1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2010 Solarflare Communications Inc.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
11 #include <linux/pci.h>
12 #include <linux/tcp.h>
15 #include <linux/ipv6.h>
16 #include <linux/slab.h>
18 #include <linux/if_ether.h>
19 #include <linux/highmem.h>
20 #include "net_driver.h"
23 #include "workarounds.h"
26 * TX descriptor ring full threshold
28 * The tx_queue descriptor ring fill-level must fall below this value
29 * before we restart the netif queue
31 #define EFX_TXQ_THRESHOLD(_efx) ((_efx)->txq_entries / 2u)
33 static void efx_dequeue_buffer(struct efx_tx_queue
*tx_queue
,
34 struct efx_tx_buffer
*buffer
,
35 unsigned int *pkts_compl
,
36 unsigned int *bytes_compl
)
38 if (buffer
->unmap_len
) {
39 struct pci_dev
*pci_dev
= tx_queue
->efx
->pci_dev
;
40 dma_addr_t unmap_addr
= (buffer
->dma_addr
+ buffer
->len
-
42 if (buffer
->unmap_single
)
43 pci_unmap_single(pci_dev
, unmap_addr
, buffer
->unmap_len
,
46 pci_unmap_page(pci_dev
, unmap_addr
, buffer
->unmap_len
,
48 buffer
->unmap_len
= 0;
49 buffer
->unmap_single
= false;
54 (*bytes_compl
) += buffer
->skb
->len
;
55 dev_kfree_skb_any((struct sk_buff
*) buffer
->skb
);
57 netif_vdbg(tx_queue
->efx
, tx_done
, tx_queue
->efx
->net_dev
,
58 "TX queue %d transmission id %x complete\n",
59 tx_queue
->queue
, tx_queue
->read_count
);
64 * struct efx_tso_header - a DMA mapped buffer for packet headers
65 * @next: Linked list of free ones.
66 * The list is protected by the TX queue lock.
67 * @dma_unmap_len: Length to unmap for an oversize buffer, or 0.
68 * @dma_addr: The DMA address of the header below.
70 * This controls the memory used for a TSO header. Use TSOH_DATA()
71 * to find the packet header data. Use TSOH_SIZE() to calculate the
72 * total size required for a given packet header length. TSO headers
73 * in the free list are exactly %TSOH_STD_SIZE bytes in size.
75 struct efx_tso_header
{
77 struct efx_tso_header
*next
;
83 static int efx_enqueue_skb_tso(struct efx_tx_queue
*tx_queue
,
85 static void efx_fini_tso(struct efx_tx_queue
*tx_queue
);
86 static void efx_tsoh_heap_free(struct efx_tx_queue
*tx_queue
,
87 struct efx_tso_header
*tsoh
);
89 static void efx_tsoh_free(struct efx_tx_queue
*tx_queue
,
90 struct efx_tx_buffer
*buffer
)
93 if (likely(!buffer
->tsoh
->unmap_len
)) {
94 buffer
->tsoh
->next
= tx_queue
->tso_headers_free
;
95 tx_queue
->tso_headers_free
= buffer
->tsoh
;
97 efx_tsoh_heap_free(tx_queue
, buffer
->tsoh
);
104 static inline unsigned
105 efx_max_tx_len(struct efx_nic
*efx
, dma_addr_t dma_addr
)
107 /* Depending on the NIC revision, we can use descriptor
108 * lengths up to 8K or 8K-1. However, since PCI Express
109 * devices must split read requests at 4K boundaries, there is
110 * little benefit from using descriptors that cross those
111 * boundaries and we keep things simple by not doing so.
113 unsigned len
= (~dma_addr
& (EFX_PAGE_SIZE
- 1)) + 1;
115 /* Work around hardware bug for unaligned buffers. */
116 if (EFX_WORKAROUND_5391(efx
) && (dma_addr
& 0xf))
117 len
= min_t(unsigned, len
, 512 - (dma_addr
& 0xf));
122 unsigned int efx_tx_max_skb_descs(struct efx_nic
*efx
)
124 /* Header and payload descriptor for each output segment, plus
125 * one for every input fragment boundary within a segment
127 unsigned int max_descs
= EFX_TSO_MAX_SEGS
* 2 + MAX_SKB_FRAGS
;
129 /* Possibly one more per segment for the alignment workaround */
130 if (EFX_WORKAROUND_5391(efx
))
131 max_descs
+= EFX_TSO_MAX_SEGS
;
133 /* Possibly more for PCIe page boundaries within input fragments */
134 if (PAGE_SIZE
> EFX_PAGE_SIZE
)
135 max_descs
+= max_t(unsigned int, MAX_SKB_FRAGS
,
136 DIV_ROUND_UP(GSO_MAX_SIZE
, EFX_PAGE_SIZE
));
142 * Add a socket buffer to a TX queue
144 * This maps all fragments of a socket buffer for DMA and adds them to
145 * the TX queue. The queue's insert pointer will be incremented by
146 * the number of fragments in the socket buffer.
148 * If any DMA mapping fails, any mapped fragments will be unmapped,
149 * the queue's insert pointer will be restored to its original value.
151 * This function is split out from efx_hard_start_xmit to allow the
152 * loopback test to direct packets via specific TX queues.
154 * Returns NETDEV_TX_OK or NETDEV_TX_BUSY
155 * You must hold netif_tx_lock() to call this function.
157 netdev_tx_t
efx_enqueue_skb(struct efx_tx_queue
*tx_queue
, struct sk_buff
*skb
)
159 struct efx_nic
*efx
= tx_queue
->efx
;
160 struct pci_dev
*pci_dev
= efx
->pci_dev
;
161 struct efx_tx_buffer
*buffer
;
162 skb_frag_t
*fragment
;
163 unsigned int len
, unmap_len
= 0, fill_level
, insert_ptr
;
164 dma_addr_t dma_addr
, unmap_addr
= 0;
165 unsigned int dma_len
;
168 netdev_tx_t rc
= NETDEV_TX_OK
;
170 EFX_BUG_ON_PARANOID(tx_queue
->write_count
!= tx_queue
->insert_count
);
172 if (skb_shinfo(skb
)->gso_size
)
173 return efx_enqueue_skb_tso(tx_queue
, skb
);
175 /* Get size of the initial fragment */
176 len
= skb_headlen(skb
);
178 /* Pad if necessary */
179 if (EFX_WORKAROUND_15592(efx
) && skb
->len
<= 32) {
180 EFX_BUG_ON_PARANOID(skb
->data_len
);
182 if (skb_pad(skb
, len
- skb
->len
))
186 fill_level
= tx_queue
->insert_count
- tx_queue
->old_read_count
;
187 q_space
= efx
->txq_entries
- 1 - fill_level
;
189 /* Map for DMA. Use pci_map_single rather than pci_map_page
190 * since this is more efficient on machines with sparse
194 dma_addr
= pci_map_single(pci_dev
, skb
->data
, len
, PCI_DMA_TODEVICE
);
196 /* Process all fragments */
198 if (unlikely(pci_dma_mapping_error(pci_dev
, dma_addr
)))
201 /* Store fields for marking in the per-fragment final
204 unmap_addr
= dma_addr
;
206 /* Add to TX queue, splitting across DMA boundaries */
208 if (unlikely(q_space
-- <= 0)) {
209 /* It might be that completions have
210 * happened since the xmit path last
211 * checked. Update the xmit path's
212 * copy of read_count.
214 netif_tx_stop_queue(tx_queue
->core_txq
);
215 /* This memory barrier protects the
216 * change of queue state from the access
219 tx_queue
->old_read_count
=
220 ACCESS_ONCE(tx_queue
->read_count
);
221 fill_level
= (tx_queue
->insert_count
222 - tx_queue
->old_read_count
);
223 q_space
= efx
->txq_entries
- 1 - fill_level
;
224 if (unlikely(q_space
-- <= 0)) {
229 if (likely(!efx
->loopback_selftest
))
230 netif_tx_start_queue(
234 insert_ptr
= tx_queue
->insert_count
& tx_queue
->ptr_mask
;
235 buffer
= &tx_queue
->buffer
[insert_ptr
];
236 efx_tsoh_free(tx_queue
, buffer
);
237 EFX_BUG_ON_PARANOID(buffer
->tsoh
);
238 EFX_BUG_ON_PARANOID(buffer
->skb
);
239 EFX_BUG_ON_PARANOID(buffer
->len
);
240 EFX_BUG_ON_PARANOID(!buffer
->continuation
);
241 EFX_BUG_ON_PARANOID(buffer
->unmap_len
);
243 dma_len
= efx_max_tx_len(efx
, dma_addr
);
244 if (likely(dma_len
>= len
))
247 /* Fill out per descriptor fields */
248 buffer
->len
= dma_len
;
249 buffer
->dma_addr
= dma_addr
;
252 ++tx_queue
->insert_count
;
255 /* Transfer ownership of the unmapping to the final buffer */
256 buffer
->unmap_single
= unmap_single
;
257 buffer
->unmap_len
= unmap_len
;
260 /* Get address and size of next fragment */
261 if (i
>= skb_shinfo(skb
)->nr_frags
)
263 fragment
= &skb_shinfo(skb
)->frags
[i
];
264 len
= skb_frag_size(fragment
);
267 unmap_single
= false;
268 dma_addr
= skb_frag_dma_map(&pci_dev
->dev
, fragment
, 0, len
,
272 /* Transfer ownership of the skb to the final buffer */
274 buffer
->continuation
= false;
276 netdev_tx_sent_queue(tx_queue
->core_txq
, skb
->len
);
278 /* Pass off to hardware */
279 efx_nic_push_buffers(tx_queue
);
284 netif_err(efx
, tx_err
, efx
->net_dev
,
285 " TX queue %d could not map skb with %d bytes %d "
286 "fragments for DMA\n", tx_queue
->queue
, skb
->len
,
287 skb_shinfo(skb
)->nr_frags
+ 1);
289 /* Mark the packet as transmitted, and free the SKB ourselves */
290 dev_kfree_skb_any(skb
);
293 /* Work backwards until we hit the original insert pointer value */
294 while (tx_queue
->insert_count
!= tx_queue
->write_count
) {
295 unsigned int pkts_compl
= 0, bytes_compl
= 0;
296 --tx_queue
->insert_count
;
297 insert_ptr
= tx_queue
->insert_count
& tx_queue
->ptr_mask
;
298 buffer
= &tx_queue
->buffer
[insert_ptr
];
299 efx_dequeue_buffer(tx_queue
, buffer
, &pkts_compl
, &bytes_compl
);
303 /* Free the fragment we were mid-way through pushing */
306 pci_unmap_single(pci_dev
, unmap_addr
, unmap_len
,
309 pci_unmap_page(pci_dev
, unmap_addr
, unmap_len
,
316 /* Remove packets from the TX queue
318 * This removes packets from the TX queue, up to and including the
321 static void efx_dequeue_buffers(struct efx_tx_queue
*tx_queue
,
323 unsigned int *pkts_compl
,
324 unsigned int *bytes_compl
)
326 struct efx_nic
*efx
= tx_queue
->efx
;
327 unsigned int stop_index
, read_ptr
;
329 stop_index
= (index
+ 1) & tx_queue
->ptr_mask
;
330 read_ptr
= tx_queue
->read_count
& tx_queue
->ptr_mask
;
332 while (read_ptr
!= stop_index
) {
333 struct efx_tx_buffer
*buffer
= &tx_queue
->buffer
[read_ptr
];
334 if (unlikely(buffer
->len
== 0)) {
335 netif_err(efx
, tx_err
, efx
->net_dev
,
336 "TX queue %d spurious TX completion id %x\n",
337 tx_queue
->queue
, read_ptr
);
338 efx_schedule_reset(efx
, RESET_TYPE_TX_SKIP
);
342 efx_dequeue_buffer(tx_queue
, buffer
, pkts_compl
, bytes_compl
);
343 buffer
->continuation
= true;
346 ++tx_queue
->read_count
;
347 read_ptr
= tx_queue
->read_count
& tx_queue
->ptr_mask
;
351 /* Initiate a packet transmission. We use one channel per CPU
352 * (sharing when we have more CPUs than channels). On Falcon, the TX
353 * completion events will be directed back to the CPU that transmitted
354 * the packet, which should be cache-efficient.
356 * Context: non-blocking.
357 * Note that returning anything other than NETDEV_TX_OK will cause the
358 * OS to free the skb.
360 netdev_tx_t
efx_hard_start_xmit(struct sk_buff
*skb
,
361 struct net_device
*net_dev
)
363 struct efx_nic
*efx
= netdev_priv(net_dev
);
364 struct efx_tx_queue
*tx_queue
;
365 unsigned index
, type
;
367 EFX_WARN_ON_PARANOID(!netif_device_present(net_dev
));
369 index
= skb_get_queue_mapping(skb
);
370 type
= skb
->ip_summed
== CHECKSUM_PARTIAL
? EFX_TXQ_TYPE_OFFLOAD
: 0;
371 if (index
>= efx
->n_tx_channels
) {
372 index
-= efx
->n_tx_channels
;
373 type
|= EFX_TXQ_TYPE_HIGHPRI
;
375 tx_queue
= efx_get_tx_queue(efx
, index
, type
);
377 return efx_enqueue_skb(tx_queue
, skb
);
380 void efx_init_tx_queue_core_txq(struct efx_tx_queue
*tx_queue
)
382 struct efx_nic
*efx
= tx_queue
->efx
;
384 /* Must be inverse of queue lookup in efx_hard_start_xmit() */
386 netdev_get_tx_queue(efx
->net_dev
,
387 tx_queue
->queue
/ EFX_TXQ_TYPES
+
388 ((tx_queue
->queue
& EFX_TXQ_TYPE_HIGHPRI
) ?
389 efx
->n_tx_channels
: 0));
392 int efx_setup_tc(struct net_device
*net_dev
, u8 num_tc
)
394 struct efx_nic
*efx
= netdev_priv(net_dev
);
395 struct efx_channel
*channel
;
396 struct efx_tx_queue
*tx_queue
;
400 if (efx_nic_rev(efx
) < EFX_REV_FALCON_B0
|| num_tc
> EFX_MAX_TX_TC
)
403 if (num_tc
== net_dev
->num_tc
)
406 for (tc
= 0; tc
< num_tc
; tc
++) {
407 net_dev
->tc_to_txq
[tc
].offset
= tc
* efx
->n_tx_channels
;
408 net_dev
->tc_to_txq
[tc
].count
= efx
->n_tx_channels
;
411 if (num_tc
> net_dev
->num_tc
) {
412 /* Initialise high-priority queues as necessary */
413 efx_for_each_channel(channel
, efx
) {
414 efx_for_each_possible_channel_tx_queue(tx_queue
,
416 if (!(tx_queue
->queue
& EFX_TXQ_TYPE_HIGHPRI
))
418 if (!tx_queue
->buffer
) {
419 rc
= efx_probe_tx_queue(tx_queue
);
423 if (!tx_queue
->initialised
)
424 efx_init_tx_queue(tx_queue
);
425 efx_init_tx_queue_core_txq(tx_queue
);
429 /* Reduce number of classes before number of queues */
430 net_dev
->num_tc
= num_tc
;
433 rc
= netif_set_real_num_tx_queues(net_dev
,
434 max_t(int, num_tc
, 1) *
439 /* Do not destroy high-priority queues when they become
440 * unused. We would have to flush them first, and it is
441 * fairly difficult to flush a subset of TX queues. Leave
442 * it to efx_fini_channels().
445 net_dev
->num_tc
= num_tc
;
449 void efx_xmit_done(struct efx_tx_queue
*tx_queue
, unsigned int index
)
452 struct efx_nic
*efx
= tx_queue
->efx
;
453 unsigned int pkts_compl
= 0, bytes_compl
= 0;
455 EFX_BUG_ON_PARANOID(index
> tx_queue
->ptr_mask
);
457 efx_dequeue_buffers(tx_queue
, index
, &pkts_compl
, &bytes_compl
);
458 netdev_tx_completed_queue(tx_queue
->core_txq
, pkts_compl
, bytes_compl
);
460 /* See if we need to restart the netif queue. This barrier
461 * separates the update of read_count from the test of the
464 if (unlikely(netif_tx_queue_stopped(tx_queue
->core_txq
)) &&
465 likely(efx
->port_enabled
) &&
466 likely(netif_device_present(efx
->net_dev
))) {
467 fill_level
= tx_queue
->insert_count
- tx_queue
->read_count
;
468 if (fill_level
< EFX_TXQ_THRESHOLD(efx
))
469 netif_tx_wake_queue(tx_queue
->core_txq
);
472 /* Check whether the hardware queue is now empty */
473 if ((int)(tx_queue
->read_count
- tx_queue
->old_write_count
) >= 0) {
474 tx_queue
->old_write_count
= ACCESS_ONCE(tx_queue
->write_count
);
475 if (tx_queue
->read_count
== tx_queue
->old_write_count
) {
477 tx_queue
->empty_read_count
=
478 tx_queue
->read_count
| EFX_EMPTY_COUNT_VALID
;
483 int efx_probe_tx_queue(struct efx_tx_queue
*tx_queue
)
485 struct efx_nic
*efx
= tx_queue
->efx
;
486 unsigned int entries
;
489 /* Create the smallest power-of-two aligned ring */
490 entries
= max(roundup_pow_of_two(efx
->txq_entries
), EFX_MIN_DMAQ_SIZE
);
491 EFX_BUG_ON_PARANOID(entries
> EFX_MAX_DMAQ_SIZE
);
492 tx_queue
->ptr_mask
= entries
- 1;
494 netif_dbg(efx
, probe
, efx
->net_dev
,
495 "creating TX queue %d size %#x mask %#x\n",
496 tx_queue
->queue
, efx
->txq_entries
, tx_queue
->ptr_mask
);
498 /* Allocate software ring */
499 tx_queue
->buffer
= kcalloc(entries
, sizeof(*tx_queue
->buffer
),
501 if (!tx_queue
->buffer
)
503 for (i
= 0; i
<= tx_queue
->ptr_mask
; ++i
)
504 tx_queue
->buffer
[i
].continuation
= true;
506 /* Allocate hardware ring */
507 rc
= efx_nic_probe_tx(tx_queue
);
514 kfree(tx_queue
->buffer
);
515 tx_queue
->buffer
= NULL
;
519 void efx_init_tx_queue(struct efx_tx_queue
*tx_queue
)
521 netif_dbg(tx_queue
->efx
, drv
, tx_queue
->efx
->net_dev
,
522 "initialising TX queue %d\n", tx_queue
->queue
);
524 tx_queue
->insert_count
= 0;
525 tx_queue
->write_count
= 0;
526 tx_queue
->old_write_count
= 0;
527 tx_queue
->read_count
= 0;
528 tx_queue
->old_read_count
= 0;
529 tx_queue
->empty_read_count
= 0 | EFX_EMPTY_COUNT_VALID
;
531 /* Set up TX descriptor ring */
532 efx_nic_init_tx(tx_queue
);
534 tx_queue
->initialised
= true;
537 void efx_release_tx_buffers(struct efx_tx_queue
*tx_queue
)
539 struct efx_tx_buffer
*buffer
;
541 if (!tx_queue
->buffer
)
544 /* Free any buffers left in the ring */
545 while (tx_queue
->read_count
!= tx_queue
->write_count
) {
546 unsigned int pkts_compl
= 0, bytes_compl
= 0;
547 buffer
= &tx_queue
->buffer
[tx_queue
->read_count
& tx_queue
->ptr_mask
];
548 efx_dequeue_buffer(tx_queue
, buffer
, &pkts_compl
, &bytes_compl
);
549 buffer
->continuation
= true;
552 ++tx_queue
->read_count
;
554 netdev_tx_reset_queue(tx_queue
->core_txq
);
557 void efx_fini_tx_queue(struct efx_tx_queue
*tx_queue
)
559 if (!tx_queue
->initialised
)
562 netif_dbg(tx_queue
->efx
, drv
, tx_queue
->efx
->net_dev
,
563 "shutting down TX queue %d\n", tx_queue
->queue
);
565 tx_queue
->initialised
= false;
567 /* Flush TX queue, remove descriptor ring */
568 efx_nic_fini_tx(tx_queue
);
570 efx_release_tx_buffers(tx_queue
);
572 /* Free up TSO header cache */
573 efx_fini_tso(tx_queue
);
576 void efx_remove_tx_queue(struct efx_tx_queue
*tx_queue
)
578 if (!tx_queue
->buffer
)
581 netif_dbg(tx_queue
->efx
, drv
, tx_queue
->efx
->net_dev
,
582 "destroying TX queue %d\n", tx_queue
->queue
);
583 efx_nic_remove_tx(tx_queue
);
585 kfree(tx_queue
->buffer
);
586 tx_queue
->buffer
= NULL
;
590 /* Efx TCP segmentation acceleration.
592 * Why? Because by doing it here in the driver we can go significantly
593 * faster than the GSO.
595 * Requires TX checksum offload support.
598 /* Number of bytes inserted at the start of a TSO header buffer,
599 * similar to NET_IP_ALIGN.
601 #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
602 #define TSOH_OFFSET 0
604 #define TSOH_OFFSET NET_IP_ALIGN
607 #define TSOH_BUFFER(tsoh) ((u8 *)(tsoh + 1) + TSOH_OFFSET)
609 /* Total size of struct efx_tso_header, buffer and padding */
610 #define TSOH_SIZE(hdr_len) \
611 (sizeof(struct efx_tso_header) + TSOH_OFFSET + hdr_len)
613 /* Size of blocks on free list. Larger blocks must be allocated from
616 #define TSOH_STD_SIZE 128
618 #define PTR_DIFF(p1, p2) ((u8 *)(p1) - (u8 *)(p2))
619 #define ETH_HDR_LEN(skb) (skb_network_header(skb) - (skb)->data)
620 #define SKB_TCP_OFF(skb) PTR_DIFF(tcp_hdr(skb), (skb)->data)
621 #define SKB_IPV4_OFF(skb) PTR_DIFF(ip_hdr(skb), (skb)->data)
622 #define SKB_IPV6_OFF(skb) PTR_DIFF(ipv6_hdr(skb), (skb)->data)
625 * struct tso_state - TSO state for an SKB
626 * @out_len: Remaining length in current segment
627 * @seqnum: Current sequence number
628 * @ipv4_id: Current IPv4 ID, host endian
629 * @packet_space: Remaining space in current packet
630 * @dma_addr: DMA address of current position
631 * @in_len: Remaining length in current SKB fragment
632 * @unmap_len: Length of SKB fragment
633 * @unmap_addr: DMA address of SKB fragment
634 * @unmap_single: DMA single vs page mapping flag
635 * @protocol: Network protocol (after any VLAN header)
636 * @header_len: Number of bytes of header
637 * @full_packet_size: Number of bytes to put in each outgoing segment
639 * The state used during segmentation. It is put into this data structure
640 * just to make it easy to pass into inline functions.
643 /* Output position */
647 unsigned packet_space
;
653 dma_addr_t unmap_addr
;
658 int full_packet_size
;
663 * Verify that our various assumptions about sk_buffs and the conditions
664 * under which TSO will be attempted hold true. Return the protocol number.
666 static __be16
efx_tso_check_protocol(struct sk_buff
*skb
)
668 __be16 protocol
= skb
->protocol
;
670 EFX_BUG_ON_PARANOID(((struct ethhdr
*)skb
->data
)->h_proto
!=
672 if (protocol
== htons(ETH_P_8021Q
)) {
673 /* Find the encapsulated protocol; reset network header
674 * and transport header based on that. */
675 struct vlan_ethhdr
*veh
= (struct vlan_ethhdr
*)skb
->data
;
676 protocol
= veh
->h_vlan_encapsulated_proto
;
677 skb_set_network_header(skb
, sizeof(*veh
));
678 if (protocol
== htons(ETH_P_IP
))
679 skb_set_transport_header(skb
, sizeof(*veh
) +
680 4 * ip_hdr(skb
)->ihl
);
681 else if (protocol
== htons(ETH_P_IPV6
))
682 skb_set_transport_header(skb
, sizeof(*veh
) +
683 sizeof(struct ipv6hdr
));
686 if (protocol
== htons(ETH_P_IP
)) {
687 EFX_BUG_ON_PARANOID(ip_hdr(skb
)->protocol
!= IPPROTO_TCP
);
689 EFX_BUG_ON_PARANOID(protocol
!= htons(ETH_P_IPV6
));
690 EFX_BUG_ON_PARANOID(ipv6_hdr(skb
)->nexthdr
!= NEXTHDR_TCP
);
692 EFX_BUG_ON_PARANOID((PTR_DIFF(tcp_hdr(skb
), skb
->data
)
693 + (tcp_hdr(skb
)->doff
<< 2u)) >
701 * Allocate a page worth of efx_tso_header structures, and string them
702 * into the tx_queue->tso_headers_free linked list. Return 0 or -ENOMEM.
704 static int efx_tsoh_block_alloc(struct efx_tx_queue
*tx_queue
)
707 struct pci_dev
*pci_dev
= tx_queue
->efx
->pci_dev
;
708 struct efx_tso_header
*tsoh
;
712 base_kva
= pci_alloc_consistent(pci_dev
, PAGE_SIZE
, &dma_addr
);
713 if (base_kva
== NULL
) {
714 netif_err(tx_queue
->efx
, tx_err
, tx_queue
->efx
->net_dev
,
715 "Unable to allocate page for TSO headers\n");
719 /* pci_alloc_consistent() allocates pages. */
720 EFX_BUG_ON_PARANOID(dma_addr
& (PAGE_SIZE
- 1u));
722 for (kva
= base_kva
; kva
< base_kva
+ PAGE_SIZE
; kva
+= TSOH_STD_SIZE
) {
723 tsoh
= (struct efx_tso_header
*)kva
;
724 tsoh
->dma_addr
= dma_addr
+ (TSOH_BUFFER(tsoh
) - base_kva
);
725 tsoh
->next
= tx_queue
->tso_headers_free
;
726 tx_queue
->tso_headers_free
= tsoh
;
733 /* Free up a TSO header, and all others in the same page. */
734 static void efx_tsoh_block_free(struct efx_tx_queue
*tx_queue
,
735 struct efx_tso_header
*tsoh
,
736 struct pci_dev
*pci_dev
)
738 struct efx_tso_header
**p
;
739 unsigned long base_kva
;
742 base_kva
= (unsigned long)tsoh
& PAGE_MASK
;
743 base_dma
= tsoh
->dma_addr
& PAGE_MASK
;
745 p
= &tx_queue
->tso_headers_free
;
747 if (((unsigned long)*p
& PAGE_MASK
) == base_kva
)
753 pci_free_consistent(pci_dev
, PAGE_SIZE
, (void *)base_kva
, base_dma
);
756 static struct efx_tso_header
*
757 efx_tsoh_heap_alloc(struct efx_tx_queue
*tx_queue
, size_t header_len
)
759 struct efx_tso_header
*tsoh
;
761 tsoh
= kmalloc(TSOH_SIZE(header_len
), GFP_ATOMIC
| GFP_DMA
);
765 tsoh
->dma_addr
= pci_map_single(tx_queue
->efx
->pci_dev
,
766 TSOH_BUFFER(tsoh
), header_len
,
768 if (unlikely(pci_dma_mapping_error(tx_queue
->efx
->pci_dev
,
774 tsoh
->unmap_len
= header_len
;
779 efx_tsoh_heap_free(struct efx_tx_queue
*tx_queue
, struct efx_tso_header
*tsoh
)
781 pci_unmap_single(tx_queue
->efx
->pci_dev
,
782 tsoh
->dma_addr
, tsoh
->unmap_len
,
788 * efx_tx_queue_insert - push descriptors onto the TX queue
789 * @tx_queue: Efx TX queue
790 * @dma_addr: DMA address of fragment
791 * @len: Length of fragment
792 * @final_buffer: The final buffer inserted into the queue
794 * Push descriptors onto the TX queue. Return 0 on success or 1 if
797 static int efx_tx_queue_insert(struct efx_tx_queue
*tx_queue
,
798 dma_addr_t dma_addr
, unsigned len
,
799 struct efx_tx_buffer
**final_buffer
)
801 struct efx_tx_buffer
*buffer
;
802 struct efx_nic
*efx
= tx_queue
->efx
;
803 unsigned dma_len
, fill_level
, insert_ptr
;
806 EFX_BUG_ON_PARANOID(len
<= 0);
808 fill_level
= tx_queue
->insert_count
- tx_queue
->old_read_count
;
809 /* -1 as there is no way to represent all descriptors used */
810 q_space
= efx
->txq_entries
- 1 - fill_level
;
813 if (unlikely(q_space
-- <= 0)) {
814 /* It might be that completions have happened
815 * since the xmit path last checked. Update
816 * the xmit path's copy of read_count.
818 netif_tx_stop_queue(tx_queue
->core_txq
);
819 /* This memory barrier protects the change of
820 * queue state from the access of read_count. */
822 tx_queue
->old_read_count
=
823 ACCESS_ONCE(tx_queue
->read_count
);
824 fill_level
= (tx_queue
->insert_count
825 - tx_queue
->old_read_count
);
826 q_space
= efx
->txq_entries
- 1 - fill_level
;
827 if (unlikely(q_space
-- <= 0)) {
828 *final_buffer
= NULL
;
832 netif_tx_start_queue(tx_queue
->core_txq
);
835 insert_ptr
= tx_queue
->insert_count
& tx_queue
->ptr_mask
;
836 buffer
= &tx_queue
->buffer
[insert_ptr
];
837 ++tx_queue
->insert_count
;
839 EFX_BUG_ON_PARANOID(tx_queue
->insert_count
-
840 tx_queue
->read_count
>=
843 efx_tsoh_free(tx_queue
, buffer
);
844 EFX_BUG_ON_PARANOID(buffer
->len
);
845 EFX_BUG_ON_PARANOID(buffer
->unmap_len
);
846 EFX_BUG_ON_PARANOID(buffer
->skb
);
847 EFX_BUG_ON_PARANOID(!buffer
->continuation
);
848 EFX_BUG_ON_PARANOID(buffer
->tsoh
);
850 buffer
->dma_addr
= dma_addr
;
852 dma_len
= efx_max_tx_len(efx
, dma_addr
);
854 /* If there is enough space to send then do so */
858 buffer
->len
= dma_len
; /* Don't set the other members */
863 EFX_BUG_ON_PARANOID(!len
);
865 *final_buffer
= buffer
;
871 * Put a TSO header into the TX queue.
873 * This is special-cased because we know that it is small enough to fit in
874 * a single fragment, and we know it doesn't cross a page boundary. It
875 * also allows us to not worry about end-of-packet etc.
877 static void efx_tso_put_header(struct efx_tx_queue
*tx_queue
,
878 struct efx_tso_header
*tsoh
, unsigned len
)
880 struct efx_tx_buffer
*buffer
;
882 buffer
= &tx_queue
->buffer
[tx_queue
->insert_count
& tx_queue
->ptr_mask
];
883 efx_tsoh_free(tx_queue
, buffer
);
884 EFX_BUG_ON_PARANOID(buffer
->len
);
885 EFX_BUG_ON_PARANOID(buffer
->unmap_len
);
886 EFX_BUG_ON_PARANOID(buffer
->skb
);
887 EFX_BUG_ON_PARANOID(!buffer
->continuation
);
888 EFX_BUG_ON_PARANOID(buffer
->tsoh
);
890 buffer
->dma_addr
= tsoh
->dma_addr
;
893 ++tx_queue
->insert_count
;
897 /* Remove descriptors put into a tx_queue. */
898 static void efx_enqueue_unwind(struct efx_tx_queue
*tx_queue
)
900 struct efx_tx_buffer
*buffer
;
901 dma_addr_t unmap_addr
;
903 /* Work backwards until we hit the original insert pointer value */
904 while (tx_queue
->insert_count
!= tx_queue
->write_count
) {
905 --tx_queue
->insert_count
;
906 buffer
= &tx_queue
->buffer
[tx_queue
->insert_count
&
908 efx_tsoh_free(tx_queue
, buffer
);
909 EFX_BUG_ON_PARANOID(buffer
->skb
);
910 if (buffer
->unmap_len
) {
911 unmap_addr
= (buffer
->dma_addr
+ buffer
->len
-
913 if (buffer
->unmap_single
)
914 pci_unmap_single(tx_queue
->efx
->pci_dev
,
915 unmap_addr
, buffer
->unmap_len
,
918 pci_unmap_page(tx_queue
->efx
->pci_dev
,
919 unmap_addr
, buffer
->unmap_len
,
921 buffer
->unmap_len
= 0;
924 buffer
->continuation
= true;
929 /* Parse the SKB header and initialise state. */
930 static void tso_start(struct tso_state
*st
, const struct sk_buff
*skb
)
932 /* All ethernet/IP/TCP headers combined size is TCP header size
933 * plus offset of TCP header relative to start of packet.
935 st
->header_len
= ((tcp_hdr(skb
)->doff
<< 2u)
936 + PTR_DIFF(tcp_hdr(skb
), skb
->data
));
937 st
->full_packet_size
= st
->header_len
+ skb_shinfo(skb
)->gso_size
;
939 if (st
->protocol
== htons(ETH_P_IP
))
940 st
->ipv4_id
= ntohs(ip_hdr(skb
)->id
);
943 st
->seqnum
= ntohl(tcp_hdr(skb
)->seq
);
945 EFX_BUG_ON_PARANOID(tcp_hdr(skb
)->urg
);
946 EFX_BUG_ON_PARANOID(tcp_hdr(skb
)->syn
);
947 EFX_BUG_ON_PARANOID(tcp_hdr(skb
)->rst
);
949 st
->packet_space
= st
->full_packet_size
;
950 st
->out_len
= skb
->len
- st
->header_len
;
952 st
->unmap_single
= false;
955 static int tso_get_fragment(struct tso_state
*st
, struct efx_nic
*efx
,
958 st
->unmap_addr
= skb_frag_dma_map(&efx
->pci_dev
->dev
, frag
, 0,
959 skb_frag_size(frag
), DMA_TO_DEVICE
);
960 if (likely(!dma_mapping_error(&efx
->pci_dev
->dev
, st
->unmap_addr
))) {
961 st
->unmap_single
= false;
962 st
->unmap_len
= skb_frag_size(frag
);
963 st
->in_len
= skb_frag_size(frag
);
964 st
->dma_addr
= st
->unmap_addr
;
970 static int tso_get_head_fragment(struct tso_state
*st
, struct efx_nic
*efx
,
971 const struct sk_buff
*skb
)
973 int hl
= st
->header_len
;
974 int len
= skb_headlen(skb
) - hl
;
976 st
->unmap_addr
= pci_map_single(efx
->pci_dev
, skb
->data
+ hl
,
977 len
, PCI_DMA_TODEVICE
);
978 if (likely(!pci_dma_mapping_error(efx
->pci_dev
, st
->unmap_addr
))) {
979 st
->unmap_single
= true;
982 st
->dma_addr
= st
->unmap_addr
;
990 * tso_fill_packet_with_fragment - form descriptors for the current fragment
991 * @tx_queue: Efx TX queue
992 * @skb: Socket buffer
995 * Form descriptors for the current fragment, until we reach the end
996 * of fragment or end-of-packet. Return 0 on success, 1 if not enough
997 * space in @tx_queue.
999 static int tso_fill_packet_with_fragment(struct efx_tx_queue
*tx_queue
,
1000 const struct sk_buff
*skb
,
1001 struct tso_state
*st
)
1003 struct efx_tx_buffer
*buffer
;
1004 int n
, end_of_packet
, rc
;
1006 if (st
->in_len
== 0)
1008 if (st
->packet_space
== 0)
1011 EFX_BUG_ON_PARANOID(st
->in_len
<= 0);
1012 EFX_BUG_ON_PARANOID(st
->packet_space
<= 0);
1014 n
= min(st
->in_len
, st
->packet_space
);
1016 st
->packet_space
-= n
;
1020 rc
= efx_tx_queue_insert(tx_queue
, st
->dma_addr
, n
, &buffer
);
1021 if (likely(rc
== 0)) {
1022 if (st
->out_len
== 0)
1023 /* Transfer ownership of the skb */
1026 end_of_packet
= st
->out_len
== 0 || st
->packet_space
== 0;
1027 buffer
->continuation
= !end_of_packet
;
1029 if (st
->in_len
== 0) {
1030 /* Transfer ownership of the pci mapping */
1031 buffer
->unmap_len
= st
->unmap_len
;
1032 buffer
->unmap_single
= st
->unmap_single
;
1043 * tso_start_new_packet - generate a new header and prepare for the new packet
1044 * @tx_queue: Efx TX queue
1045 * @skb: Socket buffer
1048 * Generate a new header and prepare for the new packet. Return 0 on
1049 * success, or -1 if failed to alloc header.
1051 static int tso_start_new_packet(struct efx_tx_queue
*tx_queue
,
1052 const struct sk_buff
*skb
,
1053 struct tso_state
*st
)
1055 struct efx_tso_header
*tsoh
;
1056 struct tcphdr
*tsoh_th
;
1060 /* Allocate a DMA-mapped header buffer. */
1061 if (likely(TSOH_SIZE(st
->header_len
) <= TSOH_STD_SIZE
)) {
1062 if (tx_queue
->tso_headers_free
== NULL
) {
1063 if (efx_tsoh_block_alloc(tx_queue
))
1066 EFX_BUG_ON_PARANOID(!tx_queue
->tso_headers_free
);
1067 tsoh
= tx_queue
->tso_headers_free
;
1068 tx_queue
->tso_headers_free
= tsoh
->next
;
1069 tsoh
->unmap_len
= 0;
1071 tx_queue
->tso_long_headers
++;
1072 tsoh
= efx_tsoh_heap_alloc(tx_queue
, st
->header_len
);
1073 if (unlikely(!tsoh
))
1077 header
= TSOH_BUFFER(tsoh
);
1078 tsoh_th
= (struct tcphdr
*)(header
+ SKB_TCP_OFF(skb
));
1080 /* Copy and update the headers. */
1081 memcpy(header
, skb
->data
, st
->header_len
);
1083 tsoh_th
->seq
= htonl(st
->seqnum
);
1084 st
->seqnum
+= skb_shinfo(skb
)->gso_size
;
1085 if (st
->out_len
> skb_shinfo(skb
)->gso_size
) {
1086 /* This packet will not finish the TSO burst. */
1087 ip_length
= st
->full_packet_size
- ETH_HDR_LEN(skb
);
1091 /* This packet will be the last in the TSO burst. */
1092 ip_length
= st
->header_len
- ETH_HDR_LEN(skb
) + st
->out_len
;
1093 tsoh_th
->fin
= tcp_hdr(skb
)->fin
;
1094 tsoh_th
->psh
= tcp_hdr(skb
)->psh
;
1097 if (st
->protocol
== htons(ETH_P_IP
)) {
1098 struct iphdr
*tsoh_iph
=
1099 (struct iphdr
*)(header
+ SKB_IPV4_OFF(skb
));
1101 tsoh_iph
->tot_len
= htons(ip_length
);
1103 /* Linux leaves suitable gaps in the IP ID space for us to fill. */
1104 tsoh_iph
->id
= htons(st
->ipv4_id
);
1107 struct ipv6hdr
*tsoh_iph
=
1108 (struct ipv6hdr
*)(header
+ SKB_IPV6_OFF(skb
));
1110 tsoh_iph
->payload_len
= htons(ip_length
- sizeof(*tsoh_iph
));
1113 st
->packet_space
= skb_shinfo(skb
)->gso_size
;
1114 ++tx_queue
->tso_packets
;
1116 /* Form a descriptor for this header. */
1117 efx_tso_put_header(tx_queue
, tsoh
, st
->header_len
);
1124 * efx_enqueue_skb_tso - segment and transmit a TSO socket buffer
1125 * @tx_queue: Efx TX queue
1126 * @skb: Socket buffer
1128 * Context: You must hold netif_tx_lock() to call this function.
1130 * Add socket buffer @skb to @tx_queue, doing TSO or return != 0 if
1131 * @skb was not enqueued. In all cases @skb is consumed. Return
1132 * %NETDEV_TX_OK or %NETDEV_TX_BUSY.
1134 static int efx_enqueue_skb_tso(struct efx_tx_queue
*tx_queue
,
1135 struct sk_buff
*skb
)
1137 struct efx_nic
*efx
= tx_queue
->efx
;
1138 int frag_i
, rc
, rc2
= NETDEV_TX_OK
;
1139 struct tso_state state
;
1141 /* Find the packet protocol and sanity-check it */
1142 state
.protocol
= efx_tso_check_protocol(skb
);
1144 EFX_BUG_ON_PARANOID(tx_queue
->write_count
!= tx_queue
->insert_count
);
1146 tso_start(&state
, skb
);
1148 /* Assume that skb header area contains exactly the headers, and
1149 * all payload is in the frag list.
1151 if (skb_headlen(skb
) == state
.header_len
) {
1152 /* Grab the first payload fragment. */
1153 EFX_BUG_ON_PARANOID(skb_shinfo(skb
)->nr_frags
< 1);
1155 rc
= tso_get_fragment(&state
, efx
,
1156 skb_shinfo(skb
)->frags
+ frag_i
);
1160 rc
= tso_get_head_fragment(&state
, efx
, skb
);
1166 if (tso_start_new_packet(tx_queue
, skb
, &state
) < 0)
1170 rc
= tso_fill_packet_with_fragment(tx_queue
, skb
, &state
);
1172 rc2
= NETDEV_TX_BUSY
;
1176 /* Move onto the next fragment? */
1177 if (state
.in_len
== 0) {
1178 if (++frag_i
>= skb_shinfo(skb
)->nr_frags
)
1179 /* End of payload reached. */
1181 rc
= tso_get_fragment(&state
, efx
,
1182 skb_shinfo(skb
)->frags
+ frag_i
);
1187 /* Start at new packet? */
1188 if (state
.packet_space
== 0 &&
1189 tso_start_new_packet(tx_queue
, skb
, &state
) < 0)
1193 netdev_tx_sent_queue(tx_queue
->core_txq
, skb
->len
);
1195 /* Pass off to hardware */
1196 efx_nic_push_buffers(tx_queue
);
1198 tx_queue
->tso_bursts
++;
1199 return NETDEV_TX_OK
;
1202 netif_err(efx
, tx_err
, efx
->net_dev
,
1203 "Out of memory for TSO headers, or PCI mapping error\n");
1204 dev_kfree_skb_any(skb
);
1207 /* Free the DMA mapping we were in the process of writing out */
1208 if (state
.unmap_len
) {
1209 if (state
.unmap_single
)
1210 pci_unmap_single(efx
->pci_dev
, state
.unmap_addr
,
1211 state
.unmap_len
, PCI_DMA_TODEVICE
);
1213 pci_unmap_page(efx
->pci_dev
, state
.unmap_addr
,
1214 state
.unmap_len
, PCI_DMA_TODEVICE
);
1217 efx_enqueue_unwind(tx_queue
);
1223 * Free up all TSO datastructures associated with tx_queue. This
1224 * routine should be called only once the tx_queue is both empty and
1225 * will no longer be used.
1227 static void efx_fini_tso(struct efx_tx_queue
*tx_queue
)
1231 if (tx_queue
->buffer
) {
1232 for (i
= 0; i
<= tx_queue
->ptr_mask
; ++i
)
1233 efx_tsoh_free(tx_queue
, &tx_queue
->buffer
[i
]);
1236 while (tx_queue
->tso_headers_free
!= NULL
)
1237 efx_tsoh_block_free(tx_queue
, tx_queue
->tso_headers_free
,
1238 tx_queue
->efx
->pci_dev
);