Linux 3.4.102
[linux/fpc-iii.git] / drivers / net / ethernet / adaptec / starfire.c
blobd896816512ca952f943b9bbe04e27686a0bab7fd
1 /* starfire.c: Linux device driver for the Adaptec Starfire network adapter. */
2 /*
3 Written 1998-2000 by Donald Becker.
5 Current maintainer is Ion Badulescu <ionut ta badula tod org>. Please
6 send all bug reports to me, and not to Donald Becker, as this code
7 has been heavily modified from Donald's original version.
9 This software may be used and distributed according to the terms of
10 the GNU General Public License (GPL), incorporated herein by reference.
11 Drivers based on or derived from this code fall under the GPL and must
12 retain the authorship, copyright and license notice. This file is not
13 a complete program and may only be used when the entire operating
14 system is licensed under the GPL.
16 The information below comes from Donald Becker's original driver:
18 The author may be reached as becker@scyld.com, or C/O
19 Scyld Computing Corporation
20 410 Severn Ave., Suite 210
21 Annapolis MD 21403
23 Support and updates available at
24 http://www.scyld.com/network/starfire.html
25 [link no longer provides useful info -jgarzik]
29 #define DRV_NAME "starfire"
30 #define DRV_VERSION "2.1"
31 #define DRV_RELDATE "July 6, 2008"
33 #include <linux/interrupt.h>
34 #include <linux/module.h>
35 #include <linux/kernel.h>
36 #include <linux/pci.h>
37 #include <linux/netdevice.h>
38 #include <linux/etherdevice.h>
39 #include <linux/init.h>
40 #include <linux/delay.h>
41 #include <linux/crc32.h>
42 #include <linux/ethtool.h>
43 #include <linux/mii.h>
44 #include <linux/if_vlan.h>
45 #include <linux/mm.h>
46 #include <linux/firmware.h>
47 #include <asm/processor.h> /* Processor type for cache alignment. */
48 #include <asm/uaccess.h>
49 #include <asm/io.h>
52 * The current frame processor firmware fails to checksum a fragment
53 * of length 1. If and when this is fixed, the #define below can be removed.
55 #define HAS_BROKEN_FIRMWARE
58 * If using the broken firmware, data must be padded to the next 32-bit boundary.
60 #ifdef HAS_BROKEN_FIRMWARE
61 #define PADDING_MASK 3
62 #endif
65 * Define this if using the driver with the zero-copy patch
67 #define ZEROCOPY
69 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
70 #define VLAN_SUPPORT
71 #endif
73 /* The user-configurable values.
74 These may be modified when a driver module is loaded.*/
76 /* Used for tuning interrupt latency vs. overhead. */
77 static int intr_latency;
78 static int small_frames;
80 static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
81 static int max_interrupt_work = 20;
82 static int mtu;
83 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
84 The Starfire has a 512 element hash table based on the Ethernet CRC. */
85 static const int multicast_filter_limit = 512;
86 /* Whether to do TCP/UDP checksums in hardware */
87 static int enable_hw_cksum = 1;
89 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
91 * Set the copy breakpoint for the copy-only-tiny-frames scheme.
92 * Setting to > 1518 effectively disables this feature.
94 * NOTE:
95 * The ia64 doesn't allow for unaligned loads even of integers being
96 * misaligned on a 2 byte boundary. Thus always force copying of
97 * packets as the starfire doesn't allow for misaligned DMAs ;-(
98 * 23/10/2000 - Jes
100 * The Alpha and the Sparc don't like unaligned loads, either. On Sparc64,
101 * at least, having unaligned frames leads to a rather serious performance
102 * penalty. -Ion
104 #if defined(__ia64__) || defined(__alpha__) || defined(__sparc__)
105 static int rx_copybreak = PKT_BUF_SZ;
106 #else
107 static int rx_copybreak /* = 0 */;
108 #endif
110 /* PCI DMA burst size -- on sparc64 we want to force it to 64 bytes, on the others the default of 128 is fine. */
111 #ifdef __sparc__
112 #define DMA_BURST_SIZE 64
113 #else
114 #define DMA_BURST_SIZE 128
115 #endif
117 /* Used to pass the media type, etc.
118 Both 'options[]' and 'full_duplex[]' exist for driver interoperability.
119 The media type is usually passed in 'options[]'.
120 These variables are deprecated, use ethtool instead. -Ion
122 #define MAX_UNITS 8 /* More are supported, limit only on options */
123 static int options[MAX_UNITS] = {0, };
124 static int full_duplex[MAX_UNITS] = {0, };
126 /* Operational parameters that are set at compile time. */
128 /* The "native" ring sizes are either 256 or 2048.
129 However in some modes a descriptor may be marked to wrap the ring earlier.
131 #define RX_RING_SIZE 256
132 #define TX_RING_SIZE 32
133 /* The completion queues are fixed at 1024 entries i.e. 4K or 8KB. */
134 #define DONE_Q_SIZE 1024
135 /* All queues must be aligned on a 256-byte boundary */
136 #define QUEUE_ALIGN 256
138 #if RX_RING_SIZE > 256
139 #define RX_Q_ENTRIES Rx2048QEntries
140 #else
141 #define RX_Q_ENTRIES Rx256QEntries
142 #endif
144 /* Operational parameters that usually are not changed. */
145 /* Time in jiffies before concluding the transmitter is hung. */
146 #define TX_TIMEOUT (2 * HZ)
148 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
149 /* 64-bit dma_addr_t */
150 #define ADDR_64BITS /* This chip uses 64 bit addresses. */
151 #define netdrv_addr_t __le64
152 #define cpu_to_dma(x) cpu_to_le64(x)
153 #define dma_to_cpu(x) le64_to_cpu(x)
154 #define RX_DESC_Q_ADDR_SIZE RxDescQAddr64bit
155 #define TX_DESC_Q_ADDR_SIZE TxDescQAddr64bit
156 #define RX_COMPL_Q_ADDR_SIZE RxComplQAddr64bit
157 #define TX_COMPL_Q_ADDR_SIZE TxComplQAddr64bit
158 #define RX_DESC_ADDR_SIZE RxDescAddr64bit
159 #else /* 32-bit dma_addr_t */
160 #define netdrv_addr_t __le32
161 #define cpu_to_dma(x) cpu_to_le32(x)
162 #define dma_to_cpu(x) le32_to_cpu(x)
163 #define RX_DESC_Q_ADDR_SIZE RxDescQAddr32bit
164 #define TX_DESC_Q_ADDR_SIZE TxDescQAddr32bit
165 #define RX_COMPL_Q_ADDR_SIZE RxComplQAddr32bit
166 #define TX_COMPL_Q_ADDR_SIZE TxComplQAddr32bit
167 #define RX_DESC_ADDR_SIZE RxDescAddr32bit
168 #endif
170 #define skb_first_frag_len(skb) skb_headlen(skb)
171 #define skb_num_frags(skb) (skb_shinfo(skb)->nr_frags + 1)
173 /* Firmware names */
174 #define FIRMWARE_RX "adaptec/starfire_rx.bin"
175 #define FIRMWARE_TX "adaptec/starfire_tx.bin"
177 /* These identify the driver base version and may not be removed. */
178 static const char version[] __devinitconst =
179 KERN_INFO "starfire.c:v1.03 7/26/2000 Written by Donald Becker <becker@scyld.com>\n"
180 " (unofficial 2.2/2.4 kernel port, version " DRV_VERSION ", " DRV_RELDATE ")\n";
182 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
183 MODULE_DESCRIPTION("Adaptec Starfire Ethernet driver");
184 MODULE_LICENSE("GPL");
185 MODULE_VERSION(DRV_VERSION);
186 MODULE_FIRMWARE(FIRMWARE_RX);
187 MODULE_FIRMWARE(FIRMWARE_TX);
189 module_param(max_interrupt_work, int, 0);
190 module_param(mtu, int, 0);
191 module_param(debug, int, 0);
192 module_param(rx_copybreak, int, 0);
193 module_param(intr_latency, int, 0);
194 module_param(small_frames, int, 0);
195 module_param_array(options, int, NULL, 0);
196 module_param_array(full_duplex, int, NULL, 0);
197 module_param(enable_hw_cksum, int, 0);
198 MODULE_PARM_DESC(max_interrupt_work, "Maximum events handled per interrupt");
199 MODULE_PARM_DESC(mtu, "MTU (all boards)");
200 MODULE_PARM_DESC(debug, "Debug level (0-6)");
201 MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames");
202 MODULE_PARM_DESC(intr_latency, "Maximum interrupt latency, in microseconds");
203 MODULE_PARM_DESC(small_frames, "Maximum size of receive frames that bypass interrupt latency (0,64,128,256,512)");
204 MODULE_PARM_DESC(options, "Deprecated: Bits 0-3: media type, bit 17: full duplex");
205 MODULE_PARM_DESC(full_duplex, "Deprecated: Forced full-duplex setting (0/1)");
206 MODULE_PARM_DESC(enable_hw_cksum, "Enable/disable hardware cksum support (0/1)");
209 Theory of Operation
211 I. Board Compatibility
213 This driver is for the Adaptec 6915 "Starfire" 64 bit PCI Ethernet adapter.
215 II. Board-specific settings
217 III. Driver operation
219 IIIa. Ring buffers
221 The Starfire hardware uses multiple fixed-size descriptor queues/rings. The
222 ring sizes are set fixed by the hardware, but may optionally be wrapped
223 earlier by the END bit in the descriptor.
224 This driver uses that hardware queue size for the Rx ring, where a large
225 number of entries has no ill effect beyond increases the potential backlog.
226 The Tx ring is wrapped with the END bit, since a large hardware Tx queue
227 disables the queue layer priority ordering and we have no mechanism to
228 utilize the hardware two-level priority queue. When modifying the
229 RX/TX_RING_SIZE pay close attention to page sizes and the ring-empty warning
230 levels.
232 IIIb/c. Transmit/Receive Structure
234 See the Adaptec manual for the many possible structures, and options for
235 each structure. There are far too many to document all of them here.
237 For transmit this driver uses type 0/1 transmit descriptors (depending
238 on the 32/64 bitness of the architecture), and relies on automatic
239 minimum-length padding. It does not use the completion queue
240 consumer index, but instead checks for non-zero status entries.
242 For receive this driver uses type 2/3 receive descriptors. The driver
243 allocates full frame size skbuffs for the Rx ring buffers, so all frames
244 should fit in a single descriptor. The driver does not use the completion
245 queue consumer index, but instead checks for non-zero status entries.
247 When an incoming frame is less than RX_COPYBREAK bytes long, a fresh skbuff
248 is allocated and the frame is copied to the new skbuff. When the incoming
249 frame is larger, the skbuff is passed directly up the protocol stack.
250 Buffers consumed this way are replaced by newly allocated skbuffs in a later
251 phase of receive.
253 A notable aspect of operation is that unaligned buffers are not permitted by
254 the Starfire hardware. Thus the IP header at offset 14 in an ethernet frame
255 isn't longword aligned, which may cause problems on some machine
256 e.g. Alphas and IA64. For these architectures, the driver is forced to copy
257 the frame into a new skbuff unconditionally. Copied frames are put into the
258 skbuff at an offset of "+2", thus 16-byte aligning the IP header.
260 IIId. Synchronization
262 The driver runs as two independent, single-threaded flows of control. One
263 is the send-packet routine, which enforces single-threaded use by the
264 dev->tbusy flag. The other thread is the interrupt handler, which is single
265 threaded by the hardware and interrupt handling software.
267 The send packet thread has partial control over the Tx ring and the netif_queue
268 status. If the number of free Tx slots in the ring falls below a certain number
269 (currently hardcoded to 4), it signals the upper layer to stop the queue.
271 The interrupt handler has exclusive control over the Rx ring and records stats
272 from the Tx ring. After reaping the stats, it marks the Tx queue entry as
273 empty by incrementing the dirty_tx mark. Iff the netif_queue is stopped and the
274 number of free Tx slow is above the threshold, it signals the upper layer to
275 restart the queue.
277 IV. Notes
279 IVb. References
281 The Adaptec Starfire manuals, available only from Adaptec.
282 http://www.scyld.com/expert/100mbps.html
283 http://www.scyld.com/expert/NWay.html
285 IVc. Errata
287 - StopOnPerr is broken, don't enable
288 - Hardware ethernet padding exposes random data, perform software padding
289 instead (unverified -- works correctly for all the hardware I have)
295 enum chip_capability_flags {CanHaveMII=1, };
297 enum chipset {
298 CH_6915 = 0,
301 static DEFINE_PCI_DEVICE_TABLE(starfire_pci_tbl) = {
302 { PCI_VDEVICE(ADAPTEC, 0x6915), CH_6915 },
303 { 0, }
305 MODULE_DEVICE_TABLE(pci, starfire_pci_tbl);
307 /* A chip capabilities table, matching the CH_xxx entries in xxx_pci_tbl[] above. */
308 static const struct chip_info {
309 const char *name;
310 int drv_flags;
311 } netdrv_tbl[] __devinitdata = {
312 { "Adaptec Starfire 6915", CanHaveMII },
316 /* Offsets to the device registers.
317 Unlike software-only systems, device drivers interact with complex hardware.
318 It's not useful to define symbolic names for every register bit in the
319 device. The name can only partially document the semantics and make
320 the driver longer and more difficult to read.
321 In general, only the important configuration values or bits changed
322 multiple times should be defined symbolically.
324 enum register_offsets {
325 PCIDeviceConfig=0x50040, GenCtrl=0x50070, IntrTimerCtrl=0x50074,
326 IntrClear=0x50080, IntrStatus=0x50084, IntrEnable=0x50088,
327 MIICtrl=0x52000, TxStationAddr=0x50120, EEPROMCtrl=0x51000,
328 GPIOCtrl=0x5008C, TxDescCtrl=0x50090,
329 TxRingPtr=0x50098, HiPriTxRingPtr=0x50094, /* Low and High priority. */
330 TxRingHiAddr=0x5009C, /* 64 bit address extension. */
331 TxProducerIdx=0x500A0, TxConsumerIdx=0x500A4,
332 TxThreshold=0x500B0,
333 CompletionHiAddr=0x500B4, TxCompletionAddr=0x500B8,
334 RxCompletionAddr=0x500BC, RxCompletionQ2Addr=0x500C0,
335 CompletionQConsumerIdx=0x500C4, RxDMACtrl=0x500D0,
336 RxDescQCtrl=0x500D4, RxDescQHiAddr=0x500DC, RxDescQAddr=0x500E0,
337 RxDescQIdx=0x500E8, RxDMAStatus=0x500F0, RxFilterMode=0x500F4,
338 TxMode=0x55000, VlanType=0x55064,
339 PerfFilterTable=0x56000, HashTable=0x56100,
340 TxGfpMem=0x58000, RxGfpMem=0x5a000,
344 * Bits in the interrupt status/mask registers.
345 * Warning: setting Intr[Ab]NormalSummary in the IntrEnable register
346 * enables all the interrupt sources that are or'ed into those status bits.
348 enum intr_status_bits {
349 IntrLinkChange=0xf0000000, IntrStatsMax=0x08000000,
350 IntrAbnormalSummary=0x02000000, IntrGeneralTimer=0x01000000,
351 IntrSoftware=0x800000, IntrRxComplQ1Low=0x400000,
352 IntrTxComplQLow=0x200000, IntrPCI=0x100000,
353 IntrDMAErr=0x080000, IntrTxDataLow=0x040000,
354 IntrRxComplQ2Low=0x020000, IntrRxDescQ1Low=0x010000,
355 IntrNormalSummary=0x8000, IntrTxDone=0x4000,
356 IntrTxDMADone=0x2000, IntrTxEmpty=0x1000,
357 IntrEarlyRxQ2=0x0800, IntrEarlyRxQ1=0x0400,
358 IntrRxQ2Done=0x0200, IntrRxQ1Done=0x0100,
359 IntrRxGFPDead=0x80, IntrRxDescQ2Low=0x40,
360 IntrNoTxCsum=0x20, IntrTxBadID=0x10,
361 IntrHiPriTxBadID=0x08, IntrRxGfp=0x04,
362 IntrTxGfp=0x02, IntrPCIPad=0x01,
363 /* not quite bits */
364 IntrRxDone=IntrRxQ2Done | IntrRxQ1Done,
365 IntrRxEmpty=IntrRxDescQ1Low | IntrRxDescQ2Low,
366 IntrNormalMask=0xff00, IntrAbnormalMask=0x3ff00fe,
369 /* Bits in the RxFilterMode register. */
370 enum rx_mode_bits {
371 AcceptBroadcast=0x04, AcceptAllMulticast=0x02, AcceptAll=0x01,
372 AcceptMulticast=0x10, PerfectFilter=0x40, HashFilter=0x30,
373 PerfectFilterVlan=0x80, MinVLANPrio=0xE000, VlanMode=0x0200,
374 WakeupOnGFP=0x0800,
377 /* Bits in the TxMode register */
378 enum tx_mode_bits {
379 MiiSoftReset=0x8000, MIILoopback=0x4000,
380 TxFlowEnable=0x0800, RxFlowEnable=0x0400,
381 PadEnable=0x04, FullDuplex=0x02, HugeFrame=0x01,
384 /* Bits in the TxDescCtrl register. */
385 enum tx_ctrl_bits {
386 TxDescSpaceUnlim=0x00, TxDescSpace32=0x10, TxDescSpace64=0x20,
387 TxDescSpace128=0x30, TxDescSpace256=0x40,
388 TxDescType0=0x00, TxDescType1=0x01, TxDescType2=0x02,
389 TxDescType3=0x03, TxDescType4=0x04,
390 TxNoDMACompletion=0x08,
391 TxDescQAddr64bit=0x80, TxDescQAddr32bit=0,
392 TxHiPriFIFOThreshShift=24, TxPadLenShift=16,
393 TxDMABurstSizeShift=8,
396 /* Bits in the RxDescQCtrl register. */
397 enum rx_ctrl_bits {
398 RxBufferLenShift=16, RxMinDescrThreshShift=0,
399 RxPrefetchMode=0x8000, RxVariableQ=0x2000,
400 Rx2048QEntries=0x4000, Rx256QEntries=0,
401 RxDescAddr64bit=0x1000, RxDescAddr32bit=0,
402 RxDescQAddr64bit=0x0100, RxDescQAddr32bit=0,
403 RxDescSpace4=0x000, RxDescSpace8=0x100,
404 RxDescSpace16=0x200, RxDescSpace32=0x300,
405 RxDescSpace64=0x400, RxDescSpace128=0x500,
406 RxConsumerWrEn=0x80,
409 /* Bits in the RxDMACtrl register. */
410 enum rx_dmactrl_bits {
411 RxReportBadFrames=0x80000000, RxDMAShortFrames=0x40000000,
412 RxDMABadFrames=0x20000000, RxDMACrcErrorFrames=0x10000000,
413 RxDMAControlFrame=0x08000000, RxDMAPauseFrame=0x04000000,
414 RxChecksumIgnore=0, RxChecksumRejectTCPUDP=0x02000000,
415 RxChecksumRejectTCPOnly=0x01000000,
416 RxCompletionQ2Enable=0x800000,
417 RxDMAQ2Disable=0, RxDMAQ2FPOnly=0x100000,
418 RxDMAQ2SmallPkt=0x200000, RxDMAQ2HighPrio=0x300000,
419 RxDMAQ2NonIP=0x400000,
420 RxUseBackupQueue=0x080000, RxDMACRC=0x040000,
421 RxEarlyIntThreshShift=12, RxHighPrioThreshShift=8,
422 RxBurstSizeShift=0,
425 /* Bits in the RxCompletionAddr register */
426 enum rx_compl_bits {
427 RxComplQAddr64bit=0x80, RxComplQAddr32bit=0,
428 RxComplProducerWrEn=0x40,
429 RxComplType0=0x00, RxComplType1=0x10,
430 RxComplType2=0x20, RxComplType3=0x30,
431 RxComplThreshShift=0,
434 /* Bits in the TxCompletionAddr register */
435 enum tx_compl_bits {
436 TxComplQAddr64bit=0x80, TxComplQAddr32bit=0,
437 TxComplProducerWrEn=0x40,
438 TxComplIntrStatus=0x20,
439 CommonQueueMode=0x10,
440 TxComplThreshShift=0,
443 /* Bits in the GenCtrl register */
444 enum gen_ctrl_bits {
445 RxEnable=0x05, TxEnable=0x0a,
446 RxGFPEnable=0x10, TxGFPEnable=0x20,
449 /* Bits in the IntrTimerCtrl register */
450 enum intr_ctrl_bits {
451 Timer10X=0x800, EnableIntrMasking=0x60, SmallFrameBypass=0x100,
452 SmallFrame64=0, SmallFrame128=0x200, SmallFrame256=0x400, SmallFrame512=0x600,
453 IntrLatencyMask=0x1f,
456 /* The Rx and Tx buffer descriptors. */
457 struct starfire_rx_desc {
458 netdrv_addr_t rxaddr;
460 enum rx_desc_bits {
461 RxDescValid=1, RxDescEndRing=2,
464 /* Completion queue entry. */
465 struct short_rx_done_desc {
466 __le32 status; /* Low 16 bits is length. */
468 struct basic_rx_done_desc {
469 __le32 status; /* Low 16 bits is length. */
470 __le16 vlanid;
471 __le16 status2;
473 struct csum_rx_done_desc {
474 __le32 status; /* Low 16 bits is length. */
475 __le16 csum; /* Partial checksum */
476 __le16 status2;
478 struct full_rx_done_desc {
479 __le32 status; /* Low 16 bits is length. */
480 __le16 status3;
481 __le16 status2;
482 __le16 vlanid;
483 __le16 csum; /* partial checksum */
484 __le32 timestamp;
486 /* XXX: this is ugly and I'm not sure it's worth the trouble -Ion */
487 #ifdef VLAN_SUPPORT
488 typedef struct full_rx_done_desc rx_done_desc;
489 #define RxComplType RxComplType3
490 #else /* not VLAN_SUPPORT */
491 typedef struct csum_rx_done_desc rx_done_desc;
492 #define RxComplType RxComplType2
493 #endif /* not VLAN_SUPPORT */
495 enum rx_done_bits {
496 RxOK=0x20000000, RxFIFOErr=0x10000000, RxBufQ2=0x08000000,
499 /* Type 1 Tx descriptor. */
500 struct starfire_tx_desc_1 {
501 __le32 status; /* Upper bits are status, lower 16 length. */
502 __le32 addr;
505 /* Type 2 Tx descriptor. */
506 struct starfire_tx_desc_2 {
507 __le32 status; /* Upper bits are status, lower 16 length. */
508 __le32 reserved;
509 __le64 addr;
512 #ifdef ADDR_64BITS
513 typedef struct starfire_tx_desc_2 starfire_tx_desc;
514 #define TX_DESC_TYPE TxDescType2
515 #else /* not ADDR_64BITS */
516 typedef struct starfire_tx_desc_1 starfire_tx_desc;
517 #define TX_DESC_TYPE TxDescType1
518 #endif /* not ADDR_64BITS */
519 #define TX_DESC_SPACING TxDescSpaceUnlim
521 enum tx_desc_bits {
522 TxDescID=0xB0000000,
523 TxCRCEn=0x01000000, TxDescIntr=0x08000000,
524 TxRingWrap=0x04000000, TxCalTCP=0x02000000,
526 struct tx_done_desc {
527 __le32 status; /* timestamp, index. */
528 #if 0
529 __le32 intrstatus; /* interrupt status */
530 #endif
533 struct rx_ring_info {
534 struct sk_buff *skb;
535 dma_addr_t mapping;
537 struct tx_ring_info {
538 struct sk_buff *skb;
539 dma_addr_t mapping;
540 unsigned int used_slots;
543 #define PHY_CNT 2
544 struct netdev_private {
545 /* Descriptor rings first for alignment. */
546 struct starfire_rx_desc *rx_ring;
547 starfire_tx_desc *tx_ring;
548 dma_addr_t rx_ring_dma;
549 dma_addr_t tx_ring_dma;
550 /* The addresses of rx/tx-in-place skbuffs. */
551 struct rx_ring_info rx_info[RX_RING_SIZE];
552 struct tx_ring_info tx_info[TX_RING_SIZE];
553 /* Pointers to completion queues (full pages). */
554 rx_done_desc *rx_done_q;
555 dma_addr_t rx_done_q_dma;
556 unsigned int rx_done;
557 struct tx_done_desc *tx_done_q;
558 dma_addr_t tx_done_q_dma;
559 unsigned int tx_done;
560 struct napi_struct napi;
561 struct net_device *dev;
562 struct pci_dev *pci_dev;
563 #ifdef VLAN_SUPPORT
564 unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)];
565 #endif
566 void *queue_mem;
567 dma_addr_t queue_mem_dma;
568 size_t queue_mem_size;
570 /* Frequently used values: keep some adjacent for cache effect. */
571 spinlock_t lock;
572 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
573 unsigned int cur_tx, dirty_tx, reap_tx;
574 unsigned int rx_buf_sz; /* Based on MTU+slack. */
575 /* These values keep track of the transceiver/media in use. */
576 int speed100; /* Set if speed == 100MBit. */
577 u32 tx_mode;
578 u32 intr_timer_ctrl;
579 u8 tx_threshold;
580 /* MII transceiver section. */
581 struct mii_if_info mii_if; /* MII lib hooks/info */
582 int phy_cnt; /* MII device addresses. */
583 unsigned char phys[PHY_CNT]; /* MII device addresses. */
584 void __iomem *base;
588 static int mdio_read(struct net_device *dev, int phy_id, int location);
589 static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
590 static int netdev_open(struct net_device *dev);
591 static void check_duplex(struct net_device *dev);
592 static void tx_timeout(struct net_device *dev);
593 static void init_ring(struct net_device *dev);
594 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev);
595 static irqreturn_t intr_handler(int irq, void *dev_instance);
596 static void netdev_error(struct net_device *dev, int intr_status);
597 static int __netdev_rx(struct net_device *dev, int *quota);
598 static int netdev_poll(struct napi_struct *napi, int budget);
599 static void refill_rx_ring(struct net_device *dev);
600 static void netdev_error(struct net_device *dev, int intr_status);
601 static void set_rx_mode(struct net_device *dev);
602 static struct net_device_stats *get_stats(struct net_device *dev);
603 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
604 static int netdev_close(struct net_device *dev);
605 static void netdev_media_change(struct net_device *dev);
606 static const struct ethtool_ops ethtool_ops;
609 #ifdef VLAN_SUPPORT
610 static int netdev_vlan_rx_add_vid(struct net_device *dev, unsigned short vid)
612 struct netdev_private *np = netdev_priv(dev);
614 spin_lock(&np->lock);
615 if (debug > 1)
616 printk("%s: Adding vlanid %d to vlan filter\n", dev->name, vid);
617 set_bit(vid, np->active_vlans);
618 set_rx_mode(dev);
619 spin_unlock(&np->lock);
621 return 0;
624 static int netdev_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
626 struct netdev_private *np = netdev_priv(dev);
628 spin_lock(&np->lock);
629 if (debug > 1)
630 printk("%s: removing vlanid %d from vlan filter\n", dev->name, vid);
631 clear_bit(vid, np->active_vlans);
632 set_rx_mode(dev);
633 spin_unlock(&np->lock);
635 return 0;
637 #endif /* VLAN_SUPPORT */
640 static const struct net_device_ops netdev_ops = {
641 .ndo_open = netdev_open,
642 .ndo_stop = netdev_close,
643 .ndo_start_xmit = start_tx,
644 .ndo_tx_timeout = tx_timeout,
645 .ndo_get_stats = get_stats,
646 .ndo_set_rx_mode = set_rx_mode,
647 .ndo_do_ioctl = netdev_ioctl,
648 .ndo_change_mtu = eth_change_mtu,
649 .ndo_set_mac_address = eth_mac_addr,
650 .ndo_validate_addr = eth_validate_addr,
651 #ifdef VLAN_SUPPORT
652 .ndo_vlan_rx_add_vid = netdev_vlan_rx_add_vid,
653 .ndo_vlan_rx_kill_vid = netdev_vlan_rx_kill_vid,
654 #endif
657 static int __devinit starfire_init_one(struct pci_dev *pdev,
658 const struct pci_device_id *ent)
660 struct netdev_private *np;
661 int i, irq, option, chip_idx = ent->driver_data;
662 struct net_device *dev;
663 static int card_idx = -1;
664 long ioaddr;
665 void __iomem *base;
666 int drv_flags, io_size;
667 int boguscnt;
669 /* when built into the kernel, we only print version if device is found */
670 #ifndef MODULE
671 static int printed_version;
672 if (!printed_version++)
673 printk(version);
674 #endif
676 card_idx++;
678 if (pci_enable_device (pdev))
679 return -EIO;
681 ioaddr = pci_resource_start(pdev, 0);
682 io_size = pci_resource_len(pdev, 0);
683 if (!ioaddr || ((pci_resource_flags(pdev, 0) & IORESOURCE_MEM) == 0)) {
684 printk(KERN_ERR DRV_NAME " %d: no PCI MEM resources, aborting\n", card_idx);
685 return -ENODEV;
688 dev = alloc_etherdev(sizeof(*np));
689 if (!dev)
690 return -ENOMEM;
692 SET_NETDEV_DEV(dev, &pdev->dev);
694 irq = pdev->irq;
696 if (pci_request_regions (pdev, DRV_NAME)) {
697 printk(KERN_ERR DRV_NAME " %d: cannot reserve PCI resources, aborting\n", card_idx);
698 goto err_out_free_netdev;
701 base = ioremap(ioaddr, io_size);
702 if (!base) {
703 printk(KERN_ERR DRV_NAME " %d: cannot remap %#x @ %#lx, aborting\n",
704 card_idx, io_size, ioaddr);
705 goto err_out_free_res;
708 pci_set_master(pdev);
710 /* enable MWI -- it vastly improves Rx performance on sparc64 */
711 pci_try_set_mwi(pdev);
713 #ifdef ZEROCOPY
714 /* Starfire can do TCP/UDP checksumming */
715 if (enable_hw_cksum)
716 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
717 #endif /* ZEROCOPY */
719 #ifdef VLAN_SUPPORT
720 dev->features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER;
721 #endif /* VLAN_RX_KILL_VID */
722 #ifdef ADDR_64BITS
723 dev->features |= NETIF_F_HIGHDMA;
724 #endif /* ADDR_64BITS */
726 /* Serial EEPROM reads are hidden by the hardware. */
727 for (i = 0; i < 6; i++)
728 dev->dev_addr[i] = readb(base + EEPROMCtrl + 20 - i);
730 #if ! defined(final_version) /* Dump the EEPROM contents during development. */
731 if (debug > 4)
732 for (i = 0; i < 0x20; i++)
733 printk("%2.2x%s",
734 (unsigned int)readb(base + EEPROMCtrl + i),
735 i % 16 != 15 ? " " : "\n");
736 #endif
738 /* Issue soft reset */
739 writel(MiiSoftReset, base + TxMode);
740 udelay(1000);
741 writel(0, base + TxMode);
743 /* Reset the chip to erase previous misconfiguration. */
744 writel(1, base + PCIDeviceConfig);
745 boguscnt = 1000;
746 while (--boguscnt > 0) {
747 udelay(10);
748 if ((readl(base + PCIDeviceConfig) & 1) == 0)
749 break;
751 if (boguscnt == 0)
752 printk("%s: chipset reset never completed!\n", dev->name);
753 /* wait a little longer */
754 udelay(1000);
756 dev->base_addr = (unsigned long)base;
757 dev->irq = irq;
759 np = netdev_priv(dev);
760 np->dev = dev;
761 np->base = base;
762 spin_lock_init(&np->lock);
763 pci_set_drvdata(pdev, dev);
765 np->pci_dev = pdev;
767 np->mii_if.dev = dev;
768 np->mii_if.mdio_read = mdio_read;
769 np->mii_if.mdio_write = mdio_write;
770 np->mii_if.phy_id_mask = 0x1f;
771 np->mii_if.reg_num_mask = 0x1f;
773 drv_flags = netdrv_tbl[chip_idx].drv_flags;
775 option = card_idx < MAX_UNITS ? options[card_idx] : 0;
776 if (dev->mem_start)
777 option = dev->mem_start;
779 /* The lower four bits are the media type. */
780 if (option & 0x200)
781 np->mii_if.full_duplex = 1;
783 if (card_idx < MAX_UNITS && full_duplex[card_idx] > 0)
784 np->mii_if.full_duplex = 1;
786 if (np->mii_if.full_duplex)
787 np->mii_if.force_media = 1;
788 else
789 np->mii_if.force_media = 0;
790 np->speed100 = 1;
792 /* timer resolution is 128 * 0.8us */
793 np->intr_timer_ctrl = (((intr_latency * 10) / 1024) & IntrLatencyMask) |
794 Timer10X | EnableIntrMasking;
796 if (small_frames > 0) {
797 np->intr_timer_ctrl |= SmallFrameBypass;
798 switch (small_frames) {
799 case 1 ... 64:
800 np->intr_timer_ctrl |= SmallFrame64;
801 break;
802 case 65 ... 128:
803 np->intr_timer_ctrl |= SmallFrame128;
804 break;
805 case 129 ... 256:
806 np->intr_timer_ctrl |= SmallFrame256;
807 break;
808 default:
809 np->intr_timer_ctrl |= SmallFrame512;
810 if (small_frames > 512)
811 printk("Adjusting small_frames down to 512\n");
812 break;
816 dev->netdev_ops = &netdev_ops;
817 dev->watchdog_timeo = TX_TIMEOUT;
818 SET_ETHTOOL_OPS(dev, &ethtool_ops);
820 netif_napi_add(dev, &np->napi, netdev_poll, max_interrupt_work);
822 if (mtu)
823 dev->mtu = mtu;
825 if (register_netdev(dev))
826 goto err_out_cleardev;
828 printk(KERN_INFO "%s: %s at %p, %pM, IRQ %d.\n",
829 dev->name, netdrv_tbl[chip_idx].name, base,
830 dev->dev_addr, irq);
832 if (drv_flags & CanHaveMII) {
833 int phy, phy_idx = 0;
834 int mii_status;
835 for (phy = 0; phy < 32 && phy_idx < PHY_CNT; phy++) {
836 mdio_write(dev, phy, MII_BMCR, BMCR_RESET);
837 mdelay(100);
838 boguscnt = 1000;
839 while (--boguscnt > 0)
840 if ((mdio_read(dev, phy, MII_BMCR) & BMCR_RESET) == 0)
841 break;
842 if (boguscnt == 0) {
843 printk("%s: PHY#%d reset never completed!\n", dev->name, phy);
844 continue;
846 mii_status = mdio_read(dev, phy, MII_BMSR);
847 if (mii_status != 0) {
848 np->phys[phy_idx++] = phy;
849 np->mii_if.advertising = mdio_read(dev, phy, MII_ADVERTISE);
850 printk(KERN_INFO "%s: MII PHY found at address %d, status "
851 "%#4.4x advertising %#4.4x.\n",
852 dev->name, phy, mii_status, np->mii_if.advertising);
853 /* there can be only one PHY on-board */
854 break;
857 np->phy_cnt = phy_idx;
858 if (np->phy_cnt > 0)
859 np->mii_if.phy_id = np->phys[0];
860 else
861 memset(&np->mii_if, 0, sizeof(np->mii_if));
864 printk(KERN_INFO "%s: scatter-gather and hardware TCP cksumming %s.\n",
865 dev->name, enable_hw_cksum ? "enabled" : "disabled");
866 return 0;
868 err_out_cleardev:
869 pci_set_drvdata(pdev, NULL);
870 iounmap(base);
871 err_out_free_res:
872 pci_release_regions (pdev);
873 err_out_free_netdev:
874 free_netdev(dev);
875 return -ENODEV;
879 /* Read the MII Management Data I/O (MDIO) interfaces. */
880 static int mdio_read(struct net_device *dev, int phy_id, int location)
882 struct netdev_private *np = netdev_priv(dev);
883 void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
884 int result, boguscnt=1000;
885 /* ??? Should we add a busy-wait here? */
886 do {
887 result = readl(mdio_addr);
888 } while ((result & 0xC0000000) != 0x80000000 && --boguscnt > 0);
889 if (boguscnt == 0)
890 return 0;
891 if ((result & 0xffff) == 0xffff)
892 return 0;
893 return result & 0xffff;
897 static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
899 struct netdev_private *np = netdev_priv(dev);
900 void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
901 writel(value, mdio_addr);
902 /* The busy-wait will occur before a read. */
906 static int netdev_open(struct net_device *dev)
908 const struct firmware *fw_rx, *fw_tx;
909 const __be32 *fw_rx_data, *fw_tx_data;
910 struct netdev_private *np = netdev_priv(dev);
911 void __iomem *ioaddr = np->base;
912 int i, retval;
913 size_t tx_size, rx_size;
914 size_t tx_done_q_size, rx_done_q_size, tx_ring_size, rx_ring_size;
916 /* Do we ever need to reset the chip??? */
918 retval = request_irq(dev->irq, intr_handler, IRQF_SHARED, dev->name, dev);
919 if (retval)
920 return retval;
922 /* Disable the Rx and Tx, and reset the chip. */
923 writel(0, ioaddr + GenCtrl);
924 writel(1, ioaddr + PCIDeviceConfig);
925 if (debug > 1)
926 printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
927 dev->name, dev->irq);
929 /* Allocate the various queues. */
930 if (!np->queue_mem) {
931 tx_done_q_size = ((sizeof(struct tx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
932 rx_done_q_size = ((sizeof(rx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
933 tx_ring_size = ((sizeof(starfire_tx_desc) * TX_RING_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
934 rx_ring_size = sizeof(struct starfire_rx_desc) * RX_RING_SIZE;
935 np->queue_mem_size = tx_done_q_size + rx_done_q_size + tx_ring_size + rx_ring_size;
936 np->queue_mem = pci_alloc_consistent(np->pci_dev, np->queue_mem_size, &np->queue_mem_dma);
937 if (np->queue_mem == NULL) {
938 free_irq(dev->irq, dev);
939 return -ENOMEM;
942 np->tx_done_q = np->queue_mem;
943 np->tx_done_q_dma = np->queue_mem_dma;
944 np->rx_done_q = (void *) np->tx_done_q + tx_done_q_size;
945 np->rx_done_q_dma = np->tx_done_q_dma + tx_done_q_size;
946 np->tx_ring = (void *) np->rx_done_q + rx_done_q_size;
947 np->tx_ring_dma = np->rx_done_q_dma + rx_done_q_size;
948 np->rx_ring = (void *) np->tx_ring + tx_ring_size;
949 np->rx_ring_dma = np->tx_ring_dma + tx_ring_size;
952 /* Start with no carrier, it gets adjusted later */
953 netif_carrier_off(dev);
954 init_ring(dev);
955 /* Set the size of the Rx buffers. */
956 writel((np->rx_buf_sz << RxBufferLenShift) |
957 (0 << RxMinDescrThreshShift) |
958 RxPrefetchMode | RxVariableQ |
959 RX_Q_ENTRIES |
960 RX_DESC_Q_ADDR_SIZE | RX_DESC_ADDR_SIZE |
961 RxDescSpace4,
962 ioaddr + RxDescQCtrl);
964 /* Set up the Rx DMA controller. */
965 writel(RxChecksumIgnore |
966 (0 << RxEarlyIntThreshShift) |
967 (6 << RxHighPrioThreshShift) |
968 ((DMA_BURST_SIZE / 32) << RxBurstSizeShift),
969 ioaddr + RxDMACtrl);
971 /* Set Tx descriptor */
972 writel((2 << TxHiPriFIFOThreshShift) |
973 (0 << TxPadLenShift) |
974 ((DMA_BURST_SIZE / 32) << TxDMABurstSizeShift) |
975 TX_DESC_Q_ADDR_SIZE |
976 TX_DESC_SPACING | TX_DESC_TYPE,
977 ioaddr + TxDescCtrl);
979 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + RxDescQHiAddr);
980 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + TxRingHiAddr);
981 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + CompletionHiAddr);
982 writel(np->rx_ring_dma, ioaddr + RxDescQAddr);
983 writel(np->tx_ring_dma, ioaddr + TxRingPtr);
985 writel(np->tx_done_q_dma, ioaddr + TxCompletionAddr);
986 writel(np->rx_done_q_dma |
987 RxComplType |
988 (0 << RxComplThreshShift),
989 ioaddr + RxCompletionAddr);
991 if (debug > 1)
992 printk(KERN_DEBUG "%s: Filling in the station address.\n", dev->name);
994 /* Fill both the Tx SA register and the Rx perfect filter. */
995 for (i = 0; i < 6; i++)
996 writeb(dev->dev_addr[i], ioaddr + TxStationAddr + 5 - i);
997 /* The first entry is special because it bypasses the VLAN filter.
998 Don't use it. */
999 writew(0, ioaddr + PerfFilterTable);
1000 writew(0, ioaddr + PerfFilterTable + 4);
1001 writew(0, ioaddr + PerfFilterTable + 8);
1002 for (i = 1; i < 16; i++) {
1003 __be16 *eaddrs = (__be16 *)dev->dev_addr;
1004 void __iomem *setup_frm = ioaddr + PerfFilterTable + i * 16;
1005 writew(be16_to_cpu(eaddrs[2]), setup_frm); setup_frm += 4;
1006 writew(be16_to_cpu(eaddrs[1]), setup_frm); setup_frm += 4;
1007 writew(be16_to_cpu(eaddrs[0]), setup_frm); setup_frm += 8;
1010 /* Initialize other registers. */
1011 /* Configure the PCI bus bursts and FIFO thresholds. */
1012 np->tx_mode = TxFlowEnable|RxFlowEnable|PadEnable; /* modified when link is up. */
1013 writel(MiiSoftReset | np->tx_mode, ioaddr + TxMode);
1014 udelay(1000);
1015 writel(np->tx_mode, ioaddr + TxMode);
1016 np->tx_threshold = 4;
1017 writel(np->tx_threshold, ioaddr + TxThreshold);
1019 writel(np->intr_timer_ctrl, ioaddr + IntrTimerCtrl);
1021 napi_enable(&np->napi);
1023 netif_start_queue(dev);
1025 if (debug > 1)
1026 printk(KERN_DEBUG "%s: Setting the Rx and Tx modes.\n", dev->name);
1027 set_rx_mode(dev);
1029 np->mii_if.advertising = mdio_read(dev, np->phys[0], MII_ADVERTISE);
1030 check_duplex(dev);
1032 /* Enable GPIO interrupts on link change */
1033 writel(0x0f00ff00, ioaddr + GPIOCtrl);
1035 /* Set the interrupt mask */
1036 writel(IntrRxDone | IntrRxEmpty | IntrDMAErr |
1037 IntrTxDMADone | IntrStatsMax | IntrLinkChange |
1038 IntrRxGFPDead | IntrNoTxCsum | IntrTxBadID,
1039 ioaddr + IntrEnable);
1040 /* Enable PCI interrupts. */
1041 writel(0x00800000 | readl(ioaddr + PCIDeviceConfig),
1042 ioaddr + PCIDeviceConfig);
1044 #ifdef VLAN_SUPPORT
1045 /* Set VLAN type to 802.1q */
1046 writel(ETH_P_8021Q, ioaddr + VlanType);
1047 #endif /* VLAN_SUPPORT */
1049 retval = request_firmware(&fw_rx, FIRMWARE_RX, &np->pci_dev->dev);
1050 if (retval) {
1051 printk(KERN_ERR "starfire: Failed to load firmware \"%s\"\n",
1052 FIRMWARE_RX);
1053 goto out_init;
1055 if (fw_rx->size % 4) {
1056 printk(KERN_ERR "starfire: bogus length %zu in \"%s\"\n",
1057 fw_rx->size, FIRMWARE_RX);
1058 retval = -EINVAL;
1059 goto out_rx;
1061 retval = request_firmware(&fw_tx, FIRMWARE_TX, &np->pci_dev->dev);
1062 if (retval) {
1063 printk(KERN_ERR "starfire: Failed to load firmware \"%s\"\n",
1064 FIRMWARE_TX);
1065 goto out_rx;
1067 if (fw_tx->size % 4) {
1068 printk(KERN_ERR "starfire: bogus length %zu in \"%s\"\n",
1069 fw_tx->size, FIRMWARE_TX);
1070 retval = -EINVAL;
1071 goto out_tx;
1073 fw_rx_data = (const __be32 *)&fw_rx->data[0];
1074 fw_tx_data = (const __be32 *)&fw_tx->data[0];
1075 rx_size = fw_rx->size / 4;
1076 tx_size = fw_tx->size / 4;
1078 /* Load Rx/Tx firmware into the frame processors */
1079 for (i = 0; i < rx_size; i++)
1080 writel(be32_to_cpup(&fw_rx_data[i]), ioaddr + RxGfpMem + i * 4);
1081 for (i = 0; i < tx_size; i++)
1082 writel(be32_to_cpup(&fw_tx_data[i]), ioaddr + TxGfpMem + i * 4);
1083 if (enable_hw_cksum)
1084 /* Enable the Rx and Tx units, and the Rx/Tx frame processors. */
1085 writel(TxEnable|TxGFPEnable|RxEnable|RxGFPEnable, ioaddr + GenCtrl);
1086 else
1087 /* Enable the Rx and Tx units only. */
1088 writel(TxEnable|RxEnable, ioaddr + GenCtrl);
1090 if (debug > 1)
1091 printk(KERN_DEBUG "%s: Done netdev_open().\n",
1092 dev->name);
1094 out_tx:
1095 release_firmware(fw_tx);
1096 out_rx:
1097 release_firmware(fw_rx);
1098 out_init:
1099 if (retval)
1100 netdev_close(dev);
1101 return retval;
1105 static void check_duplex(struct net_device *dev)
1107 struct netdev_private *np = netdev_priv(dev);
1108 u16 reg0;
1109 int silly_count = 1000;
1111 mdio_write(dev, np->phys[0], MII_ADVERTISE, np->mii_if.advertising);
1112 mdio_write(dev, np->phys[0], MII_BMCR, BMCR_RESET);
1113 udelay(500);
1114 while (--silly_count && mdio_read(dev, np->phys[0], MII_BMCR) & BMCR_RESET)
1115 /* do nothing */;
1116 if (!silly_count) {
1117 printk("%s: MII reset failed!\n", dev->name);
1118 return;
1121 reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
1123 if (!np->mii_if.force_media) {
1124 reg0 |= BMCR_ANENABLE | BMCR_ANRESTART;
1125 } else {
1126 reg0 &= ~(BMCR_ANENABLE | BMCR_ANRESTART);
1127 if (np->speed100)
1128 reg0 |= BMCR_SPEED100;
1129 if (np->mii_if.full_duplex)
1130 reg0 |= BMCR_FULLDPLX;
1131 printk(KERN_DEBUG "%s: Link forced to %sMbit %s-duplex\n",
1132 dev->name,
1133 np->speed100 ? "100" : "10",
1134 np->mii_if.full_duplex ? "full" : "half");
1136 mdio_write(dev, np->phys[0], MII_BMCR, reg0);
1140 static void tx_timeout(struct net_device *dev)
1142 struct netdev_private *np = netdev_priv(dev);
1143 void __iomem *ioaddr = np->base;
1144 int old_debug;
1146 printk(KERN_WARNING "%s: Transmit timed out, status %#8.8x, "
1147 "resetting...\n", dev->name, (int) readl(ioaddr + IntrStatus));
1149 /* Perhaps we should reinitialize the hardware here. */
1152 * Stop and restart the interface.
1153 * Cheat and increase the debug level temporarily.
1155 old_debug = debug;
1156 debug = 2;
1157 netdev_close(dev);
1158 netdev_open(dev);
1159 debug = old_debug;
1161 /* Trigger an immediate transmit demand. */
1163 dev->trans_start = jiffies; /* prevent tx timeout */
1164 dev->stats.tx_errors++;
1165 netif_wake_queue(dev);
1169 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1170 static void init_ring(struct net_device *dev)
1172 struct netdev_private *np = netdev_priv(dev);
1173 int i;
1175 np->cur_rx = np->cur_tx = np->reap_tx = 0;
1176 np->dirty_rx = np->dirty_tx = np->rx_done = np->tx_done = 0;
1178 np->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
1180 /* Fill in the Rx buffers. Handle allocation failure gracefully. */
1181 for (i = 0; i < RX_RING_SIZE; i++) {
1182 struct sk_buff *skb = netdev_alloc_skb(dev, np->rx_buf_sz);
1183 np->rx_info[i].skb = skb;
1184 if (skb == NULL)
1185 break;
1186 np->rx_info[i].mapping = pci_map_single(np->pci_dev, skb->data, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1187 /* Grrr, we cannot offset to correctly align the IP header. */
1188 np->rx_ring[i].rxaddr = cpu_to_dma(np->rx_info[i].mapping | RxDescValid);
1190 writew(i - 1, np->base + RxDescQIdx);
1191 np->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
1193 /* Clear the remainder of the Rx buffer ring. */
1194 for ( ; i < RX_RING_SIZE; i++) {
1195 np->rx_ring[i].rxaddr = 0;
1196 np->rx_info[i].skb = NULL;
1197 np->rx_info[i].mapping = 0;
1199 /* Mark the last entry as wrapping the ring. */
1200 np->rx_ring[RX_RING_SIZE - 1].rxaddr |= cpu_to_dma(RxDescEndRing);
1202 /* Clear the completion rings. */
1203 for (i = 0; i < DONE_Q_SIZE; i++) {
1204 np->rx_done_q[i].status = 0;
1205 np->tx_done_q[i].status = 0;
1208 for (i = 0; i < TX_RING_SIZE; i++)
1209 memset(&np->tx_info[i], 0, sizeof(np->tx_info[i]));
1213 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev)
1215 struct netdev_private *np = netdev_priv(dev);
1216 unsigned int entry;
1217 u32 status;
1218 int i;
1221 * be cautious here, wrapping the queue has weird semantics
1222 * and we may not have enough slots even when it seems we do.
1224 if ((np->cur_tx - np->dirty_tx) + skb_num_frags(skb) * 2 > TX_RING_SIZE) {
1225 netif_stop_queue(dev);
1226 return NETDEV_TX_BUSY;
1229 #if defined(ZEROCOPY) && defined(HAS_BROKEN_FIRMWARE)
1230 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1231 if (skb_padto(skb, (skb->len + PADDING_MASK) & ~PADDING_MASK))
1232 return NETDEV_TX_OK;
1234 #endif /* ZEROCOPY && HAS_BROKEN_FIRMWARE */
1236 entry = np->cur_tx % TX_RING_SIZE;
1237 for (i = 0; i < skb_num_frags(skb); i++) {
1238 int wrap_ring = 0;
1239 status = TxDescID;
1241 if (i == 0) {
1242 np->tx_info[entry].skb = skb;
1243 status |= TxCRCEn;
1244 if (entry >= TX_RING_SIZE - skb_num_frags(skb)) {
1245 status |= TxRingWrap;
1246 wrap_ring = 1;
1248 if (np->reap_tx) {
1249 status |= TxDescIntr;
1250 np->reap_tx = 0;
1252 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1253 status |= TxCalTCP;
1254 dev->stats.tx_compressed++;
1256 status |= skb_first_frag_len(skb) | (skb_num_frags(skb) << 16);
1258 np->tx_info[entry].mapping =
1259 pci_map_single(np->pci_dev, skb->data, skb_first_frag_len(skb), PCI_DMA_TODEVICE);
1260 } else {
1261 const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[i - 1];
1262 status |= skb_frag_size(this_frag);
1263 np->tx_info[entry].mapping =
1264 pci_map_single(np->pci_dev,
1265 skb_frag_address(this_frag),
1266 skb_frag_size(this_frag),
1267 PCI_DMA_TODEVICE);
1270 np->tx_ring[entry].addr = cpu_to_dma(np->tx_info[entry].mapping);
1271 np->tx_ring[entry].status = cpu_to_le32(status);
1272 if (debug > 3)
1273 printk(KERN_DEBUG "%s: Tx #%d/#%d slot %d status %#8.8x.\n",
1274 dev->name, np->cur_tx, np->dirty_tx,
1275 entry, status);
1276 if (wrap_ring) {
1277 np->tx_info[entry].used_slots = TX_RING_SIZE - entry;
1278 np->cur_tx += np->tx_info[entry].used_slots;
1279 entry = 0;
1280 } else {
1281 np->tx_info[entry].used_slots = 1;
1282 np->cur_tx += np->tx_info[entry].used_slots;
1283 entry++;
1285 /* scavenge the tx descriptors twice per TX_RING_SIZE */
1286 if (np->cur_tx % (TX_RING_SIZE / 2) == 0)
1287 np->reap_tx = 1;
1290 /* Non-x86: explicitly flush descriptor cache lines here. */
1291 /* Ensure all descriptors are written back before the transmit is
1292 initiated. - Jes */
1293 wmb();
1295 /* Update the producer index. */
1296 writel(entry * (sizeof(starfire_tx_desc) / 8), np->base + TxProducerIdx);
1298 /* 4 is arbitrary, but should be ok */
1299 if ((np->cur_tx - np->dirty_tx) + 4 > TX_RING_SIZE)
1300 netif_stop_queue(dev);
1302 return NETDEV_TX_OK;
1306 /* The interrupt handler does all of the Rx thread work and cleans up
1307 after the Tx thread. */
1308 static irqreturn_t intr_handler(int irq, void *dev_instance)
1310 struct net_device *dev = dev_instance;
1311 struct netdev_private *np = netdev_priv(dev);
1312 void __iomem *ioaddr = np->base;
1313 int boguscnt = max_interrupt_work;
1314 int consumer;
1315 int tx_status;
1316 int handled = 0;
1318 do {
1319 u32 intr_status = readl(ioaddr + IntrClear);
1321 if (debug > 4)
1322 printk(KERN_DEBUG "%s: Interrupt status %#8.8x.\n",
1323 dev->name, intr_status);
1325 if (intr_status == 0 || intr_status == (u32) -1)
1326 break;
1328 handled = 1;
1330 if (intr_status & (IntrRxDone | IntrRxEmpty)) {
1331 u32 enable;
1333 if (likely(napi_schedule_prep(&np->napi))) {
1334 __napi_schedule(&np->napi);
1335 enable = readl(ioaddr + IntrEnable);
1336 enable &= ~(IntrRxDone | IntrRxEmpty);
1337 writel(enable, ioaddr + IntrEnable);
1338 /* flush PCI posting buffers */
1339 readl(ioaddr + IntrEnable);
1340 } else {
1341 /* Paranoia check */
1342 enable = readl(ioaddr + IntrEnable);
1343 if (enable & (IntrRxDone | IntrRxEmpty)) {
1344 printk(KERN_INFO
1345 "%s: interrupt while in poll!\n",
1346 dev->name);
1347 enable &= ~(IntrRxDone | IntrRxEmpty);
1348 writel(enable, ioaddr + IntrEnable);
1353 /* Scavenge the skbuff list based on the Tx-done queue.
1354 There are redundant checks here that may be cleaned up
1355 after the driver has proven to be reliable. */
1356 consumer = readl(ioaddr + TxConsumerIdx);
1357 if (debug > 3)
1358 printk(KERN_DEBUG "%s: Tx Consumer index is %d.\n",
1359 dev->name, consumer);
1361 while ((tx_status = le32_to_cpu(np->tx_done_q[np->tx_done].status)) != 0) {
1362 if (debug > 3)
1363 printk(KERN_DEBUG "%s: Tx completion #%d entry %d is %#8.8x.\n",
1364 dev->name, np->dirty_tx, np->tx_done, tx_status);
1365 if ((tx_status & 0xe0000000) == 0xa0000000) {
1366 dev->stats.tx_packets++;
1367 } else if ((tx_status & 0xe0000000) == 0x80000000) {
1368 u16 entry = (tx_status & 0x7fff) / sizeof(starfire_tx_desc);
1369 struct sk_buff *skb = np->tx_info[entry].skb;
1370 np->tx_info[entry].skb = NULL;
1371 pci_unmap_single(np->pci_dev,
1372 np->tx_info[entry].mapping,
1373 skb_first_frag_len(skb),
1374 PCI_DMA_TODEVICE);
1375 np->tx_info[entry].mapping = 0;
1376 np->dirty_tx += np->tx_info[entry].used_slots;
1377 entry = (entry + np->tx_info[entry].used_slots) % TX_RING_SIZE;
1379 int i;
1380 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1381 pci_unmap_single(np->pci_dev,
1382 np->tx_info[entry].mapping,
1383 skb_frag_size(&skb_shinfo(skb)->frags[i]),
1384 PCI_DMA_TODEVICE);
1385 np->dirty_tx++;
1386 entry++;
1390 dev_kfree_skb_irq(skb);
1392 np->tx_done_q[np->tx_done].status = 0;
1393 np->tx_done = (np->tx_done + 1) % DONE_Q_SIZE;
1395 writew(np->tx_done, ioaddr + CompletionQConsumerIdx + 2);
1397 if (netif_queue_stopped(dev) &&
1398 (np->cur_tx - np->dirty_tx + 4 < TX_RING_SIZE)) {
1399 /* The ring is no longer full, wake the queue. */
1400 netif_wake_queue(dev);
1403 /* Stats overflow */
1404 if (intr_status & IntrStatsMax)
1405 get_stats(dev);
1407 /* Media change interrupt. */
1408 if (intr_status & IntrLinkChange)
1409 netdev_media_change(dev);
1411 /* Abnormal error summary/uncommon events handlers. */
1412 if (intr_status & IntrAbnormalSummary)
1413 netdev_error(dev, intr_status);
1415 if (--boguscnt < 0) {
1416 if (debug > 1)
1417 printk(KERN_WARNING "%s: Too much work at interrupt, "
1418 "status=%#8.8x.\n",
1419 dev->name, intr_status);
1420 break;
1422 } while (1);
1424 if (debug > 4)
1425 printk(KERN_DEBUG "%s: exiting interrupt, status=%#8.8x.\n",
1426 dev->name, (int) readl(ioaddr + IntrStatus));
1427 return IRQ_RETVAL(handled);
1432 * This routine is logically part of the interrupt/poll handler, but separated
1433 * for clarity and better register allocation.
1435 static int __netdev_rx(struct net_device *dev, int *quota)
1437 struct netdev_private *np = netdev_priv(dev);
1438 u32 desc_status;
1439 int retcode = 0;
1441 /* If EOP is set on the next entry, it's a new packet. Send it up. */
1442 while ((desc_status = le32_to_cpu(np->rx_done_q[np->rx_done].status)) != 0) {
1443 struct sk_buff *skb;
1444 u16 pkt_len;
1445 int entry;
1446 rx_done_desc *desc = &np->rx_done_q[np->rx_done];
1448 if (debug > 4)
1449 printk(KERN_DEBUG " netdev_rx() status of %d was %#8.8x.\n", np->rx_done, desc_status);
1450 if (!(desc_status & RxOK)) {
1451 /* There was an error. */
1452 if (debug > 2)
1453 printk(KERN_DEBUG " netdev_rx() Rx error was %#8.8x.\n", desc_status);
1454 dev->stats.rx_errors++;
1455 if (desc_status & RxFIFOErr)
1456 dev->stats.rx_fifo_errors++;
1457 goto next_rx;
1460 if (*quota <= 0) { /* out of rx quota */
1461 retcode = 1;
1462 goto out;
1464 (*quota)--;
1466 pkt_len = desc_status; /* Implicitly Truncate */
1467 entry = (desc_status >> 16) & 0x7ff;
1469 if (debug > 4)
1470 printk(KERN_DEBUG " netdev_rx() normal Rx pkt length %d, quota %d.\n", pkt_len, *quota);
1471 /* Check if the packet is long enough to accept without copying
1472 to a minimally-sized skbuff. */
1473 if (pkt_len < rx_copybreak &&
1474 (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) {
1475 skb_reserve(skb, 2); /* 16 byte align the IP header */
1476 pci_dma_sync_single_for_cpu(np->pci_dev,
1477 np->rx_info[entry].mapping,
1478 pkt_len, PCI_DMA_FROMDEVICE);
1479 skb_copy_to_linear_data(skb, np->rx_info[entry].skb->data, pkt_len);
1480 pci_dma_sync_single_for_device(np->pci_dev,
1481 np->rx_info[entry].mapping,
1482 pkt_len, PCI_DMA_FROMDEVICE);
1483 skb_put(skb, pkt_len);
1484 } else {
1485 pci_unmap_single(np->pci_dev, np->rx_info[entry].mapping, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1486 skb = np->rx_info[entry].skb;
1487 skb_put(skb, pkt_len);
1488 np->rx_info[entry].skb = NULL;
1489 np->rx_info[entry].mapping = 0;
1491 #ifndef final_version /* Remove after testing. */
1492 /* You will want this info for the initial debug. */
1493 if (debug > 5) {
1494 printk(KERN_DEBUG " Rx data %pM %pM %2.2x%2.2x.\n",
1495 skb->data, skb->data + 6,
1496 skb->data[12], skb->data[13]);
1498 #endif
1500 skb->protocol = eth_type_trans(skb, dev);
1501 #ifdef VLAN_SUPPORT
1502 if (debug > 4)
1503 printk(KERN_DEBUG " netdev_rx() status2 of %d was %#4.4x.\n", np->rx_done, le16_to_cpu(desc->status2));
1504 #endif
1505 if (le16_to_cpu(desc->status2) & 0x0100) {
1506 skb->ip_summed = CHECKSUM_UNNECESSARY;
1507 dev->stats.rx_compressed++;
1510 * This feature doesn't seem to be working, at least
1511 * with the two firmware versions I have. If the GFP sees
1512 * an IP fragment, it either ignores it completely, or reports
1513 * "bad checksum" on it.
1515 * Maybe I missed something -- corrections are welcome.
1516 * Until then, the printk stays. :-) -Ion
1518 else if (le16_to_cpu(desc->status2) & 0x0040) {
1519 skb->ip_summed = CHECKSUM_COMPLETE;
1520 skb->csum = le16_to_cpu(desc->csum);
1521 printk(KERN_DEBUG "%s: checksum_hw, status2 = %#x\n", dev->name, le16_to_cpu(desc->status2));
1523 #ifdef VLAN_SUPPORT
1524 if (le16_to_cpu(desc->status2) & 0x0200) {
1525 u16 vlid = le16_to_cpu(desc->vlanid);
1527 if (debug > 4) {
1528 printk(KERN_DEBUG " netdev_rx() vlanid = %d\n",
1529 vlid);
1531 __vlan_hwaccel_put_tag(skb, vlid);
1533 #endif /* VLAN_SUPPORT */
1534 netif_receive_skb(skb);
1535 dev->stats.rx_packets++;
1537 next_rx:
1538 np->cur_rx++;
1539 desc->status = 0;
1540 np->rx_done = (np->rx_done + 1) % DONE_Q_SIZE;
1543 if (*quota == 0) { /* out of rx quota */
1544 retcode = 1;
1545 goto out;
1547 writew(np->rx_done, np->base + CompletionQConsumerIdx);
1549 out:
1550 refill_rx_ring(dev);
1551 if (debug > 5)
1552 printk(KERN_DEBUG " exiting netdev_rx(): %d, status of %d was %#8.8x.\n",
1553 retcode, np->rx_done, desc_status);
1554 return retcode;
1557 static int netdev_poll(struct napi_struct *napi, int budget)
1559 struct netdev_private *np = container_of(napi, struct netdev_private, napi);
1560 struct net_device *dev = np->dev;
1561 u32 intr_status;
1562 void __iomem *ioaddr = np->base;
1563 int quota = budget;
1565 do {
1566 writel(IntrRxDone | IntrRxEmpty, ioaddr + IntrClear);
1568 if (__netdev_rx(dev, &quota))
1569 goto out;
1571 intr_status = readl(ioaddr + IntrStatus);
1572 } while (intr_status & (IntrRxDone | IntrRxEmpty));
1574 napi_complete(napi);
1575 intr_status = readl(ioaddr + IntrEnable);
1576 intr_status |= IntrRxDone | IntrRxEmpty;
1577 writel(intr_status, ioaddr + IntrEnable);
1579 out:
1580 if (debug > 5)
1581 printk(KERN_DEBUG " exiting netdev_poll(): %d.\n",
1582 budget - quota);
1584 /* Restart Rx engine if stopped. */
1585 return budget - quota;
1588 static void refill_rx_ring(struct net_device *dev)
1590 struct netdev_private *np = netdev_priv(dev);
1591 struct sk_buff *skb;
1592 int entry = -1;
1594 /* Refill the Rx ring buffers. */
1595 for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
1596 entry = np->dirty_rx % RX_RING_SIZE;
1597 if (np->rx_info[entry].skb == NULL) {
1598 skb = netdev_alloc_skb(dev, np->rx_buf_sz);
1599 np->rx_info[entry].skb = skb;
1600 if (skb == NULL)
1601 break; /* Better luck next round. */
1602 np->rx_info[entry].mapping =
1603 pci_map_single(np->pci_dev, skb->data, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1604 np->rx_ring[entry].rxaddr =
1605 cpu_to_dma(np->rx_info[entry].mapping | RxDescValid);
1607 if (entry == RX_RING_SIZE - 1)
1608 np->rx_ring[entry].rxaddr |= cpu_to_dma(RxDescEndRing);
1610 if (entry >= 0)
1611 writew(entry, np->base + RxDescQIdx);
1615 static void netdev_media_change(struct net_device *dev)
1617 struct netdev_private *np = netdev_priv(dev);
1618 void __iomem *ioaddr = np->base;
1619 u16 reg0, reg1, reg4, reg5;
1620 u32 new_tx_mode;
1621 u32 new_intr_timer_ctrl;
1623 /* reset status first */
1624 mdio_read(dev, np->phys[0], MII_BMCR);
1625 mdio_read(dev, np->phys[0], MII_BMSR);
1627 reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
1628 reg1 = mdio_read(dev, np->phys[0], MII_BMSR);
1630 if (reg1 & BMSR_LSTATUS) {
1631 /* link is up */
1632 if (reg0 & BMCR_ANENABLE) {
1633 /* autonegotiation is enabled */
1634 reg4 = mdio_read(dev, np->phys[0], MII_ADVERTISE);
1635 reg5 = mdio_read(dev, np->phys[0], MII_LPA);
1636 if (reg4 & ADVERTISE_100FULL && reg5 & LPA_100FULL) {
1637 np->speed100 = 1;
1638 np->mii_if.full_duplex = 1;
1639 } else if (reg4 & ADVERTISE_100HALF && reg5 & LPA_100HALF) {
1640 np->speed100 = 1;
1641 np->mii_if.full_duplex = 0;
1642 } else if (reg4 & ADVERTISE_10FULL && reg5 & LPA_10FULL) {
1643 np->speed100 = 0;
1644 np->mii_if.full_duplex = 1;
1645 } else {
1646 np->speed100 = 0;
1647 np->mii_if.full_duplex = 0;
1649 } else {
1650 /* autonegotiation is disabled */
1651 if (reg0 & BMCR_SPEED100)
1652 np->speed100 = 1;
1653 else
1654 np->speed100 = 0;
1655 if (reg0 & BMCR_FULLDPLX)
1656 np->mii_if.full_duplex = 1;
1657 else
1658 np->mii_if.full_duplex = 0;
1660 netif_carrier_on(dev);
1661 printk(KERN_DEBUG "%s: Link is up, running at %sMbit %s-duplex\n",
1662 dev->name,
1663 np->speed100 ? "100" : "10",
1664 np->mii_if.full_duplex ? "full" : "half");
1666 new_tx_mode = np->tx_mode & ~FullDuplex; /* duplex setting */
1667 if (np->mii_if.full_duplex)
1668 new_tx_mode |= FullDuplex;
1669 if (np->tx_mode != new_tx_mode) {
1670 np->tx_mode = new_tx_mode;
1671 writel(np->tx_mode | MiiSoftReset, ioaddr + TxMode);
1672 udelay(1000);
1673 writel(np->tx_mode, ioaddr + TxMode);
1676 new_intr_timer_ctrl = np->intr_timer_ctrl & ~Timer10X;
1677 if (np->speed100)
1678 new_intr_timer_ctrl |= Timer10X;
1679 if (np->intr_timer_ctrl != new_intr_timer_ctrl) {
1680 np->intr_timer_ctrl = new_intr_timer_ctrl;
1681 writel(new_intr_timer_ctrl, ioaddr + IntrTimerCtrl);
1683 } else {
1684 netif_carrier_off(dev);
1685 printk(KERN_DEBUG "%s: Link is down\n", dev->name);
1690 static void netdev_error(struct net_device *dev, int intr_status)
1692 struct netdev_private *np = netdev_priv(dev);
1694 /* Came close to underrunning the Tx FIFO, increase threshold. */
1695 if (intr_status & IntrTxDataLow) {
1696 if (np->tx_threshold <= PKT_BUF_SZ / 16) {
1697 writel(++np->tx_threshold, np->base + TxThreshold);
1698 printk(KERN_NOTICE "%s: PCI bus congestion, increasing Tx FIFO threshold to %d bytes\n",
1699 dev->name, np->tx_threshold * 16);
1700 } else
1701 printk(KERN_WARNING "%s: PCI Tx underflow -- adapter is probably malfunctioning\n", dev->name);
1703 if (intr_status & IntrRxGFPDead) {
1704 dev->stats.rx_fifo_errors++;
1705 dev->stats.rx_errors++;
1707 if (intr_status & (IntrNoTxCsum | IntrDMAErr)) {
1708 dev->stats.tx_fifo_errors++;
1709 dev->stats.tx_errors++;
1711 if ((intr_status & ~(IntrNormalMask | IntrAbnormalSummary | IntrLinkChange | IntrStatsMax | IntrTxDataLow | IntrRxGFPDead | IntrNoTxCsum | IntrPCIPad)) && debug)
1712 printk(KERN_ERR "%s: Something Wicked happened! %#8.8x.\n",
1713 dev->name, intr_status);
1717 static struct net_device_stats *get_stats(struct net_device *dev)
1719 struct netdev_private *np = netdev_priv(dev);
1720 void __iomem *ioaddr = np->base;
1722 /* This adapter architecture needs no SMP locks. */
1723 dev->stats.tx_bytes = readl(ioaddr + 0x57010);
1724 dev->stats.rx_bytes = readl(ioaddr + 0x57044);
1725 dev->stats.tx_packets = readl(ioaddr + 0x57000);
1726 dev->stats.tx_aborted_errors =
1727 readl(ioaddr + 0x57024) + readl(ioaddr + 0x57028);
1728 dev->stats.tx_window_errors = readl(ioaddr + 0x57018);
1729 dev->stats.collisions =
1730 readl(ioaddr + 0x57004) + readl(ioaddr + 0x57008);
1732 /* The chip only need report frame silently dropped. */
1733 dev->stats.rx_dropped += readw(ioaddr + RxDMAStatus);
1734 writew(0, ioaddr + RxDMAStatus);
1735 dev->stats.rx_crc_errors = readl(ioaddr + 0x5703C);
1736 dev->stats.rx_frame_errors = readl(ioaddr + 0x57040);
1737 dev->stats.rx_length_errors = readl(ioaddr + 0x57058);
1738 dev->stats.rx_missed_errors = readl(ioaddr + 0x5707C);
1740 return &dev->stats;
1743 #ifdef VLAN_SUPPORT
1744 static u32 set_vlan_mode(struct netdev_private *np)
1746 u32 ret = VlanMode;
1747 u16 vid;
1748 void __iomem *filter_addr = np->base + HashTable + 8;
1749 int vlan_count = 0;
1751 for_each_set_bit(vid, np->active_vlans, VLAN_N_VID) {
1752 if (vlan_count == 32)
1753 break;
1754 writew(vid, filter_addr);
1755 filter_addr += 16;
1756 vlan_count++;
1758 if (vlan_count == 32) {
1759 ret |= PerfectFilterVlan;
1760 while (vlan_count < 32) {
1761 writew(0, filter_addr);
1762 filter_addr += 16;
1763 vlan_count++;
1766 return ret;
1768 #endif /* VLAN_SUPPORT */
1770 static void set_rx_mode(struct net_device *dev)
1772 struct netdev_private *np = netdev_priv(dev);
1773 void __iomem *ioaddr = np->base;
1774 u32 rx_mode = MinVLANPrio;
1775 struct netdev_hw_addr *ha;
1776 int i;
1778 #ifdef VLAN_SUPPORT
1779 rx_mode |= set_vlan_mode(np);
1780 #endif /* VLAN_SUPPORT */
1782 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1783 rx_mode |= AcceptAll;
1784 } else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
1785 (dev->flags & IFF_ALLMULTI)) {
1786 /* Too many to match, or accept all multicasts. */
1787 rx_mode |= AcceptBroadcast|AcceptAllMulticast|PerfectFilter;
1788 } else if (netdev_mc_count(dev) <= 14) {
1789 /* Use the 16 element perfect filter, skip first two entries. */
1790 void __iomem *filter_addr = ioaddr + PerfFilterTable + 2 * 16;
1791 __be16 *eaddrs;
1792 netdev_for_each_mc_addr(ha, dev) {
1793 eaddrs = (__be16 *) ha->addr;
1794 writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 4;
1795 writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1796 writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 8;
1798 eaddrs = (__be16 *)dev->dev_addr;
1799 i = netdev_mc_count(dev) + 2;
1800 while (i++ < 16) {
1801 writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 4;
1802 writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1803 writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 8;
1805 rx_mode |= AcceptBroadcast|PerfectFilter;
1806 } else {
1807 /* Must use a multicast hash table. */
1808 void __iomem *filter_addr;
1809 __be16 *eaddrs;
1810 __le16 mc_filter[32] __attribute__ ((aligned(sizeof(long)))); /* Multicast hash filter */
1812 memset(mc_filter, 0, sizeof(mc_filter));
1813 netdev_for_each_mc_addr(ha, dev) {
1814 /* The chip uses the upper 9 CRC bits
1815 as index into the hash table */
1816 int bit_nr = ether_crc_le(ETH_ALEN, ha->addr) >> 23;
1817 __le32 *fptr = (__le32 *) &mc_filter[(bit_nr >> 4) & ~1];
1819 *fptr |= cpu_to_le32(1 << (bit_nr & 31));
1821 /* Clear the perfect filter list, skip first two entries. */
1822 filter_addr = ioaddr + PerfFilterTable + 2 * 16;
1823 eaddrs = (__be16 *)dev->dev_addr;
1824 for (i = 2; i < 16; i++) {
1825 writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 4;
1826 writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1827 writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 8;
1829 for (filter_addr = ioaddr + HashTable, i = 0; i < 32; filter_addr+= 16, i++)
1830 writew(mc_filter[i], filter_addr);
1831 rx_mode |= AcceptBroadcast|PerfectFilter|HashFilter;
1833 writel(rx_mode, ioaddr + RxFilterMode);
1836 static int check_if_running(struct net_device *dev)
1838 if (!netif_running(dev))
1839 return -EINVAL;
1840 return 0;
1843 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1845 struct netdev_private *np = netdev_priv(dev);
1846 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1847 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1848 strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
1851 static int get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1853 struct netdev_private *np = netdev_priv(dev);
1854 spin_lock_irq(&np->lock);
1855 mii_ethtool_gset(&np->mii_if, ecmd);
1856 spin_unlock_irq(&np->lock);
1857 return 0;
1860 static int set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1862 struct netdev_private *np = netdev_priv(dev);
1863 int res;
1864 spin_lock_irq(&np->lock);
1865 res = mii_ethtool_sset(&np->mii_if, ecmd);
1866 spin_unlock_irq(&np->lock);
1867 check_duplex(dev);
1868 return res;
1871 static int nway_reset(struct net_device *dev)
1873 struct netdev_private *np = netdev_priv(dev);
1874 return mii_nway_restart(&np->mii_if);
1877 static u32 get_link(struct net_device *dev)
1879 struct netdev_private *np = netdev_priv(dev);
1880 return mii_link_ok(&np->mii_if);
1883 static u32 get_msglevel(struct net_device *dev)
1885 return debug;
1888 static void set_msglevel(struct net_device *dev, u32 val)
1890 debug = val;
1893 static const struct ethtool_ops ethtool_ops = {
1894 .begin = check_if_running,
1895 .get_drvinfo = get_drvinfo,
1896 .get_settings = get_settings,
1897 .set_settings = set_settings,
1898 .nway_reset = nway_reset,
1899 .get_link = get_link,
1900 .get_msglevel = get_msglevel,
1901 .set_msglevel = set_msglevel,
1904 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1906 struct netdev_private *np = netdev_priv(dev);
1907 struct mii_ioctl_data *data = if_mii(rq);
1908 int rc;
1910 if (!netif_running(dev))
1911 return -EINVAL;
1913 spin_lock_irq(&np->lock);
1914 rc = generic_mii_ioctl(&np->mii_if, data, cmd, NULL);
1915 spin_unlock_irq(&np->lock);
1917 if ((cmd == SIOCSMIIREG) && (data->phy_id == np->phys[0]))
1918 check_duplex(dev);
1920 return rc;
1923 static int netdev_close(struct net_device *dev)
1925 struct netdev_private *np = netdev_priv(dev);
1926 void __iomem *ioaddr = np->base;
1927 int i;
1929 netif_stop_queue(dev);
1931 napi_disable(&np->napi);
1933 if (debug > 1) {
1934 printk(KERN_DEBUG "%s: Shutting down ethercard, Intr status %#8.8x.\n",
1935 dev->name, (int) readl(ioaddr + IntrStatus));
1936 printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
1937 dev->name, np->cur_tx, np->dirty_tx,
1938 np->cur_rx, np->dirty_rx);
1941 /* Disable interrupts by clearing the interrupt mask. */
1942 writel(0, ioaddr + IntrEnable);
1944 /* Stop the chip's Tx and Rx processes. */
1945 writel(0, ioaddr + GenCtrl);
1946 readl(ioaddr + GenCtrl);
1948 if (debug > 5) {
1949 printk(KERN_DEBUG" Tx ring at %#llx:\n",
1950 (long long) np->tx_ring_dma);
1951 for (i = 0; i < 8 /* TX_RING_SIZE is huge! */; i++)
1952 printk(KERN_DEBUG " #%d desc. %#8.8x %#llx -> %#8.8x.\n",
1953 i, le32_to_cpu(np->tx_ring[i].status),
1954 (long long) dma_to_cpu(np->tx_ring[i].addr),
1955 le32_to_cpu(np->tx_done_q[i].status));
1956 printk(KERN_DEBUG " Rx ring at %#llx -> %p:\n",
1957 (long long) np->rx_ring_dma, np->rx_done_q);
1958 if (np->rx_done_q)
1959 for (i = 0; i < 8 /* RX_RING_SIZE */; i++) {
1960 printk(KERN_DEBUG " #%d desc. %#llx -> %#8.8x\n",
1961 i, (long long) dma_to_cpu(np->rx_ring[i].rxaddr), le32_to_cpu(np->rx_done_q[i].status));
1965 free_irq(dev->irq, dev);
1967 /* Free all the skbuffs in the Rx queue. */
1968 for (i = 0; i < RX_RING_SIZE; i++) {
1969 np->rx_ring[i].rxaddr = cpu_to_dma(0xBADF00D0); /* An invalid address. */
1970 if (np->rx_info[i].skb != NULL) {
1971 pci_unmap_single(np->pci_dev, np->rx_info[i].mapping, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1972 dev_kfree_skb(np->rx_info[i].skb);
1974 np->rx_info[i].skb = NULL;
1975 np->rx_info[i].mapping = 0;
1977 for (i = 0; i < TX_RING_SIZE; i++) {
1978 struct sk_buff *skb = np->tx_info[i].skb;
1979 if (skb == NULL)
1980 continue;
1981 pci_unmap_single(np->pci_dev,
1982 np->tx_info[i].mapping,
1983 skb_first_frag_len(skb), PCI_DMA_TODEVICE);
1984 np->tx_info[i].mapping = 0;
1985 dev_kfree_skb(skb);
1986 np->tx_info[i].skb = NULL;
1989 return 0;
1992 #ifdef CONFIG_PM
1993 static int starfire_suspend(struct pci_dev *pdev, pm_message_t state)
1995 struct net_device *dev = pci_get_drvdata(pdev);
1997 if (netif_running(dev)) {
1998 netif_device_detach(dev);
1999 netdev_close(dev);
2002 pci_save_state(pdev);
2003 pci_set_power_state(pdev, pci_choose_state(pdev,state));
2005 return 0;
2008 static int starfire_resume(struct pci_dev *pdev)
2010 struct net_device *dev = pci_get_drvdata(pdev);
2012 pci_set_power_state(pdev, PCI_D0);
2013 pci_restore_state(pdev);
2015 if (netif_running(dev)) {
2016 netdev_open(dev);
2017 netif_device_attach(dev);
2020 return 0;
2022 #endif /* CONFIG_PM */
2025 static void __devexit starfire_remove_one (struct pci_dev *pdev)
2027 struct net_device *dev = pci_get_drvdata(pdev);
2028 struct netdev_private *np = netdev_priv(dev);
2030 BUG_ON(!dev);
2032 unregister_netdev(dev);
2034 if (np->queue_mem)
2035 pci_free_consistent(pdev, np->queue_mem_size, np->queue_mem, np->queue_mem_dma);
2038 /* XXX: add wakeup code -- requires firmware for MagicPacket */
2039 pci_set_power_state(pdev, PCI_D3hot); /* go to sleep in D3 mode */
2040 pci_disable_device(pdev);
2042 iounmap(np->base);
2043 pci_release_regions(pdev);
2045 pci_set_drvdata(pdev, NULL);
2046 free_netdev(dev); /* Will also free np!! */
2050 static struct pci_driver starfire_driver = {
2051 .name = DRV_NAME,
2052 .probe = starfire_init_one,
2053 .remove = __devexit_p(starfire_remove_one),
2054 #ifdef CONFIG_PM
2055 .suspend = starfire_suspend,
2056 .resume = starfire_resume,
2057 #endif /* CONFIG_PM */
2058 .id_table = starfire_pci_tbl,
2062 static int __init starfire_init (void)
2064 /* when a module, this is printed whether or not devices are found in probe */
2065 #ifdef MODULE
2066 printk(version);
2068 printk(KERN_INFO DRV_NAME ": polling (NAPI) enabled\n");
2069 #endif
2071 BUILD_BUG_ON(sizeof(dma_addr_t) != sizeof(netdrv_addr_t));
2073 return pci_register_driver(&starfire_driver);
2077 static void __exit starfire_cleanup (void)
2079 pci_unregister_driver (&starfire_driver);
2083 module_init(starfire_init);
2084 module_exit(starfire_cleanup);
2088 * Local variables:
2089 * c-basic-offset: 8
2090 * tab-width: 8
2091 * End: