node_id
);
2535 static int amd64_init_one_instance(struct pci_dev
*F2
)
2537 struct amd64_pvt
*pvt
= NULL
;
2538 struct amd64_family_type
*fam_type
= NULL
;
2539 struct mem_ctl_info
*mci
= NULL
;
2541 u8 nid
= get_node_id(F2
);
2544 pvt
= kzalloc(sizeof(struct amd64_pvt
), GFP_KERNEL
);
2548 pvt
->mc_node_id
= nid
;
2552 fam_type
= amd64_per_family_init(pvt
);
2557 err
= reserve_mc_sibling_devs(pvt
, fam_type
->f1_id
, fam_type
->f3_id
);
2564 * We need to determine how many memory channels there are. Then use
2565 * that information for calculating the size of the dynamic instance
2566 * tables in the 'mci' structure.
2569 pvt
->channel_count
= pvt
->ops
->early_channel_count(pvt
);
2570 if (pvt
->channel_count
< 0)
2574 mci
= edac_mc_alloc(0, pvt
->csels
[0].b_cnt
, pvt
->channel_count
, nid
);
2578 mci
->pvt_info
= pvt
;
2579 mci
->dev
= &pvt
->F2
->dev
;
2581 setup_mci_misc_attrs(mci
, fam_type
);
2583 if (init_csrows(mci
))
2584 mci
->edac_cap
= EDAC_FLAG_NONE
;
2586 set_mc_sysfs_attrs(mci
);
2589 if (edac_mc_add_mc(mci
)) {
2590 debugf1("failed edac_mc_add_mc()\n");
2594 /* register stuff with EDAC MCE */
2595 if (report_gart_errors
)
2596 amd_report_gart_errors(true);
2598 amd_register_ecc_decoder(amd64_decode_bus_error
);
2602 atomic_inc(&drv_instances
);
2610 free_mc_sibling_devs(pvt
);
2619 static int __devinit
amd64_probe_one_instance(struct pci_dev
*pdev
,
2620 const struct pci_device_id
*mc_type
)
2622 u8 nid
= get_node_id(pdev
);
2623 struct pci_dev
*F3
= node_to_amd_nb(nid
)->misc
;
2624 struct ecc_settings
*s
;
2627 ret
= pci_enable_device(pdev
);
2629 debugf0("ret=%d\n", ret
);
2634 s
= kzalloc(sizeof(struct ecc_settings
), GFP_KERNEL
);
2640 if (!ecc_enabled(F3
, nid
)) {
2643 if (!ecc_enable_override
)
2646 amd64_warn("Forcing ECC on!\n");
2648 if (!enable_ecc_error_reporting(s
, nid
, F3
))
2652 ret
= amd64_init_one_instance(pdev
);
2654 amd64_err("Error probing instance: %d\n", nid
);
2655 restore_ecc_error_reporting(s
, nid
, F3
);
2662 ecc_stngs
[nid
] = NULL
;
2668 static void __devexit
amd64_remove_one_instance(struct pci_dev
*pdev
)
2670 struct mem_ctl_info
*mci
;
2671 struct amd64_pvt
*pvt
;
2672 u8 nid
= get_node_id(pdev
);
2673 struct pci_dev
*F3
= node_to_amd_nb(nid
)->misc
;
2674 struct ecc_settings
*s
= ecc_stngs
[nid
];
2676 /* Remove from EDAC CORE tracking list */
2677 mci
= edac_mc_del_mc(&pdev
->dev
);
2681 pvt
= mci
->pvt_info
;
2683 restore_ecc_error_reporting(s
, nid
, F3
);
2685 free_mc_sibling_devs(pvt
);
2687 /* unregister from EDAC MCE */
2688 amd_report_gart_errors(false);
2689 amd_unregister_ecc_decoder(amd64_decode_bus_error
);
2691 kfree(ecc_stngs
[nid
]);
2692 ecc_stngs
[nid
] = NULL
;
2694 /* Free the EDAC CORE resources */
2695 mci
->pvt_info
= NULL
;
2703 * This table is part of the interface for loading drivers for PCI devices. The
2704 * PCI core identifies what devices are on a system during boot, and then
2705 * inquiry this table to see if this driver is for a given device found.
2707 static DEFINE_PCI_DEVICE_TABLE(amd64_pci_table
) = {
2709 .vendor
= PCI_VENDOR_ID_AMD
,
2710 .device
= PCI_DEVICE_ID_AMD_K8_NB_MEMCTL
,
2711 .subvendor
= PCI_ANY_ID
,
2712 .subdevice
= PCI_ANY_ID
,
2717 .vendor
= PCI_VENDOR_ID_AMD
,
2718 .device
= PCI_DEVICE_ID_AMD_10H_NB_DRAM
,
2719 .subvendor
= PCI_ANY_ID
,
2720 .subdevice
= PCI_ANY_ID
,
2725 .vendor
= PCI_VENDOR_ID_AMD
,
2726 .device
= PCI_DEVICE_ID_AMD_15H_NB_F2
,
2727 .subvendor
= PCI_ANY_ID
,
2728 .subdevice
= PCI_ANY_ID
,
2735 MODULE_DEVICE_TABLE(pci
, amd64_pci_table
);
2737 static struct pci_driver amd64_pci_driver
= {
2738 .name
= EDAC_MOD_STR
,
2739 .probe
= amd64_probe_one_instance
,
2740 .remove
= __devexit_p(amd64_remove_one_instance
),
2741 .id_table
= amd64_pci_table
,
2744 static void setup_pci_device(void)
2746 struct mem_ctl_info
*mci
;
2747 struct amd64_pvt
*pvt
;
2755 pvt
= mci
->pvt_info
;
2757 edac_pci_create_generic_ctl(&pvt
->F2
->dev
, EDAC_MOD_STR
);
2759 if (!amd64_ctl_pci
) {
2760 pr_warning("%s(): Unable to create PCI control\n",
2763 pr_warning("%s(): PCI error report via EDAC not set\n",
2769 static int __init
amd64_edac_init(void)
2773 printk(KERN_INFO
"AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION
);
2777 if (amd_cache_northbridges() < 0)
2781 mcis
= kzalloc(amd_nb_num() * sizeof(mcis
[0]), GFP_KERNEL
);
2782 ecc_stngs
= kzalloc(amd_nb_num() * sizeof(ecc_stngs
[0]), GFP_KERNEL
);
2783 if (!(mcis
&& ecc_stngs
))
2786 msrs
= msrs_alloc();
2790 err
= pci_register_driver(&amd64_pci_driver
);
2795 if (!atomic_read(&drv_instances
))
2796 goto err_no_instances
;
2802 pci_unregister_driver(&amd64_pci_driver
);
2819 static void __exit
amd64_edac_exit(void)
2822 edac_pci_release_generic_ctl(amd64_ctl_pci
);
2824 pci_unregister_driver(&amd64_pci_driver
);
2836 module_init(amd64_edac_init
);
2837 module_exit(amd64_edac_exit
);
2839 MODULE_LICENSE("GPL");
2840 MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
2841 "Dave Peterson, Thayne Harbaugh");
2842 MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
2843 EDAC_AMD64_VERSION
);
2845 module_param(edac_op_state
, int, 0444);
2846 MODULE_PARM_DESC(edac_op_state
, "EDAC Error Reporting state: 0=Poll,1=NMI");