Linux 3.4.102
[linux/fpc-iii.git] / drivers / edac / sb_edac.c
blob0924c30dce0bef18db7dfdddfab9b9f586a047f0
1 /* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module
3 * This driver supports the memory controllers found on the Intel
4 * processor family Sandy Bridge.
6 * This file may be distributed under the terms of the
7 * GNU General Public License version 2 only.
9 * Copyright (c) 2011 by:
10 * Mauro Carvalho Chehab <mchehab@redhat.com>
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/pci.h>
16 #include <linux/pci_ids.h>
17 #include <linux/slab.h>
18 #include <linux/delay.h>
19 #include <linux/edac.h>
20 #include <linux/mmzone.h>
21 #include <linux/smp.h>
22 #include <linux/bitmap.h>
23 #include <linux/math64.h>
24 #include <asm/processor.h>
25 #include <asm/mce.h>
27 #include "edac_core.h"
29 /* Static vars */
30 static LIST_HEAD(sbridge_edac_list);
31 static DEFINE_MUTEX(sbridge_edac_lock);
32 static int probed;
35 * Alter this version for the module when modifications are made
37 #define SBRIDGE_REVISION " Ver: 1.0.0 "
38 #define EDAC_MOD_STR "sbridge_edac"
41 * Debug macros
43 #define sbridge_printk(level, fmt, arg...) \
44 edac_printk(level, "sbridge", fmt, ##arg)
46 #define sbridge_mc_printk(mci, level, fmt, arg...) \
47 edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg)
50 * Get a bit field at register value <v>, from bit <lo> to bit <hi>
52 #define GET_BITFIELD(v, lo, hi) \
53 (((v) & ((1ULL << ((hi) - (lo) + 1)) - 1) << (lo)) >> (lo))
56 * sbridge Memory Controller Registers
60 * FIXME: For now, let's order by device function, as it makes
61 * easier for driver's development proccess. This table should be
62 * moved to pci_id.h when submitted upstream
64 #define PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0 0x3cf4 /* 12.6 */
65 #define PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1 0x3cf6 /* 12.7 */
66 #define PCI_DEVICE_ID_INTEL_SBRIDGE_BR 0x3cf5 /* 13.6 */
67 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0 0x3ca0 /* 14.0 */
68 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA 0x3ca8 /* 15.0 */
69 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS 0x3c71 /* 15.1 */
70 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0 0x3caa /* 15.2 */
71 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1 0x3cab /* 15.3 */
72 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2 0x3cac /* 15.4 */
73 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3 0x3cad /* 15.5 */
74 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO 0x3cb8 /* 17.0 */
77 * Currently, unused, but will be needed in the future
78 * implementations, as they hold the error counters
80 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR0 0x3c72 /* 16.2 */
81 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR1 0x3c73 /* 16.3 */
82 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR2 0x3c76 /* 16.6 */
83 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR3 0x3c77 /* 16.7 */
85 /* Devices 12 Function 6, Offsets 0x80 to 0xcc */
86 static const u32 dram_rule[] = {
87 0x80, 0x88, 0x90, 0x98, 0xa0,
88 0xa8, 0xb0, 0xb8, 0xc0, 0xc8,
90 #define MAX_SAD ARRAY_SIZE(dram_rule)
92 #define SAD_LIMIT(reg) ((GET_BITFIELD(reg, 6, 25) << 26) | 0x3ffffff)
93 #define DRAM_ATTR(reg) GET_BITFIELD(reg, 2, 3)
94 #define INTERLEAVE_MODE(reg) GET_BITFIELD(reg, 1, 1)
95 #define DRAM_RULE_ENABLE(reg) GET_BITFIELD(reg, 0, 0)
97 static char *get_dram_attr(u32 reg)
99 switch(DRAM_ATTR(reg)) {
100 case 0:
101 return "DRAM";
102 case 1:
103 return "MMCFG";
104 case 2:
105 return "NXM";
106 default:
107 return "unknown";
111 static const u32 interleave_list[] = {
112 0x84, 0x8c, 0x94, 0x9c, 0xa4,
113 0xac, 0xb4, 0xbc, 0xc4, 0xcc,
115 #define MAX_INTERLEAVE ARRAY_SIZE(interleave_list)
117 #define SAD_PKG0(reg) GET_BITFIELD(reg, 0, 2)
118 #define SAD_PKG1(reg) GET_BITFIELD(reg, 3, 5)
119 #define SAD_PKG2(reg) GET_BITFIELD(reg, 8, 10)
120 #define SAD_PKG3(reg) GET_BITFIELD(reg, 11, 13)
121 #define SAD_PKG4(reg) GET_BITFIELD(reg, 16, 18)
122 #define SAD_PKG5(reg) GET_BITFIELD(reg, 19, 21)
123 #define SAD_PKG6(reg) GET_BITFIELD(reg, 24, 26)
124 #define SAD_PKG7(reg) GET_BITFIELD(reg, 27, 29)
126 static inline int sad_pkg(u32 reg, int interleave)
128 switch (interleave) {
129 case 0:
130 return SAD_PKG0(reg);
131 case 1:
132 return SAD_PKG1(reg);
133 case 2:
134 return SAD_PKG2(reg);
135 case 3:
136 return SAD_PKG3(reg);
137 case 4:
138 return SAD_PKG4(reg);
139 case 5:
140 return SAD_PKG5(reg);
141 case 6:
142 return SAD_PKG6(reg);
143 case 7:
144 return SAD_PKG7(reg);
145 default:
146 return -EINVAL;
150 /* Devices 12 Function 7 */
152 #define TOLM 0x80
153 #define TOHM 0x84
155 #define GET_TOLM(reg) ((GET_BITFIELD(reg, 0, 3) << 28) | 0x3ffffff)
156 #define GET_TOHM(reg) ((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff)
158 /* Device 13 Function 6 */
160 #define SAD_TARGET 0xf0
162 #define SOURCE_ID(reg) GET_BITFIELD(reg, 9, 11)
164 #define SAD_CONTROL 0xf4
166 #define NODE_ID(reg) GET_BITFIELD(reg, 0, 2)
168 /* Device 14 function 0 */
170 static const u32 tad_dram_rule[] = {
171 0x40, 0x44, 0x48, 0x4c,
172 0x50, 0x54, 0x58, 0x5c,
173 0x60, 0x64, 0x68, 0x6c,
175 #define MAX_TAD ARRAY_SIZE(tad_dram_rule)
177 #define TAD_LIMIT(reg) ((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff)
178 #define TAD_SOCK(reg) GET_BITFIELD(reg, 10, 11)
179 #define TAD_CH(reg) GET_BITFIELD(reg, 8, 9)
180 #define TAD_TGT3(reg) GET_BITFIELD(reg, 6, 7)
181 #define TAD_TGT2(reg) GET_BITFIELD(reg, 4, 5)
182 #define TAD_TGT1(reg) GET_BITFIELD(reg, 2, 3)
183 #define TAD_TGT0(reg) GET_BITFIELD(reg, 0, 1)
185 /* Device 15, function 0 */
187 #define MCMTR 0x7c
189 #define IS_ECC_ENABLED(mcmtr) GET_BITFIELD(mcmtr, 2, 2)
190 #define IS_LOCKSTEP_ENABLED(mcmtr) GET_BITFIELD(mcmtr, 1, 1)
191 #define IS_CLOSE_PG(mcmtr) GET_BITFIELD(mcmtr, 0, 0)
193 /* Device 15, function 1 */
195 #define RASENABLES 0xac
196 #define IS_MIRROR_ENABLED(reg) GET_BITFIELD(reg, 0, 0)
198 /* Device 15, functions 2-5 */
200 static const int mtr_regs[] = {
201 0x80, 0x84, 0x88,
204 #define RANK_DISABLE(mtr) GET_BITFIELD(mtr, 16, 19)
205 #define IS_DIMM_PRESENT(mtr) GET_BITFIELD(mtr, 14, 14)
206 #define RANK_CNT_BITS(mtr) GET_BITFIELD(mtr, 12, 13)
207 #define RANK_WIDTH_BITS(mtr) GET_BITFIELD(mtr, 2, 4)
208 #define COL_WIDTH_BITS(mtr) GET_BITFIELD(mtr, 0, 1)
210 static const u32 tad_ch_nilv_offset[] = {
211 0x90, 0x94, 0x98, 0x9c,
212 0xa0, 0xa4, 0xa8, 0xac,
213 0xb0, 0xb4, 0xb8, 0xbc,
215 #define CHN_IDX_OFFSET(reg) GET_BITFIELD(reg, 28, 29)
216 #define TAD_OFFSET(reg) (GET_BITFIELD(reg, 6, 25) << 26)
218 static const u32 rir_way_limit[] = {
219 0x108, 0x10c, 0x110, 0x114, 0x118,
221 #define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit)
223 #define IS_RIR_VALID(reg) GET_BITFIELD(reg, 31, 31)
224 #define RIR_WAY(reg) GET_BITFIELD(reg, 28, 29)
225 #define RIR_LIMIT(reg) ((GET_BITFIELD(reg, 1, 10) << 29)| 0x1fffffff)
227 #define MAX_RIR_WAY 8
229 static const u32 rir_offset[MAX_RIR_RANGES][MAX_RIR_WAY] = {
230 { 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c },
231 { 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c },
232 { 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c },
233 { 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c },
234 { 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc },
237 #define RIR_RNK_TGT(reg) GET_BITFIELD(reg, 16, 19)
238 #define RIR_OFFSET(reg) GET_BITFIELD(reg, 2, 14)
240 /* Device 16, functions 2-7 */
243 * FIXME: Implement the error count reads directly
246 static const u32 correrrcnt[] = {
247 0x104, 0x108, 0x10c, 0x110,
250 #define RANK_ODD_OV(reg) GET_BITFIELD(reg, 31, 31)
251 #define RANK_ODD_ERR_CNT(reg) GET_BITFIELD(reg, 16, 30)
252 #define RANK_EVEN_OV(reg) GET_BITFIELD(reg, 15, 15)
253 #define RANK_EVEN_ERR_CNT(reg) GET_BITFIELD(reg, 0, 14)
255 static const u32 correrrthrsld[] = {
256 0x11c, 0x120, 0x124, 0x128,
259 #define RANK_ODD_ERR_THRSLD(reg) GET_BITFIELD(reg, 16, 30)
260 #define RANK_EVEN_ERR_THRSLD(reg) GET_BITFIELD(reg, 0, 14)
263 /* Device 17, function 0 */
265 #define RANK_CFG_A 0x0328
267 #define IS_RDIMM_ENABLED(reg) GET_BITFIELD(reg, 11, 11)
270 * sbridge structs
273 #define NUM_CHANNELS 4
274 #define MAX_DIMMS 3 /* Max DIMMS per channel */
276 struct sbridge_info {
277 u32 mcmtr;
280 struct sbridge_channel {
281 u32 ranks;
282 u32 dimms;
285 struct pci_id_descr {
286 int dev;
287 int func;
288 int dev_id;
289 int optional;
292 struct pci_id_table {
293 const struct pci_id_descr *descr;
294 int n_devs;
297 struct sbridge_dev {
298 struct list_head list;
299 u8 bus, mc;
300 u8 node_id, source_id;
301 struct pci_dev **pdev;
302 int n_devs;
303 struct mem_ctl_info *mci;
306 struct sbridge_pvt {
307 struct pci_dev *pci_ta, *pci_ddrio, *pci_ras;
308 struct pci_dev *pci_sad0, *pci_sad1, *pci_ha0;
309 struct pci_dev *pci_br;
310 struct pci_dev *pci_tad[NUM_CHANNELS];
312 struct sbridge_dev *sbridge_dev;
314 struct sbridge_info info;
315 struct sbridge_channel channel[NUM_CHANNELS];
317 int csrow_map[NUM_CHANNELS][MAX_DIMMS];
319 /* Memory type detection */
320 bool is_mirrored, is_lockstep, is_close_pg;
322 /* Fifo double buffers */
323 struct mce mce_entry[MCE_LOG_LEN];
324 struct mce mce_outentry[MCE_LOG_LEN];
326 /* Fifo in/out counters */
327 unsigned mce_in, mce_out;
329 /* Count indicator to show errors not got */
330 unsigned mce_overrun;
332 /* Memory description */
333 u64 tolm, tohm;
336 #define PCI_DESCR(device, function, device_id) \
337 .dev = (device), \
338 .func = (function), \
339 .dev_id = (device_id)
341 static const struct pci_id_descr pci_dev_descr_sbridge[] = {
342 /* Processor Home Agent */
343 { PCI_DESCR(14, 0, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0) },
345 /* Memory controller */
346 { PCI_DESCR(15, 0, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA) },
347 { PCI_DESCR(15, 1, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS) },
348 { PCI_DESCR(15, 2, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0) },
349 { PCI_DESCR(15, 3, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1) },
350 { PCI_DESCR(15, 4, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2) },
351 { PCI_DESCR(15, 5, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3) },
352 { PCI_DESCR(17, 0, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO) },
354 /* System Address Decoder */
355 { PCI_DESCR(12, 6, PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0) },
356 { PCI_DESCR(12, 7, PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1) },
358 /* Broadcast Registers */
359 { PCI_DESCR(13, 6, PCI_DEVICE_ID_INTEL_SBRIDGE_BR) },
362 #define PCI_ID_TABLE_ENTRY(A) { .descr=A, .n_devs = ARRAY_SIZE(A) }
363 static const struct pci_id_table pci_dev_descr_sbridge_table[] = {
364 PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge),
365 {0,} /* 0 terminated list. */
369 * pci_device_id table for which devices we are looking for
371 static DEFINE_PCI_DEVICE_TABLE(sbridge_pci_tbl) = {
372 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA)},
373 {0,} /* 0 terminated list. */
377 /****************************************************************************
378 Anciliary status routines
379 ****************************************************************************/
381 static inline int numrank(u32 mtr)
383 int ranks = (1 << RANK_CNT_BITS(mtr));
385 if (ranks > 4) {
386 debugf0("Invalid number of ranks: %d (max = 4) raw value = %x (%04x)",
387 ranks, (unsigned int)RANK_CNT_BITS(mtr), mtr);
388 return -EINVAL;
391 return ranks;
394 static inline int numrow(u32 mtr)
396 int rows = (RANK_WIDTH_BITS(mtr) + 12);
398 if (rows < 13 || rows > 18) {
399 debugf0("Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)",
400 rows, (unsigned int)RANK_WIDTH_BITS(mtr), mtr);
401 return -EINVAL;
404 return 1 << rows;
407 static inline int numcol(u32 mtr)
409 int cols = (COL_WIDTH_BITS(mtr) + 10);
411 if (cols > 12) {
412 debugf0("Invalid number of cols: %d (max = 4) raw value = %x (%04x)",
413 cols, (unsigned int)COL_WIDTH_BITS(mtr), mtr);
414 return -EINVAL;
417 return 1 << cols;
420 static struct sbridge_dev *get_sbridge_dev(u8 bus)
422 struct sbridge_dev *sbridge_dev;
424 list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
425 if (sbridge_dev->bus == bus)
426 return sbridge_dev;
429 return NULL;
432 static struct sbridge_dev *alloc_sbridge_dev(u8 bus,
433 const struct pci_id_table *table)
435 struct sbridge_dev *sbridge_dev;
437 sbridge_dev = kzalloc(sizeof(*sbridge_dev), GFP_KERNEL);
438 if (!sbridge_dev)
439 return NULL;
441 sbridge_dev->pdev = kzalloc(sizeof(*sbridge_dev->pdev) * table->n_devs,
442 GFP_KERNEL);
443 if (!sbridge_dev->pdev) {
444 kfree(sbridge_dev);
445 return NULL;
448 sbridge_dev->bus = bus;
449 sbridge_dev->n_devs = table->n_devs;
450 list_add_tail(&sbridge_dev->list, &sbridge_edac_list);
452 return sbridge_dev;
455 static void free_sbridge_dev(struct sbridge_dev *sbridge_dev)
457 list_del(&sbridge_dev->list);
458 kfree(sbridge_dev->pdev);
459 kfree(sbridge_dev);
462 /****************************************************************************
463 Memory check routines
464 ****************************************************************************/
465 static struct pci_dev *get_pdev_slot_func(u8 bus, unsigned slot,
466 unsigned func)
468 struct sbridge_dev *sbridge_dev = get_sbridge_dev(bus);
469 int i;
471 if (!sbridge_dev)
472 return NULL;
474 for (i = 0; i < sbridge_dev->n_devs; i++) {
475 if (!sbridge_dev->pdev[i])
476 continue;
478 if (PCI_SLOT(sbridge_dev->pdev[i]->devfn) == slot &&
479 PCI_FUNC(sbridge_dev->pdev[i]->devfn) == func) {
480 debugf1("Associated %02x.%02x.%d with %p\n",
481 bus, slot, func, sbridge_dev->pdev[i]);
482 return sbridge_dev->pdev[i];
486 return NULL;
490 * sbridge_get_active_channels() - gets the number of channels and csrows
491 * bus: Device bus
492 * @channels: Number of channels that will be returned
493 * @csrows: Number of csrows found
495 * Since EDAC core needs to know in advance the number of available channels
496 * and csrows, in order to allocate memory for csrows/channels, it is needed
497 * to run two similar steps. At the first step, implemented on this function,
498 * it checks the number of csrows/channels present at one socket, identified
499 * by the associated PCI bus.
500 * this is used in order to properly allocate the size of mci components.
501 * Note: one csrow is one dimm.
503 static int sbridge_get_active_channels(const u8 bus, unsigned *channels,
504 unsigned *csrows)
506 struct pci_dev *pdev = NULL;
507 int i, j;
508 u32 mcmtr;
510 *channels = 0;
511 *csrows = 0;
513 pdev = get_pdev_slot_func(bus, 15, 0);
514 if (!pdev) {
515 sbridge_printk(KERN_ERR, "Couldn't find PCI device "
516 "%2x.%02d.%d!!!\n",
517 bus, 15, 0);
518 return -ENODEV;
521 pci_read_config_dword(pdev, MCMTR, &mcmtr);
522 if (!IS_ECC_ENABLED(mcmtr)) {
523 sbridge_printk(KERN_ERR, "ECC is disabled. Aborting\n");
524 return -ENODEV;
527 for (i = 0; i < NUM_CHANNELS; i++) {
528 u32 mtr;
530 /* Device 15 functions 2 - 5 */
531 pdev = get_pdev_slot_func(bus, 15, 2 + i);
532 if (!pdev) {
533 sbridge_printk(KERN_ERR, "Couldn't find PCI device "
534 "%2x.%02d.%d!!!\n",
535 bus, 15, 2 + i);
536 return -ENODEV;
538 (*channels)++;
540 for (j = 0; j < ARRAY_SIZE(mtr_regs); j++) {
541 pci_read_config_dword(pdev, mtr_regs[j], &mtr);
542 debugf1("Bus#%02x channel #%d MTR%d = %x\n", bus, i, j, mtr);
543 if (IS_DIMM_PRESENT(mtr))
544 (*csrows)++;
548 debugf0("Number of active channels: %d, number of active dimms: %d\n",
549 *channels, *csrows);
551 return 0;
554 static int get_dimm_config(const struct mem_ctl_info *mci)
556 struct sbridge_pvt *pvt = mci->pvt_info;
557 struct csrow_info *csr;
558 unsigned i, j, banks, ranks, rows, cols, npages;
559 u64 size;
560 int csrow = 0;
561 unsigned long last_page = 0;
562 u32 reg;
563 enum edac_type mode;
564 enum mem_type mtype;
566 pci_read_config_dword(pvt->pci_br, SAD_TARGET, &reg);
567 pvt->sbridge_dev->source_id = SOURCE_ID(reg);
569 pci_read_config_dword(pvt->pci_br, SAD_CONTROL, &reg);
570 pvt->sbridge_dev->node_id = NODE_ID(reg);
571 debugf0("mc#%d: Node ID: %d, source ID: %d\n",
572 pvt->sbridge_dev->mc,
573 pvt->sbridge_dev->node_id,
574 pvt->sbridge_dev->source_id);
576 pci_read_config_dword(pvt->pci_ras, RASENABLES, &reg);
577 if (IS_MIRROR_ENABLED(reg)) {
578 debugf0("Memory mirror is enabled\n");
579 pvt->is_mirrored = true;
580 } else {
581 debugf0("Memory mirror is disabled\n");
582 pvt->is_mirrored = false;
585 pci_read_config_dword(pvt->pci_ta, MCMTR, &pvt->info.mcmtr);
586 if (IS_LOCKSTEP_ENABLED(pvt->info.mcmtr)) {
587 debugf0("Lockstep is enabled\n");
588 mode = EDAC_S8ECD8ED;
589 pvt->is_lockstep = true;
590 } else {
591 debugf0("Lockstep is disabled\n");
592 mode = EDAC_S4ECD4ED;
593 pvt->is_lockstep = false;
595 if (IS_CLOSE_PG(pvt->info.mcmtr)) {
596 debugf0("address map is on closed page mode\n");
597 pvt->is_close_pg = true;
598 } else {
599 debugf0("address map is on open page mode\n");
600 pvt->is_close_pg = false;
603 pci_read_config_dword(pvt->pci_ddrio, RANK_CFG_A, &reg);
604 if (IS_RDIMM_ENABLED(reg)) {
605 /* FIXME: Can also be LRDIMM */
606 debugf0("Memory is registered\n");
607 mtype = MEM_RDDR3;
608 } else {
609 debugf0("Memory is unregistered\n");
610 mtype = MEM_DDR3;
613 /* On all supported DDR3 DIMM types, there are 8 banks available */
614 banks = 8;
616 for (i = 0; i < NUM_CHANNELS; i++) {
617 u32 mtr;
619 for (j = 0; j < ARRAY_SIZE(mtr_regs); j++) {
620 pci_read_config_dword(pvt->pci_tad[i],
621 mtr_regs[j], &mtr);
622 debugf4("Channel #%d MTR%d = %x\n", i, j, mtr);
623 if (IS_DIMM_PRESENT(mtr)) {
624 pvt->channel[i].dimms++;
626 ranks = numrank(mtr);
627 rows = numrow(mtr);
628 cols = numcol(mtr);
630 /* DDR3 has 8 I/O banks */
631 size = ((u64)rows * cols * banks * ranks) >> (20 - 3);
632 npages = MiB_TO_PAGES(size);
634 debugf0("mc#%d: channel %d, dimm %d, %Ld Mb (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
635 pvt->sbridge_dev->mc, i, j,
636 size, npages,
637 banks, ranks, rows, cols);
638 csr = &mci->csrows[csrow];
640 csr->first_page = last_page;
641 csr->last_page = last_page + npages - 1;
642 csr->page_mask = 0UL; /* Unused */
643 csr->nr_pages = npages;
644 csr->grain = 32;
645 csr->csrow_idx = csrow;
646 csr->dtype = (banks == 8) ? DEV_X8 : DEV_X4;
647 csr->ce_count = 0;
648 csr->ue_count = 0;
649 csr->mtype = mtype;
650 csr->edac_mode = mode;
651 csr->nr_channels = 1;
652 csr->channels[0].chan_idx = i;
653 csr->channels[0].ce_count = 0;
654 pvt->csrow_map[i][j] = csrow;
655 snprintf(csr->channels[0].label,
656 sizeof(csr->channels[0].label),
657 "CPU_SrcID#%u_Channel#%u_DIMM#%u",
658 pvt->sbridge_dev->source_id, i, j);
659 last_page += npages;
660 csrow++;
665 return 0;
668 static void get_memory_layout(const struct mem_ctl_info *mci)
670 struct sbridge_pvt *pvt = mci->pvt_info;
671 int i, j, k, n_sads, n_tads, sad_interl;
672 u32 reg;
673 u64 limit, prv = 0;
674 u64 tmp_mb;
675 u32 mb, kb;
676 u32 rir_way;
679 * Step 1) Get TOLM/TOHM ranges
682 /* Address range is 32:28 */
683 pci_read_config_dword(pvt->pci_sad1, TOLM,
684 &reg);
685 pvt->tolm = GET_TOLM(reg);
686 tmp_mb = (1 + pvt->tolm) >> 20;
688 mb = div_u64_rem(tmp_mb, 1000, &kb);
689 debugf0("TOLM: %u.%03u GB (0x%016Lx)\n",
690 mb, kb, (u64)pvt->tolm);
692 /* Address range is already 45:25 */
693 pci_read_config_dword(pvt->pci_sad1, TOHM,
694 &reg);
695 pvt->tohm = GET_TOHM(reg);
696 tmp_mb = (1 + pvt->tohm) >> 20;
698 mb = div_u64_rem(tmp_mb, 1000, &kb);
699 debugf0("TOHM: %u.%03u GB (0x%016Lx)",
700 mb, kb, (u64)pvt->tohm);
703 * Step 2) Get SAD range and SAD Interleave list
704 * TAD registers contain the interleave wayness. However, it
705 * seems simpler to just discover it indirectly, with the
706 * algorithm bellow.
708 prv = 0;
709 for (n_sads = 0; n_sads < MAX_SAD; n_sads++) {
710 /* SAD_LIMIT Address range is 45:26 */
711 pci_read_config_dword(pvt->pci_sad0, dram_rule[n_sads],
712 &reg);
713 limit = SAD_LIMIT(reg);
715 if (!DRAM_RULE_ENABLE(reg))
716 continue;
718 if (limit <= prv)
719 break;
721 tmp_mb = (limit + 1) >> 20;
722 mb = div_u64_rem(tmp_mb, 1000, &kb);
723 debugf0("SAD#%d %s up to %u.%03u GB (0x%016Lx) %s reg=0x%08x\n",
724 n_sads,
725 get_dram_attr(reg),
726 mb, kb,
727 ((u64)tmp_mb) << 20L,
728 INTERLEAVE_MODE(reg) ? "Interleave: 8:6" : "Interleave: [8:6]XOR[18:16]",
729 reg);
730 prv = limit;
732 pci_read_config_dword(pvt->pci_sad0, interleave_list[n_sads],
733 &reg);
734 sad_interl = sad_pkg(reg, 0);
735 for (j = 0; j < 8; j++) {
736 if (j > 0 && sad_interl == sad_pkg(reg, j))
737 break;
739 debugf0("SAD#%d, interleave #%d: %d\n",
740 n_sads, j, sad_pkg(reg, j));
745 * Step 3) Get TAD range
747 prv = 0;
748 for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
749 pci_read_config_dword(pvt->pci_ha0, tad_dram_rule[n_tads],
750 &reg);
751 limit = TAD_LIMIT(reg);
752 if (limit <= prv)
753 break;
754 tmp_mb = (limit + 1) >> 20;
756 mb = div_u64_rem(tmp_mb, 1000, &kb);
757 debugf0("TAD#%d: up to %u.%03u GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n",
758 n_tads, mb, kb,
759 ((u64)tmp_mb) << 20L,
760 (u32)TAD_SOCK(reg),
761 (u32)TAD_CH(reg),
762 (u32)TAD_TGT0(reg),
763 (u32)TAD_TGT1(reg),
764 (u32)TAD_TGT2(reg),
765 (u32)TAD_TGT3(reg),
766 reg);
767 prv = limit;
771 * Step 4) Get TAD offsets, per each channel
773 for (i = 0; i < NUM_CHANNELS; i++) {
774 if (!pvt->channel[i].dimms)
775 continue;
776 for (j = 0; j < n_tads; j++) {
777 pci_read_config_dword(pvt->pci_tad[i],
778 tad_ch_nilv_offset[j],
779 &reg);
780 tmp_mb = TAD_OFFSET(reg) >> 20;
781 mb = div_u64_rem(tmp_mb, 1000, &kb);
782 debugf0("TAD CH#%d, offset #%d: %u.%03u GB (0x%016Lx), reg=0x%08x\n",
783 i, j,
784 mb, kb,
785 ((u64)tmp_mb) << 20L,
786 reg);
791 * Step 6) Get RIR Wayness/Limit, per each channel
793 for (i = 0; i < NUM_CHANNELS; i++) {
794 if (!pvt->channel[i].dimms)
795 continue;
796 for (j = 0; j < MAX_RIR_RANGES; j++) {
797 pci_read_config_dword(pvt->pci_tad[i],
798 rir_way_limit[j],
799 &reg);
801 if (!IS_RIR_VALID(reg))
802 continue;
804 tmp_mb = RIR_LIMIT(reg) >> 20;
805 rir_way = 1 << RIR_WAY(reg);
806 mb = div_u64_rem(tmp_mb, 1000, &kb);
807 debugf0("CH#%d RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d, reg=0x%08x\n",
808 i, j,
809 mb, kb,
810 ((u64)tmp_mb) << 20L,
811 rir_way,
812 reg);
814 for (k = 0; k < rir_way; k++) {
815 pci_read_config_dword(pvt->pci_tad[i],
816 rir_offset[j][k],
817 &reg);
818 tmp_mb = RIR_OFFSET(reg) << 6;
820 mb = div_u64_rem(tmp_mb, 1000, &kb);
821 debugf0("CH#%d RIR#%d INTL#%d, offset %u.%03u GB (0x%016Lx), tgt: %d, reg=0x%08x\n",
822 i, j, k,
823 mb, kb,
824 ((u64)tmp_mb) << 20L,
825 (u32)RIR_RNK_TGT(reg),
826 reg);
832 struct mem_ctl_info *get_mci_for_node_id(u8 node_id)
834 struct sbridge_dev *sbridge_dev;
836 list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
837 if (sbridge_dev->node_id == node_id)
838 return sbridge_dev->mci;
840 return NULL;
843 static int get_memory_error_data(struct mem_ctl_info *mci,
844 u64 addr,
845 u8 *socket,
846 long *channel_mask,
847 u8 *rank,
848 char *area_type)
850 struct mem_ctl_info *new_mci;
851 struct sbridge_pvt *pvt = mci->pvt_info;
852 char msg[256];
853 int n_rir, n_sads, n_tads, sad_way, sck_xch;
854 int sad_interl, idx, base_ch;
855 int interleave_mode;
856 unsigned sad_interleave[MAX_INTERLEAVE];
857 u32 reg;
858 u8 ch_way,sck_way;
859 u32 tad_offset;
860 u32 rir_way;
861 u32 mb, kb;
862 u64 ch_addr, offset, limit, prv = 0;
866 * Step 0) Check if the address is at special memory ranges
867 * The check bellow is probably enough to fill all cases where
868 * the error is not inside a memory, except for the legacy
869 * range (e. g. VGA addresses). It is unlikely, however, that the
870 * memory controller would generate an error on that range.
872 if ((addr > (u64) pvt->tolm) && (addr < (1LL << 32))) {
873 sprintf(msg, "Error at TOLM area, on addr 0x%08Lx", addr);
874 edac_mc_handle_ce_no_info(mci, msg);
875 return -EINVAL;
877 if (addr >= (u64)pvt->tohm) {
878 sprintf(msg, "Error at MMIOH area, on addr 0x%016Lx", addr);
879 edac_mc_handle_ce_no_info(mci, msg);
880 return -EINVAL;
884 * Step 1) Get socket
886 for (n_sads = 0; n_sads < MAX_SAD; n_sads++) {
887 pci_read_config_dword(pvt->pci_sad0, dram_rule[n_sads],
888 &reg);
890 if (!DRAM_RULE_ENABLE(reg))
891 continue;
893 limit = SAD_LIMIT(reg);
894 if (limit <= prv) {
895 sprintf(msg, "Can't discover the memory socket");
896 edac_mc_handle_ce_no_info(mci, msg);
897 return -EINVAL;
899 if (addr <= limit)
900 break;
901 prv = limit;
903 if (n_sads == MAX_SAD) {
904 sprintf(msg, "Can't discover the memory socket");
905 edac_mc_handle_ce_no_info(mci, msg);
906 return -EINVAL;
908 area_type = get_dram_attr(reg);
909 interleave_mode = INTERLEAVE_MODE(reg);
911 pci_read_config_dword(pvt->pci_sad0, interleave_list[n_sads],
912 &reg);
913 sad_interl = sad_pkg(reg, 0);
914 for (sad_way = 0; sad_way < 8; sad_way++) {
915 if (sad_way > 0 && sad_interl == sad_pkg(reg, sad_way))
916 break;
917 sad_interleave[sad_way] = sad_pkg(reg, sad_way);
918 debugf0("SAD interleave #%d: %d\n",
919 sad_way, sad_interleave[sad_way]);
921 debugf0("mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n",
922 pvt->sbridge_dev->mc,
923 n_sads,
924 addr,
925 limit,
926 sad_way + 7,
927 interleave_mode ? "" : "XOR[18:16]");
928 if (interleave_mode)
929 idx = ((addr >> 6) ^ (addr >> 16)) & 7;
930 else
931 idx = (addr >> 6) & 7;
932 switch (sad_way) {
933 case 1:
934 idx = 0;
935 break;
936 case 2:
937 idx = idx & 1;
938 break;
939 case 4:
940 idx = idx & 3;
941 break;
942 case 8:
943 break;
944 default:
945 sprintf(msg, "Can't discover socket interleave");
946 edac_mc_handle_ce_no_info(mci, msg);
947 return -EINVAL;
949 *socket = sad_interleave[idx];
950 debugf0("SAD interleave index: %d (wayness %d) = CPU socket %d\n",
951 idx, sad_way, *socket);
954 * Move to the proper node structure, in order to access the
955 * right PCI registers
957 new_mci = get_mci_for_node_id(*socket);
958 if (!new_mci) {
959 sprintf(msg, "Struct for socket #%u wasn't initialized",
960 *socket);
961 edac_mc_handle_ce_no_info(mci, msg);
962 return -EINVAL;
964 mci = new_mci;
965 pvt = mci->pvt_info;
968 * Step 2) Get memory channel
970 prv = 0;
971 for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
972 pci_read_config_dword(pvt->pci_ha0, tad_dram_rule[n_tads],
973 &reg);
974 limit = TAD_LIMIT(reg);
975 if (limit <= prv) {
976 sprintf(msg, "Can't discover the memory channel");
977 edac_mc_handle_ce_no_info(mci, msg);
978 return -EINVAL;
980 if (addr <= limit)
981 break;
982 prv = limit;
984 ch_way = TAD_CH(reg) + 1;
985 sck_way = TAD_SOCK(reg) + 1;
987 * FIXME: Is it right to always use channel 0 for offsets?
989 pci_read_config_dword(pvt->pci_tad[0],
990 tad_ch_nilv_offset[n_tads],
991 &tad_offset);
993 if (ch_way == 3)
994 idx = addr >> 6;
995 else
996 idx = addr >> (6 + sck_way);
997 idx = idx % ch_way;
1000 * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ???
1002 switch (idx) {
1003 case 0:
1004 base_ch = TAD_TGT0(reg);
1005 break;
1006 case 1:
1007 base_ch = TAD_TGT1(reg);
1008 break;
1009 case 2:
1010 base_ch = TAD_TGT2(reg);
1011 break;
1012 case 3:
1013 base_ch = TAD_TGT3(reg);
1014 break;
1015 default:
1016 sprintf(msg, "Can't discover the TAD target");
1017 edac_mc_handle_ce_no_info(mci, msg);
1018 return -EINVAL;
1020 *channel_mask = 1 << base_ch;
1022 if (pvt->is_mirrored) {
1023 *channel_mask |= 1 << ((base_ch + 2) % 4);
1024 switch(ch_way) {
1025 case 2:
1026 case 4:
1027 sck_xch = 1 << sck_way * (ch_way >> 1);
1028 break;
1029 default:
1030 sprintf(msg, "Invalid mirror set. Can't decode addr");
1031 edac_mc_handle_ce_no_info(mci, msg);
1032 return -EINVAL;
1034 } else
1035 sck_xch = (1 << sck_way) * ch_way;
1037 if (pvt->is_lockstep)
1038 *channel_mask |= 1 << ((base_ch + 1) % 4);
1040 offset = TAD_OFFSET(tad_offset);
1042 debugf0("TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n",
1043 n_tads,
1044 addr,
1045 limit,
1046 (u32)TAD_SOCK(reg),
1047 ch_way,
1048 offset,
1049 idx,
1050 base_ch,
1051 *channel_mask);
1053 /* Calculate channel address */
1054 /* Remove the TAD offset */
1056 if (offset > addr) {
1057 sprintf(msg, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!",
1058 offset, addr);
1059 edac_mc_handle_ce_no_info(mci, msg);
1060 return -EINVAL;
1062 addr -= offset;
1063 /* Store the low bits [0:6] of the addr */
1064 ch_addr = addr & 0x7f;
1065 /* Remove socket wayness and remove 6 bits */
1066 addr >>= 6;
1067 addr = div_u64(addr, sck_xch);
1068 #if 0
1069 /* Divide by channel way */
1070 addr = addr / ch_way;
1071 #endif
1072 /* Recover the last 6 bits */
1073 ch_addr |= addr << 6;
1076 * Step 3) Decode rank
1078 for (n_rir = 0; n_rir < MAX_RIR_RANGES; n_rir++) {
1079 pci_read_config_dword(pvt->pci_tad[base_ch],
1080 rir_way_limit[n_rir],
1081 &reg);
1083 if (!IS_RIR_VALID(reg))
1084 continue;
1086 limit = RIR_LIMIT(reg);
1087 mb = div_u64_rem(limit >> 20, 1000, &kb);
1088 debugf0("RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d\n",
1089 n_rir,
1090 mb, kb,
1091 limit,
1092 1 << RIR_WAY(reg));
1093 if (ch_addr <= limit)
1094 break;
1096 if (n_rir == MAX_RIR_RANGES) {
1097 sprintf(msg, "Can't discover the memory rank for ch addr 0x%08Lx",
1098 ch_addr);
1099 edac_mc_handle_ce_no_info(mci, msg);
1100 return -EINVAL;
1102 rir_way = RIR_WAY(reg);
1103 if (pvt->is_close_pg)
1104 idx = (ch_addr >> 6);
1105 else
1106 idx = (ch_addr >> 13); /* FIXME: Datasheet says to shift by 15 */
1107 idx %= 1 << rir_way;
1109 pci_read_config_dword(pvt->pci_tad[base_ch],
1110 rir_offset[n_rir][idx],
1111 &reg);
1112 *rank = RIR_RNK_TGT(reg);
1114 debugf0("RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n",
1115 n_rir,
1116 ch_addr,
1117 limit,
1118 rir_way,
1119 idx);
1121 return 0;
1124 /****************************************************************************
1125 Device initialization routines: put/get, init/exit
1126 ****************************************************************************/
1129 * sbridge_put_all_devices 'put' all the devices that we have
1130 * reserved via 'get'
1132 static void sbridge_put_devices(struct sbridge_dev *sbridge_dev)
1134 int i;
1136 debugf0(__FILE__ ": %s()\n", __func__);
1137 for (i = 0; i < sbridge_dev->n_devs; i++) {
1138 struct pci_dev *pdev = sbridge_dev->pdev[i];
1139 if (!pdev)
1140 continue;
1141 debugf0("Removing dev %02x:%02x.%d\n",
1142 pdev->bus->number,
1143 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
1144 pci_dev_put(pdev);
1148 static void sbridge_put_all_devices(void)
1150 struct sbridge_dev *sbridge_dev, *tmp;
1152 list_for_each_entry_safe(sbridge_dev, tmp, &sbridge_edac_list, list) {
1153 sbridge_put_devices(sbridge_dev);
1154 free_sbridge_dev(sbridge_dev);
1159 * sbridge_get_all_devices Find and perform 'get' operation on the MCH's
1160 * device/functions we want to reference for this driver
1162 * Need to 'get' device 16 func 1 and func 2
1164 static int sbridge_get_onedevice(struct pci_dev **prev,
1165 u8 *num_mc,
1166 const struct pci_id_table *table,
1167 const unsigned devno)
1169 struct sbridge_dev *sbridge_dev;
1170 const struct pci_id_descr *dev_descr = &table->descr[devno];
1172 struct pci_dev *pdev = NULL;
1173 u8 bus = 0;
1175 sbridge_printk(KERN_INFO,
1176 "Seeking for: dev %02x.%d PCI ID %04x:%04x\n",
1177 dev_descr->dev, dev_descr->func,
1178 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1180 pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
1181 dev_descr->dev_id, *prev);
1183 if (!pdev) {
1184 if (*prev) {
1185 *prev = pdev;
1186 return 0;
1189 if (dev_descr->optional)
1190 return 0;
1192 if (devno == 0)
1193 return -ENODEV;
1195 sbridge_printk(KERN_INFO,
1196 "Device not found: dev %02x.%d PCI ID %04x:%04x\n",
1197 dev_descr->dev, dev_descr->func,
1198 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1200 /* End of list, leave */
1201 return -ENODEV;
1203 bus = pdev->bus->number;
1205 sbridge_dev = get_sbridge_dev(bus);
1206 if (!sbridge_dev) {
1207 sbridge_dev = alloc_sbridge_dev(bus, table);
1208 if (!sbridge_dev) {
1209 pci_dev_put(pdev);
1210 return -ENOMEM;
1212 (*num_mc)++;
1215 if (sbridge_dev->pdev[devno]) {
1216 sbridge_printk(KERN_ERR,
1217 "Duplicated device for "
1218 "dev %02x:%d.%d PCI ID %04x:%04x\n",
1219 bus, dev_descr->dev, dev_descr->func,
1220 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1221 pci_dev_put(pdev);
1222 return -ENODEV;
1225 sbridge_dev->pdev[devno] = pdev;
1227 /* Sanity check */
1228 if (unlikely(PCI_SLOT(pdev->devfn) != dev_descr->dev ||
1229 PCI_FUNC(pdev->devfn) != dev_descr->func)) {
1230 sbridge_printk(KERN_ERR,
1231 "Device PCI ID %04x:%04x "
1232 "has dev %02x:%d.%d instead of dev %02x:%02x.%d\n",
1233 PCI_VENDOR_ID_INTEL, dev_descr->dev_id,
1234 bus, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
1235 bus, dev_descr->dev, dev_descr->func);
1236 return -ENODEV;
1239 /* Be sure that the device is enabled */
1240 if (unlikely(pci_enable_device(pdev) < 0)) {
1241 sbridge_printk(KERN_ERR,
1242 "Couldn't enable "
1243 "dev %02x:%d.%d PCI ID %04x:%04x\n",
1244 bus, dev_descr->dev, dev_descr->func,
1245 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1246 return -ENODEV;
1249 debugf0("Detected dev %02x:%d.%d PCI ID %04x:%04x\n",
1250 bus, dev_descr->dev,
1251 dev_descr->func,
1252 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1255 * As stated on drivers/pci/search.c, the reference count for
1256 * @from is always decremented if it is not %NULL. So, as we need
1257 * to get all devices up to null, we need to do a get for the device
1259 pci_dev_get(pdev);
1261 *prev = pdev;
1263 return 0;
1266 static int sbridge_get_all_devices(u8 *num_mc)
1268 int i, rc;
1269 struct pci_dev *pdev = NULL;
1270 const struct pci_id_table *table = pci_dev_descr_sbridge_table;
1272 while (table && table->descr) {
1273 for (i = 0; i < table->n_devs; i++) {
1274 pdev = NULL;
1275 do {
1276 rc = sbridge_get_onedevice(&pdev, num_mc,
1277 table, i);
1278 if (rc < 0) {
1279 if (i == 0) {
1280 i = table->n_devs;
1281 break;
1283 sbridge_put_all_devices();
1284 return -ENODEV;
1286 } while (pdev);
1288 table++;
1291 return 0;
1294 static int mci_bind_devs(struct mem_ctl_info *mci,
1295 struct sbridge_dev *sbridge_dev)
1297 struct sbridge_pvt *pvt = mci->pvt_info;
1298 struct pci_dev *pdev;
1299 int i, func, slot;
1301 for (i = 0; i < sbridge_dev->n_devs; i++) {
1302 pdev = sbridge_dev->pdev[i];
1303 if (!pdev)
1304 continue;
1305 slot = PCI_SLOT(pdev->devfn);
1306 func = PCI_FUNC(pdev->devfn);
1307 switch (slot) {
1308 case 12:
1309 switch (func) {
1310 case 6:
1311 pvt->pci_sad0 = pdev;
1312 break;
1313 case 7:
1314 pvt->pci_sad1 = pdev;
1315 break;
1316 default:
1317 goto error;
1319 break;
1320 case 13:
1321 switch (func) {
1322 case 6:
1323 pvt->pci_br = pdev;
1324 break;
1325 default:
1326 goto error;
1328 break;
1329 case 14:
1330 switch (func) {
1331 case 0:
1332 pvt->pci_ha0 = pdev;
1333 break;
1334 default:
1335 goto error;
1337 break;
1338 case 15:
1339 switch (func) {
1340 case 0:
1341 pvt->pci_ta = pdev;
1342 break;
1343 case 1:
1344 pvt->pci_ras = pdev;
1345 break;
1346 case 2:
1347 case 3:
1348 case 4:
1349 case 5:
1350 pvt->pci_tad[func - 2] = pdev;
1351 break;
1352 default:
1353 goto error;
1355 break;
1356 case 17:
1357 switch (func) {
1358 case 0:
1359 pvt->pci_ddrio = pdev;
1360 break;
1361 default:
1362 goto error;
1364 break;
1365 default:
1366 goto error;
1369 debugf0("Associated PCI %02x.%02d.%d with dev = %p\n",
1370 sbridge_dev->bus,
1371 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
1372 pdev);
1375 /* Check if everything were registered */
1376 if (!pvt->pci_sad0 || !pvt->pci_sad1 || !pvt->pci_ha0 ||
1377 !pvt-> pci_tad || !pvt->pci_ras || !pvt->pci_ta ||
1378 !pvt->pci_ddrio)
1379 goto enodev;
1381 for (i = 0; i < NUM_CHANNELS; i++) {
1382 if (!pvt->pci_tad[i])
1383 goto enodev;
1385 return 0;
1387 enodev:
1388 sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
1389 return -ENODEV;
1391 error:
1392 sbridge_printk(KERN_ERR, "Device %d, function %d "
1393 "is out of the expected range\n",
1394 slot, func);
1395 return -EINVAL;
1398 /****************************************************************************
1399 Error check routines
1400 ****************************************************************************/
1403 * While Sandy Bridge has error count registers, SMI BIOS read values from
1404 * and resets the counters. So, they are not reliable for the OS to read
1405 * from them. So, we have no option but to just trust on whatever MCE is
1406 * telling us about the errors.
1408 static void sbridge_mce_output_error(struct mem_ctl_info *mci,
1409 const struct mce *m)
1411 struct mem_ctl_info *new_mci;
1412 struct sbridge_pvt *pvt = mci->pvt_info;
1413 char *type, *optype, *msg, *recoverable_msg;
1414 bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
1415 bool overflow = GET_BITFIELD(m->status, 62, 62);
1416 bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
1417 bool recoverable = GET_BITFIELD(m->status, 56, 56);
1418 u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
1419 u32 mscod = GET_BITFIELD(m->status, 16, 31);
1420 u32 errcode = GET_BITFIELD(m->status, 0, 15);
1421 u32 channel = GET_BITFIELD(m->status, 0, 3);
1422 u32 optypenum = GET_BITFIELD(m->status, 4, 6);
1423 long channel_mask, first_channel;
1424 u8 rank, socket;
1425 int csrow, rc, dimm;
1426 char *area_type = "Unknown";
1428 if (ripv)
1429 type = "NON_FATAL";
1430 else
1431 type = "FATAL";
1434 * According with Table 15-9 of the Intel Archictecture spec vol 3A,
1435 * memory errors should fit in this mask:
1436 * 000f 0000 1mmm cccc (binary)
1437 * where:
1438 * f = Correction Report Filtering Bit. If 1, subsequent errors
1439 * won't be shown
1440 * mmm = error type
1441 * cccc = channel
1442 * If the mask doesn't match, report an error to the parsing logic
1444 if (! ((errcode & 0xef80) == 0x80)) {
1445 optype = "Can't parse: it is not a mem";
1446 } else {
1447 switch (optypenum) {
1448 case 0:
1449 optype = "generic undef request";
1450 break;
1451 case 1:
1452 optype = "memory read";
1453 break;
1454 case 2:
1455 optype = "memory write";
1456 break;
1457 case 3:
1458 optype = "addr/cmd";
1459 break;
1460 case 4:
1461 optype = "memory scrubbing";
1462 break;
1463 default:
1464 optype = "reserved";
1465 break;
1469 rc = get_memory_error_data(mci, m->addr, &socket,
1470 &channel_mask, &rank, area_type);
1471 if (rc < 0)
1472 return;
1473 new_mci = get_mci_for_node_id(socket);
1474 if (!new_mci) {
1475 edac_mc_handle_ce_no_info(mci, "Error: socket got corrupted!");
1476 return;
1478 mci = new_mci;
1479 pvt = mci->pvt_info;
1481 first_channel = find_first_bit(&channel_mask, NUM_CHANNELS);
1483 if (rank < 4)
1484 dimm = 0;
1485 else if (rank < 8)
1486 dimm = 1;
1487 else
1488 dimm = 2;
1490 csrow = pvt->csrow_map[first_channel][dimm];
1492 if (uncorrected_error && recoverable)
1493 recoverable_msg = " recoverable";
1494 else
1495 recoverable_msg = "";
1498 * FIXME: What should we do with "channel" information on mcelog?
1499 * Probably, we can just discard it, as the channel information
1500 * comes from the get_memory_error_data() address decoding
1502 msg = kasprintf(GFP_ATOMIC,
1503 "%d %s error(s): %s on %s area %s%s: cpu=%d Err=%04x:%04x (ch=%d), "
1504 "addr = 0x%08llx => socket=%d, Channel=%ld(mask=%ld), rank=%d\n",
1505 core_err_cnt,
1506 area_type,
1507 optype,
1508 type,
1509 recoverable_msg,
1510 overflow ? "OVERFLOW" : "",
1511 m->cpu,
1512 mscod, errcode,
1513 channel, /* 1111b means not specified */
1514 (long long) m->addr,
1515 socket,
1516 first_channel, /* This is the real channel on SB */
1517 channel_mask,
1518 rank);
1520 debugf0("%s", msg);
1522 /* Call the helper to output message */
1523 if (uncorrected_error)
1524 edac_mc_handle_fbd_ue(mci, csrow, 0, 0, msg);
1525 else
1526 edac_mc_handle_fbd_ce(mci, csrow, 0, msg);
1528 kfree(msg);
1532 * sbridge_check_error Retrieve and process errors reported by the
1533 * hardware. Called by the Core module.
1535 static void sbridge_check_error(struct mem_ctl_info *mci)
1537 struct sbridge_pvt *pvt = mci->pvt_info;
1538 int i;
1539 unsigned count = 0;
1540 struct mce *m;
1543 * MCE first step: Copy all mce errors into a temporary buffer
1544 * We use a double buffering here, to reduce the risk of
1545 * loosing an error.
1547 smp_rmb();
1548 count = (pvt->mce_out + MCE_LOG_LEN - pvt->mce_in)
1549 % MCE_LOG_LEN;
1550 if (!count)
1551 return;
1553 m = pvt->mce_outentry;
1554 if (pvt->mce_in + count > MCE_LOG_LEN) {
1555 unsigned l = MCE_LOG_LEN - pvt->mce_in;
1557 memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * l);
1558 smp_wmb();
1559 pvt->mce_in = 0;
1560 count -= l;
1561 m += l;
1563 memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * count);
1564 smp_wmb();
1565 pvt->mce_in += count;
1567 smp_rmb();
1568 if (pvt->mce_overrun) {
1569 sbridge_printk(KERN_ERR, "Lost %d memory errors\n",
1570 pvt->mce_overrun);
1571 smp_wmb();
1572 pvt->mce_overrun = 0;
1576 * MCE second step: parse errors and display
1578 for (i = 0; i < count; i++)
1579 sbridge_mce_output_error(mci, &pvt->mce_outentry[i]);
1583 * sbridge_mce_check_error Replicates mcelog routine to get errors
1584 * This routine simply queues mcelog errors, and
1585 * return. The error itself should be handled later
1586 * by sbridge_check_error.
1587 * WARNING: As this routine should be called at NMI time, extra care should
1588 * be taken to avoid deadlocks, and to be as fast as possible.
1590 static int sbridge_mce_check_error(struct notifier_block *nb, unsigned long val,
1591 void *data)
1593 struct mce *mce = (struct mce *)data;
1594 struct mem_ctl_info *mci;
1595 struct sbridge_pvt *pvt;
1597 mci = get_mci_for_node_id(mce->socketid);
1598 if (!mci)
1599 return NOTIFY_BAD;
1600 pvt = mci->pvt_info;
1603 * Just let mcelog handle it if the error is
1604 * outside the memory controller. A memory error
1605 * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
1606 * bit 12 has an special meaning.
1608 if ((mce->status & 0xefff) >> 7 != 1)
1609 return NOTIFY_DONE;
1611 printk("sbridge: HANDLING MCE MEMORY ERROR\n");
1613 printk("CPU %d: Machine Check Exception: %Lx Bank %d: %016Lx\n",
1614 mce->extcpu, mce->mcgstatus, mce->bank, mce->status);
1615 printk("TSC %llx ", mce->tsc);
1616 printk("ADDR %llx ", mce->addr);
1617 printk("MISC %llx ", mce->misc);
1619 printk("PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x\n",
1620 mce->cpuvendor, mce->cpuid, mce->time,
1621 mce->socketid, mce->apicid);
1623 /* Only handle if it is the right mc controller */
1624 if (cpu_data(mce->cpu).phys_proc_id != pvt->sbridge_dev->mc)
1625 return NOTIFY_DONE;
1627 smp_rmb();
1628 if ((pvt->mce_out + 1) % MCE_LOG_LEN == pvt->mce_in) {
1629 smp_wmb();
1630 pvt->mce_overrun++;
1631 return NOTIFY_DONE;
1634 /* Copy memory error at the ringbuffer */
1635 memcpy(&pvt->mce_entry[pvt->mce_out], mce, sizeof(*mce));
1636 smp_wmb();
1637 pvt->mce_out = (pvt->mce_out + 1) % MCE_LOG_LEN;
1639 /* Handle fatal errors immediately */
1640 if (mce->mcgstatus & 1)
1641 sbridge_check_error(mci);
1643 /* Advice mcelog that the error were handled */
1644 return NOTIFY_STOP;
1647 static struct notifier_block sbridge_mce_dec = {
1648 .notifier_call = sbridge_mce_check_error,
1651 /****************************************************************************
1652 EDAC register/unregister logic
1653 ****************************************************************************/
1655 static void sbridge_unregister_mci(struct sbridge_dev *sbridge_dev)
1657 struct mem_ctl_info *mci = sbridge_dev->mci;
1658 struct sbridge_pvt *pvt;
1660 if (unlikely(!mci || !mci->pvt_info)) {
1661 debugf0("MC: " __FILE__ ": %s(): dev = %p\n",
1662 __func__, &sbridge_dev->pdev[0]->dev);
1664 sbridge_printk(KERN_ERR, "Couldn't find mci handler\n");
1665 return;
1668 pvt = mci->pvt_info;
1670 debugf0("MC: " __FILE__ ": %s(): mci = %p, dev = %p\n",
1671 __func__, mci, &sbridge_dev->pdev[0]->dev);
1673 /* Remove MC sysfs nodes */
1674 edac_mc_del_mc(mci->dev);
1676 debugf1("%s: free mci struct\n", mci->ctl_name);
1677 kfree(mci->ctl_name);
1678 edac_mc_free(mci);
1679 sbridge_dev->mci = NULL;
1682 static int sbridge_register_mci(struct sbridge_dev *sbridge_dev)
1684 struct mem_ctl_info *mci;
1685 struct sbridge_pvt *pvt;
1686 int rc, channels, csrows;
1688 /* Check the number of active and not disabled channels */
1689 rc = sbridge_get_active_channels(sbridge_dev->bus, &channels, &csrows);
1690 if (unlikely(rc < 0))
1691 return rc;
1693 /* allocate a new MC control structure */
1694 mci = edac_mc_alloc(sizeof(*pvt), csrows, channels, sbridge_dev->mc);
1695 if (unlikely(!mci))
1696 return -ENOMEM;
1698 debugf0("MC: " __FILE__ ": %s(): mci = %p, dev = %p\n",
1699 __func__, mci, &sbridge_dev->pdev[0]->dev);
1701 pvt = mci->pvt_info;
1702 memset(pvt, 0, sizeof(*pvt));
1704 /* Associate sbridge_dev and mci for future usage */
1705 pvt->sbridge_dev = sbridge_dev;
1706 sbridge_dev->mci = mci;
1708 mci->mtype_cap = MEM_FLAG_DDR3;
1709 mci->edac_ctl_cap = EDAC_FLAG_NONE;
1710 mci->edac_cap = EDAC_FLAG_NONE;
1711 mci->mod_name = "sbridge_edac.c";
1712 mci->mod_ver = SBRIDGE_REVISION;
1713 mci->ctl_name = kasprintf(GFP_KERNEL, "Sandy Bridge Socket#%d", mci->mc_idx);
1714 mci->dev_name = pci_name(sbridge_dev->pdev[0]);
1715 mci->ctl_page_to_phys = NULL;
1717 /* Set the function pointer to an actual operation function */
1718 mci->edac_check = sbridge_check_error;
1720 /* Store pci devices at mci for faster access */
1721 rc = mci_bind_devs(mci, sbridge_dev);
1722 if (unlikely(rc < 0))
1723 goto fail0;
1725 /* Get dimm basic config and the memory layout */
1726 get_dimm_config(mci);
1727 get_memory_layout(mci);
1729 /* record ptr to the generic device */
1730 mci->dev = &sbridge_dev->pdev[0]->dev;
1732 /* add this new MC control structure to EDAC's list of MCs */
1733 if (unlikely(edac_mc_add_mc(mci))) {
1734 debugf0("MC: " __FILE__
1735 ": %s(): failed edac_mc_add_mc()\n", __func__);
1736 rc = -EINVAL;
1737 goto fail0;
1740 return 0;
1742 fail0:
1743 kfree(mci->ctl_name);
1744 edac_mc_free(mci);
1745 sbridge_dev->mci = NULL;
1746 return rc;
1750 * sbridge_probe Probe for ONE instance of device to see if it is
1751 * present.
1752 * return:
1753 * 0 for FOUND a device
1754 * < 0 for error code
1757 static int __devinit sbridge_probe(struct pci_dev *pdev,
1758 const struct pci_device_id *id)
1760 int rc;
1761 u8 mc, num_mc = 0;
1762 struct sbridge_dev *sbridge_dev;
1764 /* get the pci devices we want to reserve for our use */
1765 mutex_lock(&sbridge_edac_lock);
1768 * All memory controllers are allocated at the first pass.
1770 if (unlikely(probed >= 1)) {
1771 mutex_unlock(&sbridge_edac_lock);
1772 return -ENODEV;
1774 probed++;
1776 rc = sbridge_get_all_devices(&num_mc);
1777 if (unlikely(rc < 0))
1778 goto fail0;
1779 mc = 0;
1781 list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
1782 debugf0("Registering MC#%d (%d of %d)\n", mc, mc + 1, num_mc);
1783 sbridge_dev->mc = mc++;
1784 rc = sbridge_register_mci(sbridge_dev);
1785 if (unlikely(rc < 0))
1786 goto fail1;
1789 sbridge_printk(KERN_INFO, "Driver loaded.\n");
1791 mutex_unlock(&sbridge_edac_lock);
1792 return 0;
1794 fail1:
1795 list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
1796 sbridge_unregister_mci(sbridge_dev);
1798 sbridge_put_all_devices();
1799 fail0:
1800 mutex_unlock(&sbridge_edac_lock);
1801 return rc;
1805 * sbridge_remove destructor for one instance of device
1808 static void __devexit sbridge_remove(struct pci_dev *pdev)
1810 struct sbridge_dev *sbridge_dev;
1812 debugf0(__FILE__ ": %s()\n", __func__);
1815 * we have a trouble here: pdev value for removal will be wrong, since
1816 * it will point to the X58 register used to detect that the machine
1817 * is a Nehalem or upper design. However, due to the way several PCI
1818 * devices are grouped together to provide MC functionality, we need
1819 * to use a different method for releasing the devices
1822 mutex_lock(&sbridge_edac_lock);
1824 if (unlikely(!probed)) {
1825 mutex_unlock(&sbridge_edac_lock);
1826 return;
1829 list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
1830 sbridge_unregister_mci(sbridge_dev);
1832 /* Release PCI resources */
1833 sbridge_put_all_devices();
1835 probed--;
1837 mutex_unlock(&sbridge_edac_lock);
1840 MODULE_DEVICE_TABLE(pci, sbridge_pci_tbl);
1843 * sbridge_driver pci_driver structure for this module
1846 static struct pci_driver sbridge_driver = {
1847 .name = "sbridge_edac",
1848 .probe = sbridge_probe,
1849 .remove = __devexit_p(sbridge_remove),
1850 .id_table = sbridge_pci_tbl,
1854 * sbridge_init Module entry function
1855 * Try to initialize this module for its devices
1857 static int __init sbridge_init(void)
1859 int pci_rc;
1861 debugf2("MC: " __FILE__ ": %s()\n", __func__);
1863 /* Ensure that the OPSTATE is set correctly for POLL or NMI */
1864 opstate_init();
1866 pci_rc = pci_register_driver(&sbridge_driver);
1868 if (pci_rc >= 0) {
1869 mce_register_decode_chain(&sbridge_mce_dec);
1870 return 0;
1873 sbridge_printk(KERN_ERR, "Failed to register device with error %d.\n",
1874 pci_rc);
1876 return pci_rc;
1880 * sbridge_exit() Module exit function
1881 * Unregister the driver
1883 static void __exit sbridge_exit(void)
1885 debugf2("MC: " __FILE__ ": %s()\n", __func__);
1886 pci_unregister_driver(&sbridge_driver);
1887 mce_unregister_decode_chain(&sbridge_mce_dec);
1890 module_init(sbridge_init);
1891 module_exit(sbridge_exit);
1893 module_param(edac_op_state, int, 0444);
1894 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
1896 MODULE_LICENSE("GPL");
1897 MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>");
1898 MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
1899 MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge memory controllers - "
1900 SBRIDGE_REVISION);