Linux 3.4.102
[linux/fpc-iii.git] / drivers / md / raid10.c
blob149426cd1e8430e4a3332aeb36818cb8c25aa170
1 /*
2 * raid10.c : Multiple Devices driver for Linux
4 * Copyright (C) 2000-2004 Neil Brown
6 * RAID-10 support for md.
8 * Base on code in raid1.c. See raid1.c for further copyright information.
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include "md.h"
28 #include "raid10.h"
29 #include "raid0.h"
30 #include "bitmap.h"
33 * RAID10 provides a combination of RAID0 and RAID1 functionality.
34 * The layout of data is defined by
35 * chunk_size
36 * raid_disks
37 * near_copies (stored in low byte of layout)
38 * far_copies (stored in second byte of layout)
39 * far_offset (stored in bit 16 of layout )
41 * The data to be stored is divided into chunks using chunksize.
42 * Each device is divided into far_copies sections.
43 * In each section, chunks are laid out in a style similar to raid0, but
44 * near_copies copies of each chunk is stored (each on a different drive).
45 * The starting device for each section is offset near_copies from the starting
46 * device of the previous section.
47 * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
48 * drive.
49 * near_copies and far_copies must be at least one, and their product is at most
50 * raid_disks.
52 * If far_offset is true, then the far_copies are handled a bit differently.
53 * The copies are still in different stripes, but instead of be very far apart
54 * on disk, there are adjacent stripes.
58 * Number of guaranteed r10bios in case of extreme VM load:
60 #define NR_RAID10_BIOS 256
62 /* When there are this many requests queue to be written by
63 * the raid10 thread, we become 'congested' to provide back-pressure
64 * for writeback.
66 static int max_queued_requests = 1024;
68 static void allow_barrier(struct r10conf *conf);
69 static void lower_barrier(struct r10conf *conf);
70 static int enough(struct r10conf *conf, int ignore);
72 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
74 struct r10conf *conf = data;
75 int size = offsetof(struct r10bio, devs[conf->copies]);
77 /* allocate a r10bio with room for raid_disks entries in the
78 * bios array */
79 return kzalloc(size, gfp_flags);
82 static void r10bio_pool_free(void *r10_bio, void *data)
84 kfree(r10_bio);
87 /* Maximum size of each resync request */
88 #define RESYNC_BLOCK_SIZE (64*1024)
89 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
90 /* amount of memory to reserve for resync requests */
91 #define RESYNC_WINDOW (1024*1024)
92 /* maximum number of concurrent requests, memory permitting */
93 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
96 * When performing a resync, we need to read and compare, so
97 * we need as many pages are there are copies.
98 * When performing a recovery, we need 2 bios, one for read,
99 * one for write (we recover only one drive per r10buf)
102 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
104 struct r10conf *conf = data;
105 struct page *page;
106 struct r10bio *r10_bio;
107 struct bio *bio;
108 int i, j;
109 int nalloc;
111 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
112 if (!r10_bio)
113 return NULL;
115 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
116 nalloc = conf->copies; /* resync */
117 else
118 nalloc = 2; /* recovery */
121 * Allocate bios.
123 for (j = nalloc ; j-- ; ) {
124 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
125 if (!bio)
126 goto out_free_bio;
127 r10_bio->devs[j].bio = bio;
128 if (!conf->have_replacement)
129 continue;
130 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
131 if (!bio)
132 goto out_free_bio;
133 r10_bio->devs[j].repl_bio = bio;
136 * Allocate RESYNC_PAGES data pages and attach them
137 * where needed.
139 for (j = 0 ; j < nalloc; j++) {
140 struct bio *rbio = r10_bio->devs[j].repl_bio;
141 bio = r10_bio->devs[j].bio;
142 for (i = 0; i < RESYNC_PAGES; i++) {
143 if (j == 1 && !test_bit(MD_RECOVERY_SYNC,
144 &conf->mddev->recovery)) {
145 /* we can share bv_page's during recovery */
146 struct bio *rbio = r10_bio->devs[0].bio;
147 page = rbio->bi_io_vec[i].bv_page;
148 get_page(page);
149 } else
150 page = alloc_page(gfp_flags);
151 if (unlikely(!page))
152 goto out_free_pages;
154 bio->bi_io_vec[i].bv_page = page;
155 if (rbio)
156 rbio->bi_io_vec[i].bv_page = page;
160 return r10_bio;
162 out_free_pages:
163 for ( ; i > 0 ; i--)
164 safe_put_page(bio->bi_io_vec[i-1].bv_page);
165 while (j--)
166 for (i = 0; i < RESYNC_PAGES ; i++)
167 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
168 j = -1;
169 out_free_bio:
170 while (++j < nalloc) {
171 bio_put(r10_bio->devs[j].bio);
172 if (r10_bio->devs[j].repl_bio)
173 bio_put(r10_bio->devs[j].repl_bio);
175 r10bio_pool_free(r10_bio, conf);
176 return NULL;
179 static void r10buf_pool_free(void *__r10_bio, void *data)
181 int i;
182 struct r10conf *conf = data;
183 struct r10bio *r10bio = __r10_bio;
184 int j;
186 for (j=0; j < conf->copies; j++) {
187 struct bio *bio = r10bio->devs[j].bio;
188 if (bio) {
189 for (i = 0; i < RESYNC_PAGES; i++) {
190 safe_put_page(bio->bi_io_vec[i].bv_page);
191 bio->bi_io_vec[i].bv_page = NULL;
193 bio_put(bio);
195 bio = r10bio->devs[j].repl_bio;
196 if (bio)
197 bio_put(bio);
199 r10bio_pool_free(r10bio, conf);
202 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
204 int i;
206 for (i = 0; i < conf->copies; i++) {
207 struct bio **bio = & r10_bio->devs[i].bio;
208 if (!BIO_SPECIAL(*bio))
209 bio_put(*bio);
210 *bio = NULL;
211 bio = &r10_bio->devs[i].repl_bio;
212 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
213 bio_put(*bio);
214 *bio = NULL;
218 static void free_r10bio(struct r10bio *r10_bio)
220 struct r10conf *conf = r10_bio->mddev->private;
222 put_all_bios(conf, r10_bio);
223 mempool_free(r10_bio, conf->r10bio_pool);
226 static void put_buf(struct r10bio *r10_bio)
228 struct r10conf *conf = r10_bio->mddev->private;
230 mempool_free(r10_bio, conf->r10buf_pool);
232 lower_barrier(conf);
235 static void reschedule_retry(struct r10bio *r10_bio)
237 unsigned long flags;
238 struct mddev *mddev = r10_bio->mddev;
239 struct r10conf *conf = mddev->private;
241 spin_lock_irqsave(&conf->device_lock, flags);
242 list_add(&r10_bio->retry_list, &conf->retry_list);
243 conf->nr_queued ++;
244 spin_unlock_irqrestore(&conf->device_lock, flags);
246 /* wake up frozen array... */
247 wake_up(&conf->wait_barrier);
249 md_wakeup_thread(mddev->thread);
253 * raid_end_bio_io() is called when we have finished servicing a mirrored
254 * operation and are ready to return a success/failure code to the buffer
255 * cache layer.
257 static void raid_end_bio_io(struct r10bio *r10_bio)
259 struct bio *bio = r10_bio->master_bio;
260 int done;
261 struct r10conf *conf = r10_bio->mddev->private;
263 if (bio->bi_phys_segments) {
264 unsigned long flags;
265 spin_lock_irqsave(&conf->device_lock, flags);
266 bio->bi_phys_segments--;
267 done = (bio->bi_phys_segments == 0);
268 spin_unlock_irqrestore(&conf->device_lock, flags);
269 } else
270 done = 1;
271 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
272 clear_bit(BIO_UPTODATE, &bio->bi_flags);
273 if (done) {
274 bio_endio(bio, 0);
276 * Wake up any possible resync thread that waits for the device
277 * to go idle.
279 allow_barrier(conf);
281 free_r10bio(r10_bio);
285 * Update disk head position estimator based on IRQ completion info.
287 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
289 struct r10conf *conf = r10_bio->mddev->private;
291 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
292 r10_bio->devs[slot].addr + (r10_bio->sectors);
296 * Find the disk number which triggered given bio
298 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
299 struct bio *bio, int *slotp, int *replp)
301 int slot;
302 int repl = 0;
304 for (slot = 0; slot < conf->copies; slot++) {
305 if (r10_bio->devs[slot].bio == bio)
306 break;
307 if (r10_bio->devs[slot].repl_bio == bio) {
308 repl = 1;
309 break;
313 BUG_ON(slot == conf->copies);
314 update_head_pos(slot, r10_bio);
316 if (slotp)
317 *slotp = slot;
318 if (replp)
319 *replp = repl;
320 return r10_bio->devs[slot].devnum;
323 static void raid10_end_read_request(struct bio *bio, int error)
325 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
326 struct r10bio *r10_bio = bio->bi_private;
327 int slot, dev;
328 struct md_rdev *rdev;
329 struct r10conf *conf = r10_bio->mddev->private;
332 slot = r10_bio->read_slot;
333 dev = r10_bio->devs[slot].devnum;
334 rdev = r10_bio->devs[slot].rdev;
336 * this branch is our 'one mirror IO has finished' event handler:
338 update_head_pos(slot, r10_bio);
340 if (uptodate) {
342 * Set R10BIO_Uptodate in our master bio, so that
343 * we will return a good error code to the higher
344 * levels even if IO on some other mirrored buffer fails.
346 * The 'master' represents the composite IO operation to
347 * user-side. So if something waits for IO, then it will
348 * wait for the 'master' bio.
350 set_bit(R10BIO_Uptodate, &r10_bio->state);
351 } else {
352 /* If all other devices that store this block have
353 * failed, we want to return the error upwards rather
354 * than fail the last device. Here we redefine
355 * "uptodate" to mean "Don't want to retry"
357 unsigned long flags;
358 spin_lock_irqsave(&conf->device_lock, flags);
359 if (!enough(conf, rdev->raid_disk))
360 uptodate = 1;
361 spin_unlock_irqrestore(&conf->device_lock, flags);
363 if (uptodate) {
364 raid_end_bio_io(r10_bio);
365 rdev_dec_pending(rdev, conf->mddev);
366 } else {
368 * oops, read error - keep the refcount on the rdev
370 char b[BDEVNAME_SIZE];
371 printk_ratelimited(KERN_ERR
372 "md/raid10:%s: %s: rescheduling sector %llu\n",
373 mdname(conf->mddev),
374 bdevname(rdev->bdev, b),
375 (unsigned long long)r10_bio->sector);
376 set_bit(R10BIO_ReadError, &r10_bio->state);
377 reschedule_retry(r10_bio);
381 static void close_write(struct r10bio *r10_bio)
383 /* clear the bitmap if all writes complete successfully */
384 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
385 r10_bio->sectors,
386 !test_bit(R10BIO_Degraded, &r10_bio->state),
388 md_write_end(r10_bio->mddev);
391 static void one_write_done(struct r10bio *r10_bio)
393 if (atomic_dec_and_test(&r10_bio->remaining)) {
394 if (test_bit(R10BIO_WriteError, &r10_bio->state))
395 reschedule_retry(r10_bio);
396 else {
397 close_write(r10_bio);
398 if (test_bit(R10BIO_MadeGood, &r10_bio->state))
399 reschedule_retry(r10_bio);
400 else
401 raid_end_bio_io(r10_bio);
406 static void raid10_end_write_request(struct bio *bio, int error)
408 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
409 struct r10bio *r10_bio = bio->bi_private;
410 int dev;
411 int dec_rdev = 1;
412 struct r10conf *conf = r10_bio->mddev->private;
413 int slot, repl;
414 struct md_rdev *rdev = NULL;
416 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
418 if (repl)
419 rdev = conf->mirrors[dev].replacement;
420 if (!rdev) {
421 smp_rmb();
422 repl = 0;
423 rdev = conf->mirrors[dev].rdev;
426 * this branch is our 'one mirror IO has finished' event handler:
428 if (!uptodate) {
429 if (repl)
430 /* Never record new bad blocks to replacement,
431 * just fail it.
433 md_error(rdev->mddev, rdev);
434 else {
435 set_bit(WriteErrorSeen, &rdev->flags);
436 if (!test_and_set_bit(WantReplacement, &rdev->flags))
437 set_bit(MD_RECOVERY_NEEDED,
438 &rdev->mddev->recovery);
439 set_bit(R10BIO_WriteError, &r10_bio->state);
440 dec_rdev = 0;
442 } else {
444 * Set R10BIO_Uptodate in our master bio, so that
445 * we will return a good error code for to the higher
446 * levels even if IO on some other mirrored buffer fails.
448 * The 'master' represents the composite IO operation to
449 * user-side. So if something waits for IO, then it will
450 * wait for the 'master' bio.
452 sector_t first_bad;
453 int bad_sectors;
456 * Do not set R10BIO_Uptodate if the current device is
457 * rebuilding or Faulty. This is because we cannot use
458 * such device for properly reading the data back (we could
459 * potentially use it, if the current write would have felt
460 * before rdev->recovery_offset, but for simplicity we don't
461 * check this here.
463 if (test_bit(In_sync, &rdev->flags) &&
464 !test_bit(Faulty, &rdev->flags))
465 set_bit(R10BIO_Uptodate, &r10_bio->state);
467 /* Maybe we can clear some bad blocks. */
468 if (is_badblock(rdev,
469 r10_bio->devs[slot].addr,
470 r10_bio->sectors,
471 &first_bad, &bad_sectors)) {
472 bio_put(bio);
473 if (repl)
474 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
475 else
476 r10_bio->devs[slot].bio = IO_MADE_GOOD;
477 dec_rdev = 0;
478 set_bit(R10BIO_MadeGood, &r10_bio->state);
484 * Let's see if all mirrored write operations have finished
485 * already.
487 one_write_done(r10_bio);
488 if (dec_rdev)
489 rdev_dec_pending(rdev, conf->mddev);
493 * RAID10 layout manager
494 * As well as the chunksize and raid_disks count, there are two
495 * parameters: near_copies and far_copies.
496 * near_copies * far_copies must be <= raid_disks.
497 * Normally one of these will be 1.
498 * If both are 1, we get raid0.
499 * If near_copies == raid_disks, we get raid1.
501 * Chunks are laid out in raid0 style with near_copies copies of the
502 * first chunk, followed by near_copies copies of the next chunk and
503 * so on.
504 * If far_copies > 1, then after 1/far_copies of the array has been assigned
505 * as described above, we start again with a device offset of near_copies.
506 * So we effectively have another copy of the whole array further down all
507 * the drives, but with blocks on different drives.
508 * With this layout, and block is never stored twice on the one device.
510 * raid10_find_phys finds the sector offset of a given virtual sector
511 * on each device that it is on.
513 * raid10_find_virt does the reverse mapping, from a device and a
514 * sector offset to a virtual address
517 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
519 int n,f;
520 sector_t sector;
521 sector_t chunk;
522 sector_t stripe;
523 int dev;
525 int slot = 0;
527 /* now calculate first sector/dev */
528 chunk = r10bio->sector >> conf->chunk_shift;
529 sector = r10bio->sector & conf->chunk_mask;
531 chunk *= conf->near_copies;
532 stripe = chunk;
533 dev = sector_div(stripe, conf->raid_disks);
534 if (conf->far_offset)
535 stripe *= conf->far_copies;
537 sector += stripe << conf->chunk_shift;
539 /* and calculate all the others */
540 for (n=0; n < conf->near_copies; n++) {
541 int d = dev;
542 sector_t s = sector;
543 r10bio->devs[slot].addr = sector;
544 r10bio->devs[slot].devnum = d;
545 slot++;
547 for (f = 1; f < conf->far_copies; f++) {
548 d += conf->near_copies;
549 if (d >= conf->raid_disks)
550 d -= conf->raid_disks;
551 s += conf->stride;
552 r10bio->devs[slot].devnum = d;
553 r10bio->devs[slot].addr = s;
554 slot++;
556 dev++;
557 if (dev >= conf->raid_disks) {
558 dev = 0;
559 sector += (conf->chunk_mask + 1);
562 BUG_ON(slot != conf->copies);
565 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
567 sector_t offset, chunk, vchunk;
569 offset = sector & conf->chunk_mask;
570 if (conf->far_offset) {
571 int fc;
572 chunk = sector >> conf->chunk_shift;
573 fc = sector_div(chunk, conf->far_copies);
574 dev -= fc * conf->near_copies;
575 if (dev < 0)
576 dev += conf->raid_disks;
577 } else {
578 while (sector >= conf->stride) {
579 sector -= conf->stride;
580 if (dev < conf->near_copies)
581 dev += conf->raid_disks - conf->near_copies;
582 else
583 dev -= conf->near_copies;
585 chunk = sector >> conf->chunk_shift;
587 vchunk = chunk * conf->raid_disks + dev;
588 sector_div(vchunk, conf->near_copies);
589 return (vchunk << conf->chunk_shift) + offset;
593 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
594 * @q: request queue
595 * @bvm: properties of new bio
596 * @biovec: the request that could be merged to it.
598 * Return amount of bytes we can accept at this offset
599 * This requires checking for end-of-chunk if near_copies != raid_disks,
600 * and for subordinate merge_bvec_fns if merge_check_needed.
602 static int raid10_mergeable_bvec(struct request_queue *q,
603 struct bvec_merge_data *bvm,
604 struct bio_vec *biovec)
606 struct mddev *mddev = q->queuedata;
607 struct r10conf *conf = mddev->private;
608 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
609 int max;
610 unsigned int chunk_sectors = mddev->chunk_sectors;
611 unsigned int bio_sectors = bvm->bi_size >> 9;
613 if (conf->near_copies < conf->raid_disks) {
614 max = (chunk_sectors - ((sector & (chunk_sectors - 1))
615 + bio_sectors)) << 9;
616 if (max < 0)
617 /* bio_add cannot handle a negative return */
618 max = 0;
619 if (max <= biovec->bv_len && bio_sectors == 0)
620 return biovec->bv_len;
621 } else
622 max = biovec->bv_len;
624 if (mddev->merge_check_needed) {
625 struct {
626 struct r10bio r10_bio;
627 struct r10dev devs[conf->copies];
628 } on_stack;
629 struct r10bio *r10_bio = &on_stack.r10_bio;
630 int s;
631 r10_bio->sector = sector;
632 raid10_find_phys(conf, r10_bio);
633 rcu_read_lock();
634 for (s = 0; s < conf->copies; s++) {
635 int disk = r10_bio->devs[s].devnum;
636 struct md_rdev *rdev = rcu_dereference(
637 conf->mirrors[disk].rdev);
638 if (rdev && !test_bit(Faulty, &rdev->flags)) {
639 struct request_queue *q =
640 bdev_get_queue(rdev->bdev);
641 if (q->merge_bvec_fn) {
642 bvm->bi_sector = r10_bio->devs[s].addr
643 + rdev->data_offset;
644 bvm->bi_bdev = rdev->bdev;
645 max = min(max, q->merge_bvec_fn(
646 q, bvm, biovec));
649 rdev = rcu_dereference(conf->mirrors[disk].replacement);
650 if (rdev && !test_bit(Faulty, &rdev->flags)) {
651 struct request_queue *q =
652 bdev_get_queue(rdev->bdev);
653 if (q->merge_bvec_fn) {
654 bvm->bi_sector = r10_bio->devs[s].addr
655 + rdev->data_offset;
656 bvm->bi_bdev = rdev->bdev;
657 max = min(max, q->merge_bvec_fn(
658 q, bvm, biovec));
662 rcu_read_unlock();
664 return max;
668 * This routine returns the disk from which the requested read should
669 * be done. There is a per-array 'next expected sequential IO' sector
670 * number - if this matches on the next IO then we use the last disk.
671 * There is also a per-disk 'last know head position' sector that is
672 * maintained from IRQ contexts, both the normal and the resync IO
673 * completion handlers update this position correctly. If there is no
674 * perfect sequential match then we pick the disk whose head is closest.
676 * If there are 2 mirrors in the same 2 devices, performance degrades
677 * because position is mirror, not device based.
679 * The rdev for the device selected will have nr_pending incremented.
683 * FIXME: possibly should rethink readbalancing and do it differently
684 * depending on near_copies / far_copies geometry.
686 static struct md_rdev *read_balance(struct r10conf *conf,
687 struct r10bio *r10_bio,
688 int *max_sectors)
690 const sector_t this_sector = r10_bio->sector;
691 int disk, slot;
692 int sectors = r10_bio->sectors;
693 int best_good_sectors;
694 sector_t new_distance, best_dist;
695 struct md_rdev *rdev, *best_rdev;
696 int do_balance;
697 int best_slot;
699 raid10_find_phys(conf, r10_bio);
700 rcu_read_lock();
701 retry:
702 sectors = r10_bio->sectors;
703 best_slot = -1;
704 best_rdev = NULL;
705 best_dist = MaxSector;
706 best_good_sectors = 0;
707 do_balance = 1;
709 * Check if we can balance. We can balance on the whole
710 * device if no resync is going on (recovery is ok), or below
711 * the resync window. We take the first readable disk when
712 * above the resync window.
714 if (conf->mddev->recovery_cp < MaxSector
715 && (this_sector + sectors >= conf->next_resync))
716 do_balance = 0;
718 for (slot = 0; slot < conf->copies ; slot++) {
719 sector_t first_bad;
720 int bad_sectors;
721 sector_t dev_sector;
723 if (r10_bio->devs[slot].bio == IO_BLOCKED)
724 continue;
725 disk = r10_bio->devs[slot].devnum;
726 rdev = rcu_dereference(conf->mirrors[disk].replacement);
727 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
728 test_bit(Unmerged, &rdev->flags) ||
729 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
730 rdev = rcu_dereference(conf->mirrors[disk].rdev);
731 if (rdev == NULL ||
732 test_bit(Faulty, &rdev->flags) ||
733 test_bit(Unmerged, &rdev->flags))
734 continue;
735 if (!test_bit(In_sync, &rdev->flags) &&
736 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
737 continue;
739 dev_sector = r10_bio->devs[slot].addr;
740 if (is_badblock(rdev, dev_sector, sectors,
741 &first_bad, &bad_sectors)) {
742 if (best_dist < MaxSector)
743 /* Already have a better slot */
744 continue;
745 if (first_bad <= dev_sector) {
746 /* Cannot read here. If this is the
747 * 'primary' device, then we must not read
748 * beyond 'bad_sectors' from another device.
750 bad_sectors -= (dev_sector - first_bad);
751 if (!do_balance && sectors > bad_sectors)
752 sectors = bad_sectors;
753 if (best_good_sectors > sectors)
754 best_good_sectors = sectors;
755 } else {
756 sector_t good_sectors =
757 first_bad - dev_sector;
758 if (good_sectors > best_good_sectors) {
759 best_good_sectors = good_sectors;
760 best_slot = slot;
761 best_rdev = rdev;
763 if (!do_balance)
764 /* Must read from here */
765 break;
767 continue;
768 } else
769 best_good_sectors = sectors;
771 if (!do_balance)
772 break;
774 /* This optimisation is debatable, and completely destroys
775 * sequential read speed for 'far copies' arrays. So only
776 * keep it for 'near' arrays, and review those later.
778 if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending))
779 break;
781 /* for far > 1 always use the lowest address */
782 if (conf->far_copies > 1)
783 new_distance = r10_bio->devs[slot].addr;
784 else
785 new_distance = abs(r10_bio->devs[slot].addr -
786 conf->mirrors[disk].head_position);
787 if (new_distance < best_dist) {
788 best_dist = new_distance;
789 best_slot = slot;
790 best_rdev = rdev;
793 if (slot >= conf->copies) {
794 slot = best_slot;
795 rdev = best_rdev;
798 if (slot >= 0) {
799 atomic_inc(&rdev->nr_pending);
800 if (test_bit(Faulty, &rdev->flags)) {
801 /* Cannot risk returning a device that failed
802 * before we inc'ed nr_pending
804 rdev_dec_pending(rdev, conf->mddev);
805 goto retry;
807 r10_bio->read_slot = slot;
808 } else
809 rdev = NULL;
810 rcu_read_unlock();
811 *max_sectors = best_good_sectors;
813 return rdev;
816 static int raid10_congested(void *data, int bits)
818 struct mddev *mddev = data;
819 struct r10conf *conf = mddev->private;
820 int i, ret = 0;
822 if ((bits & (1 << BDI_async_congested)) &&
823 conf->pending_count >= max_queued_requests)
824 return 1;
826 if (mddev_congested(mddev, bits))
827 return 1;
828 rcu_read_lock();
829 for (i = 0; i < conf->raid_disks && ret == 0; i++) {
830 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
831 if (rdev && !test_bit(Faulty, &rdev->flags)) {
832 struct request_queue *q = bdev_get_queue(rdev->bdev);
834 ret |= bdi_congested(&q->backing_dev_info, bits);
837 rcu_read_unlock();
838 return ret;
841 static void flush_pending_writes(struct r10conf *conf)
843 /* Any writes that have been queued but are awaiting
844 * bitmap updates get flushed here.
846 spin_lock_irq(&conf->device_lock);
848 if (conf->pending_bio_list.head) {
849 struct bio *bio;
850 bio = bio_list_get(&conf->pending_bio_list);
851 conf->pending_count = 0;
852 spin_unlock_irq(&conf->device_lock);
853 /* flush any pending bitmap writes to disk
854 * before proceeding w/ I/O */
855 bitmap_unplug(conf->mddev->bitmap);
856 wake_up(&conf->wait_barrier);
858 while (bio) { /* submit pending writes */
859 struct bio *next = bio->bi_next;
860 bio->bi_next = NULL;
861 generic_make_request(bio);
862 bio = next;
864 } else
865 spin_unlock_irq(&conf->device_lock);
868 /* Barriers....
869 * Sometimes we need to suspend IO while we do something else,
870 * either some resync/recovery, or reconfigure the array.
871 * To do this we raise a 'barrier'.
872 * The 'barrier' is a counter that can be raised multiple times
873 * to count how many activities are happening which preclude
874 * normal IO.
875 * We can only raise the barrier if there is no pending IO.
876 * i.e. if nr_pending == 0.
877 * We choose only to raise the barrier if no-one is waiting for the
878 * barrier to go down. This means that as soon as an IO request
879 * is ready, no other operations which require a barrier will start
880 * until the IO request has had a chance.
882 * So: regular IO calls 'wait_barrier'. When that returns there
883 * is no backgroup IO happening, It must arrange to call
884 * allow_barrier when it has finished its IO.
885 * backgroup IO calls must call raise_barrier. Once that returns
886 * there is no normal IO happeing. It must arrange to call
887 * lower_barrier when the particular background IO completes.
890 static void raise_barrier(struct r10conf *conf, int force)
892 BUG_ON(force && !conf->barrier);
893 spin_lock_irq(&conf->resync_lock);
895 /* Wait until no block IO is waiting (unless 'force') */
896 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
897 conf->resync_lock, );
899 /* block any new IO from starting */
900 conf->barrier++;
902 /* Now wait for all pending IO to complete */
903 wait_event_lock_irq(conf->wait_barrier,
904 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
905 conf->resync_lock, );
907 spin_unlock_irq(&conf->resync_lock);
910 static void lower_barrier(struct r10conf *conf)
912 unsigned long flags;
913 spin_lock_irqsave(&conf->resync_lock, flags);
914 conf->barrier--;
915 spin_unlock_irqrestore(&conf->resync_lock, flags);
916 wake_up(&conf->wait_barrier);
919 static void wait_barrier(struct r10conf *conf)
921 spin_lock_irq(&conf->resync_lock);
922 if (conf->barrier) {
923 conf->nr_waiting++;
924 /* Wait for the barrier to drop.
925 * However if there are already pending
926 * requests (preventing the barrier from
927 * rising completely), and the
928 * pre-process bio queue isn't empty,
929 * then don't wait, as we need to empty
930 * that queue to get the nr_pending
931 * count down.
933 wait_event_lock_irq(conf->wait_barrier,
934 !conf->barrier ||
935 (conf->nr_pending &&
936 current->bio_list &&
937 !bio_list_empty(current->bio_list)),
938 conf->resync_lock,
940 conf->nr_waiting--;
942 conf->nr_pending++;
943 spin_unlock_irq(&conf->resync_lock);
946 static void allow_barrier(struct r10conf *conf)
948 unsigned long flags;
949 spin_lock_irqsave(&conf->resync_lock, flags);
950 conf->nr_pending--;
951 spin_unlock_irqrestore(&conf->resync_lock, flags);
952 wake_up(&conf->wait_barrier);
955 static void freeze_array(struct r10conf *conf, int extra)
957 /* stop syncio and normal IO and wait for everything to
958 * go quiet.
959 * We increment barrier and nr_waiting, and then
960 * wait until nr_pending match nr_queued+extra
961 * This is called in the context of one normal IO request
962 * that has failed. Thus any sync request that might be pending
963 * will be blocked by nr_pending, and we need to wait for
964 * pending IO requests to complete or be queued for re-try.
965 * Thus the number queued (nr_queued) plus this request (extra)
966 * must match the number of pending IOs (nr_pending) before
967 * we continue.
969 spin_lock_irq(&conf->resync_lock);
970 conf->barrier++;
971 conf->nr_waiting++;
972 wait_event_lock_irq(conf->wait_barrier,
973 conf->nr_pending == conf->nr_queued+extra,
974 conf->resync_lock,
975 flush_pending_writes(conf));
977 spin_unlock_irq(&conf->resync_lock);
980 static void unfreeze_array(struct r10conf *conf)
982 /* reverse the effect of the freeze */
983 spin_lock_irq(&conf->resync_lock);
984 conf->barrier--;
985 conf->nr_waiting--;
986 wake_up(&conf->wait_barrier);
987 spin_unlock_irq(&conf->resync_lock);
990 static void make_request(struct mddev *mddev, struct bio * bio)
992 struct r10conf *conf = mddev->private;
993 struct r10bio *r10_bio;
994 struct bio *read_bio;
995 int i;
996 int chunk_sects = conf->chunk_mask + 1;
997 const int rw = bio_data_dir(bio);
998 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
999 const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
1000 unsigned long flags;
1001 struct md_rdev *blocked_rdev;
1002 int plugged;
1003 int sectors_handled;
1004 int max_sectors;
1006 if (unlikely(bio->bi_rw & REQ_FLUSH)) {
1007 md_flush_request(mddev, bio);
1008 return;
1011 /* If this request crosses a chunk boundary, we need to
1012 * split it. This will only happen for 1 PAGE (or less) requests.
1014 if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9)
1015 > chunk_sects &&
1016 conf->near_copies < conf->raid_disks)) {
1017 struct bio_pair *bp;
1018 /* Sanity check -- queue functions should prevent this happening */
1019 if (bio->bi_vcnt != 1 ||
1020 bio->bi_idx != 0)
1021 goto bad_map;
1022 /* This is a one page bio that upper layers
1023 * refuse to split for us, so we need to split it.
1025 bp = bio_split(bio,
1026 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
1028 /* Each of these 'make_request' calls will call 'wait_barrier'.
1029 * If the first succeeds but the second blocks due to the resync
1030 * thread raising the barrier, we will deadlock because the
1031 * IO to the underlying device will be queued in generic_make_request
1032 * and will never complete, so will never reduce nr_pending.
1033 * So increment nr_waiting here so no new raise_barriers will
1034 * succeed, and so the second wait_barrier cannot block.
1036 spin_lock_irq(&conf->resync_lock);
1037 conf->nr_waiting++;
1038 spin_unlock_irq(&conf->resync_lock);
1040 make_request(mddev, &bp->bio1);
1041 make_request(mddev, &bp->bio2);
1043 spin_lock_irq(&conf->resync_lock);
1044 conf->nr_waiting--;
1045 wake_up(&conf->wait_barrier);
1046 spin_unlock_irq(&conf->resync_lock);
1048 bio_pair_release(bp);
1049 return;
1050 bad_map:
1051 printk("md/raid10:%s: make_request bug: can't convert block across chunks"
1052 " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2,
1053 (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
1055 bio_io_error(bio);
1056 return;
1059 md_write_start(mddev, bio);
1062 * Register the new request and wait if the reconstruction
1063 * thread has put up a bar for new requests.
1064 * Continue immediately if no resync is active currently.
1066 wait_barrier(conf);
1068 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1070 r10_bio->master_bio = bio;
1071 r10_bio->sectors = bio->bi_size >> 9;
1073 r10_bio->mddev = mddev;
1074 r10_bio->sector = bio->bi_sector;
1075 r10_bio->state = 0;
1077 /* We might need to issue multiple reads to different
1078 * devices if there are bad blocks around, so we keep
1079 * track of the number of reads in bio->bi_phys_segments.
1080 * If this is 0, there is only one r10_bio and no locking
1081 * will be needed when the request completes. If it is
1082 * non-zero, then it is the number of not-completed requests.
1084 bio->bi_phys_segments = 0;
1085 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1087 if (rw == READ) {
1089 * read balancing logic:
1091 struct md_rdev *rdev;
1092 int slot;
1094 read_again:
1095 rdev = read_balance(conf, r10_bio, &max_sectors);
1096 if (!rdev) {
1097 raid_end_bio_io(r10_bio);
1098 return;
1100 slot = r10_bio->read_slot;
1102 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1103 md_trim_bio(read_bio, r10_bio->sector - bio->bi_sector,
1104 max_sectors);
1106 r10_bio->devs[slot].bio = read_bio;
1107 r10_bio->devs[slot].rdev = rdev;
1109 read_bio->bi_sector = r10_bio->devs[slot].addr +
1110 rdev->data_offset;
1111 read_bio->bi_bdev = rdev->bdev;
1112 read_bio->bi_end_io = raid10_end_read_request;
1113 read_bio->bi_rw = READ | do_sync;
1114 read_bio->bi_private = r10_bio;
1116 if (max_sectors < r10_bio->sectors) {
1117 /* Could not read all from this device, so we will
1118 * need another r10_bio.
1120 sectors_handled = (r10_bio->sector + max_sectors
1121 - bio->bi_sector);
1122 r10_bio->sectors = max_sectors;
1123 spin_lock_irq(&conf->device_lock);
1124 if (bio->bi_phys_segments == 0)
1125 bio->bi_phys_segments = 2;
1126 else
1127 bio->bi_phys_segments++;
1128 spin_unlock_irq(&conf->device_lock);
1129 /* Cannot call generic_make_request directly
1130 * as that will be queued in __generic_make_request
1131 * and subsequent mempool_alloc might block
1132 * waiting for it. so hand bio over to raid10d.
1134 reschedule_retry(r10_bio);
1136 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1138 r10_bio->master_bio = bio;
1139 r10_bio->sectors = ((bio->bi_size >> 9)
1140 - sectors_handled);
1141 r10_bio->state = 0;
1142 r10_bio->mddev = mddev;
1143 r10_bio->sector = bio->bi_sector + sectors_handled;
1144 goto read_again;
1145 } else
1146 generic_make_request(read_bio);
1147 return;
1151 * WRITE:
1153 if (conf->pending_count >= max_queued_requests) {
1154 md_wakeup_thread(mddev->thread);
1155 wait_event(conf->wait_barrier,
1156 conf->pending_count < max_queued_requests);
1158 /* first select target devices under rcu_lock and
1159 * inc refcount on their rdev. Record them by setting
1160 * bios[x] to bio
1161 * If there are known/acknowledged bad blocks on any device
1162 * on which we have seen a write error, we want to avoid
1163 * writing to those blocks. This potentially requires several
1164 * writes to write around the bad blocks. Each set of writes
1165 * gets its own r10_bio with a set of bios attached. The number
1166 * of r10_bios is recored in bio->bi_phys_segments just as with
1167 * the read case.
1169 plugged = mddev_check_plugged(mddev);
1171 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1172 raid10_find_phys(conf, r10_bio);
1173 retry_write:
1174 blocked_rdev = NULL;
1175 rcu_read_lock();
1176 max_sectors = r10_bio->sectors;
1178 for (i = 0; i < conf->copies; i++) {
1179 int d = r10_bio->devs[i].devnum;
1180 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1181 struct md_rdev *rrdev = rcu_dereference(
1182 conf->mirrors[d].replacement);
1183 if (rdev == rrdev)
1184 rrdev = NULL;
1185 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1186 atomic_inc(&rdev->nr_pending);
1187 blocked_rdev = rdev;
1188 break;
1190 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1191 atomic_inc(&rrdev->nr_pending);
1192 blocked_rdev = rrdev;
1193 break;
1195 if (rdev && (test_bit(Faulty, &rdev->flags)
1196 || test_bit(Unmerged, &rdev->flags)))
1197 rdev = NULL;
1198 if (rrdev && (test_bit(Faulty, &rrdev->flags)
1199 || test_bit(Unmerged, &rrdev->flags)))
1200 rrdev = NULL;
1202 r10_bio->devs[i].bio = NULL;
1203 r10_bio->devs[i].repl_bio = NULL;
1205 if (!rdev && !rrdev) {
1206 set_bit(R10BIO_Degraded, &r10_bio->state);
1207 continue;
1209 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1210 sector_t first_bad;
1211 sector_t dev_sector = r10_bio->devs[i].addr;
1212 int bad_sectors;
1213 int is_bad;
1215 is_bad = is_badblock(rdev, dev_sector,
1216 max_sectors,
1217 &first_bad, &bad_sectors);
1218 if (is_bad < 0) {
1219 /* Mustn't write here until the bad block
1220 * is acknowledged
1222 atomic_inc(&rdev->nr_pending);
1223 set_bit(BlockedBadBlocks, &rdev->flags);
1224 blocked_rdev = rdev;
1225 break;
1227 if (is_bad && first_bad <= dev_sector) {
1228 /* Cannot write here at all */
1229 bad_sectors -= (dev_sector - first_bad);
1230 if (bad_sectors < max_sectors)
1231 /* Mustn't write more than bad_sectors
1232 * to other devices yet
1234 max_sectors = bad_sectors;
1235 /* We don't set R10BIO_Degraded as that
1236 * only applies if the disk is missing,
1237 * so it might be re-added, and we want to
1238 * know to recover this chunk.
1239 * In this case the device is here, and the
1240 * fact that this chunk is not in-sync is
1241 * recorded in the bad block log.
1243 continue;
1245 if (is_bad) {
1246 int good_sectors = first_bad - dev_sector;
1247 if (good_sectors < max_sectors)
1248 max_sectors = good_sectors;
1251 if (rdev) {
1252 r10_bio->devs[i].bio = bio;
1253 atomic_inc(&rdev->nr_pending);
1255 if (rrdev) {
1256 r10_bio->devs[i].repl_bio = bio;
1257 atomic_inc(&rrdev->nr_pending);
1260 rcu_read_unlock();
1262 if (unlikely(blocked_rdev)) {
1263 /* Have to wait for this device to get unblocked, then retry */
1264 int j;
1265 int d;
1267 for (j = 0; j < i; j++) {
1268 if (r10_bio->devs[j].bio) {
1269 d = r10_bio->devs[j].devnum;
1270 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1272 if (r10_bio->devs[j].repl_bio) {
1273 struct md_rdev *rdev;
1274 d = r10_bio->devs[j].devnum;
1275 rdev = conf->mirrors[d].replacement;
1276 if (!rdev) {
1277 /* Race with remove_disk */
1278 smp_mb();
1279 rdev = conf->mirrors[d].rdev;
1281 rdev_dec_pending(rdev, mddev);
1284 allow_barrier(conf);
1285 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1286 wait_barrier(conf);
1287 goto retry_write;
1290 if (max_sectors < r10_bio->sectors) {
1291 /* We are splitting this into multiple parts, so
1292 * we need to prepare for allocating another r10_bio.
1294 r10_bio->sectors = max_sectors;
1295 spin_lock_irq(&conf->device_lock);
1296 if (bio->bi_phys_segments == 0)
1297 bio->bi_phys_segments = 2;
1298 else
1299 bio->bi_phys_segments++;
1300 spin_unlock_irq(&conf->device_lock);
1302 sectors_handled = r10_bio->sector + max_sectors - bio->bi_sector;
1304 atomic_set(&r10_bio->remaining, 1);
1305 bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1307 for (i = 0; i < conf->copies; i++) {
1308 struct bio *mbio;
1309 int d = r10_bio->devs[i].devnum;
1310 if (r10_bio->devs[i].bio) {
1311 struct md_rdev *rdev = conf->mirrors[d].rdev;
1312 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1313 md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1314 max_sectors);
1315 r10_bio->devs[i].bio = mbio;
1317 mbio->bi_sector = (r10_bio->devs[i].addr+
1318 rdev->data_offset);
1319 mbio->bi_bdev = rdev->bdev;
1320 mbio->bi_end_io = raid10_end_write_request;
1321 mbio->bi_rw = WRITE | do_sync | do_fua;
1322 mbio->bi_private = r10_bio;
1324 atomic_inc(&r10_bio->remaining);
1325 spin_lock_irqsave(&conf->device_lock, flags);
1326 bio_list_add(&conf->pending_bio_list, mbio);
1327 conf->pending_count++;
1328 spin_unlock_irqrestore(&conf->device_lock, flags);
1331 if (r10_bio->devs[i].repl_bio) {
1332 struct md_rdev *rdev = conf->mirrors[d].replacement;
1333 if (rdev == NULL) {
1334 /* Replacement just got moved to main 'rdev' */
1335 smp_mb();
1336 rdev = conf->mirrors[d].rdev;
1338 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1339 md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1340 max_sectors);
1341 r10_bio->devs[i].repl_bio = mbio;
1343 mbio->bi_sector = (r10_bio->devs[i].addr+
1344 rdev->data_offset);
1345 mbio->bi_bdev = rdev->bdev;
1346 mbio->bi_end_io = raid10_end_write_request;
1347 mbio->bi_rw = WRITE | do_sync | do_fua;
1348 mbio->bi_private = r10_bio;
1350 atomic_inc(&r10_bio->remaining);
1351 spin_lock_irqsave(&conf->device_lock, flags);
1352 bio_list_add(&conf->pending_bio_list, mbio);
1353 conf->pending_count++;
1354 spin_unlock_irqrestore(&conf->device_lock, flags);
1358 /* Don't remove the bias on 'remaining' (one_write_done) until
1359 * after checking if we need to go around again.
1362 if (sectors_handled < (bio->bi_size >> 9)) {
1363 one_write_done(r10_bio);
1364 /* We need another r10_bio. It has already been counted
1365 * in bio->bi_phys_segments.
1367 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1369 r10_bio->master_bio = bio;
1370 r10_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1372 r10_bio->mddev = mddev;
1373 r10_bio->sector = bio->bi_sector + sectors_handled;
1374 r10_bio->state = 0;
1375 goto retry_write;
1377 one_write_done(r10_bio);
1379 /* In case raid10d snuck in to freeze_array */
1380 wake_up(&conf->wait_barrier);
1382 if (do_sync || !mddev->bitmap || !plugged)
1383 md_wakeup_thread(mddev->thread);
1386 static void status(struct seq_file *seq, struct mddev *mddev)
1388 struct r10conf *conf = mddev->private;
1389 int i;
1391 if (conf->near_copies < conf->raid_disks)
1392 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1393 if (conf->near_copies > 1)
1394 seq_printf(seq, " %d near-copies", conf->near_copies);
1395 if (conf->far_copies > 1) {
1396 if (conf->far_offset)
1397 seq_printf(seq, " %d offset-copies", conf->far_copies);
1398 else
1399 seq_printf(seq, " %d far-copies", conf->far_copies);
1401 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1402 conf->raid_disks - mddev->degraded);
1403 for (i = 0; i < conf->raid_disks; i++)
1404 seq_printf(seq, "%s",
1405 conf->mirrors[i].rdev &&
1406 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1407 seq_printf(seq, "]");
1410 /* check if there are enough drives for
1411 * every block to appear on atleast one.
1412 * Don't consider the device numbered 'ignore'
1413 * as we might be about to remove it.
1415 static int enough(struct r10conf *conf, int ignore)
1417 int first = 0;
1419 do {
1420 int n = conf->copies;
1421 int cnt = 0;
1422 int this = first;
1423 while (n--) {
1424 if (conf->mirrors[this].rdev &&
1425 this != ignore)
1426 cnt++;
1427 this = (this+1) % conf->raid_disks;
1429 if (cnt == 0)
1430 return 0;
1431 first = (first + conf->near_copies) % conf->raid_disks;
1432 } while (first != 0);
1433 return 1;
1436 static void error(struct mddev *mddev, struct md_rdev *rdev)
1438 char b[BDEVNAME_SIZE];
1439 struct r10conf *conf = mddev->private;
1442 * If it is not operational, then we have already marked it as dead
1443 * else if it is the last working disks, ignore the error, let the
1444 * next level up know.
1445 * else mark the drive as failed
1447 if (test_bit(In_sync, &rdev->flags)
1448 && !enough(conf, rdev->raid_disk))
1450 * Don't fail the drive, just return an IO error.
1452 return;
1453 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1454 unsigned long flags;
1455 spin_lock_irqsave(&conf->device_lock, flags);
1456 mddev->degraded++;
1457 spin_unlock_irqrestore(&conf->device_lock, flags);
1459 * if recovery is running, make sure it aborts.
1461 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1463 set_bit(Blocked, &rdev->flags);
1464 set_bit(Faulty, &rdev->flags);
1465 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1466 printk(KERN_ALERT
1467 "md/raid10:%s: Disk failure on %s, disabling device.\n"
1468 "md/raid10:%s: Operation continuing on %d devices.\n",
1469 mdname(mddev), bdevname(rdev->bdev, b),
1470 mdname(mddev), conf->raid_disks - mddev->degraded);
1473 static void print_conf(struct r10conf *conf)
1475 int i;
1476 struct mirror_info *tmp;
1478 printk(KERN_DEBUG "RAID10 conf printout:\n");
1479 if (!conf) {
1480 printk(KERN_DEBUG "(!conf)\n");
1481 return;
1483 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1484 conf->raid_disks);
1486 for (i = 0; i < conf->raid_disks; i++) {
1487 char b[BDEVNAME_SIZE];
1488 tmp = conf->mirrors + i;
1489 if (tmp->rdev)
1490 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1491 i, !test_bit(In_sync, &tmp->rdev->flags),
1492 !test_bit(Faulty, &tmp->rdev->flags),
1493 bdevname(tmp->rdev->bdev,b));
1497 static void close_sync(struct r10conf *conf)
1499 wait_barrier(conf);
1500 allow_barrier(conf);
1502 mempool_destroy(conf->r10buf_pool);
1503 conf->r10buf_pool = NULL;
1506 static int raid10_spare_active(struct mddev *mddev)
1508 int i;
1509 struct r10conf *conf = mddev->private;
1510 struct mirror_info *tmp;
1511 int count = 0;
1512 unsigned long flags;
1515 * Find all non-in_sync disks within the RAID10 configuration
1516 * and mark them in_sync
1518 for (i = 0; i < conf->raid_disks; i++) {
1519 tmp = conf->mirrors + i;
1520 if (tmp->replacement
1521 && tmp->replacement->recovery_offset == MaxSector
1522 && !test_bit(Faulty, &tmp->replacement->flags)
1523 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1524 /* Replacement has just become active */
1525 if (!tmp->rdev
1526 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1527 count++;
1528 if (tmp->rdev) {
1529 /* Replaced device not technically faulty,
1530 * but we need to be sure it gets removed
1531 * and never re-added.
1533 set_bit(Faulty, &tmp->rdev->flags);
1534 sysfs_notify_dirent_safe(
1535 tmp->rdev->sysfs_state);
1537 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1538 } else if (tmp->rdev
1539 && tmp->rdev->recovery_offset == MaxSector
1540 && !test_bit(Faulty, &tmp->rdev->flags)
1541 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1542 count++;
1543 sysfs_notify_dirent(tmp->rdev->sysfs_state);
1546 spin_lock_irqsave(&conf->device_lock, flags);
1547 mddev->degraded -= count;
1548 spin_unlock_irqrestore(&conf->device_lock, flags);
1550 print_conf(conf);
1551 return count;
1555 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1557 struct r10conf *conf = mddev->private;
1558 int err = -EEXIST;
1559 int mirror;
1560 int first = 0;
1561 int last = conf->raid_disks - 1;
1562 struct request_queue *q = bdev_get_queue(rdev->bdev);
1564 if (mddev->recovery_cp < MaxSector)
1565 /* only hot-add to in-sync arrays, as recovery is
1566 * very different from resync
1568 return -EBUSY;
1569 if (rdev->saved_raid_disk < 0 && !enough(conf, -1))
1570 return -EINVAL;
1572 if (rdev->raid_disk >= 0)
1573 first = last = rdev->raid_disk;
1575 if (q->merge_bvec_fn) {
1576 set_bit(Unmerged, &rdev->flags);
1577 mddev->merge_check_needed = 1;
1580 if (rdev->saved_raid_disk >= first &&
1581 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1582 mirror = rdev->saved_raid_disk;
1583 else
1584 mirror = first;
1585 for ( ; mirror <= last ; mirror++) {
1586 struct mirror_info *p = &conf->mirrors[mirror];
1587 if (p->recovery_disabled == mddev->recovery_disabled)
1588 continue;
1589 if (p->rdev) {
1590 if (!test_bit(WantReplacement, &p->rdev->flags) ||
1591 p->replacement != NULL)
1592 continue;
1593 clear_bit(In_sync, &rdev->flags);
1594 set_bit(Replacement, &rdev->flags);
1595 rdev->raid_disk = mirror;
1596 err = 0;
1597 disk_stack_limits(mddev->gendisk, rdev->bdev,
1598 rdev->data_offset << 9);
1599 conf->fullsync = 1;
1600 rcu_assign_pointer(p->replacement, rdev);
1601 break;
1604 disk_stack_limits(mddev->gendisk, rdev->bdev,
1605 rdev->data_offset << 9);
1607 p->head_position = 0;
1608 p->recovery_disabled = mddev->recovery_disabled - 1;
1609 rdev->raid_disk = mirror;
1610 err = 0;
1611 if (rdev->saved_raid_disk != mirror)
1612 conf->fullsync = 1;
1613 rcu_assign_pointer(p->rdev, rdev);
1614 break;
1616 if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1617 /* Some requests might not have seen this new
1618 * merge_bvec_fn. We must wait for them to complete
1619 * before merging the device fully.
1620 * First we make sure any code which has tested
1621 * our function has submitted the request, then
1622 * we wait for all outstanding requests to complete.
1624 synchronize_sched();
1625 freeze_array(conf, 0);
1626 unfreeze_array(conf);
1627 clear_bit(Unmerged, &rdev->flags);
1629 md_integrity_add_rdev(rdev, mddev);
1630 print_conf(conf);
1631 return err;
1634 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1636 struct r10conf *conf = mddev->private;
1637 int err = 0;
1638 int number = rdev->raid_disk;
1639 struct md_rdev **rdevp;
1640 struct mirror_info *p = conf->mirrors + number;
1642 print_conf(conf);
1643 if (rdev == p->rdev)
1644 rdevp = &p->rdev;
1645 else if (rdev == p->replacement)
1646 rdevp = &p->replacement;
1647 else
1648 return 0;
1650 if (test_bit(In_sync, &rdev->flags) ||
1651 atomic_read(&rdev->nr_pending)) {
1652 err = -EBUSY;
1653 goto abort;
1655 /* Only remove faulty devices if recovery
1656 * is not possible.
1658 if (!test_bit(Faulty, &rdev->flags) &&
1659 mddev->recovery_disabled != p->recovery_disabled &&
1660 (!p->replacement || p->replacement == rdev) &&
1661 enough(conf, -1)) {
1662 err = -EBUSY;
1663 goto abort;
1665 *rdevp = NULL;
1666 synchronize_rcu();
1667 if (atomic_read(&rdev->nr_pending)) {
1668 /* lost the race, try later */
1669 err = -EBUSY;
1670 *rdevp = rdev;
1671 goto abort;
1672 } else if (p->replacement) {
1673 /* We must have just cleared 'rdev' */
1674 p->rdev = p->replacement;
1675 clear_bit(Replacement, &p->replacement->flags);
1676 smp_mb(); /* Make sure other CPUs may see both as identical
1677 * but will never see neither -- if they are careful.
1679 p->replacement = NULL;
1680 clear_bit(WantReplacement, &rdev->flags);
1681 } else
1682 /* We might have just remove the Replacement as faulty
1683 * Clear the flag just in case
1685 clear_bit(WantReplacement, &rdev->flags);
1687 err = md_integrity_register(mddev);
1689 abort:
1691 print_conf(conf);
1692 return err;
1696 static void end_sync_read(struct bio *bio, int error)
1698 struct r10bio *r10_bio = bio->bi_private;
1699 struct r10conf *conf = r10_bio->mddev->private;
1700 int d;
1702 d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1704 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1705 set_bit(R10BIO_Uptodate, &r10_bio->state);
1706 else
1707 /* The write handler will notice the lack of
1708 * R10BIO_Uptodate and record any errors etc
1710 atomic_add(r10_bio->sectors,
1711 &conf->mirrors[d].rdev->corrected_errors);
1713 /* for reconstruct, we always reschedule after a read.
1714 * for resync, only after all reads
1716 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1717 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1718 atomic_dec_and_test(&r10_bio->remaining)) {
1719 /* we have read all the blocks,
1720 * do the comparison in process context in raid10d
1722 reschedule_retry(r10_bio);
1726 static void end_sync_request(struct r10bio *r10_bio)
1728 struct mddev *mddev = r10_bio->mddev;
1730 while (atomic_dec_and_test(&r10_bio->remaining)) {
1731 if (r10_bio->master_bio == NULL) {
1732 /* the primary of several recovery bios */
1733 sector_t s = r10_bio->sectors;
1734 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1735 test_bit(R10BIO_WriteError, &r10_bio->state))
1736 reschedule_retry(r10_bio);
1737 else
1738 put_buf(r10_bio);
1739 md_done_sync(mddev, s, 1);
1740 break;
1741 } else {
1742 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1743 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1744 test_bit(R10BIO_WriteError, &r10_bio->state))
1745 reschedule_retry(r10_bio);
1746 else
1747 put_buf(r10_bio);
1748 r10_bio = r10_bio2;
1753 static void end_sync_write(struct bio *bio, int error)
1755 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1756 struct r10bio *r10_bio = bio->bi_private;
1757 struct mddev *mddev = r10_bio->mddev;
1758 struct r10conf *conf = mddev->private;
1759 int d;
1760 sector_t first_bad;
1761 int bad_sectors;
1762 int slot;
1763 int repl;
1764 struct md_rdev *rdev = NULL;
1766 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1767 if (repl)
1768 rdev = conf->mirrors[d].replacement;
1769 else
1770 rdev = conf->mirrors[d].rdev;
1772 if (!uptodate) {
1773 if (repl)
1774 md_error(mddev, rdev);
1775 else {
1776 set_bit(WriteErrorSeen, &rdev->flags);
1777 if (!test_and_set_bit(WantReplacement, &rdev->flags))
1778 set_bit(MD_RECOVERY_NEEDED,
1779 &rdev->mddev->recovery);
1780 set_bit(R10BIO_WriteError, &r10_bio->state);
1782 } else if (is_badblock(rdev,
1783 r10_bio->devs[slot].addr,
1784 r10_bio->sectors,
1785 &first_bad, &bad_sectors))
1786 set_bit(R10BIO_MadeGood, &r10_bio->state);
1788 rdev_dec_pending(rdev, mddev);
1790 end_sync_request(r10_bio);
1794 * Note: sync and recover and handled very differently for raid10
1795 * This code is for resync.
1796 * For resync, we read through virtual addresses and read all blocks.
1797 * If there is any error, we schedule a write. The lowest numbered
1798 * drive is authoritative.
1799 * However requests come for physical address, so we need to map.
1800 * For every physical address there are raid_disks/copies virtual addresses,
1801 * which is always are least one, but is not necessarly an integer.
1802 * This means that a physical address can span multiple chunks, so we may
1803 * have to submit multiple io requests for a single sync request.
1806 * We check if all blocks are in-sync and only write to blocks that
1807 * aren't in sync
1809 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1811 struct r10conf *conf = mddev->private;
1812 int i, first;
1813 struct bio *tbio, *fbio;
1814 int vcnt;
1816 atomic_set(&r10_bio->remaining, 1);
1818 /* find the first device with a block */
1819 for (i=0; i<conf->copies; i++)
1820 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1821 break;
1823 if (i == conf->copies)
1824 goto done;
1826 first = i;
1827 fbio = r10_bio->devs[i].bio;
1829 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
1830 /* now find blocks with errors */
1831 for (i=0 ; i < conf->copies ; i++) {
1832 int j, d;
1834 tbio = r10_bio->devs[i].bio;
1836 if (tbio->bi_end_io != end_sync_read)
1837 continue;
1838 if (i == first)
1839 continue;
1840 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
1841 /* We know that the bi_io_vec layout is the same for
1842 * both 'first' and 'i', so we just compare them.
1843 * All vec entries are PAGE_SIZE;
1845 for (j = 0; j < vcnt; j++)
1846 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1847 page_address(tbio->bi_io_vec[j].bv_page),
1848 fbio->bi_io_vec[j].bv_len))
1849 break;
1850 if (j == vcnt)
1851 continue;
1852 mddev->resync_mismatches += r10_bio->sectors;
1853 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1854 /* Don't fix anything. */
1855 continue;
1857 /* Ok, we need to write this bio, either to correct an
1858 * inconsistency or to correct an unreadable block.
1859 * First we need to fixup bv_offset, bv_len and
1860 * bi_vecs, as the read request might have corrupted these
1862 tbio->bi_vcnt = vcnt;
1863 tbio->bi_size = r10_bio->sectors << 9;
1864 tbio->bi_idx = 0;
1865 tbio->bi_phys_segments = 0;
1866 tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1867 tbio->bi_flags |= 1 << BIO_UPTODATE;
1868 tbio->bi_next = NULL;
1869 tbio->bi_rw = WRITE;
1870 tbio->bi_private = r10_bio;
1871 tbio->bi_sector = r10_bio->devs[i].addr;
1873 for (j=0; j < vcnt ; j++) {
1874 tbio->bi_io_vec[j].bv_offset = 0;
1875 tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
1877 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1878 page_address(fbio->bi_io_vec[j].bv_page),
1879 PAGE_SIZE);
1881 tbio->bi_end_io = end_sync_write;
1883 d = r10_bio->devs[i].devnum;
1884 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1885 atomic_inc(&r10_bio->remaining);
1886 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
1888 tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
1889 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1890 generic_make_request(tbio);
1893 /* Now write out to any replacement devices
1894 * that are active
1896 for (i = 0; i < conf->copies; i++) {
1897 int j, d;
1899 tbio = r10_bio->devs[i].repl_bio;
1900 if (!tbio || !tbio->bi_end_io)
1901 continue;
1902 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
1903 && r10_bio->devs[i].bio != fbio)
1904 for (j = 0; j < vcnt; j++)
1905 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1906 page_address(fbio->bi_io_vec[j].bv_page),
1907 PAGE_SIZE);
1908 d = r10_bio->devs[i].devnum;
1909 atomic_inc(&r10_bio->remaining);
1910 md_sync_acct(conf->mirrors[d].replacement->bdev,
1911 tbio->bi_size >> 9);
1912 generic_make_request(tbio);
1915 done:
1916 if (atomic_dec_and_test(&r10_bio->remaining)) {
1917 md_done_sync(mddev, r10_bio->sectors, 1);
1918 put_buf(r10_bio);
1923 * Now for the recovery code.
1924 * Recovery happens across physical sectors.
1925 * We recover all non-is_sync drives by finding the virtual address of
1926 * each, and then choose a working drive that also has that virt address.
1927 * There is a separate r10_bio for each non-in_sync drive.
1928 * Only the first two slots are in use. The first for reading,
1929 * The second for writing.
1932 static void fix_recovery_read_error(struct r10bio *r10_bio)
1934 /* We got a read error during recovery.
1935 * We repeat the read in smaller page-sized sections.
1936 * If a read succeeds, write it to the new device or record
1937 * a bad block if we cannot.
1938 * If a read fails, record a bad block on both old and
1939 * new devices.
1941 struct mddev *mddev = r10_bio->mddev;
1942 struct r10conf *conf = mddev->private;
1943 struct bio *bio = r10_bio->devs[0].bio;
1944 sector_t sect = 0;
1945 int sectors = r10_bio->sectors;
1946 int idx = 0;
1947 int dr = r10_bio->devs[0].devnum;
1948 int dw = r10_bio->devs[1].devnum;
1950 while (sectors) {
1951 int s = sectors;
1952 struct md_rdev *rdev;
1953 sector_t addr;
1954 int ok;
1956 if (s > (PAGE_SIZE>>9))
1957 s = PAGE_SIZE >> 9;
1959 rdev = conf->mirrors[dr].rdev;
1960 addr = r10_bio->devs[0].addr + sect,
1961 ok = sync_page_io(rdev,
1962 addr,
1963 s << 9,
1964 bio->bi_io_vec[idx].bv_page,
1965 READ, false);
1966 if (ok) {
1967 rdev = conf->mirrors[dw].rdev;
1968 addr = r10_bio->devs[1].addr + sect;
1969 ok = sync_page_io(rdev,
1970 addr,
1971 s << 9,
1972 bio->bi_io_vec[idx].bv_page,
1973 WRITE, false);
1974 if (!ok) {
1975 set_bit(WriteErrorSeen, &rdev->flags);
1976 if (!test_and_set_bit(WantReplacement,
1977 &rdev->flags))
1978 set_bit(MD_RECOVERY_NEEDED,
1979 &rdev->mddev->recovery);
1982 if (!ok) {
1983 /* We don't worry if we cannot set a bad block -
1984 * it really is bad so there is no loss in not
1985 * recording it yet
1987 rdev_set_badblocks(rdev, addr, s, 0);
1989 if (rdev != conf->mirrors[dw].rdev) {
1990 /* need bad block on destination too */
1991 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
1992 addr = r10_bio->devs[1].addr + sect;
1993 ok = rdev_set_badblocks(rdev2, addr, s, 0);
1994 if (!ok) {
1995 /* just abort the recovery */
1996 printk(KERN_NOTICE
1997 "md/raid10:%s: recovery aborted"
1998 " due to read error\n",
1999 mdname(mddev));
2001 conf->mirrors[dw].recovery_disabled
2002 = mddev->recovery_disabled;
2003 set_bit(MD_RECOVERY_INTR,
2004 &mddev->recovery);
2005 break;
2010 sectors -= s;
2011 sect += s;
2012 idx++;
2016 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2018 struct r10conf *conf = mddev->private;
2019 int d;
2020 struct bio *wbio, *wbio2;
2022 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2023 fix_recovery_read_error(r10_bio);
2024 end_sync_request(r10_bio);
2025 return;
2029 * share the pages with the first bio
2030 * and submit the write request
2032 d = r10_bio->devs[1].devnum;
2033 wbio = r10_bio->devs[1].bio;
2034 wbio2 = r10_bio->devs[1].repl_bio;
2035 /* Need to test wbio2->bi_end_io before we call
2036 * generic_make_request as if the former is NULL,
2037 * the latter is free to free wbio2.
2039 if (wbio2 && !wbio2->bi_end_io)
2040 wbio2 = NULL;
2041 if (wbio->bi_end_io) {
2042 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2043 md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
2044 generic_make_request(wbio);
2046 if (wbio2) {
2047 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2048 md_sync_acct(conf->mirrors[d].replacement->bdev,
2049 wbio2->bi_size >> 9);
2050 generic_make_request(wbio2);
2056 * Used by fix_read_error() to decay the per rdev read_errors.
2057 * We halve the read error count for every hour that has elapsed
2058 * since the last recorded read error.
2061 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2063 struct timespec cur_time_mon;
2064 unsigned long hours_since_last;
2065 unsigned int read_errors = atomic_read(&rdev->read_errors);
2067 ktime_get_ts(&cur_time_mon);
2069 if (rdev->last_read_error.tv_sec == 0 &&
2070 rdev->last_read_error.tv_nsec == 0) {
2071 /* first time we've seen a read error */
2072 rdev->last_read_error = cur_time_mon;
2073 return;
2076 hours_since_last = (cur_time_mon.tv_sec -
2077 rdev->last_read_error.tv_sec) / 3600;
2079 rdev->last_read_error = cur_time_mon;
2082 * if hours_since_last is > the number of bits in read_errors
2083 * just set read errors to 0. We do this to avoid
2084 * overflowing the shift of read_errors by hours_since_last.
2086 if (hours_since_last >= 8 * sizeof(read_errors))
2087 atomic_set(&rdev->read_errors, 0);
2088 else
2089 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2092 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2093 int sectors, struct page *page, int rw)
2095 sector_t first_bad;
2096 int bad_sectors;
2098 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2099 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2100 return -1;
2101 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2102 /* success */
2103 return 1;
2104 if (rw == WRITE) {
2105 set_bit(WriteErrorSeen, &rdev->flags);
2106 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2107 set_bit(MD_RECOVERY_NEEDED,
2108 &rdev->mddev->recovery);
2110 /* need to record an error - either for the block or the device */
2111 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2112 md_error(rdev->mddev, rdev);
2113 return 0;
2117 * This is a kernel thread which:
2119 * 1. Retries failed read operations on working mirrors.
2120 * 2. Updates the raid superblock when problems encounter.
2121 * 3. Performs writes following reads for array synchronising.
2124 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2126 int sect = 0; /* Offset from r10_bio->sector */
2127 int sectors = r10_bio->sectors;
2128 struct md_rdev*rdev;
2129 int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2130 int d = r10_bio->devs[r10_bio->read_slot].devnum;
2132 /* still own a reference to this rdev, so it cannot
2133 * have been cleared recently.
2135 rdev = conf->mirrors[d].rdev;
2137 if (test_bit(Faulty, &rdev->flags))
2138 /* drive has already been failed, just ignore any
2139 more fix_read_error() attempts */
2140 return;
2142 check_decay_read_errors(mddev, rdev);
2143 atomic_inc(&rdev->read_errors);
2144 if (atomic_read(&rdev->read_errors) > max_read_errors) {
2145 char b[BDEVNAME_SIZE];
2146 bdevname(rdev->bdev, b);
2148 printk(KERN_NOTICE
2149 "md/raid10:%s: %s: Raid device exceeded "
2150 "read_error threshold [cur %d:max %d]\n",
2151 mdname(mddev), b,
2152 atomic_read(&rdev->read_errors), max_read_errors);
2153 printk(KERN_NOTICE
2154 "md/raid10:%s: %s: Failing raid device\n",
2155 mdname(mddev), b);
2156 md_error(mddev, conf->mirrors[d].rdev);
2157 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2158 return;
2161 while(sectors) {
2162 int s = sectors;
2163 int sl = r10_bio->read_slot;
2164 int success = 0;
2165 int start;
2167 if (s > (PAGE_SIZE>>9))
2168 s = PAGE_SIZE >> 9;
2170 rcu_read_lock();
2171 do {
2172 sector_t first_bad;
2173 int bad_sectors;
2175 d = r10_bio->devs[sl].devnum;
2176 rdev = rcu_dereference(conf->mirrors[d].rdev);
2177 if (rdev &&
2178 !test_bit(Unmerged, &rdev->flags) &&
2179 test_bit(In_sync, &rdev->flags) &&
2180 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2181 &first_bad, &bad_sectors) == 0) {
2182 atomic_inc(&rdev->nr_pending);
2183 rcu_read_unlock();
2184 success = sync_page_io(rdev,
2185 r10_bio->devs[sl].addr +
2186 sect,
2187 s<<9,
2188 conf->tmppage, READ, false);
2189 rdev_dec_pending(rdev, mddev);
2190 rcu_read_lock();
2191 if (success)
2192 break;
2194 sl++;
2195 if (sl == conf->copies)
2196 sl = 0;
2197 } while (!success && sl != r10_bio->read_slot);
2198 rcu_read_unlock();
2200 if (!success) {
2201 /* Cannot read from anywhere, just mark the block
2202 * as bad on the first device to discourage future
2203 * reads.
2205 int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2206 rdev = conf->mirrors[dn].rdev;
2208 if (!rdev_set_badblocks(
2209 rdev,
2210 r10_bio->devs[r10_bio->read_slot].addr
2211 + sect,
2212 s, 0)) {
2213 md_error(mddev, rdev);
2214 r10_bio->devs[r10_bio->read_slot].bio
2215 = IO_BLOCKED;
2217 break;
2220 start = sl;
2221 /* write it back and re-read */
2222 rcu_read_lock();
2223 while (sl != r10_bio->read_slot) {
2224 char b[BDEVNAME_SIZE];
2226 if (sl==0)
2227 sl = conf->copies;
2228 sl--;
2229 d = r10_bio->devs[sl].devnum;
2230 rdev = rcu_dereference(conf->mirrors[d].rdev);
2231 if (!rdev ||
2232 test_bit(Unmerged, &rdev->flags) ||
2233 !test_bit(In_sync, &rdev->flags))
2234 continue;
2236 atomic_inc(&rdev->nr_pending);
2237 rcu_read_unlock();
2238 if (r10_sync_page_io(rdev,
2239 r10_bio->devs[sl].addr +
2240 sect,
2241 s, conf->tmppage, WRITE)
2242 == 0) {
2243 /* Well, this device is dead */
2244 printk(KERN_NOTICE
2245 "md/raid10:%s: read correction "
2246 "write failed"
2247 " (%d sectors at %llu on %s)\n",
2248 mdname(mddev), s,
2249 (unsigned long long)(
2250 sect + rdev->data_offset),
2251 bdevname(rdev->bdev, b));
2252 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2253 "drive\n",
2254 mdname(mddev),
2255 bdevname(rdev->bdev, b));
2257 rdev_dec_pending(rdev, mddev);
2258 rcu_read_lock();
2260 sl = start;
2261 while (sl != r10_bio->read_slot) {
2262 char b[BDEVNAME_SIZE];
2264 if (sl==0)
2265 sl = conf->copies;
2266 sl--;
2267 d = r10_bio->devs[sl].devnum;
2268 rdev = rcu_dereference(conf->mirrors[d].rdev);
2269 if (!rdev ||
2270 !test_bit(In_sync, &rdev->flags))
2271 continue;
2273 atomic_inc(&rdev->nr_pending);
2274 rcu_read_unlock();
2275 switch (r10_sync_page_io(rdev,
2276 r10_bio->devs[sl].addr +
2277 sect,
2278 s, conf->tmppage,
2279 READ)) {
2280 case 0:
2281 /* Well, this device is dead */
2282 printk(KERN_NOTICE
2283 "md/raid10:%s: unable to read back "
2284 "corrected sectors"
2285 " (%d sectors at %llu on %s)\n",
2286 mdname(mddev), s,
2287 (unsigned long long)(
2288 sect + rdev->data_offset),
2289 bdevname(rdev->bdev, b));
2290 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2291 "drive\n",
2292 mdname(mddev),
2293 bdevname(rdev->bdev, b));
2294 break;
2295 case 1:
2296 printk(KERN_INFO
2297 "md/raid10:%s: read error corrected"
2298 " (%d sectors at %llu on %s)\n",
2299 mdname(mddev), s,
2300 (unsigned long long)(
2301 sect + rdev->data_offset),
2302 bdevname(rdev->bdev, b));
2303 atomic_add(s, &rdev->corrected_errors);
2306 rdev_dec_pending(rdev, mddev);
2307 rcu_read_lock();
2309 rcu_read_unlock();
2311 sectors -= s;
2312 sect += s;
2316 static void bi_complete(struct bio *bio, int error)
2318 complete((struct completion *)bio->bi_private);
2321 static int submit_bio_wait(int rw, struct bio *bio)
2323 struct completion event;
2324 rw |= REQ_SYNC;
2326 init_completion(&event);
2327 bio->bi_private = &event;
2328 bio->bi_end_io = bi_complete;
2329 submit_bio(rw, bio);
2330 wait_for_completion(&event);
2332 return test_bit(BIO_UPTODATE, &bio->bi_flags);
2335 static int narrow_write_error(struct r10bio *r10_bio, int i)
2337 struct bio *bio = r10_bio->master_bio;
2338 struct mddev *mddev = r10_bio->mddev;
2339 struct r10conf *conf = mddev->private;
2340 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2341 /* bio has the data to be written to slot 'i' where
2342 * we just recently had a write error.
2343 * We repeatedly clone the bio and trim down to one block,
2344 * then try the write. Where the write fails we record
2345 * a bad block.
2346 * It is conceivable that the bio doesn't exactly align with
2347 * blocks. We must handle this.
2349 * We currently own a reference to the rdev.
2352 int block_sectors;
2353 sector_t sector;
2354 int sectors;
2355 int sect_to_write = r10_bio->sectors;
2356 int ok = 1;
2358 if (rdev->badblocks.shift < 0)
2359 return 0;
2361 block_sectors = 1 << rdev->badblocks.shift;
2362 sector = r10_bio->sector;
2363 sectors = ((r10_bio->sector + block_sectors)
2364 & ~(sector_t)(block_sectors - 1))
2365 - sector;
2367 while (sect_to_write) {
2368 struct bio *wbio;
2369 if (sectors > sect_to_write)
2370 sectors = sect_to_write;
2371 /* Write at 'sector' for 'sectors' */
2372 wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2373 md_trim_bio(wbio, sector - bio->bi_sector, sectors);
2374 wbio->bi_sector = (r10_bio->devs[i].addr+
2375 rdev->data_offset+
2376 (sector - r10_bio->sector));
2377 wbio->bi_bdev = rdev->bdev;
2378 if (submit_bio_wait(WRITE, wbio) == 0)
2379 /* Failure! */
2380 ok = rdev_set_badblocks(rdev, sector,
2381 sectors, 0)
2382 && ok;
2384 bio_put(wbio);
2385 sect_to_write -= sectors;
2386 sector += sectors;
2387 sectors = block_sectors;
2389 return ok;
2392 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2394 int slot = r10_bio->read_slot;
2395 struct bio *bio;
2396 struct r10conf *conf = mddev->private;
2397 struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2398 char b[BDEVNAME_SIZE];
2399 unsigned long do_sync;
2400 int max_sectors;
2402 /* we got a read error. Maybe the drive is bad. Maybe just
2403 * the block and we can fix it.
2404 * We freeze all other IO, and try reading the block from
2405 * other devices. When we find one, we re-write
2406 * and check it that fixes the read error.
2407 * This is all done synchronously while the array is
2408 * frozen.
2410 bio = r10_bio->devs[slot].bio;
2411 bdevname(bio->bi_bdev, b);
2412 bio_put(bio);
2413 r10_bio->devs[slot].bio = NULL;
2415 if (mddev->ro == 0) {
2416 freeze_array(conf, 1);
2417 fix_read_error(conf, mddev, r10_bio);
2418 unfreeze_array(conf);
2419 } else
2420 r10_bio->devs[slot].bio = IO_BLOCKED;
2422 rdev_dec_pending(rdev, mddev);
2424 read_more:
2425 rdev = read_balance(conf, r10_bio, &max_sectors);
2426 if (rdev == NULL) {
2427 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2428 " read error for block %llu\n",
2429 mdname(mddev), b,
2430 (unsigned long long)r10_bio->sector);
2431 raid_end_bio_io(r10_bio);
2432 return;
2435 do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
2436 slot = r10_bio->read_slot;
2437 printk_ratelimited(
2438 KERN_ERR
2439 "md/raid10:%s: %s: redirecting "
2440 "sector %llu to another mirror\n",
2441 mdname(mddev),
2442 bdevname(rdev->bdev, b),
2443 (unsigned long long)r10_bio->sector);
2444 bio = bio_clone_mddev(r10_bio->master_bio,
2445 GFP_NOIO, mddev);
2446 md_trim_bio(bio,
2447 r10_bio->sector - bio->bi_sector,
2448 max_sectors);
2449 r10_bio->devs[slot].bio = bio;
2450 r10_bio->devs[slot].rdev = rdev;
2451 bio->bi_sector = r10_bio->devs[slot].addr
2452 + rdev->data_offset;
2453 bio->bi_bdev = rdev->bdev;
2454 bio->bi_rw = READ | do_sync;
2455 bio->bi_private = r10_bio;
2456 bio->bi_end_io = raid10_end_read_request;
2457 if (max_sectors < r10_bio->sectors) {
2458 /* Drat - have to split this up more */
2459 struct bio *mbio = r10_bio->master_bio;
2460 int sectors_handled =
2461 r10_bio->sector + max_sectors
2462 - mbio->bi_sector;
2463 r10_bio->sectors = max_sectors;
2464 spin_lock_irq(&conf->device_lock);
2465 if (mbio->bi_phys_segments == 0)
2466 mbio->bi_phys_segments = 2;
2467 else
2468 mbio->bi_phys_segments++;
2469 spin_unlock_irq(&conf->device_lock);
2470 generic_make_request(bio);
2472 r10_bio = mempool_alloc(conf->r10bio_pool,
2473 GFP_NOIO);
2474 r10_bio->master_bio = mbio;
2475 r10_bio->sectors = (mbio->bi_size >> 9)
2476 - sectors_handled;
2477 r10_bio->state = 0;
2478 set_bit(R10BIO_ReadError,
2479 &r10_bio->state);
2480 r10_bio->mddev = mddev;
2481 r10_bio->sector = mbio->bi_sector
2482 + sectors_handled;
2484 goto read_more;
2485 } else
2486 generic_make_request(bio);
2489 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2491 /* Some sort of write request has finished and it
2492 * succeeded in writing where we thought there was a
2493 * bad block. So forget the bad block.
2494 * Or possibly if failed and we need to record
2495 * a bad block.
2497 int m;
2498 struct md_rdev *rdev;
2500 if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2501 test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2502 for (m = 0; m < conf->copies; m++) {
2503 int dev = r10_bio->devs[m].devnum;
2504 rdev = conf->mirrors[dev].rdev;
2505 if (r10_bio->devs[m].bio == NULL)
2506 continue;
2507 if (test_bit(BIO_UPTODATE,
2508 &r10_bio->devs[m].bio->bi_flags)) {
2509 rdev_clear_badblocks(
2510 rdev,
2511 r10_bio->devs[m].addr,
2512 r10_bio->sectors);
2513 } else {
2514 if (!rdev_set_badblocks(
2515 rdev,
2516 r10_bio->devs[m].addr,
2517 r10_bio->sectors, 0))
2518 md_error(conf->mddev, rdev);
2520 rdev = conf->mirrors[dev].replacement;
2521 if (r10_bio->devs[m].repl_bio == NULL)
2522 continue;
2523 if (test_bit(BIO_UPTODATE,
2524 &r10_bio->devs[m].repl_bio->bi_flags)) {
2525 rdev_clear_badblocks(
2526 rdev,
2527 r10_bio->devs[m].addr,
2528 r10_bio->sectors);
2529 } else {
2530 if (!rdev_set_badblocks(
2531 rdev,
2532 r10_bio->devs[m].addr,
2533 r10_bio->sectors, 0))
2534 md_error(conf->mddev, rdev);
2537 put_buf(r10_bio);
2538 } else {
2539 for (m = 0; m < conf->copies; m++) {
2540 int dev = r10_bio->devs[m].devnum;
2541 struct bio *bio = r10_bio->devs[m].bio;
2542 rdev = conf->mirrors[dev].rdev;
2543 if (bio == IO_MADE_GOOD) {
2544 rdev_clear_badblocks(
2545 rdev,
2546 r10_bio->devs[m].addr,
2547 r10_bio->sectors);
2548 rdev_dec_pending(rdev, conf->mddev);
2549 } else if (bio != NULL &&
2550 !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2551 if (!narrow_write_error(r10_bio, m)) {
2552 md_error(conf->mddev, rdev);
2553 set_bit(R10BIO_Degraded,
2554 &r10_bio->state);
2556 rdev_dec_pending(rdev, conf->mddev);
2558 bio = r10_bio->devs[m].repl_bio;
2559 rdev = conf->mirrors[dev].replacement;
2560 if (rdev && bio == IO_MADE_GOOD) {
2561 rdev_clear_badblocks(
2562 rdev,
2563 r10_bio->devs[m].addr,
2564 r10_bio->sectors);
2565 rdev_dec_pending(rdev, conf->mddev);
2568 if (test_bit(R10BIO_WriteError,
2569 &r10_bio->state))
2570 close_write(r10_bio);
2571 raid_end_bio_io(r10_bio);
2575 static void raid10d(struct mddev *mddev)
2577 struct r10bio *r10_bio;
2578 unsigned long flags;
2579 struct r10conf *conf = mddev->private;
2580 struct list_head *head = &conf->retry_list;
2581 struct blk_plug plug;
2583 md_check_recovery(mddev);
2585 blk_start_plug(&plug);
2586 for (;;) {
2588 flush_pending_writes(conf);
2590 spin_lock_irqsave(&conf->device_lock, flags);
2591 if (list_empty(head)) {
2592 spin_unlock_irqrestore(&conf->device_lock, flags);
2593 break;
2595 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2596 list_del(head->prev);
2597 conf->nr_queued--;
2598 spin_unlock_irqrestore(&conf->device_lock, flags);
2600 mddev = r10_bio->mddev;
2601 conf = mddev->private;
2602 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2603 test_bit(R10BIO_WriteError, &r10_bio->state))
2604 handle_write_completed(conf, r10_bio);
2605 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2606 sync_request_write(mddev, r10_bio);
2607 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2608 recovery_request_write(mddev, r10_bio);
2609 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2610 handle_read_error(mddev, r10_bio);
2611 else {
2612 /* just a partial read to be scheduled from a
2613 * separate context
2615 int slot = r10_bio->read_slot;
2616 generic_make_request(r10_bio->devs[slot].bio);
2619 cond_resched();
2620 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2621 md_check_recovery(mddev);
2623 blk_finish_plug(&plug);
2627 static int init_resync(struct r10conf *conf)
2629 int buffs;
2630 int i;
2632 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2633 BUG_ON(conf->r10buf_pool);
2634 conf->have_replacement = 0;
2635 for (i = 0; i < conf->raid_disks; i++)
2636 if (conf->mirrors[i].replacement)
2637 conf->have_replacement = 1;
2638 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2639 if (!conf->r10buf_pool)
2640 return -ENOMEM;
2641 conf->next_resync = 0;
2642 return 0;
2646 * perform a "sync" on one "block"
2648 * We need to make sure that no normal I/O request - particularly write
2649 * requests - conflict with active sync requests.
2651 * This is achieved by tracking pending requests and a 'barrier' concept
2652 * that can be installed to exclude normal IO requests.
2654 * Resync and recovery are handled very differently.
2655 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2657 * For resync, we iterate over virtual addresses, read all copies,
2658 * and update if there are differences. If only one copy is live,
2659 * skip it.
2660 * For recovery, we iterate over physical addresses, read a good
2661 * value for each non-in_sync drive, and over-write.
2663 * So, for recovery we may have several outstanding complex requests for a
2664 * given address, one for each out-of-sync device. We model this by allocating
2665 * a number of r10_bio structures, one for each out-of-sync device.
2666 * As we setup these structures, we collect all bio's together into a list
2667 * which we then process collectively to add pages, and then process again
2668 * to pass to generic_make_request.
2670 * The r10_bio structures are linked using a borrowed master_bio pointer.
2671 * This link is counted in ->remaining. When the r10_bio that points to NULL
2672 * has its remaining count decremented to 0, the whole complex operation
2673 * is complete.
2677 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr,
2678 int *skipped, int go_faster)
2680 struct r10conf *conf = mddev->private;
2681 struct r10bio *r10_bio;
2682 struct bio *biolist = NULL, *bio;
2683 sector_t max_sector, nr_sectors;
2684 int i;
2685 int max_sync;
2686 sector_t sync_blocks;
2687 sector_t sectors_skipped = 0;
2688 int chunks_skipped = 0;
2690 if (!conf->r10buf_pool)
2691 if (init_resync(conf))
2692 return 0;
2694 skipped:
2695 max_sector = mddev->dev_sectors;
2696 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2697 max_sector = mddev->resync_max_sectors;
2698 if (sector_nr >= max_sector) {
2699 /* If we aborted, we need to abort the
2700 * sync on the 'current' bitmap chucks (there can
2701 * be several when recovering multiple devices).
2702 * as we may have started syncing it but not finished.
2703 * We can find the current address in
2704 * mddev->curr_resync, but for recovery,
2705 * we need to convert that to several
2706 * virtual addresses.
2708 if (mddev->curr_resync < max_sector) { /* aborted */
2709 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2710 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2711 &sync_blocks, 1);
2712 else for (i=0; i<conf->raid_disks; i++) {
2713 sector_t sect =
2714 raid10_find_virt(conf, mddev->curr_resync, i);
2715 bitmap_end_sync(mddev->bitmap, sect,
2716 &sync_blocks, 1);
2718 } else {
2719 /* completed sync */
2720 if ((!mddev->bitmap || conf->fullsync)
2721 && conf->have_replacement
2722 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2723 /* Completed a full sync so the replacements
2724 * are now fully recovered.
2726 for (i = 0; i < conf->raid_disks; i++)
2727 if (conf->mirrors[i].replacement)
2728 conf->mirrors[i].replacement
2729 ->recovery_offset
2730 = MaxSector;
2732 conf->fullsync = 0;
2734 bitmap_close_sync(mddev->bitmap);
2735 close_sync(conf);
2736 *skipped = 1;
2737 return sectors_skipped;
2739 if (chunks_skipped >= conf->raid_disks) {
2740 /* if there has been nothing to do on any drive,
2741 * then there is nothing to do at all..
2743 *skipped = 1;
2744 return (max_sector - sector_nr) + sectors_skipped;
2747 if (max_sector > mddev->resync_max)
2748 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2750 /* make sure whole request will fit in a chunk - if chunks
2751 * are meaningful
2753 if (conf->near_copies < conf->raid_disks &&
2754 max_sector > (sector_nr | conf->chunk_mask))
2755 max_sector = (sector_nr | conf->chunk_mask) + 1;
2757 * If there is non-resync activity waiting for us then
2758 * put in a delay to throttle resync.
2760 if (!go_faster && conf->nr_waiting)
2761 msleep_interruptible(1000);
2763 /* Again, very different code for resync and recovery.
2764 * Both must result in an r10bio with a list of bios that
2765 * have bi_end_io, bi_sector, bi_bdev set,
2766 * and bi_private set to the r10bio.
2767 * For recovery, we may actually create several r10bios
2768 * with 2 bios in each, that correspond to the bios in the main one.
2769 * In this case, the subordinate r10bios link back through a
2770 * borrowed master_bio pointer, and the counter in the master
2771 * includes a ref from each subordinate.
2773 /* First, we decide what to do and set ->bi_end_io
2774 * To end_sync_read if we want to read, and
2775 * end_sync_write if we will want to write.
2778 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
2779 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2780 /* recovery... the complicated one */
2781 int j;
2782 r10_bio = NULL;
2784 for (i=0 ; i<conf->raid_disks; i++) {
2785 int still_degraded;
2786 struct r10bio *rb2;
2787 sector_t sect;
2788 int must_sync;
2789 int any_working;
2790 struct mirror_info *mirror = &conf->mirrors[i];
2792 if ((mirror->rdev == NULL ||
2793 test_bit(In_sync, &mirror->rdev->flags))
2795 (mirror->replacement == NULL ||
2796 test_bit(Faulty,
2797 &mirror->replacement->flags)))
2798 continue;
2800 still_degraded = 0;
2801 /* want to reconstruct this device */
2802 rb2 = r10_bio;
2803 sect = raid10_find_virt(conf, sector_nr, i);
2804 if (sect >= mddev->resync_max_sectors) {
2805 /* last stripe is not complete - don't
2806 * try to recover this sector.
2808 continue;
2810 /* Unless we are doing a full sync, or a replacement
2811 * we only need to recover the block if it is set in
2812 * the bitmap
2814 must_sync = bitmap_start_sync(mddev->bitmap, sect,
2815 &sync_blocks, 1);
2816 if (sync_blocks < max_sync)
2817 max_sync = sync_blocks;
2818 if (!must_sync &&
2819 mirror->replacement == NULL &&
2820 !conf->fullsync) {
2821 /* yep, skip the sync_blocks here, but don't assume
2822 * that there will never be anything to do here
2824 chunks_skipped = -1;
2825 continue;
2828 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
2829 raise_barrier(conf, rb2 != NULL);
2830 atomic_set(&r10_bio->remaining, 0);
2832 r10_bio->master_bio = (struct bio*)rb2;
2833 if (rb2)
2834 atomic_inc(&rb2->remaining);
2835 r10_bio->mddev = mddev;
2836 set_bit(R10BIO_IsRecover, &r10_bio->state);
2837 r10_bio->sector = sect;
2839 raid10_find_phys(conf, r10_bio);
2841 /* Need to check if the array will still be
2842 * degraded
2844 for (j=0; j<conf->raid_disks; j++)
2845 if (conf->mirrors[j].rdev == NULL ||
2846 test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
2847 still_degraded = 1;
2848 break;
2851 must_sync = bitmap_start_sync(mddev->bitmap, sect,
2852 &sync_blocks, still_degraded);
2854 any_working = 0;
2855 for (j=0; j<conf->copies;j++) {
2856 int k;
2857 int d = r10_bio->devs[j].devnum;
2858 sector_t from_addr, to_addr;
2859 struct md_rdev *rdev;
2860 sector_t sector, first_bad;
2861 int bad_sectors;
2862 if (!conf->mirrors[d].rdev ||
2863 !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
2864 continue;
2865 /* This is where we read from */
2866 any_working = 1;
2867 rdev = conf->mirrors[d].rdev;
2868 sector = r10_bio->devs[j].addr;
2870 if (is_badblock(rdev, sector, max_sync,
2871 &first_bad, &bad_sectors)) {
2872 if (first_bad > sector)
2873 max_sync = first_bad - sector;
2874 else {
2875 bad_sectors -= (sector
2876 - first_bad);
2877 if (max_sync > bad_sectors)
2878 max_sync = bad_sectors;
2879 continue;
2882 bio = r10_bio->devs[0].bio;
2883 bio->bi_next = biolist;
2884 biolist = bio;
2885 bio->bi_private = r10_bio;
2886 bio->bi_end_io = end_sync_read;
2887 bio->bi_rw = READ;
2888 from_addr = r10_bio->devs[j].addr;
2889 bio->bi_sector = from_addr + rdev->data_offset;
2890 bio->bi_bdev = rdev->bdev;
2891 atomic_inc(&rdev->nr_pending);
2892 /* and we write to 'i' (if not in_sync) */
2894 for (k=0; k<conf->copies; k++)
2895 if (r10_bio->devs[k].devnum == i)
2896 break;
2897 BUG_ON(k == conf->copies);
2898 to_addr = r10_bio->devs[k].addr;
2899 r10_bio->devs[0].devnum = d;
2900 r10_bio->devs[0].addr = from_addr;
2901 r10_bio->devs[1].devnum = i;
2902 r10_bio->devs[1].addr = to_addr;
2904 rdev = mirror->rdev;
2905 if (!test_bit(In_sync, &rdev->flags)) {
2906 bio = r10_bio->devs[1].bio;
2907 bio->bi_next = biolist;
2908 biolist = bio;
2909 bio->bi_private = r10_bio;
2910 bio->bi_end_io = end_sync_write;
2911 bio->bi_rw = WRITE;
2912 bio->bi_sector = to_addr
2913 + rdev->data_offset;
2914 bio->bi_bdev = rdev->bdev;
2915 atomic_inc(&r10_bio->remaining);
2916 } else
2917 r10_bio->devs[1].bio->bi_end_io = NULL;
2919 /* and maybe write to replacement */
2920 bio = r10_bio->devs[1].repl_bio;
2921 if (bio)
2922 bio->bi_end_io = NULL;
2923 rdev = mirror->replacement;
2924 /* Note: if rdev != NULL, then bio
2925 * cannot be NULL as r10buf_pool_alloc will
2926 * have allocated it.
2927 * So the second test here is pointless.
2928 * But it keeps semantic-checkers happy, and
2929 * this comment keeps human reviewers
2930 * happy.
2932 if (rdev == NULL || bio == NULL ||
2933 test_bit(Faulty, &rdev->flags))
2934 break;
2935 bio->bi_next = biolist;
2936 biolist = bio;
2937 bio->bi_private = r10_bio;
2938 bio->bi_end_io = end_sync_write;
2939 bio->bi_rw = WRITE;
2940 bio->bi_sector = to_addr + rdev->data_offset;
2941 bio->bi_bdev = rdev->bdev;
2942 atomic_inc(&r10_bio->remaining);
2943 break;
2945 if (j == conf->copies) {
2946 /* Cannot recover, so abort the recovery or
2947 * record a bad block */
2948 if (any_working) {
2949 /* problem is that there are bad blocks
2950 * on other device(s)
2952 int k;
2953 for (k = 0; k < conf->copies; k++)
2954 if (r10_bio->devs[k].devnum == i)
2955 break;
2956 if (!test_bit(In_sync,
2957 &mirror->rdev->flags)
2958 && !rdev_set_badblocks(
2959 mirror->rdev,
2960 r10_bio->devs[k].addr,
2961 max_sync, 0))
2962 any_working = 0;
2963 if (mirror->replacement &&
2964 !rdev_set_badblocks(
2965 mirror->replacement,
2966 r10_bio->devs[k].addr,
2967 max_sync, 0))
2968 any_working = 0;
2970 if (!any_working) {
2971 if (!test_and_set_bit(MD_RECOVERY_INTR,
2972 &mddev->recovery))
2973 printk(KERN_INFO "md/raid10:%s: insufficient "
2974 "working devices for recovery.\n",
2975 mdname(mddev));
2976 mirror->recovery_disabled
2977 = mddev->recovery_disabled;
2979 put_buf(r10_bio);
2980 if (rb2)
2981 atomic_dec(&rb2->remaining);
2982 r10_bio = rb2;
2983 break;
2986 if (biolist == NULL) {
2987 while (r10_bio) {
2988 struct r10bio *rb2 = r10_bio;
2989 r10_bio = (struct r10bio*) rb2->master_bio;
2990 rb2->master_bio = NULL;
2991 put_buf(rb2);
2993 goto giveup;
2995 } else {
2996 /* resync. Schedule a read for every block at this virt offset */
2997 int count = 0;
2999 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3001 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3002 &sync_blocks, mddev->degraded) &&
3003 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3004 &mddev->recovery)) {
3005 /* We can skip this block */
3006 *skipped = 1;
3007 return sync_blocks + sectors_skipped;
3009 if (sync_blocks < max_sync)
3010 max_sync = sync_blocks;
3011 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3013 r10_bio->mddev = mddev;
3014 atomic_set(&r10_bio->remaining, 0);
3015 raise_barrier(conf, 0);
3016 conf->next_resync = sector_nr;
3018 r10_bio->master_bio = NULL;
3019 r10_bio->sector = sector_nr;
3020 set_bit(R10BIO_IsSync, &r10_bio->state);
3021 raid10_find_phys(conf, r10_bio);
3022 r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1;
3024 for (i=0; i<conf->copies; i++) {
3025 int d = r10_bio->devs[i].devnum;
3026 sector_t first_bad, sector;
3027 int bad_sectors;
3029 if (r10_bio->devs[i].repl_bio)
3030 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3032 bio = r10_bio->devs[i].bio;
3033 bio->bi_end_io = NULL;
3034 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3035 if (conf->mirrors[d].rdev == NULL ||
3036 test_bit(Faulty, &conf->mirrors[d].rdev->flags))
3037 continue;
3038 sector = r10_bio->devs[i].addr;
3039 if (is_badblock(conf->mirrors[d].rdev,
3040 sector, max_sync,
3041 &first_bad, &bad_sectors)) {
3042 if (first_bad > sector)
3043 max_sync = first_bad - sector;
3044 else {
3045 bad_sectors -= (sector - first_bad);
3046 if (max_sync > bad_sectors)
3047 max_sync = bad_sectors;
3048 continue;
3051 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3052 atomic_inc(&r10_bio->remaining);
3053 bio->bi_next = biolist;
3054 biolist = bio;
3055 bio->bi_private = r10_bio;
3056 bio->bi_end_io = end_sync_read;
3057 bio->bi_rw = READ;
3058 bio->bi_sector = sector +
3059 conf->mirrors[d].rdev->data_offset;
3060 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
3061 count++;
3063 if (conf->mirrors[d].replacement == NULL ||
3064 test_bit(Faulty,
3065 &conf->mirrors[d].replacement->flags))
3066 continue;
3068 /* Need to set up for writing to the replacement */
3069 bio = r10_bio->devs[i].repl_bio;
3070 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3072 sector = r10_bio->devs[i].addr;
3073 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3074 bio->bi_next = biolist;
3075 biolist = bio;
3076 bio->bi_private = r10_bio;
3077 bio->bi_end_io = end_sync_write;
3078 bio->bi_rw = WRITE;
3079 bio->bi_sector = sector +
3080 conf->mirrors[d].replacement->data_offset;
3081 bio->bi_bdev = conf->mirrors[d].replacement->bdev;
3082 count++;
3085 if (count < 2) {
3086 for (i=0; i<conf->copies; i++) {
3087 int d = r10_bio->devs[i].devnum;
3088 if (r10_bio->devs[i].bio->bi_end_io)
3089 rdev_dec_pending(conf->mirrors[d].rdev,
3090 mddev);
3091 if (r10_bio->devs[i].repl_bio &&
3092 r10_bio->devs[i].repl_bio->bi_end_io)
3093 rdev_dec_pending(
3094 conf->mirrors[d].replacement,
3095 mddev);
3097 put_buf(r10_bio);
3098 biolist = NULL;
3099 goto giveup;
3103 for (bio = biolist; bio ; bio=bio->bi_next) {
3105 bio->bi_flags &= ~(BIO_POOL_MASK - 1);
3106 if (bio->bi_end_io)
3107 bio->bi_flags |= 1 << BIO_UPTODATE;
3108 bio->bi_vcnt = 0;
3109 bio->bi_idx = 0;
3110 bio->bi_phys_segments = 0;
3111 bio->bi_size = 0;
3114 nr_sectors = 0;
3115 if (sector_nr + max_sync < max_sector)
3116 max_sector = sector_nr + max_sync;
3117 do {
3118 struct page *page;
3119 int len = PAGE_SIZE;
3120 if (sector_nr + (len>>9) > max_sector)
3121 len = (max_sector - sector_nr) << 9;
3122 if (len == 0)
3123 break;
3124 for (bio= biolist ; bio ; bio=bio->bi_next) {
3125 struct bio *bio2;
3126 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
3127 if (bio_add_page(bio, page, len, 0))
3128 continue;
3130 /* stop here */
3131 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3132 for (bio2 = biolist;
3133 bio2 && bio2 != bio;
3134 bio2 = bio2->bi_next) {
3135 /* remove last page from this bio */
3136 bio2->bi_vcnt--;
3137 bio2->bi_size -= len;
3138 bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
3140 goto bio_full;
3142 nr_sectors += len>>9;
3143 sector_nr += len>>9;
3144 } while (biolist->bi_vcnt < RESYNC_PAGES);
3145 bio_full:
3146 r10_bio->sectors = nr_sectors;
3148 while (biolist) {
3149 bio = biolist;
3150 biolist = biolist->bi_next;
3152 bio->bi_next = NULL;
3153 r10_bio = bio->bi_private;
3154 r10_bio->sectors = nr_sectors;
3156 if (bio->bi_end_io == end_sync_read) {
3157 md_sync_acct(bio->bi_bdev, nr_sectors);
3158 generic_make_request(bio);
3162 if (sectors_skipped)
3163 /* pretend they weren't skipped, it makes
3164 * no important difference in this case
3166 md_done_sync(mddev, sectors_skipped, 1);
3168 return sectors_skipped + nr_sectors;
3169 giveup:
3170 /* There is nowhere to write, so all non-sync
3171 * drives must be failed or in resync, all drives
3172 * have a bad block, so try the next chunk...
3174 if (sector_nr + max_sync < max_sector)
3175 max_sector = sector_nr + max_sync;
3177 sectors_skipped += (max_sector - sector_nr);
3178 chunks_skipped ++;
3179 sector_nr = max_sector;
3180 goto skipped;
3183 static sector_t
3184 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3186 sector_t size;
3187 struct r10conf *conf = mddev->private;
3189 if (!raid_disks)
3190 raid_disks = conf->raid_disks;
3191 if (!sectors)
3192 sectors = conf->dev_sectors;
3194 size = sectors >> conf->chunk_shift;
3195 sector_div(size, conf->far_copies);
3196 size = size * raid_disks;
3197 sector_div(size, conf->near_copies);
3199 return size << conf->chunk_shift;
3202 static void calc_sectors(struct r10conf *conf, sector_t size)
3204 /* Calculate the number of sectors-per-device that will
3205 * actually be used, and set conf->dev_sectors and
3206 * conf->stride
3209 size = size >> conf->chunk_shift;
3210 sector_div(size, conf->far_copies);
3211 size = size * conf->raid_disks;
3212 sector_div(size, conf->near_copies);
3213 /* 'size' is now the number of chunks in the array */
3214 /* calculate "used chunks per device" */
3215 size = size * conf->copies;
3217 /* We need to round up when dividing by raid_disks to
3218 * get the stride size.
3220 size = DIV_ROUND_UP_SECTOR_T(size, conf->raid_disks);
3222 conf->dev_sectors = size << conf->chunk_shift;
3224 if (conf->far_offset)
3225 conf->stride = 1 << conf->chunk_shift;
3226 else {
3227 sector_div(size, conf->far_copies);
3228 conf->stride = size << conf->chunk_shift;
3232 static struct r10conf *setup_conf(struct mddev *mddev)
3234 struct r10conf *conf = NULL;
3235 int nc, fc, fo;
3236 int err = -EINVAL;
3238 if (mddev->new_chunk_sectors < (PAGE_SIZE >> 9) ||
3239 !is_power_of_2(mddev->new_chunk_sectors)) {
3240 printk(KERN_ERR "md/raid10:%s: chunk size must be "
3241 "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3242 mdname(mddev), PAGE_SIZE);
3243 goto out;
3246 nc = mddev->new_layout & 255;
3247 fc = (mddev->new_layout >> 8) & 255;
3248 fo = mddev->new_layout & (1<<16);
3250 if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks ||
3251 (mddev->new_layout >> 17)) {
3252 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3253 mdname(mddev), mddev->new_layout);
3254 goto out;
3257 err = -ENOMEM;
3258 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3259 if (!conf)
3260 goto out;
3262 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
3263 GFP_KERNEL);
3264 if (!conf->mirrors)
3265 goto out;
3267 conf->tmppage = alloc_page(GFP_KERNEL);
3268 if (!conf->tmppage)
3269 goto out;
3272 conf->raid_disks = mddev->raid_disks;
3273 conf->near_copies = nc;
3274 conf->far_copies = fc;
3275 conf->copies = nc*fc;
3276 conf->far_offset = fo;
3277 conf->chunk_mask = mddev->new_chunk_sectors - 1;
3278 conf->chunk_shift = ffz(~mddev->new_chunk_sectors);
3280 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3281 r10bio_pool_free, conf);
3282 if (!conf->r10bio_pool)
3283 goto out;
3285 calc_sectors(conf, mddev->dev_sectors);
3287 spin_lock_init(&conf->device_lock);
3288 INIT_LIST_HEAD(&conf->retry_list);
3290 spin_lock_init(&conf->resync_lock);
3291 init_waitqueue_head(&conf->wait_barrier);
3293 conf->thread = md_register_thread(raid10d, mddev, NULL);
3294 if (!conf->thread)
3295 goto out;
3297 conf->mddev = mddev;
3298 return conf;
3300 out:
3301 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
3302 mdname(mddev));
3303 if (conf) {
3304 if (conf->r10bio_pool)
3305 mempool_destroy(conf->r10bio_pool);
3306 kfree(conf->mirrors);
3307 safe_put_page(conf->tmppage);
3308 kfree(conf);
3310 return ERR_PTR(err);
3313 static int run(struct mddev *mddev)
3315 struct r10conf *conf;
3316 int i, disk_idx, chunk_size;
3317 struct mirror_info *disk;
3318 struct md_rdev *rdev;
3319 sector_t size;
3322 * copy the already verified devices into our private RAID10
3323 * bookkeeping area. [whatever we allocate in run(),
3324 * should be freed in stop()]
3327 if (mddev->private == NULL) {
3328 conf = setup_conf(mddev);
3329 if (IS_ERR(conf))
3330 return PTR_ERR(conf);
3331 mddev->private = conf;
3333 conf = mddev->private;
3334 if (!conf)
3335 goto out;
3337 mddev->thread = conf->thread;
3338 conf->thread = NULL;
3340 chunk_size = mddev->chunk_sectors << 9;
3341 blk_queue_io_min(mddev->queue, chunk_size);
3342 if (conf->raid_disks % conf->near_copies)
3343 blk_queue_io_opt(mddev->queue, chunk_size * conf->raid_disks);
3344 else
3345 blk_queue_io_opt(mddev->queue, chunk_size *
3346 (conf->raid_disks / conf->near_copies));
3348 rdev_for_each(rdev, mddev) {
3349 struct request_queue *q;
3350 disk_idx = rdev->raid_disk;
3351 if (disk_idx >= conf->raid_disks
3352 || disk_idx < 0)
3353 continue;
3354 disk = conf->mirrors + disk_idx;
3356 if (test_bit(Replacement, &rdev->flags)) {
3357 if (disk->replacement)
3358 goto out_free_conf;
3359 disk->replacement = rdev;
3360 } else {
3361 if (disk->rdev)
3362 goto out_free_conf;
3363 disk->rdev = rdev;
3365 q = bdev_get_queue(rdev->bdev);
3366 if (q->merge_bvec_fn)
3367 mddev->merge_check_needed = 1;
3369 disk_stack_limits(mddev->gendisk, rdev->bdev,
3370 rdev->data_offset << 9);
3372 disk->head_position = 0;
3374 /* need to check that every block has at least one working mirror */
3375 if (!enough(conf, -1)) {
3376 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
3377 mdname(mddev));
3378 goto out_free_conf;
3381 mddev->degraded = 0;
3382 for (i = 0; i < conf->raid_disks; i++) {
3384 disk = conf->mirrors + i;
3386 if (!disk->rdev && disk->replacement) {
3387 /* The replacement is all we have - use it */
3388 disk->rdev = disk->replacement;
3389 disk->replacement = NULL;
3390 clear_bit(Replacement, &disk->rdev->flags);
3393 if (!disk->rdev ||
3394 !test_bit(In_sync, &disk->rdev->flags)) {
3395 disk->head_position = 0;
3396 mddev->degraded++;
3397 if (disk->rdev)
3398 conf->fullsync = 1;
3400 disk->recovery_disabled = mddev->recovery_disabled - 1;
3403 if (mddev->recovery_cp != MaxSector)
3404 printk(KERN_NOTICE "md/raid10:%s: not clean"
3405 " -- starting background reconstruction\n",
3406 mdname(mddev));
3407 printk(KERN_INFO
3408 "md/raid10:%s: active with %d out of %d devices\n",
3409 mdname(mddev), conf->raid_disks - mddev->degraded,
3410 conf->raid_disks);
3412 * Ok, everything is just fine now
3414 mddev->dev_sectors = conf->dev_sectors;
3415 size = raid10_size(mddev, 0, 0);
3416 md_set_array_sectors(mddev, size);
3417 mddev->resync_max_sectors = size;
3419 mddev->queue->backing_dev_info.congested_fn = raid10_congested;
3420 mddev->queue->backing_dev_info.congested_data = mddev;
3422 /* Calculate max read-ahead size.
3423 * We need to readahead at least twice a whole stripe....
3424 * maybe...
3427 int stripe = conf->raid_disks *
3428 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
3429 stripe /= conf->near_copies;
3430 if (mddev->queue->backing_dev_info.ra_pages < 2* stripe)
3431 mddev->queue->backing_dev_info.ra_pages = 2* stripe;
3434 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
3436 if (md_integrity_register(mddev))
3437 goto out_free_conf;
3439 return 0;
3441 out_free_conf:
3442 md_unregister_thread(&mddev->thread);
3443 if (conf->r10bio_pool)
3444 mempool_destroy(conf->r10bio_pool);
3445 safe_put_page(conf->tmppage);
3446 kfree(conf->mirrors);
3447 kfree(conf);
3448 mddev->private = NULL;
3449 out:
3450 return -EIO;
3453 static int stop(struct mddev *mddev)
3455 struct r10conf *conf = mddev->private;
3457 raise_barrier(conf, 0);
3458 lower_barrier(conf);
3460 md_unregister_thread(&mddev->thread);
3461 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
3462 if (conf->r10bio_pool)
3463 mempool_destroy(conf->r10bio_pool);
3464 kfree(conf->mirrors);
3465 kfree(conf);
3466 mddev->private = NULL;
3467 return 0;
3470 static void raid10_quiesce(struct mddev *mddev, int state)
3472 struct r10conf *conf = mddev->private;
3474 switch(state) {
3475 case 1:
3476 raise_barrier(conf, 0);
3477 break;
3478 case 0:
3479 lower_barrier(conf);
3480 break;
3484 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3486 /* Resize of 'far' arrays is not supported.
3487 * For 'near' and 'offset' arrays we can set the
3488 * number of sectors used to be an appropriate multiple
3489 * of the chunk size.
3490 * For 'offset', this is far_copies*chunksize.
3491 * For 'near' the multiplier is the LCM of
3492 * near_copies and raid_disks.
3493 * So if far_copies > 1 && !far_offset, fail.
3494 * Else find LCM(raid_disks, near_copy)*far_copies and
3495 * multiply by chunk_size. Then round to this number.
3496 * This is mostly done by raid10_size()
3498 struct r10conf *conf = mddev->private;
3499 sector_t oldsize, size;
3501 if (conf->far_copies > 1 && !conf->far_offset)
3502 return -EINVAL;
3504 oldsize = raid10_size(mddev, 0, 0);
3505 size = raid10_size(mddev, sectors, 0);
3506 md_set_array_sectors(mddev, size);
3507 if (mddev->array_sectors > size)
3508 return -EINVAL;
3509 set_capacity(mddev->gendisk, mddev->array_sectors);
3510 revalidate_disk(mddev->gendisk);
3511 if (sectors > mddev->dev_sectors &&
3512 mddev->recovery_cp > oldsize) {
3513 mddev->recovery_cp = oldsize;
3514 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3516 calc_sectors(conf, sectors);
3517 mddev->dev_sectors = conf->dev_sectors;
3518 mddev->resync_max_sectors = size;
3519 return 0;
3522 static void *raid10_takeover_raid0(struct mddev *mddev)
3524 struct md_rdev *rdev;
3525 struct r10conf *conf;
3527 if (mddev->degraded > 0) {
3528 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3529 mdname(mddev));
3530 return ERR_PTR(-EINVAL);
3533 /* Set new parameters */
3534 mddev->new_level = 10;
3535 /* new layout: far_copies = 1, near_copies = 2 */
3536 mddev->new_layout = (1<<8) + 2;
3537 mddev->new_chunk_sectors = mddev->chunk_sectors;
3538 mddev->delta_disks = mddev->raid_disks;
3539 mddev->raid_disks *= 2;
3540 /* make sure it will be not marked as dirty */
3541 mddev->recovery_cp = MaxSector;
3543 conf = setup_conf(mddev);
3544 if (!IS_ERR(conf)) {
3545 rdev_for_each(rdev, mddev)
3546 if (rdev->raid_disk >= 0)
3547 rdev->new_raid_disk = rdev->raid_disk * 2;
3548 conf->barrier = 1;
3551 return conf;
3554 static void *raid10_takeover(struct mddev *mddev)
3556 struct r0conf *raid0_conf;
3558 /* raid10 can take over:
3559 * raid0 - providing it has only two drives
3561 if (mddev->level == 0) {
3562 /* for raid0 takeover only one zone is supported */
3563 raid0_conf = mddev->private;
3564 if (raid0_conf->nr_strip_zones > 1) {
3565 printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3566 " with more than one zone.\n",
3567 mdname(mddev));
3568 return ERR_PTR(-EINVAL);
3570 return raid10_takeover_raid0(mddev);
3572 return ERR_PTR(-EINVAL);
3575 static struct md_personality raid10_personality =
3577 .name = "raid10",
3578 .level = 10,
3579 .owner = THIS_MODULE,
3580 .make_request = make_request,
3581 .run = run,
3582 .stop = stop,
3583 .status = status,
3584 .error_handler = error,
3585 .hot_add_disk = raid10_add_disk,
3586 .hot_remove_disk= raid10_remove_disk,
3587 .spare_active = raid10_spare_active,
3588 .sync_request = sync_request,
3589 .quiesce = raid10_quiesce,
3590 .size = raid10_size,
3591 .resize = raid10_resize,
3592 .takeover = raid10_takeover,
3595 static int __init raid_init(void)
3597 return register_md_personality(&raid10_personality);
3600 static void raid_exit(void)
3602 unregister_md_personality(&raid10_personality);
3605 module_init(raid_init);
3606 module_exit(raid_exit);
3607 MODULE_LICENSE("GPL");
3608 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
3609 MODULE_ALIAS("md-personality-9"); /* RAID10 */
3610 MODULE_ALIAS("md-raid10");
3611 MODULE_ALIAS("md-level-10");
3613 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);