2 * linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
4 * Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
5 * Copyright (C) 2010 ST-Ericsson SA
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/module.h>
12 #include <linux/moduleparam.h>
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/device.h>
16 #include <linux/interrupt.h>
17 #include <linux/kernel.h>
18 #include <linux/delay.h>
19 #include <linux/err.h>
20 #include <linux/highmem.h>
21 #include <linux/log2.h>
22 #include <linux/mmc/host.h>
23 #include <linux/mmc/card.h>
24 #include <linux/amba/bus.h>
25 #include <linux/clk.h>
26 #include <linux/scatterlist.h>
27 #include <linux/gpio.h>
28 #include <linux/regulator/consumer.h>
29 #include <linux/dmaengine.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/amba/mmci.h>
32 #include <linux/pm_runtime.h>
33 #include <linux/types.h>
35 #include <asm/div64.h>
37 #include <asm/sizes.h>
41 #define DRIVER_NAME "mmci-pl18x"
43 static unsigned int fmax
= 515633;
46 * struct variant_data - MMCI variant-specific quirks
47 * @clkreg: default value for MCICLOCK register
48 * @clkreg_enable: enable value for MMCICLOCK register
49 * @datalength_bits: number of bits in the MMCIDATALENGTH register
50 * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY
51 * is asserted (likewise for RX)
52 * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
53 * is asserted (likewise for RX)
54 * @sdio: variant supports SDIO
55 * @st_clkdiv: true if using a ST-specific clock divider algorithm
56 * @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register
57 * @pwrreg_powerup: power up value for MMCIPOWER register
58 * @signal_direction: input/out direction of bus signals can be indicated
62 unsigned int clkreg_enable
;
63 unsigned int datalength_bits
;
64 unsigned int fifosize
;
65 unsigned int fifohalfsize
;
68 bool blksz_datactrl16
;
70 bool signal_direction
;
73 static struct variant_data variant_arm
= {
75 .fifohalfsize
= 8 * 4,
76 .datalength_bits
= 16,
77 .pwrreg_powerup
= MCI_PWR_UP
,
80 static struct variant_data variant_arm_extended_fifo
= {
82 .fifohalfsize
= 64 * 4,
83 .datalength_bits
= 16,
84 .pwrreg_powerup
= MCI_PWR_UP
,
87 static struct variant_data variant_u300
= {
89 .fifohalfsize
= 8 * 4,
90 .clkreg_enable
= MCI_ST_U300_HWFCEN
,
91 .datalength_bits
= 16,
93 .pwrreg_powerup
= MCI_PWR_ON
,
94 .signal_direction
= true,
97 static struct variant_data variant_ux500
= {
99 .fifohalfsize
= 8 * 4,
100 .clkreg
= MCI_CLK_ENABLE
,
101 .clkreg_enable
= MCI_ST_UX500_HWFCEN
,
102 .datalength_bits
= 24,
105 .pwrreg_powerup
= MCI_PWR_ON
,
106 .signal_direction
= true,
109 static struct variant_data variant_ux500v2
= {
111 .fifohalfsize
= 8 * 4,
112 .clkreg
= MCI_CLK_ENABLE
,
113 .clkreg_enable
= MCI_ST_UX500_HWFCEN
,
114 .datalength_bits
= 24,
117 .blksz_datactrl16
= true,
118 .pwrreg_powerup
= MCI_PWR_ON
,
119 .signal_direction
= true,
123 * This must be called with host->lock held
125 static void mmci_write_clkreg(struct mmci_host
*host
, u32 clk
)
127 if (host
->clk_reg
!= clk
) {
129 writel(clk
, host
->base
+ MMCICLOCK
);
134 * This must be called with host->lock held
136 static void mmci_write_pwrreg(struct mmci_host
*host
, u32 pwr
)
138 if (host
->pwr_reg
!= pwr
) {
140 writel(pwr
, host
->base
+ MMCIPOWER
);
145 * This must be called with host->lock held
147 static void mmci_set_clkreg(struct mmci_host
*host
, unsigned int desired
)
149 struct variant_data
*variant
= host
->variant
;
150 u32 clk
= variant
->clkreg
;
153 if (desired
>= host
->mclk
) {
154 clk
= MCI_CLK_BYPASS
;
155 if (variant
->st_clkdiv
)
156 clk
|= MCI_ST_UX500_NEG_EDGE
;
157 host
->cclk
= host
->mclk
;
158 } else if (variant
->st_clkdiv
) {
160 * DB8500 TRM says f = mclk / (clkdiv + 2)
161 * => clkdiv = (mclk / f) - 2
162 * Round the divider up so we don't exceed the max
165 clk
= DIV_ROUND_UP(host
->mclk
, desired
) - 2;
168 host
->cclk
= host
->mclk
/ (clk
+ 2);
171 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
172 * => clkdiv = mclk / (2 * f) - 1
174 clk
= host
->mclk
/ (2 * desired
) - 1;
177 host
->cclk
= host
->mclk
/ (2 * (clk
+ 1));
180 clk
|= variant
->clkreg_enable
;
181 clk
|= MCI_CLK_ENABLE
;
182 /* This hasn't proven to be worthwhile */
183 /* clk |= MCI_CLK_PWRSAVE; */
186 if (host
->mmc
->ios
.bus_width
== MMC_BUS_WIDTH_4
)
188 if (host
->mmc
->ios
.bus_width
== MMC_BUS_WIDTH_8
)
189 clk
|= MCI_ST_8BIT_BUS
;
191 mmci_write_clkreg(host
, clk
);
195 mmci_request_end(struct mmci_host
*host
, struct mmc_request
*mrq
)
197 writel(0, host
->base
+ MMCICOMMAND
);
204 mmc_request_done(host
->mmc
, mrq
);
206 pm_runtime_mark_last_busy(mmc_dev(host
->mmc
));
207 pm_runtime_put_autosuspend(mmc_dev(host
->mmc
));
210 static void mmci_set_mask1(struct mmci_host
*host
, unsigned int mask
)
212 void __iomem
*base
= host
->base
;
214 if (host
->singleirq
) {
215 unsigned int mask0
= readl(base
+ MMCIMASK0
);
217 mask0
&= ~MCI_IRQ1MASK
;
220 writel(mask0
, base
+ MMCIMASK0
);
223 writel(mask
, base
+ MMCIMASK1
);
226 static void mmci_stop_data(struct mmci_host
*host
)
228 writel(0, host
->base
+ MMCIDATACTRL
);
229 mmci_set_mask1(host
, 0);
233 static void mmci_init_sg(struct mmci_host
*host
, struct mmc_data
*data
)
235 unsigned int flags
= SG_MITER_ATOMIC
;
237 if (data
->flags
& MMC_DATA_READ
)
238 flags
|= SG_MITER_TO_SG
;
240 flags
|= SG_MITER_FROM_SG
;
242 sg_miter_start(&host
->sg_miter
, data
->sg
, data
->sg_len
, flags
);
246 * All the DMA operation mode stuff goes inside this ifdef.
247 * This assumes that you have a generic DMA device interface,
248 * no custom DMA interfaces are supported.
250 #ifdef CONFIG_DMA_ENGINE
251 static void __devinit
mmci_dma_setup(struct mmci_host
*host
)
253 struct mmci_platform_data
*plat
= host
->plat
;
254 const char *rxname
, *txname
;
257 if (!plat
|| !plat
->dma_filter
) {
258 dev_info(mmc_dev(host
->mmc
), "no DMA platform data\n");
262 /* initialize pre request cookie */
263 host
->next_data
.cookie
= 1;
265 /* Try to acquire a generic DMA engine slave channel */
267 dma_cap_set(DMA_SLAVE
, mask
);
270 * If only an RX channel is specified, the driver will
271 * attempt to use it bidirectionally, however if it is
272 * is specified but cannot be located, DMA will be disabled.
274 if (plat
->dma_rx_param
) {
275 host
->dma_rx_channel
= dma_request_channel(mask
,
278 /* E.g if no DMA hardware is present */
279 if (!host
->dma_rx_channel
)
280 dev_err(mmc_dev(host
->mmc
), "no RX DMA channel\n");
283 if (plat
->dma_tx_param
) {
284 host
->dma_tx_channel
= dma_request_channel(mask
,
287 if (!host
->dma_tx_channel
)
288 dev_warn(mmc_dev(host
->mmc
), "no TX DMA channel\n");
290 host
->dma_tx_channel
= host
->dma_rx_channel
;
293 if (host
->dma_rx_channel
)
294 rxname
= dma_chan_name(host
->dma_rx_channel
);
298 if (host
->dma_tx_channel
)
299 txname
= dma_chan_name(host
->dma_tx_channel
);
303 dev_info(mmc_dev(host
->mmc
), "DMA channels RX %s, TX %s\n",
307 * Limit the maximum segment size in any SG entry according to
308 * the parameters of the DMA engine device.
310 if (host
->dma_tx_channel
) {
311 struct device
*dev
= host
->dma_tx_channel
->device
->dev
;
312 unsigned int max_seg_size
= dma_get_max_seg_size(dev
);
314 if (max_seg_size
< host
->mmc
->max_seg_size
)
315 host
->mmc
->max_seg_size
= max_seg_size
;
317 if (host
->dma_rx_channel
) {
318 struct device
*dev
= host
->dma_rx_channel
->device
->dev
;
319 unsigned int max_seg_size
= dma_get_max_seg_size(dev
);
321 if (max_seg_size
< host
->mmc
->max_seg_size
)
322 host
->mmc
->max_seg_size
= max_seg_size
;
327 * This is used in __devinit or __devexit so inline it
328 * so it can be discarded.
330 static inline void mmci_dma_release(struct mmci_host
*host
)
332 struct mmci_platform_data
*plat
= host
->plat
;
334 if (host
->dma_rx_channel
)
335 dma_release_channel(host
->dma_rx_channel
);
336 if (host
->dma_tx_channel
&& plat
->dma_tx_param
)
337 dma_release_channel(host
->dma_tx_channel
);
338 host
->dma_rx_channel
= host
->dma_tx_channel
= NULL
;
341 static void mmci_dma_unmap(struct mmci_host
*host
, struct mmc_data
*data
)
343 struct dma_chan
*chan
= host
->dma_current
;
344 enum dma_data_direction dir
;
348 /* Wait up to 1ms for the DMA to complete */
350 status
= readl(host
->base
+ MMCISTATUS
);
351 if (!(status
& MCI_RXDATAAVLBLMASK
) || i
>= 100)
357 * Check to see whether we still have some data left in the FIFO -
358 * this catches DMA controllers which are unable to monitor the
359 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
360 * contiguous buffers. On TX, we'll get a FIFO underrun error.
362 if (status
& MCI_RXDATAAVLBLMASK
) {
363 dmaengine_terminate_all(chan
);
368 if (data
->flags
& MMC_DATA_WRITE
) {
371 dir
= DMA_FROM_DEVICE
;
374 if (!data
->host_cookie
)
375 dma_unmap_sg(chan
->device
->dev
, data
->sg
, data
->sg_len
, dir
);
378 * Use of DMA with scatter-gather is impossible.
379 * Give up with DMA and switch back to PIO mode.
381 if (status
& MCI_RXDATAAVLBLMASK
) {
382 dev_err(mmc_dev(host
->mmc
), "buggy DMA detected. Taking evasive action.\n");
383 mmci_dma_release(host
);
387 static void mmci_dma_data_error(struct mmci_host
*host
)
389 dev_err(mmc_dev(host
->mmc
), "error during DMA transfer!\n");
390 dmaengine_terminate_all(host
->dma_current
);
393 static int mmci_dma_prep_data(struct mmci_host
*host
, struct mmc_data
*data
,
394 struct mmci_host_next
*next
)
396 struct variant_data
*variant
= host
->variant
;
397 struct dma_slave_config conf
= {
398 .src_addr
= host
->phybase
+ MMCIFIFO
,
399 .dst_addr
= host
->phybase
+ MMCIFIFO
,
400 .src_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
,
401 .dst_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
,
402 .src_maxburst
= variant
->fifohalfsize
>> 2, /* # of words */
403 .dst_maxburst
= variant
->fifohalfsize
>> 2, /* # of words */
406 struct dma_chan
*chan
;
407 struct dma_device
*device
;
408 struct dma_async_tx_descriptor
*desc
;
409 enum dma_data_direction buffer_dirn
;
412 /* Check if next job is already prepared */
413 if (data
->host_cookie
&& !next
&&
414 host
->dma_current
&& host
->dma_desc_current
)
418 host
->dma_current
= NULL
;
419 host
->dma_desc_current
= NULL
;
422 if (data
->flags
& MMC_DATA_READ
) {
423 conf
.direction
= DMA_DEV_TO_MEM
;
424 buffer_dirn
= DMA_FROM_DEVICE
;
425 chan
= host
->dma_rx_channel
;
427 conf
.direction
= DMA_MEM_TO_DEV
;
428 buffer_dirn
= DMA_TO_DEVICE
;
429 chan
= host
->dma_tx_channel
;
432 /* If there's no DMA channel, fall back to PIO */
436 /* If less than or equal to the fifo size, don't bother with DMA */
437 if (data
->blksz
* data
->blocks
<= variant
->fifosize
)
440 device
= chan
->device
;
441 nr_sg
= dma_map_sg(device
->dev
, data
->sg
, data
->sg_len
, buffer_dirn
);
445 dmaengine_slave_config(chan
, &conf
);
446 desc
= dmaengine_prep_slave_sg(chan
, data
->sg
, nr_sg
,
447 conf
.direction
, DMA_CTRL_ACK
);
452 next
->dma_chan
= chan
;
453 next
->dma_desc
= desc
;
455 host
->dma_current
= chan
;
456 host
->dma_desc_current
= desc
;
463 dmaengine_terminate_all(chan
);
464 dma_unmap_sg(device
->dev
, data
->sg
, data
->sg_len
, buffer_dirn
);
468 static int mmci_dma_start_data(struct mmci_host
*host
, unsigned int datactrl
)
471 struct mmc_data
*data
= host
->data
;
473 ret
= mmci_dma_prep_data(host
, host
->data
, NULL
);
477 /* Okay, go for it. */
478 dev_vdbg(mmc_dev(host
->mmc
),
479 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
480 data
->sg_len
, data
->blksz
, data
->blocks
, data
->flags
);
481 dmaengine_submit(host
->dma_desc_current
);
482 dma_async_issue_pending(host
->dma_current
);
484 datactrl
|= MCI_DPSM_DMAENABLE
;
486 /* Trigger the DMA transfer */
487 writel(datactrl
, host
->base
+ MMCIDATACTRL
);
490 * Let the MMCI say when the data is ended and it's time
491 * to fire next DMA request. When that happens, MMCI will
492 * call mmci_data_end()
494 writel(readl(host
->base
+ MMCIMASK0
) | MCI_DATAENDMASK
,
495 host
->base
+ MMCIMASK0
);
499 static void mmci_get_next_data(struct mmci_host
*host
, struct mmc_data
*data
)
501 struct mmci_host_next
*next
= &host
->next_data
;
503 if (data
->host_cookie
&& data
->host_cookie
!= next
->cookie
) {
504 pr_warning("[%s] invalid cookie: data->host_cookie %d"
505 " host->next_data.cookie %d\n",
506 __func__
, data
->host_cookie
, host
->next_data
.cookie
);
507 data
->host_cookie
= 0;
510 if (!data
->host_cookie
)
513 host
->dma_desc_current
= next
->dma_desc
;
514 host
->dma_current
= next
->dma_chan
;
516 next
->dma_desc
= NULL
;
517 next
->dma_chan
= NULL
;
520 static void mmci_pre_request(struct mmc_host
*mmc
, struct mmc_request
*mrq
,
523 struct mmci_host
*host
= mmc_priv(mmc
);
524 struct mmc_data
*data
= mrq
->data
;
525 struct mmci_host_next
*nd
= &host
->next_data
;
530 if (data
->host_cookie
) {
531 data
->host_cookie
= 0;
535 /* if config for dma */
536 if (((data
->flags
& MMC_DATA_WRITE
) && host
->dma_tx_channel
) ||
537 ((data
->flags
& MMC_DATA_READ
) && host
->dma_rx_channel
)) {
538 if (mmci_dma_prep_data(host
, data
, nd
))
539 data
->host_cookie
= 0;
541 data
->host_cookie
= ++nd
->cookie
< 0 ? 1 : nd
->cookie
;
545 static void mmci_post_request(struct mmc_host
*mmc
, struct mmc_request
*mrq
,
548 struct mmci_host
*host
= mmc_priv(mmc
);
549 struct mmc_data
*data
= mrq
->data
;
550 struct dma_chan
*chan
;
551 enum dma_data_direction dir
;
556 if (data
->flags
& MMC_DATA_READ
) {
557 dir
= DMA_FROM_DEVICE
;
558 chan
= host
->dma_rx_channel
;
561 chan
= host
->dma_tx_channel
;
565 /* if config for dma */
568 dmaengine_terminate_all(chan
);
569 if (data
->host_cookie
)
570 dma_unmap_sg(mmc_dev(host
->mmc
), data
->sg
,
572 mrq
->data
->host_cookie
= 0;
577 /* Blank functions if the DMA engine is not available */
578 static void mmci_get_next_data(struct mmci_host
*host
, struct mmc_data
*data
)
581 static inline void mmci_dma_setup(struct mmci_host
*host
)
585 static inline void mmci_dma_release(struct mmci_host
*host
)
589 static inline void mmci_dma_unmap(struct mmci_host
*host
, struct mmc_data
*data
)
593 static inline void mmci_dma_data_error(struct mmci_host
*host
)
597 static inline int mmci_dma_start_data(struct mmci_host
*host
, unsigned int datactrl
)
602 #define mmci_pre_request NULL
603 #define mmci_post_request NULL
607 static void mmci_start_data(struct mmci_host
*host
, struct mmc_data
*data
)
609 struct variant_data
*variant
= host
->variant
;
610 unsigned int datactrl
, timeout
, irqmask
;
611 unsigned long long clks
;
615 dev_dbg(mmc_dev(host
->mmc
), "blksz %04x blks %04x flags %08x\n",
616 data
->blksz
, data
->blocks
, data
->flags
);
619 host
->size
= data
->blksz
* data
->blocks
;
620 data
->bytes_xfered
= 0;
622 clks
= (unsigned long long)data
->timeout_ns
* host
->cclk
;
623 do_div(clks
, 1000000000UL);
625 timeout
= data
->timeout_clks
+ (unsigned int)clks
;
628 writel(timeout
, base
+ MMCIDATATIMER
);
629 writel(host
->size
, base
+ MMCIDATALENGTH
);
631 blksz_bits
= ffs(data
->blksz
) - 1;
632 BUG_ON(1 << blksz_bits
!= data
->blksz
);
634 if (variant
->blksz_datactrl16
)
635 datactrl
= MCI_DPSM_ENABLE
| (data
->blksz
<< 16);
637 datactrl
= MCI_DPSM_ENABLE
| blksz_bits
<< 4;
639 if (data
->flags
& MMC_DATA_READ
)
640 datactrl
|= MCI_DPSM_DIRECTION
;
642 /* The ST Micro variants has a special bit to enable SDIO */
643 if (variant
->sdio
&& host
->mmc
->card
)
644 if (mmc_card_sdio(host
->mmc
->card
))
645 datactrl
|= MCI_ST_DPSM_SDIOEN
;
648 * Attempt to use DMA operation mode, if this
649 * should fail, fall back to PIO mode
651 if (!mmci_dma_start_data(host
, datactrl
))
654 /* IRQ mode, map the SG list for CPU reading/writing */
655 mmci_init_sg(host
, data
);
657 if (data
->flags
& MMC_DATA_READ
) {
658 irqmask
= MCI_RXFIFOHALFFULLMASK
;
661 * If we have less than the fifo 'half-full' threshold to
662 * transfer, trigger a PIO interrupt as soon as any data
665 if (host
->size
< variant
->fifohalfsize
)
666 irqmask
|= MCI_RXDATAAVLBLMASK
;
669 * We don't actually need to include "FIFO empty" here
670 * since its implicit in "FIFO half empty".
672 irqmask
= MCI_TXFIFOHALFEMPTYMASK
;
675 writel(datactrl
, base
+ MMCIDATACTRL
);
676 writel(readl(base
+ MMCIMASK0
) & ~MCI_DATAENDMASK
, base
+ MMCIMASK0
);
677 mmci_set_mask1(host
, irqmask
);
681 mmci_start_command(struct mmci_host
*host
, struct mmc_command
*cmd
, u32 c
)
683 void __iomem
*base
= host
->base
;
685 dev_dbg(mmc_dev(host
->mmc
), "op %02x arg %08x flags %08x\n",
686 cmd
->opcode
, cmd
->arg
, cmd
->flags
);
688 if (readl(base
+ MMCICOMMAND
) & MCI_CPSM_ENABLE
) {
689 writel(0, base
+ MMCICOMMAND
);
693 c
|= cmd
->opcode
| MCI_CPSM_ENABLE
;
694 if (cmd
->flags
& MMC_RSP_PRESENT
) {
695 if (cmd
->flags
& MMC_RSP_136
)
696 c
|= MCI_CPSM_LONGRSP
;
697 c
|= MCI_CPSM_RESPONSE
;
700 c
|= MCI_CPSM_INTERRUPT
;
704 writel(cmd
->arg
, base
+ MMCIARGUMENT
);
705 writel(c
, base
+ MMCICOMMAND
);
709 mmci_data_irq(struct mmci_host
*host
, struct mmc_data
*data
,
712 /* First check for errors */
713 if (status
& (MCI_DATACRCFAIL
|MCI_DATATIMEOUT
|MCI_STARTBITERR
|
714 MCI_TXUNDERRUN
|MCI_RXOVERRUN
)) {
717 /* Terminate the DMA transfer */
718 if (dma_inprogress(host
))
719 mmci_dma_data_error(host
);
722 * Calculate how far we are into the transfer. Note that
723 * the data counter gives the number of bytes transferred
724 * on the MMC bus, not on the host side. On reads, this
725 * can be as much as a FIFO-worth of data ahead. This
726 * matters for FIFO overruns only.
728 remain
= readl(host
->base
+ MMCIDATACNT
);
729 success
= data
->blksz
* data
->blocks
- remain
;
731 dev_dbg(mmc_dev(host
->mmc
), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
733 if (status
& MCI_DATACRCFAIL
) {
734 /* Last block was not successful */
736 data
->error
= -EILSEQ
;
737 } else if (status
& MCI_DATATIMEOUT
) {
738 data
->error
= -ETIMEDOUT
;
739 } else if (status
& MCI_STARTBITERR
) {
740 data
->error
= -ECOMM
;
741 } else if (status
& MCI_TXUNDERRUN
) {
743 } else if (status
& MCI_RXOVERRUN
) {
744 if (success
> host
->variant
->fifosize
)
745 success
-= host
->variant
->fifosize
;
750 data
->bytes_xfered
= round_down(success
, data
->blksz
);
753 if (status
& MCI_DATABLOCKEND
)
754 dev_err(mmc_dev(host
->mmc
), "stray MCI_DATABLOCKEND interrupt\n");
756 if (status
& MCI_DATAEND
|| data
->error
) {
757 if (dma_inprogress(host
))
758 mmci_dma_unmap(host
, data
);
759 mmci_stop_data(host
);
762 /* The error clause is handled above, success! */
763 data
->bytes_xfered
= data
->blksz
* data
->blocks
;
766 mmci_request_end(host
, data
->mrq
);
768 mmci_start_command(host
, data
->stop
, 0);
774 mmci_cmd_irq(struct mmci_host
*host
, struct mmc_command
*cmd
,
777 void __iomem
*base
= host
->base
;
781 if (status
& MCI_CMDTIMEOUT
) {
782 cmd
->error
= -ETIMEDOUT
;
783 } else if (status
& MCI_CMDCRCFAIL
&& cmd
->flags
& MMC_RSP_CRC
) {
784 cmd
->error
= -EILSEQ
;
786 cmd
->resp
[0] = readl(base
+ MMCIRESPONSE0
);
787 cmd
->resp
[1] = readl(base
+ MMCIRESPONSE1
);
788 cmd
->resp
[2] = readl(base
+ MMCIRESPONSE2
);
789 cmd
->resp
[3] = readl(base
+ MMCIRESPONSE3
);
792 if (!cmd
->data
|| cmd
->error
) {
794 /* Terminate the DMA transfer */
795 if (dma_inprogress(host
))
796 mmci_dma_data_error(host
);
797 mmci_stop_data(host
);
799 mmci_request_end(host
, cmd
->mrq
);
800 } else if (!(cmd
->data
->flags
& MMC_DATA_READ
)) {
801 mmci_start_data(host
, cmd
->data
);
805 static int mmci_pio_read(struct mmci_host
*host
, char *buffer
, unsigned int remain
)
807 void __iomem
*base
= host
->base
;
810 int host_remain
= host
->size
;
813 int count
= host_remain
- (readl(base
+ MMCIFIFOCNT
) << 2);
822 * SDIO especially may want to send something that is
823 * not divisible by 4 (as opposed to card sectors
824 * etc). Therefore make sure to always read the last bytes
825 * while only doing full 32-bit reads towards the FIFO.
827 if (unlikely(count
& 0x3)) {
829 unsigned char buf
[4];
830 readsl(base
+ MMCIFIFO
, buf
, 1);
831 memcpy(ptr
, buf
, count
);
833 readsl(base
+ MMCIFIFO
, ptr
, count
>> 2);
837 readsl(base
+ MMCIFIFO
, ptr
, count
>> 2);
842 host_remain
-= count
;
847 status
= readl(base
+ MMCISTATUS
);
848 } while (status
& MCI_RXDATAAVLBL
);
853 static int mmci_pio_write(struct mmci_host
*host
, char *buffer
, unsigned int remain
, u32 status
)
855 struct variant_data
*variant
= host
->variant
;
856 void __iomem
*base
= host
->base
;
860 unsigned int count
, maxcnt
;
862 maxcnt
= status
& MCI_TXFIFOEMPTY
?
863 variant
->fifosize
: variant
->fifohalfsize
;
864 count
= min(remain
, maxcnt
);
867 * The ST Micro variant for SDIO transfer sizes
868 * less then 8 bytes should have clock H/W flow
872 mmc_card_sdio(host
->mmc
->card
)) {
875 clk
= host
->clk_reg
& ~variant
->clkreg_enable
;
877 clk
= host
->clk_reg
| variant
->clkreg_enable
;
879 mmci_write_clkreg(host
, clk
);
883 * SDIO especially may want to send something that is
884 * not divisible by 4 (as opposed to card sectors
885 * etc), and the FIFO only accept full 32-bit writes.
886 * So compensate by adding +3 on the count, a single
887 * byte become a 32bit write, 7 bytes will be two
890 writesl(base
+ MMCIFIFO
, ptr
, (count
+ 3) >> 2);
898 status
= readl(base
+ MMCISTATUS
);
899 } while (status
& MCI_TXFIFOHALFEMPTY
);
905 * PIO data transfer IRQ handler.
907 static irqreturn_t
mmci_pio_irq(int irq
, void *dev_id
)
909 struct mmci_host
*host
= dev_id
;
910 struct sg_mapping_iter
*sg_miter
= &host
->sg_miter
;
911 struct variant_data
*variant
= host
->variant
;
912 void __iomem
*base
= host
->base
;
916 status
= readl(base
+ MMCISTATUS
);
918 dev_dbg(mmc_dev(host
->mmc
), "irq1 (pio) %08x\n", status
);
920 local_irq_save(flags
);
923 unsigned int remain
, len
;
927 * For write, we only need to test the half-empty flag
928 * here - if the FIFO is completely empty, then by
929 * definition it is more than half empty.
931 * For read, check for data available.
933 if (!(status
& (MCI_TXFIFOHALFEMPTY
|MCI_RXDATAAVLBL
)))
936 if (!sg_miter_next(sg_miter
))
939 buffer
= sg_miter
->addr
;
940 remain
= sg_miter
->length
;
943 if (status
& MCI_RXACTIVE
)
944 len
= mmci_pio_read(host
, buffer
, remain
);
945 if (status
& MCI_TXACTIVE
)
946 len
= mmci_pio_write(host
, buffer
, remain
, status
);
948 sg_miter
->consumed
= len
;
956 status
= readl(base
+ MMCISTATUS
);
959 sg_miter_stop(sg_miter
);
961 local_irq_restore(flags
);
964 * If we have less than the fifo 'half-full' threshold to transfer,
965 * trigger a PIO interrupt as soon as any data is available.
967 if (status
& MCI_RXACTIVE
&& host
->size
< variant
->fifohalfsize
)
968 mmci_set_mask1(host
, MCI_RXDATAAVLBLMASK
);
971 * If we run out of data, disable the data IRQs; this
972 * prevents a race where the FIFO becomes empty before
973 * the chip itself has disabled the data path, and
974 * stops us racing with our data end IRQ.
976 if (host
->size
== 0) {
977 mmci_set_mask1(host
, 0);
978 writel(readl(base
+ MMCIMASK0
) | MCI_DATAENDMASK
, base
+ MMCIMASK0
);
985 * Handle completion of command and data transfers.
987 static irqreturn_t
mmci_irq(int irq
, void *dev_id
)
989 struct mmci_host
*host
= dev_id
;
993 spin_lock(&host
->lock
);
996 struct mmc_command
*cmd
;
997 struct mmc_data
*data
;
999 status
= readl(host
->base
+ MMCISTATUS
);
1001 if (host
->singleirq
) {
1002 if (status
& readl(host
->base
+ MMCIMASK1
))
1003 mmci_pio_irq(irq
, dev_id
);
1005 status
&= ~MCI_IRQ1MASK
;
1008 status
&= readl(host
->base
+ MMCIMASK0
);
1009 writel(status
, host
->base
+ MMCICLEAR
);
1011 dev_dbg(mmc_dev(host
->mmc
), "irq0 (data+cmd) %08x\n", status
);
1014 if (status
& (MCI_DATACRCFAIL
|MCI_DATATIMEOUT
|MCI_STARTBITERR
|
1015 MCI_TXUNDERRUN
|MCI_RXOVERRUN
|MCI_DATAEND
|
1016 MCI_DATABLOCKEND
) && data
)
1017 mmci_data_irq(host
, data
, status
);
1020 if (status
& (MCI_CMDCRCFAIL
|MCI_CMDTIMEOUT
|MCI_CMDSENT
|MCI_CMDRESPEND
) && cmd
)
1021 mmci_cmd_irq(host
, cmd
, status
);
1026 spin_unlock(&host
->lock
);
1028 return IRQ_RETVAL(ret
);
1031 static void mmci_request(struct mmc_host
*mmc
, struct mmc_request
*mrq
)
1033 struct mmci_host
*host
= mmc_priv(mmc
);
1034 unsigned long flags
;
1036 WARN_ON(host
->mrq
!= NULL
);
1038 if (mrq
->data
&& !is_power_of_2(mrq
->data
->blksz
)) {
1039 dev_err(mmc_dev(mmc
), "unsupported block size (%d bytes)\n",
1041 mrq
->cmd
->error
= -EINVAL
;
1042 mmc_request_done(mmc
, mrq
);
1046 pm_runtime_get_sync(mmc_dev(mmc
));
1048 spin_lock_irqsave(&host
->lock
, flags
);
1053 mmci_get_next_data(host
, mrq
->data
);
1055 if (mrq
->data
&& mrq
->data
->flags
& MMC_DATA_READ
)
1056 mmci_start_data(host
, mrq
->data
);
1058 mmci_start_command(host
, mrq
->cmd
, 0);
1060 spin_unlock_irqrestore(&host
->lock
, flags
);
1063 static void mmci_set_ios(struct mmc_host
*mmc
, struct mmc_ios
*ios
)
1065 struct mmci_host
*host
= mmc_priv(mmc
);
1066 struct variant_data
*variant
= host
->variant
;
1068 unsigned long flags
;
1071 pm_runtime_get_sync(mmc_dev(mmc
));
1073 if (host
->plat
->ios_handler
&&
1074 host
->plat
->ios_handler(mmc_dev(mmc
), ios
))
1075 dev_err(mmc_dev(mmc
), "platform ios_handler failed\n");
1077 switch (ios
->power_mode
) {
1080 ret
= mmc_regulator_set_ocr(mmc
, host
->vcc
, 0);
1084 ret
= mmc_regulator_set_ocr(mmc
, host
->vcc
, ios
->vdd
);
1086 dev_err(mmc_dev(mmc
), "unable to set OCR\n");
1088 * The .set_ios() function in the mmc_host_ops
1089 * struct return void, and failing to set the
1090 * power should be rare so we print an error
1097 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1098 * and instead uses MCI_PWR_ON so apply whatever value is
1099 * configured in the variant data.
1101 pwr
|= variant
->pwrreg_powerup
;
1109 if (variant
->signal_direction
&& ios
->power_mode
!= MMC_POWER_OFF
) {
1111 * The ST Micro variant has some additional bits
1112 * indicating signal direction for the signals in
1113 * the SD/MMC bus and feedback-clock usage.
1115 pwr
|= host
->plat
->sigdir
;
1117 if (ios
->bus_width
== MMC_BUS_WIDTH_4
)
1118 pwr
&= ~MCI_ST_DATA74DIREN
;
1119 else if (ios
->bus_width
== MMC_BUS_WIDTH_1
)
1120 pwr
&= (~MCI_ST_DATA74DIREN
&
1121 ~MCI_ST_DATA31DIREN
&
1122 ~MCI_ST_DATA2DIREN
);
1125 if (ios
->bus_mode
== MMC_BUSMODE_OPENDRAIN
) {
1126 if (host
->hw_designer
!= AMBA_VENDOR_ST
)
1130 * The ST Micro variant use the ROD bit for something
1131 * else and only has OD (Open Drain).
1137 spin_lock_irqsave(&host
->lock
, flags
);
1139 mmci_set_clkreg(host
, ios
->clock
);
1140 mmci_write_pwrreg(host
, pwr
);
1142 spin_unlock_irqrestore(&host
->lock
, flags
);
1145 pm_runtime_mark_last_busy(mmc_dev(mmc
));
1146 pm_runtime_put_autosuspend(mmc_dev(mmc
));
1149 static int mmci_get_ro(struct mmc_host
*mmc
)
1151 struct mmci_host
*host
= mmc_priv(mmc
);
1153 if (host
->gpio_wp
== -ENOSYS
)
1156 return gpio_get_value_cansleep(host
->gpio_wp
);
1159 static int mmci_get_cd(struct mmc_host
*mmc
)
1161 struct mmci_host
*host
= mmc_priv(mmc
);
1162 struct mmci_platform_data
*plat
= host
->plat
;
1163 unsigned int status
;
1165 if (host
->gpio_cd
== -ENOSYS
) {
1167 return 1; /* Assume always present */
1169 status
= plat
->status(mmc_dev(host
->mmc
));
1171 status
= !!gpio_get_value_cansleep(host
->gpio_cd
)
1175 * Use positive logic throughout - status is zero for no card,
1176 * non-zero for card inserted.
1181 static irqreturn_t
mmci_cd_irq(int irq
, void *dev_id
)
1183 struct mmci_host
*host
= dev_id
;
1185 mmc_detect_change(host
->mmc
, msecs_to_jiffies(500));
1190 static const struct mmc_host_ops mmci_ops
= {
1191 .request
= mmci_request
,
1192 .pre_req
= mmci_pre_request
,
1193 .post_req
= mmci_post_request
,
1194 .set_ios
= mmci_set_ios
,
1195 .get_ro
= mmci_get_ro
,
1196 .get_cd
= mmci_get_cd
,
1199 static int __devinit
mmci_probe(struct amba_device
*dev
,
1200 const struct amba_id
*id
)
1202 struct mmci_platform_data
*plat
= dev
->dev
.platform_data
;
1203 struct variant_data
*variant
= id
->data
;
1204 struct mmci_host
*host
;
1205 struct mmc_host
*mmc
;
1208 /* must have platform data */
1214 ret
= amba_request_regions(dev
, DRIVER_NAME
);
1218 mmc
= mmc_alloc_host(sizeof(struct mmci_host
), &dev
->dev
);
1224 host
= mmc_priv(mmc
);
1227 host
->gpio_wp
= -ENOSYS
;
1228 host
->gpio_cd
= -ENOSYS
;
1229 host
->gpio_cd_irq
= -1;
1231 host
->hw_designer
= amba_manf(dev
);
1232 host
->hw_revision
= amba_rev(dev
);
1233 dev_dbg(mmc_dev(mmc
), "designer ID = 0x%02x\n", host
->hw_designer
);
1234 dev_dbg(mmc_dev(mmc
), "revision = 0x%01x\n", host
->hw_revision
);
1236 host
->clk
= clk_get(&dev
->dev
, NULL
);
1237 if (IS_ERR(host
->clk
)) {
1238 ret
= PTR_ERR(host
->clk
);
1243 ret
= clk_prepare(host
->clk
);
1247 ret
= clk_enable(host
->clk
);
1252 host
->variant
= variant
;
1253 host
->mclk
= clk_get_rate(host
->clk
);
1255 * According to the spec, mclk is max 100 MHz,
1256 * so we try to adjust the clock down to this,
1259 if (host
->mclk
> 100000000) {
1260 ret
= clk_set_rate(host
->clk
, 100000000);
1263 host
->mclk
= clk_get_rate(host
->clk
);
1264 dev_dbg(mmc_dev(mmc
), "eventual mclk rate: %u Hz\n",
1267 host
->phybase
= dev
->res
.start
;
1268 host
->base
= ioremap(dev
->res
.start
, resource_size(&dev
->res
));
1274 mmc
->ops
= &mmci_ops
;
1276 * The ARM and ST versions of the block have slightly different
1277 * clock divider equations which means that the minimum divider
1280 if (variant
->st_clkdiv
)
1281 mmc
->f_min
= DIV_ROUND_UP(host
->mclk
, 257);
1283 mmc
->f_min
= DIV_ROUND_UP(host
->mclk
, 512);
1285 * If the platform data supplies a maximum operating
1286 * frequency, this takes precedence. Else, we fall back
1287 * to using the module parameter, which has a (low)
1288 * default value in case it is not specified. Either
1289 * value must not exceed the clock rate into the block,
1293 mmc
->f_max
= min(host
->mclk
, plat
->f_max
);
1295 mmc
->f_max
= min(host
->mclk
, fmax
);
1296 dev_dbg(mmc_dev(mmc
), "clocking block at %u Hz\n", mmc
->f_max
);
1298 #ifdef CONFIG_REGULATOR
1299 /* If we're using the regulator framework, try to fetch a regulator */
1300 host
->vcc
= regulator_get(&dev
->dev
, "vmmc");
1301 if (IS_ERR(host
->vcc
))
1304 int mask
= mmc_regulator_get_ocrmask(host
->vcc
);
1307 dev_err(&dev
->dev
, "error getting OCR mask (%d)\n",
1310 host
->mmc
->ocr_avail
= (u32
) mask
;
1313 "Provided ocr_mask/setpower will not be used "
1314 "(using regulator instead)\n");
1318 /* Fall back to platform data if no regulator is found */
1319 if (host
->vcc
== NULL
)
1320 mmc
->ocr_avail
= plat
->ocr_mask
;
1321 mmc
->caps
= plat
->capabilities
;
1322 mmc
->caps2
= plat
->capabilities2
;
1327 mmc
->max_segs
= NR_SG
;
1330 * Since only a certain number of bits are valid in the data length
1331 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1334 mmc
->max_req_size
= (1 << variant
->datalength_bits
) - 1;
1337 * Set the maximum segment size. Since we aren't doing DMA
1338 * (yet) we are only limited by the data length register.
1340 mmc
->max_seg_size
= mmc
->max_req_size
;
1343 * Block size can be up to 2048 bytes, but must be a power of two.
1345 mmc
->max_blk_size
= 1 << 11;
1348 * Limit the number of blocks transferred so that we don't overflow
1349 * the maximum request size.
1351 mmc
->max_blk_count
= mmc
->max_req_size
>> 11;
1353 spin_lock_init(&host
->lock
);
1355 writel(0, host
->base
+ MMCIMASK0
);
1356 writel(0, host
->base
+ MMCIMASK1
);
1357 writel(0xfff, host
->base
+ MMCICLEAR
);
1359 if (gpio_is_valid(plat
->gpio_cd
)) {
1360 ret
= gpio_request(plat
->gpio_cd
, DRIVER_NAME
" (cd)");
1362 ret
= gpio_direction_input(plat
->gpio_cd
);
1364 host
->gpio_cd
= plat
->gpio_cd
;
1365 else if (ret
!= -ENOSYS
)
1369 * A gpio pin that will detect cards when inserted and removed
1370 * will most likely want to trigger on the edges if it is
1371 * 0 when ejected and 1 when inserted (or mutatis mutandis
1372 * for the inverted case) so we request triggers on both
1375 ret
= request_any_context_irq(gpio_to_irq(plat
->gpio_cd
),
1377 IRQF_TRIGGER_RISING
| IRQF_TRIGGER_FALLING
,
1378 DRIVER_NAME
" (cd)", host
);
1380 host
->gpio_cd_irq
= gpio_to_irq(plat
->gpio_cd
);
1382 if (gpio_is_valid(plat
->gpio_wp
)) {
1383 ret
= gpio_request(plat
->gpio_wp
, DRIVER_NAME
" (wp)");
1385 ret
= gpio_direction_input(plat
->gpio_wp
);
1387 host
->gpio_wp
= plat
->gpio_wp
;
1388 else if (ret
!= -ENOSYS
)
1392 if ((host
->plat
->status
|| host
->gpio_cd
!= -ENOSYS
)
1393 && host
->gpio_cd_irq
< 0)
1394 mmc
->caps
|= MMC_CAP_NEEDS_POLL
;
1396 ret
= request_irq(dev
->irq
[0], mmci_irq
, IRQF_SHARED
, DRIVER_NAME
" (cmd)", host
);
1400 if (dev
->irq
[1] == NO_IRQ
|| !dev
->irq
[1])
1401 host
->singleirq
= true;
1403 ret
= request_irq(dev
->irq
[1], mmci_pio_irq
, IRQF_SHARED
,
1404 DRIVER_NAME
" (pio)", host
);
1409 writel(MCI_IRQENABLE
, host
->base
+ MMCIMASK0
);
1411 amba_set_drvdata(dev
, mmc
);
1413 dev_info(&dev
->dev
, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
1414 mmc_hostname(mmc
), amba_part(dev
), amba_manf(dev
),
1415 amba_rev(dev
), (unsigned long long)dev
->res
.start
,
1416 dev
->irq
[0], dev
->irq
[1]);
1418 mmci_dma_setup(host
);
1420 pm_runtime_set_autosuspend_delay(&dev
->dev
, 50);
1421 pm_runtime_use_autosuspend(&dev
->dev
);
1422 pm_runtime_put(&dev
->dev
);
1429 free_irq(dev
->irq
[0], host
);
1431 if (host
->gpio_wp
!= -ENOSYS
)
1432 gpio_free(host
->gpio_wp
);
1434 if (host
->gpio_cd_irq
>= 0)
1435 free_irq(host
->gpio_cd_irq
, host
);
1436 if (host
->gpio_cd
!= -ENOSYS
)
1437 gpio_free(host
->gpio_cd
);
1439 iounmap(host
->base
);
1441 clk_disable(host
->clk
);
1443 clk_unprepare(host
->clk
);
1449 amba_release_regions(dev
);
1454 static int __devexit
mmci_remove(struct amba_device
*dev
)
1456 struct mmc_host
*mmc
= amba_get_drvdata(dev
);
1458 amba_set_drvdata(dev
, NULL
);
1461 struct mmci_host
*host
= mmc_priv(mmc
);
1464 * Undo pm_runtime_put() in probe. We use the _sync
1465 * version here so that we can access the primecell.
1467 pm_runtime_get_sync(&dev
->dev
);
1469 mmc_remove_host(mmc
);
1471 writel(0, host
->base
+ MMCIMASK0
);
1472 writel(0, host
->base
+ MMCIMASK1
);
1474 writel(0, host
->base
+ MMCICOMMAND
);
1475 writel(0, host
->base
+ MMCIDATACTRL
);
1477 mmci_dma_release(host
);
1478 free_irq(dev
->irq
[0], host
);
1479 if (!host
->singleirq
)
1480 free_irq(dev
->irq
[1], host
);
1482 if (host
->gpio_wp
!= -ENOSYS
)
1483 gpio_free(host
->gpio_wp
);
1484 if (host
->gpio_cd_irq
>= 0)
1485 free_irq(host
->gpio_cd_irq
, host
);
1486 if (host
->gpio_cd
!= -ENOSYS
)
1487 gpio_free(host
->gpio_cd
);
1489 iounmap(host
->base
);
1490 clk_disable(host
->clk
);
1491 clk_unprepare(host
->clk
);
1495 mmc_regulator_set_ocr(mmc
, host
->vcc
, 0);
1496 regulator_put(host
->vcc
);
1500 amba_release_regions(dev
);
1506 #ifdef CONFIG_SUSPEND
1507 static int mmci_suspend(struct device
*dev
)
1509 struct amba_device
*adev
= to_amba_device(dev
);
1510 struct mmc_host
*mmc
= amba_get_drvdata(adev
);
1514 struct mmci_host
*host
= mmc_priv(mmc
);
1516 ret
= mmc_suspend_host(mmc
);
1518 pm_runtime_get_sync(dev
);
1519 writel(0, host
->base
+ MMCIMASK0
);
1526 static int mmci_resume(struct device
*dev
)
1528 struct amba_device
*adev
= to_amba_device(dev
);
1529 struct mmc_host
*mmc
= amba_get_drvdata(adev
);
1533 struct mmci_host
*host
= mmc_priv(mmc
);
1535 writel(MCI_IRQENABLE
, host
->base
+ MMCIMASK0
);
1536 pm_runtime_put(dev
);
1538 ret
= mmc_resume_host(mmc
);
1545 static const struct dev_pm_ops mmci_dev_pm_ops
= {
1546 SET_SYSTEM_SLEEP_PM_OPS(mmci_suspend
, mmci_resume
)
1549 static struct amba_id mmci_ids
[] = {
1553 .data
= &variant_arm
,
1558 .data
= &variant_arm_extended_fifo
,
1563 .data
= &variant_arm
,
1565 /* ST Micro variants */
1569 .data
= &variant_u300
,
1574 .data
= &variant_u300
,
1579 .data
= &variant_ux500
,
1584 .data
= &variant_ux500v2
,
1589 MODULE_DEVICE_TABLE(amba
, mmci_ids
);
1591 static struct amba_driver mmci_driver
= {
1593 .name
= DRIVER_NAME
,
1594 .pm
= &mmci_dev_pm_ops
,
1596 .probe
= mmci_probe
,
1597 .remove
= __devexit_p(mmci_remove
),
1598 .id_table
= mmci_ids
,
1601 module_amba_driver(mmci_driver
);
1603 module_param(fmax
, uint
, 0444);
1605 MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
1606 MODULE_LICENSE("GPL");