1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2011 Solarflare Communications Inc.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
11 #include <linux/module.h>
12 #include <linux/pci.h>
13 #include <linux/netdevice.h>
14 #include <linux/etherdevice.h>
15 #include <linux/delay.h>
16 #include <linux/notifier.h>
18 #include <linux/tcp.h>
20 #include <linux/crc32.h>
21 #include <linux/ethtool.h>
22 #include <linux/topology.h>
23 #include <linux/gfp.h>
24 #include <linux/cpu_rmap.h>
25 #include "net_driver.h"
31 #include "workarounds.h"
33 /**************************************************************************
37 **************************************************************************
40 /* Loopback mode names (see LOOPBACK_MODE()) */
41 const unsigned int efx_loopback_mode_max
= LOOPBACK_MAX
;
42 const char *const efx_loopback_mode_names
[] = {
43 [LOOPBACK_NONE
] = "NONE",
44 [LOOPBACK_DATA
] = "DATAPATH",
45 [LOOPBACK_GMAC
] = "GMAC",
46 [LOOPBACK_XGMII
] = "XGMII",
47 [LOOPBACK_XGXS
] = "XGXS",
48 [LOOPBACK_XAUI
] = "XAUI",
49 [LOOPBACK_GMII
] = "GMII",
50 [LOOPBACK_SGMII
] = "SGMII",
51 [LOOPBACK_XGBR
] = "XGBR",
52 [LOOPBACK_XFI
] = "XFI",
53 [LOOPBACK_XAUI_FAR
] = "XAUI_FAR",
54 [LOOPBACK_GMII_FAR
] = "GMII_FAR",
55 [LOOPBACK_SGMII_FAR
] = "SGMII_FAR",
56 [LOOPBACK_XFI_FAR
] = "XFI_FAR",
57 [LOOPBACK_GPHY
] = "GPHY",
58 [LOOPBACK_PHYXS
] = "PHYXS",
59 [LOOPBACK_PCS
] = "PCS",
60 [LOOPBACK_PMAPMD
] = "PMA/PMD",
61 [LOOPBACK_XPORT
] = "XPORT",
62 [LOOPBACK_XGMII_WS
] = "XGMII_WS",
63 [LOOPBACK_XAUI_WS
] = "XAUI_WS",
64 [LOOPBACK_XAUI_WS_FAR
] = "XAUI_WS_FAR",
65 [LOOPBACK_XAUI_WS_NEAR
] = "XAUI_WS_NEAR",
66 [LOOPBACK_GMII_WS
] = "GMII_WS",
67 [LOOPBACK_XFI_WS
] = "XFI_WS",
68 [LOOPBACK_XFI_WS_FAR
] = "XFI_WS_FAR",
69 [LOOPBACK_PHYXS_WS
] = "PHYXS_WS",
72 const unsigned int efx_reset_type_max
= RESET_TYPE_MAX
;
73 const char *const efx_reset_type_names
[] = {
74 [RESET_TYPE_INVISIBLE
] = "INVISIBLE",
75 [RESET_TYPE_ALL
] = "ALL",
76 [RESET_TYPE_WORLD
] = "WORLD",
77 [RESET_TYPE_DISABLE
] = "DISABLE",
78 [RESET_TYPE_TX_WATCHDOG
] = "TX_WATCHDOG",
79 [RESET_TYPE_INT_ERROR
] = "INT_ERROR",
80 [RESET_TYPE_RX_RECOVERY
] = "RX_RECOVERY",
81 [RESET_TYPE_RX_DESC_FETCH
] = "RX_DESC_FETCH",
82 [RESET_TYPE_TX_DESC_FETCH
] = "TX_DESC_FETCH",
83 [RESET_TYPE_TX_SKIP
] = "TX_SKIP",
84 [RESET_TYPE_MC_FAILURE
] = "MC_FAILURE",
87 #define EFX_MAX_MTU (9 * 1024)
89 /* Reset workqueue. If any NIC has a hardware failure then a reset will be
90 * queued onto this work queue. This is not a per-nic work queue, because
91 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
93 static struct workqueue_struct
*reset_workqueue
;
95 /**************************************************************************
99 *************************************************************************/
102 * Use separate channels for TX and RX events
104 * Set this to 1 to use separate channels for TX and RX. It allows us
105 * to control interrupt affinity separately for TX and RX.
107 * This is only used in MSI-X interrupt mode
109 static unsigned int separate_tx_channels
;
110 module_param(separate_tx_channels
, uint
, 0444);
111 MODULE_PARM_DESC(separate_tx_channels
,
112 "Use separate channels for TX and RX");
114 /* This is the weight assigned to each of the (per-channel) virtual
117 static int napi_weight
= 64;
119 /* This is the time (in jiffies) between invocations of the hardware
120 * monitor. On Falcon-based NICs, this will:
121 * - Check the on-board hardware monitor;
122 * - Poll the link state and reconfigure the hardware as necessary.
124 static unsigned int efx_monitor_interval
= 1 * HZ
;
126 /* Initial interrupt moderation settings. They can be modified after
127 * module load with ethtool.
129 * The default for RX should strike a balance between increasing the
130 * round-trip latency and reducing overhead.
132 static unsigned int rx_irq_mod_usec
= 60;
134 /* Initial interrupt moderation settings. They can be modified after
135 * module load with ethtool.
137 * This default is chosen to ensure that a 10G link does not go idle
138 * while a TX queue is stopped after it has become full. A queue is
139 * restarted when it drops below half full. The time this takes (assuming
140 * worst case 3 descriptors per packet and 1024 descriptors) is
141 * 512 / 3 * 1.2 = 205 usec.
143 static unsigned int tx_irq_mod_usec
= 150;
145 /* This is the first interrupt mode to try out of:
150 static unsigned int interrupt_mode
;
152 /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
153 * i.e. the number of CPUs among which we may distribute simultaneous
154 * interrupt handling.
156 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
157 * The default (0) means to assign an interrupt to each core.
159 static unsigned int rss_cpus
;
160 module_param(rss_cpus
, uint
, 0444);
161 MODULE_PARM_DESC(rss_cpus
, "Number of CPUs to use for Receive-Side Scaling");
163 static int phy_flash_cfg
;
164 module_param(phy_flash_cfg
, int, 0644);
165 MODULE_PARM_DESC(phy_flash_cfg
, "Set PHYs into reflash mode initially");
167 static unsigned irq_adapt_low_thresh
= 8000;
168 module_param(irq_adapt_low_thresh
, uint
, 0644);
169 MODULE_PARM_DESC(irq_adapt_low_thresh
,
170 "Threshold score for reducing IRQ moderation");
172 static unsigned irq_adapt_high_thresh
= 16000;
173 module_param(irq_adapt_high_thresh
, uint
, 0644);
174 MODULE_PARM_DESC(irq_adapt_high_thresh
,
175 "Threshold score for increasing IRQ moderation");
177 static unsigned debug
= (NETIF_MSG_DRV
| NETIF_MSG_PROBE
|
178 NETIF_MSG_LINK
| NETIF_MSG_IFDOWN
|
179 NETIF_MSG_IFUP
| NETIF_MSG_RX_ERR
|
180 NETIF_MSG_TX_ERR
| NETIF_MSG_HW
);
181 module_param(debug
, uint
, 0);
182 MODULE_PARM_DESC(debug
, "Bitmapped debugging message enable value");
184 /**************************************************************************
186 * Utility functions and prototypes
188 *************************************************************************/
190 static void efx_start_interrupts(struct efx_nic
*efx
, bool may_keep_eventq
);
191 static void efx_stop_interrupts(struct efx_nic
*efx
, bool may_keep_eventq
);
192 static void efx_remove_channel(struct efx_channel
*channel
);
193 static void efx_remove_channels(struct efx_nic
*efx
);
194 static const struct efx_channel_type efx_default_channel_type
;
195 static void efx_remove_port(struct efx_nic
*efx
);
196 static void efx_init_napi_channel(struct efx_channel
*channel
);
197 static void efx_fini_napi(struct efx_nic
*efx
);
198 static void efx_fini_napi_channel(struct efx_channel
*channel
);
199 static void efx_fini_struct(struct efx_nic
*efx
);
200 static void efx_start_all(struct efx_nic
*efx
);
201 static void efx_stop_all(struct efx_nic
*efx
);
203 #define EFX_ASSERT_RESET_SERIALISED(efx) \
205 if ((efx->state == STATE_RUNNING) || \
206 (efx->state == STATE_DISABLED)) \
210 /**************************************************************************
212 * Event queue processing
214 *************************************************************************/
216 /* Process channel's event queue
218 * This function is responsible for processing the event queue of a
219 * single channel. The caller must guarantee that this function will
220 * never be concurrently called more than once on the same channel,
221 * though different channels may be being processed concurrently.
223 static int efx_process_channel(struct efx_channel
*channel
, int budget
)
227 if (unlikely(!channel
->enabled
))
230 spent
= efx_nic_process_eventq(channel
, budget
);
231 if (spent
&& efx_channel_has_rx_queue(channel
)) {
232 struct efx_rx_queue
*rx_queue
=
233 efx_channel_get_rx_queue(channel
);
235 /* Deliver last RX packet. */
236 if (channel
->rx_pkt
) {
237 __efx_rx_packet(channel
, channel
->rx_pkt
);
238 channel
->rx_pkt
= NULL
;
240 if (rx_queue
->enabled
) {
241 efx_rx_strategy(channel
);
242 efx_fast_push_rx_descriptors(rx_queue
);
249 /* Mark channel as finished processing
251 * Note that since we will not receive further interrupts for this
252 * channel before we finish processing and call the eventq_read_ack()
253 * method, there is no need to use the interrupt hold-off timers.
255 static inline void efx_channel_processed(struct efx_channel
*channel
)
257 /* The interrupt handler for this channel may set work_pending
258 * as soon as we acknowledge the events we've seen. Make sure
259 * it's cleared before then. */
260 channel
->work_pending
= false;
263 efx_nic_eventq_read_ack(channel
);
268 * NAPI guarantees serialisation of polls of the same device, which
269 * provides the guarantee required by efx_process_channel().
271 static int efx_poll(struct napi_struct
*napi
, int budget
)
273 struct efx_channel
*channel
=
274 container_of(napi
, struct efx_channel
, napi_str
);
275 struct efx_nic
*efx
= channel
->efx
;
278 netif_vdbg(efx
, intr
, efx
->net_dev
,
279 "channel %d NAPI poll executing on CPU %d\n",
280 channel
->channel
, raw_smp_processor_id());
282 spent
= efx_process_channel(channel
, budget
);
284 if (spent
< budget
) {
285 if (efx_channel_has_rx_queue(channel
) &&
286 efx
->irq_rx_adaptive
&&
287 unlikely(++channel
->irq_count
== 1000)) {
288 if (unlikely(channel
->irq_mod_score
<
289 irq_adapt_low_thresh
)) {
290 if (channel
->irq_moderation
> 1) {
291 channel
->irq_moderation
-= 1;
292 efx
->type
->push_irq_moderation(channel
);
294 } else if (unlikely(channel
->irq_mod_score
>
295 irq_adapt_high_thresh
)) {
296 if (channel
->irq_moderation
<
297 efx
->irq_rx_moderation
) {
298 channel
->irq_moderation
+= 1;
299 efx
->type
->push_irq_moderation(channel
);
302 channel
->irq_count
= 0;
303 channel
->irq_mod_score
= 0;
306 efx_filter_rfs_expire(channel
);
308 /* There is no race here; although napi_disable() will
309 * only wait for napi_complete(), this isn't a problem
310 * since efx_channel_processed() will have no effect if
311 * interrupts have already been disabled.
314 efx_channel_processed(channel
);
320 /* Process the eventq of the specified channel immediately on this CPU
322 * Disable hardware generated interrupts, wait for any existing
323 * processing to finish, then directly poll (and ack ) the eventq.
324 * Finally reenable NAPI and interrupts.
326 * This is for use only during a loopback self-test. It must not
327 * deliver any packets up the stack as this can result in deadlock.
329 void efx_process_channel_now(struct efx_channel
*channel
)
331 struct efx_nic
*efx
= channel
->efx
;
333 BUG_ON(channel
->channel
>= efx
->n_channels
);
334 BUG_ON(!channel
->enabled
);
335 BUG_ON(!efx
->loopback_selftest
);
337 /* Disable interrupts and wait for ISRs to complete */
338 efx_nic_disable_interrupts(efx
);
339 if (efx
->legacy_irq
) {
340 synchronize_irq(efx
->legacy_irq
);
341 efx
->legacy_irq_enabled
= false;
344 synchronize_irq(channel
->irq
);
346 /* Wait for any NAPI processing to complete */
347 napi_disable(&channel
->napi_str
);
349 /* Poll the channel */
350 efx_process_channel(channel
, channel
->eventq_mask
+ 1);
352 /* Ack the eventq. This may cause an interrupt to be generated
353 * when they are reenabled */
354 efx_channel_processed(channel
);
356 napi_enable(&channel
->napi_str
);
358 efx
->legacy_irq_enabled
= true;
359 efx_nic_enable_interrupts(efx
);
362 /* Create event queue
363 * Event queue memory allocations are done only once. If the channel
364 * is reset, the memory buffer will be reused; this guards against
365 * errors during channel reset and also simplifies interrupt handling.
367 static int efx_probe_eventq(struct efx_channel
*channel
)
369 struct efx_nic
*efx
= channel
->efx
;
370 unsigned long entries
;
372 netif_dbg(efx
, probe
, efx
->net_dev
,
373 "chan %d create event queue\n", channel
->channel
);
375 /* Build an event queue with room for one event per tx and rx buffer,
376 * plus some extra for link state events and MCDI completions. */
377 entries
= roundup_pow_of_two(efx
->rxq_entries
+ efx
->txq_entries
+ 128);
378 EFX_BUG_ON_PARANOID(entries
> EFX_MAX_EVQ_SIZE
);
379 channel
->eventq_mask
= max(entries
, EFX_MIN_EVQ_SIZE
) - 1;
381 return efx_nic_probe_eventq(channel
);
384 /* Prepare channel's event queue */
385 static void efx_init_eventq(struct efx_channel
*channel
)
387 netif_dbg(channel
->efx
, drv
, channel
->efx
->net_dev
,
388 "chan %d init event queue\n", channel
->channel
);
390 channel
->eventq_read_ptr
= 0;
392 efx_nic_init_eventq(channel
);
395 /* Enable event queue processing and NAPI */
396 static void efx_start_eventq(struct efx_channel
*channel
)
398 netif_dbg(channel
->efx
, ifup
, channel
->efx
->net_dev
,
399 "chan %d start event queue\n", channel
->channel
);
401 /* The interrupt handler for this channel may set work_pending
402 * as soon as we enable it. Make sure it's cleared before
403 * then. Similarly, make sure it sees the enabled flag set.
405 channel
->work_pending
= false;
406 channel
->enabled
= true;
409 napi_enable(&channel
->napi_str
);
410 efx_nic_eventq_read_ack(channel
);
413 /* Disable event queue processing and NAPI */
414 static void efx_stop_eventq(struct efx_channel
*channel
)
416 if (!channel
->enabled
)
419 napi_disable(&channel
->napi_str
);
420 channel
->enabled
= false;
423 static void efx_fini_eventq(struct efx_channel
*channel
)
425 netif_dbg(channel
->efx
, drv
, channel
->efx
->net_dev
,
426 "chan %d fini event queue\n", channel
->channel
);
428 efx_nic_fini_eventq(channel
);
431 static void efx_remove_eventq(struct efx_channel
*channel
)
433 netif_dbg(channel
->efx
, drv
, channel
->efx
->net_dev
,
434 "chan %d remove event queue\n", channel
->channel
);
436 efx_nic_remove_eventq(channel
);
439 /**************************************************************************
443 *************************************************************************/
445 /* Allocate and initialise a channel structure. */
446 static struct efx_channel
*
447 efx_alloc_channel(struct efx_nic
*efx
, int i
, struct efx_channel
*old_channel
)
449 struct efx_channel
*channel
;
450 struct efx_rx_queue
*rx_queue
;
451 struct efx_tx_queue
*tx_queue
;
454 channel
= kzalloc(sizeof(*channel
), GFP_KERNEL
);
459 channel
->channel
= i
;
460 channel
->type
= &efx_default_channel_type
;
462 for (j
= 0; j
< EFX_TXQ_TYPES
; j
++) {
463 tx_queue
= &channel
->tx_queue
[j
];
465 tx_queue
->queue
= i
* EFX_TXQ_TYPES
+ j
;
466 tx_queue
->channel
= channel
;
469 rx_queue
= &channel
->rx_queue
;
471 setup_timer(&rx_queue
->slow_fill
, efx_rx_slow_fill
,
472 (unsigned long)rx_queue
);
477 /* Allocate and initialise a channel structure, copying parameters
478 * (but not resources) from an old channel structure.
480 static struct efx_channel
*
481 efx_copy_channel(const struct efx_channel
*old_channel
)
483 struct efx_channel
*channel
;
484 struct efx_rx_queue
*rx_queue
;
485 struct efx_tx_queue
*tx_queue
;
488 channel
= kmalloc(sizeof(*channel
), GFP_KERNEL
);
492 *channel
= *old_channel
;
494 channel
->napi_dev
= NULL
;
495 memset(&channel
->eventq
, 0, sizeof(channel
->eventq
));
497 for (j
= 0; j
< EFX_TXQ_TYPES
; j
++) {
498 tx_queue
= &channel
->tx_queue
[j
];
499 if (tx_queue
->channel
)
500 tx_queue
->channel
= channel
;
501 tx_queue
->buffer
= NULL
;
502 memset(&tx_queue
->txd
, 0, sizeof(tx_queue
->txd
));
505 rx_queue
= &channel
->rx_queue
;
506 rx_queue
->buffer
= NULL
;
507 memset(&rx_queue
->rxd
, 0, sizeof(rx_queue
->rxd
));
508 setup_timer(&rx_queue
->slow_fill
, efx_rx_slow_fill
,
509 (unsigned long)rx_queue
);
514 static int efx_probe_channel(struct efx_channel
*channel
)
516 struct efx_tx_queue
*tx_queue
;
517 struct efx_rx_queue
*rx_queue
;
520 netif_dbg(channel
->efx
, probe
, channel
->efx
->net_dev
,
521 "creating channel %d\n", channel
->channel
);
523 rc
= channel
->type
->pre_probe(channel
);
527 rc
= efx_probe_eventq(channel
);
531 efx_for_each_channel_tx_queue(tx_queue
, channel
) {
532 rc
= efx_probe_tx_queue(tx_queue
);
537 efx_for_each_channel_rx_queue(rx_queue
, channel
) {
538 rc
= efx_probe_rx_queue(rx_queue
);
543 channel
->n_rx_frm_trunc
= 0;
548 efx_remove_channel(channel
);
553 efx_get_channel_name(struct efx_channel
*channel
, char *buf
, size_t len
)
555 struct efx_nic
*efx
= channel
->efx
;
559 number
= channel
->channel
;
560 if (efx
->tx_channel_offset
== 0) {
562 } else if (channel
->channel
< efx
->tx_channel_offset
) {
566 number
-= efx
->tx_channel_offset
;
568 snprintf(buf
, len
, "%s%s-%d", efx
->name
, type
, number
);
571 static void efx_set_channel_names(struct efx_nic
*efx
)
573 struct efx_channel
*channel
;
575 efx_for_each_channel(channel
, efx
)
576 channel
->type
->get_name(channel
,
577 efx
->channel_name
[channel
->channel
],
578 sizeof(efx
->channel_name
[0]));
581 static int efx_probe_channels(struct efx_nic
*efx
)
583 struct efx_channel
*channel
;
586 /* Restart special buffer allocation */
587 efx
->next_buffer_table
= 0;
589 /* Probe channels in reverse, so that any 'extra' channels
590 * use the start of the buffer table. This allows the traffic
591 * channels to be resized without moving them or wasting the
592 * entries before them.
594 efx_for_each_channel_rev(channel
, efx
) {
595 rc
= efx_probe_channel(channel
);
597 netif_err(efx
, probe
, efx
->net_dev
,
598 "failed to create channel %d\n",
603 efx_set_channel_names(efx
);
608 efx_remove_channels(efx
);
612 /* Channels are shutdown and reinitialised whilst the NIC is running
613 * to propagate configuration changes (mtu, checksum offload), or
614 * to clear hardware error conditions
616 static void efx_start_datapath(struct efx_nic
*efx
)
618 struct efx_tx_queue
*tx_queue
;
619 struct efx_rx_queue
*rx_queue
;
620 struct efx_channel
*channel
;
622 /* Calculate the rx buffer allocation parameters required to
623 * support the current MTU, including padding for header
624 * alignment and overruns.
626 efx
->rx_buffer_len
= (max(EFX_PAGE_IP_ALIGN
, NET_IP_ALIGN
) +
627 EFX_MAX_FRAME_LEN(efx
->net_dev
->mtu
) +
628 efx
->type
->rx_buffer_hash_size
+
629 efx
->type
->rx_buffer_padding
);
630 efx
->rx_buffer_order
= get_order(efx
->rx_buffer_len
+
631 sizeof(struct efx_rx_page_state
));
633 /* Initialise the channels */
634 efx_for_each_channel(channel
, efx
) {
635 efx_for_each_channel_tx_queue(tx_queue
, channel
)
636 efx_init_tx_queue(tx_queue
);
638 /* The rx buffer allocation strategy is MTU dependent */
639 efx_rx_strategy(channel
);
641 efx_for_each_channel_rx_queue(rx_queue
, channel
) {
642 efx_init_rx_queue(rx_queue
);
643 efx_nic_generate_fill_event(rx_queue
);
646 WARN_ON(channel
->rx_pkt
!= NULL
);
647 efx_rx_strategy(channel
);
650 if (netif_device_present(efx
->net_dev
))
651 netif_tx_wake_all_queues(efx
->net_dev
);
654 static void efx_stop_datapath(struct efx_nic
*efx
)
656 struct efx_channel
*channel
;
657 struct efx_tx_queue
*tx_queue
;
658 struct efx_rx_queue
*rx_queue
;
659 struct pci_dev
*dev
= efx
->pci_dev
;
662 EFX_ASSERT_RESET_SERIALISED(efx
);
663 BUG_ON(efx
->port_enabled
);
665 /* Only perform flush if dma is enabled */
666 if (dev
->is_busmaster
) {
667 rc
= efx_nic_flush_queues(efx
);
669 if (rc
&& EFX_WORKAROUND_7803(efx
)) {
670 /* Schedule a reset to recover from the flush failure. The
671 * descriptor caches reference memory we're about to free,
672 * but falcon_reconfigure_mac_wrapper() won't reconnect
673 * the MACs because of the pending reset. */
674 netif_err(efx
, drv
, efx
->net_dev
,
675 "Resetting to recover from flush failure\n");
676 efx_schedule_reset(efx
, RESET_TYPE_ALL
);
678 netif_err(efx
, drv
, efx
->net_dev
, "failed to flush queues\n");
680 netif_dbg(efx
, drv
, efx
->net_dev
,
681 "successfully flushed all queues\n");
685 efx_for_each_channel(channel
, efx
) {
686 /* RX packet processing is pipelined, so wait for the
687 * NAPI handler to complete. At least event queue 0
688 * might be kept active by non-data events, so don't
689 * use napi_synchronize() but actually disable NAPI
692 if (efx_channel_has_rx_queue(channel
)) {
693 efx_stop_eventq(channel
);
694 efx_start_eventq(channel
);
697 efx_for_each_channel_rx_queue(rx_queue
, channel
)
698 efx_fini_rx_queue(rx_queue
);
699 efx_for_each_possible_channel_tx_queue(tx_queue
, channel
)
700 efx_fini_tx_queue(tx_queue
);
704 static void efx_remove_channel(struct efx_channel
*channel
)
706 struct efx_tx_queue
*tx_queue
;
707 struct efx_rx_queue
*rx_queue
;
709 netif_dbg(channel
->efx
, drv
, channel
->efx
->net_dev
,
710 "destroy chan %d\n", channel
->channel
);
712 efx_for_each_channel_rx_queue(rx_queue
, channel
)
713 efx_remove_rx_queue(rx_queue
);
714 efx_for_each_possible_channel_tx_queue(tx_queue
, channel
)
715 efx_remove_tx_queue(tx_queue
);
716 efx_remove_eventq(channel
);
719 static void efx_remove_channels(struct efx_nic
*efx
)
721 struct efx_channel
*channel
;
723 efx_for_each_channel(channel
, efx
)
724 efx_remove_channel(channel
);
728 efx_realloc_channels(struct efx_nic
*efx
, u32 rxq_entries
, u32 txq_entries
)
730 struct efx_channel
*other_channel
[EFX_MAX_CHANNELS
], *channel
;
731 u32 old_rxq_entries
, old_txq_entries
;
732 unsigned i
, next_buffer_table
= 0;
735 /* Not all channels should be reallocated. We must avoid
736 * reallocating their buffer table entries.
738 efx_for_each_channel(channel
, efx
) {
739 struct efx_rx_queue
*rx_queue
;
740 struct efx_tx_queue
*tx_queue
;
742 if (channel
->type
->copy
)
744 next_buffer_table
= max(next_buffer_table
,
745 channel
->eventq
.index
+
746 channel
->eventq
.entries
);
747 efx_for_each_channel_rx_queue(rx_queue
, channel
)
748 next_buffer_table
= max(next_buffer_table
,
749 rx_queue
->rxd
.index
+
750 rx_queue
->rxd
.entries
);
751 efx_for_each_channel_tx_queue(tx_queue
, channel
)
752 next_buffer_table
= max(next_buffer_table
,
753 tx_queue
->txd
.index
+
754 tx_queue
->txd
.entries
);
757 efx_device_detach_sync(efx
);
759 efx_stop_interrupts(efx
, true);
761 /* Clone channels (where possible) */
762 memset(other_channel
, 0, sizeof(other_channel
));
763 for (i
= 0; i
< efx
->n_channels
; i
++) {
764 channel
= efx
->channel
[i
];
765 if (channel
->type
->copy
)
766 channel
= channel
->type
->copy(channel
);
771 other_channel
[i
] = channel
;
774 /* Swap entry counts and channel pointers */
775 old_rxq_entries
= efx
->rxq_entries
;
776 old_txq_entries
= efx
->txq_entries
;
777 efx
->rxq_entries
= rxq_entries
;
778 efx
->txq_entries
= txq_entries
;
779 for (i
= 0; i
< efx
->n_channels
; i
++) {
780 channel
= efx
->channel
[i
];
781 efx
->channel
[i
] = other_channel
[i
];
782 other_channel
[i
] = channel
;
785 /* Restart buffer table allocation */
786 efx
->next_buffer_table
= next_buffer_table
;
788 for (i
= 0; i
< efx
->n_channels
; i
++) {
789 channel
= efx
->channel
[i
];
790 if (!channel
->type
->copy
)
792 rc
= efx_probe_channel(channel
);
795 efx_init_napi_channel(efx
->channel
[i
]);
799 /* Destroy unused channel structures */
800 for (i
= 0; i
< efx
->n_channels
; i
++) {
801 channel
= other_channel
[i
];
802 if (channel
&& channel
->type
->copy
) {
803 efx_fini_napi_channel(channel
);
804 efx_remove_channel(channel
);
809 efx_start_interrupts(efx
, true);
811 netif_device_attach(efx
->net_dev
);
816 efx
->rxq_entries
= old_rxq_entries
;
817 efx
->txq_entries
= old_txq_entries
;
818 for (i
= 0; i
< efx
->n_channels
; i
++) {
819 channel
= efx
->channel
[i
];
820 efx
->channel
[i
] = other_channel
[i
];
821 other_channel
[i
] = channel
;
826 void efx_schedule_slow_fill(struct efx_rx_queue
*rx_queue
)
828 mod_timer(&rx_queue
->slow_fill
, jiffies
+ msecs_to_jiffies(100));
831 static const struct efx_channel_type efx_default_channel_type
= {
832 .pre_probe
= efx_channel_dummy_op_int
,
833 .get_name
= efx_get_channel_name
,
834 .copy
= efx_copy_channel
,
835 .keep_eventq
= false,
838 int efx_channel_dummy_op_int(struct efx_channel
*channel
)
843 /**************************************************************************
847 **************************************************************************/
849 /* This ensures that the kernel is kept informed (via
850 * netif_carrier_on/off) of the link status, and also maintains the
851 * link status's stop on the port's TX queue.
853 void efx_link_status_changed(struct efx_nic
*efx
)
855 struct efx_link_state
*link_state
= &efx
->link_state
;
857 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
858 * that no events are triggered between unregister_netdev() and the
859 * driver unloading. A more general condition is that NETDEV_CHANGE
860 * can only be generated between NETDEV_UP and NETDEV_DOWN */
861 if (!netif_running(efx
->net_dev
))
864 if (link_state
->up
!= netif_carrier_ok(efx
->net_dev
)) {
865 efx
->n_link_state_changes
++;
868 netif_carrier_on(efx
->net_dev
);
870 netif_carrier_off(efx
->net_dev
);
873 /* Status message for kernel log */
875 netif_info(efx
, link
, efx
->net_dev
,
876 "link up at %uMbps %s-duplex (MTU %d)%s\n",
877 link_state
->speed
, link_state
->fd
? "full" : "half",
879 (efx
->promiscuous
? " [PROMISC]" : ""));
881 netif_info(efx
, link
, efx
->net_dev
, "link down\n");
884 void efx_link_set_advertising(struct efx_nic
*efx
, u32 advertising
)
886 efx
->link_advertising
= advertising
;
888 if (advertising
& ADVERTISED_Pause
)
889 efx
->wanted_fc
|= (EFX_FC_TX
| EFX_FC_RX
);
891 efx
->wanted_fc
&= ~(EFX_FC_TX
| EFX_FC_RX
);
892 if (advertising
& ADVERTISED_Asym_Pause
)
893 efx
->wanted_fc
^= EFX_FC_TX
;
897 void efx_link_set_wanted_fc(struct efx_nic
*efx
, u8 wanted_fc
)
899 efx
->wanted_fc
= wanted_fc
;
900 if (efx
->link_advertising
) {
901 if (wanted_fc
& EFX_FC_RX
)
902 efx
->link_advertising
|= (ADVERTISED_Pause
|
903 ADVERTISED_Asym_Pause
);
905 efx
->link_advertising
&= ~(ADVERTISED_Pause
|
906 ADVERTISED_Asym_Pause
);
907 if (wanted_fc
& EFX_FC_TX
)
908 efx
->link_advertising
^= ADVERTISED_Asym_Pause
;
912 static void efx_fini_port(struct efx_nic
*efx
);
914 /* Push loopback/power/transmit disable settings to the PHY, and reconfigure
915 * the MAC appropriately. All other PHY configuration changes are pushed
916 * through phy_op->set_settings(), and pushed asynchronously to the MAC
917 * through efx_monitor().
919 * Callers must hold the mac_lock
921 int __efx_reconfigure_port(struct efx_nic
*efx
)
923 enum efx_phy_mode phy_mode
;
926 WARN_ON(!mutex_is_locked(&efx
->mac_lock
));
928 /* Serialise the promiscuous flag with efx_set_rx_mode. */
929 netif_addr_lock_bh(efx
->net_dev
);
930 netif_addr_unlock_bh(efx
->net_dev
);
932 /* Disable PHY transmit in mac level loopbacks */
933 phy_mode
= efx
->phy_mode
;
934 if (LOOPBACK_INTERNAL(efx
))
935 efx
->phy_mode
|= PHY_MODE_TX_DISABLED
;
937 efx
->phy_mode
&= ~PHY_MODE_TX_DISABLED
;
939 rc
= efx
->type
->reconfigure_port(efx
);
942 efx
->phy_mode
= phy_mode
;
947 /* Reinitialise the MAC to pick up new PHY settings, even if the port is
949 int efx_reconfigure_port(struct efx_nic
*efx
)
953 EFX_ASSERT_RESET_SERIALISED(efx
);
955 mutex_lock(&efx
->mac_lock
);
956 rc
= __efx_reconfigure_port(efx
);
957 mutex_unlock(&efx
->mac_lock
);
962 /* Asynchronous work item for changing MAC promiscuity and multicast
963 * hash. Avoid a drain/rx_ingress enable by reconfiguring the current
965 static void efx_mac_work(struct work_struct
*data
)
967 struct efx_nic
*efx
= container_of(data
, struct efx_nic
, mac_work
);
969 mutex_lock(&efx
->mac_lock
);
970 if (efx
->port_enabled
)
971 efx
->type
->reconfigure_mac(efx
);
972 mutex_unlock(&efx
->mac_lock
);
975 static int efx_probe_port(struct efx_nic
*efx
)
979 netif_dbg(efx
, probe
, efx
->net_dev
, "create port\n");
982 efx
->phy_mode
= PHY_MODE_SPECIAL
;
984 /* Connect up MAC/PHY operations table */
985 rc
= efx
->type
->probe_port(efx
);
989 /* Initialise MAC address to permanent address */
990 memcpy(efx
->net_dev
->dev_addr
, efx
->net_dev
->perm_addr
, ETH_ALEN
);
995 static int efx_init_port(struct efx_nic
*efx
)
999 netif_dbg(efx
, drv
, efx
->net_dev
, "init port\n");
1001 mutex_lock(&efx
->mac_lock
);
1003 rc
= efx
->phy_op
->init(efx
);
1007 efx
->port_initialized
= true;
1009 /* Reconfigure the MAC before creating dma queues (required for
1010 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
1011 efx
->type
->reconfigure_mac(efx
);
1013 /* Ensure the PHY advertises the correct flow control settings */
1014 rc
= efx
->phy_op
->reconfigure(efx
);
1018 mutex_unlock(&efx
->mac_lock
);
1022 efx
->phy_op
->fini(efx
);
1024 mutex_unlock(&efx
->mac_lock
);
1028 static void efx_start_port(struct efx_nic
*efx
)
1030 netif_dbg(efx
, ifup
, efx
->net_dev
, "start port\n");
1031 BUG_ON(efx
->port_enabled
);
1033 mutex_lock(&efx
->mac_lock
);
1034 efx
->port_enabled
= true;
1036 /* efx_mac_work() might have been scheduled after efx_stop_port(),
1037 * and then cancelled by efx_flush_all() */
1038 efx
->type
->reconfigure_mac(efx
);
1040 mutex_unlock(&efx
->mac_lock
);
1043 /* Prevent efx_mac_work() and efx_monitor() from working */
1044 static void efx_stop_port(struct efx_nic
*efx
)
1046 netif_dbg(efx
, ifdown
, efx
->net_dev
, "stop port\n");
1048 mutex_lock(&efx
->mac_lock
);
1049 efx
->port_enabled
= false;
1050 mutex_unlock(&efx
->mac_lock
);
1052 /* Serialise against efx_set_multicast_list() */
1053 netif_addr_lock_bh(efx
->net_dev
);
1054 netif_addr_unlock_bh(efx
->net_dev
);
1057 static void efx_fini_port(struct efx_nic
*efx
)
1059 netif_dbg(efx
, drv
, efx
->net_dev
, "shut down port\n");
1061 if (!efx
->port_initialized
)
1064 efx
->phy_op
->fini(efx
);
1065 efx
->port_initialized
= false;
1067 efx
->link_state
.up
= false;
1068 efx_link_status_changed(efx
);
1071 static void efx_remove_port(struct efx_nic
*efx
)
1073 netif_dbg(efx
, drv
, efx
->net_dev
, "destroying port\n");
1075 efx
->type
->remove_port(efx
);
1078 /**************************************************************************
1082 **************************************************************************/
1084 /* This configures the PCI device to enable I/O and DMA. */
1085 static int efx_init_io(struct efx_nic
*efx
)
1087 struct pci_dev
*pci_dev
= efx
->pci_dev
;
1088 dma_addr_t dma_mask
= efx
->type
->max_dma_mask
;
1091 netif_dbg(efx
, probe
, efx
->net_dev
, "initialising I/O\n");
1093 rc
= pci_enable_device(pci_dev
);
1095 netif_err(efx
, probe
, efx
->net_dev
,
1096 "failed to enable PCI device\n");
1100 pci_set_master(pci_dev
);
1102 /* Set the PCI DMA mask. Try all possibilities from our
1103 * genuine mask down to 32 bits, because some architectures
1104 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
1105 * masks event though they reject 46 bit masks.
1107 while (dma_mask
> 0x7fffffffUL
) {
1108 if (pci_dma_supported(pci_dev
, dma_mask
)) {
1109 rc
= pci_set_dma_mask(pci_dev
, dma_mask
);
1116 netif_err(efx
, probe
, efx
->net_dev
,
1117 "could not find a suitable DMA mask\n");
1120 netif_dbg(efx
, probe
, efx
->net_dev
,
1121 "using DMA mask %llx\n", (unsigned long long) dma_mask
);
1122 rc
= pci_set_consistent_dma_mask(pci_dev
, dma_mask
);
1124 /* pci_set_consistent_dma_mask() is not *allowed* to
1125 * fail with a mask that pci_set_dma_mask() accepted,
1126 * but just in case...
1128 netif_err(efx
, probe
, efx
->net_dev
,
1129 "failed to set consistent DMA mask\n");
1133 efx
->membase_phys
= pci_resource_start(efx
->pci_dev
, EFX_MEM_BAR
);
1134 rc
= pci_request_region(pci_dev
, EFX_MEM_BAR
, "sfc");
1136 netif_err(efx
, probe
, efx
->net_dev
,
1137 "request for memory BAR failed\n");
1141 efx
->membase
= ioremap_nocache(efx
->membase_phys
,
1142 efx
->type
->mem_map_size
);
1143 if (!efx
->membase
) {
1144 netif_err(efx
, probe
, efx
->net_dev
,
1145 "could not map memory BAR at %llx+%x\n",
1146 (unsigned long long)efx
->membase_phys
,
1147 efx
->type
->mem_map_size
);
1151 netif_dbg(efx
, probe
, efx
->net_dev
,
1152 "memory BAR at %llx+%x (virtual %p)\n",
1153 (unsigned long long)efx
->membase_phys
,
1154 efx
->type
->mem_map_size
, efx
->membase
);
1159 pci_release_region(efx
->pci_dev
, EFX_MEM_BAR
);
1161 efx
->membase_phys
= 0;
1163 pci_disable_device(efx
->pci_dev
);
1168 static void efx_fini_io(struct efx_nic
*efx
)
1170 netif_dbg(efx
, drv
, efx
->net_dev
, "shutting down I/O\n");
1173 iounmap(efx
->membase
);
1174 efx
->membase
= NULL
;
1177 if (efx
->membase_phys
) {
1178 pci_release_region(efx
->pci_dev
, EFX_MEM_BAR
);
1179 efx
->membase_phys
= 0;
1182 pci_disable_device(efx
->pci_dev
);
1185 static unsigned int efx_wanted_parallelism(struct efx_nic
*efx
)
1187 cpumask_var_t thread_mask
;
1194 if (unlikely(!zalloc_cpumask_var(&thread_mask
, GFP_KERNEL
))) {
1195 netif_warn(efx
, probe
, efx
->net_dev
,
1196 "RSS disabled due to allocation failure\n");
1201 for_each_online_cpu(cpu
) {
1202 if (!cpumask_test_cpu(cpu
, thread_mask
)) {
1204 cpumask_or(thread_mask
, thread_mask
,
1205 topology_thread_cpumask(cpu
));
1209 free_cpumask_var(thread_mask
);
1212 /* If RSS is requested for the PF *and* VFs then we can't write RSS
1213 * table entries that are inaccessible to VFs
1215 if (efx_sriov_wanted(efx
) && efx_vf_size(efx
) > 1 &&
1216 count
> efx_vf_size(efx
)) {
1217 netif_warn(efx
, probe
, efx
->net_dev
,
1218 "Reducing number of RSS channels from %u to %u for "
1219 "VF support. Increase vf-msix-limit to use more "
1220 "channels on the PF.\n",
1221 count
, efx_vf_size(efx
));
1222 count
= efx_vf_size(efx
);
1229 efx_init_rx_cpu_rmap(struct efx_nic
*efx
, struct msix_entry
*xentries
)
1231 #ifdef CONFIG_RFS_ACCEL
1235 efx
->net_dev
->rx_cpu_rmap
= alloc_irq_cpu_rmap(efx
->n_rx_channels
);
1236 if (!efx
->net_dev
->rx_cpu_rmap
)
1238 for (i
= 0; i
< efx
->n_rx_channels
; i
++) {
1239 rc
= irq_cpu_rmap_add(efx
->net_dev
->rx_cpu_rmap
,
1240 xentries
[i
].vector
);
1242 free_irq_cpu_rmap(efx
->net_dev
->rx_cpu_rmap
);
1243 efx
->net_dev
->rx_cpu_rmap
= NULL
;
1251 /* Probe the number and type of interrupts we are able to obtain, and
1252 * the resulting numbers of channels and RX queues.
1254 static int efx_probe_interrupts(struct efx_nic
*efx
)
1256 unsigned int max_channels
=
1257 min(efx
->type
->phys_addr_channels
, EFX_MAX_CHANNELS
);
1258 unsigned int extra_channels
= 0;
1262 for (i
= 0; i
< EFX_MAX_EXTRA_CHANNELS
; i
++)
1263 if (efx
->extra_channel_type
[i
])
1266 if (efx
->interrupt_mode
== EFX_INT_MODE_MSIX
) {
1267 struct msix_entry xentries
[EFX_MAX_CHANNELS
];
1268 unsigned int n_channels
;
1270 n_channels
= efx_wanted_parallelism(efx
);
1271 if (separate_tx_channels
)
1273 n_channels
+= extra_channels
;
1274 n_channels
= min(n_channels
, max_channels
);
1276 for (i
= 0; i
< n_channels
; i
++)
1277 xentries
[i
].entry
= i
;
1278 rc
= pci_enable_msix(efx
->pci_dev
, xentries
, n_channels
);
1280 netif_err(efx
, drv
, efx
->net_dev
,
1281 "WARNING: Insufficient MSI-X vectors"
1282 " available (%d < %u).\n", rc
, n_channels
);
1283 netif_err(efx
, drv
, efx
->net_dev
,
1284 "WARNING: Performance may be reduced.\n");
1285 EFX_BUG_ON_PARANOID(rc
>= n_channels
);
1287 rc
= pci_enable_msix(efx
->pci_dev
, xentries
,
1292 efx
->n_channels
= n_channels
;
1293 if (n_channels
> extra_channels
)
1294 n_channels
-= extra_channels
;
1295 if (separate_tx_channels
) {
1296 efx
->n_tx_channels
= max(n_channels
/ 2, 1U);
1297 efx
->n_rx_channels
= max(n_channels
-
1301 efx
->n_tx_channels
= n_channels
;
1302 efx
->n_rx_channels
= n_channels
;
1304 rc
= efx_init_rx_cpu_rmap(efx
, xentries
);
1306 pci_disable_msix(efx
->pci_dev
);
1309 for (i
= 0; i
< efx
->n_channels
; i
++)
1310 efx_get_channel(efx
, i
)->irq
=
1313 /* Fall back to single channel MSI */
1314 efx
->interrupt_mode
= EFX_INT_MODE_MSI
;
1315 netif_err(efx
, drv
, efx
->net_dev
,
1316 "could not enable MSI-X\n");
1320 /* Try single interrupt MSI */
1321 if (efx
->interrupt_mode
== EFX_INT_MODE_MSI
) {
1322 efx
->n_channels
= 1;
1323 efx
->n_rx_channels
= 1;
1324 efx
->n_tx_channels
= 1;
1325 rc
= pci_enable_msi(efx
->pci_dev
);
1327 efx_get_channel(efx
, 0)->irq
= efx
->pci_dev
->irq
;
1329 netif_err(efx
, drv
, efx
->net_dev
,
1330 "could not enable MSI\n");
1331 efx
->interrupt_mode
= EFX_INT_MODE_LEGACY
;
1335 /* Assume legacy interrupts */
1336 if (efx
->interrupt_mode
== EFX_INT_MODE_LEGACY
) {
1337 efx
->n_channels
= 1 + (separate_tx_channels
? 1 : 0);
1338 efx
->n_rx_channels
= 1;
1339 efx
->n_tx_channels
= 1;
1340 efx
->legacy_irq
= efx
->pci_dev
->irq
;
1343 /* Assign extra channels if possible */
1344 j
= efx
->n_channels
;
1345 for (i
= 0; i
< EFX_MAX_EXTRA_CHANNELS
; i
++) {
1346 if (!efx
->extra_channel_type
[i
])
1348 if (efx
->interrupt_mode
!= EFX_INT_MODE_MSIX
||
1349 efx
->n_channels
<= extra_channels
) {
1350 efx
->extra_channel_type
[i
]->handle_no_channel(efx
);
1353 efx_get_channel(efx
, j
)->type
=
1354 efx
->extra_channel_type
[i
];
1358 /* RSS might be usable on VFs even if it is disabled on the PF */
1359 efx
->rss_spread
= ((efx
->n_rx_channels
> 1 || !efx_sriov_wanted(efx
)) ?
1360 efx
->n_rx_channels
: efx_vf_size(efx
));
1365 /* Enable interrupts, then probe and start the event queues */
1366 static void efx_start_interrupts(struct efx_nic
*efx
, bool may_keep_eventq
)
1368 struct efx_channel
*channel
;
1370 if (efx
->legacy_irq
)
1371 efx
->legacy_irq_enabled
= true;
1372 efx_nic_enable_interrupts(efx
);
1374 efx_for_each_channel(channel
, efx
) {
1375 if (!channel
->type
->keep_eventq
|| !may_keep_eventq
)
1376 efx_init_eventq(channel
);
1377 efx_start_eventq(channel
);
1380 efx_mcdi_mode_event(efx
);
1383 static void efx_stop_interrupts(struct efx_nic
*efx
, bool may_keep_eventq
)
1385 struct efx_channel
*channel
;
1387 efx_mcdi_mode_poll(efx
);
1389 efx_nic_disable_interrupts(efx
);
1390 if (efx
->legacy_irq
) {
1391 synchronize_irq(efx
->legacy_irq
);
1392 efx
->legacy_irq_enabled
= false;
1395 efx_for_each_channel(channel
, efx
) {
1397 synchronize_irq(channel
->irq
);
1399 efx_stop_eventq(channel
);
1400 if (!channel
->type
->keep_eventq
|| !may_keep_eventq
)
1401 efx_fini_eventq(channel
);
1405 static void efx_remove_interrupts(struct efx_nic
*efx
)
1407 struct efx_channel
*channel
;
1409 /* Remove MSI/MSI-X interrupts */
1410 efx_for_each_channel(channel
, efx
)
1412 pci_disable_msi(efx
->pci_dev
);
1413 pci_disable_msix(efx
->pci_dev
);
1415 /* Remove legacy interrupt */
1416 efx
->legacy_irq
= 0;
1419 static void efx_set_channels(struct efx_nic
*efx
)
1421 struct efx_channel
*channel
;
1422 struct efx_tx_queue
*tx_queue
;
1424 efx
->tx_channel_offset
=
1425 separate_tx_channels
? efx
->n_channels
- efx
->n_tx_channels
: 0;
1427 /* We need to adjust the TX queue numbers if we have separate
1428 * RX-only and TX-only channels.
1430 efx_for_each_channel(channel
, efx
) {
1431 efx_for_each_channel_tx_queue(tx_queue
, channel
)
1432 tx_queue
->queue
-= (efx
->tx_channel_offset
*
1437 static int efx_probe_nic(struct efx_nic
*efx
)
1442 netif_dbg(efx
, probe
, efx
->net_dev
, "creating NIC\n");
1444 /* Carry out hardware-type specific initialisation */
1445 rc
= efx
->type
->probe(efx
);
1449 /* Determine the number of channels and queues by trying to hook
1450 * in MSI-X interrupts. */
1451 rc
= efx_probe_interrupts(efx
);
1455 efx
->type
->dimension_resources(efx
);
1457 if (efx
->n_channels
> 1)
1458 get_random_bytes(&efx
->rx_hash_key
, sizeof(efx
->rx_hash_key
));
1459 for (i
= 0; i
< ARRAY_SIZE(efx
->rx_indir_table
); i
++)
1460 efx
->rx_indir_table
[i
] =
1461 ethtool_rxfh_indir_default(i
, efx
->rss_spread
);
1463 efx_set_channels(efx
);
1464 netif_set_real_num_tx_queues(efx
->net_dev
, efx
->n_tx_channels
);
1465 netif_set_real_num_rx_queues(efx
->net_dev
, efx
->n_rx_channels
);
1467 /* Initialise the interrupt moderation settings */
1468 efx_init_irq_moderation(efx
, tx_irq_mod_usec
, rx_irq_mod_usec
, true,
1474 efx
->type
->remove(efx
);
1478 static void efx_remove_nic(struct efx_nic
*efx
)
1480 netif_dbg(efx
, drv
, efx
->net_dev
, "destroying NIC\n");
1482 efx_remove_interrupts(efx
);
1483 efx
->type
->remove(efx
);
1486 /**************************************************************************
1488 * NIC startup/shutdown
1490 *************************************************************************/
1492 static int efx_probe_all(struct efx_nic
*efx
)
1496 rc
= efx_probe_nic(efx
);
1498 netif_err(efx
, probe
, efx
->net_dev
, "failed to create NIC\n");
1502 rc
= efx_probe_port(efx
);
1504 netif_err(efx
, probe
, efx
->net_dev
, "failed to create port\n");
1508 BUILD_BUG_ON(EFX_DEFAULT_DMAQ_SIZE
< EFX_RXQ_MIN_ENT
);
1509 if (WARN_ON(EFX_DEFAULT_DMAQ_SIZE
< EFX_TXQ_MIN_ENT(efx
))) {
1513 efx
->rxq_entries
= efx
->txq_entries
= EFX_DEFAULT_DMAQ_SIZE
;
1515 rc
= efx_probe_filters(efx
);
1517 netif_err(efx
, probe
, efx
->net_dev
,
1518 "failed to create filter tables\n");
1522 rc
= efx_probe_channels(efx
);
1529 efx_remove_filters(efx
);
1531 efx_remove_port(efx
);
1533 efx_remove_nic(efx
);
1538 /* Called after previous invocation(s) of efx_stop_all, restarts the port,
1539 * kernel transmit queues and NAPI processing, and ensures that the port is
1540 * scheduled to be reconfigured. This function is safe to call multiple
1541 * times when the NIC is in any state.
1543 static void efx_start_all(struct efx_nic
*efx
)
1545 EFX_ASSERT_RESET_SERIALISED(efx
);
1547 /* Check that it is appropriate to restart the interface. All
1548 * of these flags are safe to read under just the rtnl lock */
1549 if (efx
->port_enabled
)
1551 if ((efx
->state
!= STATE_RUNNING
) && (efx
->state
!= STATE_INIT
))
1553 if (!netif_running(efx
->net_dev
))
1556 efx_start_port(efx
);
1557 efx_start_datapath(efx
);
1559 /* Start the hardware monitor if there is one. Otherwise (we're link
1560 * event driven), we have to poll the PHY because after an event queue
1561 * flush, we could have a missed a link state change */
1562 if (efx
->type
->monitor
!= NULL
) {
1563 queue_delayed_work(efx
->workqueue
, &efx
->monitor_work
,
1564 efx_monitor_interval
);
1566 mutex_lock(&efx
->mac_lock
);
1567 if (efx
->phy_op
->poll(efx
))
1568 efx_link_status_changed(efx
);
1569 mutex_unlock(&efx
->mac_lock
);
1572 efx
->type
->start_stats(efx
);
1575 /* Flush all delayed work. Should only be called when no more delayed work
1576 * will be scheduled. This doesn't flush pending online resets (efx_reset),
1577 * since we're holding the rtnl_lock at this point. */
1578 static void efx_flush_all(struct efx_nic
*efx
)
1580 /* Make sure the hardware monitor and event self-test are stopped */
1581 cancel_delayed_work_sync(&efx
->monitor_work
);
1582 efx_selftest_async_cancel(efx
);
1583 /* Stop scheduled port reconfigurations */
1584 cancel_work_sync(&efx
->mac_work
);
1587 /* Quiesce hardware and software without bringing the link down.
1588 * Safe to call multiple times, when the nic and interface is in any
1589 * state. The caller is guaranteed to subsequently be in a position
1590 * to modify any hardware and software state they see fit without
1592 static void efx_stop_all(struct efx_nic
*efx
)
1594 EFX_ASSERT_RESET_SERIALISED(efx
);
1596 /* port_enabled can be read safely under the rtnl lock */
1597 if (!efx
->port_enabled
)
1600 efx
->type
->stop_stats(efx
);
1603 /* Flush efx_mac_work(), refill_workqueue, monitor_work */
1606 /* Stop the kernel transmit interface. This is only valid if
1607 * the device is stopped or detached; otherwise the watchdog
1608 * may fire immediately.
1610 WARN_ON(netif_running(efx
->net_dev
) &&
1611 netif_device_present(efx
->net_dev
));
1612 netif_tx_disable(efx
->net_dev
);
1614 efx_stop_datapath(efx
);
1617 static void efx_remove_all(struct efx_nic
*efx
)
1619 efx_remove_channels(efx
);
1620 efx_remove_filters(efx
);
1621 efx_remove_port(efx
);
1622 efx_remove_nic(efx
);
1625 /**************************************************************************
1627 * Interrupt moderation
1629 **************************************************************************/
1631 static unsigned int irq_mod_ticks(unsigned int usecs
, unsigned int quantum_ns
)
1635 if (usecs
* 1000 < quantum_ns
)
1636 return 1; /* never round down to 0 */
1637 return usecs
* 1000 / quantum_ns
;
1640 /* Set interrupt moderation parameters */
1641 int efx_init_irq_moderation(struct efx_nic
*efx
, unsigned int tx_usecs
,
1642 unsigned int rx_usecs
, bool rx_adaptive
,
1643 bool rx_may_override_tx
)
1645 struct efx_channel
*channel
;
1646 unsigned int irq_mod_max
= DIV_ROUND_UP(efx
->type
->timer_period_max
*
1647 efx
->timer_quantum_ns
,
1649 unsigned int tx_ticks
;
1650 unsigned int rx_ticks
;
1652 EFX_ASSERT_RESET_SERIALISED(efx
);
1654 if (tx_usecs
> irq_mod_max
|| rx_usecs
> irq_mod_max
)
1657 tx_ticks
= irq_mod_ticks(tx_usecs
, efx
->timer_quantum_ns
);
1658 rx_ticks
= irq_mod_ticks(rx_usecs
, efx
->timer_quantum_ns
);
1660 if (tx_ticks
!= rx_ticks
&& efx
->tx_channel_offset
== 0 &&
1661 !rx_may_override_tx
) {
1662 netif_err(efx
, drv
, efx
->net_dev
, "Channels are shared. "
1663 "RX and TX IRQ moderation must be equal\n");
1667 efx
->irq_rx_adaptive
= rx_adaptive
;
1668 efx
->irq_rx_moderation
= rx_ticks
;
1669 efx_for_each_channel(channel
, efx
) {
1670 if (efx_channel_has_rx_queue(channel
))
1671 channel
->irq_moderation
= rx_ticks
;
1672 else if (efx_channel_has_tx_queues(channel
))
1673 channel
->irq_moderation
= tx_ticks
;
1679 void efx_get_irq_moderation(struct efx_nic
*efx
, unsigned int *tx_usecs
,
1680 unsigned int *rx_usecs
, bool *rx_adaptive
)
1682 /* We must round up when converting ticks to microseconds
1683 * because we round down when converting the other way.
1686 *rx_adaptive
= efx
->irq_rx_adaptive
;
1687 *rx_usecs
= DIV_ROUND_UP(efx
->irq_rx_moderation
*
1688 efx
->timer_quantum_ns
,
1691 /* If channels are shared between RX and TX, so is IRQ
1692 * moderation. Otherwise, IRQ moderation is the same for all
1693 * TX channels and is not adaptive.
1695 if (efx
->tx_channel_offset
== 0)
1696 *tx_usecs
= *rx_usecs
;
1698 *tx_usecs
= DIV_ROUND_UP(
1699 efx
->channel
[efx
->tx_channel_offset
]->irq_moderation
*
1700 efx
->timer_quantum_ns
,
1704 /**************************************************************************
1708 **************************************************************************/
1710 /* Run periodically off the general workqueue */
1711 static void efx_monitor(struct work_struct
*data
)
1713 struct efx_nic
*efx
= container_of(data
, struct efx_nic
,
1716 netif_vdbg(efx
, timer
, efx
->net_dev
,
1717 "hardware monitor executing on CPU %d\n",
1718 raw_smp_processor_id());
1719 BUG_ON(efx
->type
->monitor
== NULL
);
1721 /* If the mac_lock is already held then it is likely a port
1722 * reconfiguration is already in place, which will likely do
1723 * most of the work of monitor() anyway. */
1724 if (mutex_trylock(&efx
->mac_lock
)) {
1725 if (efx
->port_enabled
)
1726 efx
->type
->monitor(efx
);
1727 mutex_unlock(&efx
->mac_lock
);
1730 queue_delayed_work(efx
->workqueue
, &efx
->monitor_work
,
1731 efx_monitor_interval
);
1734 /**************************************************************************
1738 *************************************************************************/
1741 * Context: process, rtnl_lock() held.
1743 static int efx_ioctl(struct net_device
*net_dev
, struct ifreq
*ifr
, int cmd
)
1745 struct efx_nic
*efx
= netdev_priv(net_dev
);
1746 struct mii_ioctl_data
*data
= if_mii(ifr
);
1748 EFX_ASSERT_RESET_SERIALISED(efx
);
1750 /* Convert phy_id from older PRTAD/DEVAD format */
1751 if ((cmd
== SIOCGMIIREG
|| cmd
== SIOCSMIIREG
) &&
1752 (data
->phy_id
& 0xfc00) == 0x0400)
1753 data
->phy_id
^= MDIO_PHY_ID_C45
| 0x0400;
1755 return mdio_mii_ioctl(&efx
->mdio
, data
, cmd
);
1758 /**************************************************************************
1762 **************************************************************************/
1764 static void efx_init_napi_channel(struct efx_channel
*channel
)
1766 struct efx_nic
*efx
= channel
->efx
;
1768 channel
->napi_dev
= efx
->net_dev
;
1769 netif_napi_add(channel
->napi_dev
, &channel
->napi_str
,
1770 efx_poll
, napi_weight
);
1773 static void efx_init_napi(struct efx_nic
*efx
)
1775 struct efx_channel
*channel
;
1777 efx_for_each_channel(channel
, efx
)
1778 efx_init_napi_channel(channel
);
1781 static void efx_fini_napi_channel(struct efx_channel
*channel
)
1783 if (channel
->napi_dev
)
1784 netif_napi_del(&channel
->napi_str
);
1785 channel
->napi_dev
= NULL
;
1788 static void efx_fini_napi(struct efx_nic
*efx
)
1790 struct efx_channel
*channel
;
1792 efx_for_each_channel(channel
, efx
)
1793 efx_fini_napi_channel(channel
);
1796 /**************************************************************************
1798 * Kernel netpoll interface
1800 *************************************************************************/
1802 #ifdef CONFIG_NET_POLL_CONTROLLER
1804 /* Although in the common case interrupts will be disabled, this is not
1805 * guaranteed. However, all our work happens inside the NAPI callback,
1806 * so no locking is required.
1808 static void efx_netpoll(struct net_device
*net_dev
)
1810 struct efx_nic
*efx
= netdev_priv(net_dev
);
1811 struct efx_channel
*channel
;
1813 efx_for_each_channel(channel
, efx
)
1814 efx_schedule_channel(channel
);
1819 /**************************************************************************
1821 * Kernel net device interface
1823 *************************************************************************/
1825 /* Context: process, rtnl_lock() held. */
1826 static int efx_net_open(struct net_device
*net_dev
)
1828 struct efx_nic
*efx
= netdev_priv(net_dev
);
1829 EFX_ASSERT_RESET_SERIALISED(efx
);
1831 netif_dbg(efx
, ifup
, efx
->net_dev
, "opening device on CPU %d\n",
1832 raw_smp_processor_id());
1834 if (efx
->state
== STATE_DISABLED
)
1836 if (efx
->phy_mode
& PHY_MODE_SPECIAL
)
1838 if (efx_mcdi_poll_reboot(efx
) && efx_reset(efx
, RESET_TYPE_ALL
))
1841 /* Notify the kernel of the link state polled during driver load,
1842 * before the monitor starts running */
1843 efx_link_status_changed(efx
);
1846 efx_selftest_async_start(efx
);
1850 /* Context: process, rtnl_lock() held.
1851 * Note that the kernel will ignore our return code; this method
1852 * should really be a void.
1854 static int efx_net_stop(struct net_device
*net_dev
)
1856 struct efx_nic
*efx
= netdev_priv(net_dev
);
1858 netif_dbg(efx
, ifdown
, efx
->net_dev
, "closing on CPU %d\n",
1859 raw_smp_processor_id());
1861 if (efx
->state
!= STATE_DISABLED
) {
1862 /* Stop the device and flush all the channels */
1869 /* Context: process, dev_base_lock or RTNL held, non-blocking. */
1870 static struct rtnl_link_stats64
*efx_net_stats(struct net_device
*net_dev
,
1871 struct rtnl_link_stats64
*stats
)
1873 struct efx_nic
*efx
= netdev_priv(net_dev
);
1874 struct efx_mac_stats
*mac_stats
= &efx
->mac_stats
;
1876 spin_lock_bh(&efx
->stats_lock
);
1878 efx
->type
->update_stats(efx
);
1880 stats
->rx_packets
= mac_stats
->rx_packets
;
1881 stats
->tx_packets
= mac_stats
->tx_packets
;
1882 stats
->rx_bytes
= mac_stats
->rx_bytes
;
1883 stats
->tx_bytes
= mac_stats
->tx_bytes
;
1884 stats
->rx_dropped
= efx
->n_rx_nodesc_drop_cnt
;
1885 stats
->multicast
= mac_stats
->rx_multicast
;
1886 stats
->collisions
= mac_stats
->tx_collision
;
1887 stats
->rx_length_errors
= (mac_stats
->rx_gtjumbo
+
1888 mac_stats
->rx_length_error
);
1889 stats
->rx_crc_errors
= mac_stats
->rx_bad
;
1890 stats
->rx_frame_errors
= mac_stats
->rx_align_error
;
1891 stats
->rx_fifo_errors
= mac_stats
->rx_overflow
;
1892 stats
->rx_missed_errors
= mac_stats
->rx_missed
;
1893 stats
->tx_window_errors
= mac_stats
->tx_late_collision
;
1895 stats
->rx_errors
= (stats
->rx_length_errors
+
1896 stats
->rx_crc_errors
+
1897 stats
->rx_frame_errors
+
1898 mac_stats
->rx_symbol_error
);
1899 stats
->tx_errors
= (stats
->tx_window_errors
+
1902 spin_unlock_bh(&efx
->stats_lock
);
1907 /* Context: netif_tx_lock held, BHs disabled. */
1908 static void efx_watchdog(struct net_device
*net_dev
)
1910 struct efx_nic
*efx
= netdev_priv(net_dev
);
1912 netif_err(efx
, tx_err
, efx
->net_dev
,
1913 "TX stuck with port_enabled=%d: resetting channels\n",
1916 efx_schedule_reset(efx
, RESET_TYPE_TX_WATCHDOG
);
1920 /* Context: process, rtnl_lock() held. */
1921 static int efx_change_mtu(struct net_device
*net_dev
, int new_mtu
)
1923 struct efx_nic
*efx
= netdev_priv(net_dev
);
1925 EFX_ASSERT_RESET_SERIALISED(efx
);
1927 if (new_mtu
> EFX_MAX_MTU
)
1930 netif_dbg(efx
, drv
, efx
->net_dev
, "changing MTU to %d\n", new_mtu
);
1932 efx_device_detach_sync(efx
);
1935 mutex_lock(&efx
->mac_lock
);
1936 /* Reconfigure the MAC before enabling the dma queues so that
1937 * the RX buffers don't overflow */
1938 net_dev
->mtu
= new_mtu
;
1939 efx
->type
->reconfigure_mac(efx
);
1940 mutex_unlock(&efx
->mac_lock
);
1943 netif_device_attach(efx
->net_dev
);
1947 static int efx_set_mac_address(struct net_device
*net_dev
, void *data
)
1949 struct efx_nic
*efx
= netdev_priv(net_dev
);
1950 struct sockaddr
*addr
= data
;
1951 char *new_addr
= addr
->sa_data
;
1953 EFX_ASSERT_RESET_SERIALISED(efx
);
1955 if (!is_valid_ether_addr(new_addr
)) {
1956 netif_err(efx
, drv
, efx
->net_dev
,
1957 "invalid ethernet MAC address requested: %pM\n",
1959 return -EADDRNOTAVAIL
;
1962 memcpy(net_dev
->dev_addr
, new_addr
, net_dev
->addr_len
);
1963 efx_sriov_mac_address_changed(efx
);
1965 /* Reconfigure the MAC */
1966 mutex_lock(&efx
->mac_lock
);
1967 efx
->type
->reconfigure_mac(efx
);
1968 mutex_unlock(&efx
->mac_lock
);
1973 /* Context: netif_addr_lock held, BHs disabled. */
1974 static void efx_set_rx_mode(struct net_device
*net_dev
)
1976 struct efx_nic
*efx
= netdev_priv(net_dev
);
1977 struct netdev_hw_addr
*ha
;
1978 union efx_multicast_hash
*mc_hash
= &efx
->multicast_hash
;
1982 efx
->promiscuous
= !!(net_dev
->flags
& IFF_PROMISC
);
1984 /* Build multicast hash table */
1985 if (efx
->promiscuous
|| (net_dev
->flags
& IFF_ALLMULTI
)) {
1986 memset(mc_hash
, 0xff, sizeof(*mc_hash
));
1988 memset(mc_hash
, 0x00, sizeof(*mc_hash
));
1989 netdev_for_each_mc_addr(ha
, net_dev
) {
1990 crc
= ether_crc_le(ETH_ALEN
, ha
->addr
);
1991 bit
= crc
& (EFX_MCAST_HASH_ENTRIES
- 1);
1992 set_bit_le(bit
, mc_hash
->byte
);
1995 /* Broadcast packets go through the multicast hash filter.
1996 * ether_crc_le() of the broadcast address is 0xbe2612ff
1997 * so we always add bit 0xff to the mask.
1999 set_bit_le(0xff, mc_hash
->byte
);
2002 if (efx
->port_enabled
)
2003 queue_work(efx
->workqueue
, &efx
->mac_work
);
2004 /* Otherwise efx_start_port() will do this */
2007 static int efx_set_features(struct net_device
*net_dev
, netdev_features_t data
)
2009 struct efx_nic
*efx
= netdev_priv(net_dev
);
2011 /* If disabling RX n-tuple filtering, clear existing filters */
2012 if (net_dev
->features
& ~data
& NETIF_F_NTUPLE
)
2013 efx_filter_clear_rx(efx
, EFX_FILTER_PRI_MANUAL
);
2018 static const struct net_device_ops efx_netdev_ops
= {
2019 .ndo_open
= efx_net_open
,
2020 .ndo_stop
= efx_net_stop
,
2021 .ndo_get_stats64
= efx_net_stats
,
2022 .ndo_tx_timeout
= efx_watchdog
,
2023 .ndo_start_xmit
= efx_hard_start_xmit
,
2024 .ndo_validate_addr
= eth_validate_addr
,
2025 .ndo_do_ioctl
= efx_ioctl
,
2026 .ndo_change_mtu
= efx_change_mtu
,
2027 .ndo_set_mac_address
= efx_set_mac_address
,
2028 .ndo_set_rx_mode
= efx_set_rx_mode
,
2029 .ndo_set_features
= efx_set_features
,
2030 #ifdef CONFIG_SFC_SRIOV
2031 .ndo_set_vf_mac
= efx_sriov_set_vf_mac
,
2032 .ndo_set_vf_vlan
= efx_sriov_set_vf_vlan
,
2033 .ndo_set_vf_spoofchk
= efx_sriov_set_vf_spoofchk
,
2034 .ndo_get_vf_config
= efx_sriov_get_vf_config
,
2036 #ifdef CONFIG_NET_POLL_CONTROLLER
2037 .ndo_poll_controller
= efx_netpoll
,
2039 .ndo_setup_tc
= efx_setup_tc
,
2040 #ifdef CONFIG_RFS_ACCEL
2041 .ndo_rx_flow_steer
= efx_filter_rfs
,
2045 static void efx_update_name(struct efx_nic
*efx
)
2047 strcpy(efx
->name
, efx
->net_dev
->name
);
2048 efx_mtd_rename(efx
);
2049 efx_set_channel_names(efx
);
2052 static int efx_netdev_event(struct notifier_block
*this,
2053 unsigned long event
, void *ptr
)
2055 struct net_device
*net_dev
= ptr
;
2057 if (net_dev
->netdev_ops
== &efx_netdev_ops
&&
2058 event
== NETDEV_CHANGENAME
)
2059 efx_update_name(netdev_priv(net_dev
));
2064 static struct notifier_block efx_netdev_notifier
= {
2065 .notifier_call
= efx_netdev_event
,
2069 show_phy_type(struct device
*dev
, struct device_attribute
*attr
, char *buf
)
2071 struct efx_nic
*efx
= pci_get_drvdata(to_pci_dev(dev
));
2072 return sprintf(buf
, "%d\n", efx
->phy_type
);
2074 static DEVICE_ATTR(phy_type
, 0644, show_phy_type
, NULL
);
2076 static int efx_register_netdev(struct efx_nic
*efx
)
2078 struct net_device
*net_dev
= efx
->net_dev
;
2079 struct efx_channel
*channel
;
2082 net_dev
->watchdog_timeo
= 5 * HZ
;
2083 net_dev
->irq
= efx
->pci_dev
->irq
;
2084 net_dev
->netdev_ops
= &efx_netdev_ops
;
2085 SET_ETHTOOL_OPS(net_dev
, &efx_ethtool_ops
);
2086 net_dev
->gso_max_segs
= EFX_TSO_MAX_SEGS
;
2090 rc
= dev_alloc_name(net_dev
, net_dev
->name
);
2093 efx_update_name(efx
);
2095 rc
= register_netdevice(net_dev
);
2099 efx_for_each_channel(channel
, efx
) {
2100 struct efx_tx_queue
*tx_queue
;
2101 efx_for_each_channel_tx_queue(tx_queue
, channel
)
2102 efx_init_tx_queue_core_txq(tx_queue
);
2105 /* Always start with carrier off; PHY events will detect the link */
2106 netif_carrier_off(net_dev
);
2110 rc
= device_create_file(&efx
->pci_dev
->dev
, &dev_attr_phy_type
);
2112 netif_err(efx
, drv
, efx
->net_dev
,
2113 "failed to init net dev attributes\n");
2114 goto fail_registered
;
2121 netif_err(efx
, drv
, efx
->net_dev
, "could not register net dev\n");
2125 unregister_netdev(net_dev
);
2129 static void efx_unregister_netdev(struct efx_nic
*efx
)
2131 struct efx_channel
*channel
;
2132 struct efx_tx_queue
*tx_queue
;
2137 BUG_ON(netdev_priv(efx
->net_dev
) != efx
);
2139 /* Free up any skbs still remaining. This has to happen before
2140 * we try to unregister the netdev as running their destructors
2141 * may be needed to get the device ref. count to 0. */
2142 efx_for_each_channel(channel
, efx
) {
2143 efx_for_each_channel_tx_queue(tx_queue
, channel
)
2144 efx_release_tx_buffers(tx_queue
);
2147 strlcpy(efx
->name
, pci_name(efx
->pci_dev
), sizeof(efx
->name
));
2148 device_remove_file(&efx
->pci_dev
->dev
, &dev_attr_phy_type
);
2149 unregister_netdev(efx
->net_dev
);
2152 /**************************************************************************
2154 * Device reset and suspend
2156 **************************************************************************/
2158 /* Tears down the entire software state and most of the hardware state
2160 void efx_reset_down(struct efx_nic
*efx
, enum reset_type method
)
2162 EFX_ASSERT_RESET_SERIALISED(efx
);
2165 mutex_lock(&efx
->mac_lock
);
2167 efx_stop_interrupts(efx
, false);
2168 if (efx
->port_initialized
&& method
!= RESET_TYPE_INVISIBLE
)
2169 efx
->phy_op
->fini(efx
);
2170 efx
->type
->fini(efx
);
2173 /* This function will always ensure that the locks acquired in
2174 * efx_reset_down() are released. A failure return code indicates
2175 * that we were unable to reinitialise the hardware, and the
2176 * driver should be disabled. If ok is false, then the rx and tx
2177 * engines are not restarted, pending a RESET_DISABLE. */
2178 int efx_reset_up(struct efx_nic
*efx
, enum reset_type method
, bool ok
)
2182 EFX_ASSERT_RESET_SERIALISED(efx
);
2184 rc
= efx
->type
->init(efx
);
2186 netif_err(efx
, drv
, efx
->net_dev
, "failed to initialise NIC\n");
2193 if (efx
->port_initialized
&& method
!= RESET_TYPE_INVISIBLE
) {
2194 rc
= efx
->phy_op
->init(efx
);
2197 if (efx
->phy_op
->reconfigure(efx
))
2198 netif_err(efx
, drv
, efx
->net_dev
,
2199 "could not restore PHY settings\n");
2202 efx
->type
->reconfigure_mac(efx
);
2204 efx_start_interrupts(efx
, false);
2205 efx_restore_filters(efx
);
2206 efx_sriov_reset(efx
);
2208 mutex_unlock(&efx
->mac_lock
);
2215 efx
->port_initialized
= false;
2217 mutex_unlock(&efx
->mac_lock
);
2222 /* Reset the NIC using the specified method. Note that the reset may
2223 * fail, in which case the card will be left in an unusable state.
2225 * Caller must hold the rtnl_lock.
2227 int efx_reset(struct efx_nic
*efx
, enum reset_type method
)
2232 netif_info(efx
, drv
, efx
->net_dev
, "resetting (%s)\n",
2233 RESET_TYPE(method
));
2235 efx_device_detach_sync(efx
);
2236 efx_reset_down(efx
, method
);
2238 rc
= efx
->type
->reset(efx
, method
);
2240 netif_err(efx
, drv
, efx
->net_dev
, "failed to reset hardware\n");
2244 /* Clear flags for the scopes we covered. We assume the NIC and
2245 * driver are now quiescent so that there is no race here.
2247 efx
->reset_pending
&= -(1 << (method
+ 1));
2249 /* Reinitialise bus-mastering, which may have been turned off before
2250 * the reset was scheduled. This is still appropriate, even in the
2251 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
2252 * can respond to requests. */
2253 pci_set_master(efx
->pci_dev
);
2256 /* Leave device stopped if necessary */
2257 disabled
= rc
|| method
== RESET_TYPE_DISABLE
;
2258 rc2
= efx_reset_up(efx
, method
, !disabled
);
2266 dev_close(efx
->net_dev
);
2267 netif_err(efx
, drv
, efx
->net_dev
, "has been disabled\n");
2268 efx
->state
= STATE_DISABLED
;
2270 netif_dbg(efx
, drv
, efx
->net_dev
, "reset complete\n");
2271 netif_device_attach(efx
->net_dev
);
2276 /* The worker thread exists so that code that cannot sleep can
2277 * schedule a reset for later.
2279 static void efx_reset_work(struct work_struct
*data
)
2281 struct efx_nic
*efx
= container_of(data
, struct efx_nic
, reset_work
);
2282 unsigned long pending
= ACCESS_ONCE(efx
->reset_pending
);
2287 /* If we're not RUNNING then don't reset. Leave the reset_pending
2288 * flags set so that efx_pci_probe_main will be retried */
2289 if (efx
->state
!= STATE_RUNNING
) {
2290 netif_info(efx
, drv
, efx
->net_dev
,
2291 "scheduled reset quenched. NIC not RUNNING\n");
2296 (void)efx_reset(efx
, fls(pending
) - 1);
2300 void efx_schedule_reset(struct efx_nic
*efx
, enum reset_type type
)
2302 enum reset_type method
;
2305 case RESET_TYPE_INVISIBLE
:
2306 case RESET_TYPE_ALL
:
2307 case RESET_TYPE_WORLD
:
2308 case RESET_TYPE_DISABLE
:
2310 netif_dbg(efx
, drv
, efx
->net_dev
, "scheduling %s reset\n",
2311 RESET_TYPE(method
));
2314 method
= efx
->type
->map_reset_reason(type
);
2315 netif_dbg(efx
, drv
, efx
->net_dev
,
2316 "scheduling %s reset for %s\n",
2317 RESET_TYPE(method
), RESET_TYPE(type
));
2321 set_bit(method
, &efx
->reset_pending
);
2323 /* efx_process_channel() will no longer read events once a
2324 * reset is scheduled. So switch back to poll'd MCDI completions. */
2325 efx_mcdi_mode_poll(efx
);
2327 queue_work(reset_workqueue
, &efx
->reset_work
);
2330 /**************************************************************************
2332 * List of NICs we support
2334 **************************************************************************/
2336 /* PCI device ID table */
2337 static DEFINE_PCI_DEVICE_TABLE(efx_pci_table
) = {
2338 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE
,
2339 PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0
),
2340 .driver_data
= (unsigned long) &falcon_a1_nic_type
},
2341 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE
,
2342 PCI_DEVICE_ID_SOLARFLARE_SFC4000B
),
2343 .driver_data
= (unsigned long) &falcon_b0_nic_type
},
2344 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE
, 0x0803), /* SFC9020 */
2345 .driver_data
= (unsigned long) &siena_a0_nic_type
},
2346 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE
, 0x0813), /* SFL9021 */
2347 .driver_data
= (unsigned long) &siena_a0_nic_type
},
2348 {0} /* end of list */
2351 /**************************************************************************
2353 * Dummy PHY/MAC operations
2355 * Can be used for some unimplemented operations
2356 * Needed so all function pointers are valid and do not have to be tested
2359 **************************************************************************/
2360 int efx_port_dummy_op_int(struct efx_nic
*efx
)
2364 void efx_port_dummy_op_void(struct efx_nic
*efx
) {}
2366 static bool efx_port_dummy_op_poll(struct efx_nic
*efx
)
2371 static const struct efx_phy_operations efx_dummy_phy_operations
= {
2372 .init
= efx_port_dummy_op_int
,
2373 .reconfigure
= efx_port_dummy_op_int
,
2374 .poll
= efx_port_dummy_op_poll
,
2375 .fini
= efx_port_dummy_op_void
,
2378 /**************************************************************************
2382 **************************************************************************/
2384 /* This zeroes out and then fills in the invariants in a struct
2385 * efx_nic (including all sub-structures).
2387 static int efx_init_struct(struct efx_nic
*efx
, const struct efx_nic_type
*type
,
2388 struct pci_dev
*pci_dev
, struct net_device
*net_dev
)
2392 /* Initialise common structures */
2393 memset(efx
, 0, sizeof(*efx
));
2394 spin_lock_init(&efx
->biu_lock
);
2395 #ifdef CONFIG_SFC_MTD
2396 INIT_LIST_HEAD(&efx
->mtd_list
);
2398 INIT_WORK(&efx
->reset_work
, efx_reset_work
);
2399 INIT_DELAYED_WORK(&efx
->monitor_work
, efx_monitor
);
2400 INIT_DELAYED_WORK(&efx
->selftest_work
, efx_selftest_async_work
);
2401 efx
->pci_dev
= pci_dev
;
2402 efx
->msg_enable
= debug
;
2403 efx
->state
= STATE_INIT
;
2404 strlcpy(efx
->name
, pci_name(pci_dev
), sizeof(efx
->name
));
2406 efx
->net_dev
= net_dev
;
2407 spin_lock_init(&efx
->stats_lock
);
2408 mutex_init(&efx
->mac_lock
);
2409 efx
->phy_op
= &efx_dummy_phy_operations
;
2410 efx
->mdio
.dev
= net_dev
;
2411 INIT_WORK(&efx
->mac_work
, efx_mac_work
);
2412 init_waitqueue_head(&efx
->flush_wq
);
2414 for (i
= 0; i
< EFX_MAX_CHANNELS
; i
++) {
2415 efx
->channel
[i
] = efx_alloc_channel(efx
, i
, NULL
);
2416 if (!efx
->channel
[i
])
2422 EFX_BUG_ON_PARANOID(efx
->type
->phys_addr_channels
> EFX_MAX_CHANNELS
);
2424 /* Higher numbered interrupt modes are less capable! */
2425 efx
->interrupt_mode
= max(efx
->type
->max_interrupt_mode
,
2428 /* Would be good to use the net_dev name, but we're too early */
2429 snprintf(efx
->workqueue_name
, sizeof(efx
->workqueue_name
), "sfc%s",
2431 efx
->workqueue
= create_singlethread_workqueue(efx
->workqueue_name
);
2432 if (!efx
->workqueue
)
2438 efx_fini_struct(efx
);
2442 static void efx_fini_struct(struct efx_nic
*efx
)
2446 for (i
= 0; i
< EFX_MAX_CHANNELS
; i
++)
2447 kfree(efx
->channel
[i
]);
2449 if (efx
->workqueue
) {
2450 destroy_workqueue(efx
->workqueue
);
2451 efx
->workqueue
= NULL
;
2455 /**************************************************************************
2459 **************************************************************************/
2461 /* Main body of final NIC shutdown code
2462 * This is called only at module unload (or hotplug removal).
2464 static void efx_pci_remove_main(struct efx_nic
*efx
)
2466 #ifdef CONFIG_RFS_ACCEL
2467 free_irq_cpu_rmap(efx
->net_dev
->rx_cpu_rmap
);
2468 efx
->net_dev
->rx_cpu_rmap
= NULL
;
2470 efx_stop_interrupts(efx
, false);
2471 efx_nic_fini_interrupt(efx
);
2473 efx
->type
->fini(efx
);
2475 efx_remove_all(efx
);
2478 /* Final NIC shutdown
2479 * This is called only at module unload (or hotplug removal).
2481 static void efx_pci_remove(struct pci_dev
*pci_dev
)
2483 struct efx_nic
*efx
;
2485 efx
= pci_get_drvdata(pci_dev
);
2489 /* Mark the NIC as fini, then stop the interface */
2491 efx
->state
= STATE_FINI
;
2492 dev_close(efx
->net_dev
);
2494 /* Allow any queued efx_resets() to complete */
2497 efx_stop_interrupts(efx
, false);
2498 efx_sriov_fini(efx
);
2499 efx_unregister_netdev(efx
);
2501 efx_mtd_remove(efx
);
2503 /* Wait for any scheduled resets to complete. No more will be
2504 * scheduled from this point because efx_stop_all() has been
2505 * called, we are no longer registered with driverlink, and
2506 * the net_device's have been removed. */
2507 cancel_work_sync(&efx
->reset_work
);
2509 efx_pci_remove_main(efx
);
2512 netif_dbg(efx
, drv
, efx
->net_dev
, "shutdown successful\n");
2514 pci_set_drvdata(pci_dev
, NULL
);
2515 efx_fini_struct(efx
);
2516 free_netdev(efx
->net_dev
);
2519 /* NIC VPD information
2520 * Called during probe to display the part number of the
2521 * installed NIC. VPD is potentially very large but this should
2522 * always appear within the first 512 bytes.
2524 #define SFC_VPD_LEN 512
2525 static void efx_print_product_vpd(struct efx_nic
*efx
)
2527 struct pci_dev
*dev
= efx
->pci_dev
;
2528 char vpd_data
[SFC_VPD_LEN
];
2532 /* Get the vpd data from the device */
2533 vpd_size
= pci_read_vpd(dev
, 0, sizeof(vpd_data
), vpd_data
);
2534 if (vpd_size
<= 0) {
2535 netif_err(efx
, drv
, efx
->net_dev
, "Unable to read VPD\n");
2539 /* Get the Read only section */
2540 i
= pci_vpd_find_tag(vpd_data
, 0, vpd_size
, PCI_VPD_LRDT_RO_DATA
);
2542 netif_err(efx
, drv
, efx
->net_dev
, "VPD Read-only not found\n");
2546 j
= pci_vpd_lrdt_size(&vpd_data
[i
]);
2547 i
+= PCI_VPD_LRDT_TAG_SIZE
;
2548 if (i
+ j
> vpd_size
)
2551 /* Get the Part number */
2552 i
= pci_vpd_find_info_keyword(vpd_data
, i
, j
, "PN");
2554 netif_err(efx
, drv
, efx
->net_dev
, "Part number not found\n");
2558 j
= pci_vpd_info_field_size(&vpd_data
[i
]);
2559 i
+= PCI_VPD_INFO_FLD_HDR_SIZE
;
2560 if (i
+ j
> vpd_size
) {
2561 netif_err(efx
, drv
, efx
->net_dev
, "Incomplete part number\n");
2565 netif_info(efx
, drv
, efx
->net_dev
,
2566 "Part Number : %.*s\n", j
, &vpd_data
[i
]);
2570 /* Main body of NIC initialisation
2571 * This is called at module load (or hotplug insertion, theoretically).
2573 static int efx_pci_probe_main(struct efx_nic
*efx
)
2577 /* Do start-of-day initialisation */
2578 rc
= efx_probe_all(efx
);
2584 rc
= efx
->type
->init(efx
);
2586 netif_err(efx
, probe
, efx
->net_dev
,
2587 "failed to initialise NIC\n");
2591 rc
= efx_init_port(efx
);
2593 netif_err(efx
, probe
, efx
->net_dev
,
2594 "failed to initialise port\n");
2598 rc
= efx_nic_init_interrupt(efx
);
2601 efx_start_interrupts(efx
, false);
2608 efx
->type
->fini(efx
);
2611 efx_remove_all(efx
);
2616 /* NIC initialisation
2618 * This is called at module load (or hotplug insertion,
2619 * theoretically). It sets up PCI mappings, resets the NIC,
2620 * sets up and registers the network devices with the kernel and hooks
2621 * the interrupt service routine. It does not prepare the device for
2622 * transmission; this is left to the first time one of the network
2623 * interfaces is brought up (i.e. efx_net_open).
2625 static int __devinit
efx_pci_probe(struct pci_dev
*pci_dev
,
2626 const struct pci_device_id
*entry
)
2628 const struct efx_nic_type
*type
= (const struct efx_nic_type
*) entry
->driver_data
;
2629 struct net_device
*net_dev
;
2630 struct efx_nic
*efx
;
2633 /* Allocate and initialise a struct net_device and struct efx_nic */
2634 net_dev
= alloc_etherdev_mqs(sizeof(*efx
), EFX_MAX_CORE_TX_QUEUES
,
2638 net_dev
->features
|= (type
->offload_features
| NETIF_F_SG
|
2639 NETIF_F_HIGHDMA
| NETIF_F_TSO
|
2641 if (type
->offload_features
& NETIF_F_V6_CSUM
)
2642 net_dev
->features
|= NETIF_F_TSO6
;
2643 /* Mask for features that also apply to VLAN devices */
2644 net_dev
->vlan_features
|= (NETIF_F_ALL_CSUM
| NETIF_F_SG
|
2645 NETIF_F_HIGHDMA
| NETIF_F_ALL_TSO
|
2647 /* All offloads can be toggled */
2648 net_dev
->hw_features
= net_dev
->features
& ~NETIF_F_HIGHDMA
;
2649 efx
= netdev_priv(net_dev
);
2650 pci_set_drvdata(pci_dev
, efx
);
2651 SET_NETDEV_DEV(net_dev
, &pci_dev
->dev
);
2652 rc
= efx_init_struct(efx
, type
, pci_dev
, net_dev
);
2656 netif_info(efx
, probe
, efx
->net_dev
,
2657 "Solarflare NIC detected\n");
2659 efx_print_product_vpd(efx
);
2661 /* Set up basic I/O (BAR mappings etc) */
2662 rc
= efx_init_io(efx
);
2666 rc
= efx_pci_probe_main(efx
);
2668 /* Serialise against efx_reset(). No more resets will be
2669 * scheduled since efx_stop_all() has been called, and we have
2670 * not and never have been registered.
2672 cancel_work_sync(&efx
->reset_work
);
2677 /* If there was a scheduled reset during probe, the NIC is
2678 * probably hosed anyway.
2680 if (efx
->reset_pending
) {
2685 /* Switch to the running state before we expose the device to the OS,
2686 * so that dev_open()|efx_start_all() will actually start the device */
2687 efx
->state
= STATE_RUNNING
;
2689 rc
= efx_register_netdev(efx
);
2693 rc
= efx_sriov_init(efx
);
2695 netif_err(efx
, probe
, efx
->net_dev
,
2696 "SR-IOV can't be enabled rc %d\n", rc
);
2698 netif_dbg(efx
, probe
, efx
->net_dev
, "initialisation successful\n");
2700 /* Try to create MTDs, but allow this to fail */
2702 rc
= efx_mtd_probe(efx
);
2705 netif_warn(efx
, probe
, efx
->net_dev
,
2706 "failed to create MTDs (%d)\n", rc
);
2711 efx_pci_remove_main(efx
);
2715 efx_fini_struct(efx
);
2718 netif_dbg(efx
, drv
, efx
->net_dev
, "initialisation failed. rc=%d\n", rc
);
2719 free_netdev(net_dev
);
2723 static int efx_pm_freeze(struct device
*dev
)
2725 struct efx_nic
*efx
= pci_get_drvdata(to_pci_dev(dev
));
2727 efx
->state
= STATE_FINI
;
2729 efx_device_detach_sync(efx
);
2732 efx_stop_interrupts(efx
, false);
2737 static int efx_pm_thaw(struct device
*dev
)
2739 struct efx_nic
*efx
= pci_get_drvdata(to_pci_dev(dev
));
2741 efx
->state
= STATE_INIT
;
2743 efx_start_interrupts(efx
, false);
2745 mutex_lock(&efx
->mac_lock
);
2746 efx
->phy_op
->reconfigure(efx
);
2747 mutex_unlock(&efx
->mac_lock
);
2751 netif_device_attach(efx
->net_dev
);
2753 efx
->state
= STATE_RUNNING
;
2755 efx
->type
->resume_wol(efx
);
2757 /* Reschedule any quenched resets scheduled during efx_pm_freeze() */
2758 queue_work(reset_workqueue
, &efx
->reset_work
);
2763 static int efx_pm_poweroff(struct device
*dev
)
2765 struct pci_dev
*pci_dev
= to_pci_dev(dev
);
2766 struct efx_nic
*efx
= pci_get_drvdata(pci_dev
);
2768 efx
->type
->fini(efx
);
2770 efx
->reset_pending
= 0;
2772 pci_save_state(pci_dev
);
2773 return pci_set_power_state(pci_dev
, PCI_D3hot
);
2776 /* Used for both resume and restore */
2777 static int efx_pm_resume(struct device
*dev
)
2779 struct pci_dev
*pci_dev
= to_pci_dev(dev
);
2780 struct efx_nic
*efx
= pci_get_drvdata(pci_dev
);
2783 rc
= pci_set_power_state(pci_dev
, PCI_D0
);
2786 pci_restore_state(pci_dev
);
2787 rc
= pci_enable_device(pci_dev
);
2790 pci_set_master(efx
->pci_dev
);
2791 rc
= efx
->type
->reset(efx
, RESET_TYPE_ALL
);
2794 rc
= efx
->type
->init(efx
);
2801 static int efx_pm_suspend(struct device
*dev
)
2806 rc
= efx_pm_poweroff(dev
);
2812 static const struct dev_pm_ops efx_pm_ops
= {
2813 .suspend
= efx_pm_suspend
,
2814 .resume
= efx_pm_resume
,
2815 .freeze
= efx_pm_freeze
,
2816 .thaw
= efx_pm_thaw
,
2817 .poweroff
= efx_pm_poweroff
,
2818 .restore
= efx_pm_resume
,
2821 static struct pci_driver efx_pci_driver
= {
2822 .name
= KBUILD_MODNAME
,
2823 .id_table
= efx_pci_table
,
2824 .probe
= efx_pci_probe
,
2825 .remove
= efx_pci_remove
,
2826 .driver
.pm
= &efx_pm_ops
,
2829 /**************************************************************************
2831 * Kernel module interface
2833 *************************************************************************/
2835 module_param(interrupt_mode
, uint
, 0444);
2836 MODULE_PARM_DESC(interrupt_mode
,
2837 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
2839 static int __init
efx_init_module(void)
2843 printk(KERN_INFO
"Solarflare NET driver v" EFX_DRIVER_VERSION
"\n");
2845 rc
= register_netdevice_notifier(&efx_netdev_notifier
);
2849 rc
= efx_init_sriov();
2853 reset_workqueue
= create_singlethread_workqueue("sfc_reset");
2854 if (!reset_workqueue
) {
2859 rc
= pci_register_driver(&efx_pci_driver
);
2866 destroy_workqueue(reset_workqueue
);
2870 unregister_netdevice_notifier(&efx_netdev_notifier
);
2875 static void __exit
efx_exit_module(void)
2877 printk(KERN_INFO
"Solarflare NET driver unloading\n");
2879 pci_unregister_driver(&efx_pci_driver
);
2880 destroy_workqueue(reset_workqueue
);
2882 unregister_netdevice_notifier(&efx_netdev_notifier
);
2886 module_init(efx_init_module
);
2887 module_exit(efx_exit_module
);
2889 MODULE_AUTHOR("Solarflare Communications and "
2890 "Michael Brown <mbrown@fensystems.co.uk>");
2891 MODULE_DESCRIPTION("Solarflare Communications network driver");
2892 MODULE_LICENSE("GPL");
2893 MODULE_DEVICE_TABLE(pci
, efx_pci_table
);