1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2006-2010 Solarflare Communications Inc.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/pci.h>
14 #include <linux/module.h>
15 #include <linux/seq_file.h>
16 #include <linux/i2c.h>
17 #include <linux/mii.h>
18 #include <linux/slab.h>
19 #include "net_driver.h"
27 #include "workarounds.h"
30 /* Hardware control for SFC4000 (aka Falcon). */
32 static int falcon_reset_hw(struct efx_nic
*efx
, enum reset_type method
);
34 static const unsigned int
35 /* "Large" EEPROM device: Atmel AT25640 or similar
36 * 8 KB, 16-bit address, 32 B write block */
37 large_eeprom_type
= ((13 << SPI_DEV_TYPE_SIZE_LBN
)
38 | (2 << SPI_DEV_TYPE_ADDR_LEN_LBN
)
39 | (5 << SPI_DEV_TYPE_BLOCK_SIZE_LBN
)),
40 /* Default flash device: Atmel AT25F1024
41 * 128 KB, 24-bit address, 32 KB erase block, 256 B write block */
42 default_flash_type
= ((17 << SPI_DEV_TYPE_SIZE_LBN
)
43 | (3 << SPI_DEV_TYPE_ADDR_LEN_LBN
)
44 | (0x52 << SPI_DEV_TYPE_ERASE_CMD_LBN
)
45 | (15 << SPI_DEV_TYPE_ERASE_SIZE_LBN
)
46 | (8 << SPI_DEV_TYPE_BLOCK_SIZE_LBN
));
48 /**************************************************************************
50 * I2C bus - this is a bit-bashing interface using GPIO pins
51 * Note that it uses the output enables to tristate the outputs
52 * SDA is the data pin and SCL is the clock
54 **************************************************************************
56 static void falcon_setsda(void *data
, int state
)
58 struct efx_nic
*efx
= (struct efx_nic
*)data
;
61 efx_reado(efx
, ®
, FR_AB_GPIO_CTL
);
62 EFX_SET_OWORD_FIELD(reg
, FRF_AB_GPIO3_OEN
, !state
);
63 efx_writeo(efx
, ®
, FR_AB_GPIO_CTL
);
66 static void falcon_setscl(void *data
, int state
)
68 struct efx_nic
*efx
= (struct efx_nic
*)data
;
71 efx_reado(efx
, ®
, FR_AB_GPIO_CTL
);
72 EFX_SET_OWORD_FIELD(reg
, FRF_AB_GPIO0_OEN
, !state
);
73 efx_writeo(efx
, ®
, FR_AB_GPIO_CTL
);
76 static int falcon_getsda(void *data
)
78 struct efx_nic
*efx
= (struct efx_nic
*)data
;
81 efx_reado(efx
, ®
, FR_AB_GPIO_CTL
);
82 return EFX_OWORD_FIELD(reg
, FRF_AB_GPIO3_IN
);
85 static int falcon_getscl(void *data
)
87 struct efx_nic
*efx
= (struct efx_nic
*)data
;
90 efx_reado(efx
, ®
, FR_AB_GPIO_CTL
);
91 return EFX_OWORD_FIELD(reg
, FRF_AB_GPIO0_IN
);
94 static const struct i2c_algo_bit_data falcon_i2c_bit_operations
= {
95 .setsda
= falcon_setsda
,
96 .setscl
= falcon_setscl
,
97 .getsda
= falcon_getsda
,
98 .getscl
= falcon_getscl
,
100 /* Wait up to 50 ms for slave to let us pull SCL high */
101 .timeout
= DIV_ROUND_UP(HZ
, 20),
104 static void falcon_push_irq_moderation(struct efx_channel
*channel
)
106 efx_dword_t timer_cmd
;
107 struct efx_nic
*efx
= channel
->efx
;
109 /* Set timer register */
110 if (channel
->irq_moderation
) {
111 EFX_POPULATE_DWORD_2(timer_cmd
,
112 FRF_AB_TC_TIMER_MODE
,
113 FFE_BB_TIMER_MODE_INT_HLDOFF
,
115 channel
->irq_moderation
- 1);
117 EFX_POPULATE_DWORD_2(timer_cmd
,
118 FRF_AB_TC_TIMER_MODE
,
119 FFE_BB_TIMER_MODE_DIS
,
120 FRF_AB_TC_TIMER_VAL
, 0);
122 BUILD_BUG_ON(FR_AA_TIMER_COMMAND_KER
!= FR_BZ_TIMER_COMMAND_P0
);
123 efx_writed_page_locked(efx
, &timer_cmd
, FR_BZ_TIMER_COMMAND_P0
,
127 static void falcon_deconfigure_mac_wrapper(struct efx_nic
*efx
);
129 static void falcon_prepare_flush(struct efx_nic
*efx
)
131 falcon_deconfigure_mac_wrapper(efx
);
133 /* Wait for the tx and rx fifo's to get to the next packet boundary
134 * (~1ms without back-pressure), then to drain the remainder of the
135 * fifo's at data path speeds (negligible), with a healthy margin. */
139 /* Acknowledge a legacy interrupt from Falcon
141 * This acknowledges a legacy (not MSI) interrupt via INT_ACK_KER_REG.
143 * Due to SFC bug 3706 (silicon revision <=A1) reads can be duplicated in the
144 * BIU. Interrupt acknowledge is read sensitive so must write instead
145 * (then read to ensure the BIU collector is flushed)
147 * NB most hardware supports MSI interrupts
149 inline void falcon_irq_ack_a1(struct efx_nic
*efx
)
153 EFX_POPULATE_DWORD_1(reg
, FRF_AA_INT_ACK_KER_FIELD
, 0xb7eb7e);
154 efx_writed(efx
, ®
, FR_AA_INT_ACK_KER
);
155 efx_readd(efx
, ®
, FR_AA_WORK_AROUND_BROKEN_PCI_READS
);
159 irqreturn_t
falcon_legacy_interrupt_a1(int irq
, void *dev_id
)
161 struct efx_nic
*efx
= dev_id
;
162 efx_oword_t
*int_ker
= efx
->irq_status
.addr
;
166 /* Check to see if this is our interrupt. If it isn't, we
167 * exit without having touched the hardware.
169 if (unlikely(EFX_OWORD_IS_ZERO(*int_ker
))) {
170 netif_vdbg(efx
, intr
, efx
->net_dev
,
171 "IRQ %d on CPU %d not for me\n", irq
,
172 raw_smp_processor_id());
175 efx
->last_irq_cpu
= raw_smp_processor_id();
176 netif_vdbg(efx
, intr
, efx
->net_dev
,
177 "IRQ %d on CPU %d status " EFX_OWORD_FMT
"\n",
178 irq
, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker
));
180 /* Check to see if we have a serious error condition */
181 syserr
= EFX_OWORD_FIELD(*int_ker
, FSF_AZ_NET_IVEC_FATAL_INT
);
182 if (unlikely(syserr
))
183 return efx_nic_fatal_interrupt(efx
);
185 /* Determine interrupting queues, clear interrupt status
186 * register and acknowledge the device interrupt.
188 BUILD_BUG_ON(FSF_AZ_NET_IVEC_INT_Q_WIDTH
> EFX_MAX_CHANNELS
);
189 queues
= EFX_OWORD_FIELD(*int_ker
, FSF_AZ_NET_IVEC_INT_Q
);
190 EFX_ZERO_OWORD(*int_ker
);
191 wmb(); /* Ensure the vector is cleared before interrupt ack */
192 falcon_irq_ack_a1(efx
);
195 efx_schedule_channel_irq(efx_get_channel(efx
, 0));
197 efx_schedule_channel_irq(efx_get_channel(efx
, 1));
200 /**************************************************************************
204 **************************************************************************
207 #define FALCON_SPI_MAX_LEN sizeof(efx_oword_t)
209 static int falcon_spi_poll(struct efx_nic
*efx
)
212 efx_reado(efx
, ®
, FR_AB_EE_SPI_HCMD
);
213 return EFX_OWORD_FIELD(reg
, FRF_AB_EE_SPI_HCMD_CMD_EN
) ? -EBUSY
: 0;
216 /* Wait for SPI command completion */
217 static int falcon_spi_wait(struct efx_nic
*efx
)
219 /* Most commands will finish quickly, so we start polling at
220 * very short intervals. Sometimes the command may have to
221 * wait for VPD or expansion ROM access outside of our
222 * control, so we allow up to 100 ms. */
223 unsigned long timeout
= jiffies
+ 1 + DIV_ROUND_UP(HZ
, 10);
226 for (i
= 0; i
< 10; i
++) {
227 if (!falcon_spi_poll(efx
))
233 if (!falcon_spi_poll(efx
))
235 if (time_after_eq(jiffies
, timeout
)) {
236 netif_err(efx
, hw
, efx
->net_dev
,
237 "timed out waiting for SPI\n");
240 schedule_timeout_uninterruptible(1);
244 int falcon_spi_cmd(struct efx_nic
*efx
, const struct efx_spi_device
*spi
,
245 unsigned int command
, int address
,
246 const void *in
, void *out
, size_t len
)
248 bool addressed
= (address
>= 0);
249 bool reading
= (out
!= NULL
);
253 /* Input validation */
254 if (len
> FALCON_SPI_MAX_LEN
)
257 /* Check that previous command is not still running */
258 rc
= falcon_spi_poll(efx
);
262 /* Program address register, if we have an address */
264 EFX_POPULATE_OWORD_1(reg
, FRF_AB_EE_SPI_HADR_ADR
, address
);
265 efx_writeo(efx
, ®
, FR_AB_EE_SPI_HADR
);
268 /* Program data register, if we have data */
270 memcpy(®
, in
, len
);
271 efx_writeo(efx
, ®
, FR_AB_EE_SPI_HDATA
);
274 /* Issue read/write command */
275 EFX_POPULATE_OWORD_7(reg
,
276 FRF_AB_EE_SPI_HCMD_CMD_EN
, 1,
277 FRF_AB_EE_SPI_HCMD_SF_SEL
, spi
->device_id
,
278 FRF_AB_EE_SPI_HCMD_DABCNT
, len
,
279 FRF_AB_EE_SPI_HCMD_READ
, reading
,
280 FRF_AB_EE_SPI_HCMD_DUBCNT
, 0,
281 FRF_AB_EE_SPI_HCMD_ADBCNT
,
282 (addressed
? spi
->addr_len
: 0),
283 FRF_AB_EE_SPI_HCMD_ENC
, command
);
284 efx_writeo(efx
, ®
, FR_AB_EE_SPI_HCMD
);
286 /* Wait for read/write to complete */
287 rc
= falcon_spi_wait(efx
);
293 efx_reado(efx
, ®
, FR_AB_EE_SPI_HDATA
);
294 memcpy(out
, ®
, len
);
301 falcon_spi_write_limit(const struct efx_spi_device
*spi
, size_t start
)
303 return min(FALCON_SPI_MAX_LEN
,
304 (spi
->block_size
- (start
& (spi
->block_size
- 1))));
308 efx_spi_munge_command(const struct efx_spi_device
*spi
,
309 const u8 command
, const unsigned int address
)
311 return command
| (((address
>> 8) & spi
->munge_address
) << 3);
314 /* Wait up to 10 ms for buffered write completion */
316 falcon_spi_wait_write(struct efx_nic
*efx
, const struct efx_spi_device
*spi
)
318 unsigned long timeout
= jiffies
+ 1 + DIV_ROUND_UP(HZ
, 100);
323 rc
= falcon_spi_cmd(efx
, spi
, SPI_RDSR
, -1, NULL
,
324 &status
, sizeof(status
));
327 if (!(status
& SPI_STATUS_NRDY
))
329 if (time_after_eq(jiffies
, timeout
)) {
330 netif_err(efx
, hw
, efx
->net_dev
,
331 "SPI write timeout on device %d"
332 " last status=0x%02x\n",
333 spi
->device_id
, status
);
336 schedule_timeout_uninterruptible(1);
340 int falcon_spi_read(struct efx_nic
*efx
, const struct efx_spi_device
*spi
,
341 loff_t start
, size_t len
, size_t *retlen
, u8
*buffer
)
343 size_t block_len
, pos
= 0;
344 unsigned int command
;
348 block_len
= min(len
- pos
, FALCON_SPI_MAX_LEN
);
350 command
= efx_spi_munge_command(spi
, SPI_READ
, start
+ pos
);
351 rc
= falcon_spi_cmd(efx
, spi
, command
, start
+ pos
, NULL
,
352 buffer
+ pos
, block_len
);
357 /* Avoid locking up the system */
359 if (signal_pending(current
)) {
371 falcon_spi_write(struct efx_nic
*efx
, const struct efx_spi_device
*spi
,
372 loff_t start
, size_t len
, size_t *retlen
, const u8
*buffer
)
374 u8 verify_buffer
[FALCON_SPI_MAX_LEN
];
375 size_t block_len
, pos
= 0;
376 unsigned int command
;
380 rc
= falcon_spi_cmd(efx
, spi
, SPI_WREN
, -1, NULL
, NULL
, 0);
384 block_len
= min(len
- pos
,
385 falcon_spi_write_limit(spi
, start
+ pos
));
386 command
= efx_spi_munge_command(spi
, SPI_WRITE
, start
+ pos
);
387 rc
= falcon_spi_cmd(efx
, spi
, command
, start
+ pos
,
388 buffer
+ pos
, NULL
, block_len
);
392 rc
= falcon_spi_wait_write(efx
, spi
);
396 command
= efx_spi_munge_command(spi
, SPI_READ
, start
+ pos
);
397 rc
= falcon_spi_cmd(efx
, spi
, command
, start
+ pos
,
398 NULL
, verify_buffer
, block_len
);
399 if (memcmp(verify_buffer
, buffer
+ pos
, block_len
)) {
406 /* Avoid locking up the system */
408 if (signal_pending(current
)) {
419 /**************************************************************************
423 **************************************************************************
426 static void falcon_push_multicast_hash(struct efx_nic
*efx
)
428 union efx_multicast_hash
*mc_hash
= &efx
->multicast_hash
;
430 WARN_ON(!mutex_is_locked(&efx
->mac_lock
));
432 efx_writeo(efx
, &mc_hash
->oword
[0], FR_AB_MAC_MC_HASH_REG0
);
433 efx_writeo(efx
, &mc_hash
->oword
[1], FR_AB_MAC_MC_HASH_REG1
);
436 static void falcon_reset_macs(struct efx_nic
*efx
)
438 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
439 efx_oword_t reg
, mac_ctrl
;
442 if (efx_nic_rev(efx
) < EFX_REV_FALCON_B0
) {
443 /* It's not safe to use GLB_CTL_REG to reset the
444 * macs, so instead use the internal MAC resets
446 EFX_POPULATE_OWORD_1(reg
, FRF_AB_XM_CORE_RST
, 1);
447 efx_writeo(efx
, ®
, FR_AB_XM_GLB_CFG
);
449 for (count
= 0; count
< 10000; count
++) {
450 efx_reado(efx
, ®
, FR_AB_XM_GLB_CFG
);
451 if (EFX_OWORD_FIELD(reg
, FRF_AB_XM_CORE_RST
) ==
457 netif_err(efx
, hw
, efx
->net_dev
,
458 "timed out waiting for XMAC core reset\n");
461 /* Mac stats will fail whist the TX fifo is draining */
462 WARN_ON(nic_data
->stats_disable_count
== 0);
464 efx_reado(efx
, &mac_ctrl
, FR_AB_MAC_CTRL
);
465 EFX_SET_OWORD_FIELD(mac_ctrl
, FRF_BB_TXFIFO_DRAIN_EN
, 1);
466 efx_writeo(efx
, &mac_ctrl
, FR_AB_MAC_CTRL
);
468 efx_reado(efx
, ®
, FR_AB_GLB_CTL
);
469 EFX_SET_OWORD_FIELD(reg
, FRF_AB_RST_XGTX
, 1);
470 EFX_SET_OWORD_FIELD(reg
, FRF_AB_RST_XGRX
, 1);
471 EFX_SET_OWORD_FIELD(reg
, FRF_AB_RST_EM
, 1);
472 efx_writeo(efx
, ®
, FR_AB_GLB_CTL
);
476 efx_reado(efx
, ®
, FR_AB_GLB_CTL
);
477 if (!EFX_OWORD_FIELD(reg
, FRF_AB_RST_XGTX
) &&
478 !EFX_OWORD_FIELD(reg
, FRF_AB_RST_XGRX
) &&
479 !EFX_OWORD_FIELD(reg
, FRF_AB_RST_EM
)) {
480 netif_dbg(efx
, hw
, efx
->net_dev
,
481 "Completed MAC reset after %d loops\n",
486 netif_err(efx
, hw
, efx
->net_dev
, "MAC reset failed\n");
493 /* Ensure the correct MAC is selected before statistics
494 * are re-enabled by the caller */
495 efx_writeo(efx
, &mac_ctrl
, FR_AB_MAC_CTRL
);
497 falcon_setup_xaui(efx
);
500 void falcon_drain_tx_fifo(struct efx_nic
*efx
)
504 if ((efx_nic_rev(efx
) < EFX_REV_FALCON_B0
) ||
505 (efx
->loopback_mode
!= LOOPBACK_NONE
))
508 efx_reado(efx
, ®
, FR_AB_MAC_CTRL
);
509 /* There is no point in draining more than once */
510 if (EFX_OWORD_FIELD(reg
, FRF_BB_TXFIFO_DRAIN_EN
))
513 falcon_reset_macs(efx
);
516 static void falcon_deconfigure_mac_wrapper(struct efx_nic
*efx
)
520 if (efx_nic_rev(efx
) < EFX_REV_FALCON_B0
)
523 /* Isolate the MAC -> RX */
524 efx_reado(efx
, ®
, FR_AZ_RX_CFG
);
525 EFX_SET_OWORD_FIELD(reg
, FRF_BZ_RX_INGR_EN
, 0);
526 efx_writeo(efx
, ®
, FR_AZ_RX_CFG
);
528 /* Isolate TX -> MAC */
529 falcon_drain_tx_fifo(efx
);
532 void falcon_reconfigure_mac_wrapper(struct efx_nic
*efx
)
534 struct efx_link_state
*link_state
= &efx
->link_state
;
536 int link_speed
, isolate
;
538 isolate
= !!ACCESS_ONCE(efx
->reset_pending
);
540 switch (link_state
->speed
) {
541 case 10000: link_speed
= 3; break;
542 case 1000: link_speed
= 2; break;
543 case 100: link_speed
= 1; break;
544 default: link_speed
= 0; break;
546 /* MAC_LINK_STATUS controls MAC backpressure but doesn't work
547 * as advertised. Disable to ensure packets are not
548 * indefinitely held and TX queue can be flushed at any point
549 * while the link is down. */
550 EFX_POPULATE_OWORD_5(reg
,
551 FRF_AB_MAC_XOFF_VAL
, 0xffff /* max pause time */,
552 FRF_AB_MAC_BCAD_ACPT
, 1,
553 FRF_AB_MAC_UC_PROM
, efx
->promiscuous
,
554 FRF_AB_MAC_LINK_STATUS
, 1, /* always set */
555 FRF_AB_MAC_SPEED
, link_speed
);
556 /* On B0, MAC backpressure can be disabled and packets get
558 if (efx_nic_rev(efx
) >= EFX_REV_FALCON_B0
) {
559 EFX_SET_OWORD_FIELD(reg
, FRF_BB_TXFIFO_DRAIN_EN
,
560 !link_state
->up
|| isolate
);
563 efx_writeo(efx
, ®
, FR_AB_MAC_CTRL
);
565 /* Restore the multicast hash registers. */
566 falcon_push_multicast_hash(efx
);
568 efx_reado(efx
, ®
, FR_AZ_RX_CFG
);
569 /* Enable XOFF signal from RX FIFO (we enabled it during NIC
570 * initialisation but it may read back as 0) */
571 EFX_SET_OWORD_FIELD(reg
, FRF_AZ_RX_XOFF_MAC_EN
, 1);
572 /* Unisolate the MAC -> RX */
573 if (efx_nic_rev(efx
) >= EFX_REV_FALCON_B0
)
574 EFX_SET_OWORD_FIELD(reg
, FRF_BZ_RX_INGR_EN
, !isolate
);
575 efx_writeo(efx
, ®
, FR_AZ_RX_CFG
);
578 static void falcon_stats_request(struct efx_nic
*efx
)
580 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
583 WARN_ON(nic_data
->stats_pending
);
584 WARN_ON(nic_data
->stats_disable_count
);
586 if (nic_data
->stats_dma_done
== NULL
)
587 return; /* no mac selected */
589 *nic_data
->stats_dma_done
= FALCON_STATS_NOT_DONE
;
590 nic_data
->stats_pending
= true;
591 wmb(); /* ensure done flag is clear */
593 /* Initiate DMA transfer of stats */
594 EFX_POPULATE_OWORD_2(reg
,
595 FRF_AB_MAC_STAT_DMA_CMD
, 1,
596 FRF_AB_MAC_STAT_DMA_ADR
,
597 efx
->stats_buffer
.dma_addr
);
598 efx_writeo(efx
, ®
, FR_AB_MAC_STAT_DMA
);
600 mod_timer(&nic_data
->stats_timer
, round_jiffies_up(jiffies
+ HZ
/ 2));
603 static void falcon_stats_complete(struct efx_nic
*efx
)
605 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
607 if (!nic_data
->stats_pending
)
610 nic_data
->stats_pending
= false;
611 if (*nic_data
->stats_dma_done
== FALCON_STATS_DONE
) {
612 rmb(); /* read the done flag before the stats */
613 falcon_update_stats_xmac(efx
);
615 netif_err(efx
, hw
, efx
->net_dev
,
616 "timed out waiting for statistics\n");
620 static void falcon_stats_timer_func(unsigned long context
)
622 struct efx_nic
*efx
= (struct efx_nic
*)context
;
623 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
625 spin_lock(&efx
->stats_lock
);
627 falcon_stats_complete(efx
);
628 if (nic_data
->stats_disable_count
== 0)
629 falcon_stats_request(efx
);
631 spin_unlock(&efx
->stats_lock
);
634 static bool falcon_loopback_link_poll(struct efx_nic
*efx
)
636 struct efx_link_state old_state
= efx
->link_state
;
638 WARN_ON(!mutex_is_locked(&efx
->mac_lock
));
639 WARN_ON(!LOOPBACK_INTERNAL(efx
));
641 efx
->link_state
.fd
= true;
642 efx
->link_state
.fc
= efx
->wanted_fc
;
643 efx
->link_state
.up
= true;
644 efx
->link_state
.speed
= 10000;
646 return !efx_link_state_equal(&efx
->link_state
, &old_state
);
649 static int falcon_reconfigure_port(struct efx_nic
*efx
)
653 WARN_ON(efx_nic_rev(efx
) > EFX_REV_FALCON_B0
);
655 /* Poll the PHY link state *before* reconfiguring it. This means we
656 * will pick up the correct speed (in loopback) to select the correct
659 if (LOOPBACK_INTERNAL(efx
))
660 falcon_loopback_link_poll(efx
);
662 efx
->phy_op
->poll(efx
);
664 falcon_stop_nic_stats(efx
);
665 falcon_deconfigure_mac_wrapper(efx
);
667 falcon_reset_macs(efx
);
669 efx
->phy_op
->reconfigure(efx
);
670 rc
= falcon_reconfigure_xmac(efx
);
673 falcon_start_nic_stats(efx
);
675 /* Synchronise efx->link_state with the kernel */
676 efx_link_status_changed(efx
);
681 /**************************************************************************
683 * PHY access via GMII
685 **************************************************************************
688 /* Wait for GMII access to complete */
689 static int falcon_gmii_wait(struct efx_nic
*efx
)
694 /* wait up to 50ms - taken max from datasheet */
695 for (count
= 0; count
< 5000; count
++) {
696 efx_reado(efx
, &md_stat
, FR_AB_MD_STAT
);
697 if (EFX_OWORD_FIELD(md_stat
, FRF_AB_MD_BSY
) == 0) {
698 if (EFX_OWORD_FIELD(md_stat
, FRF_AB_MD_LNFL
) != 0 ||
699 EFX_OWORD_FIELD(md_stat
, FRF_AB_MD_BSERR
) != 0) {
700 netif_err(efx
, hw
, efx
->net_dev
,
701 "error from GMII access "
703 EFX_OWORD_VAL(md_stat
));
710 netif_err(efx
, hw
, efx
->net_dev
, "timed out waiting for GMII\n");
714 /* Write an MDIO register of a PHY connected to Falcon. */
715 static int falcon_mdio_write(struct net_device
*net_dev
,
716 int prtad
, int devad
, u16 addr
, u16 value
)
718 struct efx_nic
*efx
= netdev_priv(net_dev
);
719 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
723 netif_vdbg(efx
, hw
, efx
->net_dev
,
724 "writing MDIO %d register %d.%d with 0x%04x\n",
725 prtad
, devad
, addr
, value
);
727 mutex_lock(&nic_data
->mdio_lock
);
729 /* Check MDIO not currently being accessed */
730 rc
= falcon_gmii_wait(efx
);
734 /* Write the address/ID register */
735 EFX_POPULATE_OWORD_1(reg
, FRF_AB_MD_PHY_ADR
, addr
);
736 efx_writeo(efx
, ®
, FR_AB_MD_PHY_ADR
);
738 EFX_POPULATE_OWORD_2(reg
, FRF_AB_MD_PRT_ADR
, prtad
,
739 FRF_AB_MD_DEV_ADR
, devad
);
740 efx_writeo(efx
, ®
, FR_AB_MD_ID
);
743 EFX_POPULATE_OWORD_1(reg
, FRF_AB_MD_TXD
, value
);
744 efx_writeo(efx
, ®
, FR_AB_MD_TXD
);
746 EFX_POPULATE_OWORD_2(reg
,
749 efx_writeo(efx
, ®
, FR_AB_MD_CS
);
751 /* Wait for data to be written */
752 rc
= falcon_gmii_wait(efx
);
754 /* Abort the write operation */
755 EFX_POPULATE_OWORD_2(reg
,
758 efx_writeo(efx
, ®
, FR_AB_MD_CS
);
763 mutex_unlock(&nic_data
->mdio_lock
);
767 /* Read an MDIO register of a PHY connected to Falcon. */
768 static int falcon_mdio_read(struct net_device
*net_dev
,
769 int prtad
, int devad
, u16 addr
)
771 struct efx_nic
*efx
= netdev_priv(net_dev
);
772 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
776 mutex_lock(&nic_data
->mdio_lock
);
778 /* Check MDIO not currently being accessed */
779 rc
= falcon_gmii_wait(efx
);
783 EFX_POPULATE_OWORD_1(reg
, FRF_AB_MD_PHY_ADR
, addr
);
784 efx_writeo(efx
, ®
, FR_AB_MD_PHY_ADR
);
786 EFX_POPULATE_OWORD_2(reg
, FRF_AB_MD_PRT_ADR
, prtad
,
787 FRF_AB_MD_DEV_ADR
, devad
);
788 efx_writeo(efx
, ®
, FR_AB_MD_ID
);
790 /* Request data to be read */
791 EFX_POPULATE_OWORD_2(reg
, FRF_AB_MD_RDC
, 1, FRF_AB_MD_GC
, 0);
792 efx_writeo(efx
, ®
, FR_AB_MD_CS
);
794 /* Wait for data to become available */
795 rc
= falcon_gmii_wait(efx
);
797 efx_reado(efx
, ®
, FR_AB_MD_RXD
);
798 rc
= EFX_OWORD_FIELD(reg
, FRF_AB_MD_RXD
);
799 netif_vdbg(efx
, hw
, efx
->net_dev
,
800 "read from MDIO %d register %d.%d, got %04x\n",
801 prtad
, devad
, addr
, rc
);
803 /* Abort the read operation */
804 EFX_POPULATE_OWORD_2(reg
,
807 efx_writeo(efx
, ®
, FR_AB_MD_CS
);
809 netif_dbg(efx
, hw
, efx
->net_dev
,
810 "read from MDIO %d register %d.%d, got error %d\n",
811 prtad
, devad
, addr
, rc
);
815 mutex_unlock(&nic_data
->mdio_lock
);
819 /* This call is responsible for hooking in the MAC and PHY operations */
820 static int falcon_probe_port(struct efx_nic
*efx
)
822 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
825 switch (efx
->phy_type
) {
826 case PHY_TYPE_SFX7101
:
827 efx
->phy_op
= &falcon_sfx7101_phy_ops
;
829 case PHY_TYPE_QT2022C2
:
830 case PHY_TYPE_QT2025C
:
831 efx
->phy_op
= &falcon_qt202x_phy_ops
;
833 case PHY_TYPE_TXC43128
:
834 efx
->phy_op
= &falcon_txc_phy_ops
;
837 netif_err(efx
, probe
, efx
->net_dev
, "Unknown PHY type %d\n",
842 /* Fill out MDIO structure and loopback modes */
843 mutex_init(&nic_data
->mdio_lock
);
844 efx
->mdio
.mdio_read
= falcon_mdio_read
;
845 efx
->mdio
.mdio_write
= falcon_mdio_write
;
846 rc
= efx
->phy_op
->probe(efx
);
850 /* Initial assumption */
851 efx
->link_state
.speed
= 10000;
852 efx
->link_state
.fd
= true;
854 /* Hardware flow ctrl. FalconA RX FIFO too small for pause generation */
855 if (efx_nic_rev(efx
) >= EFX_REV_FALCON_B0
)
856 efx
->wanted_fc
= EFX_FC_RX
| EFX_FC_TX
;
858 efx
->wanted_fc
= EFX_FC_RX
;
859 if (efx
->mdio
.mmds
& MDIO_DEVS_AN
)
860 efx
->wanted_fc
|= EFX_FC_AUTO
;
862 /* Allocate buffer for stats */
863 rc
= efx_nic_alloc_buffer(efx
, &efx
->stats_buffer
,
864 FALCON_MAC_STATS_SIZE
);
867 netif_dbg(efx
, probe
, efx
->net_dev
,
868 "stats buffer at %llx (virt %p phys %llx)\n",
869 (u64
)efx
->stats_buffer
.dma_addr
,
870 efx
->stats_buffer
.addr
,
871 (u64
)virt_to_phys(efx
->stats_buffer
.addr
));
872 nic_data
->stats_dma_done
= efx
->stats_buffer
.addr
+ XgDmaDone_offset
;
877 static void falcon_remove_port(struct efx_nic
*efx
)
879 efx
->phy_op
->remove(efx
);
880 efx_nic_free_buffer(efx
, &efx
->stats_buffer
);
883 /* Global events are basically PHY events */
885 falcon_handle_global_event(struct efx_channel
*channel
, efx_qword_t
*event
)
887 struct efx_nic
*efx
= channel
->efx
;
888 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
890 if (EFX_QWORD_FIELD(*event
, FSF_AB_GLB_EV_G_PHY0_INTR
) ||
891 EFX_QWORD_FIELD(*event
, FSF_AB_GLB_EV_XG_PHY0_INTR
) ||
892 EFX_QWORD_FIELD(*event
, FSF_AB_GLB_EV_XFP_PHY0_INTR
))
896 if ((efx_nic_rev(efx
) == EFX_REV_FALCON_B0
) &&
897 EFX_QWORD_FIELD(*event
, FSF_BB_GLB_EV_XG_MGT_INTR
)) {
898 nic_data
->xmac_poll_required
= true;
902 if (efx_nic_rev(efx
) <= EFX_REV_FALCON_A1
?
903 EFX_QWORD_FIELD(*event
, FSF_AA_GLB_EV_RX_RECOVERY
) :
904 EFX_QWORD_FIELD(*event
, FSF_BB_GLB_EV_RX_RECOVERY
)) {
905 netif_err(efx
, rx_err
, efx
->net_dev
,
906 "channel %d seen global RX_RESET event. Resetting.\n",
909 atomic_inc(&efx
->rx_reset
);
910 efx_schedule_reset(efx
, EFX_WORKAROUND_6555(efx
) ?
911 RESET_TYPE_RX_RECOVERY
: RESET_TYPE_DISABLE
);
918 /**************************************************************************
922 **************************************************************************/
925 falcon_read_nvram(struct efx_nic
*efx
, struct falcon_nvconfig
*nvconfig_out
)
927 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
928 struct falcon_nvconfig
*nvconfig
;
929 struct efx_spi_device
*spi
;
931 int rc
, magic_num
, struct_ver
;
932 __le16
*word
, *limit
;
935 if (efx_spi_present(&nic_data
->spi_flash
))
936 spi
= &nic_data
->spi_flash
;
937 else if (efx_spi_present(&nic_data
->spi_eeprom
))
938 spi
= &nic_data
->spi_eeprom
;
942 region
= kmalloc(FALCON_NVCONFIG_END
, GFP_KERNEL
);
945 nvconfig
= region
+ FALCON_NVCONFIG_OFFSET
;
947 mutex_lock(&nic_data
->spi_lock
);
948 rc
= falcon_spi_read(efx
, spi
, 0, FALCON_NVCONFIG_END
, NULL
, region
);
949 mutex_unlock(&nic_data
->spi_lock
);
951 netif_err(efx
, hw
, efx
->net_dev
, "Failed to read %s\n",
952 efx_spi_present(&nic_data
->spi_flash
) ?
958 magic_num
= le16_to_cpu(nvconfig
->board_magic_num
);
959 struct_ver
= le16_to_cpu(nvconfig
->board_struct_ver
);
962 if (magic_num
!= FALCON_NVCONFIG_BOARD_MAGIC_NUM
) {
963 netif_err(efx
, hw
, efx
->net_dev
,
964 "NVRAM bad magic 0x%x\n", magic_num
);
967 if (struct_ver
< 2) {
968 netif_err(efx
, hw
, efx
->net_dev
,
969 "NVRAM has ancient version 0x%x\n", struct_ver
);
971 } else if (struct_ver
< 4) {
972 word
= &nvconfig
->board_magic_num
;
973 limit
= (__le16
*) (nvconfig
+ 1);
976 limit
= region
+ FALCON_NVCONFIG_END
;
978 for (csum
= 0; word
< limit
; ++word
)
979 csum
+= le16_to_cpu(*word
);
981 if (~csum
& 0xffff) {
982 netif_err(efx
, hw
, efx
->net_dev
,
983 "NVRAM has incorrect checksum\n");
989 memcpy(nvconfig_out
, nvconfig
, sizeof(*nvconfig
));
996 static int falcon_test_nvram(struct efx_nic
*efx
)
998 return falcon_read_nvram(efx
, NULL
);
1001 static const struct efx_nic_register_test falcon_b0_register_tests
[] = {
1003 EFX_OWORD32(0x0003FFFF, 0x0003FFFF, 0x0003FFFF, 0x0003FFFF) },
1005 EFX_OWORD32(0xFFFFFFFE, 0x00017FFF, 0x00000000, 0x00000000) },
1007 EFX_OWORD32(0x7FFF0037, 0x00000000, 0x00000000, 0x00000000) },
1008 { FR_AZ_TX_RESERVED
,
1009 EFX_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) },
1011 EFX_OWORD32(0xFFFF0000, 0x00000000, 0x00000000, 0x00000000) },
1012 { FR_AZ_SRM_TX_DC_CFG
,
1013 EFX_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) },
1015 EFX_OWORD32(0x0000000F, 0x00000000, 0x00000000, 0x00000000) },
1016 { FR_AZ_RX_DC_PF_WM
,
1017 EFX_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) },
1019 EFX_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) },
1021 EFX_OWORD32(0x00007337, 0x00000000, 0x00000000, 0x00000000) },
1023 EFX_OWORD32(0x00001F1F, 0x00000000, 0x00000000, 0x00000000) },
1025 EFX_OWORD32(0x00000C68, 0x00000000, 0x00000000, 0x00000000) },
1027 EFX_OWORD32(0x00080164, 0x00000000, 0x00000000, 0x00000000) },
1029 EFX_OWORD32(0x07100A0C, 0x00000000, 0x00000000, 0x00000000) },
1030 { FR_AB_XM_RX_PARAM
,
1031 EFX_OWORD32(0x00001FF8, 0x00000000, 0x00000000, 0x00000000) },
1033 EFX_OWORD32(0xFFFF0001, 0x00000000, 0x00000000, 0x00000000) },
1035 EFX_OWORD32(0xFFFFFFFF, 0x00000000, 0x00000000, 0x00000000) },
1037 EFX_OWORD32(0x0003FF0F, 0x00000000, 0x00000000, 0x00000000) },
1041 falcon_b0_test_chip(struct efx_nic
*efx
, struct efx_self_tests
*tests
)
1043 enum reset_type reset_method
= RESET_TYPE_INVISIBLE
;
1046 mutex_lock(&efx
->mac_lock
);
1047 if (efx
->loopback_modes
) {
1048 /* We need the 312 clock from the PHY to test the XMAC
1049 * registers, so move into XGMII loopback if available */
1050 if (efx
->loopback_modes
& (1 << LOOPBACK_XGMII
))
1051 efx
->loopback_mode
= LOOPBACK_XGMII
;
1053 efx
->loopback_mode
= __ffs(efx
->loopback_modes
);
1055 __efx_reconfigure_port(efx
);
1056 mutex_unlock(&efx
->mac_lock
);
1058 efx_reset_down(efx
, reset_method
);
1061 efx_nic_test_registers(efx
, falcon_b0_register_tests
,
1062 ARRAY_SIZE(falcon_b0_register_tests
))
1065 rc
= falcon_reset_hw(efx
, reset_method
);
1066 rc2
= efx_reset_up(efx
, reset_method
, rc
== 0);
1067 return rc
? rc
: rc2
;
1070 /**************************************************************************
1074 **************************************************************************
1077 static enum reset_type
falcon_map_reset_reason(enum reset_type reason
)
1080 case RESET_TYPE_RX_RECOVERY
:
1081 case RESET_TYPE_RX_DESC_FETCH
:
1082 case RESET_TYPE_TX_DESC_FETCH
:
1083 case RESET_TYPE_TX_SKIP
:
1084 /* These can occasionally occur due to hardware bugs.
1085 * We try to reset without disrupting the link.
1087 return RESET_TYPE_INVISIBLE
;
1089 return RESET_TYPE_ALL
;
1093 static int falcon_map_reset_flags(u32
*flags
)
1096 FALCON_RESET_INVISIBLE
= (ETH_RESET_DMA
| ETH_RESET_FILTER
|
1097 ETH_RESET_OFFLOAD
| ETH_RESET_MAC
),
1098 FALCON_RESET_ALL
= FALCON_RESET_INVISIBLE
| ETH_RESET_PHY
,
1099 FALCON_RESET_WORLD
= FALCON_RESET_ALL
| ETH_RESET_IRQ
,
1102 if ((*flags
& FALCON_RESET_WORLD
) == FALCON_RESET_WORLD
) {
1103 *flags
&= ~FALCON_RESET_WORLD
;
1104 return RESET_TYPE_WORLD
;
1107 if ((*flags
& FALCON_RESET_ALL
) == FALCON_RESET_ALL
) {
1108 *flags
&= ~FALCON_RESET_ALL
;
1109 return RESET_TYPE_ALL
;
1112 if ((*flags
& FALCON_RESET_INVISIBLE
) == FALCON_RESET_INVISIBLE
) {
1113 *flags
&= ~FALCON_RESET_INVISIBLE
;
1114 return RESET_TYPE_INVISIBLE
;
1120 /* Resets NIC to known state. This routine must be called in process
1121 * context and is allowed to sleep. */
1122 static int __falcon_reset_hw(struct efx_nic
*efx
, enum reset_type method
)
1124 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
1125 efx_oword_t glb_ctl_reg_ker
;
1128 netif_dbg(efx
, hw
, efx
->net_dev
, "performing %s hardware reset\n",
1129 RESET_TYPE(method
));
1131 /* Initiate device reset */
1132 if (method
== RESET_TYPE_WORLD
) {
1133 rc
= pci_save_state(efx
->pci_dev
);
1135 netif_err(efx
, drv
, efx
->net_dev
,
1136 "failed to backup PCI state of primary "
1137 "function prior to hardware reset\n");
1140 if (efx_nic_is_dual_func(efx
)) {
1141 rc
= pci_save_state(nic_data
->pci_dev2
);
1143 netif_err(efx
, drv
, efx
->net_dev
,
1144 "failed to backup PCI state of "
1145 "secondary function prior to "
1146 "hardware reset\n");
1151 EFX_POPULATE_OWORD_2(glb_ctl_reg_ker
,
1152 FRF_AB_EXT_PHY_RST_DUR
,
1153 FFE_AB_EXT_PHY_RST_DUR_10240US
,
1156 EFX_POPULATE_OWORD_7(glb_ctl_reg_ker
,
1157 /* exclude PHY from "invisible" reset */
1158 FRF_AB_EXT_PHY_RST_CTL
,
1159 method
== RESET_TYPE_INVISIBLE
,
1160 /* exclude EEPROM/flash and PCIe */
1161 FRF_AB_PCIE_CORE_RST_CTL
, 1,
1162 FRF_AB_PCIE_NSTKY_RST_CTL
, 1,
1163 FRF_AB_PCIE_SD_RST_CTL
, 1,
1164 FRF_AB_EE_RST_CTL
, 1,
1165 FRF_AB_EXT_PHY_RST_DUR
,
1166 FFE_AB_EXT_PHY_RST_DUR_10240US
,
1169 efx_writeo(efx
, &glb_ctl_reg_ker
, FR_AB_GLB_CTL
);
1171 netif_dbg(efx
, hw
, efx
->net_dev
, "waiting for hardware reset\n");
1172 schedule_timeout_uninterruptible(HZ
/ 20);
1174 /* Restore PCI configuration if needed */
1175 if (method
== RESET_TYPE_WORLD
) {
1176 if (efx_nic_is_dual_func(efx
))
1177 pci_restore_state(nic_data
->pci_dev2
);
1178 pci_restore_state(efx
->pci_dev
);
1179 netif_dbg(efx
, drv
, efx
->net_dev
,
1180 "successfully restored PCI config\n");
1183 /* Assert that reset complete */
1184 efx_reado(efx
, &glb_ctl_reg_ker
, FR_AB_GLB_CTL
);
1185 if (EFX_OWORD_FIELD(glb_ctl_reg_ker
, FRF_AB_SWRST
) != 0) {
1187 netif_err(efx
, hw
, efx
->net_dev
,
1188 "timed out waiting for hardware reset\n");
1191 netif_dbg(efx
, hw
, efx
->net_dev
, "hardware reset complete\n");
1195 /* pci_save_state() and pci_restore_state() MUST be called in pairs */
1197 pci_restore_state(efx
->pci_dev
);
1203 static int falcon_reset_hw(struct efx_nic
*efx
, enum reset_type method
)
1205 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
1208 mutex_lock(&nic_data
->spi_lock
);
1209 rc
= __falcon_reset_hw(efx
, method
);
1210 mutex_unlock(&nic_data
->spi_lock
);
1215 static void falcon_monitor(struct efx_nic
*efx
)
1220 BUG_ON(!mutex_is_locked(&efx
->mac_lock
));
1222 rc
= falcon_board(efx
)->type
->monitor(efx
);
1224 netif_err(efx
, hw
, efx
->net_dev
,
1225 "Board sensor %s; shutting down PHY\n",
1226 (rc
== -ERANGE
) ? "reported fault" : "failed");
1227 efx
->phy_mode
|= PHY_MODE_LOW_POWER
;
1228 rc
= __efx_reconfigure_port(efx
);
1232 if (LOOPBACK_INTERNAL(efx
))
1233 link_changed
= falcon_loopback_link_poll(efx
);
1235 link_changed
= efx
->phy_op
->poll(efx
);
1238 falcon_stop_nic_stats(efx
);
1239 falcon_deconfigure_mac_wrapper(efx
);
1241 falcon_reset_macs(efx
);
1242 rc
= falcon_reconfigure_xmac(efx
);
1245 falcon_start_nic_stats(efx
);
1247 efx_link_status_changed(efx
);
1250 falcon_poll_xmac(efx
);
1253 /* Zeroes out the SRAM contents. This routine must be called in
1254 * process context and is allowed to sleep.
1256 static int falcon_reset_sram(struct efx_nic
*efx
)
1258 efx_oword_t srm_cfg_reg_ker
, gpio_cfg_reg_ker
;
1261 /* Set the SRAM wake/sleep GPIO appropriately. */
1262 efx_reado(efx
, &gpio_cfg_reg_ker
, FR_AB_GPIO_CTL
);
1263 EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker
, FRF_AB_GPIO1_OEN
, 1);
1264 EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker
, FRF_AB_GPIO1_OUT
, 1);
1265 efx_writeo(efx
, &gpio_cfg_reg_ker
, FR_AB_GPIO_CTL
);
1267 /* Initiate SRAM reset */
1268 EFX_POPULATE_OWORD_2(srm_cfg_reg_ker
,
1269 FRF_AZ_SRM_INIT_EN
, 1,
1270 FRF_AZ_SRM_NB_SZ
, 0);
1271 efx_writeo(efx
, &srm_cfg_reg_ker
, FR_AZ_SRM_CFG
);
1273 /* Wait for SRAM reset to complete */
1276 netif_dbg(efx
, hw
, efx
->net_dev
,
1277 "waiting for SRAM reset (attempt %d)...\n", count
);
1279 /* SRAM reset is slow; expect around 16ms */
1280 schedule_timeout_uninterruptible(HZ
/ 50);
1282 /* Check for reset complete */
1283 efx_reado(efx
, &srm_cfg_reg_ker
, FR_AZ_SRM_CFG
);
1284 if (!EFX_OWORD_FIELD(srm_cfg_reg_ker
, FRF_AZ_SRM_INIT_EN
)) {
1285 netif_dbg(efx
, hw
, efx
->net_dev
,
1286 "SRAM reset complete\n");
1290 } while (++count
< 20); /* wait up to 0.4 sec */
1292 netif_err(efx
, hw
, efx
->net_dev
, "timed out waiting for SRAM reset\n");
1296 static void falcon_spi_device_init(struct efx_nic
*efx
,
1297 struct efx_spi_device
*spi_device
,
1298 unsigned int device_id
, u32 device_type
)
1300 if (device_type
!= 0) {
1301 spi_device
->device_id
= device_id
;
1303 1 << SPI_DEV_TYPE_FIELD(device_type
, SPI_DEV_TYPE_SIZE
);
1304 spi_device
->addr_len
=
1305 SPI_DEV_TYPE_FIELD(device_type
, SPI_DEV_TYPE_ADDR_LEN
);
1306 spi_device
->munge_address
= (spi_device
->size
== 1 << 9 &&
1307 spi_device
->addr_len
== 1);
1308 spi_device
->erase_command
=
1309 SPI_DEV_TYPE_FIELD(device_type
, SPI_DEV_TYPE_ERASE_CMD
);
1310 spi_device
->erase_size
=
1311 1 << SPI_DEV_TYPE_FIELD(device_type
,
1312 SPI_DEV_TYPE_ERASE_SIZE
);
1313 spi_device
->block_size
=
1314 1 << SPI_DEV_TYPE_FIELD(device_type
,
1315 SPI_DEV_TYPE_BLOCK_SIZE
);
1317 spi_device
->size
= 0;
1321 /* Extract non-volatile configuration */
1322 static int falcon_probe_nvconfig(struct efx_nic
*efx
)
1324 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
1325 struct falcon_nvconfig
*nvconfig
;
1328 nvconfig
= kmalloc(sizeof(*nvconfig
), GFP_KERNEL
);
1332 rc
= falcon_read_nvram(efx
, nvconfig
);
1336 efx
->phy_type
= nvconfig
->board_v2
.port0_phy_type
;
1337 efx
->mdio
.prtad
= nvconfig
->board_v2
.port0_phy_addr
;
1339 if (le16_to_cpu(nvconfig
->board_struct_ver
) >= 3) {
1340 falcon_spi_device_init(
1341 efx
, &nic_data
->spi_flash
, FFE_AB_SPI_DEVICE_FLASH
,
1342 le32_to_cpu(nvconfig
->board_v3
1343 .spi_device_type
[FFE_AB_SPI_DEVICE_FLASH
]));
1344 falcon_spi_device_init(
1345 efx
, &nic_data
->spi_eeprom
, FFE_AB_SPI_DEVICE_EEPROM
,
1346 le32_to_cpu(nvconfig
->board_v3
1347 .spi_device_type
[FFE_AB_SPI_DEVICE_EEPROM
]));
1350 /* Read the MAC addresses */
1351 memcpy(efx
->net_dev
->perm_addr
, nvconfig
->mac_address
[0], ETH_ALEN
);
1353 netif_dbg(efx
, probe
, efx
->net_dev
, "PHY is %d phy_id %d\n",
1354 efx
->phy_type
, efx
->mdio
.prtad
);
1356 rc
= falcon_probe_board(efx
,
1357 le16_to_cpu(nvconfig
->board_v2
.board_revision
));
1363 static void falcon_dimension_resources(struct efx_nic
*efx
)
1365 efx
->rx_dc_base
= 0x20000;
1366 efx
->tx_dc_base
= 0x26000;
1369 /* Probe all SPI devices on the NIC */
1370 static void falcon_probe_spi_devices(struct efx_nic
*efx
)
1372 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
1373 efx_oword_t nic_stat
, gpio_ctl
, ee_vpd_cfg
;
1376 efx_reado(efx
, &gpio_ctl
, FR_AB_GPIO_CTL
);
1377 efx_reado(efx
, &nic_stat
, FR_AB_NIC_STAT
);
1378 efx_reado(efx
, &ee_vpd_cfg
, FR_AB_EE_VPD_CFG0
);
1380 if (EFX_OWORD_FIELD(gpio_ctl
, FRF_AB_GPIO3_PWRUP_VALUE
)) {
1381 boot_dev
= (EFX_OWORD_FIELD(nic_stat
, FRF_AB_SF_PRST
) ?
1382 FFE_AB_SPI_DEVICE_FLASH
: FFE_AB_SPI_DEVICE_EEPROM
);
1383 netif_dbg(efx
, probe
, efx
->net_dev
, "Booted from %s\n",
1384 boot_dev
== FFE_AB_SPI_DEVICE_FLASH
?
1385 "flash" : "EEPROM");
1387 /* Disable VPD and set clock dividers to safe
1388 * values for initial programming. */
1390 netif_dbg(efx
, probe
, efx
->net_dev
,
1391 "Booted from internal ASIC settings;"
1392 " setting SPI config\n");
1393 EFX_POPULATE_OWORD_3(ee_vpd_cfg
, FRF_AB_EE_VPD_EN
, 0,
1394 /* 125 MHz / 7 ~= 20 MHz */
1395 FRF_AB_EE_SF_CLOCK_DIV
, 7,
1396 /* 125 MHz / 63 ~= 2 MHz */
1397 FRF_AB_EE_EE_CLOCK_DIV
, 63);
1398 efx_writeo(efx
, &ee_vpd_cfg
, FR_AB_EE_VPD_CFG0
);
1401 mutex_init(&nic_data
->spi_lock
);
1403 if (boot_dev
== FFE_AB_SPI_DEVICE_FLASH
)
1404 falcon_spi_device_init(efx
, &nic_data
->spi_flash
,
1405 FFE_AB_SPI_DEVICE_FLASH
,
1406 default_flash_type
);
1407 if (boot_dev
== FFE_AB_SPI_DEVICE_EEPROM
)
1408 falcon_spi_device_init(efx
, &nic_data
->spi_eeprom
,
1409 FFE_AB_SPI_DEVICE_EEPROM
,
1413 static int falcon_probe_nic(struct efx_nic
*efx
)
1415 struct falcon_nic_data
*nic_data
;
1416 struct falcon_board
*board
;
1419 /* Allocate storage for hardware specific data */
1420 nic_data
= kzalloc(sizeof(*nic_data
), GFP_KERNEL
);
1423 efx
->nic_data
= nic_data
;
1427 if (efx_nic_fpga_ver(efx
) != 0) {
1428 netif_err(efx
, probe
, efx
->net_dev
,
1429 "Falcon FPGA not supported\n");
1433 if (efx_nic_rev(efx
) <= EFX_REV_FALCON_A1
) {
1434 efx_oword_t nic_stat
;
1435 struct pci_dev
*dev
;
1436 u8 pci_rev
= efx
->pci_dev
->revision
;
1438 if ((pci_rev
== 0xff) || (pci_rev
== 0)) {
1439 netif_err(efx
, probe
, efx
->net_dev
,
1440 "Falcon rev A0 not supported\n");
1443 efx_reado(efx
, &nic_stat
, FR_AB_NIC_STAT
);
1444 if (EFX_OWORD_FIELD(nic_stat
, FRF_AB_STRAP_10G
) == 0) {
1445 netif_err(efx
, probe
, efx
->net_dev
,
1446 "Falcon rev A1 1G not supported\n");
1449 if (EFX_OWORD_FIELD(nic_stat
, FRF_AA_STRAP_PCIE
) == 0) {
1450 netif_err(efx
, probe
, efx
->net_dev
,
1451 "Falcon rev A1 PCI-X not supported\n");
1455 dev
= pci_dev_get(efx
->pci_dev
);
1456 while ((dev
= pci_get_device(PCI_VENDOR_ID_SOLARFLARE
,
1457 PCI_DEVICE_ID_SOLARFLARE_SFC4000A_1
,
1459 if (dev
->bus
== efx
->pci_dev
->bus
&&
1460 dev
->devfn
== efx
->pci_dev
->devfn
+ 1) {
1461 nic_data
->pci_dev2
= dev
;
1465 if (!nic_data
->pci_dev2
) {
1466 netif_err(efx
, probe
, efx
->net_dev
,
1467 "failed to find secondary function\n");
1473 /* Now we can reset the NIC */
1474 rc
= __falcon_reset_hw(efx
, RESET_TYPE_ALL
);
1476 netif_err(efx
, probe
, efx
->net_dev
, "failed to reset NIC\n");
1480 /* Allocate memory for INT_KER */
1481 rc
= efx_nic_alloc_buffer(efx
, &efx
->irq_status
, sizeof(efx_oword_t
));
1484 BUG_ON(efx
->irq_status
.dma_addr
& 0x0f);
1486 netif_dbg(efx
, probe
, efx
->net_dev
,
1487 "INT_KER at %llx (virt %p phys %llx)\n",
1488 (u64
)efx
->irq_status
.dma_addr
,
1489 efx
->irq_status
.addr
,
1490 (u64
)virt_to_phys(efx
->irq_status
.addr
));
1492 falcon_probe_spi_devices(efx
);
1494 /* Read in the non-volatile configuration */
1495 rc
= falcon_probe_nvconfig(efx
);
1498 netif_err(efx
, probe
, efx
->net_dev
, "NVRAM is invalid\n");
1502 efx
->timer_quantum_ns
= 4968; /* 621 cycles */
1504 /* Initialise I2C adapter */
1505 board
= falcon_board(efx
);
1506 board
->i2c_adap
.owner
= THIS_MODULE
;
1507 board
->i2c_data
= falcon_i2c_bit_operations
;
1508 board
->i2c_data
.data
= efx
;
1509 board
->i2c_adap
.algo_data
= &board
->i2c_data
;
1510 board
->i2c_adap
.dev
.parent
= &efx
->pci_dev
->dev
;
1511 strlcpy(board
->i2c_adap
.name
, "SFC4000 GPIO",
1512 sizeof(board
->i2c_adap
.name
));
1513 rc
= i2c_bit_add_bus(&board
->i2c_adap
);
1517 rc
= falcon_board(efx
)->type
->init(efx
);
1519 netif_err(efx
, probe
, efx
->net_dev
,
1520 "failed to initialise board\n");
1524 nic_data
->stats_disable_count
= 1;
1525 setup_timer(&nic_data
->stats_timer
, &falcon_stats_timer_func
,
1526 (unsigned long)efx
);
1531 BUG_ON(i2c_del_adapter(&board
->i2c_adap
));
1532 memset(&board
->i2c_adap
, 0, sizeof(board
->i2c_adap
));
1534 efx_nic_free_buffer(efx
, &efx
->irq_status
);
1537 if (nic_data
->pci_dev2
) {
1538 pci_dev_put(nic_data
->pci_dev2
);
1539 nic_data
->pci_dev2
= NULL
;
1543 kfree(efx
->nic_data
);
1547 static void falcon_init_rx_cfg(struct efx_nic
*efx
)
1549 /* Prior to Siena the RX DMA engine will split each frame at
1550 * intervals of RX_USR_BUF_SIZE (32-byte units). We set it to
1551 * be so large that that never happens. */
1552 const unsigned huge_buf_size
= (3 * 4096) >> 5;
1553 /* RX control FIFO thresholds (32 entries) */
1554 const unsigned ctrl_xon_thr
= 20;
1555 const unsigned ctrl_xoff_thr
= 25;
1558 efx_reado(efx
, ®
, FR_AZ_RX_CFG
);
1559 if (efx_nic_rev(efx
) <= EFX_REV_FALCON_A1
) {
1560 /* Data FIFO size is 5.5K */
1561 EFX_SET_OWORD_FIELD(reg
, FRF_AA_RX_DESC_PUSH_EN
, 0);
1562 EFX_SET_OWORD_FIELD(reg
, FRF_AA_RX_USR_BUF_SIZE
,
1564 EFX_SET_OWORD_FIELD(reg
, FRF_AA_RX_XON_MAC_TH
, 512 >> 8);
1565 EFX_SET_OWORD_FIELD(reg
, FRF_AA_RX_XOFF_MAC_TH
, 2048 >> 8);
1566 EFX_SET_OWORD_FIELD(reg
, FRF_AA_RX_XON_TX_TH
, ctrl_xon_thr
);
1567 EFX_SET_OWORD_FIELD(reg
, FRF_AA_RX_XOFF_TX_TH
, ctrl_xoff_thr
);
1569 /* Data FIFO size is 80K; register fields moved */
1570 EFX_SET_OWORD_FIELD(reg
, FRF_BZ_RX_DESC_PUSH_EN
, 0);
1571 EFX_SET_OWORD_FIELD(reg
, FRF_BZ_RX_USR_BUF_SIZE
,
1573 /* Send XON and XOFF at ~3 * max MTU away from empty/full */
1574 EFX_SET_OWORD_FIELD(reg
, FRF_BZ_RX_XON_MAC_TH
, 27648 >> 8);
1575 EFX_SET_OWORD_FIELD(reg
, FRF_BZ_RX_XOFF_MAC_TH
, 54272 >> 8);
1576 EFX_SET_OWORD_FIELD(reg
, FRF_BZ_RX_XON_TX_TH
, ctrl_xon_thr
);
1577 EFX_SET_OWORD_FIELD(reg
, FRF_BZ_RX_XOFF_TX_TH
, ctrl_xoff_thr
);
1578 EFX_SET_OWORD_FIELD(reg
, FRF_BZ_RX_INGR_EN
, 1);
1580 /* Enable hash insertion. This is broken for the
1581 * 'Falcon' hash so also select Toeplitz TCP/IPv4 and
1583 EFX_SET_OWORD_FIELD(reg
, FRF_BZ_RX_HASH_INSRT_HDR
, 1);
1584 EFX_SET_OWORD_FIELD(reg
, FRF_BZ_RX_HASH_ALG
, 1);
1585 EFX_SET_OWORD_FIELD(reg
, FRF_BZ_RX_IP_HASH
, 1);
1587 /* Always enable XOFF signal from RX FIFO. We enable
1588 * or disable transmission of pause frames at the MAC. */
1589 EFX_SET_OWORD_FIELD(reg
, FRF_AZ_RX_XOFF_MAC_EN
, 1);
1590 efx_writeo(efx
, ®
, FR_AZ_RX_CFG
);
1593 /* This call performs hardware-specific global initialisation, such as
1594 * defining the descriptor cache sizes and number of RSS channels.
1595 * It does not set up any buffers, descriptor rings or event queues.
1597 static int falcon_init_nic(struct efx_nic
*efx
)
1602 /* Use on-chip SRAM */
1603 efx_reado(efx
, &temp
, FR_AB_NIC_STAT
);
1604 EFX_SET_OWORD_FIELD(temp
, FRF_AB_ONCHIP_SRAM
, 1);
1605 efx_writeo(efx
, &temp
, FR_AB_NIC_STAT
);
1607 rc
= falcon_reset_sram(efx
);
1611 /* Clear the parity enables on the TX data fifos as
1612 * they produce false parity errors because of timing issues
1614 if (EFX_WORKAROUND_5129(efx
)) {
1615 efx_reado(efx
, &temp
, FR_AZ_CSR_SPARE
);
1616 EFX_SET_OWORD_FIELD(temp
, FRF_AB_MEM_PERR_EN_TX_DATA
, 0);
1617 efx_writeo(efx
, &temp
, FR_AZ_CSR_SPARE
);
1620 if (EFX_WORKAROUND_7244(efx
)) {
1621 efx_reado(efx
, &temp
, FR_BZ_RX_FILTER_CTL
);
1622 EFX_SET_OWORD_FIELD(temp
, FRF_BZ_UDP_FULL_SRCH_LIMIT
, 8);
1623 EFX_SET_OWORD_FIELD(temp
, FRF_BZ_UDP_WILD_SRCH_LIMIT
, 8);
1624 EFX_SET_OWORD_FIELD(temp
, FRF_BZ_TCP_FULL_SRCH_LIMIT
, 8);
1625 EFX_SET_OWORD_FIELD(temp
, FRF_BZ_TCP_WILD_SRCH_LIMIT
, 8);
1626 efx_writeo(efx
, &temp
, FR_BZ_RX_FILTER_CTL
);
1629 /* XXX This is documented only for Falcon A0/A1 */
1630 /* Setup RX. Wait for descriptor is broken and must
1631 * be disabled. RXDP recovery shouldn't be needed, but is.
1633 efx_reado(efx
, &temp
, FR_AA_RX_SELF_RST
);
1634 EFX_SET_OWORD_FIELD(temp
, FRF_AA_RX_NODESC_WAIT_DIS
, 1);
1635 EFX_SET_OWORD_FIELD(temp
, FRF_AA_RX_SELF_RST_EN
, 1);
1636 if (EFX_WORKAROUND_5583(efx
))
1637 EFX_SET_OWORD_FIELD(temp
, FRF_AA_RX_ISCSI_DIS
, 1);
1638 efx_writeo(efx
, &temp
, FR_AA_RX_SELF_RST
);
1640 /* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
1641 * descriptors (which is bad).
1643 efx_reado(efx
, &temp
, FR_AZ_TX_CFG
);
1644 EFX_SET_OWORD_FIELD(temp
, FRF_AZ_TX_NO_EOP_DISC_EN
, 0);
1645 efx_writeo(efx
, &temp
, FR_AZ_TX_CFG
);
1647 falcon_init_rx_cfg(efx
);
1649 if (efx_nic_rev(efx
) >= EFX_REV_FALCON_B0
) {
1650 /* Set hash key for IPv4 */
1651 memcpy(&temp
, efx
->rx_hash_key
, sizeof(temp
));
1652 efx_writeo(efx
, &temp
, FR_BZ_RX_RSS_TKEY
);
1654 /* Set destination of both TX and RX Flush events */
1655 EFX_POPULATE_OWORD_1(temp
, FRF_BZ_FLS_EVQ_ID
, 0);
1656 efx_writeo(efx
, &temp
, FR_BZ_DP_CTRL
);
1659 efx_nic_init_common(efx
);
1664 static void falcon_remove_nic(struct efx_nic
*efx
)
1666 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
1667 struct falcon_board
*board
= falcon_board(efx
);
1670 board
->type
->fini(efx
);
1672 /* Remove I2C adapter and clear it in preparation for a retry */
1673 rc
= i2c_del_adapter(&board
->i2c_adap
);
1675 memset(&board
->i2c_adap
, 0, sizeof(board
->i2c_adap
));
1677 efx_nic_free_buffer(efx
, &efx
->irq_status
);
1679 __falcon_reset_hw(efx
, RESET_TYPE_ALL
);
1681 /* Release the second function after the reset */
1682 if (nic_data
->pci_dev2
) {
1683 pci_dev_put(nic_data
->pci_dev2
);
1684 nic_data
->pci_dev2
= NULL
;
1687 /* Tear down the private nic state */
1688 kfree(efx
->nic_data
);
1689 efx
->nic_data
= NULL
;
1692 static void falcon_update_nic_stats(struct efx_nic
*efx
)
1694 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
1697 if (nic_data
->stats_disable_count
)
1700 efx_reado(efx
, &cnt
, FR_AZ_RX_NODESC_DROP
);
1701 efx
->n_rx_nodesc_drop_cnt
+=
1702 EFX_OWORD_FIELD(cnt
, FRF_AB_RX_NODESC_DROP_CNT
);
1704 if (nic_data
->stats_pending
&&
1705 *nic_data
->stats_dma_done
== FALCON_STATS_DONE
) {
1706 nic_data
->stats_pending
= false;
1707 rmb(); /* read the done flag before the stats */
1708 falcon_update_stats_xmac(efx
);
1712 void falcon_start_nic_stats(struct efx_nic
*efx
)
1714 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
1716 spin_lock_bh(&efx
->stats_lock
);
1717 if (--nic_data
->stats_disable_count
== 0)
1718 falcon_stats_request(efx
);
1719 spin_unlock_bh(&efx
->stats_lock
);
1722 void falcon_stop_nic_stats(struct efx_nic
*efx
)
1724 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
1729 spin_lock_bh(&efx
->stats_lock
);
1730 ++nic_data
->stats_disable_count
;
1731 spin_unlock_bh(&efx
->stats_lock
);
1733 del_timer_sync(&nic_data
->stats_timer
);
1735 /* Wait enough time for the most recent transfer to
1737 for (i
= 0; i
< 4 && nic_data
->stats_pending
; i
++) {
1738 if (*nic_data
->stats_dma_done
== FALCON_STATS_DONE
)
1743 spin_lock_bh(&efx
->stats_lock
);
1744 falcon_stats_complete(efx
);
1745 spin_unlock_bh(&efx
->stats_lock
);
1748 static void falcon_set_id_led(struct efx_nic
*efx
, enum efx_led_mode mode
)
1750 falcon_board(efx
)->type
->set_id_led(efx
, mode
);
1753 /**************************************************************************
1757 **************************************************************************
1760 static void falcon_get_wol(struct efx_nic
*efx
, struct ethtool_wolinfo
*wol
)
1764 memset(&wol
->sopass
, 0, sizeof(wol
->sopass
));
1767 static int falcon_set_wol(struct efx_nic
*efx
, u32 type
)
1774 /**************************************************************************
1776 * Revision-dependent attributes used by efx.c and nic.c
1778 **************************************************************************
1781 const struct efx_nic_type falcon_a1_nic_type
= {
1782 .probe
= falcon_probe_nic
,
1783 .remove
= falcon_remove_nic
,
1784 .init
= falcon_init_nic
,
1785 .dimension_resources
= falcon_dimension_resources
,
1786 .fini
= efx_port_dummy_op_void
,
1787 .monitor
= falcon_monitor
,
1788 .map_reset_reason
= falcon_map_reset_reason
,
1789 .map_reset_flags
= falcon_map_reset_flags
,
1790 .reset
= falcon_reset_hw
,
1791 .probe_port
= falcon_probe_port
,
1792 .remove_port
= falcon_remove_port
,
1793 .handle_global_event
= falcon_handle_global_event
,
1794 .prepare_flush
= falcon_prepare_flush
,
1795 .finish_flush
= efx_port_dummy_op_void
,
1796 .update_stats
= falcon_update_nic_stats
,
1797 .start_stats
= falcon_start_nic_stats
,
1798 .stop_stats
= falcon_stop_nic_stats
,
1799 .set_id_led
= falcon_set_id_led
,
1800 .push_irq_moderation
= falcon_push_irq_moderation
,
1801 .reconfigure_port
= falcon_reconfigure_port
,
1802 .reconfigure_mac
= falcon_reconfigure_xmac
,
1803 .check_mac_fault
= falcon_xmac_check_fault
,
1804 .get_wol
= falcon_get_wol
,
1805 .set_wol
= falcon_set_wol
,
1806 .resume_wol
= efx_port_dummy_op_void
,
1807 .test_nvram
= falcon_test_nvram
,
1809 .revision
= EFX_REV_FALCON_A1
,
1810 .mem_map_size
= 0x20000,
1811 .txd_ptr_tbl_base
= FR_AA_TX_DESC_PTR_TBL_KER
,
1812 .rxd_ptr_tbl_base
= FR_AA_RX_DESC_PTR_TBL_KER
,
1813 .buf_tbl_base
= FR_AA_BUF_FULL_TBL_KER
,
1814 .evq_ptr_tbl_base
= FR_AA_EVQ_PTR_TBL_KER
,
1815 .evq_rptr_tbl_base
= FR_AA_EVQ_RPTR_KER
,
1816 .max_dma_mask
= DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH
),
1817 .rx_buffer_padding
= 0x24,
1818 .max_interrupt_mode
= EFX_INT_MODE_MSI
,
1819 .phys_addr_channels
= 4,
1820 .timer_period_max
= 1 << FRF_AB_TC_TIMER_VAL_WIDTH
,
1821 .offload_features
= NETIF_F_IP_CSUM
,
1824 const struct efx_nic_type falcon_b0_nic_type
= {
1825 .probe
= falcon_probe_nic
,
1826 .remove
= falcon_remove_nic
,
1827 .init
= falcon_init_nic
,
1828 .dimension_resources
= falcon_dimension_resources
,
1829 .fini
= efx_port_dummy_op_void
,
1830 .monitor
= falcon_monitor
,
1831 .map_reset_reason
= falcon_map_reset_reason
,
1832 .map_reset_flags
= falcon_map_reset_flags
,
1833 .reset
= falcon_reset_hw
,
1834 .probe_port
= falcon_probe_port
,
1835 .remove_port
= falcon_remove_port
,
1836 .handle_global_event
= falcon_handle_global_event
,
1837 .prepare_flush
= falcon_prepare_flush
,
1838 .finish_flush
= efx_port_dummy_op_void
,
1839 .update_stats
= falcon_update_nic_stats
,
1840 .start_stats
= falcon_start_nic_stats
,
1841 .stop_stats
= falcon_stop_nic_stats
,
1842 .set_id_led
= falcon_set_id_led
,
1843 .push_irq_moderation
= falcon_push_irq_moderation
,
1844 .reconfigure_port
= falcon_reconfigure_port
,
1845 .reconfigure_mac
= falcon_reconfigure_xmac
,
1846 .check_mac_fault
= falcon_xmac_check_fault
,
1847 .get_wol
= falcon_get_wol
,
1848 .set_wol
= falcon_set_wol
,
1849 .resume_wol
= efx_port_dummy_op_void
,
1850 .test_chip
= falcon_b0_test_chip
,
1851 .test_nvram
= falcon_test_nvram
,
1853 .revision
= EFX_REV_FALCON_B0
,
1854 /* Map everything up to and including the RSS indirection
1855 * table. Don't map MSI-X table, MSI-X PBA since Linux
1856 * requires that they not be mapped. */
1857 .mem_map_size
= (FR_BZ_RX_INDIRECTION_TBL
+
1858 FR_BZ_RX_INDIRECTION_TBL_STEP
*
1859 FR_BZ_RX_INDIRECTION_TBL_ROWS
),
1860 .txd_ptr_tbl_base
= FR_BZ_TX_DESC_PTR_TBL
,
1861 .rxd_ptr_tbl_base
= FR_BZ_RX_DESC_PTR_TBL
,
1862 .buf_tbl_base
= FR_BZ_BUF_FULL_TBL
,
1863 .evq_ptr_tbl_base
= FR_BZ_EVQ_PTR_TBL
,
1864 .evq_rptr_tbl_base
= FR_BZ_EVQ_RPTR
,
1865 .max_dma_mask
= DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH
),
1866 .rx_buffer_hash_size
= 0x10,
1867 .rx_buffer_padding
= 0,
1868 .max_interrupt_mode
= EFX_INT_MODE_MSIX
,
1869 .phys_addr_channels
= 32, /* Hardware limit is 64, but the legacy
1870 * interrupt handler only supports 32
1872 .timer_period_max
= 1 << FRF_AB_TC_TIMER_VAL_WIDTH
,
1873 .offload_features
= NETIF_F_IP_CSUM
| NETIF_F_RXHASH
| NETIF_F_NTUPLE
,