1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2010-2011 Solarflare Communications Inc.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 as published
7 * by the Free Software Foundation, incorporated herein by reference.
10 #include <linux/module.h>
11 #include "net_driver.h"
17 #include "mcdi_pcol.h"
21 /* Number of longs required to track all the VIs in a VF */
22 #define VI_MASK_LENGTH BITS_TO_LONGS(1 << EFX_VI_SCALE_MAX)
24 /* Maximum number of RX queues supported */
25 #define VF_MAX_RX_QUEUES 63
28 * enum efx_vf_tx_filter_mode - TX MAC filtering behaviour
29 * @VF_TX_FILTER_OFF: Disabled
30 * @VF_TX_FILTER_AUTO: Enabled if MAC address assigned to VF and only
31 * 2 TX queues allowed per VF.
32 * @VF_TX_FILTER_ON: Enabled
34 enum efx_vf_tx_filter_mode
{
41 * struct efx_vf - Back-end resource and protocol state for a PCI VF
42 * @efx: The Efx NIC owning this VF
43 * @pci_rid: The PCI requester ID for this VF
44 * @pci_name: The PCI name (formatted address) of this VF
45 * @index: Index of VF within its port and PF.
46 * @req: VFDI incoming request work item. Incoming USR_EV events are received
47 * by the NAPI handler, but must be handled by executing MCDI requests
49 * @req_addr: VFDI incoming request DMA address (in VF's PCI address space).
50 * @req_type: Expected next incoming (from VF) %VFDI_EV_TYPE member.
51 * @req_seqno: Expected next incoming (from VF) %VFDI_EV_SEQ member.
52 * @msg_seqno: Next %VFDI_EV_SEQ member to reply to VF. Protected by
54 * @busy: VFDI request queued to be processed or being processed. Receiving
55 * a VFDI request when @busy is set is an error condition.
56 * @buf: Incoming VFDI requests are DMA from the VF into this buffer.
57 * @buftbl_base: Buffer table entries for this VF start at this index.
58 * @rx_filtering: Receive filtering has been requested by the VF driver.
59 * @rx_filter_flags: The flags sent in the %VFDI_OP_INSERT_FILTER request.
60 * @rx_filter_qid: VF relative qid for RX filter requested by VF.
61 * @rx_filter_id: Receive MAC filter ID. Only one filter per VF is supported.
62 * @tx_filter_mode: Transmit MAC filtering mode.
63 * @tx_filter_id: Transmit MAC filter ID.
64 * @addr: The MAC address and outer vlan tag of the VF.
65 * @status_addr: VF DMA address of page for &struct vfdi_status updates.
66 * @status_lock: Mutex protecting @msg_seqno, @status_addr, @addr,
67 * @peer_page_addrs and @peer_page_count from simultaneous
68 * updates by the VM and consumption by
69 * efx_sriov_update_vf_addr()
70 * @peer_page_addrs: Pointer to an array of guest pages for local addresses.
71 * @peer_page_count: Number of entries in @peer_page_count.
72 * @evq0_addrs: Array of guest pages backing evq0.
73 * @evq0_count: Number of entries in @evq0_addrs.
74 * @flush_waitq: wait queue used by %VFDI_OP_FINI_ALL_QUEUES handler
75 * to wait for flush completions.
76 * @txq_lock: Mutex for TX queue allocation.
77 * @txq_mask: Mask of initialized transmit queues.
78 * @txq_count: Number of initialized transmit queues.
79 * @rxq_mask: Mask of initialized receive queues.
80 * @rxq_count: Number of initialized receive queues.
81 * @rxq_retry_mask: Mask or receive queues that need to be flushed again
82 * due to flush failure.
83 * @rxq_retry_count: Number of receive queues in @rxq_retry_mask.
84 * @reset_work: Work item to schedule a VF reset.
89 char pci_name
[13]; /* dddd:bb:dd.f */
91 struct work_struct req
;
97 struct efx_buffer buf
;
100 enum efx_filter_flags rx_filter_flags
;
101 unsigned rx_filter_qid
;
103 enum efx_vf_tx_filter_mode tx_filter_mode
;
105 struct vfdi_endpoint addr
;
107 struct mutex status_lock
;
108 u64
*peer_page_addrs
;
109 unsigned peer_page_count
;
110 u64 evq0_addrs
[EFX_MAX_VF_EVQ_SIZE
* sizeof(efx_qword_t
) /
113 wait_queue_head_t flush_waitq
;
114 struct mutex txq_lock
;
115 unsigned long txq_mask
[VI_MASK_LENGTH
];
117 unsigned long rxq_mask
[VI_MASK_LENGTH
];
119 unsigned long rxq_retry_mask
[VI_MASK_LENGTH
];
120 atomic_t rxq_retry_count
;
121 struct work_struct reset_work
;
124 struct efx_memcpy_req
{
125 unsigned int from_rid
;
134 * struct efx_local_addr - A MAC address on the vswitch without a VF.
136 * Siena does not have a switch, so VFs can't transmit data to each
137 * other. Instead the VFs must be made aware of the local addresses
138 * on the vswitch, so that they can arrange for an alternative
139 * software datapath to be used.
141 * @link: List head for insertion into efx->local_addr_list.
142 * @addr: Ethernet address
144 struct efx_local_addr
{
145 struct list_head link
;
150 * struct efx_endpoint_page - Page of vfdi_endpoint structures
152 * @link: List head for insertion into efx->local_page_list.
153 * @ptr: Pointer to page.
154 * @addr: DMA address of page.
156 struct efx_endpoint_page
{
157 struct list_head link
;
162 /* Buffer table entries are reserved txq0,rxq0,evq0,txq1,rxq1,evq1 */
163 #define EFX_BUFTBL_TXQ_BASE(_vf, _qid) \
164 ((_vf)->buftbl_base + EFX_VF_BUFTBL_PER_VI * (_qid))
165 #define EFX_BUFTBL_RXQ_BASE(_vf, _qid) \
166 (EFX_BUFTBL_TXQ_BASE(_vf, _qid) + \
167 (EFX_MAX_DMAQ_SIZE * sizeof(efx_qword_t) / EFX_BUF_SIZE))
168 #define EFX_BUFTBL_EVQ_BASE(_vf, _qid) \
169 (EFX_BUFTBL_TXQ_BASE(_vf, _qid) + \
170 (2 * EFX_MAX_DMAQ_SIZE * sizeof(efx_qword_t) / EFX_BUF_SIZE))
172 #define EFX_FIELD_MASK(_field) \
173 ((1 << _field ## _WIDTH) - 1)
175 /* VFs can only use this many transmit channels */
176 static unsigned int vf_max_tx_channels
= 2;
177 module_param(vf_max_tx_channels
, uint
, 0444);
178 MODULE_PARM_DESC(vf_max_tx_channels
,
179 "Limit the number of TX channels VFs can use");
181 static int max_vfs
= -1;
182 module_param(max_vfs
, int, 0444);
183 MODULE_PARM_DESC(max_vfs
,
184 "Reduce the number of VFs initialized by the driver");
186 /* Workqueue used by VFDI communication. We can't use the global
187 * workqueue because it may be running the VF driver's probe()
188 * routine, which will be blocked there waiting for a VFDI response.
190 static struct workqueue_struct
*vfdi_workqueue
;
192 static unsigned abs_index(struct efx_vf
*vf
, unsigned index
)
194 return EFX_VI_BASE
+ vf
->index
* efx_vf_size(vf
->efx
) + index
;
197 static int efx_sriov_cmd(struct efx_nic
*efx
, bool enable
,
198 unsigned *vi_scale_out
, unsigned *vf_total_out
)
200 u8 inbuf
[MC_CMD_SRIOV_IN_LEN
];
201 u8 outbuf
[MC_CMD_SRIOV_OUT_LEN
];
202 unsigned vi_scale
, vf_total
;
206 MCDI_SET_DWORD(inbuf
, SRIOV_IN_ENABLE
, enable
? 1 : 0);
207 MCDI_SET_DWORD(inbuf
, SRIOV_IN_VI_BASE
, EFX_VI_BASE
);
208 MCDI_SET_DWORD(inbuf
, SRIOV_IN_VF_COUNT
, efx
->vf_count
);
210 rc
= efx_mcdi_rpc(efx
, MC_CMD_SRIOV
, inbuf
, MC_CMD_SRIOV_IN_LEN
,
211 outbuf
, MC_CMD_SRIOV_OUT_LEN
, &outlen
);
214 if (outlen
< MC_CMD_SRIOV_OUT_LEN
)
217 vf_total
= MCDI_DWORD(outbuf
, SRIOV_OUT_VF_TOTAL
);
218 vi_scale
= MCDI_DWORD(outbuf
, SRIOV_OUT_VI_SCALE
);
219 if (vi_scale
> EFX_VI_SCALE_MAX
)
223 *vi_scale_out
= vi_scale
;
225 *vf_total_out
= vf_total
;
230 static void efx_sriov_usrev(struct efx_nic
*efx
, bool enabled
)
234 EFX_POPULATE_OWORD_2(reg
,
235 FRF_CZ_USREV_DIS
, enabled
? 0 : 1,
236 FRF_CZ_DFLT_EVQ
, efx
->vfdi_channel
->channel
);
237 efx_writeo(efx
, ®
, FR_CZ_USR_EV_CFG
);
240 static int efx_sriov_memcpy(struct efx_nic
*efx
, struct efx_memcpy_req
*req
,
245 u32 from_rid
, from_hi
, from_lo
;
248 mb(); /* Finish writing source/reading dest before DMA starts */
250 used
= MC_CMD_MEMCPY_IN_LEN(count
);
251 if (WARN_ON(used
> MCDI_CTL_SDU_LEN_MAX
))
254 /* Allocate room for the largest request */
255 inbuf
= kzalloc(MCDI_CTL_SDU_LEN_MAX
, GFP_KERNEL
);
260 MCDI_SET_DWORD(record
, MEMCPY_IN_RECORD
, count
);
261 while (count
-- > 0) {
262 MCDI_SET_DWORD(record
, MEMCPY_RECORD_TYPEDEF_TO_RID
,
264 MCDI_SET_DWORD(record
, MEMCPY_RECORD_TYPEDEF_TO_ADDR_LO
,
266 MCDI_SET_DWORD(record
, MEMCPY_RECORD_TYPEDEF_TO_ADDR_HI
,
267 (u32
)(req
->to_addr
>> 32));
268 if (req
->from_buf
== NULL
) {
269 from_rid
= req
->from_rid
;
270 from_lo
= (u32
)req
->from_addr
;
271 from_hi
= (u32
)(req
->from_addr
>> 32);
273 if (WARN_ON(used
+ req
->length
> MCDI_CTL_SDU_LEN_MAX
)) {
278 from_rid
= MC_CMD_MEMCPY_RECORD_TYPEDEF_RID_INLINE
;
281 memcpy(inbuf
+ used
, req
->from_buf
, req
->length
);
285 MCDI_SET_DWORD(record
, MEMCPY_RECORD_TYPEDEF_FROM_RID
, from_rid
);
286 MCDI_SET_DWORD(record
, MEMCPY_RECORD_TYPEDEF_FROM_ADDR_LO
,
288 MCDI_SET_DWORD(record
, MEMCPY_RECORD_TYPEDEF_FROM_ADDR_HI
,
290 MCDI_SET_DWORD(record
, MEMCPY_RECORD_TYPEDEF_LENGTH
,
294 record
+= MC_CMD_MEMCPY_IN_RECORD_LEN
;
297 rc
= efx_mcdi_rpc(efx
, MC_CMD_MEMCPY
, inbuf
, used
, NULL
, 0, NULL
);
301 mb(); /* Don't write source/read dest before DMA is complete */
306 /* The TX filter is entirely controlled by this driver, and is modified
307 * underneath the feet of the VF
309 static void efx_sriov_reset_tx_filter(struct efx_vf
*vf
)
311 struct efx_nic
*efx
= vf
->efx
;
312 struct efx_filter_spec filter
;
316 if (vf
->tx_filter_id
!= -1) {
317 efx_filter_remove_id_safe(efx
, EFX_FILTER_PRI_REQUIRED
,
319 netif_dbg(efx
, hw
, efx
->net_dev
, "Removed vf %s tx filter %d\n",
320 vf
->pci_name
, vf
->tx_filter_id
);
321 vf
->tx_filter_id
= -1;
324 if (is_zero_ether_addr(vf
->addr
.mac_addr
))
327 /* Turn on TX filtering automatically if not explicitly
328 * enabled or disabled.
330 if (vf
->tx_filter_mode
== VF_TX_FILTER_AUTO
&& vf_max_tx_channels
<= 2)
331 vf
->tx_filter_mode
= VF_TX_FILTER_ON
;
333 vlan
= ntohs(vf
->addr
.tci
) & VLAN_VID_MASK
;
334 efx_filter_init_tx(&filter
, abs_index(vf
, 0));
335 rc
= efx_filter_set_eth_local(&filter
,
336 vlan
? vlan
: EFX_FILTER_VID_UNSPEC
,
340 rc
= efx_filter_insert_filter(efx
, &filter
, true);
342 netif_warn(efx
, hw
, efx
->net_dev
,
343 "Unable to migrate tx filter for vf %s\n",
346 netif_dbg(efx
, hw
, efx
->net_dev
, "Inserted vf %s tx filter %d\n",
348 vf
->tx_filter_id
= rc
;
352 /* The RX filter is managed here on behalf of the VF driver */
353 static void efx_sriov_reset_rx_filter(struct efx_vf
*vf
)
355 struct efx_nic
*efx
= vf
->efx
;
356 struct efx_filter_spec filter
;
360 if (vf
->rx_filter_id
!= -1) {
361 efx_filter_remove_id_safe(efx
, EFX_FILTER_PRI_REQUIRED
,
363 netif_dbg(efx
, hw
, efx
->net_dev
, "Removed vf %s rx filter %d\n",
364 vf
->pci_name
, vf
->rx_filter_id
);
365 vf
->rx_filter_id
= -1;
368 if (!vf
->rx_filtering
|| is_zero_ether_addr(vf
->addr
.mac_addr
))
371 vlan
= ntohs(vf
->addr
.tci
) & VLAN_VID_MASK
;
372 efx_filter_init_rx(&filter
, EFX_FILTER_PRI_REQUIRED
,
374 abs_index(vf
, vf
->rx_filter_qid
));
375 rc
= efx_filter_set_eth_local(&filter
,
376 vlan
? vlan
: EFX_FILTER_VID_UNSPEC
,
380 rc
= efx_filter_insert_filter(efx
, &filter
, true);
382 netif_warn(efx
, hw
, efx
->net_dev
,
383 "Unable to insert rx filter for vf %s\n",
386 netif_dbg(efx
, hw
, efx
->net_dev
, "Inserted vf %s rx filter %d\n",
388 vf
->rx_filter_id
= rc
;
392 static void __efx_sriov_update_vf_addr(struct efx_vf
*vf
)
394 efx_sriov_reset_tx_filter(vf
);
395 efx_sriov_reset_rx_filter(vf
);
396 queue_work(vfdi_workqueue
, &vf
->efx
->peer_work
);
399 /* Push the peer list to this VF. The caller must hold status_lock to interlock
400 * with VFDI requests, and they must be serialised against manipulation of
401 * local_page_list, either by acquiring local_lock or by running from
402 * efx_sriov_peer_work()
404 static void __efx_sriov_push_vf_status(struct efx_vf
*vf
)
406 struct efx_nic
*efx
= vf
->efx
;
407 struct vfdi_status
*status
= efx
->vfdi_status
.addr
;
408 struct efx_memcpy_req copy
[4];
409 struct efx_endpoint_page
*epp
;
410 unsigned int pos
, count
;
411 unsigned data_offset
;
414 WARN_ON(!mutex_is_locked(&vf
->status_lock
));
415 WARN_ON(!vf
->status_addr
);
417 status
->local
= vf
->addr
;
418 status
->generation_end
= ++status
->generation_start
;
420 memset(copy
, '\0', sizeof(copy
));
421 /* Write generation_start */
422 copy
[0].from_buf
= &status
->generation_start
;
423 copy
[0].to_rid
= vf
->pci_rid
;
424 copy
[0].to_addr
= vf
->status_addr
+ offsetof(struct vfdi_status
,
426 copy
[0].length
= sizeof(status
->generation_start
);
427 /* DMA the rest of the structure (excluding the generations). This
428 * assumes that the non-generation portion of vfdi_status is in
429 * one chunk starting at the version member.
431 data_offset
= offsetof(struct vfdi_status
, version
);
432 copy
[1].from_rid
= efx
->pci_dev
->devfn
;
433 copy
[1].from_addr
= efx
->vfdi_status
.dma_addr
+ data_offset
;
434 copy
[1].to_rid
= vf
->pci_rid
;
435 copy
[1].to_addr
= vf
->status_addr
+ data_offset
;
436 copy
[1].length
= status
->length
- data_offset
;
438 /* Copy the peer pages */
441 list_for_each_entry(epp
, &efx
->local_page_list
, link
) {
442 if (count
== vf
->peer_page_count
) {
443 /* The VF driver will know they need to provide more
444 * pages because peer_addr_count is too large.
448 copy
[pos
].from_buf
= NULL
;
449 copy
[pos
].from_rid
= efx
->pci_dev
->devfn
;
450 copy
[pos
].from_addr
= epp
->addr
;
451 copy
[pos
].to_rid
= vf
->pci_rid
;
452 copy
[pos
].to_addr
= vf
->peer_page_addrs
[count
];
453 copy
[pos
].length
= EFX_PAGE_SIZE
;
455 if (++pos
== ARRAY_SIZE(copy
)) {
456 efx_sriov_memcpy(efx
, copy
, ARRAY_SIZE(copy
));
462 /* Write generation_end */
463 copy
[pos
].from_buf
= &status
->generation_end
;
464 copy
[pos
].to_rid
= vf
->pci_rid
;
465 copy
[pos
].to_addr
= vf
->status_addr
+ offsetof(struct vfdi_status
,
467 copy
[pos
].length
= sizeof(status
->generation_end
);
468 efx_sriov_memcpy(efx
, copy
, pos
+ 1);
470 /* Notify the guest */
471 EFX_POPULATE_QWORD_3(event
,
472 FSF_AZ_EV_CODE
, FSE_CZ_EV_CODE_USER_EV
,
473 VFDI_EV_SEQ
, (vf
->msg_seqno
& 0xff),
474 VFDI_EV_TYPE
, VFDI_EV_TYPE_STATUS
);
476 efx_generate_event(efx
, EFX_VI_BASE
+ vf
->index
* efx_vf_size(efx
),
480 static void efx_sriov_bufs(struct efx_nic
*efx
, unsigned offset
,
481 u64
*addr
, unsigned count
)
486 for (pos
= 0; pos
< count
; ++pos
) {
487 EFX_POPULATE_QWORD_3(buf
,
488 FRF_AZ_BUF_ADR_REGION
, 0,
490 addr
? addr
[pos
] >> 12 : 0,
491 FRF_AZ_BUF_OWNER_ID_FBUF
, 0);
492 efx_sram_writeq(efx
, efx
->membase
+ FR_BZ_BUF_FULL_TBL
,
497 static bool bad_vf_index(struct efx_nic
*efx
, unsigned index
)
499 return index
>= efx_vf_size(efx
);
502 static bool bad_buf_count(unsigned buf_count
, unsigned max_entry_count
)
504 unsigned max_buf_count
= max_entry_count
*
505 sizeof(efx_qword_t
) / EFX_BUF_SIZE
;
507 return ((buf_count
& (buf_count
- 1)) || buf_count
> max_buf_count
);
510 /* Check that VI specified by per-port index belongs to a VF.
511 * Optionally set VF index and VI index within the VF.
513 static bool map_vi_index(struct efx_nic
*efx
, unsigned abs_index
,
514 struct efx_vf
**vf_out
, unsigned *rel_index_out
)
518 if (abs_index
< EFX_VI_BASE
)
520 vf_i
= (abs_index
- EFX_VI_BASE
) / efx_vf_size(efx
);
521 if (vf_i
>= efx
->vf_init_count
)
525 *vf_out
= efx
->vf
+ vf_i
;
527 *rel_index_out
= abs_index
% efx_vf_size(efx
);
531 static int efx_vfdi_init_evq(struct efx_vf
*vf
)
533 struct efx_nic
*efx
= vf
->efx
;
534 struct vfdi_req
*req
= vf
->buf
.addr
;
535 unsigned vf_evq
= req
->u
.init_evq
.index
;
536 unsigned buf_count
= req
->u
.init_evq
.buf_count
;
537 unsigned abs_evq
= abs_index(vf
, vf_evq
);
538 unsigned buftbl
= EFX_BUFTBL_EVQ_BASE(vf
, vf_evq
);
541 if (bad_vf_index(efx
, vf_evq
) ||
542 bad_buf_count(buf_count
, EFX_MAX_VF_EVQ_SIZE
)) {
544 netif_err(efx
, hw
, efx
->net_dev
,
545 "ERROR: Invalid INIT_EVQ from %s: evq %d bufs %d\n",
546 vf
->pci_name
, vf_evq
, buf_count
);
547 return VFDI_RC_EINVAL
;
550 efx_sriov_bufs(efx
, buftbl
, req
->u
.init_evq
.addr
, buf_count
);
552 EFX_POPULATE_OWORD_3(reg
,
553 FRF_CZ_TIMER_Q_EN
, 1,
554 FRF_CZ_HOST_NOTIFY_MODE
, 0,
555 FRF_CZ_TIMER_MODE
, FFE_CZ_TIMER_MODE_DIS
);
556 efx_writeo_table(efx
, ®
, FR_BZ_TIMER_TBL
, abs_evq
);
557 EFX_POPULATE_OWORD_3(reg
,
559 FRF_AZ_EVQ_SIZE
, __ffs(buf_count
),
560 FRF_AZ_EVQ_BUF_BASE_ID
, buftbl
);
561 efx_writeo_table(efx
, ®
, FR_BZ_EVQ_PTR_TBL
, abs_evq
);
564 memcpy(vf
->evq0_addrs
, req
->u
.init_evq
.addr
,
565 buf_count
* sizeof(u64
));
566 vf
->evq0_count
= buf_count
;
569 return VFDI_RC_SUCCESS
;
572 static int efx_vfdi_init_rxq(struct efx_vf
*vf
)
574 struct efx_nic
*efx
= vf
->efx
;
575 struct vfdi_req
*req
= vf
->buf
.addr
;
576 unsigned vf_rxq
= req
->u
.init_rxq
.index
;
577 unsigned vf_evq
= req
->u
.init_rxq
.evq
;
578 unsigned buf_count
= req
->u
.init_rxq
.buf_count
;
579 unsigned buftbl
= EFX_BUFTBL_RXQ_BASE(vf
, vf_rxq
);
583 if (bad_vf_index(efx
, vf_evq
) || bad_vf_index(efx
, vf_rxq
) ||
584 vf_rxq
>= VF_MAX_RX_QUEUES
||
585 bad_buf_count(buf_count
, EFX_MAX_DMAQ_SIZE
)) {
587 netif_err(efx
, hw
, efx
->net_dev
,
588 "ERROR: Invalid INIT_RXQ from %s: rxq %d evq %d "
589 "buf_count %d\n", vf
->pci_name
, vf_rxq
,
591 return VFDI_RC_EINVAL
;
593 if (__test_and_set_bit(req
->u
.init_rxq
.index
, vf
->rxq_mask
))
595 efx_sriov_bufs(efx
, buftbl
, req
->u
.init_rxq
.addr
, buf_count
);
597 label
= req
->u
.init_rxq
.label
& EFX_FIELD_MASK(FRF_AZ_RX_DESCQ_LABEL
);
598 EFX_POPULATE_OWORD_6(reg
,
599 FRF_AZ_RX_DESCQ_BUF_BASE_ID
, buftbl
,
600 FRF_AZ_RX_DESCQ_EVQ_ID
, abs_index(vf
, vf_evq
),
601 FRF_AZ_RX_DESCQ_LABEL
, label
,
602 FRF_AZ_RX_DESCQ_SIZE
, __ffs(buf_count
),
603 FRF_AZ_RX_DESCQ_JUMBO
,
604 !!(req
->u
.init_rxq
.flags
&
605 VFDI_RXQ_FLAG_SCATTER_EN
),
606 FRF_AZ_RX_DESCQ_EN
, 1);
607 efx_writeo_table(efx
, ®
, FR_BZ_RX_DESC_PTR_TBL
,
608 abs_index(vf
, vf_rxq
));
610 return VFDI_RC_SUCCESS
;
613 static int efx_vfdi_init_txq(struct efx_vf
*vf
)
615 struct efx_nic
*efx
= vf
->efx
;
616 struct vfdi_req
*req
= vf
->buf
.addr
;
617 unsigned vf_txq
= req
->u
.init_txq
.index
;
618 unsigned vf_evq
= req
->u
.init_txq
.evq
;
619 unsigned buf_count
= req
->u
.init_txq
.buf_count
;
620 unsigned buftbl
= EFX_BUFTBL_TXQ_BASE(vf
, vf_txq
);
621 unsigned label
, eth_filt_en
;
624 if (bad_vf_index(efx
, vf_evq
) || bad_vf_index(efx
, vf_txq
) ||
625 vf_txq
>= vf_max_tx_channels
||
626 bad_buf_count(buf_count
, EFX_MAX_DMAQ_SIZE
)) {
628 netif_err(efx
, hw
, efx
->net_dev
,
629 "ERROR: Invalid INIT_TXQ from %s: txq %d evq %d "
630 "buf_count %d\n", vf
->pci_name
, vf_txq
,
632 return VFDI_RC_EINVAL
;
635 mutex_lock(&vf
->txq_lock
);
636 if (__test_and_set_bit(req
->u
.init_txq
.index
, vf
->txq_mask
))
638 mutex_unlock(&vf
->txq_lock
);
639 efx_sriov_bufs(efx
, buftbl
, req
->u
.init_txq
.addr
, buf_count
);
641 eth_filt_en
= vf
->tx_filter_mode
== VF_TX_FILTER_ON
;
643 label
= req
->u
.init_txq
.label
& EFX_FIELD_MASK(FRF_AZ_TX_DESCQ_LABEL
);
644 EFX_POPULATE_OWORD_8(reg
,
645 FRF_CZ_TX_DPT_Q_MASK_WIDTH
, min(efx
->vi_scale
, 1U),
646 FRF_CZ_TX_DPT_ETH_FILT_EN
, eth_filt_en
,
647 FRF_AZ_TX_DESCQ_EN
, 1,
648 FRF_AZ_TX_DESCQ_BUF_BASE_ID
, buftbl
,
649 FRF_AZ_TX_DESCQ_EVQ_ID
, abs_index(vf
, vf_evq
),
650 FRF_AZ_TX_DESCQ_LABEL
, label
,
651 FRF_AZ_TX_DESCQ_SIZE
, __ffs(buf_count
),
652 FRF_BZ_TX_NON_IP_DROP_DIS
, 1);
653 efx_writeo_table(efx
, ®
, FR_BZ_TX_DESC_PTR_TBL
,
654 abs_index(vf
, vf_txq
));
656 return VFDI_RC_SUCCESS
;
659 /* Returns true when efx_vfdi_fini_all_queues should wake */
660 static bool efx_vfdi_flush_wake(struct efx_vf
*vf
)
662 /* Ensure that all updates are visible to efx_vfdi_fini_all_queues() */
665 return (!vf
->txq_count
&& !vf
->rxq_count
) ||
666 atomic_read(&vf
->rxq_retry_count
);
669 static void efx_vfdi_flush_clear(struct efx_vf
*vf
)
671 memset(vf
->txq_mask
, 0, sizeof(vf
->txq_mask
));
673 memset(vf
->rxq_mask
, 0, sizeof(vf
->rxq_mask
));
675 memset(vf
->rxq_retry_mask
, 0, sizeof(vf
->rxq_retry_mask
));
676 atomic_set(&vf
->rxq_retry_count
, 0);
679 static int efx_vfdi_fini_all_queues(struct efx_vf
*vf
)
681 struct efx_nic
*efx
= vf
->efx
;
683 unsigned count
= efx_vf_size(efx
);
684 unsigned vf_offset
= EFX_VI_BASE
+ vf
->index
* efx_vf_size(efx
);
685 unsigned timeout
= HZ
;
686 unsigned index
, rxqs_count
;
690 BUILD_BUG_ON(VF_MAX_RX_QUEUES
>
691 MC_CMD_FLUSH_RX_QUEUES_IN_QID_OFST_MAXNUM
);
693 rxqs
= kmalloc(count
* sizeof(*rxqs
), GFP_KERNEL
);
695 return VFDI_RC_ENOMEM
;
698 siena_prepare_flush(efx
);
701 /* Flush all the initialized queues */
703 for (index
= 0; index
< count
; ++index
) {
704 if (test_bit(index
, vf
->txq_mask
)) {
705 EFX_POPULATE_OWORD_2(reg
,
706 FRF_AZ_TX_FLUSH_DESCQ_CMD
, 1,
707 FRF_AZ_TX_FLUSH_DESCQ
,
709 efx_writeo(efx
, ®
, FR_AZ_TX_FLUSH_DESCQ
);
711 if (test_bit(index
, vf
->rxq_mask
))
712 rxqs
[rxqs_count
++] = cpu_to_le32(vf_offset
+ index
);
715 atomic_set(&vf
->rxq_retry_count
, 0);
716 while (timeout
&& (vf
->rxq_count
|| vf
->txq_count
)) {
717 rc
= efx_mcdi_rpc(efx
, MC_CMD_FLUSH_RX_QUEUES
, (u8
*)rxqs
,
718 rxqs_count
* sizeof(*rxqs
), NULL
, 0, NULL
);
721 timeout
= wait_event_timeout(vf
->flush_waitq
,
722 efx_vfdi_flush_wake(vf
),
725 for (index
= 0; index
< count
; ++index
) {
726 if (test_and_clear_bit(index
, vf
->rxq_retry_mask
)) {
727 atomic_dec(&vf
->rxq_retry_count
);
729 cpu_to_le32(vf_offset
+ index
);
735 siena_finish_flush(efx
);
738 /* Irrespective of success/failure, fini the queues */
740 for (index
= 0; index
< count
; ++index
) {
741 efx_writeo_table(efx
, ®
, FR_BZ_RX_DESC_PTR_TBL
,
743 efx_writeo_table(efx
, ®
, FR_BZ_TX_DESC_PTR_TBL
,
745 efx_writeo_table(efx
, ®
, FR_BZ_EVQ_PTR_TBL
,
747 efx_writeo_table(efx
, ®
, FR_BZ_TIMER_TBL
,
750 efx_sriov_bufs(efx
, vf
->buftbl_base
, NULL
,
751 EFX_VF_BUFTBL_PER_VI
* efx_vf_size(efx
));
753 efx_vfdi_flush_clear(vf
);
757 return timeout
? 0 : VFDI_RC_ETIMEDOUT
;
760 static int efx_vfdi_insert_filter(struct efx_vf
*vf
)
762 struct efx_nic
*efx
= vf
->efx
;
763 struct vfdi_req
*req
= vf
->buf
.addr
;
764 unsigned vf_rxq
= req
->u
.mac_filter
.rxq
;
767 if (bad_vf_index(efx
, vf_rxq
) || vf
->rx_filtering
) {
769 netif_err(efx
, hw
, efx
->net_dev
,
770 "ERROR: Invalid INSERT_FILTER from %s: rxq %d "
771 "flags 0x%x\n", vf
->pci_name
, vf_rxq
,
772 req
->u
.mac_filter
.flags
);
773 return VFDI_RC_EINVAL
;
777 if (req
->u
.mac_filter
.flags
& VFDI_MAC_FILTER_FLAG_RSS
)
778 flags
|= EFX_FILTER_FLAG_RX_RSS
;
779 if (req
->u
.mac_filter
.flags
& VFDI_MAC_FILTER_FLAG_SCATTER
)
780 flags
|= EFX_FILTER_FLAG_RX_SCATTER
;
781 vf
->rx_filter_flags
= flags
;
782 vf
->rx_filter_qid
= vf_rxq
;
783 vf
->rx_filtering
= true;
785 efx_sriov_reset_rx_filter(vf
);
786 queue_work(vfdi_workqueue
, &efx
->peer_work
);
788 return VFDI_RC_SUCCESS
;
791 static int efx_vfdi_remove_all_filters(struct efx_vf
*vf
)
793 vf
->rx_filtering
= false;
794 efx_sriov_reset_rx_filter(vf
);
795 queue_work(vfdi_workqueue
, &vf
->efx
->peer_work
);
797 return VFDI_RC_SUCCESS
;
800 static int efx_vfdi_set_status_page(struct efx_vf
*vf
)
802 struct efx_nic
*efx
= vf
->efx
;
803 struct vfdi_req
*req
= vf
->buf
.addr
;
804 u64 page_count
= req
->u
.set_status_page
.peer_page_count
;
807 offsetof(struct vfdi_req
, u
.set_status_page
.peer_page_addr
[0]))
808 / sizeof(req
->u
.set_status_page
.peer_page_addr
[0]);
810 if (!req
->u
.set_status_page
.dma_addr
|| page_count
> max_page_count
) {
812 netif_err(efx
, hw
, efx
->net_dev
,
813 "ERROR: Invalid SET_STATUS_PAGE from %s\n",
815 return VFDI_RC_EINVAL
;
818 mutex_lock(&efx
->local_lock
);
819 mutex_lock(&vf
->status_lock
);
820 vf
->status_addr
= req
->u
.set_status_page
.dma_addr
;
822 kfree(vf
->peer_page_addrs
);
823 vf
->peer_page_addrs
= NULL
;
824 vf
->peer_page_count
= 0;
827 vf
->peer_page_addrs
= kcalloc(page_count
, sizeof(u64
),
829 if (vf
->peer_page_addrs
) {
830 memcpy(vf
->peer_page_addrs
,
831 req
->u
.set_status_page
.peer_page_addr
,
832 page_count
* sizeof(u64
));
833 vf
->peer_page_count
= page_count
;
837 __efx_sriov_push_vf_status(vf
);
838 mutex_unlock(&vf
->status_lock
);
839 mutex_unlock(&efx
->local_lock
);
841 return VFDI_RC_SUCCESS
;
844 static int efx_vfdi_clear_status_page(struct efx_vf
*vf
)
846 mutex_lock(&vf
->status_lock
);
848 mutex_unlock(&vf
->status_lock
);
850 return VFDI_RC_SUCCESS
;
853 typedef int (*efx_vfdi_op_t
)(struct efx_vf
*vf
);
855 static const efx_vfdi_op_t vfdi_ops
[VFDI_OP_LIMIT
] = {
856 [VFDI_OP_INIT_EVQ
] = efx_vfdi_init_evq
,
857 [VFDI_OP_INIT_TXQ
] = efx_vfdi_init_txq
,
858 [VFDI_OP_INIT_RXQ
] = efx_vfdi_init_rxq
,
859 [VFDI_OP_FINI_ALL_QUEUES
] = efx_vfdi_fini_all_queues
,
860 [VFDI_OP_INSERT_FILTER
] = efx_vfdi_insert_filter
,
861 [VFDI_OP_REMOVE_ALL_FILTERS
] = efx_vfdi_remove_all_filters
,
862 [VFDI_OP_SET_STATUS_PAGE
] = efx_vfdi_set_status_page
,
863 [VFDI_OP_CLEAR_STATUS_PAGE
] = efx_vfdi_clear_status_page
,
866 static void efx_sriov_vfdi(struct work_struct
*work
)
868 struct efx_vf
*vf
= container_of(work
, struct efx_vf
, req
);
869 struct efx_nic
*efx
= vf
->efx
;
870 struct vfdi_req
*req
= vf
->buf
.addr
;
871 struct efx_memcpy_req copy
[2];
874 /* Copy this page into the local address space */
875 memset(copy
, '\0', sizeof(copy
));
876 copy
[0].from_rid
= vf
->pci_rid
;
877 copy
[0].from_addr
= vf
->req_addr
;
878 copy
[0].to_rid
= efx
->pci_dev
->devfn
;
879 copy
[0].to_addr
= vf
->buf
.dma_addr
;
880 copy
[0].length
= EFX_PAGE_SIZE
;
881 rc
= efx_sriov_memcpy(efx
, copy
, 1);
883 /* If we can't get the request, we can't reply to the caller */
885 netif_err(efx
, hw
, efx
->net_dev
,
886 "ERROR: Unable to fetch VFDI request from %s rc %d\n",
892 if (req
->op
< VFDI_OP_LIMIT
&& vfdi_ops
[req
->op
] != NULL
) {
893 rc
= vfdi_ops
[req
->op
](vf
);
895 netif_dbg(efx
, hw
, efx
->net_dev
,
896 "vfdi request %d from %s ok\n",
897 req
->op
, vf
->pci_name
);
900 netif_dbg(efx
, hw
, efx
->net_dev
,
901 "ERROR: Unrecognised request %d from VF %s addr "
902 "%llx\n", req
->op
, vf
->pci_name
,
903 (unsigned long long)vf
->req_addr
);
904 rc
= VFDI_RC_EOPNOTSUPP
;
907 /* Allow subsequent VF requests */
911 /* Respond to the request */
913 req
->op
= VFDI_OP_RESPONSE
;
915 memset(copy
, '\0', sizeof(copy
));
916 copy
[0].from_buf
= &req
->rc
;
917 copy
[0].to_rid
= vf
->pci_rid
;
918 copy
[0].to_addr
= vf
->req_addr
+ offsetof(struct vfdi_req
, rc
);
919 copy
[0].length
= sizeof(req
->rc
);
920 copy
[1].from_buf
= &req
->op
;
921 copy
[1].to_rid
= vf
->pci_rid
;
922 copy
[1].to_addr
= vf
->req_addr
+ offsetof(struct vfdi_req
, op
);
923 copy
[1].length
= sizeof(req
->op
);
925 (void) efx_sriov_memcpy(efx
, copy
, ARRAY_SIZE(copy
));
930 /* After a reset the event queues inside the guests no longer exist. Fill the
931 * event ring in guest memory with VFDI reset events, then (re-initialise) the
932 * event queue to raise an interrupt. The guest driver will then recover.
934 static void efx_sriov_reset_vf(struct efx_vf
*vf
, struct efx_buffer
*buffer
)
936 struct efx_nic
*efx
= vf
->efx
;
937 struct efx_memcpy_req copy_req
[4];
939 unsigned int pos
, count
, k
, buftbl
, abs_evq
;
944 BUG_ON(buffer
->len
!= EFX_PAGE_SIZE
);
948 BUG_ON(vf
->evq0_count
& (vf
->evq0_count
- 1));
950 mutex_lock(&vf
->status_lock
);
951 EFX_POPULATE_QWORD_3(event
,
952 FSF_AZ_EV_CODE
, FSE_CZ_EV_CODE_USER_EV
,
953 VFDI_EV_SEQ
, vf
->msg_seqno
,
954 VFDI_EV_TYPE
, VFDI_EV_TYPE_RESET
);
956 for (pos
= 0; pos
< EFX_PAGE_SIZE
; pos
+= sizeof(event
))
957 memcpy(buffer
->addr
+ pos
, &event
, sizeof(event
));
959 for (pos
= 0; pos
< vf
->evq0_count
; pos
+= count
) {
960 count
= min_t(unsigned, vf
->evq0_count
- pos
,
961 ARRAY_SIZE(copy_req
));
962 for (k
= 0; k
< count
; k
++) {
963 copy_req
[k
].from_buf
= NULL
;
964 copy_req
[k
].from_rid
= efx
->pci_dev
->devfn
;
965 copy_req
[k
].from_addr
= buffer
->dma_addr
;
966 copy_req
[k
].to_rid
= vf
->pci_rid
;
967 copy_req
[k
].to_addr
= vf
->evq0_addrs
[pos
+ k
];
968 copy_req
[k
].length
= EFX_PAGE_SIZE
;
970 rc
= efx_sriov_memcpy(efx
, copy_req
, count
);
973 netif_err(efx
, hw
, efx
->net_dev
,
974 "ERROR: Unable to notify %s of reset"
975 ": %d\n", vf
->pci_name
, -rc
);
980 /* Reinitialise, arm and trigger evq0 */
981 abs_evq
= abs_index(vf
, 0);
982 buftbl
= EFX_BUFTBL_EVQ_BASE(vf
, 0);
983 efx_sriov_bufs(efx
, buftbl
, vf
->evq0_addrs
, vf
->evq0_count
);
985 EFX_POPULATE_OWORD_3(reg
,
986 FRF_CZ_TIMER_Q_EN
, 1,
987 FRF_CZ_HOST_NOTIFY_MODE
, 0,
988 FRF_CZ_TIMER_MODE
, FFE_CZ_TIMER_MODE_DIS
);
989 efx_writeo_table(efx
, ®
, FR_BZ_TIMER_TBL
, abs_evq
);
990 EFX_POPULATE_OWORD_3(reg
,
992 FRF_AZ_EVQ_SIZE
, __ffs(vf
->evq0_count
),
993 FRF_AZ_EVQ_BUF_BASE_ID
, buftbl
);
994 efx_writeo_table(efx
, ®
, FR_BZ_EVQ_PTR_TBL
, abs_evq
);
995 EFX_POPULATE_DWORD_1(ptr
, FRF_AZ_EVQ_RPTR
, 0);
996 efx_writed_table(efx
, &ptr
, FR_BZ_EVQ_RPTR
, abs_evq
);
998 mutex_unlock(&vf
->status_lock
);
1001 static void efx_sriov_reset_vf_work(struct work_struct
*work
)
1003 struct efx_vf
*vf
= container_of(work
, struct efx_vf
, req
);
1004 struct efx_nic
*efx
= vf
->efx
;
1005 struct efx_buffer buf
;
1007 if (!efx_nic_alloc_buffer(efx
, &buf
, EFX_PAGE_SIZE
)) {
1008 efx_sriov_reset_vf(vf
, &buf
);
1009 efx_nic_free_buffer(efx
, &buf
);
1013 static void efx_sriov_handle_no_channel(struct efx_nic
*efx
)
1015 netif_err(efx
, drv
, efx
->net_dev
,
1016 "ERROR: IOV requires MSI-X and 1 additional interrupt"
1017 "vector. IOV disabled\n");
1021 static int efx_sriov_probe_channel(struct efx_channel
*channel
)
1023 channel
->efx
->vfdi_channel
= channel
;
1028 efx_sriov_get_channel_name(struct efx_channel
*channel
, char *buf
, size_t len
)
1030 snprintf(buf
, len
, "%s-iov", channel
->efx
->name
);
1033 static const struct efx_channel_type efx_sriov_channel_type
= {
1034 .handle_no_channel
= efx_sriov_handle_no_channel
,
1035 .pre_probe
= efx_sriov_probe_channel
,
1036 .get_name
= efx_sriov_get_channel_name
,
1037 /* no copy operation; channel must not be reallocated */
1038 .keep_eventq
= true,
1041 void efx_sriov_probe(struct efx_nic
*efx
)
1048 if (efx_sriov_cmd(efx
, false, &efx
->vi_scale
, &count
))
1050 if (count
> 0 && count
> max_vfs
)
1053 /* efx_nic_dimension_resources() will reduce vf_count as appopriate */
1054 efx
->vf_count
= count
;
1056 efx
->extra_channel_type
[EFX_EXTRA_CHANNEL_IOV
] = &efx_sriov_channel_type
;
1059 /* Copy the list of individual addresses into the vfdi_status.peers
1060 * array and auxillary pages, protected by %local_lock. Drop that lock
1061 * and then broadcast the address list to every VF.
1063 static void efx_sriov_peer_work(struct work_struct
*data
)
1065 struct efx_nic
*efx
= container_of(data
, struct efx_nic
, peer_work
);
1066 struct vfdi_status
*vfdi_status
= efx
->vfdi_status
.addr
;
1068 struct efx_local_addr
*local_addr
;
1069 struct vfdi_endpoint
*peer
;
1070 struct efx_endpoint_page
*epp
;
1071 struct list_head pages
;
1072 unsigned int peer_space
;
1073 unsigned int peer_count
;
1076 mutex_lock(&efx
->local_lock
);
1078 /* Move the existing peer pages off %local_page_list */
1079 INIT_LIST_HEAD(&pages
);
1080 list_splice_tail_init(&efx
->local_page_list
, &pages
);
1082 /* Populate the VF addresses starting from entry 1 (entry 0 is
1085 peer
= vfdi_status
->peers
+ 1;
1086 peer_space
= ARRAY_SIZE(vfdi_status
->peers
) - 1;
1088 for (pos
= 0; pos
< efx
->vf_count
; ++pos
) {
1091 mutex_lock(&vf
->status_lock
);
1092 if (vf
->rx_filtering
&& !is_zero_ether_addr(vf
->addr
.mac_addr
)) {
1096 BUG_ON(peer_space
== 0);
1098 mutex_unlock(&vf
->status_lock
);
1101 /* Fill the remaining addresses */
1102 list_for_each_entry(local_addr
, &efx
->local_addr_list
, link
) {
1103 memcpy(peer
->mac_addr
, local_addr
->addr
, ETH_ALEN
);
1107 if (--peer_space
== 0) {
1108 if (list_empty(&pages
)) {
1109 epp
= kmalloc(sizeof(*epp
), GFP_KERNEL
);
1112 epp
->ptr
= dma_alloc_coherent(
1113 &efx
->pci_dev
->dev
, EFX_PAGE_SIZE
,
1114 &epp
->addr
, GFP_KERNEL
);
1120 epp
= list_first_entry(
1121 &pages
, struct efx_endpoint_page
, link
);
1122 list_del(&epp
->link
);
1125 list_add_tail(&epp
->link
, &efx
->local_page_list
);
1126 peer
= (struct vfdi_endpoint
*)epp
->ptr
;
1127 peer_space
= EFX_PAGE_SIZE
/ sizeof(struct vfdi_endpoint
);
1130 vfdi_status
->peer_count
= peer_count
;
1131 mutex_unlock(&efx
->local_lock
);
1133 /* Free any now unused endpoint pages */
1134 while (!list_empty(&pages
)) {
1135 epp
= list_first_entry(
1136 &pages
, struct efx_endpoint_page
, link
);
1137 list_del(&epp
->link
);
1138 dma_free_coherent(&efx
->pci_dev
->dev
, EFX_PAGE_SIZE
,
1139 epp
->ptr
, epp
->addr
);
1143 /* Finally, push the pages */
1144 for (pos
= 0; pos
< efx
->vf_count
; ++pos
) {
1147 mutex_lock(&vf
->status_lock
);
1148 if (vf
->status_addr
)
1149 __efx_sriov_push_vf_status(vf
);
1150 mutex_unlock(&vf
->status_lock
);
1154 static void efx_sriov_free_local(struct efx_nic
*efx
)
1156 struct efx_local_addr
*local_addr
;
1157 struct efx_endpoint_page
*epp
;
1159 while (!list_empty(&efx
->local_addr_list
)) {
1160 local_addr
= list_first_entry(&efx
->local_addr_list
,
1161 struct efx_local_addr
, link
);
1162 list_del(&local_addr
->link
);
1166 while (!list_empty(&efx
->local_page_list
)) {
1167 epp
= list_first_entry(&efx
->local_page_list
,
1168 struct efx_endpoint_page
, link
);
1169 list_del(&epp
->link
);
1170 dma_free_coherent(&efx
->pci_dev
->dev
, EFX_PAGE_SIZE
,
1171 epp
->ptr
, epp
->addr
);
1176 static int efx_sriov_vf_alloc(struct efx_nic
*efx
)
1181 efx
->vf
= kzalloc(sizeof(struct efx_vf
) * efx
->vf_count
, GFP_KERNEL
);
1185 for (index
= 0; index
< efx
->vf_count
; ++index
) {
1186 vf
= efx
->vf
+ index
;
1190 vf
->rx_filter_id
= -1;
1191 vf
->tx_filter_mode
= VF_TX_FILTER_AUTO
;
1192 vf
->tx_filter_id
= -1;
1193 INIT_WORK(&vf
->req
, efx_sriov_vfdi
);
1194 INIT_WORK(&vf
->reset_work
, efx_sriov_reset_vf_work
);
1195 init_waitqueue_head(&vf
->flush_waitq
);
1196 mutex_init(&vf
->status_lock
);
1197 mutex_init(&vf
->txq_lock
);
1203 static void efx_sriov_vfs_fini(struct efx_nic
*efx
)
1208 for (pos
= 0; pos
< efx
->vf_count
; ++pos
) {
1211 efx_nic_free_buffer(efx
, &vf
->buf
);
1212 kfree(vf
->peer_page_addrs
);
1213 vf
->peer_page_addrs
= NULL
;
1214 vf
->peer_page_count
= 0;
1220 static int efx_sriov_vfs_init(struct efx_nic
*efx
)
1222 struct pci_dev
*pci_dev
= efx
->pci_dev
;
1223 unsigned index
, devfn
, sriov
, buftbl_base
;
1228 sriov
= pci_find_ext_capability(pci_dev
, PCI_EXT_CAP_ID_SRIOV
);
1232 pci_read_config_word(pci_dev
, sriov
+ PCI_SRIOV_VF_OFFSET
, &offset
);
1233 pci_read_config_word(pci_dev
, sriov
+ PCI_SRIOV_VF_STRIDE
, &stride
);
1235 buftbl_base
= efx
->vf_buftbl_base
;
1236 devfn
= pci_dev
->devfn
+ offset
;
1237 for (index
= 0; index
< efx
->vf_count
; ++index
) {
1238 vf
= efx
->vf
+ index
;
1240 /* Reserve buffer entries */
1241 vf
->buftbl_base
= buftbl_base
;
1242 buftbl_base
+= EFX_VF_BUFTBL_PER_VI
* efx_vf_size(efx
);
1244 vf
->pci_rid
= devfn
;
1245 snprintf(vf
->pci_name
, sizeof(vf
->pci_name
),
1246 "%04x:%02x:%02x.%d",
1247 pci_domain_nr(pci_dev
->bus
), pci_dev
->bus
->number
,
1248 PCI_SLOT(devfn
), PCI_FUNC(devfn
));
1250 rc
= efx_nic_alloc_buffer(efx
, &vf
->buf
, EFX_PAGE_SIZE
);
1260 efx_sriov_vfs_fini(efx
);
1264 int efx_sriov_init(struct efx_nic
*efx
)
1266 struct net_device
*net_dev
= efx
->net_dev
;
1267 struct vfdi_status
*vfdi_status
;
1270 /* Ensure there's room for vf_channel */
1271 BUILD_BUG_ON(EFX_MAX_CHANNELS
+ 1 >= EFX_VI_BASE
);
1272 /* Ensure that VI_BASE is aligned on VI_SCALE */
1273 BUILD_BUG_ON(EFX_VI_BASE
& ((1 << EFX_VI_SCALE_MAX
) - 1));
1275 if (efx
->vf_count
== 0)
1278 rc
= efx_sriov_cmd(efx
, true, NULL
, NULL
);
1282 rc
= efx_nic_alloc_buffer(efx
, &efx
->vfdi_status
, sizeof(*vfdi_status
));
1285 vfdi_status
= efx
->vfdi_status
.addr
;
1286 memset(vfdi_status
, 0, sizeof(*vfdi_status
));
1287 vfdi_status
->version
= 1;
1288 vfdi_status
->length
= sizeof(*vfdi_status
);
1289 vfdi_status
->max_tx_channels
= vf_max_tx_channels
;
1290 vfdi_status
->vi_scale
= efx
->vi_scale
;
1291 vfdi_status
->rss_rxq_count
= efx
->rss_spread
;
1292 vfdi_status
->peer_count
= 1 + efx
->vf_count
;
1293 vfdi_status
->timer_quantum_ns
= efx
->timer_quantum_ns
;
1295 rc
= efx_sriov_vf_alloc(efx
);
1299 mutex_init(&efx
->local_lock
);
1300 INIT_WORK(&efx
->peer_work
, efx_sriov_peer_work
);
1301 INIT_LIST_HEAD(&efx
->local_addr_list
);
1302 INIT_LIST_HEAD(&efx
->local_page_list
);
1304 rc
= efx_sriov_vfs_init(efx
);
1309 memcpy(vfdi_status
->peers
[0].mac_addr
,
1310 net_dev
->dev_addr
, ETH_ALEN
);
1311 efx
->vf_init_count
= efx
->vf_count
;
1314 efx_sriov_usrev(efx
, true);
1316 /* At this point we must be ready to accept VFDI requests */
1318 rc
= pci_enable_sriov(efx
->pci_dev
, efx
->vf_count
);
1322 netif_info(efx
, probe
, net_dev
,
1323 "enabled SR-IOV for %d VFs, %d VI per VF\n",
1324 efx
->vf_count
, efx_vf_size(efx
));
1328 efx_sriov_usrev(efx
, false);
1330 efx
->vf_init_count
= 0;
1332 efx_sriov_vfs_fini(efx
);
1334 cancel_work_sync(&efx
->peer_work
);
1335 efx_sriov_free_local(efx
);
1338 efx_nic_free_buffer(efx
, &efx
->vfdi_status
);
1340 efx_sriov_cmd(efx
, false, NULL
, NULL
);
1345 void efx_sriov_fini(struct efx_nic
*efx
)
1350 if (efx
->vf_init_count
== 0)
1353 /* Disable all interfaces to reconfiguration */
1354 BUG_ON(efx
->vfdi_channel
->enabled
);
1355 efx_sriov_usrev(efx
, false);
1357 efx
->vf_init_count
= 0;
1360 /* Flush all reconfiguration work */
1361 for (pos
= 0; pos
< efx
->vf_count
; ++pos
) {
1363 cancel_work_sync(&vf
->req
);
1364 cancel_work_sync(&vf
->reset_work
);
1366 cancel_work_sync(&efx
->peer_work
);
1368 pci_disable_sriov(efx
->pci_dev
);
1370 /* Tear down back-end state */
1371 efx_sriov_vfs_fini(efx
);
1372 efx_sriov_free_local(efx
);
1374 efx_nic_free_buffer(efx
, &efx
->vfdi_status
);
1375 efx_sriov_cmd(efx
, false, NULL
, NULL
);
1378 void efx_sriov_event(struct efx_channel
*channel
, efx_qword_t
*event
)
1380 struct efx_nic
*efx
= channel
->efx
;
1382 unsigned qid
, seq
, type
, data
;
1384 qid
= EFX_QWORD_FIELD(*event
, FSF_CZ_USER_QID
);
1386 /* USR_EV_REG_VALUE is dword0, so access the VFDI_EV fields directly */
1387 BUILD_BUG_ON(FSF_CZ_USER_EV_REG_VALUE_LBN
!= 0);
1388 seq
= EFX_QWORD_FIELD(*event
, VFDI_EV_SEQ
);
1389 type
= EFX_QWORD_FIELD(*event
, VFDI_EV_TYPE
);
1390 data
= EFX_QWORD_FIELD(*event
, VFDI_EV_DATA
);
1392 netif_vdbg(efx
, hw
, efx
->net_dev
,
1393 "USR_EV event from qid %d seq 0x%x type %d data 0x%x\n",
1394 qid
, seq
, type
, data
);
1396 if (map_vi_index(efx
, qid
, &vf
, NULL
))
1401 if (type
== VFDI_EV_TYPE_REQ_WORD0
) {
1403 vf
->req_type
= VFDI_EV_TYPE_REQ_WORD0
;
1404 vf
->req_seqno
= seq
+ 1;
1406 } else if (seq
!= (vf
->req_seqno
++ & 0xff) || type
!= vf
->req_type
)
1409 switch (vf
->req_type
) {
1410 case VFDI_EV_TYPE_REQ_WORD0
:
1411 case VFDI_EV_TYPE_REQ_WORD1
:
1412 case VFDI_EV_TYPE_REQ_WORD2
:
1413 vf
->req_addr
|= (u64
)data
<< (vf
->req_type
<< 4);
1417 case VFDI_EV_TYPE_REQ_WORD3
:
1418 vf
->req_addr
|= (u64
)data
<< 48;
1419 vf
->req_type
= VFDI_EV_TYPE_REQ_WORD0
;
1421 queue_work(vfdi_workqueue
, &vf
->req
);
1426 if (net_ratelimit())
1427 netif_err(efx
, hw
, efx
->net_dev
,
1428 "ERROR: Screaming VFDI request from %s\n",
1430 /* Reset the request and sequence number */
1431 vf
->req_type
= VFDI_EV_TYPE_REQ_WORD0
;
1432 vf
->req_seqno
= seq
+ 1;
1435 void efx_sriov_flr(struct efx_nic
*efx
, unsigned vf_i
)
1439 if (vf_i
> efx
->vf_init_count
)
1441 vf
= efx
->vf
+ vf_i
;
1442 netif_info(efx
, hw
, efx
->net_dev
,
1443 "FLR on VF %s\n", vf
->pci_name
);
1445 vf
->status_addr
= 0;
1446 efx_vfdi_remove_all_filters(vf
);
1447 efx_vfdi_flush_clear(vf
);
1452 void efx_sriov_mac_address_changed(struct efx_nic
*efx
)
1454 struct vfdi_status
*vfdi_status
= efx
->vfdi_status
.addr
;
1456 if (!efx
->vf_init_count
)
1458 memcpy(vfdi_status
->peers
[0].mac_addr
,
1459 efx
->net_dev
->dev_addr
, ETH_ALEN
);
1460 queue_work(vfdi_workqueue
, &efx
->peer_work
);
1463 void efx_sriov_tx_flush_done(struct efx_nic
*efx
, efx_qword_t
*event
)
1466 unsigned queue
, qid
;
1468 queue
= EFX_QWORD_FIELD(*event
, FSF_AZ_DRIVER_EV_SUBDATA
);
1469 if (map_vi_index(efx
, queue
, &vf
, &qid
))
1471 /* Ignore flush completions triggered by an FLR */
1472 if (!test_bit(qid
, vf
->txq_mask
))
1475 __clear_bit(qid
, vf
->txq_mask
);
1478 if (efx_vfdi_flush_wake(vf
))
1479 wake_up(&vf
->flush_waitq
);
1482 void efx_sriov_rx_flush_done(struct efx_nic
*efx
, efx_qword_t
*event
)
1485 unsigned ev_failed
, queue
, qid
;
1487 queue
= EFX_QWORD_FIELD(*event
, FSF_AZ_DRIVER_EV_RX_DESCQ_ID
);
1488 ev_failed
= EFX_QWORD_FIELD(*event
,
1489 FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL
);
1490 if (map_vi_index(efx
, queue
, &vf
, &qid
))
1492 if (!test_bit(qid
, vf
->rxq_mask
))
1496 set_bit(qid
, vf
->rxq_retry_mask
);
1497 atomic_inc(&vf
->rxq_retry_count
);
1499 __clear_bit(qid
, vf
->rxq_mask
);
1502 if (efx_vfdi_flush_wake(vf
))
1503 wake_up(&vf
->flush_waitq
);
1506 /* Called from napi. Schedule the reset work item */
1507 void efx_sriov_desc_fetch_err(struct efx_nic
*efx
, unsigned dmaq
)
1512 if (map_vi_index(efx
, dmaq
, &vf
, &rel
))
1515 if (net_ratelimit())
1516 netif_err(efx
, hw
, efx
->net_dev
,
1517 "VF %d DMA Q %d reports descriptor fetch error.\n",
1519 queue_work(vfdi_workqueue
, &vf
->reset_work
);
1523 void efx_sriov_reset(struct efx_nic
*efx
)
1526 struct efx_buffer buf
;
1531 if (efx
->vf_init_count
== 0)
1534 efx_sriov_usrev(efx
, true);
1535 (void)efx_sriov_cmd(efx
, true, NULL
, NULL
);
1537 if (efx_nic_alloc_buffer(efx
, &buf
, EFX_PAGE_SIZE
))
1540 for (vf_i
= 0; vf_i
< efx
->vf_init_count
; ++vf_i
) {
1541 vf
= efx
->vf
+ vf_i
;
1542 efx_sriov_reset_vf(vf
, &buf
);
1545 efx_nic_free_buffer(efx
, &buf
);
1548 int efx_init_sriov(void)
1550 /* A single threaded workqueue is sufficient. efx_sriov_vfdi() and
1551 * efx_sriov_peer_work() spend almost all their time sleeping for
1552 * MCDI to complete anyway
1554 vfdi_workqueue
= create_singlethread_workqueue("sfc_vfdi");
1555 if (!vfdi_workqueue
)
1561 void efx_fini_sriov(void)
1563 destroy_workqueue(vfdi_workqueue
);
1566 int efx_sriov_set_vf_mac(struct net_device
*net_dev
, int vf_i
, u8
*mac
)
1568 struct efx_nic
*efx
= netdev_priv(net_dev
);
1571 if (vf_i
>= efx
->vf_init_count
)
1573 vf
= efx
->vf
+ vf_i
;
1575 mutex_lock(&vf
->status_lock
);
1576 memcpy(vf
->addr
.mac_addr
, mac
, ETH_ALEN
);
1577 __efx_sriov_update_vf_addr(vf
);
1578 mutex_unlock(&vf
->status_lock
);
1583 int efx_sriov_set_vf_vlan(struct net_device
*net_dev
, int vf_i
,
1586 struct efx_nic
*efx
= netdev_priv(net_dev
);
1590 if (vf_i
>= efx
->vf_init_count
)
1592 vf
= efx
->vf
+ vf_i
;
1594 mutex_lock(&vf
->status_lock
);
1595 tci
= (vlan
& VLAN_VID_MASK
) | ((qos
& 0x7) << VLAN_PRIO_SHIFT
);
1596 vf
->addr
.tci
= htons(tci
);
1597 __efx_sriov_update_vf_addr(vf
);
1598 mutex_unlock(&vf
->status_lock
);
1603 int efx_sriov_set_vf_spoofchk(struct net_device
*net_dev
, int vf_i
,
1606 struct efx_nic
*efx
= netdev_priv(net_dev
);
1610 if (vf_i
>= efx
->vf_init_count
)
1612 vf
= efx
->vf
+ vf_i
;
1614 mutex_lock(&vf
->txq_lock
);
1615 if (vf
->txq_count
== 0) {
1616 vf
->tx_filter_mode
=
1617 spoofchk
? VF_TX_FILTER_ON
: VF_TX_FILTER_OFF
;
1620 /* This cannot be changed while TX queues are running */
1623 mutex_unlock(&vf
->txq_lock
);
1627 int efx_sriov_get_vf_config(struct net_device
*net_dev
, int vf_i
,
1628 struct ifla_vf_info
*ivi
)
1630 struct efx_nic
*efx
= netdev_priv(net_dev
);
1634 if (vf_i
>= efx
->vf_init_count
)
1636 vf
= efx
->vf
+ vf_i
;
1639 memcpy(ivi
->mac
, vf
->addr
.mac_addr
, ETH_ALEN
);
1641 tci
= ntohs(vf
->addr
.tci
);
1642 ivi
->vlan
= tci
& VLAN_VID_MASK
;
1643 ivi
->qos
= (tci
>> VLAN_PRIO_SHIFT
) & 0x7;
1644 ivi
->spoofchk
= vf
->tx_filter_mode
== VF_TX_FILTER_ON
;