Linux 3.4.102
[linux/fpc-iii.git] / drivers / md / dm-crypt.c
blob535c3e276fc78a4b0db891ce6c845869e215556a
1 /*
2 * Copyright (C) 2003 Christophe Saout <christophe@saout.de>
3 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
4 * Copyright (C) 2006-2009 Red Hat, Inc. All rights reserved.
6 * This file is released under the GPL.
7 */
9 #include <linux/completion.h>
10 #include <linux/err.h>
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/bio.h>
15 #include <linux/blkdev.h>
16 #include <linux/mempool.h>
17 #include <linux/slab.h>
18 #include <linux/crypto.h>
19 #include <linux/workqueue.h>
20 #include <linux/backing-dev.h>
21 #include <linux/percpu.h>
22 #include <linux/atomic.h>
23 #include <linux/scatterlist.h>
24 #include <asm/page.h>
25 #include <asm/unaligned.h>
26 #include <crypto/hash.h>
27 #include <crypto/md5.h>
28 #include <crypto/algapi.h>
30 #include <linux/device-mapper.h>
32 #define DM_MSG_PREFIX "crypt"
35 * context holding the current state of a multi-part conversion
37 struct convert_context {
38 struct completion restart;
39 struct bio *bio_in;
40 struct bio *bio_out;
41 unsigned int offset_in;
42 unsigned int offset_out;
43 unsigned int idx_in;
44 unsigned int idx_out;
45 sector_t sector;
46 atomic_t pending;
50 * per bio private data
52 struct dm_crypt_io {
53 struct dm_target *target;
54 struct bio *base_bio;
55 struct work_struct work;
57 struct convert_context ctx;
59 atomic_t pending;
60 int error;
61 sector_t sector;
62 struct dm_crypt_io *base_io;
65 struct dm_crypt_request {
66 struct convert_context *ctx;
67 struct scatterlist sg_in;
68 struct scatterlist sg_out;
69 sector_t iv_sector;
72 struct crypt_config;
74 struct crypt_iv_operations {
75 int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
76 const char *opts);
77 void (*dtr)(struct crypt_config *cc);
78 int (*init)(struct crypt_config *cc);
79 int (*wipe)(struct crypt_config *cc);
80 int (*generator)(struct crypt_config *cc, u8 *iv,
81 struct dm_crypt_request *dmreq);
82 int (*post)(struct crypt_config *cc, u8 *iv,
83 struct dm_crypt_request *dmreq);
86 struct iv_essiv_private {
87 struct crypto_hash *hash_tfm;
88 u8 *salt;
91 struct iv_benbi_private {
92 int shift;
95 #define LMK_SEED_SIZE 64 /* hash + 0 */
96 struct iv_lmk_private {
97 struct crypto_shash *hash_tfm;
98 u8 *seed;
102 * Crypt: maps a linear range of a block device
103 * and encrypts / decrypts at the same time.
105 enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID };
108 * Duplicated per-CPU state for cipher.
110 struct crypt_cpu {
111 struct ablkcipher_request *req;
112 /* ESSIV: struct crypto_cipher *essiv_tfm */
113 void *iv_private;
114 struct crypto_ablkcipher *tfms[0];
118 * The fields in here must be read only after initialization,
119 * changing state should be in crypt_cpu.
121 struct crypt_config {
122 struct dm_dev *dev;
123 sector_t start;
126 * pool for per bio private data, crypto requests and
127 * encryption requeusts/buffer pages
129 mempool_t *io_pool;
130 mempool_t *req_pool;
131 mempool_t *page_pool;
132 struct bio_set *bs;
134 struct workqueue_struct *io_queue;
135 struct workqueue_struct *crypt_queue;
137 char *cipher;
138 char *cipher_string;
140 struct crypt_iv_operations *iv_gen_ops;
141 union {
142 struct iv_essiv_private essiv;
143 struct iv_benbi_private benbi;
144 struct iv_lmk_private lmk;
145 } iv_gen_private;
146 sector_t iv_offset;
147 unsigned int iv_size;
150 * Duplicated per cpu state. Access through
151 * per_cpu_ptr() only.
153 struct crypt_cpu __percpu *cpu;
154 unsigned tfms_count;
157 * Layout of each crypto request:
159 * struct ablkcipher_request
160 * context
161 * padding
162 * struct dm_crypt_request
163 * padding
164 * IV
166 * The padding is added so that dm_crypt_request and the IV are
167 * correctly aligned.
169 unsigned int dmreq_start;
171 unsigned long flags;
172 unsigned int key_size;
173 unsigned int key_parts;
174 u8 key[0];
177 #define MIN_IOS 16
178 #define MIN_POOL_PAGES 32
180 static struct kmem_cache *_crypt_io_pool;
182 static void clone_init(struct dm_crypt_io *, struct bio *);
183 static void kcryptd_queue_crypt(struct dm_crypt_io *io);
184 static u8 *iv_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq);
186 static struct crypt_cpu *this_crypt_config(struct crypt_config *cc)
188 return this_cpu_ptr(cc->cpu);
192 * Use this to access cipher attributes that are the same for each CPU.
194 static struct crypto_ablkcipher *any_tfm(struct crypt_config *cc)
196 return __this_cpu_ptr(cc->cpu)->tfms[0];
200 * Different IV generation algorithms:
202 * plain: the initial vector is the 32-bit little-endian version of the sector
203 * number, padded with zeros if necessary.
205 * plain64: the initial vector is the 64-bit little-endian version of the sector
206 * number, padded with zeros if necessary.
208 * essiv: "encrypted sector|salt initial vector", the sector number is
209 * encrypted with the bulk cipher using a salt as key. The salt
210 * should be derived from the bulk cipher's key via hashing.
212 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
213 * (needed for LRW-32-AES and possible other narrow block modes)
215 * null: the initial vector is always zero. Provides compatibility with
216 * obsolete loop_fish2 devices. Do not use for new devices.
218 * lmk: Compatible implementation of the block chaining mode used
219 * by the Loop-AES block device encryption system
220 * designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
221 * It operates on full 512 byte sectors and uses CBC
222 * with an IV derived from the sector number, the data and
223 * optionally extra IV seed.
224 * This means that after decryption the first block
225 * of sector must be tweaked according to decrypted data.
226 * Loop-AES can use three encryption schemes:
227 * version 1: is plain aes-cbc mode
228 * version 2: uses 64 multikey scheme with lmk IV generator
229 * version 3: the same as version 2 with additional IV seed
230 * (it uses 65 keys, last key is used as IV seed)
232 * plumb: unimplemented, see:
233 * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
236 static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
237 struct dm_crypt_request *dmreq)
239 memset(iv, 0, cc->iv_size);
240 *(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
242 return 0;
245 static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
246 struct dm_crypt_request *dmreq)
248 memset(iv, 0, cc->iv_size);
249 *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
251 return 0;
254 /* Initialise ESSIV - compute salt but no local memory allocations */
255 static int crypt_iv_essiv_init(struct crypt_config *cc)
257 struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
258 struct hash_desc desc;
259 struct scatterlist sg;
260 struct crypto_cipher *essiv_tfm;
261 int err, cpu;
263 sg_init_one(&sg, cc->key, cc->key_size);
264 desc.tfm = essiv->hash_tfm;
265 desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
267 err = crypto_hash_digest(&desc, &sg, cc->key_size, essiv->salt);
268 if (err)
269 return err;
271 for_each_possible_cpu(cpu) {
272 essiv_tfm = per_cpu_ptr(cc->cpu, cpu)->iv_private,
274 err = crypto_cipher_setkey(essiv_tfm, essiv->salt,
275 crypto_hash_digestsize(essiv->hash_tfm));
276 if (err)
277 return err;
280 return 0;
283 /* Wipe salt and reset key derived from volume key */
284 static int crypt_iv_essiv_wipe(struct crypt_config *cc)
286 struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
287 unsigned salt_size = crypto_hash_digestsize(essiv->hash_tfm);
288 struct crypto_cipher *essiv_tfm;
289 int cpu, r, err = 0;
291 memset(essiv->salt, 0, salt_size);
293 for_each_possible_cpu(cpu) {
294 essiv_tfm = per_cpu_ptr(cc->cpu, cpu)->iv_private;
295 r = crypto_cipher_setkey(essiv_tfm, essiv->salt, salt_size);
296 if (r)
297 err = r;
300 return err;
303 /* Set up per cpu cipher state */
304 static struct crypto_cipher *setup_essiv_cpu(struct crypt_config *cc,
305 struct dm_target *ti,
306 u8 *salt, unsigned saltsize)
308 struct crypto_cipher *essiv_tfm;
309 int err;
311 /* Setup the essiv_tfm with the given salt */
312 essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
313 if (IS_ERR(essiv_tfm)) {
314 ti->error = "Error allocating crypto tfm for ESSIV";
315 return essiv_tfm;
318 if (crypto_cipher_blocksize(essiv_tfm) !=
319 crypto_ablkcipher_ivsize(any_tfm(cc))) {
320 ti->error = "Block size of ESSIV cipher does "
321 "not match IV size of block cipher";
322 crypto_free_cipher(essiv_tfm);
323 return ERR_PTR(-EINVAL);
326 err = crypto_cipher_setkey(essiv_tfm, salt, saltsize);
327 if (err) {
328 ti->error = "Failed to set key for ESSIV cipher";
329 crypto_free_cipher(essiv_tfm);
330 return ERR_PTR(err);
333 return essiv_tfm;
336 static void crypt_iv_essiv_dtr(struct crypt_config *cc)
338 int cpu;
339 struct crypt_cpu *cpu_cc;
340 struct crypto_cipher *essiv_tfm;
341 struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
343 crypto_free_hash(essiv->hash_tfm);
344 essiv->hash_tfm = NULL;
346 kzfree(essiv->salt);
347 essiv->salt = NULL;
349 for_each_possible_cpu(cpu) {
350 cpu_cc = per_cpu_ptr(cc->cpu, cpu);
351 essiv_tfm = cpu_cc->iv_private;
353 if (essiv_tfm)
354 crypto_free_cipher(essiv_tfm);
356 cpu_cc->iv_private = NULL;
360 static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
361 const char *opts)
363 struct crypto_cipher *essiv_tfm = NULL;
364 struct crypto_hash *hash_tfm = NULL;
365 u8 *salt = NULL;
366 int err, cpu;
368 if (!opts) {
369 ti->error = "Digest algorithm missing for ESSIV mode";
370 return -EINVAL;
373 /* Allocate hash algorithm */
374 hash_tfm = crypto_alloc_hash(opts, 0, CRYPTO_ALG_ASYNC);
375 if (IS_ERR(hash_tfm)) {
376 ti->error = "Error initializing ESSIV hash";
377 err = PTR_ERR(hash_tfm);
378 goto bad;
381 salt = kzalloc(crypto_hash_digestsize(hash_tfm), GFP_KERNEL);
382 if (!salt) {
383 ti->error = "Error kmallocing salt storage in ESSIV";
384 err = -ENOMEM;
385 goto bad;
388 cc->iv_gen_private.essiv.salt = salt;
389 cc->iv_gen_private.essiv.hash_tfm = hash_tfm;
391 for_each_possible_cpu(cpu) {
392 essiv_tfm = setup_essiv_cpu(cc, ti, salt,
393 crypto_hash_digestsize(hash_tfm));
394 if (IS_ERR(essiv_tfm)) {
395 crypt_iv_essiv_dtr(cc);
396 return PTR_ERR(essiv_tfm);
398 per_cpu_ptr(cc->cpu, cpu)->iv_private = essiv_tfm;
401 return 0;
403 bad:
404 if (hash_tfm && !IS_ERR(hash_tfm))
405 crypto_free_hash(hash_tfm);
406 kfree(salt);
407 return err;
410 static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
411 struct dm_crypt_request *dmreq)
413 struct crypto_cipher *essiv_tfm = this_crypt_config(cc)->iv_private;
415 memset(iv, 0, cc->iv_size);
416 *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
417 crypto_cipher_encrypt_one(essiv_tfm, iv, iv);
419 return 0;
422 static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
423 const char *opts)
425 unsigned bs = crypto_ablkcipher_blocksize(any_tfm(cc));
426 int log = ilog2(bs);
428 /* we need to calculate how far we must shift the sector count
429 * to get the cipher block count, we use this shift in _gen */
431 if (1 << log != bs) {
432 ti->error = "cypher blocksize is not a power of 2";
433 return -EINVAL;
436 if (log > 9) {
437 ti->error = "cypher blocksize is > 512";
438 return -EINVAL;
441 cc->iv_gen_private.benbi.shift = 9 - log;
443 return 0;
446 static void crypt_iv_benbi_dtr(struct crypt_config *cc)
450 static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
451 struct dm_crypt_request *dmreq)
453 __be64 val;
455 memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
457 val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
458 put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
460 return 0;
463 static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
464 struct dm_crypt_request *dmreq)
466 memset(iv, 0, cc->iv_size);
468 return 0;
471 static void crypt_iv_lmk_dtr(struct crypt_config *cc)
473 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
475 if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
476 crypto_free_shash(lmk->hash_tfm);
477 lmk->hash_tfm = NULL;
479 kzfree(lmk->seed);
480 lmk->seed = NULL;
483 static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
484 const char *opts)
486 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
488 lmk->hash_tfm = crypto_alloc_shash("md5", 0, 0);
489 if (IS_ERR(lmk->hash_tfm)) {
490 ti->error = "Error initializing LMK hash";
491 return PTR_ERR(lmk->hash_tfm);
494 /* No seed in LMK version 2 */
495 if (cc->key_parts == cc->tfms_count) {
496 lmk->seed = NULL;
497 return 0;
500 lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
501 if (!lmk->seed) {
502 crypt_iv_lmk_dtr(cc);
503 ti->error = "Error kmallocing seed storage in LMK";
504 return -ENOMEM;
507 return 0;
510 static int crypt_iv_lmk_init(struct crypt_config *cc)
512 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
513 int subkey_size = cc->key_size / cc->key_parts;
515 /* LMK seed is on the position of LMK_KEYS + 1 key */
516 if (lmk->seed)
517 memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
518 crypto_shash_digestsize(lmk->hash_tfm));
520 return 0;
523 static int crypt_iv_lmk_wipe(struct crypt_config *cc)
525 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
527 if (lmk->seed)
528 memset(lmk->seed, 0, LMK_SEED_SIZE);
530 return 0;
533 static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
534 struct dm_crypt_request *dmreq,
535 u8 *data)
537 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
538 struct {
539 struct shash_desc desc;
540 char ctx[crypto_shash_descsize(lmk->hash_tfm)];
541 } sdesc;
542 struct md5_state md5state;
543 u32 buf[4];
544 int i, r;
546 sdesc.desc.tfm = lmk->hash_tfm;
547 sdesc.desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
549 r = crypto_shash_init(&sdesc.desc);
550 if (r)
551 return r;
553 if (lmk->seed) {
554 r = crypto_shash_update(&sdesc.desc, lmk->seed, LMK_SEED_SIZE);
555 if (r)
556 return r;
559 /* Sector is always 512B, block size 16, add data of blocks 1-31 */
560 r = crypto_shash_update(&sdesc.desc, data + 16, 16 * 31);
561 if (r)
562 return r;
564 /* Sector is cropped to 56 bits here */
565 buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
566 buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
567 buf[2] = cpu_to_le32(4024);
568 buf[3] = 0;
569 r = crypto_shash_update(&sdesc.desc, (u8 *)buf, sizeof(buf));
570 if (r)
571 return r;
573 /* No MD5 padding here */
574 r = crypto_shash_export(&sdesc.desc, &md5state);
575 if (r)
576 return r;
578 for (i = 0; i < MD5_HASH_WORDS; i++)
579 __cpu_to_le32s(&md5state.hash[i]);
580 memcpy(iv, &md5state.hash, cc->iv_size);
582 return 0;
585 static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
586 struct dm_crypt_request *dmreq)
588 u8 *src;
589 int r = 0;
591 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
592 src = kmap_atomic(sg_page(&dmreq->sg_in));
593 r = crypt_iv_lmk_one(cc, iv, dmreq, src + dmreq->sg_in.offset);
594 kunmap_atomic(src);
595 } else
596 memset(iv, 0, cc->iv_size);
598 return r;
601 static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
602 struct dm_crypt_request *dmreq)
604 u8 *dst;
605 int r;
607 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
608 return 0;
610 dst = kmap_atomic(sg_page(&dmreq->sg_out));
611 r = crypt_iv_lmk_one(cc, iv, dmreq, dst + dmreq->sg_out.offset);
613 /* Tweak the first block of plaintext sector */
614 if (!r)
615 crypto_xor(dst + dmreq->sg_out.offset, iv, cc->iv_size);
617 kunmap_atomic(dst);
618 return r;
621 static struct crypt_iv_operations crypt_iv_plain_ops = {
622 .generator = crypt_iv_plain_gen
625 static struct crypt_iv_operations crypt_iv_plain64_ops = {
626 .generator = crypt_iv_plain64_gen
629 static struct crypt_iv_operations crypt_iv_essiv_ops = {
630 .ctr = crypt_iv_essiv_ctr,
631 .dtr = crypt_iv_essiv_dtr,
632 .init = crypt_iv_essiv_init,
633 .wipe = crypt_iv_essiv_wipe,
634 .generator = crypt_iv_essiv_gen
637 static struct crypt_iv_operations crypt_iv_benbi_ops = {
638 .ctr = crypt_iv_benbi_ctr,
639 .dtr = crypt_iv_benbi_dtr,
640 .generator = crypt_iv_benbi_gen
643 static struct crypt_iv_operations crypt_iv_null_ops = {
644 .generator = crypt_iv_null_gen
647 static struct crypt_iv_operations crypt_iv_lmk_ops = {
648 .ctr = crypt_iv_lmk_ctr,
649 .dtr = crypt_iv_lmk_dtr,
650 .init = crypt_iv_lmk_init,
651 .wipe = crypt_iv_lmk_wipe,
652 .generator = crypt_iv_lmk_gen,
653 .post = crypt_iv_lmk_post
656 static void crypt_convert_init(struct crypt_config *cc,
657 struct convert_context *ctx,
658 struct bio *bio_out, struct bio *bio_in,
659 sector_t sector)
661 ctx->bio_in = bio_in;
662 ctx->bio_out = bio_out;
663 ctx->offset_in = 0;
664 ctx->offset_out = 0;
665 ctx->idx_in = bio_in ? bio_in->bi_idx : 0;
666 ctx->idx_out = bio_out ? bio_out->bi_idx : 0;
667 ctx->sector = sector + cc->iv_offset;
668 init_completion(&ctx->restart);
671 static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
672 struct ablkcipher_request *req)
674 return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
677 static struct ablkcipher_request *req_of_dmreq(struct crypt_config *cc,
678 struct dm_crypt_request *dmreq)
680 return (struct ablkcipher_request *)((char *)dmreq - cc->dmreq_start);
683 static u8 *iv_of_dmreq(struct crypt_config *cc,
684 struct dm_crypt_request *dmreq)
686 return (u8 *)ALIGN((unsigned long)(dmreq + 1),
687 crypto_ablkcipher_alignmask(any_tfm(cc)) + 1);
690 static int crypt_convert_block(struct crypt_config *cc,
691 struct convert_context *ctx,
692 struct ablkcipher_request *req)
694 struct bio_vec *bv_in = bio_iovec_idx(ctx->bio_in, ctx->idx_in);
695 struct bio_vec *bv_out = bio_iovec_idx(ctx->bio_out, ctx->idx_out);
696 struct dm_crypt_request *dmreq;
697 u8 *iv;
698 int r = 0;
700 dmreq = dmreq_of_req(cc, req);
701 iv = iv_of_dmreq(cc, dmreq);
703 dmreq->iv_sector = ctx->sector;
704 dmreq->ctx = ctx;
705 sg_init_table(&dmreq->sg_in, 1);
706 sg_set_page(&dmreq->sg_in, bv_in->bv_page, 1 << SECTOR_SHIFT,
707 bv_in->bv_offset + ctx->offset_in);
709 sg_init_table(&dmreq->sg_out, 1);
710 sg_set_page(&dmreq->sg_out, bv_out->bv_page, 1 << SECTOR_SHIFT,
711 bv_out->bv_offset + ctx->offset_out);
713 ctx->offset_in += 1 << SECTOR_SHIFT;
714 if (ctx->offset_in >= bv_in->bv_len) {
715 ctx->offset_in = 0;
716 ctx->idx_in++;
719 ctx->offset_out += 1 << SECTOR_SHIFT;
720 if (ctx->offset_out >= bv_out->bv_len) {
721 ctx->offset_out = 0;
722 ctx->idx_out++;
725 if (cc->iv_gen_ops) {
726 r = cc->iv_gen_ops->generator(cc, iv, dmreq);
727 if (r < 0)
728 return r;
731 ablkcipher_request_set_crypt(req, &dmreq->sg_in, &dmreq->sg_out,
732 1 << SECTOR_SHIFT, iv);
734 if (bio_data_dir(ctx->bio_in) == WRITE)
735 r = crypto_ablkcipher_encrypt(req);
736 else
737 r = crypto_ablkcipher_decrypt(req);
739 if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
740 r = cc->iv_gen_ops->post(cc, iv, dmreq);
742 return r;
745 static void kcryptd_async_done(struct crypto_async_request *async_req,
746 int error);
748 static void crypt_alloc_req(struct crypt_config *cc,
749 struct convert_context *ctx)
751 struct crypt_cpu *this_cc = this_crypt_config(cc);
752 unsigned key_index = ctx->sector & (cc->tfms_count - 1);
754 if (!this_cc->req)
755 this_cc->req = mempool_alloc(cc->req_pool, GFP_NOIO);
757 ablkcipher_request_set_tfm(this_cc->req, this_cc->tfms[key_index]);
758 ablkcipher_request_set_callback(this_cc->req,
759 CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
760 kcryptd_async_done, dmreq_of_req(cc, this_cc->req));
764 * Encrypt / decrypt data from one bio to another one (can be the same one)
766 static int crypt_convert(struct crypt_config *cc,
767 struct convert_context *ctx)
769 struct crypt_cpu *this_cc = this_crypt_config(cc);
770 int r;
772 atomic_set(&ctx->pending, 1);
774 while(ctx->idx_in < ctx->bio_in->bi_vcnt &&
775 ctx->idx_out < ctx->bio_out->bi_vcnt) {
777 crypt_alloc_req(cc, ctx);
779 atomic_inc(&ctx->pending);
781 r = crypt_convert_block(cc, ctx, this_cc->req);
783 switch (r) {
784 /* async */
785 case -EBUSY:
786 wait_for_completion(&ctx->restart);
787 INIT_COMPLETION(ctx->restart);
788 /* fall through*/
789 case -EINPROGRESS:
790 this_cc->req = NULL;
791 ctx->sector++;
792 continue;
794 /* sync */
795 case 0:
796 atomic_dec(&ctx->pending);
797 ctx->sector++;
798 cond_resched();
799 continue;
801 /* error */
802 default:
803 atomic_dec(&ctx->pending);
804 return r;
808 return 0;
811 static void dm_crypt_bio_destructor(struct bio *bio)
813 struct dm_crypt_io *io = bio->bi_private;
814 struct crypt_config *cc = io->target->private;
816 bio_free(bio, cc->bs);
820 * Generate a new unfragmented bio with the given size
821 * This should never violate the device limitations
822 * May return a smaller bio when running out of pages, indicated by
823 * *out_of_pages set to 1.
825 static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size,
826 unsigned *out_of_pages)
828 struct crypt_config *cc = io->target->private;
829 struct bio *clone;
830 unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
831 gfp_t gfp_mask = GFP_NOIO | __GFP_HIGHMEM;
832 unsigned i, len;
833 struct page *page;
835 clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs);
836 if (!clone)
837 return NULL;
839 clone_init(io, clone);
840 *out_of_pages = 0;
842 for (i = 0; i < nr_iovecs; i++) {
843 page = mempool_alloc(cc->page_pool, gfp_mask);
844 if (!page) {
845 *out_of_pages = 1;
846 break;
850 * If additional pages cannot be allocated without waiting,
851 * return a partially-allocated bio. The caller will then try
852 * to allocate more bios while submitting this partial bio.
854 gfp_mask = (gfp_mask | __GFP_NOWARN) & ~__GFP_WAIT;
856 len = (size > PAGE_SIZE) ? PAGE_SIZE : size;
858 if (!bio_add_page(clone, page, len, 0)) {
859 mempool_free(page, cc->page_pool);
860 break;
863 size -= len;
866 if (!clone->bi_size) {
867 bio_put(clone);
868 return NULL;
871 return clone;
874 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
876 unsigned int i;
877 struct bio_vec *bv;
879 for (i = 0; i < clone->bi_vcnt; i++) {
880 bv = bio_iovec_idx(clone, i);
881 BUG_ON(!bv->bv_page);
882 mempool_free(bv->bv_page, cc->page_pool);
883 bv->bv_page = NULL;
887 static struct dm_crypt_io *crypt_io_alloc(struct dm_target *ti,
888 struct bio *bio, sector_t sector)
890 struct crypt_config *cc = ti->private;
891 struct dm_crypt_io *io;
893 io = mempool_alloc(cc->io_pool, GFP_NOIO);
894 io->target = ti;
895 io->base_bio = bio;
896 io->sector = sector;
897 io->error = 0;
898 io->base_io = NULL;
899 atomic_set(&io->pending, 0);
901 return io;
904 static void crypt_inc_pending(struct dm_crypt_io *io)
906 atomic_inc(&io->pending);
910 * One of the bios was finished. Check for completion of
911 * the whole request and correctly clean up the buffer.
912 * If base_io is set, wait for the last fragment to complete.
914 static void crypt_dec_pending(struct dm_crypt_io *io)
916 struct crypt_config *cc = io->target->private;
917 struct bio *base_bio = io->base_bio;
918 struct dm_crypt_io *base_io = io->base_io;
919 int error = io->error;
921 if (!atomic_dec_and_test(&io->pending))
922 return;
924 mempool_free(io, cc->io_pool);
926 if (likely(!base_io))
927 bio_endio(base_bio, error);
928 else {
929 if (error && !base_io->error)
930 base_io->error = error;
931 crypt_dec_pending(base_io);
936 * kcryptd/kcryptd_io:
938 * Needed because it would be very unwise to do decryption in an
939 * interrupt context.
941 * kcryptd performs the actual encryption or decryption.
943 * kcryptd_io performs the IO submission.
945 * They must be separated as otherwise the final stages could be
946 * starved by new requests which can block in the first stages due
947 * to memory allocation.
949 * The work is done per CPU global for all dm-crypt instances.
950 * They should not depend on each other and do not block.
952 static void crypt_endio(struct bio *clone, int error)
954 struct dm_crypt_io *io = clone->bi_private;
955 struct crypt_config *cc = io->target->private;
956 unsigned rw = bio_data_dir(clone);
958 if (unlikely(!bio_flagged(clone, BIO_UPTODATE) && !error))
959 error = -EIO;
962 * free the processed pages
964 if (rw == WRITE)
965 crypt_free_buffer_pages(cc, clone);
967 bio_put(clone);
969 if (rw == READ && !error) {
970 kcryptd_queue_crypt(io);
971 return;
974 if (unlikely(error))
975 io->error = error;
977 crypt_dec_pending(io);
980 static void clone_init(struct dm_crypt_io *io, struct bio *clone)
982 struct crypt_config *cc = io->target->private;
984 clone->bi_private = io;
985 clone->bi_end_io = crypt_endio;
986 clone->bi_bdev = cc->dev->bdev;
987 clone->bi_rw = io->base_bio->bi_rw;
988 clone->bi_destructor = dm_crypt_bio_destructor;
991 static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
993 struct crypt_config *cc = io->target->private;
994 struct bio *base_bio = io->base_bio;
995 struct bio *clone;
998 * The block layer might modify the bvec array, so always
999 * copy the required bvecs because we need the original
1000 * one in order to decrypt the whole bio data *afterwards*.
1002 clone = bio_alloc_bioset(gfp, bio_segments(base_bio), cc->bs);
1003 if (!clone)
1004 return 1;
1006 crypt_inc_pending(io);
1008 clone_init(io, clone);
1009 clone->bi_idx = 0;
1010 clone->bi_vcnt = bio_segments(base_bio);
1011 clone->bi_size = base_bio->bi_size;
1012 clone->bi_sector = cc->start + io->sector;
1013 memcpy(clone->bi_io_vec, bio_iovec(base_bio),
1014 sizeof(struct bio_vec) * clone->bi_vcnt);
1016 generic_make_request(clone);
1017 return 0;
1020 static void kcryptd_io_write(struct dm_crypt_io *io)
1022 struct bio *clone = io->ctx.bio_out;
1023 generic_make_request(clone);
1026 static void kcryptd_io(struct work_struct *work)
1028 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1030 if (bio_data_dir(io->base_bio) == READ) {
1031 crypt_inc_pending(io);
1032 if (kcryptd_io_read(io, GFP_NOIO))
1033 io->error = -ENOMEM;
1034 crypt_dec_pending(io);
1035 } else
1036 kcryptd_io_write(io);
1039 static void kcryptd_queue_io(struct dm_crypt_io *io)
1041 struct crypt_config *cc = io->target->private;
1043 INIT_WORK(&io->work, kcryptd_io);
1044 queue_work(cc->io_queue, &io->work);
1047 static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async)
1049 struct bio *clone = io->ctx.bio_out;
1050 struct crypt_config *cc = io->target->private;
1052 if (unlikely(io->error < 0)) {
1053 crypt_free_buffer_pages(cc, clone);
1054 bio_put(clone);
1055 crypt_dec_pending(io);
1056 return;
1059 /* crypt_convert should have filled the clone bio */
1060 BUG_ON(io->ctx.idx_out < clone->bi_vcnt);
1062 clone->bi_sector = cc->start + io->sector;
1064 if (async)
1065 kcryptd_queue_io(io);
1066 else
1067 generic_make_request(clone);
1070 static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
1072 struct crypt_config *cc = io->target->private;
1073 struct bio *clone;
1074 struct dm_crypt_io *new_io;
1075 int crypt_finished;
1076 unsigned out_of_pages = 0;
1077 unsigned remaining = io->base_bio->bi_size;
1078 sector_t sector = io->sector;
1079 int r;
1082 * Prevent io from disappearing until this function completes.
1084 crypt_inc_pending(io);
1085 crypt_convert_init(cc, &io->ctx, NULL, io->base_bio, sector);
1088 * The allocated buffers can be smaller than the whole bio,
1089 * so repeat the whole process until all the data can be handled.
1091 while (remaining) {
1092 clone = crypt_alloc_buffer(io, remaining, &out_of_pages);
1093 if (unlikely(!clone)) {
1094 io->error = -ENOMEM;
1095 break;
1098 io->ctx.bio_out = clone;
1099 io->ctx.idx_out = 0;
1101 remaining -= clone->bi_size;
1102 sector += bio_sectors(clone);
1104 crypt_inc_pending(io);
1106 r = crypt_convert(cc, &io->ctx);
1107 if (r < 0)
1108 io->error = -EIO;
1110 crypt_finished = atomic_dec_and_test(&io->ctx.pending);
1112 /* Encryption was already finished, submit io now */
1113 if (crypt_finished) {
1114 kcryptd_crypt_write_io_submit(io, 0);
1117 * If there was an error, do not try next fragments.
1118 * For async, error is processed in async handler.
1120 if (unlikely(r < 0))
1121 break;
1123 io->sector = sector;
1127 * Out of memory -> run queues
1128 * But don't wait if split was due to the io size restriction
1130 if (unlikely(out_of_pages))
1131 congestion_wait(BLK_RW_ASYNC, HZ/100);
1134 * With async crypto it is unsafe to share the crypto context
1135 * between fragments, so switch to a new dm_crypt_io structure.
1137 if (unlikely(!crypt_finished && remaining)) {
1138 new_io = crypt_io_alloc(io->target, io->base_bio,
1139 sector);
1140 crypt_inc_pending(new_io);
1141 crypt_convert_init(cc, &new_io->ctx, NULL,
1142 io->base_bio, sector);
1143 new_io->ctx.idx_in = io->ctx.idx_in;
1144 new_io->ctx.offset_in = io->ctx.offset_in;
1147 * Fragments after the first use the base_io
1148 * pending count.
1150 if (!io->base_io)
1151 new_io->base_io = io;
1152 else {
1153 new_io->base_io = io->base_io;
1154 crypt_inc_pending(io->base_io);
1155 crypt_dec_pending(io);
1158 io = new_io;
1162 crypt_dec_pending(io);
1165 static void kcryptd_crypt_read_done(struct dm_crypt_io *io)
1167 crypt_dec_pending(io);
1170 static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
1172 struct crypt_config *cc = io->target->private;
1173 int r = 0;
1175 crypt_inc_pending(io);
1177 crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
1178 io->sector);
1180 r = crypt_convert(cc, &io->ctx);
1181 if (r < 0)
1182 io->error = -EIO;
1184 if (atomic_dec_and_test(&io->ctx.pending))
1185 kcryptd_crypt_read_done(io);
1187 crypt_dec_pending(io);
1190 static void kcryptd_async_done(struct crypto_async_request *async_req,
1191 int error)
1193 struct dm_crypt_request *dmreq = async_req->data;
1194 struct convert_context *ctx = dmreq->ctx;
1195 struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1196 struct crypt_config *cc = io->target->private;
1198 if (error == -EINPROGRESS) {
1199 complete(&ctx->restart);
1200 return;
1203 if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
1204 error = cc->iv_gen_ops->post(cc, iv_of_dmreq(cc, dmreq), dmreq);
1206 if (error < 0)
1207 io->error = -EIO;
1209 mempool_free(req_of_dmreq(cc, dmreq), cc->req_pool);
1211 if (!atomic_dec_and_test(&ctx->pending))
1212 return;
1214 if (bio_data_dir(io->base_bio) == READ)
1215 kcryptd_crypt_read_done(io);
1216 else
1217 kcryptd_crypt_write_io_submit(io, 1);
1220 static void kcryptd_crypt(struct work_struct *work)
1222 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1224 if (bio_data_dir(io->base_bio) == READ)
1225 kcryptd_crypt_read_convert(io);
1226 else
1227 kcryptd_crypt_write_convert(io);
1230 static void kcryptd_queue_crypt(struct dm_crypt_io *io)
1232 struct crypt_config *cc = io->target->private;
1234 INIT_WORK(&io->work, kcryptd_crypt);
1235 queue_work(cc->crypt_queue, &io->work);
1239 * Decode key from its hex representation
1241 static int crypt_decode_key(u8 *key, char *hex, unsigned int size)
1243 char buffer[3];
1244 char *endp;
1245 unsigned int i;
1247 buffer[2] = '\0';
1249 for (i = 0; i < size; i++) {
1250 buffer[0] = *hex++;
1251 buffer[1] = *hex++;
1253 key[i] = (u8)simple_strtoul(buffer, &endp, 16);
1255 if (endp != &buffer[2])
1256 return -EINVAL;
1259 if (*hex != '\0')
1260 return -EINVAL;
1262 return 0;
1265 static void crypt_free_tfms(struct crypt_config *cc, int cpu)
1267 struct crypt_cpu *cpu_cc = per_cpu_ptr(cc->cpu, cpu);
1268 unsigned i;
1270 for (i = 0; i < cc->tfms_count; i++)
1271 if (cpu_cc->tfms[i] && !IS_ERR(cpu_cc->tfms[i])) {
1272 crypto_free_ablkcipher(cpu_cc->tfms[i]);
1273 cpu_cc->tfms[i] = NULL;
1277 static int crypt_alloc_tfms(struct crypt_config *cc, int cpu, char *ciphermode)
1279 struct crypt_cpu *cpu_cc = per_cpu_ptr(cc->cpu, cpu);
1280 unsigned i;
1281 int err;
1283 for (i = 0; i < cc->tfms_count; i++) {
1284 cpu_cc->tfms[i] = crypto_alloc_ablkcipher(ciphermode, 0, 0);
1285 if (IS_ERR(cpu_cc->tfms[i])) {
1286 err = PTR_ERR(cpu_cc->tfms[i]);
1287 crypt_free_tfms(cc, cpu);
1288 return err;
1292 return 0;
1295 static int crypt_setkey_allcpus(struct crypt_config *cc)
1297 unsigned subkey_size = cc->key_size >> ilog2(cc->tfms_count);
1298 int cpu, err = 0, i, r;
1300 for_each_possible_cpu(cpu) {
1301 for (i = 0; i < cc->tfms_count; i++) {
1302 r = crypto_ablkcipher_setkey(per_cpu_ptr(cc->cpu, cpu)->tfms[i],
1303 cc->key + (i * subkey_size), subkey_size);
1304 if (r)
1305 err = r;
1309 return err;
1312 static int crypt_set_key(struct crypt_config *cc, char *key)
1314 int r = -EINVAL;
1315 int key_string_len = strlen(key);
1317 /* The key size may not be changed. */
1318 if (cc->key_size != (key_string_len >> 1))
1319 goto out;
1321 /* Hyphen (which gives a key_size of zero) means there is no key. */
1322 if (!cc->key_size && strcmp(key, "-"))
1323 goto out;
1325 if (cc->key_size && crypt_decode_key(cc->key, key, cc->key_size) < 0)
1326 goto out;
1328 set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1330 r = crypt_setkey_allcpus(cc);
1332 out:
1333 /* Hex key string not needed after here, so wipe it. */
1334 memset(key, '0', key_string_len);
1336 return r;
1339 static int crypt_wipe_key(struct crypt_config *cc)
1341 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1342 memset(&cc->key, 0, cc->key_size * sizeof(u8));
1344 return crypt_setkey_allcpus(cc);
1347 static void crypt_dtr(struct dm_target *ti)
1349 struct crypt_config *cc = ti->private;
1350 struct crypt_cpu *cpu_cc;
1351 int cpu;
1353 ti->private = NULL;
1355 if (!cc)
1356 return;
1358 if (cc->io_queue)
1359 destroy_workqueue(cc->io_queue);
1360 if (cc->crypt_queue)
1361 destroy_workqueue(cc->crypt_queue);
1363 if (cc->cpu)
1364 for_each_possible_cpu(cpu) {
1365 cpu_cc = per_cpu_ptr(cc->cpu, cpu);
1366 if (cpu_cc->req)
1367 mempool_free(cpu_cc->req, cc->req_pool);
1368 crypt_free_tfms(cc, cpu);
1371 if (cc->bs)
1372 bioset_free(cc->bs);
1374 if (cc->page_pool)
1375 mempool_destroy(cc->page_pool);
1376 if (cc->req_pool)
1377 mempool_destroy(cc->req_pool);
1378 if (cc->io_pool)
1379 mempool_destroy(cc->io_pool);
1381 if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
1382 cc->iv_gen_ops->dtr(cc);
1384 if (cc->dev)
1385 dm_put_device(ti, cc->dev);
1387 if (cc->cpu)
1388 free_percpu(cc->cpu);
1390 kzfree(cc->cipher);
1391 kzfree(cc->cipher_string);
1393 /* Must zero key material before freeing */
1394 kzfree(cc);
1397 static int crypt_ctr_cipher(struct dm_target *ti,
1398 char *cipher_in, char *key)
1400 struct crypt_config *cc = ti->private;
1401 char *tmp, *cipher, *chainmode, *ivmode, *ivopts, *keycount;
1402 char *cipher_api = NULL;
1403 int cpu, ret = -EINVAL;
1404 char dummy;
1406 /* Convert to crypto api definition? */
1407 if (strchr(cipher_in, '(')) {
1408 ti->error = "Bad cipher specification";
1409 return -EINVAL;
1412 cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
1413 if (!cc->cipher_string)
1414 goto bad_mem;
1417 * Legacy dm-crypt cipher specification
1418 * cipher[:keycount]-mode-iv:ivopts
1420 tmp = cipher_in;
1421 keycount = strsep(&tmp, "-");
1422 cipher = strsep(&keycount, ":");
1424 if (!keycount)
1425 cc->tfms_count = 1;
1426 else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 ||
1427 !is_power_of_2(cc->tfms_count)) {
1428 ti->error = "Bad cipher key count specification";
1429 return -EINVAL;
1431 cc->key_parts = cc->tfms_count;
1433 cc->cipher = kstrdup(cipher, GFP_KERNEL);
1434 if (!cc->cipher)
1435 goto bad_mem;
1437 chainmode = strsep(&tmp, "-");
1438 ivopts = strsep(&tmp, "-");
1439 ivmode = strsep(&ivopts, ":");
1441 if (tmp)
1442 DMWARN("Ignoring unexpected additional cipher options");
1444 cc->cpu = __alloc_percpu(sizeof(*(cc->cpu)) +
1445 cc->tfms_count * sizeof(*(cc->cpu->tfms)),
1446 __alignof__(struct crypt_cpu));
1447 if (!cc->cpu) {
1448 ti->error = "Cannot allocate per cpu state";
1449 goto bad_mem;
1453 * For compatibility with the original dm-crypt mapping format, if
1454 * only the cipher name is supplied, use cbc-plain.
1456 if (!chainmode || (!strcmp(chainmode, "plain") && !ivmode)) {
1457 chainmode = "cbc";
1458 ivmode = "plain";
1461 if (strcmp(chainmode, "ecb") && !ivmode) {
1462 ti->error = "IV mechanism required";
1463 return -EINVAL;
1466 cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
1467 if (!cipher_api)
1468 goto bad_mem;
1470 ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
1471 "%s(%s)", chainmode, cipher);
1472 if (ret < 0) {
1473 kfree(cipher_api);
1474 goto bad_mem;
1477 /* Allocate cipher */
1478 for_each_possible_cpu(cpu) {
1479 ret = crypt_alloc_tfms(cc, cpu, cipher_api);
1480 if (ret < 0) {
1481 ti->error = "Error allocating crypto tfm";
1482 goto bad;
1486 /* Initialize and set key */
1487 ret = crypt_set_key(cc, key);
1488 if (ret < 0) {
1489 ti->error = "Error decoding and setting key";
1490 goto bad;
1493 /* Initialize IV */
1494 cc->iv_size = crypto_ablkcipher_ivsize(any_tfm(cc));
1495 if (cc->iv_size)
1496 /* at least a 64 bit sector number should fit in our buffer */
1497 cc->iv_size = max(cc->iv_size,
1498 (unsigned int)(sizeof(u64) / sizeof(u8)));
1499 else if (ivmode) {
1500 DMWARN("Selected cipher does not support IVs");
1501 ivmode = NULL;
1504 /* Choose ivmode, see comments at iv code. */
1505 if (ivmode == NULL)
1506 cc->iv_gen_ops = NULL;
1507 else if (strcmp(ivmode, "plain") == 0)
1508 cc->iv_gen_ops = &crypt_iv_plain_ops;
1509 else if (strcmp(ivmode, "plain64") == 0)
1510 cc->iv_gen_ops = &crypt_iv_plain64_ops;
1511 else if (strcmp(ivmode, "essiv") == 0)
1512 cc->iv_gen_ops = &crypt_iv_essiv_ops;
1513 else if (strcmp(ivmode, "benbi") == 0)
1514 cc->iv_gen_ops = &crypt_iv_benbi_ops;
1515 else if (strcmp(ivmode, "null") == 0)
1516 cc->iv_gen_ops = &crypt_iv_null_ops;
1517 else if (strcmp(ivmode, "lmk") == 0) {
1518 cc->iv_gen_ops = &crypt_iv_lmk_ops;
1519 /* Version 2 and 3 is recognised according
1520 * to length of provided multi-key string.
1521 * If present (version 3), last key is used as IV seed.
1523 if (cc->key_size % cc->key_parts)
1524 cc->key_parts++;
1525 } else {
1526 ret = -EINVAL;
1527 ti->error = "Invalid IV mode";
1528 goto bad;
1531 /* Allocate IV */
1532 if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
1533 ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
1534 if (ret < 0) {
1535 ti->error = "Error creating IV";
1536 goto bad;
1540 /* Initialize IV (set keys for ESSIV etc) */
1541 if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
1542 ret = cc->iv_gen_ops->init(cc);
1543 if (ret < 0) {
1544 ti->error = "Error initialising IV";
1545 goto bad;
1549 ret = 0;
1550 bad:
1551 kfree(cipher_api);
1552 return ret;
1554 bad_mem:
1555 ti->error = "Cannot allocate cipher strings";
1556 return -ENOMEM;
1560 * Construct an encryption mapping:
1561 * <cipher> <key> <iv_offset> <dev_path> <start>
1563 static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
1565 struct crypt_config *cc;
1566 unsigned int key_size, opt_params;
1567 unsigned long long tmpll;
1568 int ret;
1569 struct dm_arg_set as;
1570 const char *opt_string;
1571 char dummy;
1573 static struct dm_arg _args[] = {
1574 {0, 1, "Invalid number of feature args"},
1577 if (argc < 5) {
1578 ti->error = "Not enough arguments";
1579 return -EINVAL;
1582 key_size = strlen(argv[1]) >> 1;
1584 cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
1585 if (!cc) {
1586 ti->error = "Cannot allocate encryption context";
1587 return -ENOMEM;
1589 cc->key_size = key_size;
1591 ti->private = cc;
1592 ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
1593 if (ret < 0)
1594 goto bad;
1596 ret = -ENOMEM;
1597 cc->io_pool = mempool_create_slab_pool(MIN_IOS, _crypt_io_pool);
1598 if (!cc->io_pool) {
1599 ti->error = "Cannot allocate crypt io mempool";
1600 goto bad;
1603 cc->dmreq_start = sizeof(struct ablkcipher_request);
1604 cc->dmreq_start += crypto_ablkcipher_reqsize(any_tfm(cc));
1605 cc->dmreq_start = ALIGN(cc->dmreq_start, crypto_tfm_ctx_alignment());
1606 cc->dmreq_start += crypto_ablkcipher_alignmask(any_tfm(cc)) &
1607 ~(crypto_tfm_ctx_alignment() - 1);
1609 cc->req_pool = mempool_create_kmalloc_pool(MIN_IOS, cc->dmreq_start +
1610 sizeof(struct dm_crypt_request) + cc->iv_size);
1611 if (!cc->req_pool) {
1612 ti->error = "Cannot allocate crypt request mempool";
1613 goto bad;
1616 cc->page_pool = mempool_create_page_pool(MIN_POOL_PAGES, 0);
1617 if (!cc->page_pool) {
1618 ti->error = "Cannot allocate page mempool";
1619 goto bad;
1622 cc->bs = bioset_create(MIN_IOS, 0);
1623 if (!cc->bs) {
1624 ti->error = "Cannot allocate crypt bioset";
1625 goto bad;
1628 ret = -EINVAL;
1629 if (sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) {
1630 ti->error = "Invalid iv_offset sector";
1631 goto bad;
1633 cc->iv_offset = tmpll;
1635 if (dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev)) {
1636 ti->error = "Device lookup failed";
1637 goto bad;
1640 if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1) {
1641 ti->error = "Invalid device sector";
1642 goto bad;
1644 cc->start = tmpll;
1646 argv += 5;
1647 argc -= 5;
1649 /* Optional parameters */
1650 if (argc) {
1651 as.argc = argc;
1652 as.argv = argv;
1654 ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
1655 if (ret)
1656 goto bad;
1658 opt_string = dm_shift_arg(&as);
1660 if (opt_params == 1 && opt_string &&
1661 !strcasecmp(opt_string, "allow_discards"))
1662 ti->num_discard_requests = 1;
1663 else if (opt_params) {
1664 ret = -EINVAL;
1665 ti->error = "Invalid feature arguments";
1666 goto bad;
1670 ret = -ENOMEM;
1671 cc->io_queue = alloc_workqueue("kcryptd_io",
1672 WQ_NON_REENTRANT|
1673 WQ_MEM_RECLAIM,
1675 if (!cc->io_queue) {
1676 ti->error = "Couldn't create kcryptd io queue";
1677 goto bad;
1680 cc->crypt_queue = alloc_workqueue("kcryptd",
1681 WQ_NON_REENTRANT|
1682 WQ_CPU_INTENSIVE|
1683 WQ_MEM_RECLAIM,
1685 if (!cc->crypt_queue) {
1686 ti->error = "Couldn't create kcryptd queue";
1687 goto bad;
1690 ti->num_flush_requests = 1;
1691 ti->discard_zeroes_data_unsupported = 1;
1693 return 0;
1695 bad:
1696 crypt_dtr(ti);
1697 return ret;
1700 static int crypt_map(struct dm_target *ti, struct bio *bio,
1701 union map_info *map_context)
1703 struct dm_crypt_io *io;
1704 struct crypt_config *cc;
1707 * If bio is REQ_FLUSH or REQ_DISCARD, just bypass crypt queues.
1708 * - for REQ_FLUSH device-mapper core ensures that no IO is in-flight
1709 * - for REQ_DISCARD caller must use flush if IO ordering matters
1711 if (unlikely(bio->bi_rw & (REQ_FLUSH | REQ_DISCARD))) {
1712 cc = ti->private;
1713 bio->bi_bdev = cc->dev->bdev;
1714 if (bio_sectors(bio))
1715 bio->bi_sector = cc->start + dm_target_offset(ti, bio->bi_sector);
1716 return DM_MAPIO_REMAPPED;
1719 io = crypt_io_alloc(ti, bio, dm_target_offset(ti, bio->bi_sector));
1721 if (bio_data_dir(io->base_bio) == READ) {
1722 if (kcryptd_io_read(io, GFP_NOWAIT))
1723 kcryptd_queue_io(io);
1724 } else
1725 kcryptd_queue_crypt(io);
1727 return DM_MAPIO_SUBMITTED;
1730 static void crypt_status(struct dm_target *ti, status_type_t type,
1731 char *result, unsigned int maxlen)
1733 struct crypt_config *cc = ti->private;
1734 unsigned i, sz = 0;
1736 switch (type) {
1737 case STATUSTYPE_INFO:
1738 result[0] = '\0';
1739 break;
1741 case STATUSTYPE_TABLE:
1742 DMEMIT("%s ", cc->cipher_string);
1744 if (cc->key_size > 0)
1745 for (i = 0; i < cc->key_size; i++)
1746 DMEMIT("%02x", cc->key[i]);
1747 else
1748 DMEMIT("-");
1750 DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
1751 cc->dev->name, (unsigned long long)cc->start);
1753 if (ti->num_discard_requests)
1754 DMEMIT(" 1 allow_discards");
1756 break;
1760 static void crypt_postsuspend(struct dm_target *ti)
1762 struct crypt_config *cc = ti->private;
1764 set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1767 static int crypt_preresume(struct dm_target *ti)
1769 struct crypt_config *cc = ti->private;
1771 if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
1772 DMERR("aborting resume - crypt key is not set.");
1773 return -EAGAIN;
1776 return 0;
1779 static void crypt_resume(struct dm_target *ti)
1781 struct crypt_config *cc = ti->private;
1783 clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1786 /* Message interface
1787 * key set <key>
1788 * key wipe
1790 static int crypt_message(struct dm_target *ti, unsigned argc, char **argv)
1792 struct crypt_config *cc = ti->private;
1793 int ret = -EINVAL;
1795 if (argc < 2)
1796 goto error;
1798 if (!strcasecmp(argv[0], "key")) {
1799 if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
1800 DMWARN("not suspended during key manipulation.");
1801 return -EINVAL;
1803 if (argc == 3 && !strcasecmp(argv[1], "set")) {
1804 ret = crypt_set_key(cc, argv[2]);
1805 if (ret)
1806 return ret;
1807 if (cc->iv_gen_ops && cc->iv_gen_ops->init)
1808 ret = cc->iv_gen_ops->init(cc);
1809 return ret;
1811 if (argc == 2 && !strcasecmp(argv[1], "wipe")) {
1812 if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
1813 ret = cc->iv_gen_ops->wipe(cc);
1814 if (ret)
1815 return ret;
1817 return crypt_wipe_key(cc);
1821 error:
1822 DMWARN("unrecognised message received.");
1823 return -EINVAL;
1826 static int crypt_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
1827 struct bio_vec *biovec, int max_size)
1829 struct crypt_config *cc = ti->private;
1830 struct request_queue *q = bdev_get_queue(cc->dev->bdev);
1832 if (!q->merge_bvec_fn)
1833 return max_size;
1835 bvm->bi_bdev = cc->dev->bdev;
1836 bvm->bi_sector = cc->start + dm_target_offset(ti, bvm->bi_sector);
1838 return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
1841 static int crypt_iterate_devices(struct dm_target *ti,
1842 iterate_devices_callout_fn fn, void *data)
1844 struct crypt_config *cc = ti->private;
1846 return fn(ti, cc->dev, cc->start, ti->len, data);
1849 static struct target_type crypt_target = {
1850 .name = "crypt",
1851 .version = {1, 11, 0},
1852 .module = THIS_MODULE,
1853 .ctr = crypt_ctr,
1854 .dtr = crypt_dtr,
1855 .map = crypt_map,
1856 .status = crypt_status,
1857 .postsuspend = crypt_postsuspend,
1858 .preresume = crypt_preresume,
1859 .resume = crypt_resume,
1860 .message = crypt_message,
1861 .merge = crypt_merge,
1862 .iterate_devices = crypt_iterate_devices,
1865 static int __init dm_crypt_init(void)
1867 int r;
1869 _crypt_io_pool = KMEM_CACHE(dm_crypt_io, 0);
1870 if (!_crypt_io_pool)
1871 return -ENOMEM;
1873 r = dm_register_target(&crypt_target);
1874 if (r < 0) {
1875 DMERR("register failed %d", r);
1876 kmem_cache_destroy(_crypt_io_pool);
1879 return r;
1882 static void __exit dm_crypt_exit(void)
1884 dm_unregister_target(&crypt_target);
1885 kmem_cache_destroy(_crypt_io_pool);
1888 module_init(dm_crypt_init);
1889 module_exit(dm_crypt_exit);
1891 MODULE_AUTHOR("Christophe Saout <christophe@saout.de>");
1892 MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
1893 MODULE_LICENSE("GPL");