1 /* bnx2x_init_ops.h: Broadcom Everest network driver.
2 * Static functions needed during the initialization.
3 * This file is "included" in bnx2x_main.c.
5 * Copyright (c) 2007-2012 Broadcom Corporation
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation.
11 * Maintained by: Eilon Greenstein <eilong@broadcom.com>
12 * Written by: Vladislav Zolotarov <vladz@broadcom.com>
15 #ifndef BNX2X_INIT_OPS_H
16 #define BNX2X_INIT_OPS_H
20 #define BP_ILT(bp) NULL
31 #ifndef BNX2X_ILT_FREE
32 #define BNX2X_ILT_FREE(x, y, sz)
35 #ifndef BNX2X_ILT_ZALLOC
36 #define BNX2X_ILT_ZALLOC(x, y, sz)
43 static int bnx2x_gunzip(struct bnx2x
*bp
, const u8
*zbuf
, int len
);
44 static void bnx2x_reg_wr_ind(struct bnx2x
*bp
, u32 addr
, u32 val
);
45 static void bnx2x_write_dmae_phys_len(struct bnx2x
*bp
,
46 dma_addr_t phys_addr
, u32 addr
,
49 static void bnx2x_init_str_wr(struct bnx2x
*bp
, u32 addr
,
50 const u32
*data
, u32 len
)
54 for (i
= 0; i
< len
; i
++)
55 REG_WR(bp
, addr
+ i
*4, data
[i
]);
58 static void bnx2x_init_ind_wr(struct bnx2x
*bp
, u32 addr
,
59 const u32
*data
, u32 len
)
63 for (i
= 0; i
< len
; i
++)
64 bnx2x_reg_wr_ind(bp
, addr
+ i
*4, data
[i
]);
67 static void bnx2x_write_big_buf(struct bnx2x
*bp
, u32 addr
, u32 len
,
71 bnx2x_write_dmae_phys_len(bp
, GUNZIP_PHYS(bp
), addr
, len
);
73 /* in E1 chips BIOS initiated ZLR may interrupt widebus writes */
74 else if (wb
&& CHIP_IS_E1(bp
))
75 bnx2x_init_ind_wr(bp
, addr
, GUNZIP_BUF(bp
), len
);
77 /* in later chips PXP root complex handles BIOS ZLR w/o interrupting */
79 bnx2x_init_str_wr(bp
, addr
, GUNZIP_BUF(bp
), len
);
82 static void bnx2x_init_fill(struct bnx2x
*bp
, u32 addr
, int fill
,
85 u32 buf_len
= (((len
*4) > FW_BUF_SIZE
) ? FW_BUF_SIZE
: (len
*4));
86 u32 buf_len32
= buf_len
/4;
89 memset(GUNZIP_BUF(bp
), (u8
)fill
, buf_len
);
91 for (i
= 0; i
< len
; i
+= buf_len32
) {
92 u32 cur_len
= min(buf_len32
, len
- i
);
94 bnx2x_write_big_buf(bp
, addr
+ i
*4, cur_len
, wb
);
98 static void bnx2x_write_big_buf_wb(struct bnx2x
*bp
, u32 addr
, u32 len
)
101 bnx2x_write_dmae_phys_len(bp
, GUNZIP_PHYS(bp
), addr
, len
);
103 /* in E1 chips BIOS initiated ZLR may interrupt widebus writes */
104 else if (CHIP_IS_E1(bp
))
105 bnx2x_init_ind_wr(bp
, addr
, GUNZIP_BUF(bp
), len
);
107 /* in later chips PXP root complex handles BIOS ZLR w/o interrupting */
109 bnx2x_init_str_wr(bp
, addr
, GUNZIP_BUF(bp
), len
);
112 static void bnx2x_init_wr_64(struct bnx2x
*bp
, u32 addr
,
113 const u32
*data
, u32 len64
)
115 u32 buf_len32
= FW_BUF_SIZE
/4;
120 /* 64 bit value is in a blob: first low DWORD, then high DWORD */
121 data64
= HILO_U64((*(data
+ 1)), (*data
));
123 len64
= min((u32
)(FW_BUF_SIZE
/8), len64
);
124 for (i
= 0; i
< len64
; i
++) {
125 u64
*pdata
= ((u64
*)(GUNZIP_BUF(bp
))) + i
;
130 for (i
= 0; i
< len
; i
+= buf_len32
) {
131 u32 cur_len
= min(buf_len32
, len
- i
);
133 bnx2x_write_big_buf_wb(bp
, addr
+ i
*4, cur_len
);
137 /*********************************************************
138 There are different blobs for each PRAM section.
139 In addition, each blob write operation is divided into a few operations
140 in order to decrease the amount of phys. contiguous buffer needed.
141 Thus, when we select a blob the address may be with some offset
142 from the beginning of PRAM section.
143 The same holds for the INT_TABLE sections.
144 **********************************************************/
145 #define IF_IS_INT_TABLE_ADDR(base, addr) \
146 if (((base) <= (addr)) && ((base) + 0x400 >= (addr)))
148 #define IF_IS_PRAM_ADDR(base, addr) \
149 if (((base) <= (addr)) && ((base) + 0x40000 >= (addr)))
151 static const u8
*bnx2x_sel_blob(struct bnx2x
*bp
, u32 addr
,
154 IF_IS_INT_TABLE_ADDR(TSEM_REG_INT_TABLE
, addr
)
155 data
= INIT_TSEM_INT_TABLE_DATA(bp
);
157 IF_IS_INT_TABLE_ADDR(CSEM_REG_INT_TABLE
, addr
)
158 data
= INIT_CSEM_INT_TABLE_DATA(bp
);
160 IF_IS_INT_TABLE_ADDR(USEM_REG_INT_TABLE
, addr
)
161 data
= INIT_USEM_INT_TABLE_DATA(bp
);
163 IF_IS_INT_TABLE_ADDR(XSEM_REG_INT_TABLE
, addr
)
164 data
= INIT_XSEM_INT_TABLE_DATA(bp
);
166 IF_IS_PRAM_ADDR(TSEM_REG_PRAM
, addr
)
167 data
= INIT_TSEM_PRAM_DATA(bp
);
169 IF_IS_PRAM_ADDR(CSEM_REG_PRAM
, addr
)
170 data
= INIT_CSEM_PRAM_DATA(bp
);
172 IF_IS_PRAM_ADDR(USEM_REG_PRAM
, addr
)
173 data
= INIT_USEM_PRAM_DATA(bp
);
175 IF_IS_PRAM_ADDR(XSEM_REG_PRAM
, addr
)
176 data
= INIT_XSEM_PRAM_DATA(bp
);
181 static void bnx2x_init_wr_wb(struct bnx2x
*bp
, u32 addr
,
182 const u32
*data
, u32 len
)
185 VIRT_WR_DMAE_LEN(bp
, data
, addr
, len
, 0);
187 /* in E1 chips BIOS initiated ZLR may interrupt widebus writes */
188 else if (CHIP_IS_E1(bp
))
189 bnx2x_init_ind_wr(bp
, addr
, data
, len
);
191 /* in later chips PXP root complex handles BIOS ZLR w/o interrupting */
193 bnx2x_init_str_wr(bp
, addr
, data
, len
);
196 static void bnx2x_wr_64(struct bnx2x
*bp
, u32 reg
, u32 val_lo
,
201 wb_write
[0] = val_lo
;
202 wb_write
[1] = val_hi
;
203 REG_WR_DMAE_LEN(bp
, reg
, wb_write
, 2);
205 static void bnx2x_init_wr_zp(struct bnx2x
*bp
, u32 addr
, u32 len
,
208 const u8
*data
= NULL
;
212 data
= bnx2x_sel_blob(bp
, addr
, data
) + blob_off
*4;
214 rc
= bnx2x_gunzip(bp
, data
, len
);
218 /* gunzip_outlen is in dwords */
219 len
= GUNZIP_OUTLEN(bp
);
220 for (i
= 0; i
< len
; i
++)
221 ((u32
*)GUNZIP_BUF(bp
))[i
] =
222 cpu_to_le32(((u32
*)GUNZIP_BUF(bp
))[i
]);
224 bnx2x_write_big_buf_wb(bp
, addr
, len
);
227 static void bnx2x_init_block(struct bnx2x
*bp
, u32 block
, u32 stage
)
230 INIT_OPS_OFFSETS(bp
)[BLOCK_OPS_IDX(block
, stage
,
233 INIT_OPS_OFFSETS(bp
)[BLOCK_OPS_IDX(block
, stage
,
236 u32 op_idx
, op_type
, addr
, len
;
237 const u32
*data
, *data_base
;
240 if (op_start
== op_end
)
243 data_base
= INIT_DATA(bp
);
245 for (op_idx
= op_start
; op_idx
< op_end
; op_idx
++) {
247 op
= (union init_op
*)&(INIT_OPS(bp
)[op_idx
]);
248 /* Get generic data */
249 op_type
= op
->raw
.op
;
250 addr
= op
->raw
.offset
;
251 /* Get data that's used for OP_SW, OP_WB, OP_FW, OP_ZP and
252 * OP_WR64 (we assume that op_arr_write and op_write have the
255 len
= op
->arr_wr
.data_len
;
256 data
= data_base
+ op
->arr_wr
.data_off
;
263 REG_WR(bp
, addr
, op
->write
.val
);
266 bnx2x_init_str_wr(bp
, addr
, data
, len
);
269 bnx2x_init_wr_wb(bp
, addr
, data
, len
);
272 bnx2x_init_fill(bp
, addr
, 0, op
->zero
.len
, 0);
275 bnx2x_init_fill(bp
, addr
, 0, op
->zero
.len
, 1);
278 bnx2x_init_wr_zp(bp
, addr
, len
,
279 op
->arr_wr
.data_off
);
282 bnx2x_init_wr_64(bp
, addr
, data
, len
);
285 /* if any of the flags doesn't match, skip the
288 if ((INIT_MODE_FLAGS(bp
) &
289 op
->if_mode
.mode_bit_map
) !=
290 op
->if_mode
.mode_bit_map
)
291 op_idx
+= op
->if_mode
.cmd_offset
;
294 /* if all the flags don't match, skip the conditional
297 if ((INIT_MODE_FLAGS(bp
) &
298 op
->if_mode
.mode_bit_map
) == 0)
299 op_idx
+= op
->if_mode
.cmd_offset
;
302 /* Should never get here! */
310 /****************************************************************************
312 ****************************************************************************/
314 * This code configures the PCI read/write arbiter
315 * which implements a weighted round robin
316 * between the virtual queues in the chip.
318 * The values were derived for each PCI max payload and max request size.
319 * since max payload and max request size are only known at run time,
320 * this is done as a separate init stage.
328 /* configuration for one arbiter queue */
335 /* derived configuration for each read queue for each max request size */
336 static const struct arb_line read_arb_data
[NUM_RD_Q
][MAX_RD_ORD
+ 1] = {
337 /* 1 */ { {8, 64, 25}, {16, 64, 25}, {32, 64, 25}, {64, 64, 41} },
338 { {4, 8, 4}, {4, 8, 4}, {4, 8, 4}, {4, 8, 4} },
339 { {4, 3, 3}, {4, 3, 3}, {4, 3, 3}, {4, 3, 3} },
340 { {8, 3, 6}, {16, 3, 11}, {16, 3, 11}, {16, 3, 11} },
341 { {8, 64, 25}, {16, 64, 25}, {32, 64, 25}, {64, 64, 41} },
342 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} },
343 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} },
344 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} },
345 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} },
346 /* 10 */{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
347 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
348 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
349 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
350 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
351 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
352 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
353 { {8, 64, 6}, {16, 64, 11}, {32, 64, 21}, {32, 64, 21} },
354 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
355 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
356 /* 20 */{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
357 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
358 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
359 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
360 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
361 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
362 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
363 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
364 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
365 { {8, 64, 25}, {16, 64, 41}, {32, 64, 81}, {64, 64, 120} }
368 /* derived configuration for each write queue for each max request size */
369 static const struct arb_line write_arb_data
[NUM_WR_Q
][MAX_WR_ORD
+ 1] = {
370 /* 1 */ { {4, 6, 3}, {4, 6, 3}, {4, 6, 3} },
371 { {4, 2, 3}, {4, 2, 3}, {4, 2, 3} },
372 { {8, 2, 6}, {16, 2, 11}, {16, 2, 11} },
373 { {8, 2, 6}, {16, 2, 11}, {32, 2, 21} },
374 { {8, 2, 6}, {16, 2, 11}, {32, 2, 21} },
375 { {8, 2, 6}, {16, 2, 11}, {32, 2, 21} },
376 { {8, 64, 25}, {16, 64, 25}, {32, 64, 25} },
377 { {8, 2, 6}, {16, 2, 11}, {16, 2, 11} },
378 { {8, 2, 6}, {16, 2, 11}, {16, 2, 11} },
379 /* 10 */{ {8, 9, 6}, {16, 9, 11}, {32, 9, 21} },
380 { {8, 47, 19}, {16, 47, 19}, {32, 47, 21} },
381 { {8, 9, 6}, {16, 9, 11}, {16, 9, 11} },
382 { {8, 64, 25}, {16, 64, 41}, {32, 64, 81} }
385 /* register addresses for read queues */
386 static const struct arb_line read_arb_addr
[NUM_RD_Q
-1] = {
387 /* 1 */ {PXP2_REG_RQ_BW_RD_L0
, PXP2_REG_RQ_BW_RD_ADD0
,
388 PXP2_REG_RQ_BW_RD_UBOUND0
},
389 {PXP2_REG_PSWRQ_BW_L1
, PXP2_REG_PSWRQ_BW_ADD1
,
390 PXP2_REG_PSWRQ_BW_UB1
},
391 {PXP2_REG_PSWRQ_BW_L2
, PXP2_REG_PSWRQ_BW_ADD2
,
392 PXP2_REG_PSWRQ_BW_UB2
},
393 {PXP2_REG_PSWRQ_BW_L3
, PXP2_REG_PSWRQ_BW_ADD3
,
394 PXP2_REG_PSWRQ_BW_UB3
},
395 {PXP2_REG_RQ_BW_RD_L4
, PXP2_REG_RQ_BW_RD_ADD4
,
396 PXP2_REG_RQ_BW_RD_UBOUND4
},
397 {PXP2_REG_RQ_BW_RD_L5
, PXP2_REG_RQ_BW_RD_ADD5
,
398 PXP2_REG_RQ_BW_RD_UBOUND5
},
399 {PXP2_REG_PSWRQ_BW_L6
, PXP2_REG_PSWRQ_BW_ADD6
,
400 PXP2_REG_PSWRQ_BW_UB6
},
401 {PXP2_REG_PSWRQ_BW_L7
, PXP2_REG_PSWRQ_BW_ADD7
,
402 PXP2_REG_PSWRQ_BW_UB7
},
403 {PXP2_REG_PSWRQ_BW_L8
, PXP2_REG_PSWRQ_BW_ADD8
,
404 PXP2_REG_PSWRQ_BW_UB8
},
405 /* 10 */{PXP2_REG_PSWRQ_BW_L9
, PXP2_REG_PSWRQ_BW_ADD9
,
406 PXP2_REG_PSWRQ_BW_UB9
},
407 {PXP2_REG_PSWRQ_BW_L10
, PXP2_REG_PSWRQ_BW_ADD10
,
408 PXP2_REG_PSWRQ_BW_UB10
},
409 {PXP2_REG_PSWRQ_BW_L11
, PXP2_REG_PSWRQ_BW_ADD11
,
410 PXP2_REG_PSWRQ_BW_UB11
},
411 {PXP2_REG_RQ_BW_RD_L12
, PXP2_REG_RQ_BW_RD_ADD12
,
412 PXP2_REG_RQ_BW_RD_UBOUND12
},
413 {PXP2_REG_RQ_BW_RD_L13
, PXP2_REG_RQ_BW_RD_ADD13
,
414 PXP2_REG_RQ_BW_RD_UBOUND13
},
415 {PXP2_REG_RQ_BW_RD_L14
, PXP2_REG_RQ_BW_RD_ADD14
,
416 PXP2_REG_RQ_BW_RD_UBOUND14
},
417 {PXP2_REG_RQ_BW_RD_L15
, PXP2_REG_RQ_BW_RD_ADD15
,
418 PXP2_REG_RQ_BW_RD_UBOUND15
},
419 {PXP2_REG_RQ_BW_RD_L16
, PXP2_REG_RQ_BW_RD_ADD16
,
420 PXP2_REG_RQ_BW_RD_UBOUND16
},
421 {PXP2_REG_RQ_BW_RD_L17
, PXP2_REG_RQ_BW_RD_ADD17
,
422 PXP2_REG_RQ_BW_RD_UBOUND17
},
423 {PXP2_REG_RQ_BW_RD_L18
, PXP2_REG_RQ_BW_RD_ADD18
,
424 PXP2_REG_RQ_BW_RD_UBOUND18
},
425 /* 20 */{PXP2_REG_RQ_BW_RD_L19
, PXP2_REG_RQ_BW_RD_ADD19
,
426 PXP2_REG_RQ_BW_RD_UBOUND19
},
427 {PXP2_REG_RQ_BW_RD_L20
, PXP2_REG_RQ_BW_RD_ADD20
,
428 PXP2_REG_RQ_BW_RD_UBOUND20
},
429 {PXP2_REG_RQ_BW_RD_L22
, PXP2_REG_RQ_BW_RD_ADD22
,
430 PXP2_REG_RQ_BW_RD_UBOUND22
},
431 {PXP2_REG_RQ_BW_RD_L23
, PXP2_REG_RQ_BW_RD_ADD23
,
432 PXP2_REG_RQ_BW_RD_UBOUND23
},
433 {PXP2_REG_RQ_BW_RD_L24
, PXP2_REG_RQ_BW_RD_ADD24
,
434 PXP2_REG_RQ_BW_RD_UBOUND24
},
435 {PXP2_REG_RQ_BW_RD_L25
, PXP2_REG_RQ_BW_RD_ADD25
,
436 PXP2_REG_RQ_BW_RD_UBOUND25
},
437 {PXP2_REG_RQ_BW_RD_L26
, PXP2_REG_RQ_BW_RD_ADD26
,
438 PXP2_REG_RQ_BW_RD_UBOUND26
},
439 {PXP2_REG_RQ_BW_RD_L27
, PXP2_REG_RQ_BW_RD_ADD27
,
440 PXP2_REG_RQ_BW_RD_UBOUND27
},
441 {PXP2_REG_PSWRQ_BW_L28
, PXP2_REG_PSWRQ_BW_ADD28
,
442 PXP2_REG_PSWRQ_BW_UB28
}
445 /* register addresses for write queues */
446 static const struct arb_line write_arb_addr
[NUM_WR_Q
-1] = {
447 /* 1 */ {PXP2_REG_PSWRQ_BW_L1
, PXP2_REG_PSWRQ_BW_ADD1
,
448 PXP2_REG_PSWRQ_BW_UB1
},
449 {PXP2_REG_PSWRQ_BW_L2
, PXP2_REG_PSWRQ_BW_ADD2
,
450 PXP2_REG_PSWRQ_BW_UB2
},
451 {PXP2_REG_PSWRQ_BW_L3
, PXP2_REG_PSWRQ_BW_ADD3
,
452 PXP2_REG_PSWRQ_BW_UB3
},
453 {PXP2_REG_PSWRQ_BW_L6
, PXP2_REG_PSWRQ_BW_ADD6
,
454 PXP2_REG_PSWRQ_BW_UB6
},
455 {PXP2_REG_PSWRQ_BW_L7
, PXP2_REG_PSWRQ_BW_ADD7
,
456 PXP2_REG_PSWRQ_BW_UB7
},
457 {PXP2_REG_PSWRQ_BW_L8
, PXP2_REG_PSWRQ_BW_ADD8
,
458 PXP2_REG_PSWRQ_BW_UB8
},
459 {PXP2_REG_PSWRQ_BW_L9
, PXP2_REG_PSWRQ_BW_ADD9
,
460 PXP2_REG_PSWRQ_BW_UB9
},
461 {PXP2_REG_PSWRQ_BW_L10
, PXP2_REG_PSWRQ_BW_ADD10
,
462 PXP2_REG_PSWRQ_BW_UB10
},
463 {PXP2_REG_PSWRQ_BW_L11
, PXP2_REG_PSWRQ_BW_ADD11
,
464 PXP2_REG_PSWRQ_BW_UB11
},
465 /* 10 */{PXP2_REG_PSWRQ_BW_L28
, PXP2_REG_PSWRQ_BW_ADD28
,
466 PXP2_REG_PSWRQ_BW_UB28
},
467 {PXP2_REG_RQ_BW_WR_L29
, PXP2_REG_RQ_BW_WR_ADD29
,
468 PXP2_REG_RQ_BW_WR_UBOUND29
},
469 {PXP2_REG_RQ_BW_WR_L30
, PXP2_REG_RQ_BW_WR_ADD30
,
470 PXP2_REG_RQ_BW_WR_UBOUND30
}
473 static void bnx2x_init_pxp_arb(struct bnx2x
*bp
, int r_order
,
478 if (r_order
> MAX_RD_ORD
) {
479 DP(NETIF_MSG_HW
, "read order of %d order adjusted to %d\n",
480 r_order
, MAX_RD_ORD
);
481 r_order
= MAX_RD_ORD
;
483 if (w_order
> MAX_WR_ORD
) {
484 DP(NETIF_MSG_HW
, "write order of %d order adjusted to %d\n",
485 w_order
, MAX_WR_ORD
);
486 w_order
= MAX_WR_ORD
;
488 if (CHIP_REV_IS_FPGA(bp
)) {
489 DP(NETIF_MSG_HW
, "write order adjusted to 1 for FPGA\n");
492 DP(NETIF_MSG_HW
, "read order %d write order %d\n", r_order
, w_order
);
494 for (i
= 0; i
< NUM_RD_Q
-1; i
++) {
495 REG_WR(bp
, read_arb_addr
[i
].l
, read_arb_data
[i
][r_order
].l
);
496 REG_WR(bp
, read_arb_addr
[i
].add
,
497 read_arb_data
[i
][r_order
].add
);
498 REG_WR(bp
, read_arb_addr
[i
].ubound
,
499 read_arb_data
[i
][r_order
].ubound
);
502 for (i
= 0; i
< NUM_WR_Q
-1; i
++) {
503 if ((write_arb_addr
[i
].l
== PXP2_REG_RQ_BW_WR_L29
) ||
504 (write_arb_addr
[i
].l
== PXP2_REG_RQ_BW_WR_L30
)) {
506 REG_WR(bp
, write_arb_addr
[i
].l
,
507 write_arb_data
[i
][w_order
].l
);
509 REG_WR(bp
, write_arb_addr
[i
].add
,
510 write_arb_data
[i
][w_order
].add
);
512 REG_WR(bp
, write_arb_addr
[i
].ubound
,
513 write_arb_data
[i
][w_order
].ubound
);
516 val
= REG_RD(bp
, write_arb_addr
[i
].l
);
517 REG_WR(bp
, write_arb_addr
[i
].l
,
518 val
| (write_arb_data
[i
][w_order
].l
<< 10));
520 val
= REG_RD(bp
, write_arb_addr
[i
].add
);
521 REG_WR(bp
, write_arb_addr
[i
].add
,
522 val
| (write_arb_data
[i
][w_order
].add
<< 10));
524 val
= REG_RD(bp
, write_arb_addr
[i
].ubound
);
525 REG_WR(bp
, write_arb_addr
[i
].ubound
,
526 val
| (write_arb_data
[i
][w_order
].ubound
<< 7));
530 val
= write_arb_data
[NUM_WR_Q
-1][w_order
].add
;
531 val
+= write_arb_data
[NUM_WR_Q
-1][w_order
].ubound
<< 10;
532 val
+= write_arb_data
[NUM_WR_Q
-1][w_order
].l
<< 17;
533 REG_WR(bp
, PXP2_REG_PSWRQ_BW_RD
, val
);
535 val
= read_arb_data
[NUM_RD_Q
-1][r_order
].add
;
536 val
+= read_arb_data
[NUM_RD_Q
-1][r_order
].ubound
<< 10;
537 val
+= read_arb_data
[NUM_RD_Q
-1][r_order
].l
<< 17;
538 REG_WR(bp
, PXP2_REG_PSWRQ_BW_WR
, val
);
540 REG_WR(bp
, PXP2_REG_RQ_WR_MBS0
, w_order
);
541 REG_WR(bp
, PXP2_REG_RQ_WR_MBS1
, w_order
);
542 REG_WR(bp
, PXP2_REG_RQ_RD_MBS0
, r_order
);
543 REG_WR(bp
, PXP2_REG_RQ_RD_MBS1
, r_order
);
545 if ((CHIP_IS_E1(bp
) || CHIP_IS_E1H(bp
)) && (r_order
== MAX_RD_ORD
))
546 REG_WR(bp
, PXP2_REG_RQ_PDR_LIMIT
, 0xe00);
549 REG_WR(bp
, PXP2_REG_WR_USDMDP_TH
, (0x4 << w_order
));
550 else if (CHIP_IS_E2(bp
))
551 REG_WR(bp
, PXP2_REG_WR_USDMDP_TH
, (0x8 << w_order
));
553 REG_WR(bp
, PXP2_REG_WR_USDMDP_TH
, (0x18 << w_order
));
555 if (!CHIP_IS_E1(bp
)) {
556 /* MPS w_order optimal TH presently TH
561 /* DMAE is special */
562 if (!CHIP_IS_E1H(bp
)) {
563 /* E2 can use optimal TH */
565 REG_WR(bp
, PXP2_REG_WR_DMAE_MPS
, val
);
567 val
= ((w_order
== 0) ? 2 : 3);
568 REG_WR(bp
, PXP2_REG_WR_DMAE_MPS
, 2);
571 REG_WR(bp
, PXP2_REG_WR_HC_MPS
, val
);
572 REG_WR(bp
, PXP2_REG_WR_USDM_MPS
, val
);
573 REG_WR(bp
, PXP2_REG_WR_CSDM_MPS
, val
);
574 REG_WR(bp
, PXP2_REG_WR_TSDM_MPS
, val
);
575 REG_WR(bp
, PXP2_REG_WR_XSDM_MPS
, val
);
576 REG_WR(bp
, PXP2_REG_WR_QM_MPS
, val
);
577 REG_WR(bp
, PXP2_REG_WR_TM_MPS
, val
);
578 REG_WR(bp
, PXP2_REG_WR_SRC_MPS
, val
);
579 REG_WR(bp
, PXP2_REG_WR_DBG_MPS
, val
);
580 REG_WR(bp
, PXP2_REG_WR_CDU_MPS
, val
);
583 /* Validate number of tags suppoted by device */
584 #define PCIE_REG_PCIER_TL_HDR_FC_ST 0x2980
585 val
= REG_RD(bp
, PCIE_REG_PCIER_TL_HDR_FC_ST
);
588 REG_WR(bp
, PXP2_REG_PGL_TAGS_LIMIT
, 0x20);
591 /****************************************************************************
593 ****************************************************************************/
595 * This codes hides the low level HW interaction for ILT management and
596 * configuration. The API consists of a shadow ILT table which is set by the
597 * driver and a set of routines to use it to configure the HW.
601 /* ILT HW init operations */
603 /* ILT memory management operations */
604 #define ILT_MEMOP_ALLOC 0
605 #define ILT_MEMOP_FREE 1
607 /* the phys address is shifted right 12 bits and has an added
608 * 1=valid bit added to the 53rd bit
609 * then since this is a wide register(TM)
610 * we split it into two 32 bit writes
612 #define ILT_ADDR1(x) ((u32)(((u64)x >> 12) & 0xFFFFFFFF))
613 #define ILT_ADDR2(x) ((u32)((1 << 20) | ((u64)x >> 44)))
614 #define ILT_RANGE(f, l) (((l) << 10) | f)
616 static int bnx2x_ilt_line_mem_op(struct bnx2x
*bp
,
617 struct ilt_line
*line
, u32 size
, u8 memop
)
619 if (memop
== ILT_MEMOP_FREE
) {
620 BNX2X_ILT_FREE(line
->page
, line
->page_mapping
, line
->size
);
623 BNX2X_ILT_ZALLOC(line
->page
, &line
->page_mapping
, size
);
631 static int bnx2x_ilt_client_mem_op(struct bnx2x
*bp
, int cli_num
,
635 struct bnx2x_ilt
*ilt
= BP_ILT(bp
);
636 struct ilt_client_info
*ilt_cli
= &ilt
->clients
[cli_num
];
638 if (!ilt
|| !ilt
->lines
)
641 if (ilt_cli
->flags
& (ILT_CLIENT_SKIP_INIT
| ILT_CLIENT_SKIP_MEM
))
644 for (rc
= 0, i
= ilt_cli
->start
; i
<= ilt_cli
->end
&& !rc
; i
++) {
645 rc
= bnx2x_ilt_line_mem_op(bp
, &ilt
->lines
[i
],
646 ilt_cli
->page_size
, memop
);
651 static int bnx2x_ilt_mem_op(struct bnx2x
*bp
, u8 memop
)
653 int rc
= bnx2x_ilt_client_mem_op(bp
, ILT_CLIENT_CDU
, memop
);
655 rc
= bnx2x_ilt_client_mem_op(bp
, ILT_CLIENT_QM
, memop
);
657 rc
= bnx2x_ilt_client_mem_op(bp
, ILT_CLIENT_SRC
, memop
);
659 rc
= bnx2x_ilt_client_mem_op(bp
, ILT_CLIENT_TM
, memop
);
664 static void bnx2x_ilt_line_wr(struct bnx2x
*bp
, int abs_idx
,
665 dma_addr_t page_mapping
)
670 reg
= PXP2_REG_RQ_ONCHIP_AT
+ abs_idx
*8;
672 reg
= PXP2_REG_RQ_ONCHIP_AT_B0
+ abs_idx
*8;
674 bnx2x_wr_64(bp
, reg
, ILT_ADDR1(page_mapping
), ILT_ADDR2(page_mapping
));
677 static void bnx2x_ilt_line_init_op(struct bnx2x
*bp
,
678 struct bnx2x_ilt
*ilt
, int idx
, u8 initop
)
680 dma_addr_t null_mapping
;
681 int abs_idx
= ilt
->start_line
+ idx
;
686 /* set in the init-value array */
688 bnx2x_ilt_line_wr(bp
, abs_idx
, ilt
->lines
[idx
].page_mapping
);
692 bnx2x_ilt_line_wr(bp
, abs_idx
, null_mapping
);
697 static void bnx2x_ilt_boundry_init_op(struct bnx2x
*bp
,
698 struct ilt_client_info
*ilt_cli
,
699 u32 ilt_start
, u8 initop
)
704 /* The boundary is either SET or INIT,
705 CLEAR => SET and for now SET ~~ INIT */
707 /* find the appropriate regs */
708 if (CHIP_IS_E1(bp
)) {
709 switch (ilt_cli
->client_num
) {
711 start_reg
= PXP2_REG_PSWRQ_CDU0_L2P
;
714 start_reg
= PXP2_REG_PSWRQ_QM0_L2P
;
717 start_reg
= PXP2_REG_PSWRQ_SRC0_L2P
;
720 start_reg
= PXP2_REG_PSWRQ_TM0_L2P
;
723 REG_WR(bp
, start_reg
+ BP_FUNC(bp
)*4,
724 ILT_RANGE((ilt_start
+ ilt_cli
->start
),
725 (ilt_start
+ ilt_cli
->end
)));
727 switch (ilt_cli
->client_num
) {
729 start_reg
= PXP2_REG_RQ_CDU_FIRST_ILT
;
730 end_reg
= PXP2_REG_RQ_CDU_LAST_ILT
;
733 start_reg
= PXP2_REG_RQ_QM_FIRST_ILT
;
734 end_reg
= PXP2_REG_RQ_QM_LAST_ILT
;
737 start_reg
= PXP2_REG_RQ_SRC_FIRST_ILT
;
738 end_reg
= PXP2_REG_RQ_SRC_LAST_ILT
;
741 start_reg
= PXP2_REG_RQ_TM_FIRST_ILT
;
742 end_reg
= PXP2_REG_RQ_TM_LAST_ILT
;
745 REG_WR(bp
, start_reg
, (ilt_start
+ ilt_cli
->start
));
746 REG_WR(bp
, end_reg
, (ilt_start
+ ilt_cli
->end
));
750 static void bnx2x_ilt_client_init_op_ilt(struct bnx2x
*bp
,
751 struct bnx2x_ilt
*ilt
,
752 struct ilt_client_info
*ilt_cli
,
757 if (ilt_cli
->flags
& ILT_CLIENT_SKIP_INIT
)
760 for (i
= ilt_cli
->start
; i
<= ilt_cli
->end
; i
++)
761 bnx2x_ilt_line_init_op(bp
, ilt
, i
, initop
);
763 /* init/clear the ILT boundries */
764 bnx2x_ilt_boundry_init_op(bp
, ilt_cli
, ilt
->start_line
, initop
);
767 static void bnx2x_ilt_client_init_op(struct bnx2x
*bp
,
768 struct ilt_client_info
*ilt_cli
, u8 initop
)
770 struct bnx2x_ilt
*ilt
= BP_ILT(bp
);
772 bnx2x_ilt_client_init_op_ilt(bp
, ilt
, ilt_cli
, initop
);
775 static void bnx2x_ilt_client_id_init_op(struct bnx2x
*bp
,
776 int cli_num
, u8 initop
)
778 struct bnx2x_ilt
*ilt
= BP_ILT(bp
);
779 struct ilt_client_info
*ilt_cli
= &ilt
->clients
[cli_num
];
781 bnx2x_ilt_client_init_op(bp
, ilt_cli
, initop
);
784 static void bnx2x_ilt_init_op(struct bnx2x
*bp
, u8 initop
)
786 bnx2x_ilt_client_id_init_op(bp
, ILT_CLIENT_CDU
, initop
);
787 bnx2x_ilt_client_id_init_op(bp
, ILT_CLIENT_QM
, initop
);
788 bnx2x_ilt_client_id_init_op(bp
, ILT_CLIENT_SRC
, initop
);
789 bnx2x_ilt_client_id_init_op(bp
, ILT_CLIENT_TM
, initop
);
792 static void bnx2x_ilt_init_client_psz(struct bnx2x
*bp
, int cli_num
,
793 u32 psz_reg
, u8 initop
)
795 struct bnx2x_ilt
*ilt
= BP_ILT(bp
);
796 struct ilt_client_info
*ilt_cli
= &ilt
->clients
[cli_num
];
798 if (ilt_cli
->flags
& ILT_CLIENT_SKIP_INIT
)
803 /* set in the init-value array */
805 REG_WR(bp
, psz_reg
, ILOG2(ilt_cli
->page_size
>> 12));
813 * called during init common stage, ilt clients should be initialized
814 * prioir to calling this function
816 static void bnx2x_ilt_init_page_size(struct bnx2x
*bp
, u8 initop
)
818 bnx2x_ilt_init_client_psz(bp
, ILT_CLIENT_CDU
,
819 PXP2_REG_RQ_CDU_P_SIZE
, initop
);
820 bnx2x_ilt_init_client_psz(bp
, ILT_CLIENT_QM
,
821 PXP2_REG_RQ_QM_P_SIZE
, initop
);
822 bnx2x_ilt_init_client_psz(bp
, ILT_CLIENT_SRC
,
823 PXP2_REG_RQ_SRC_P_SIZE
, initop
);
824 bnx2x_ilt_init_client_psz(bp
, ILT_CLIENT_TM
,
825 PXP2_REG_RQ_TM_P_SIZE
, initop
);
828 /****************************************************************************
830 ****************************************************************************/
831 #define QM_QUEUES_PER_FUNC 16 /* E1 has 32, but only 16 are used */
832 #define QM_INIT_MIN_CID_COUNT 31
833 #define QM_INIT(cid_cnt) (cid_cnt > QM_INIT_MIN_CID_COUNT)
835 /* called during init port stage */
836 static void bnx2x_qm_init_cid_count(struct bnx2x
*bp
, int qm_cid_count
,
839 int port
= BP_PORT(bp
);
841 if (QM_INIT(qm_cid_count
)) {
844 /* set in the init-value array */
846 REG_WR(bp
, QM_REG_CONNNUM_0
+ port
*4,
847 qm_cid_count
/16 - 1);
855 static void bnx2x_qm_set_ptr_table(struct bnx2x
*bp
, int qm_cid_count
,
856 u32 base_reg
, u32 reg
)
859 u32 wb_data
[2] = {0, 0};
860 for (i
= 0; i
< 4 * QM_QUEUES_PER_FUNC
; i
++) {
861 REG_WR(bp
, base_reg
+ i
*4,
862 qm_cid_count
* 4 * (i
% QM_QUEUES_PER_FUNC
));
863 bnx2x_init_wr_wb(bp
, reg
+ i
*8, wb_data
, 2);
867 /* called during init common stage */
868 static void bnx2x_qm_init_ptr_table(struct bnx2x
*bp
, int qm_cid_count
,
871 if (!QM_INIT(qm_cid_count
))
876 /* set in the init-value array */
878 bnx2x_qm_set_ptr_table(bp
, qm_cid_count
,
879 QM_REG_BASEADDR
, QM_REG_PTRTBL
);
881 bnx2x_qm_set_ptr_table(bp
, qm_cid_count
,
882 QM_REG_BASEADDR_EXT_A
,
883 QM_REG_PTRTBL_EXT_A
);
890 /****************************************************************************
891 * SRC initializations
892 ****************************************************************************/
894 /* called during init func stage */
895 static void bnx2x_src_init_t2(struct bnx2x
*bp
, struct src_ent
*t2
,
896 dma_addr_t t2_mapping
, int src_cid_count
)
899 int port
= BP_PORT(bp
);
902 for (i
= 0; i
< src_cid_count
-1; i
++)
903 t2
[i
].next
= (u64
)(t2_mapping
+
904 (i
+1)*sizeof(struct src_ent
));
906 /* tell the searcher where the T2 table is */
907 REG_WR(bp
, SRC_REG_COUNTFREE0
+ port
*4, src_cid_count
);
909 bnx2x_wr_64(bp
, SRC_REG_FIRSTFREE0
+ port
*16,
910 U64_LO(t2_mapping
), U64_HI(t2_mapping
));
912 bnx2x_wr_64(bp
, SRC_REG_LASTFREE0
+ port
*16,
913 U64_LO((u64
)t2_mapping
+
914 (src_cid_count
-1) * sizeof(struct src_ent
)),
915 U64_HI((u64
)t2_mapping
+
916 (src_cid_count
-1) * sizeof(struct src_ent
)));
919 #endif /* BNX2X_INIT_OPS_H */