Linux 3.4.102
[linux/fpc-iii.git] / drivers / net / ethernet / sfc / falcon.c
blob49bcd196e10d04b4bac011ba20e652756833c543
1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2006-2010 Solarflare Communications Inc.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/pci.h>
14 #include <linux/module.h>
15 #include <linux/seq_file.h>
16 #include <linux/i2c.h>
17 #include <linux/mii.h>
18 #include <linux/slab.h>
19 #include "net_driver.h"
20 #include "bitfield.h"
21 #include "efx.h"
22 #include "spi.h"
23 #include "nic.h"
24 #include "regs.h"
25 #include "io.h"
26 #include "phy.h"
27 #include "workarounds.h"
28 #include "selftest.h"
30 /* Hardware control for SFC4000 (aka Falcon). */
32 static int falcon_reset_hw(struct efx_nic *efx, enum reset_type method);
34 static const unsigned int
35 /* "Large" EEPROM device: Atmel AT25640 or similar
36 * 8 KB, 16-bit address, 32 B write block */
37 large_eeprom_type = ((13 << SPI_DEV_TYPE_SIZE_LBN)
38 | (2 << SPI_DEV_TYPE_ADDR_LEN_LBN)
39 | (5 << SPI_DEV_TYPE_BLOCK_SIZE_LBN)),
40 /* Default flash device: Atmel AT25F1024
41 * 128 KB, 24-bit address, 32 KB erase block, 256 B write block */
42 default_flash_type = ((17 << SPI_DEV_TYPE_SIZE_LBN)
43 | (3 << SPI_DEV_TYPE_ADDR_LEN_LBN)
44 | (0x52 << SPI_DEV_TYPE_ERASE_CMD_LBN)
45 | (15 << SPI_DEV_TYPE_ERASE_SIZE_LBN)
46 | (8 << SPI_DEV_TYPE_BLOCK_SIZE_LBN));
48 /**************************************************************************
50 * I2C bus - this is a bit-bashing interface using GPIO pins
51 * Note that it uses the output enables to tristate the outputs
52 * SDA is the data pin and SCL is the clock
54 **************************************************************************
56 static void falcon_setsda(void *data, int state)
58 struct efx_nic *efx = (struct efx_nic *)data;
59 efx_oword_t reg;
61 efx_reado(efx, &reg, FR_AB_GPIO_CTL);
62 EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO3_OEN, !state);
63 efx_writeo(efx, &reg, FR_AB_GPIO_CTL);
66 static void falcon_setscl(void *data, int state)
68 struct efx_nic *efx = (struct efx_nic *)data;
69 efx_oword_t reg;
71 efx_reado(efx, &reg, FR_AB_GPIO_CTL);
72 EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO0_OEN, !state);
73 efx_writeo(efx, &reg, FR_AB_GPIO_CTL);
76 static int falcon_getsda(void *data)
78 struct efx_nic *efx = (struct efx_nic *)data;
79 efx_oword_t reg;
81 efx_reado(efx, &reg, FR_AB_GPIO_CTL);
82 return EFX_OWORD_FIELD(reg, FRF_AB_GPIO3_IN);
85 static int falcon_getscl(void *data)
87 struct efx_nic *efx = (struct efx_nic *)data;
88 efx_oword_t reg;
90 efx_reado(efx, &reg, FR_AB_GPIO_CTL);
91 return EFX_OWORD_FIELD(reg, FRF_AB_GPIO0_IN);
94 static const struct i2c_algo_bit_data falcon_i2c_bit_operations = {
95 .setsda = falcon_setsda,
96 .setscl = falcon_setscl,
97 .getsda = falcon_getsda,
98 .getscl = falcon_getscl,
99 .udelay = 5,
100 /* Wait up to 50 ms for slave to let us pull SCL high */
101 .timeout = DIV_ROUND_UP(HZ, 20),
104 static void falcon_push_irq_moderation(struct efx_channel *channel)
106 efx_dword_t timer_cmd;
107 struct efx_nic *efx = channel->efx;
109 /* Set timer register */
110 if (channel->irq_moderation) {
111 EFX_POPULATE_DWORD_2(timer_cmd,
112 FRF_AB_TC_TIMER_MODE,
113 FFE_BB_TIMER_MODE_INT_HLDOFF,
114 FRF_AB_TC_TIMER_VAL,
115 channel->irq_moderation - 1);
116 } else {
117 EFX_POPULATE_DWORD_2(timer_cmd,
118 FRF_AB_TC_TIMER_MODE,
119 FFE_BB_TIMER_MODE_DIS,
120 FRF_AB_TC_TIMER_VAL, 0);
122 BUILD_BUG_ON(FR_AA_TIMER_COMMAND_KER != FR_BZ_TIMER_COMMAND_P0);
123 efx_writed_page_locked(efx, &timer_cmd, FR_BZ_TIMER_COMMAND_P0,
124 channel->channel);
127 static void falcon_deconfigure_mac_wrapper(struct efx_nic *efx);
129 static void falcon_prepare_flush(struct efx_nic *efx)
131 falcon_deconfigure_mac_wrapper(efx);
133 /* Wait for the tx and rx fifo's to get to the next packet boundary
134 * (~1ms without back-pressure), then to drain the remainder of the
135 * fifo's at data path speeds (negligible), with a healthy margin. */
136 msleep(10);
139 /* Acknowledge a legacy interrupt from Falcon
141 * This acknowledges a legacy (not MSI) interrupt via INT_ACK_KER_REG.
143 * Due to SFC bug 3706 (silicon revision <=A1) reads can be duplicated in the
144 * BIU. Interrupt acknowledge is read sensitive so must write instead
145 * (then read to ensure the BIU collector is flushed)
147 * NB most hardware supports MSI interrupts
149 inline void falcon_irq_ack_a1(struct efx_nic *efx)
151 efx_dword_t reg;
153 EFX_POPULATE_DWORD_1(reg, FRF_AA_INT_ACK_KER_FIELD, 0xb7eb7e);
154 efx_writed(efx, &reg, FR_AA_INT_ACK_KER);
155 efx_readd(efx, &reg, FR_AA_WORK_AROUND_BROKEN_PCI_READS);
159 irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id)
161 struct efx_nic *efx = dev_id;
162 efx_oword_t *int_ker = efx->irq_status.addr;
163 int syserr;
164 int queues;
166 /* Check to see if this is our interrupt. If it isn't, we
167 * exit without having touched the hardware.
169 if (unlikely(EFX_OWORD_IS_ZERO(*int_ker))) {
170 netif_vdbg(efx, intr, efx->net_dev,
171 "IRQ %d on CPU %d not for me\n", irq,
172 raw_smp_processor_id());
173 return IRQ_NONE;
175 efx->last_irq_cpu = raw_smp_processor_id();
176 netif_vdbg(efx, intr, efx->net_dev,
177 "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
178 irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
180 /* Check to see if we have a serious error condition */
181 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
182 if (unlikely(syserr))
183 return efx_nic_fatal_interrupt(efx);
185 /* Determine interrupting queues, clear interrupt status
186 * register and acknowledge the device interrupt.
188 BUILD_BUG_ON(FSF_AZ_NET_IVEC_INT_Q_WIDTH > EFX_MAX_CHANNELS);
189 queues = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_INT_Q);
190 EFX_ZERO_OWORD(*int_ker);
191 wmb(); /* Ensure the vector is cleared before interrupt ack */
192 falcon_irq_ack_a1(efx);
194 if (queues & 1)
195 efx_schedule_channel_irq(efx_get_channel(efx, 0));
196 if (queues & 2)
197 efx_schedule_channel_irq(efx_get_channel(efx, 1));
198 return IRQ_HANDLED;
200 /**************************************************************************
202 * EEPROM/flash
204 **************************************************************************
207 #define FALCON_SPI_MAX_LEN sizeof(efx_oword_t)
209 static int falcon_spi_poll(struct efx_nic *efx)
211 efx_oword_t reg;
212 efx_reado(efx, &reg, FR_AB_EE_SPI_HCMD);
213 return EFX_OWORD_FIELD(reg, FRF_AB_EE_SPI_HCMD_CMD_EN) ? -EBUSY : 0;
216 /* Wait for SPI command completion */
217 static int falcon_spi_wait(struct efx_nic *efx)
219 /* Most commands will finish quickly, so we start polling at
220 * very short intervals. Sometimes the command may have to
221 * wait for VPD or expansion ROM access outside of our
222 * control, so we allow up to 100 ms. */
223 unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 10);
224 int i;
226 for (i = 0; i < 10; i++) {
227 if (!falcon_spi_poll(efx))
228 return 0;
229 udelay(10);
232 for (;;) {
233 if (!falcon_spi_poll(efx))
234 return 0;
235 if (time_after_eq(jiffies, timeout)) {
236 netif_err(efx, hw, efx->net_dev,
237 "timed out waiting for SPI\n");
238 return -ETIMEDOUT;
240 schedule_timeout_uninterruptible(1);
244 int falcon_spi_cmd(struct efx_nic *efx, const struct efx_spi_device *spi,
245 unsigned int command, int address,
246 const void *in, void *out, size_t len)
248 bool addressed = (address >= 0);
249 bool reading = (out != NULL);
250 efx_oword_t reg;
251 int rc;
253 /* Input validation */
254 if (len > FALCON_SPI_MAX_LEN)
255 return -EINVAL;
257 /* Check that previous command is not still running */
258 rc = falcon_spi_poll(efx);
259 if (rc)
260 return rc;
262 /* Program address register, if we have an address */
263 if (addressed) {
264 EFX_POPULATE_OWORD_1(reg, FRF_AB_EE_SPI_HADR_ADR, address);
265 efx_writeo(efx, &reg, FR_AB_EE_SPI_HADR);
268 /* Program data register, if we have data */
269 if (in != NULL) {
270 memcpy(&reg, in, len);
271 efx_writeo(efx, &reg, FR_AB_EE_SPI_HDATA);
274 /* Issue read/write command */
275 EFX_POPULATE_OWORD_7(reg,
276 FRF_AB_EE_SPI_HCMD_CMD_EN, 1,
277 FRF_AB_EE_SPI_HCMD_SF_SEL, spi->device_id,
278 FRF_AB_EE_SPI_HCMD_DABCNT, len,
279 FRF_AB_EE_SPI_HCMD_READ, reading,
280 FRF_AB_EE_SPI_HCMD_DUBCNT, 0,
281 FRF_AB_EE_SPI_HCMD_ADBCNT,
282 (addressed ? spi->addr_len : 0),
283 FRF_AB_EE_SPI_HCMD_ENC, command);
284 efx_writeo(efx, &reg, FR_AB_EE_SPI_HCMD);
286 /* Wait for read/write to complete */
287 rc = falcon_spi_wait(efx);
288 if (rc)
289 return rc;
291 /* Read data */
292 if (out != NULL) {
293 efx_reado(efx, &reg, FR_AB_EE_SPI_HDATA);
294 memcpy(out, &reg, len);
297 return 0;
300 static size_t
301 falcon_spi_write_limit(const struct efx_spi_device *spi, size_t start)
303 return min(FALCON_SPI_MAX_LEN,
304 (spi->block_size - (start & (spi->block_size - 1))));
307 static inline u8
308 efx_spi_munge_command(const struct efx_spi_device *spi,
309 const u8 command, const unsigned int address)
311 return command | (((address >> 8) & spi->munge_address) << 3);
314 /* Wait up to 10 ms for buffered write completion */
316 falcon_spi_wait_write(struct efx_nic *efx, const struct efx_spi_device *spi)
318 unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 100);
319 u8 status;
320 int rc;
322 for (;;) {
323 rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL,
324 &status, sizeof(status));
325 if (rc)
326 return rc;
327 if (!(status & SPI_STATUS_NRDY))
328 return 0;
329 if (time_after_eq(jiffies, timeout)) {
330 netif_err(efx, hw, efx->net_dev,
331 "SPI write timeout on device %d"
332 " last status=0x%02x\n",
333 spi->device_id, status);
334 return -ETIMEDOUT;
336 schedule_timeout_uninterruptible(1);
340 int falcon_spi_read(struct efx_nic *efx, const struct efx_spi_device *spi,
341 loff_t start, size_t len, size_t *retlen, u8 *buffer)
343 size_t block_len, pos = 0;
344 unsigned int command;
345 int rc = 0;
347 while (pos < len) {
348 block_len = min(len - pos, FALCON_SPI_MAX_LEN);
350 command = efx_spi_munge_command(spi, SPI_READ, start + pos);
351 rc = falcon_spi_cmd(efx, spi, command, start + pos, NULL,
352 buffer + pos, block_len);
353 if (rc)
354 break;
355 pos += block_len;
357 /* Avoid locking up the system */
358 cond_resched();
359 if (signal_pending(current)) {
360 rc = -EINTR;
361 break;
365 if (retlen)
366 *retlen = pos;
367 return rc;
371 falcon_spi_write(struct efx_nic *efx, const struct efx_spi_device *spi,
372 loff_t start, size_t len, size_t *retlen, const u8 *buffer)
374 u8 verify_buffer[FALCON_SPI_MAX_LEN];
375 size_t block_len, pos = 0;
376 unsigned int command;
377 int rc = 0;
379 while (pos < len) {
380 rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0);
381 if (rc)
382 break;
384 block_len = min(len - pos,
385 falcon_spi_write_limit(spi, start + pos));
386 command = efx_spi_munge_command(spi, SPI_WRITE, start + pos);
387 rc = falcon_spi_cmd(efx, spi, command, start + pos,
388 buffer + pos, NULL, block_len);
389 if (rc)
390 break;
392 rc = falcon_spi_wait_write(efx, spi);
393 if (rc)
394 break;
396 command = efx_spi_munge_command(spi, SPI_READ, start + pos);
397 rc = falcon_spi_cmd(efx, spi, command, start + pos,
398 NULL, verify_buffer, block_len);
399 if (memcmp(verify_buffer, buffer + pos, block_len)) {
400 rc = -EIO;
401 break;
404 pos += block_len;
406 /* Avoid locking up the system */
407 cond_resched();
408 if (signal_pending(current)) {
409 rc = -EINTR;
410 break;
414 if (retlen)
415 *retlen = pos;
416 return rc;
419 /**************************************************************************
421 * MAC wrapper
423 **************************************************************************
426 static void falcon_push_multicast_hash(struct efx_nic *efx)
428 union efx_multicast_hash *mc_hash = &efx->multicast_hash;
430 WARN_ON(!mutex_is_locked(&efx->mac_lock));
432 efx_writeo(efx, &mc_hash->oword[0], FR_AB_MAC_MC_HASH_REG0);
433 efx_writeo(efx, &mc_hash->oword[1], FR_AB_MAC_MC_HASH_REG1);
436 static void falcon_reset_macs(struct efx_nic *efx)
438 struct falcon_nic_data *nic_data = efx->nic_data;
439 efx_oword_t reg, mac_ctrl;
440 int count;
442 if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
443 /* It's not safe to use GLB_CTL_REG to reset the
444 * macs, so instead use the internal MAC resets
446 EFX_POPULATE_OWORD_1(reg, FRF_AB_XM_CORE_RST, 1);
447 efx_writeo(efx, &reg, FR_AB_XM_GLB_CFG);
449 for (count = 0; count < 10000; count++) {
450 efx_reado(efx, &reg, FR_AB_XM_GLB_CFG);
451 if (EFX_OWORD_FIELD(reg, FRF_AB_XM_CORE_RST) ==
453 return;
454 udelay(10);
457 netif_err(efx, hw, efx->net_dev,
458 "timed out waiting for XMAC core reset\n");
461 /* Mac stats will fail whist the TX fifo is draining */
462 WARN_ON(nic_data->stats_disable_count == 0);
464 efx_reado(efx, &mac_ctrl, FR_AB_MAC_CTRL);
465 EFX_SET_OWORD_FIELD(mac_ctrl, FRF_BB_TXFIFO_DRAIN_EN, 1);
466 efx_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL);
468 efx_reado(efx, &reg, FR_AB_GLB_CTL);
469 EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGTX, 1);
470 EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGRX, 1);
471 EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_EM, 1);
472 efx_writeo(efx, &reg, FR_AB_GLB_CTL);
474 count = 0;
475 while (1) {
476 efx_reado(efx, &reg, FR_AB_GLB_CTL);
477 if (!EFX_OWORD_FIELD(reg, FRF_AB_RST_XGTX) &&
478 !EFX_OWORD_FIELD(reg, FRF_AB_RST_XGRX) &&
479 !EFX_OWORD_FIELD(reg, FRF_AB_RST_EM)) {
480 netif_dbg(efx, hw, efx->net_dev,
481 "Completed MAC reset after %d loops\n",
482 count);
483 break;
485 if (count > 20) {
486 netif_err(efx, hw, efx->net_dev, "MAC reset failed\n");
487 break;
489 count++;
490 udelay(10);
493 /* Ensure the correct MAC is selected before statistics
494 * are re-enabled by the caller */
495 efx_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL);
497 falcon_setup_xaui(efx);
500 void falcon_drain_tx_fifo(struct efx_nic *efx)
502 efx_oword_t reg;
504 if ((efx_nic_rev(efx) < EFX_REV_FALCON_B0) ||
505 (efx->loopback_mode != LOOPBACK_NONE))
506 return;
508 efx_reado(efx, &reg, FR_AB_MAC_CTRL);
509 /* There is no point in draining more than once */
510 if (EFX_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN))
511 return;
513 falcon_reset_macs(efx);
516 static void falcon_deconfigure_mac_wrapper(struct efx_nic *efx)
518 efx_oword_t reg;
520 if (efx_nic_rev(efx) < EFX_REV_FALCON_B0)
521 return;
523 /* Isolate the MAC -> RX */
524 efx_reado(efx, &reg, FR_AZ_RX_CFG);
525 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 0);
526 efx_writeo(efx, &reg, FR_AZ_RX_CFG);
528 /* Isolate TX -> MAC */
529 falcon_drain_tx_fifo(efx);
532 void falcon_reconfigure_mac_wrapper(struct efx_nic *efx)
534 struct efx_link_state *link_state = &efx->link_state;
535 efx_oword_t reg;
536 int link_speed, isolate;
538 isolate = !!ACCESS_ONCE(efx->reset_pending);
540 switch (link_state->speed) {
541 case 10000: link_speed = 3; break;
542 case 1000: link_speed = 2; break;
543 case 100: link_speed = 1; break;
544 default: link_speed = 0; break;
546 /* MAC_LINK_STATUS controls MAC backpressure but doesn't work
547 * as advertised. Disable to ensure packets are not
548 * indefinitely held and TX queue can be flushed at any point
549 * while the link is down. */
550 EFX_POPULATE_OWORD_5(reg,
551 FRF_AB_MAC_XOFF_VAL, 0xffff /* max pause time */,
552 FRF_AB_MAC_BCAD_ACPT, 1,
553 FRF_AB_MAC_UC_PROM, efx->promiscuous,
554 FRF_AB_MAC_LINK_STATUS, 1, /* always set */
555 FRF_AB_MAC_SPEED, link_speed);
556 /* On B0, MAC backpressure can be disabled and packets get
557 * discarded. */
558 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
559 EFX_SET_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN,
560 !link_state->up || isolate);
563 efx_writeo(efx, &reg, FR_AB_MAC_CTRL);
565 /* Restore the multicast hash registers. */
566 falcon_push_multicast_hash(efx);
568 efx_reado(efx, &reg, FR_AZ_RX_CFG);
569 /* Enable XOFF signal from RX FIFO (we enabled it during NIC
570 * initialisation but it may read back as 0) */
571 EFX_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1);
572 /* Unisolate the MAC -> RX */
573 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
574 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, !isolate);
575 efx_writeo(efx, &reg, FR_AZ_RX_CFG);
578 static void falcon_stats_request(struct efx_nic *efx)
580 struct falcon_nic_data *nic_data = efx->nic_data;
581 efx_oword_t reg;
583 WARN_ON(nic_data->stats_pending);
584 WARN_ON(nic_data->stats_disable_count);
586 if (nic_data->stats_dma_done == NULL)
587 return; /* no mac selected */
589 *nic_data->stats_dma_done = FALCON_STATS_NOT_DONE;
590 nic_data->stats_pending = true;
591 wmb(); /* ensure done flag is clear */
593 /* Initiate DMA transfer of stats */
594 EFX_POPULATE_OWORD_2(reg,
595 FRF_AB_MAC_STAT_DMA_CMD, 1,
596 FRF_AB_MAC_STAT_DMA_ADR,
597 efx->stats_buffer.dma_addr);
598 efx_writeo(efx, &reg, FR_AB_MAC_STAT_DMA);
600 mod_timer(&nic_data->stats_timer, round_jiffies_up(jiffies + HZ / 2));
603 static void falcon_stats_complete(struct efx_nic *efx)
605 struct falcon_nic_data *nic_data = efx->nic_data;
607 if (!nic_data->stats_pending)
608 return;
610 nic_data->stats_pending = false;
611 if (*nic_data->stats_dma_done == FALCON_STATS_DONE) {
612 rmb(); /* read the done flag before the stats */
613 falcon_update_stats_xmac(efx);
614 } else {
615 netif_err(efx, hw, efx->net_dev,
616 "timed out waiting for statistics\n");
620 static void falcon_stats_timer_func(unsigned long context)
622 struct efx_nic *efx = (struct efx_nic *)context;
623 struct falcon_nic_data *nic_data = efx->nic_data;
625 spin_lock(&efx->stats_lock);
627 falcon_stats_complete(efx);
628 if (nic_data->stats_disable_count == 0)
629 falcon_stats_request(efx);
631 spin_unlock(&efx->stats_lock);
634 static bool falcon_loopback_link_poll(struct efx_nic *efx)
636 struct efx_link_state old_state = efx->link_state;
638 WARN_ON(!mutex_is_locked(&efx->mac_lock));
639 WARN_ON(!LOOPBACK_INTERNAL(efx));
641 efx->link_state.fd = true;
642 efx->link_state.fc = efx->wanted_fc;
643 efx->link_state.up = true;
644 efx->link_state.speed = 10000;
646 return !efx_link_state_equal(&efx->link_state, &old_state);
649 static int falcon_reconfigure_port(struct efx_nic *efx)
651 int rc;
653 WARN_ON(efx_nic_rev(efx) > EFX_REV_FALCON_B0);
655 /* Poll the PHY link state *before* reconfiguring it. This means we
656 * will pick up the correct speed (in loopback) to select the correct
657 * MAC.
659 if (LOOPBACK_INTERNAL(efx))
660 falcon_loopback_link_poll(efx);
661 else
662 efx->phy_op->poll(efx);
664 falcon_stop_nic_stats(efx);
665 falcon_deconfigure_mac_wrapper(efx);
667 falcon_reset_macs(efx);
669 efx->phy_op->reconfigure(efx);
670 rc = falcon_reconfigure_xmac(efx);
671 BUG_ON(rc);
673 falcon_start_nic_stats(efx);
675 /* Synchronise efx->link_state with the kernel */
676 efx_link_status_changed(efx);
678 return 0;
681 /**************************************************************************
683 * PHY access via GMII
685 **************************************************************************
688 /* Wait for GMII access to complete */
689 static int falcon_gmii_wait(struct efx_nic *efx)
691 efx_oword_t md_stat;
692 int count;
694 /* wait up to 50ms - taken max from datasheet */
695 for (count = 0; count < 5000; count++) {
696 efx_reado(efx, &md_stat, FR_AB_MD_STAT);
697 if (EFX_OWORD_FIELD(md_stat, FRF_AB_MD_BSY) == 0) {
698 if (EFX_OWORD_FIELD(md_stat, FRF_AB_MD_LNFL) != 0 ||
699 EFX_OWORD_FIELD(md_stat, FRF_AB_MD_BSERR) != 0) {
700 netif_err(efx, hw, efx->net_dev,
701 "error from GMII access "
702 EFX_OWORD_FMT"\n",
703 EFX_OWORD_VAL(md_stat));
704 return -EIO;
706 return 0;
708 udelay(10);
710 netif_err(efx, hw, efx->net_dev, "timed out waiting for GMII\n");
711 return -ETIMEDOUT;
714 /* Write an MDIO register of a PHY connected to Falcon. */
715 static int falcon_mdio_write(struct net_device *net_dev,
716 int prtad, int devad, u16 addr, u16 value)
718 struct efx_nic *efx = netdev_priv(net_dev);
719 struct falcon_nic_data *nic_data = efx->nic_data;
720 efx_oword_t reg;
721 int rc;
723 netif_vdbg(efx, hw, efx->net_dev,
724 "writing MDIO %d register %d.%d with 0x%04x\n",
725 prtad, devad, addr, value);
727 mutex_lock(&nic_data->mdio_lock);
729 /* Check MDIO not currently being accessed */
730 rc = falcon_gmii_wait(efx);
731 if (rc)
732 goto out;
734 /* Write the address/ID register */
735 EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
736 efx_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
738 EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
739 FRF_AB_MD_DEV_ADR, devad);
740 efx_writeo(efx, &reg, FR_AB_MD_ID);
742 /* Write data */
743 EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_TXD, value);
744 efx_writeo(efx, &reg, FR_AB_MD_TXD);
746 EFX_POPULATE_OWORD_2(reg,
747 FRF_AB_MD_WRC, 1,
748 FRF_AB_MD_GC, 0);
749 efx_writeo(efx, &reg, FR_AB_MD_CS);
751 /* Wait for data to be written */
752 rc = falcon_gmii_wait(efx);
753 if (rc) {
754 /* Abort the write operation */
755 EFX_POPULATE_OWORD_2(reg,
756 FRF_AB_MD_WRC, 0,
757 FRF_AB_MD_GC, 1);
758 efx_writeo(efx, &reg, FR_AB_MD_CS);
759 udelay(10);
762 out:
763 mutex_unlock(&nic_data->mdio_lock);
764 return rc;
767 /* Read an MDIO register of a PHY connected to Falcon. */
768 static int falcon_mdio_read(struct net_device *net_dev,
769 int prtad, int devad, u16 addr)
771 struct efx_nic *efx = netdev_priv(net_dev);
772 struct falcon_nic_data *nic_data = efx->nic_data;
773 efx_oword_t reg;
774 int rc;
776 mutex_lock(&nic_data->mdio_lock);
778 /* Check MDIO not currently being accessed */
779 rc = falcon_gmii_wait(efx);
780 if (rc)
781 goto out;
783 EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
784 efx_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
786 EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
787 FRF_AB_MD_DEV_ADR, devad);
788 efx_writeo(efx, &reg, FR_AB_MD_ID);
790 /* Request data to be read */
791 EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_RDC, 1, FRF_AB_MD_GC, 0);
792 efx_writeo(efx, &reg, FR_AB_MD_CS);
794 /* Wait for data to become available */
795 rc = falcon_gmii_wait(efx);
796 if (rc == 0) {
797 efx_reado(efx, &reg, FR_AB_MD_RXD);
798 rc = EFX_OWORD_FIELD(reg, FRF_AB_MD_RXD);
799 netif_vdbg(efx, hw, efx->net_dev,
800 "read from MDIO %d register %d.%d, got %04x\n",
801 prtad, devad, addr, rc);
802 } else {
803 /* Abort the read operation */
804 EFX_POPULATE_OWORD_2(reg,
805 FRF_AB_MD_RIC, 0,
806 FRF_AB_MD_GC, 1);
807 efx_writeo(efx, &reg, FR_AB_MD_CS);
809 netif_dbg(efx, hw, efx->net_dev,
810 "read from MDIO %d register %d.%d, got error %d\n",
811 prtad, devad, addr, rc);
814 out:
815 mutex_unlock(&nic_data->mdio_lock);
816 return rc;
819 /* This call is responsible for hooking in the MAC and PHY operations */
820 static int falcon_probe_port(struct efx_nic *efx)
822 struct falcon_nic_data *nic_data = efx->nic_data;
823 int rc;
825 switch (efx->phy_type) {
826 case PHY_TYPE_SFX7101:
827 efx->phy_op = &falcon_sfx7101_phy_ops;
828 break;
829 case PHY_TYPE_QT2022C2:
830 case PHY_TYPE_QT2025C:
831 efx->phy_op = &falcon_qt202x_phy_ops;
832 break;
833 case PHY_TYPE_TXC43128:
834 efx->phy_op = &falcon_txc_phy_ops;
835 break;
836 default:
837 netif_err(efx, probe, efx->net_dev, "Unknown PHY type %d\n",
838 efx->phy_type);
839 return -ENODEV;
842 /* Fill out MDIO structure and loopback modes */
843 mutex_init(&nic_data->mdio_lock);
844 efx->mdio.mdio_read = falcon_mdio_read;
845 efx->mdio.mdio_write = falcon_mdio_write;
846 rc = efx->phy_op->probe(efx);
847 if (rc != 0)
848 return rc;
850 /* Initial assumption */
851 efx->link_state.speed = 10000;
852 efx->link_state.fd = true;
854 /* Hardware flow ctrl. FalconA RX FIFO too small for pause generation */
855 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
856 efx->wanted_fc = EFX_FC_RX | EFX_FC_TX;
857 else
858 efx->wanted_fc = EFX_FC_RX;
859 if (efx->mdio.mmds & MDIO_DEVS_AN)
860 efx->wanted_fc |= EFX_FC_AUTO;
862 /* Allocate buffer for stats */
863 rc = efx_nic_alloc_buffer(efx, &efx->stats_buffer,
864 FALCON_MAC_STATS_SIZE);
865 if (rc)
866 return rc;
867 netif_dbg(efx, probe, efx->net_dev,
868 "stats buffer at %llx (virt %p phys %llx)\n",
869 (u64)efx->stats_buffer.dma_addr,
870 efx->stats_buffer.addr,
871 (u64)virt_to_phys(efx->stats_buffer.addr));
872 nic_data->stats_dma_done = efx->stats_buffer.addr + XgDmaDone_offset;
874 return 0;
877 static void falcon_remove_port(struct efx_nic *efx)
879 efx->phy_op->remove(efx);
880 efx_nic_free_buffer(efx, &efx->stats_buffer);
883 /* Global events are basically PHY events */
884 static bool
885 falcon_handle_global_event(struct efx_channel *channel, efx_qword_t *event)
887 struct efx_nic *efx = channel->efx;
888 struct falcon_nic_data *nic_data = efx->nic_data;
890 if (EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_G_PHY0_INTR) ||
891 EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XG_PHY0_INTR) ||
892 EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XFP_PHY0_INTR))
893 /* Ignored */
894 return true;
896 if ((efx_nic_rev(efx) == EFX_REV_FALCON_B0) &&
897 EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_XG_MGT_INTR)) {
898 nic_data->xmac_poll_required = true;
899 return true;
902 if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1 ?
903 EFX_QWORD_FIELD(*event, FSF_AA_GLB_EV_RX_RECOVERY) :
904 EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_RX_RECOVERY)) {
905 netif_err(efx, rx_err, efx->net_dev,
906 "channel %d seen global RX_RESET event. Resetting.\n",
907 channel->channel);
909 atomic_inc(&efx->rx_reset);
910 efx_schedule_reset(efx, EFX_WORKAROUND_6555(efx) ?
911 RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
912 return true;
915 return false;
918 /**************************************************************************
920 * Falcon test code
922 **************************************************************************/
924 static int
925 falcon_read_nvram(struct efx_nic *efx, struct falcon_nvconfig *nvconfig_out)
927 struct falcon_nic_data *nic_data = efx->nic_data;
928 struct falcon_nvconfig *nvconfig;
929 struct efx_spi_device *spi;
930 void *region;
931 int rc, magic_num, struct_ver;
932 __le16 *word, *limit;
933 u32 csum;
935 if (efx_spi_present(&nic_data->spi_flash))
936 spi = &nic_data->spi_flash;
937 else if (efx_spi_present(&nic_data->spi_eeprom))
938 spi = &nic_data->spi_eeprom;
939 else
940 return -EINVAL;
942 region = kmalloc(FALCON_NVCONFIG_END, GFP_KERNEL);
943 if (!region)
944 return -ENOMEM;
945 nvconfig = region + FALCON_NVCONFIG_OFFSET;
947 mutex_lock(&nic_data->spi_lock);
948 rc = falcon_spi_read(efx, spi, 0, FALCON_NVCONFIG_END, NULL, region);
949 mutex_unlock(&nic_data->spi_lock);
950 if (rc) {
951 netif_err(efx, hw, efx->net_dev, "Failed to read %s\n",
952 efx_spi_present(&nic_data->spi_flash) ?
953 "flash" : "EEPROM");
954 rc = -EIO;
955 goto out;
958 magic_num = le16_to_cpu(nvconfig->board_magic_num);
959 struct_ver = le16_to_cpu(nvconfig->board_struct_ver);
961 rc = -EINVAL;
962 if (magic_num != FALCON_NVCONFIG_BOARD_MAGIC_NUM) {
963 netif_err(efx, hw, efx->net_dev,
964 "NVRAM bad magic 0x%x\n", magic_num);
965 goto out;
967 if (struct_ver < 2) {
968 netif_err(efx, hw, efx->net_dev,
969 "NVRAM has ancient version 0x%x\n", struct_ver);
970 goto out;
971 } else if (struct_ver < 4) {
972 word = &nvconfig->board_magic_num;
973 limit = (__le16 *) (nvconfig + 1);
974 } else {
975 word = region;
976 limit = region + FALCON_NVCONFIG_END;
978 for (csum = 0; word < limit; ++word)
979 csum += le16_to_cpu(*word);
981 if (~csum & 0xffff) {
982 netif_err(efx, hw, efx->net_dev,
983 "NVRAM has incorrect checksum\n");
984 goto out;
987 rc = 0;
988 if (nvconfig_out)
989 memcpy(nvconfig_out, nvconfig, sizeof(*nvconfig));
991 out:
992 kfree(region);
993 return rc;
996 static int falcon_test_nvram(struct efx_nic *efx)
998 return falcon_read_nvram(efx, NULL);
1001 static const struct efx_nic_register_test falcon_b0_register_tests[] = {
1002 { FR_AZ_ADR_REGION,
1003 EFX_OWORD32(0x0003FFFF, 0x0003FFFF, 0x0003FFFF, 0x0003FFFF) },
1004 { FR_AZ_RX_CFG,
1005 EFX_OWORD32(0xFFFFFFFE, 0x00017FFF, 0x00000000, 0x00000000) },
1006 { FR_AZ_TX_CFG,
1007 EFX_OWORD32(0x7FFF0037, 0x00000000, 0x00000000, 0x00000000) },
1008 { FR_AZ_TX_RESERVED,
1009 EFX_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) },
1010 { FR_AB_MAC_CTRL,
1011 EFX_OWORD32(0xFFFF0000, 0x00000000, 0x00000000, 0x00000000) },
1012 { FR_AZ_SRM_TX_DC_CFG,
1013 EFX_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) },
1014 { FR_AZ_RX_DC_CFG,
1015 EFX_OWORD32(0x0000000F, 0x00000000, 0x00000000, 0x00000000) },
1016 { FR_AZ_RX_DC_PF_WM,
1017 EFX_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) },
1018 { FR_BZ_DP_CTRL,
1019 EFX_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) },
1020 { FR_AB_GM_CFG2,
1021 EFX_OWORD32(0x00007337, 0x00000000, 0x00000000, 0x00000000) },
1022 { FR_AB_GMF_CFG0,
1023 EFX_OWORD32(0x00001F1F, 0x00000000, 0x00000000, 0x00000000) },
1024 { FR_AB_XM_GLB_CFG,
1025 EFX_OWORD32(0x00000C68, 0x00000000, 0x00000000, 0x00000000) },
1026 { FR_AB_XM_TX_CFG,
1027 EFX_OWORD32(0x00080164, 0x00000000, 0x00000000, 0x00000000) },
1028 { FR_AB_XM_RX_CFG,
1029 EFX_OWORD32(0x07100A0C, 0x00000000, 0x00000000, 0x00000000) },
1030 { FR_AB_XM_RX_PARAM,
1031 EFX_OWORD32(0x00001FF8, 0x00000000, 0x00000000, 0x00000000) },
1032 { FR_AB_XM_FC,
1033 EFX_OWORD32(0xFFFF0001, 0x00000000, 0x00000000, 0x00000000) },
1034 { FR_AB_XM_ADR_LO,
1035 EFX_OWORD32(0xFFFFFFFF, 0x00000000, 0x00000000, 0x00000000) },
1036 { FR_AB_XX_SD_CTL,
1037 EFX_OWORD32(0x0003FF0F, 0x00000000, 0x00000000, 0x00000000) },
1040 static int
1041 falcon_b0_test_chip(struct efx_nic *efx, struct efx_self_tests *tests)
1043 enum reset_type reset_method = RESET_TYPE_INVISIBLE;
1044 int rc, rc2;
1046 mutex_lock(&efx->mac_lock);
1047 if (efx->loopback_modes) {
1048 /* We need the 312 clock from the PHY to test the XMAC
1049 * registers, so move into XGMII loopback if available */
1050 if (efx->loopback_modes & (1 << LOOPBACK_XGMII))
1051 efx->loopback_mode = LOOPBACK_XGMII;
1052 else
1053 efx->loopback_mode = __ffs(efx->loopback_modes);
1055 __efx_reconfigure_port(efx);
1056 mutex_unlock(&efx->mac_lock);
1058 efx_reset_down(efx, reset_method);
1060 tests->registers =
1061 efx_nic_test_registers(efx, falcon_b0_register_tests,
1062 ARRAY_SIZE(falcon_b0_register_tests))
1063 ? -1 : 1;
1065 rc = falcon_reset_hw(efx, reset_method);
1066 rc2 = efx_reset_up(efx, reset_method, rc == 0);
1067 return rc ? rc : rc2;
1070 /**************************************************************************
1072 * Device reset
1074 **************************************************************************
1077 static enum reset_type falcon_map_reset_reason(enum reset_type reason)
1079 switch (reason) {
1080 case RESET_TYPE_RX_RECOVERY:
1081 case RESET_TYPE_RX_DESC_FETCH:
1082 case RESET_TYPE_TX_DESC_FETCH:
1083 case RESET_TYPE_TX_SKIP:
1084 /* These can occasionally occur due to hardware bugs.
1085 * We try to reset without disrupting the link.
1087 return RESET_TYPE_INVISIBLE;
1088 default:
1089 return RESET_TYPE_ALL;
1093 static int falcon_map_reset_flags(u32 *flags)
1095 enum {
1096 FALCON_RESET_INVISIBLE = (ETH_RESET_DMA | ETH_RESET_FILTER |
1097 ETH_RESET_OFFLOAD | ETH_RESET_MAC),
1098 FALCON_RESET_ALL = FALCON_RESET_INVISIBLE | ETH_RESET_PHY,
1099 FALCON_RESET_WORLD = FALCON_RESET_ALL | ETH_RESET_IRQ,
1102 if ((*flags & FALCON_RESET_WORLD) == FALCON_RESET_WORLD) {
1103 *flags &= ~FALCON_RESET_WORLD;
1104 return RESET_TYPE_WORLD;
1107 if ((*flags & FALCON_RESET_ALL) == FALCON_RESET_ALL) {
1108 *flags &= ~FALCON_RESET_ALL;
1109 return RESET_TYPE_ALL;
1112 if ((*flags & FALCON_RESET_INVISIBLE) == FALCON_RESET_INVISIBLE) {
1113 *flags &= ~FALCON_RESET_INVISIBLE;
1114 return RESET_TYPE_INVISIBLE;
1117 return -EINVAL;
1120 /* Resets NIC to known state. This routine must be called in process
1121 * context and is allowed to sleep. */
1122 static int __falcon_reset_hw(struct efx_nic *efx, enum reset_type method)
1124 struct falcon_nic_data *nic_data = efx->nic_data;
1125 efx_oword_t glb_ctl_reg_ker;
1126 int rc;
1128 netif_dbg(efx, hw, efx->net_dev, "performing %s hardware reset\n",
1129 RESET_TYPE(method));
1131 /* Initiate device reset */
1132 if (method == RESET_TYPE_WORLD) {
1133 rc = pci_save_state(efx->pci_dev);
1134 if (rc) {
1135 netif_err(efx, drv, efx->net_dev,
1136 "failed to backup PCI state of primary "
1137 "function prior to hardware reset\n");
1138 goto fail1;
1140 if (efx_nic_is_dual_func(efx)) {
1141 rc = pci_save_state(nic_data->pci_dev2);
1142 if (rc) {
1143 netif_err(efx, drv, efx->net_dev,
1144 "failed to backup PCI state of "
1145 "secondary function prior to "
1146 "hardware reset\n");
1147 goto fail2;
1151 EFX_POPULATE_OWORD_2(glb_ctl_reg_ker,
1152 FRF_AB_EXT_PHY_RST_DUR,
1153 FFE_AB_EXT_PHY_RST_DUR_10240US,
1154 FRF_AB_SWRST, 1);
1155 } else {
1156 EFX_POPULATE_OWORD_7(glb_ctl_reg_ker,
1157 /* exclude PHY from "invisible" reset */
1158 FRF_AB_EXT_PHY_RST_CTL,
1159 method == RESET_TYPE_INVISIBLE,
1160 /* exclude EEPROM/flash and PCIe */
1161 FRF_AB_PCIE_CORE_RST_CTL, 1,
1162 FRF_AB_PCIE_NSTKY_RST_CTL, 1,
1163 FRF_AB_PCIE_SD_RST_CTL, 1,
1164 FRF_AB_EE_RST_CTL, 1,
1165 FRF_AB_EXT_PHY_RST_DUR,
1166 FFE_AB_EXT_PHY_RST_DUR_10240US,
1167 FRF_AB_SWRST, 1);
1169 efx_writeo(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
1171 netif_dbg(efx, hw, efx->net_dev, "waiting for hardware reset\n");
1172 schedule_timeout_uninterruptible(HZ / 20);
1174 /* Restore PCI configuration if needed */
1175 if (method == RESET_TYPE_WORLD) {
1176 if (efx_nic_is_dual_func(efx))
1177 pci_restore_state(nic_data->pci_dev2);
1178 pci_restore_state(efx->pci_dev);
1179 netif_dbg(efx, drv, efx->net_dev,
1180 "successfully restored PCI config\n");
1183 /* Assert that reset complete */
1184 efx_reado(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
1185 if (EFX_OWORD_FIELD(glb_ctl_reg_ker, FRF_AB_SWRST) != 0) {
1186 rc = -ETIMEDOUT;
1187 netif_err(efx, hw, efx->net_dev,
1188 "timed out waiting for hardware reset\n");
1189 goto fail3;
1191 netif_dbg(efx, hw, efx->net_dev, "hardware reset complete\n");
1193 return 0;
1195 /* pci_save_state() and pci_restore_state() MUST be called in pairs */
1196 fail2:
1197 pci_restore_state(efx->pci_dev);
1198 fail1:
1199 fail3:
1200 return rc;
1203 static int falcon_reset_hw(struct efx_nic *efx, enum reset_type method)
1205 struct falcon_nic_data *nic_data = efx->nic_data;
1206 int rc;
1208 mutex_lock(&nic_data->spi_lock);
1209 rc = __falcon_reset_hw(efx, method);
1210 mutex_unlock(&nic_data->spi_lock);
1212 return rc;
1215 static void falcon_monitor(struct efx_nic *efx)
1217 bool link_changed;
1218 int rc;
1220 BUG_ON(!mutex_is_locked(&efx->mac_lock));
1222 rc = falcon_board(efx)->type->monitor(efx);
1223 if (rc) {
1224 netif_err(efx, hw, efx->net_dev,
1225 "Board sensor %s; shutting down PHY\n",
1226 (rc == -ERANGE) ? "reported fault" : "failed");
1227 efx->phy_mode |= PHY_MODE_LOW_POWER;
1228 rc = __efx_reconfigure_port(efx);
1229 WARN_ON(rc);
1232 if (LOOPBACK_INTERNAL(efx))
1233 link_changed = falcon_loopback_link_poll(efx);
1234 else
1235 link_changed = efx->phy_op->poll(efx);
1237 if (link_changed) {
1238 falcon_stop_nic_stats(efx);
1239 falcon_deconfigure_mac_wrapper(efx);
1241 falcon_reset_macs(efx);
1242 rc = falcon_reconfigure_xmac(efx);
1243 BUG_ON(rc);
1245 falcon_start_nic_stats(efx);
1247 efx_link_status_changed(efx);
1250 falcon_poll_xmac(efx);
1253 /* Zeroes out the SRAM contents. This routine must be called in
1254 * process context and is allowed to sleep.
1256 static int falcon_reset_sram(struct efx_nic *efx)
1258 efx_oword_t srm_cfg_reg_ker, gpio_cfg_reg_ker;
1259 int count;
1261 /* Set the SRAM wake/sleep GPIO appropriately. */
1262 efx_reado(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
1263 EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OEN, 1);
1264 EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OUT, 1);
1265 efx_writeo(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
1267 /* Initiate SRAM reset */
1268 EFX_POPULATE_OWORD_2(srm_cfg_reg_ker,
1269 FRF_AZ_SRM_INIT_EN, 1,
1270 FRF_AZ_SRM_NB_SZ, 0);
1271 efx_writeo(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
1273 /* Wait for SRAM reset to complete */
1274 count = 0;
1275 do {
1276 netif_dbg(efx, hw, efx->net_dev,
1277 "waiting for SRAM reset (attempt %d)...\n", count);
1279 /* SRAM reset is slow; expect around 16ms */
1280 schedule_timeout_uninterruptible(HZ / 50);
1282 /* Check for reset complete */
1283 efx_reado(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
1284 if (!EFX_OWORD_FIELD(srm_cfg_reg_ker, FRF_AZ_SRM_INIT_EN)) {
1285 netif_dbg(efx, hw, efx->net_dev,
1286 "SRAM reset complete\n");
1288 return 0;
1290 } while (++count < 20); /* wait up to 0.4 sec */
1292 netif_err(efx, hw, efx->net_dev, "timed out waiting for SRAM reset\n");
1293 return -ETIMEDOUT;
1296 static void falcon_spi_device_init(struct efx_nic *efx,
1297 struct efx_spi_device *spi_device,
1298 unsigned int device_id, u32 device_type)
1300 if (device_type != 0) {
1301 spi_device->device_id = device_id;
1302 spi_device->size =
1303 1 << SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_SIZE);
1304 spi_device->addr_len =
1305 SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ADDR_LEN);
1306 spi_device->munge_address = (spi_device->size == 1 << 9 &&
1307 spi_device->addr_len == 1);
1308 spi_device->erase_command =
1309 SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ERASE_CMD);
1310 spi_device->erase_size =
1311 1 << SPI_DEV_TYPE_FIELD(device_type,
1312 SPI_DEV_TYPE_ERASE_SIZE);
1313 spi_device->block_size =
1314 1 << SPI_DEV_TYPE_FIELD(device_type,
1315 SPI_DEV_TYPE_BLOCK_SIZE);
1316 } else {
1317 spi_device->size = 0;
1321 /* Extract non-volatile configuration */
1322 static int falcon_probe_nvconfig(struct efx_nic *efx)
1324 struct falcon_nic_data *nic_data = efx->nic_data;
1325 struct falcon_nvconfig *nvconfig;
1326 int rc;
1328 nvconfig = kmalloc(sizeof(*nvconfig), GFP_KERNEL);
1329 if (!nvconfig)
1330 return -ENOMEM;
1332 rc = falcon_read_nvram(efx, nvconfig);
1333 if (rc)
1334 goto out;
1336 efx->phy_type = nvconfig->board_v2.port0_phy_type;
1337 efx->mdio.prtad = nvconfig->board_v2.port0_phy_addr;
1339 if (le16_to_cpu(nvconfig->board_struct_ver) >= 3) {
1340 falcon_spi_device_init(
1341 efx, &nic_data->spi_flash, FFE_AB_SPI_DEVICE_FLASH,
1342 le32_to_cpu(nvconfig->board_v3
1343 .spi_device_type[FFE_AB_SPI_DEVICE_FLASH]));
1344 falcon_spi_device_init(
1345 efx, &nic_data->spi_eeprom, FFE_AB_SPI_DEVICE_EEPROM,
1346 le32_to_cpu(nvconfig->board_v3
1347 .spi_device_type[FFE_AB_SPI_DEVICE_EEPROM]));
1350 /* Read the MAC addresses */
1351 memcpy(efx->net_dev->perm_addr, nvconfig->mac_address[0], ETH_ALEN);
1353 netif_dbg(efx, probe, efx->net_dev, "PHY is %d phy_id %d\n",
1354 efx->phy_type, efx->mdio.prtad);
1356 rc = falcon_probe_board(efx,
1357 le16_to_cpu(nvconfig->board_v2.board_revision));
1358 out:
1359 kfree(nvconfig);
1360 return rc;
1363 static void falcon_dimension_resources(struct efx_nic *efx)
1365 efx->rx_dc_base = 0x20000;
1366 efx->tx_dc_base = 0x26000;
1369 /* Probe all SPI devices on the NIC */
1370 static void falcon_probe_spi_devices(struct efx_nic *efx)
1372 struct falcon_nic_data *nic_data = efx->nic_data;
1373 efx_oword_t nic_stat, gpio_ctl, ee_vpd_cfg;
1374 int boot_dev;
1376 efx_reado(efx, &gpio_ctl, FR_AB_GPIO_CTL);
1377 efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
1378 efx_reado(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
1380 if (EFX_OWORD_FIELD(gpio_ctl, FRF_AB_GPIO3_PWRUP_VALUE)) {
1381 boot_dev = (EFX_OWORD_FIELD(nic_stat, FRF_AB_SF_PRST) ?
1382 FFE_AB_SPI_DEVICE_FLASH : FFE_AB_SPI_DEVICE_EEPROM);
1383 netif_dbg(efx, probe, efx->net_dev, "Booted from %s\n",
1384 boot_dev == FFE_AB_SPI_DEVICE_FLASH ?
1385 "flash" : "EEPROM");
1386 } else {
1387 /* Disable VPD and set clock dividers to safe
1388 * values for initial programming. */
1389 boot_dev = -1;
1390 netif_dbg(efx, probe, efx->net_dev,
1391 "Booted from internal ASIC settings;"
1392 " setting SPI config\n");
1393 EFX_POPULATE_OWORD_3(ee_vpd_cfg, FRF_AB_EE_VPD_EN, 0,
1394 /* 125 MHz / 7 ~= 20 MHz */
1395 FRF_AB_EE_SF_CLOCK_DIV, 7,
1396 /* 125 MHz / 63 ~= 2 MHz */
1397 FRF_AB_EE_EE_CLOCK_DIV, 63);
1398 efx_writeo(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
1401 mutex_init(&nic_data->spi_lock);
1403 if (boot_dev == FFE_AB_SPI_DEVICE_FLASH)
1404 falcon_spi_device_init(efx, &nic_data->spi_flash,
1405 FFE_AB_SPI_DEVICE_FLASH,
1406 default_flash_type);
1407 if (boot_dev == FFE_AB_SPI_DEVICE_EEPROM)
1408 falcon_spi_device_init(efx, &nic_data->spi_eeprom,
1409 FFE_AB_SPI_DEVICE_EEPROM,
1410 large_eeprom_type);
1413 static int falcon_probe_nic(struct efx_nic *efx)
1415 struct falcon_nic_data *nic_data;
1416 struct falcon_board *board;
1417 int rc;
1419 /* Allocate storage for hardware specific data */
1420 nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
1421 if (!nic_data)
1422 return -ENOMEM;
1423 efx->nic_data = nic_data;
1425 rc = -ENODEV;
1427 if (efx_nic_fpga_ver(efx) != 0) {
1428 netif_err(efx, probe, efx->net_dev,
1429 "Falcon FPGA not supported\n");
1430 goto fail1;
1433 if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1) {
1434 efx_oword_t nic_stat;
1435 struct pci_dev *dev;
1436 u8 pci_rev = efx->pci_dev->revision;
1438 if ((pci_rev == 0xff) || (pci_rev == 0)) {
1439 netif_err(efx, probe, efx->net_dev,
1440 "Falcon rev A0 not supported\n");
1441 goto fail1;
1443 efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
1444 if (EFX_OWORD_FIELD(nic_stat, FRF_AB_STRAP_10G) == 0) {
1445 netif_err(efx, probe, efx->net_dev,
1446 "Falcon rev A1 1G not supported\n");
1447 goto fail1;
1449 if (EFX_OWORD_FIELD(nic_stat, FRF_AA_STRAP_PCIE) == 0) {
1450 netif_err(efx, probe, efx->net_dev,
1451 "Falcon rev A1 PCI-X not supported\n");
1452 goto fail1;
1455 dev = pci_dev_get(efx->pci_dev);
1456 while ((dev = pci_get_device(PCI_VENDOR_ID_SOLARFLARE,
1457 PCI_DEVICE_ID_SOLARFLARE_SFC4000A_1,
1458 dev))) {
1459 if (dev->bus == efx->pci_dev->bus &&
1460 dev->devfn == efx->pci_dev->devfn + 1) {
1461 nic_data->pci_dev2 = dev;
1462 break;
1465 if (!nic_data->pci_dev2) {
1466 netif_err(efx, probe, efx->net_dev,
1467 "failed to find secondary function\n");
1468 rc = -ENODEV;
1469 goto fail2;
1473 /* Now we can reset the NIC */
1474 rc = __falcon_reset_hw(efx, RESET_TYPE_ALL);
1475 if (rc) {
1476 netif_err(efx, probe, efx->net_dev, "failed to reset NIC\n");
1477 goto fail3;
1480 /* Allocate memory for INT_KER */
1481 rc = efx_nic_alloc_buffer(efx, &efx->irq_status, sizeof(efx_oword_t));
1482 if (rc)
1483 goto fail4;
1484 BUG_ON(efx->irq_status.dma_addr & 0x0f);
1486 netif_dbg(efx, probe, efx->net_dev,
1487 "INT_KER at %llx (virt %p phys %llx)\n",
1488 (u64)efx->irq_status.dma_addr,
1489 efx->irq_status.addr,
1490 (u64)virt_to_phys(efx->irq_status.addr));
1492 falcon_probe_spi_devices(efx);
1494 /* Read in the non-volatile configuration */
1495 rc = falcon_probe_nvconfig(efx);
1496 if (rc) {
1497 if (rc == -EINVAL)
1498 netif_err(efx, probe, efx->net_dev, "NVRAM is invalid\n");
1499 goto fail5;
1502 efx->timer_quantum_ns = 4968; /* 621 cycles */
1504 /* Initialise I2C adapter */
1505 board = falcon_board(efx);
1506 board->i2c_adap.owner = THIS_MODULE;
1507 board->i2c_data = falcon_i2c_bit_operations;
1508 board->i2c_data.data = efx;
1509 board->i2c_adap.algo_data = &board->i2c_data;
1510 board->i2c_adap.dev.parent = &efx->pci_dev->dev;
1511 strlcpy(board->i2c_adap.name, "SFC4000 GPIO",
1512 sizeof(board->i2c_adap.name));
1513 rc = i2c_bit_add_bus(&board->i2c_adap);
1514 if (rc)
1515 goto fail5;
1517 rc = falcon_board(efx)->type->init(efx);
1518 if (rc) {
1519 netif_err(efx, probe, efx->net_dev,
1520 "failed to initialise board\n");
1521 goto fail6;
1524 nic_data->stats_disable_count = 1;
1525 setup_timer(&nic_data->stats_timer, &falcon_stats_timer_func,
1526 (unsigned long)efx);
1528 return 0;
1530 fail6:
1531 BUG_ON(i2c_del_adapter(&board->i2c_adap));
1532 memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
1533 fail5:
1534 efx_nic_free_buffer(efx, &efx->irq_status);
1535 fail4:
1536 fail3:
1537 if (nic_data->pci_dev2) {
1538 pci_dev_put(nic_data->pci_dev2);
1539 nic_data->pci_dev2 = NULL;
1541 fail2:
1542 fail1:
1543 kfree(efx->nic_data);
1544 return rc;
1547 static void falcon_init_rx_cfg(struct efx_nic *efx)
1549 /* Prior to Siena the RX DMA engine will split each frame at
1550 * intervals of RX_USR_BUF_SIZE (32-byte units). We set it to
1551 * be so large that that never happens. */
1552 const unsigned huge_buf_size = (3 * 4096) >> 5;
1553 /* RX control FIFO thresholds (32 entries) */
1554 const unsigned ctrl_xon_thr = 20;
1555 const unsigned ctrl_xoff_thr = 25;
1556 efx_oword_t reg;
1558 efx_reado(efx, &reg, FR_AZ_RX_CFG);
1559 if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1) {
1560 /* Data FIFO size is 5.5K */
1561 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_DESC_PUSH_EN, 0);
1562 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_USR_BUF_SIZE,
1563 huge_buf_size);
1564 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_MAC_TH, 512 >> 8);
1565 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_MAC_TH, 2048 >> 8);
1566 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_TX_TH, ctrl_xon_thr);
1567 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_TX_TH, ctrl_xoff_thr);
1568 } else {
1569 /* Data FIFO size is 80K; register fields moved */
1570 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_DESC_PUSH_EN, 0);
1571 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_USR_BUF_SIZE,
1572 huge_buf_size);
1573 /* Send XON and XOFF at ~3 * max MTU away from empty/full */
1574 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_MAC_TH, 27648 >> 8);
1575 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_MAC_TH, 54272 >> 8);
1576 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_TX_TH, ctrl_xon_thr);
1577 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_TX_TH, ctrl_xoff_thr);
1578 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 1);
1580 /* Enable hash insertion. This is broken for the
1581 * 'Falcon' hash so also select Toeplitz TCP/IPv4 and
1582 * IPv4 hashes. */
1583 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_HASH_INSRT_HDR, 1);
1584 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_HASH_ALG, 1);
1585 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_IP_HASH, 1);
1587 /* Always enable XOFF signal from RX FIFO. We enable
1588 * or disable transmission of pause frames at the MAC. */
1589 EFX_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1);
1590 efx_writeo(efx, &reg, FR_AZ_RX_CFG);
1593 /* This call performs hardware-specific global initialisation, such as
1594 * defining the descriptor cache sizes and number of RSS channels.
1595 * It does not set up any buffers, descriptor rings or event queues.
1597 static int falcon_init_nic(struct efx_nic *efx)
1599 efx_oword_t temp;
1600 int rc;
1602 /* Use on-chip SRAM */
1603 efx_reado(efx, &temp, FR_AB_NIC_STAT);
1604 EFX_SET_OWORD_FIELD(temp, FRF_AB_ONCHIP_SRAM, 1);
1605 efx_writeo(efx, &temp, FR_AB_NIC_STAT);
1607 rc = falcon_reset_sram(efx);
1608 if (rc)
1609 return rc;
1611 /* Clear the parity enables on the TX data fifos as
1612 * they produce false parity errors because of timing issues
1614 if (EFX_WORKAROUND_5129(efx)) {
1615 efx_reado(efx, &temp, FR_AZ_CSR_SPARE);
1616 EFX_SET_OWORD_FIELD(temp, FRF_AB_MEM_PERR_EN_TX_DATA, 0);
1617 efx_writeo(efx, &temp, FR_AZ_CSR_SPARE);
1620 if (EFX_WORKAROUND_7244(efx)) {
1621 efx_reado(efx, &temp, FR_BZ_RX_FILTER_CTL);
1622 EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_FULL_SRCH_LIMIT, 8);
1623 EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_WILD_SRCH_LIMIT, 8);
1624 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_FULL_SRCH_LIMIT, 8);
1625 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_WILD_SRCH_LIMIT, 8);
1626 efx_writeo(efx, &temp, FR_BZ_RX_FILTER_CTL);
1629 /* XXX This is documented only for Falcon A0/A1 */
1630 /* Setup RX. Wait for descriptor is broken and must
1631 * be disabled. RXDP recovery shouldn't be needed, but is.
1633 efx_reado(efx, &temp, FR_AA_RX_SELF_RST);
1634 EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_NODESC_WAIT_DIS, 1);
1635 EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_SELF_RST_EN, 1);
1636 if (EFX_WORKAROUND_5583(efx))
1637 EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_ISCSI_DIS, 1);
1638 efx_writeo(efx, &temp, FR_AA_RX_SELF_RST);
1640 /* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
1641 * descriptors (which is bad).
1643 efx_reado(efx, &temp, FR_AZ_TX_CFG);
1644 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_NO_EOP_DISC_EN, 0);
1645 efx_writeo(efx, &temp, FR_AZ_TX_CFG);
1647 falcon_init_rx_cfg(efx);
1649 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
1650 /* Set hash key for IPv4 */
1651 memcpy(&temp, efx->rx_hash_key, sizeof(temp));
1652 efx_writeo(efx, &temp, FR_BZ_RX_RSS_TKEY);
1654 /* Set destination of both TX and RX Flush events */
1655 EFX_POPULATE_OWORD_1(temp, FRF_BZ_FLS_EVQ_ID, 0);
1656 efx_writeo(efx, &temp, FR_BZ_DP_CTRL);
1659 efx_nic_init_common(efx);
1661 return 0;
1664 static void falcon_remove_nic(struct efx_nic *efx)
1666 struct falcon_nic_data *nic_data = efx->nic_data;
1667 struct falcon_board *board = falcon_board(efx);
1668 int rc;
1670 board->type->fini(efx);
1672 /* Remove I2C adapter and clear it in preparation for a retry */
1673 rc = i2c_del_adapter(&board->i2c_adap);
1674 BUG_ON(rc);
1675 memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
1677 efx_nic_free_buffer(efx, &efx->irq_status);
1679 __falcon_reset_hw(efx, RESET_TYPE_ALL);
1681 /* Release the second function after the reset */
1682 if (nic_data->pci_dev2) {
1683 pci_dev_put(nic_data->pci_dev2);
1684 nic_data->pci_dev2 = NULL;
1687 /* Tear down the private nic state */
1688 kfree(efx->nic_data);
1689 efx->nic_data = NULL;
1692 static void falcon_update_nic_stats(struct efx_nic *efx)
1694 struct falcon_nic_data *nic_data = efx->nic_data;
1695 efx_oword_t cnt;
1697 if (nic_data->stats_disable_count)
1698 return;
1700 efx_reado(efx, &cnt, FR_AZ_RX_NODESC_DROP);
1701 efx->n_rx_nodesc_drop_cnt +=
1702 EFX_OWORD_FIELD(cnt, FRF_AB_RX_NODESC_DROP_CNT);
1704 if (nic_data->stats_pending &&
1705 *nic_data->stats_dma_done == FALCON_STATS_DONE) {
1706 nic_data->stats_pending = false;
1707 rmb(); /* read the done flag before the stats */
1708 falcon_update_stats_xmac(efx);
1712 void falcon_start_nic_stats(struct efx_nic *efx)
1714 struct falcon_nic_data *nic_data = efx->nic_data;
1716 spin_lock_bh(&efx->stats_lock);
1717 if (--nic_data->stats_disable_count == 0)
1718 falcon_stats_request(efx);
1719 spin_unlock_bh(&efx->stats_lock);
1722 void falcon_stop_nic_stats(struct efx_nic *efx)
1724 struct falcon_nic_data *nic_data = efx->nic_data;
1725 int i;
1727 might_sleep();
1729 spin_lock_bh(&efx->stats_lock);
1730 ++nic_data->stats_disable_count;
1731 spin_unlock_bh(&efx->stats_lock);
1733 del_timer_sync(&nic_data->stats_timer);
1735 /* Wait enough time for the most recent transfer to
1736 * complete. */
1737 for (i = 0; i < 4 && nic_data->stats_pending; i++) {
1738 if (*nic_data->stats_dma_done == FALCON_STATS_DONE)
1739 break;
1740 msleep(1);
1743 spin_lock_bh(&efx->stats_lock);
1744 falcon_stats_complete(efx);
1745 spin_unlock_bh(&efx->stats_lock);
1748 static void falcon_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
1750 falcon_board(efx)->type->set_id_led(efx, mode);
1753 /**************************************************************************
1755 * Wake on LAN
1757 **************************************************************************
1760 static void falcon_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
1762 wol->supported = 0;
1763 wol->wolopts = 0;
1764 memset(&wol->sopass, 0, sizeof(wol->sopass));
1767 static int falcon_set_wol(struct efx_nic *efx, u32 type)
1769 if (type != 0)
1770 return -EINVAL;
1771 return 0;
1774 /**************************************************************************
1776 * Revision-dependent attributes used by efx.c and nic.c
1778 **************************************************************************
1781 const struct efx_nic_type falcon_a1_nic_type = {
1782 .probe = falcon_probe_nic,
1783 .remove = falcon_remove_nic,
1784 .init = falcon_init_nic,
1785 .dimension_resources = falcon_dimension_resources,
1786 .fini = efx_port_dummy_op_void,
1787 .monitor = falcon_monitor,
1788 .map_reset_reason = falcon_map_reset_reason,
1789 .map_reset_flags = falcon_map_reset_flags,
1790 .reset = falcon_reset_hw,
1791 .probe_port = falcon_probe_port,
1792 .remove_port = falcon_remove_port,
1793 .handle_global_event = falcon_handle_global_event,
1794 .prepare_flush = falcon_prepare_flush,
1795 .finish_flush = efx_port_dummy_op_void,
1796 .update_stats = falcon_update_nic_stats,
1797 .start_stats = falcon_start_nic_stats,
1798 .stop_stats = falcon_stop_nic_stats,
1799 .set_id_led = falcon_set_id_led,
1800 .push_irq_moderation = falcon_push_irq_moderation,
1801 .reconfigure_port = falcon_reconfigure_port,
1802 .reconfigure_mac = falcon_reconfigure_xmac,
1803 .check_mac_fault = falcon_xmac_check_fault,
1804 .get_wol = falcon_get_wol,
1805 .set_wol = falcon_set_wol,
1806 .resume_wol = efx_port_dummy_op_void,
1807 .test_nvram = falcon_test_nvram,
1809 .revision = EFX_REV_FALCON_A1,
1810 .mem_map_size = 0x20000,
1811 .txd_ptr_tbl_base = FR_AA_TX_DESC_PTR_TBL_KER,
1812 .rxd_ptr_tbl_base = FR_AA_RX_DESC_PTR_TBL_KER,
1813 .buf_tbl_base = FR_AA_BUF_FULL_TBL_KER,
1814 .evq_ptr_tbl_base = FR_AA_EVQ_PTR_TBL_KER,
1815 .evq_rptr_tbl_base = FR_AA_EVQ_RPTR_KER,
1816 .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
1817 .rx_buffer_padding = 0x24,
1818 .max_interrupt_mode = EFX_INT_MODE_MSI,
1819 .phys_addr_channels = 4,
1820 .timer_period_max = 1 << FRF_AB_TC_TIMER_VAL_WIDTH,
1821 .offload_features = NETIF_F_IP_CSUM,
1824 const struct efx_nic_type falcon_b0_nic_type = {
1825 .probe = falcon_probe_nic,
1826 .remove = falcon_remove_nic,
1827 .init = falcon_init_nic,
1828 .dimension_resources = falcon_dimension_resources,
1829 .fini = efx_port_dummy_op_void,
1830 .monitor = falcon_monitor,
1831 .map_reset_reason = falcon_map_reset_reason,
1832 .map_reset_flags = falcon_map_reset_flags,
1833 .reset = falcon_reset_hw,
1834 .probe_port = falcon_probe_port,
1835 .remove_port = falcon_remove_port,
1836 .handle_global_event = falcon_handle_global_event,
1837 .prepare_flush = falcon_prepare_flush,
1838 .finish_flush = efx_port_dummy_op_void,
1839 .update_stats = falcon_update_nic_stats,
1840 .start_stats = falcon_start_nic_stats,
1841 .stop_stats = falcon_stop_nic_stats,
1842 .set_id_led = falcon_set_id_led,
1843 .push_irq_moderation = falcon_push_irq_moderation,
1844 .reconfigure_port = falcon_reconfigure_port,
1845 .reconfigure_mac = falcon_reconfigure_xmac,
1846 .check_mac_fault = falcon_xmac_check_fault,
1847 .get_wol = falcon_get_wol,
1848 .set_wol = falcon_set_wol,
1849 .resume_wol = efx_port_dummy_op_void,
1850 .test_chip = falcon_b0_test_chip,
1851 .test_nvram = falcon_test_nvram,
1853 .revision = EFX_REV_FALCON_B0,
1854 /* Map everything up to and including the RSS indirection
1855 * table. Don't map MSI-X table, MSI-X PBA since Linux
1856 * requires that they not be mapped. */
1857 .mem_map_size = (FR_BZ_RX_INDIRECTION_TBL +
1858 FR_BZ_RX_INDIRECTION_TBL_STEP *
1859 FR_BZ_RX_INDIRECTION_TBL_ROWS),
1860 .txd_ptr_tbl_base = FR_BZ_TX_DESC_PTR_TBL,
1861 .rxd_ptr_tbl_base = FR_BZ_RX_DESC_PTR_TBL,
1862 .buf_tbl_base = FR_BZ_BUF_FULL_TBL,
1863 .evq_ptr_tbl_base = FR_BZ_EVQ_PTR_TBL,
1864 .evq_rptr_tbl_base = FR_BZ_EVQ_RPTR,
1865 .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
1866 .rx_buffer_hash_size = 0x10,
1867 .rx_buffer_padding = 0,
1868 .max_interrupt_mode = EFX_INT_MODE_MSIX,
1869 .phys_addr_channels = 32, /* Hardware limit is 64, but the legacy
1870 * interrupt handler only supports 32
1871 * channels */
1872 .timer_period_max = 1 << FRF_AB_TC_TIMER_VAL_WIDTH,
1873 .offload_features = NETIF_F_IP_CSUM | NETIF_F_RXHASH | NETIF_F_NTUPLE,