Linux 3.4.102
[linux/fpc-iii.git] / drivers / mmc / host / mmci.c
blob032b84791a16fecc10a7da9a9bae4f460cc9e1b9
1 /*
2 * linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
4 * Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
5 * Copyright (C) 2010 ST-Ericsson SA
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/module.h>
12 #include <linux/moduleparam.h>
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/device.h>
16 #include <linux/interrupt.h>
17 #include <linux/kernel.h>
18 #include <linux/delay.h>
19 #include <linux/err.h>
20 #include <linux/highmem.h>
21 #include <linux/log2.h>
22 #include <linux/mmc/host.h>
23 #include <linux/mmc/card.h>
24 #include <linux/amba/bus.h>
25 #include <linux/clk.h>
26 #include <linux/scatterlist.h>
27 #include <linux/gpio.h>
28 #include <linux/regulator/consumer.h>
29 #include <linux/dmaengine.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/amba/mmci.h>
32 #include <linux/pm_runtime.h>
33 #include <linux/types.h>
35 #include <asm/div64.h>
36 #include <asm/io.h>
37 #include <asm/sizes.h>
39 #include "mmci.h"
41 #define DRIVER_NAME "mmci-pl18x"
43 static unsigned int fmax = 515633;
45 /**
46 * struct variant_data - MMCI variant-specific quirks
47 * @clkreg: default value for MCICLOCK register
48 * @clkreg_enable: enable value for MMCICLOCK register
49 * @datalength_bits: number of bits in the MMCIDATALENGTH register
50 * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY
51 * is asserted (likewise for RX)
52 * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
53 * is asserted (likewise for RX)
54 * @sdio: variant supports SDIO
55 * @st_clkdiv: true if using a ST-specific clock divider algorithm
56 * @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register
57 * @pwrreg_powerup: power up value for MMCIPOWER register
58 * @signal_direction: input/out direction of bus signals can be indicated
60 struct variant_data {
61 unsigned int clkreg;
62 unsigned int clkreg_enable;
63 unsigned int datalength_bits;
64 unsigned int fifosize;
65 unsigned int fifohalfsize;
66 bool sdio;
67 bool st_clkdiv;
68 bool blksz_datactrl16;
69 u32 pwrreg_powerup;
70 bool signal_direction;
73 static struct variant_data variant_arm = {
74 .fifosize = 16 * 4,
75 .fifohalfsize = 8 * 4,
76 .datalength_bits = 16,
77 .pwrreg_powerup = MCI_PWR_UP,
80 static struct variant_data variant_arm_extended_fifo = {
81 .fifosize = 128 * 4,
82 .fifohalfsize = 64 * 4,
83 .datalength_bits = 16,
84 .pwrreg_powerup = MCI_PWR_UP,
87 static struct variant_data variant_u300 = {
88 .fifosize = 16 * 4,
89 .fifohalfsize = 8 * 4,
90 .clkreg_enable = MCI_ST_U300_HWFCEN,
91 .datalength_bits = 16,
92 .sdio = true,
93 .pwrreg_powerup = MCI_PWR_ON,
94 .signal_direction = true,
97 static struct variant_data variant_ux500 = {
98 .fifosize = 30 * 4,
99 .fifohalfsize = 8 * 4,
100 .clkreg = MCI_CLK_ENABLE,
101 .clkreg_enable = MCI_ST_UX500_HWFCEN,
102 .datalength_bits = 24,
103 .sdio = true,
104 .st_clkdiv = true,
105 .pwrreg_powerup = MCI_PWR_ON,
106 .signal_direction = true,
109 static struct variant_data variant_ux500v2 = {
110 .fifosize = 30 * 4,
111 .fifohalfsize = 8 * 4,
112 .clkreg = MCI_CLK_ENABLE,
113 .clkreg_enable = MCI_ST_UX500_HWFCEN,
114 .datalength_bits = 24,
115 .sdio = true,
116 .st_clkdiv = true,
117 .blksz_datactrl16 = true,
118 .pwrreg_powerup = MCI_PWR_ON,
119 .signal_direction = true,
123 * This must be called with host->lock held
125 static void mmci_write_clkreg(struct mmci_host *host, u32 clk)
127 if (host->clk_reg != clk) {
128 host->clk_reg = clk;
129 writel(clk, host->base + MMCICLOCK);
134 * This must be called with host->lock held
136 static void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
138 if (host->pwr_reg != pwr) {
139 host->pwr_reg = pwr;
140 writel(pwr, host->base + MMCIPOWER);
145 * This must be called with host->lock held
147 static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
149 struct variant_data *variant = host->variant;
150 u32 clk = variant->clkreg;
152 if (desired) {
153 if (desired >= host->mclk) {
154 clk = MCI_CLK_BYPASS;
155 if (variant->st_clkdiv)
156 clk |= MCI_ST_UX500_NEG_EDGE;
157 host->cclk = host->mclk;
158 } else if (variant->st_clkdiv) {
160 * DB8500 TRM says f = mclk / (clkdiv + 2)
161 * => clkdiv = (mclk / f) - 2
162 * Round the divider up so we don't exceed the max
163 * frequency
165 clk = DIV_ROUND_UP(host->mclk, desired) - 2;
166 if (clk >= 256)
167 clk = 255;
168 host->cclk = host->mclk / (clk + 2);
169 } else {
171 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
172 * => clkdiv = mclk / (2 * f) - 1
174 clk = host->mclk / (2 * desired) - 1;
175 if (clk >= 256)
176 clk = 255;
177 host->cclk = host->mclk / (2 * (clk + 1));
180 clk |= variant->clkreg_enable;
181 clk |= MCI_CLK_ENABLE;
182 /* This hasn't proven to be worthwhile */
183 /* clk |= MCI_CLK_PWRSAVE; */
186 if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
187 clk |= MCI_4BIT_BUS;
188 if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
189 clk |= MCI_ST_8BIT_BUS;
191 mmci_write_clkreg(host, clk);
194 static void
195 mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
197 writel(0, host->base + MMCICOMMAND);
199 BUG_ON(host->data);
201 host->mrq = NULL;
202 host->cmd = NULL;
204 mmc_request_done(host->mmc, mrq);
206 pm_runtime_mark_last_busy(mmc_dev(host->mmc));
207 pm_runtime_put_autosuspend(mmc_dev(host->mmc));
210 static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
212 void __iomem *base = host->base;
214 if (host->singleirq) {
215 unsigned int mask0 = readl(base + MMCIMASK0);
217 mask0 &= ~MCI_IRQ1MASK;
218 mask0 |= mask;
220 writel(mask0, base + MMCIMASK0);
223 writel(mask, base + MMCIMASK1);
226 static void mmci_stop_data(struct mmci_host *host)
228 writel(0, host->base + MMCIDATACTRL);
229 mmci_set_mask1(host, 0);
230 host->data = NULL;
233 static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
235 unsigned int flags = SG_MITER_ATOMIC;
237 if (data->flags & MMC_DATA_READ)
238 flags |= SG_MITER_TO_SG;
239 else
240 flags |= SG_MITER_FROM_SG;
242 sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
246 * All the DMA operation mode stuff goes inside this ifdef.
247 * This assumes that you have a generic DMA device interface,
248 * no custom DMA interfaces are supported.
250 #ifdef CONFIG_DMA_ENGINE
251 static void __devinit mmci_dma_setup(struct mmci_host *host)
253 struct mmci_platform_data *plat = host->plat;
254 const char *rxname, *txname;
255 dma_cap_mask_t mask;
257 if (!plat || !plat->dma_filter) {
258 dev_info(mmc_dev(host->mmc), "no DMA platform data\n");
259 return;
262 /* initialize pre request cookie */
263 host->next_data.cookie = 1;
265 /* Try to acquire a generic DMA engine slave channel */
266 dma_cap_zero(mask);
267 dma_cap_set(DMA_SLAVE, mask);
270 * If only an RX channel is specified, the driver will
271 * attempt to use it bidirectionally, however if it is
272 * is specified but cannot be located, DMA will be disabled.
274 if (plat->dma_rx_param) {
275 host->dma_rx_channel = dma_request_channel(mask,
276 plat->dma_filter,
277 plat->dma_rx_param);
278 /* E.g if no DMA hardware is present */
279 if (!host->dma_rx_channel)
280 dev_err(mmc_dev(host->mmc), "no RX DMA channel\n");
283 if (plat->dma_tx_param) {
284 host->dma_tx_channel = dma_request_channel(mask,
285 plat->dma_filter,
286 plat->dma_tx_param);
287 if (!host->dma_tx_channel)
288 dev_warn(mmc_dev(host->mmc), "no TX DMA channel\n");
289 } else {
290 host->dma_tx_channel = host->dma_rx_channel;
293 if (host->dma_rx_channel)
294 rxname = dma_chan_name(host->dma_rx_channel);
295 else
296 rxname = "none";
298 if (host->dma_tx_channel)
299 txname = dma_chan_name(host->dma_tx_channel);
300 else
301 txname = "none";
303 dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
304 rxname, txname);
307 * Limit the maximum segment size in any SG entry according to
308 * the parameters of the DMA engine device.
310 if (host->dma_tx_channel) {
311 struct device *dev = host->dma_tx_channel->device->dev;
312 unsigned int max_seg_size = dma_get_max_seg_size(dev);
314 if (max_seg_size < host->mmc->max_seg_size)
315 host->mmc->max_seg_size = max_seg_size;
317 if (host->dma_rx_channel) {
318 struct device *dev = host->dma_rx_channel->device->dev;
319 unsigned int max_seg_size = dma_get_max_seg_size(dev);
321 if (max_seg_size < host->mmc->max_seg_size)
322 host->mmc->max_seg_size = max_seg_size;
327 * This is used in __devinit or __devexit so inline it
328 * so it can be discarded.
330 static inline void mmci_dma_release(struct mmci_host *host)
332 struct mmci_platform_data *plat = host->plat;
334 if (host->dma_rx_channel)
335 dma_release_channel(host->dma_rx_channel);
336 if (host->dma_tx_channel && plat->dma_tx_param)
337 dma_release_channel(host->dma_tx_channel);
338 host->dma_rx_channel = host->dma_tx_channel = NULL;
341 static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
343 struct dma_chan *chan = host->dma_current;
344 enum dma_data_direction dir;
345 u32 status;
346 int i;
348 /* Wait up to 1ms for the DMA to complete */
349 for (i = 0; ; i++) {
350 status = readl(host->base + MMCISTATUS);
351 if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
352 break;
353 udelay(10);
357 * Check to see whether we still have some data left in the FIFO -
358 * this catches DMA controllers which are unable to monitor the
359 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
360 * contiguous buffers. On TX, we'll get a FIFO underrun error.
362 if (status & MCI_RXDATAAVLBLMASK) {
363 dmaengine_terminate_all(chan);
364 if (!data->error)
365 data->error = -EIO;
368 if (data->flags & MMC_DATA_WRITE) {
369 dir = DMA_TO_DEVICE;
370 } else {
371 dir = DMA_FROM_DEVICE;
374 if (!data->host_cookie)
375 dma_unmap_sg(chan->device->dev, data->sg, data->sg_len, dir);
378 * Use of DMA with scatter-gather is impossible.
379 * Give up with DMA and switch back to PIO mode.
381 if (status & MCI_RXDATAAVLBLMASK) {
382 dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
383 mmci_dma_release(host);
387 static void mmci_dma_data_error(struct mmci_host *host)
389 dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
390 dmaengine_terminate_all(host->dma_current);
393 static int mmci_dma_prep_data(struct mmci_host *host, struct mmc_data *data,
394 struct mmci_host_next *next)
396 struct variant_data *variant = host->variant;
397 struct dma_slave_config conf = {
398 .src_addr = host->phybase + MMCIFIFO,
399 .dst_addr = host->phybase + MMCIFIFO,
400 .src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
401 .dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
402 .src_maxburst = variant->fifohalfsize >> 2, /* # of words */
403 .dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
404 .device_fc = false,
406 struct dma_chan *chan;
407 struct dma_device *device;
408 struct dma_async_tx_descriptor *desc;
409 enum dma_data_direction buffer_dirn;
410 int nr_sg;
412 /* Check if next job is already prepared */
413 if (data->host_cookie && !next &&
414 host->dma_current && host->dma_desc_current)
415 return 0;
417 if (!next) {
418 host->dma_current = NULL;
419 host->dma_desc_current = NULL;
422 if (data->flags & MMC_DATA_READ) {
423 conf.direction = DMA_DEV_TO_MEM;
424 buffer_dirn = DMA_FROM_DEVICE;
425 chan = host->dma_rx_channel;
426 } else {
427 conf.direction = DMA_MEM_TO_DEV;
428 buffer_dirn = DMA_TO_DEVICE;
429 chan = host->dma_tx_channel;
432 /* If there's no DMA channel, fall back to PIO */
433 if (!chan)
434 return -EINVAL;
436 /* If less than or equal to the fifo size, don't bother with DMA */
437 if (data->blksz * data->blocks <= variant->fifosize)
438 return -EINVAL;
440 device = chan->device;
441 nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
442 if (nr_sg == 0)
443 return -EINVAL;
445 dmaengine_slave_config(chan, &conf);
446 desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
447 conf.direction, DMA_CTRL_ACK);
448 if (!desc)
449 goto unmap_exit;
451 if (next) {
452 next->dma_chan = chan;
453 next->dma_desc = desc;
454 } else {
455 host->dma_current = chan;
456 host->dma_desc_current = desc;
459 return 0;
461 unmap_exit:
462 if (!next)
463 dmaengine_terminate_all(chan);
464 dma_unmap_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
465 return -ENOMEM;
468 static int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
470 int ret;
471 struct mmc_data *data = host->data;
473 ret = mmci_dma_prep_data(host, host->data, NULL);
474 if (ret)
475 return ret;
477 /* Okay, go for it. */
478 dev_vdbg(mmc_dev(host->mmc),
479 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
480 data->sg_len, data->blksz, data->blocks, data->flags);
481 dmaengine_submit(host->dma_desc_current);
482 dma_async_issue_pending(host->dma_current);
484 datactrl |= MCI_DPSM_DMAENABLE;
486 /* Trigger the DMA transfer */
487 writel(datactrl, host->base + MMCIDATACTRL);
490 * Let the MMCI say when the data is ended and it's time
491 * to fire next DMA request. When that happens, MMCI will
492 * call mmci_data_end()
494 writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
495 host->base + MMCIMASK0);
496 return 0;
499 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
501 struct mmci_host_next *next = &host->next_data;
503 if (data->host_cookie && data->host_cookie != next->cookie) {
504 pr_warning("[%s] invalid cookie: data->host_cookie %d"
505 " host->next_data.cookie %d\n",
506 __func__, data->host_cookie, host->next_data.cookie);
507 data->host_cookie = 0;
510 if (!data->host_cookie)
511 return;
513 host->dma_desc_current = next->dma_desc;
514 host->dma_current = next->dma_chan;
516 next->dma_desc = NULL;
517 next->dma_chan = NULL;
520 static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq,
521 bool is_first_req)
523 struct mmci_host *host = mmc_priv(mmc);
524 struct mmc_data *data = mrq->data;
525 struct mmci_host_next *nd = &host->next_data;
527 if (!data)
528 return;
530 if (data->host_cookie) {
531 data->host_cookie = 0;
532 return;
535 /* if config for dma */
536 if (((data->flags & MMC_DATA_WRITE) && host->dma_tx_channel) ||
537 ((data->flags & MMC_DATA_READ) && host->dma_rx_channel)) {
538 if (mmci_dma_prep_data(host, data, nd))
539 data->host_cookie = 0;
540 else
541 data->host_cookie = ++nd->cookie < 0 ? 1 : nd->cookie;
545 static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
546 int err)
548 struct mmci_host *host = mmc_priv(mmc);
549 struct mmc_data *data = mrq->data;
550 struct dma_chan *chan;
551 enum dma_data_direction dir;
553 if (!data)
554 return;
556 if (data->flags & MMC_DATA_READ) {
557 dir = DMA_FROM_DEVICE;
558 chan = host->dma_rx_channel;
559 } else {
560 dir = DMA_TO_DEVICE;
561 chan = host->dma_tx_channel;
565 /* if config for dma */
566 if (chan) {
567 if (err)
568 dmaengine_terminate_all(chan);
569 if (data->host_cookie)
570 dma_unmap_sg(mmc_dev(host->mmc), data->sg,
571 data->sg_len, dir);
572 mrq->data->host_cookie = 0;
576 #else
577 /* Blank functions if the DMA engine is not available */
578 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
581 static inline void mmci_dma_setup(struct mmci_host *host)
585 static inline void mmci_dma_release(struct mmci_host *host)
589 static inline void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
593 static inline void mmci_dma_data_error(struct mmci_host *host)
597 static inline int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
599 return -ENOSYS;
602 #define mmci_pre_request NULL
603 #define mmci_post_request NULL
605 #endif
607 static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
609 struct variant_data *variant = host->variant;
610 unsigned int datactrl, timeout, irqmask;
611 unsigned long long clks;
612 void __iomem *base;
613 int blksz_bits;
615 dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
616 data->blksz, data->blocks, data->flags);
618 host->data = data;
619 host->size = data->blksz * data->blocks;
620 data->bytes_xfered = 0;
622 clks = (unsigned long long)data->timeout_ns * host->cclk;
623 do_div(clks, 1000000000UL);
625 timeout = data->timeout_clks + (unsigned int)clks;
627 base = host->base;
628 writel(timeout, base + MMCIDATATIMER);
629 writel(host->size, base + MMCIDATALENGTH);
631 blksz_bits = ffs(data->blksz) - 1;
632 BUG_ON(1 << blksz_bits != data->blksz);
634 if (variant->blksz_datactrl16)
635 datactrl = MCI_DPSM_ENABLE | (data->blksz << 16);
636 else
637 datactrl = MCI_DPSM_ENABLE | blksz_bits << 4;
639 if (data->flags & MMC_DATA_READ)
640 datactrl |= MCI_DPSM_DIRECTION;
642 /* The ST Micro variants has a special bit to enable SDIO */
643 if (variant->sdio && host->mmc->card)
644 if (mmc_card_sdio(host->mmc->card))
645 datactrl |= MCI_ST_DPSM_SDIOEN;
648 * Attempt to use DMA operation mode, if this
649 * should fail, fall back to PIO mode
651 if (!mmci_dma_start_data(host, datactrl))
652 return;
654 /* IRQ mode, map the SG list for CPU reading/writing */
655 mmci_init_sg(host, data);
657 if (data->flags & MMC_DATA_READ) {
658 irqmask = MCI_RXFIFOHALFFULLMASK;
661 * If we have less than the fifo 'half-full' threshold to
662 * transfer, trigger a PIO interrupt as soon as any data
663 * is available.
665 if (host->size < variant->fifohalfsize)
666 irqmask |= MCI_RXDATAAVLBLMASK;
667 } else {
669 * We don't actually need to include "FIFO empty" here
670 * since its implicit in "FIFO half empty".
672 irqmask = MCI_TXFIFOHALFEMPTYMASK;
675 writel(datactrl, base + MMCIDATACTRL);
676 writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
677 mmci_set_mask1(host, irqmask);
680 static void
681 mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
683 void __iomem *base = host->base;
685 dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
686 cmd->opcode, cmd->arg, cmd->flags);
688 if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) {
689 writel(0, base + MMCICOMMAND);
690 udelay(1);
693 c |= cmd->opcode | MCI_CPSM_ENABLE;
694 if (cmd->flags & MMC_RSP_PRESENT) {
695 if (cmd->flags & MMC_RSP_136)
696 c |= MCI_CPSM_LONGRSP;
697 c |= MCI_CPSM_RESPONSE;
699 if (/*interrupt*/0)
700 c |= MCI_CPSM_INTERRUPT;
702 host->cmd = cmd;
704 writel(cmd->arg, base + MMCIARGUMENT);
705 writel(c, base + MMCICOMMAND);
708 static void
709 mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
710 unsigned int status)
712 /* First check for errors */
713 if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
714 MCI_TXUNDERRUN|MCI_RXOVERRUN)) {
715 u32 remain, success;
717 /* Terminate the DMA transfer */
718 if (dma_inprogress(host))
719 mmci_dma_data_error(host);
722 * Calculate how far we are into the transfer. Note that
723 * the data counter gives the number of bytes transferred
724 * on the MMC bus, not on the host side. On reads, this
725 * can be as much as a FIFO-worth of data ahead. This
726 * matters for FIFO overruns only.
728 remain = readl(host->base + MMCIDATACNT);
729 success = data->blksz * data->blocks - remain;
731 dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
732 status, success);
733 if (status & MCI_DATACRCFAIL) {
734 /* Last block was not successful */
735 success -= 1;
736 data->error = -EILSEQ;
737 } else if (status & MCI_DATATIMEOUT) {
738 data->error = -ETIMEDOUT;
739 } else if (status & MCI_STARTBITERR) {
740 data->error = -ECOMM;
741 } else if (status & MCI_TXUNDERRUN) {
742 data->error = -EIO;
743 } else if (status & MCI_RXOVERRUN) {
744 if (success > host->variant->fifosize)
745 success -= host->variant->fifosize;
746 else
747 success = 0;
748 data->error = -EIO;
750 data->bytes_xfered = round_down(success, data->blksz);
753 if (status & MCI_DATABLOCKEND)
754 dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
756 if (status & MCI_DATAEND || data->error) {
757 if (dma_inprogress(host))
758 mmci_dma_unmap(host, data);
759 mmci_stop_data(host);
761 if (!data->error)
762 /* The error clause is handled above, success! */
763 data->bytes_xfered = data->blksz * data->blocks;
765 if (!data->stop) {
766 mmci_request_end(host, data->mrq);
767 } else {
768 mmci_start_command(host, data->stop, 0);
773 static void
774 mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
775 unsigned int status)
777 void __iomem *base = host->base;
779 host->cmd = NULL;
781 if (status & MCI_CMDTIMEOUT) {
782 cmd->error = -ETIMEDOUT;
783 } else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
784 cmd->error = -EILSEQ;
785 } else {
786 cmd->resp[0] = readl(base + MMCIRESPONSE0);
787 cmd->resp[1] = readl(base + MMCIRESPONSE1);
788 cmd->resp[2] = readl(base + MMCIRESPONSE2);
789 cmd->resp[3] = readl(base + MMCIRESPONSE3);
792 if (!cmd->data || cmd->error) {
793 if (host->data) {
794 /* Terminate the DMA transfer */
795 if (dma_inprogress(host))
796 mmci_dma_data_error(host);
797 mmci_stop_data(host);
799 mmci_request_end(host, cmd->mrq);
800 } else if (!(cmd->data->flags & MMC_DATA_READ)) {
801 mmci_start_data(host, cmd->data);
805 static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
807 void __iomem *base = host->base;
808 char *ptr = buffer;
809 u32 status;
810 int host_remain = host->size;
812 do {
813 int count = host_remain - (readl(base + MMCIFIFOCNT) << 2);
815 if (count > remain)
816 count = remain;
818 if (count <= 0)
819 break;
822 * SDIO especially may want to send something that is
823 * not divisible by 4 (as opposed to card sectors
824 * etc). Therefore make sure to always read the last bytes
825 * while only doing full 32-bit reads towards the FIFO.
827 if (unlikely(count & 0x3)) {
828 if (count < 4) {
829 unsigned char buf[4];
830 readsl(base + MMCIFIFO, buf, 1);
831 memcpy(ptr, buf, count);
832 } else {
833 readsl(base + MMCIFIFO, ptr, count >> 2);
834 count &= ~0x3;
836 } else {
837 readsl(base + MMCIFIFO, ptr, count >> 2);
840 ptr += count;
841 remain -= count;
842 host_remain -= count;
844 if (remain == 0)
845 break;
847 status = readl(base + MMCISTATUS);
848 } while (status & MCI_RXDATAAVLBL);
850 return ptr - buffer;
853 static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
855 struct variant_data *variant = host->variant;
856 void __iomem *base = host->base;
857 char *ptr = buffer;
859 do {
860 unsigned int count, maxcnt;
862 maxcnt = status & MCI_TXFIFOEMPTY ?
863 variant->fifosize : variant->fifohalfsize;
864 count = min(remain, maxcnt);
867 * The ST Micro variant for SDIO transfer sizes
868 * less then 8 bytes should have clock H/W flow
869 * control disabled.
871 if (variant->sdio &&
872 mmc_card_sdio(host->mmc->card)) {
873 u32 clk;
874 if (count < 8)
875 clk = host->clk_reg & ~variant->clkreg_enable;
876 else
877 clk = host->clk_reg | variant->clkreg_enable;
879 mmci_write_clkreg(host, clk);
883 * SDIO especially may want to send something that is
884 * not divisible by 4 (as opposed to card sectors
885 * etc), and the FIFO only accept full 32-bit writes.
886 * So compensate by adding +3 on the count, a single
887 * byte become a 32bit write, 7 bytes will be two
888 * 32bit writes etc.
890 writesl(base + MMCIFIFO, ptr, (count + 3) >> 2);
892 ptr += count;
893 remain -= count;
895 if (remain == 0)
896 break;
898 status = readl(base + MMCISTATUS);
899 } while (status & MCI_TXFIFOHALFEMPTY);
901 return ptr - buffer;
905 * PIO data transfer IRQ handler.
907 static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
909 struct mmci_host *host = dev_id;
910 struct sg_mapping_iter *sg_miter = &host->sg_miter;
911 struct variant_data *variant = host->variant;
912 void __iomem *base = host->base;
913 unsigned long flags;
914 u32 status;
916 status = readl(base + MMCISTATUS);
918 dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
920 local_irq_save(flags);
922 do {
923 unsigned int remain, len;
924 char *buffer;
927 * For write, we only need to test the half-empty flag
928 * here - if the FIFO is completely empty, then by
929 * definition it is more than half empty.
931 * For read, check for data available.
933 if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
934 break;
936 if (!sg_miter_next(sg_miter))
937 break;
939 buffer = sg_miter->addr;
940 remain = sg_miter->length;
942 len = 0;
943 if (status & MCI_RXACTIVE)
944 len = mmci_pio_read(host, buffer, remain);
945 if (status & MCI_TXACTIVE)
946 len = mmci_pio_write(host, buffer, remain, status);
948 sg_miter->consumed = len;
950 host->size -= len;
951 remain -= len;
953 if (remain)
954 break;
956 status = readl(base + MMCISTATUS);
957 } while (1);
959 sg_miter_stop(sg_miter);
961 local_irq_restore(flags);
964 * If we have less than the fifo 'half-full' threshold to transfer,
965 * trigger a PIO interrupt as soon as any data is available.
967 if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
968 mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
971 * If we run out of data, disable the data IRQs; this
972 * prevents a race where the FIFO becomes empty before
973 * the chip itself has disabled the data path, and
974 * stops us racing with our data end IRQ.
976 if (host->size == 0) {
977 mmci_set_mask1(host, 0);
978 writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
981 return IRQ_HANDLED;
985 * Handle completion of command and data transfers.
987 static irqreturn_t mmci_irq(int irq, void *dev_id)
989 struct mmci_host *host = dev_id;
990 u32 status;
991 int ret = 0;
993 spin_lock(&host->lock);
995 do {
996 struct mmc_command *cmd;
997 struct mmc_data *data;
999 status = readl(host->base + MMCISTATUS);
1001 if (host->singleirq) {
1002 if (status & readl(host->base + MMCIMASK1))
1003 mmci_pio_irq(irq, dev_id);
1005 status &= ~MCI_IRQ1MASK;
1008 status &= readl(host->base + MMCIMASK0);
1009 writel(status, host->base + MMCICLEAR);
1011 dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1013 data = host->data;
1014 if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
1015 MCI_TXUNDERRUN|MCI_RXOVERRUN|MCI_DATAEND|
1016 MCI_DATABLOCKEND) && data)
1017 mmci_data_irq(host, data, status);
1019 cmd = host->cmd;
1020 if (status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|MCI_CMDSENT|MCI_CMDRESPEND) && cmd)
1021 mmci_cmd_irq(host, cmd, status);
1023 ret = 1;
1024 } while (status);
1026 spin_unlock(&host->lock);
1028 return IRQ_RETVAL(ret);
1031 static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1033 struct mmci_host *host = mmc_priv(mmc);
1034 unsigned long flags;
1036 WARN_ON(host->mrq != NULL);
1038 if (mrq->data && !is_power_of_2(mrq->data->blksz)) {
1039 dev_err(mmc_dev(mmc), "unsupported block size (%d bytes)\n",
1040 mrq->data->blksz);
1041 mrq->cmd->error = -EINVAL;
1042 mmc_request_done(mmc, mrq);
1043 return;
1046 pm_runtime_get_sync(mmc_dev(mmc));
1048 spin_lock_irqsave(&host->lock, flags);
1050 host->mrq = mrq;
1052 if (mrq->data)
1053 mmci_get_next_data(host, mrq->data);
1055 if (mrq->data && mrq->data->flags & MMC_DATA_READ)
1056 mmci_start_data(host, mrq->data);
1058 mmci_start_command(host, mrq->cmd, 0);
1060 spin_unlock_irqrestore(&host->lock, flags);
1063 static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1065 struct mmci_host *host = mmc_priv(mmc);
1066 struct variant_data *variant = host->variant;
1067 u32 pwr = 0;
1068 unsigned long flags;
1069 int ret;
1071 pm_runtime_get_sync(mmc_dev(mmc));
1073 if (host->plat->ios_handler &&
1074 host->plat->ios_handler(mmc_dev(mmc), ios))
1075 dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
1077 switch (ios->power_mode) {
1078 case MMC_POWER_OFF:
1079 if (host->vcc)
1080 ret = mmc_regulator_set_ocr(mmc, host->vcc, 0);
1081 break;
1082 case MMC_POWER_UP:
1083 if (host->vcc) {
1084 ret = mmc_regulator_set_ocr(mmc, host->vcc, ios->vdd);
1085 if (ret) {
1086 dev_err(mmc_dev(mmc), "unable to set OCR\n");
1088 * The .set_ios() function in the mmc_host_ops
1089 * struct return void, and failing to set the
1090 * power should be rare so we print an error
1091 * and return here.
1093 goto out;
1097 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1098 * and instead uses MCI_PWR_ON so apply whatever value is
1099 * configured in the variant data.
1101 pwr |= variant->pwrreg_powerup;
1103 break;
1104 case MMC_POWER_ON:
1105 pwr |= MCI_PWR_ON;
1106 break;
1109 if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1111 * The ST Micro variant has some additional bits
1112 * indicating signal direction for the signals in
1113 * the SD/MMC bus and feedback-clock usage.
1115 pwr |= host->plat->sigdir;
1117 if (ios->bus_width == MMC_BUS_WIDTH_4)
1118 pwr &= ~MCI_ST_DATA74DIREN;
1119 else if (ios->bus_width == MMC_BUS_WIDTH_1)
1120 pwr &= (~MCI_ST_DATA74DIREN &
1121 ~MCI_ST_DATA31DIREN &
1122 ~MCI_ST_DATA2DIREN);
1125 if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) {
1126 if (host->hw_designer != AMBA_VENDOR_ST)
1127 pwr |= MCI_ROD;
1128 else {
1130 * The ST Micro variant use the ROD bit for something
1131 * else and only has OD (Open Drain).
1133 pwr |= MCI_OD;
1137 spin_lock_irqsave(&host->lock, flags);
1139 mmci_set_clkreg(host, ios->clock);
1140 mmci_write_pwrreg(host, pwr);
1142 spin_unlock_irqrestore(&host->lock, flags);
1144 out:
1145 pm_runtime_mark_last_busy(mmc_dev(mmc));
1146 pm_runtime_put_autosuspend(mmc_dev(mmc));
1149 static int mmci_get_ro(struct mmc_host *mmc)
1151 struct mmci_host *host = mmc_priv(mmc);
1153 if (host->gpio_wp == -ENOSYS)
1154 return -ENOSYS;
1156 return gpio_get_value_cansleep(host->gpio_wp);
1159 static int mmci_get_cd(struct mmc_host *mmc)
1161 struct mmci_host *host = mmc_priv(mmc);
1162 struct mmci_platform_data *plat = host->plat;
1163 unsigned int status;
1165 if (host->gpio_cd == -ENOSYS) {
1166 if (!plat->status)
1167 return 1; /* Assume always present */
1169 status = plat->status(mmc_dev(host->mmc));
1170 } else
1171 status = !!gpio_get_value_cansleep(host->gpio_cd)
1172 ^ plat->cd_invert;
1175 * Use positive logic throughout - status is zero for no card,
1176 * non-zero for card inserted.
1178 return status;
1181 static irqreturn_t mmci_cd_irq(int irq, void *dev_id)
1183 struct mmci_host *host = dev_id;
1185 mmc_detect_change(host->mmc, msecs_to_jiffies(500));
1187 return IRQ_HANDLED;
1190 static const struct mmc_host_ops mmci_ops = {
1191 .request = mmci_request,
1192 .pre_req = mmci_pre_request,
1193 .post_req = mmci_post_request,
1194 .set_ios = mmci_set_ios,
1195 .get_ro = mmci_get_ro,
1196 .get_cd = mmci_get_cd,
1199 static int __devinit mmci_probe(struct amba_device *dev,
1200 const struct amba_id *id)
1202 struct mmci_platform_data *plat = dev->dev.platform_data;
1203 struct variant_data *variant = id->data;
1204 struct mmci_host *host;
1205 struct mmc_host *mmc;
1206 int ret;
1208 /* must have platform data */
1209 if (!plat) {
1210 ret = -EINVAL;
1211 goto out;
1214 ret = amba_request_regions(dev, DRIVER_NAME);
1215 if (ret)
1216 goto out;
1218 mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1219 if (!mmc) {
1220 ret = -ENOMEM;
1221 goto rel_regions;
1224 host = mmc_priv(mmc);
1225 host->mmc = mmc;
1227 host->gpio_wp = -ENOSYS;
1228 host->gpio_cd = -ENOSYS;
1229 host->gpio_cd_irq = -1;
1231 host->hw_designer = amba_manf(dev);
1232 host->hw_revision = amba_rev(dev);
1233 dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1234 dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1236 host->clk = clk_get(&dev->dev, NULL);
1237 if (IS_ERR(host->clk)) {
1238 ret = PTR_ERR(host->clk);
1239 host->clk = NULL;
1240 goto host_free;
1243 ret = clk_prepare(host->clk);
1244 if (ret)
1245 goto clk_free;
1247 ret = clk_enable(host->clk);
1248 if (ret)
1249 goto clk_unprep;
1251 host->plat = plat;
1252 host->variant = variant;
1253 host->mclk = clk_get_rate(host->clk);
1255 * According to the spec, mclk is max 100 MHz,
1256 * so we try to adjust the clock down to this,
1257 * (if possible).
1259 if (host->mclk > 100000000) {
1260 ret = clk_set_rate(host->clk, 100000000);
1261 if (ret < 0)
1262 goto clk_disable;
1263 host->mclk = clk_get_rate(host->clk);
1264 dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1265 host->mclk);
1267 host->phybase = dev->res.start;
1268 host->base = ioremap(dev->res.start, resource_size(&dev->res));
1269 if (!host->base) {
1270 ret = -ENOMEM;
1271 goto clk_disable;
1274 mmc->ops = &mmci_ops;
1276 * The ARM and ST versions of the block have slightly different
1277 * clock divider equations which means that the minimum divider
1278 * differs too.
1280 if (variant->st_clkdiv)
1281 mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
1282 else
1283 mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
1285 * If the platform data supplies a maximum operating
1286 * frequency, this takes precedence. Else, we fall back
1287 * to using the module parameter, which has a (low)
1288 * default value in case it is not specified. Either
1289 * value must not exceed the clock rate into the block,
1290 * of course.
1292 if (plat->f_max)
1293 mmc->f_max = min(host->mclk, plat->f_max);
1294 else
1295 mmc->f_max = min(host->mclk, fmax);
1296 dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1298 #ifdef CONFIG_REGULATOR
1299 /* If we're using the regulator framework, try to fetch a regulator */
1300 host->vcc = regulator_get(&dev->dev, "vmmc");
1301 if (IS_ERR(host->vcc))
1302 host->vcc = NULL;
1303 else {
1304 int mask = mmc_regulator_get_ocrmask(host->vcc);
1306 if (mask < 0)
1307 dev_err(&dev->dev, "error getting OCR mask (%d)\n",
1308 mask);
1309 else {
1310 host->mmc->ocr_avail = (u32) mask;
1311 if (plat->ocr_mask)
1312 dev_warn(&dev->dev,
1313 "Provided ocr_mask/setpower will not be used "
1314 "(using regulator instead)\n");
1317 #endif
1318 /* Fall back to platform data if no regulator is found */
1319 if (host->vcc == NULL)
1320 mmc->ocr_avail = plat->ocr_mask;
1321 mmc->caps = plat->capabilities;
1322 mmc->caps2 = plat->capabilities2;
1325 * We can do SGIO
1327 mmc->max_segs = NR_SG;
1330 * Since only a certain number of bits are valid in the data length
1331 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1332 * single request.
1334 mmc->max_req_size = (1 << variant->datalength_bits) - 1;
1337 * Set the maximum segment size. Since we aren't doing DMA
1338 * (yet) we are only limited by the data length register.
1340 mmc->max_seg_size = mmc->max_req_size;
1343 * Block size can be up to 2048 bytes, but must be a power of two.
1345 mmc->max_blk_size = 1 << 11;
1348 * Limit the number of blocks transferred so that we don't overflow
1349 * the maximum request size.
1351 mmc->max_blk_count = mmc->max_req_size >> 11;
1353 spin_lock_init(&host->lock);
1355 writel(0, host->base + MMCIMASK0);
1356 writel(0, host->base + MMCIMASK1);
1357 writel(0xfff, host->base + MMCICLEAR);
1359 if (gpio_is_valid(plat->gpio_cd)) {
1360 ret = gpio_request(plat->gpio_cd, DRIVER_NAME " (cd)");
1361 if (ret == 0)
1362 ret = gpio_direction_input(plat->gpio_cd);
1363 if (ret == 0)
1364 host->gpio_cd = plat->gpio_cd;
1365 else if (ret != -ENOSYS)
1366 goto err_gpio_cd;
1369 * A gpio pin that will detect cards when inserted and removed
1370 * will most likely want to trigger on the edges if it is
1371 * 0 when ejected and 1 when inserted (or mutatis mutandis
1372 * for the inverted case) so we request triggers on both
1373 * edges.
1375 ret = request_any_context_irq(gpio_to_irq(plat->gpio_cd),
1376 mmci_cd_irq,
1377 IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING,
1378 DRIVER_NAME " (cd)", host);
1379 if (ret >= 0)
1380 host->gpio_cd_irq = gpio_to_irq(plat->gpio_cd);
1382 if (gpio_is_valid(plat->gpio_wp)) {
1383 ret = gpio_request(plat->gpio_wp, DRIVER_NAME " (wp)");
1384 if (ret == 0)
1385 ret = gpio_direction_input(plat->gpio_wp);
1386 if (ret == 0)
1387 host->gpio_wp = plat->gpio_wp;
1388 else if (ret != -ENOSYS)
1389 goto err_gpio_wp;
1392 if ((host->plat->status || host->gpio_cd != -ENOSYS)
1393 && host->gpio_cd_irq < 0)
1394 mmc->caps |= MMC_CAP_NEEDS_POLL;
1396 ret = request_irq(dev->irq[0], mmci_irq, IRQF_SHARED, DRIVER_NAME " (cmd)", host);
1397 if (ret)
1398 goto unmap;
1400 if (dev->irq[1] == NO_IRQ || !dev->irq[1])
1401 host->singleirq = true;
1402 else {
1403 ret = request_irq(dev->irq[1], mmci_pio_irq, IRQF_SHARED,
1404 DRIVER_NAME " (pio)", host);
1405 if (ret)
1406 goto irq0_free;
1409 writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1411 amba_set_drvdata(dev, mmc);
1413 dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
1414 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
1415 amba_rev(dev), (unsigned long long)dev->res.start,
1416 dev->irq[0], dev->irq[1]);
1418 mmci_dma_setup(host);
1420 pm_runtime_set_autosuspend_delay(&dev->dev, 50);
1421 pm_runtime_use_autosuspend(&dev->dev);
1422 pm_runtime_put(&dev->dev);
1424 mmc_add_host(mmc);
1426 return 0;
1428 irq0_free:
1429 free_irq(dev->irq[0], host);
1430 unmap:
1431 if (host->gpio_wp != -ENOSYS)
1432 gpio_free(host->gpio_wp);
1433 err_gpio_wp:
1434 if (host->gpio_cd_irq >= 0)
1435 free_irq(host->gpio_cd_irq, host);
1436 if (host->gpio_cd != -ENOSYS)
1437 gpio_free(host->gpio_cd);
1438 err_gpio_cd:
1439 iounmap(host->base);
1440 clk_disable:
1441 clk_disable(host->clk);
1442 clk_unprep:
1443 clk_unprepare(host->clk);
1444 clk_free:
1445 clk_put(host->clk);
1446 host_free:
1447 mmc_free_host(mmc);
1448 rel_regions:
1449 amba_release_regions(dev);
1450 out:
1451 return ret;
1454 static int __devexit mmci_remove(struct amba_device *dev)
1456 struct mmc_host *mmc = amba_get_drvdata(dev);
1458 amba_set_drvdata(dev, NULL);
1460 if (mmc) {
1461 struct mmci_host *host = mmc_priv(mmc);
1464 * Undo pm_runtime_put() in probe. We use the _sync
1465 * version here so that we can access the primecell.
1467 pm_runtime_get_sync(&dev->dev);
1469 mmc_remove_host(mmc);
1471 writel(0, host->base + MMCIMASK0);
1472 writel(0, host->base + MMCIMASK1);
1474 writel(0, host->base + MMCICOMMAND);
1475 writel(0, host->base + MMCIDATACTRL);
1477 mmci_dma_release(host);
1478 free_irq(dev->irq[0], host);
1479 if (!host->singleirq)
1480 free_irq(dev->irq[1], host);
1482 if (host->gpio_wp != -ENOSYS)
1483 gpio_free(host->gpio_wp);
1484 if (host->gpio_cd_irq >= 0)
1485 free_irq(host->gpio_cd_irq, host);
1486 if (host->gpio_cd != -ENOSYS)
1487 gpio_free(host->gpio_cd);
1489 iounmap(host->base);
1490 clk_disable(host->clk);
1491 clk_unprepare(host->clk);
1492 clk_put(host->clk);
1494 if (host->vcc)
1495 mmc_regulator_set_ocr(mmc, host->vcc, 0);
1496 regulator_put(host->vcc);
1498 mmc_free_host(mmc);
1500 amba_release_regions(dev);
1503 return 0;
1506 #ifdef CONFIG_SUSPEND
1507 static int mmci_suspend(struct device *dev)
1509 struct amba_device *adev = to_amba_device(dev);
1510 struct mmc_host *mmc = amba_get_drvdata(adev);
1511 int ret = 0;
1513 if (mmc) {
1514 struct mmci_host *host = mmc_priv(mmc);
1516 ret = mmc_suspend_host(mmc);
1517 if (ret == 0) {
1518 pm_runtime_get_sync(dev);
1519 writel(0, host->base + MMCIMASK0);
1523 return ret;
1526 static int mmci_resume(struct device *dev)
1528 struct amba_device *adev = to_amba_device(dev);
1529 struct mmc_host *mmc = amba_get_drvdata(adev);
1530 int ret = 0;
1532 if (mmc) {
1533 struct mmci_host *host = mmc_priv(mmc);
1535 writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1536 pm_runtime_put(dev);
1538 ret = mmc_resume_host(mmc);
1541 return ret;
1543 #endif
1545 static const struct dev_pm_ops mmci_dev_pm_ops = {
1546 SET_SYSTEM_SLEEP_PM_OPS(mmci_suspend, mmci_resume)
1549 static struct amba_id mmci_ids[] = {
1551 .id = 0x00041180,
1552 .mask = 0xff0fffff,
1553 .data = &variant_arm,
1556 .id = 0x01041180,
1557 .mask = 0xff0fffff,
1558 .data = &variant_arm_extended_fifo,
1561 .id = 0x00041181,
1562 .mask = 0x000fffff,
1563 .data = &variant_arm,
1565 /* ST Micro variants */
1567 .id = 0x00180180,
1568 .mask = 0x00ffffff,
1569 .data = &variant_u300,
1572 .id = 0x00280180,
1573 .mask = 0x00ffffff,
1574 .data = &variant_u300,
1577 .id = 0x00480180,
1578 .mask = 0xf0ffffff,
1579 .data = &variant_ux500,
1582 .id = 0x10480180,
1583 .mask = 0xf0ffffff,
1584 .data = &variant_ux500v2,
1586 { 0, 0 },
1589 MODULE_DEVICE_TABLE(amba, mmci_ids);
1591 static struct amba_driver mmci_driver = {
1592 .drv = {
1593 .name = DRIVER_NAME,
1594 .pm = &mmci_dev_pm_ops,
1596 .probe = mmci_probe,
1597 .remove = __devexit_p(mmci_remove),
1598 .id_table = mmci_ids,
1601 module_amba_driver(mmci_driver);
1603 module_param(fmax, uint, 0444);
1605 MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
1606 MODULE_LICENSE("GPL");