Linux 3.4.102
[linux/fpc-iii.git] / drivers / net / ethernet / sfc / tx.c
blob305430da48fb24db49d8b991d31ea712de796b0f
1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2010 Solarflare Communications Inc.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
11 #include <linux/pci.h>
12 #include <linux/tcp.h>
13 #include <linux/ip.h>
14 #include <linux/in.h>
15 #include <linux/ipv6.h>
16 #include <linux/slab.h>
17 #include <net/ipv6.h>
18 #include <linux/if_ether.h>
19 #include <linux/highmem.h>
20 #include "net_driver.h"
21 #include "efx.h"
22 #include "nic.h"
23 #include "workarounds.h"
26 * TX descriptor ring full threshold
28 * The tx_queue descriptor ring fill-level must fall below this value
29 * before we restart the netif queue
31 #define EFX_TXQ_THRESHOLD(_efx) ((_efx)->txq_entries / 2u)
33 static void efx_dequeue_buffer(struct efx_tx_queue *tx_queue,
34 struct efx_tx_buffer *buffer,
35 unsigned int *pkts_compl,
36 unsigned int *bytes_compl)
38 if (buffer->unmap_len) {
39 struct pci_dev *pci_dev = tx_queue->efx->pci_dev;
40 dma_addr_t unmap_addr = (buffer->dma_addr + buffer->len -
41 buffer->unmap_len);
42 if (buffer->unmap_single)
43 pci_unmap_single(pci_dev, unmap_addr, buffer->unmap_len,
44 PCI_DMA_TODEVICE);
45 else
46 pci_unmap_page(pci_dev, unmap_addr, buffer->unmap_len,
47 PCI_DMA_TODEVICE);
48 buffer->unmap_len = 0;
49 buffer->unmap_single = false;
52 if (buffer->skb) {
53 (*pkts_compl)++;
54 (*bytes_compl) += buffer->skb->len;
55 dev_kfree_skb_any((struct sk_buff *) buffer->skb);
56 buffer->skb = NULL;
57 netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev,
58 "TX queue %d transmission id %x complete\n",
59 tx_queue->queue, tx_queue->read_count);
63 /**
64 * struct efx_tso_header - a DMA mapped buffer for packet headers
65 * @next: Linked list of free ones.
66 * The list is protected by the TX queue lock.
67 * @dma_unmap_len: Length to unmap for an oversize buffer, or 0.
68 * @dma_addr: The DMA address of the header below.
70 * This controls the memory used for a TSO header. Use TSOH_DATA()
71 * to find the packet header data. Use TSOH_SIZE() to calculate the
72 * total size required for a given packet header length. TSO headers
73 * in the free list are exactly %TSOH_STD_SIZE bytes in size.
75 struct efx_tso_header {
76 union {
77 struct efx_tso_header *next;
78 size_t unmap_len;
80 dma_addr_t dma_addr;
83 static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
84 struct sk_buff *skb);
85 static void efx_fini_tso(struct efx_tx_queue *tx_queue);
86 static void efx_tsoh_heap_free(struct efx_tx_queue *tx_queue,
87 struct efx_tso_header *tsoh);
89 static void efx_tsoh_free(struct efx_tx_queue *tx_queue,
90 struct efx_tx_buffer *buffer)
92 if (buffer->tsoh) {
93 if (likely(!buffer->tsoh->unmap_len)) {
94 buffer->tsoh->next = tx_queue->tso_headers_free;
95 tx_queue->tso_headers_free = buffer->tsoh;
96 } else {
97 efx_tsoh_heap_free(tx_queue, buffer->tsoh);
99 buffer->tsoh = NULL;
104 static inline unsigned
105 efx_max_tx_len(struct efx_nic *efx, dma_addr_t dma_addr)
107 /* Depending on the NIC revision, we can use descriptor
108 * lengths up to 8K or 8K-1. However, since PCI Express
109 * devices must split read requests at 4K boundaries, there is
110 * little benefit from using descriptors that cross those
111 * boundaries and we keep things simple by not doing so.
113 unsigned len = (~dma_addr & (EFX_PAGE_SIZE - 1)) + 1;
115 /* Work around hardware bug for unaligned buffers. */
116 if (EFX_WORKAROUND_5391(efx) && (dma_addr & 0xf))
117 len = min_t(unsigned, len, 512 - (dma_addr & 0xf));
119 return len;
122 unsigned int efx_tx_max_skb_descs(struct efx_nic *efx)
124 /* Header and payload descriptor for each output segment, plus
125 * one for every input fragment boundary within a segment
127 unsigned int max_descs = EFX_TSO_MAX_SEGS * 2 + MAX_SKB_FRAGS;
129 /* Possibly one more per segment for the alignment workaround */
130 if (EFX_WORKAROUND_5391(efx))
131 max_descs += EFX_TSO_MAX_SEGS;
133 /* Possibly more for PCIe page boundaries within input fragments */
134 if (PAGE_SIZE > EFX_PAGE_SIZE)
135 max_descs += max_t(unsigned int, MAX_SKB_FRAGS,
136 DIV_ROUND_UP(GSO_MAX_SIZE, EFX_PAGE_SIZE));
138 return max_descs;
142 * Add a socket buffer to a TX queue
144 * This maps all fragments of a socket buffer for DMA and adds them to
145 * the TX queue. The queue's insert pointer will be incremented by
146 * the number of fragments in the socket buffer.
148 * If any DMA mapping fails, any mapped fragments will be unmapped,
149 * the queue's insert pointer will be restored to its original value.
151 * This function is split out from efx_hard_start_xmit to allow the
152 * loopback test to direct packets via specific TX queues.
154 * Returns NETDEV_TX_OK or NETDEV_TX_BUSY
155 * You must hold netif_tx_lock() to call this function.
157 netdev_tx_t efx_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
159 struct efx_nic *efx = tx_queue->efx;
160 struct pci_dev *pci_dev = efx->pci_dev;
161 struct efx_tx_buffer *buffer;
162 skb_frag_t *fragment;
163 unsigned int len, unmap_len = 0, fill_level, insert_ptr;
164 dma_addr_t dma_addr, unmap_addr = 0;
165 unsigned int dma_len;
166 bool unmap_single;
167 int q_space, i = 0;
168 netdev_tx_t rc = NETDEV_TX_OK;
170 EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count);
172 if (skb_shinfo(skb)->gso_size)
173 return efx_enqueue_skb_tso(tx_queue, skb);
175 /* Get size of the initial fragment */
176 len = skb_headlen(skb);
178 /* Pad if necessary */
179 if (EFX_WORKAROUND_15592(efx) && skb->len <= 32) {
180 EFX_BUG_ON_PARANOID(skb->data_len);
181 len = 32 + 1;
182 if (skb_pad(skb, len - skb->len))
183 return NETDEV_TX_OK;
186 fill_level = tx_queue->insert_count - tx_queue->old_read_count;
187 q_space = efx->txq_entries - 1 - fill_level;
189 /* Map for DMA. Use pci_map_single rather than pci_map_page
190 * since this is more efficient on machines with sparse
191 * memory.
193 unmap_single = true;
194 dma_addr = pci_map_single(pci_dev, skb->data, len, PCI_DMA_TODEVICE);
196 /* Process all fragments */
197 while (1) {
198 if (unlikely(pci_dma_mapping_error(pci_dev, dma_addr)))
199 goto pci_err;
201 /* Store fields for marking in the per-fragment final
202 * descriptor */
203 unmap_len = len;
204 unmap_addr = dma_addr;
206 /* Add to TX queue, splitting across DMA boundaries */
207 do {
208 if (unlikely(q_space-- <= 0)) {
209 /* It might be that completions have
210 * happened since the xmit path last
211 * checked. Update the xmit path's
212 * copy of read_count.
214 netif_tx_stop_queue(tx_queue->core_txq);
215 /* This memory barrier protects the
216 * change of queue state from the access
217 * of read_count. */
218 smp_mb();
219 tx_queue->old_read_count =
220 ACCESS_ONCE(tx_queue->read_count);
221 fill_level = (tx_queue->insert_count
222 - tx_queue->old_read_count);
223 q_space = efx->txq_entries - 1 - fill_level;
224 if (unlikely(q_space-- <= 0)) {
225 rc = NETDEV_TX_BUSY;
226 goto unwind;
228 smp_mb();
229 if (likely(!efx->loopback_selftest))
230 netif_tx_start_queue(
231 tx_queue->core_txq);
234 insert_ptr = tx_queue->insert_count & tx_queue->ptr_mask;
235 buffer = &tx_queue->buffer[insert_ptr];
236 efx_tsoh_free(tx_queue, buffer);
237 EFX_BUG_ON_PARANOID(buffer->tsoh);
238 EFX_BUG_ON_PARANOID(buffer->skb);
239 EFX_BUG_ON_PARANOID(buffer->len);
240 EFX_BUG_ON_PARANOID(!buffer->continuation);
241 EFX_BUG_ON_PARANOID(buffer->unmap_len);
243 dma_len = efx_max_tx_len(efx, dma_addr);
244 if (likely(dma_len >= len))
245 dma_len = len;
247 /* Fill out per descriptor fields */
248 buffer->len = dma_len;
249 buffer->dma_addr = dma_addr;
250 len -= dma_len;
251 dma_addr += dma_len;
252 ++tx_queue->insert_count;
253 } while (len);
255 /* Transfer ownership of the unmapping to the final buffer */
256 buffer->unmap_single = unmap_single;
257 buffer->unmap_len = unmap_len;
258 unmap_len = 0;
260 /* Get address and size of next fragment */
261 if (i >= skb_shinfo(skb)->nr_frags)
262 break;
263 fragment = &skb_shinfo(skb)->frags[i];
264 len = skb_frag_size(fragment);
265 i++;
266 /* Map for DMA */
267 unmap_single = false;
268 dma_addr = skb_frag_dma_map(&pci_dev->dev, fragment, 0, len,
269 DMA_TO_DEVICE);
272 /* Transfer ownership of the skb to the final buffer */
273 buffer->skb = skb;
274 buffer->continuation = false;
276 netdev_tx_sent_queue(tx_queue->core_txq, skb->len);
278 /* Pass off to hardware */
279 efx_nic_push_buffers(tx_queue);
281 return NETDEV_TX_OK;
283 pci_err:
284 netif_err(efx, tx_err, efx->net_dev,
285 " TX queue %d could not map skb with %d bytes %d "
286 "fragments for DMA\n", tx_queue->queue, skb->len,
287 skb_shinfo(skb)->nr_frags + 1);
289 /* Mark the packet as transmitted, and free the SKB ourselves */
290 dev_kfree_skb_any(skb);
292 unwind:
293 /* Work backwards until we hit the original insert pointer value */
294 while (tx_queue->insert_count != tx_queue->write_count) {
295 unsigned int pkts_compl = 0, bytes_compl = 0;
296 --tx_queue->insert_count;
297 insert_ptr = tx_queue->insert_count & tx_queue->ptr_mask;
298 buffer = &tx_queue->buffer[insert_ptr];
299 efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
300 buffer->len = 0;
303 /* Free the fragment we were mid-way through pushing */
304 if (unmap_len) {
305 if (unmap_single)
306 pci_unmap_single(pci_dev, unmap_addr, unmap_len,
307 PCI_DMA_TODEVICE);
308 else
309 pci_unmap_page(pci_dev, unmap_addr, unmap_len,
310 PCI_DMA_TODEVICE);
313 return rc;
316 /* Remove packets from the TX queue
318 * This removes packets from the TX queue, up to and including the
319 * specified index.
321 static void efx_dequeue_buffers(struct efx_tx_queue *tx_queue,
322 unsigned int index,
323 unsigned int *pkts_compl,
324 unsigned int *bytes_compl)
326 struct efx_nic *efx = tx_queue->efx;
327 unsigned int stop_index, read_ptr;
329 stop_index = (index + 1) & tx_queue->ptr_mask;
330 read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
332 while (read_ptr != stop_index) {
333 struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
334 if (unlikely(buffer->len == 0)) {
335 netif_err(efx, tx_err, efx->net_dev,
336 "TX queue %d spurious TX completion id %x\n",
337 tx_queue->queue, read_ptr);
338 efx_schedule_reset(efx, RESET_TYPE_TX_SKIP);
339 return;
342 efx_dequeue_buffer(tx_queue, buffer, pkts_compl, bytes_compl);
343 buffer->continuation = true;
344 buffer->len = 0;
346 ++tx_queue->read_count;
347 read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
351 /* Initiate a packet transmission. We use one channel per CPU
352 * (sharing when we have more CPUs than channels). On Falcon, the TX
353 * completion events will be directed back to the CPU that transmitted
354 * the packet, which should be cache-efficient.
356 * Context: non-blocking.
357 * Note that returning anything other than NETDEV_TX_OK will cause the
358 * OS to free the skb.
360 netdev_tx_t efx_hard_start_xmit(struct sk_buff *skb,
361 struct net_device *net_dev)
363 struct efx_nic *efx = netdev_priv(net_dev);
364 struct efx_tx_queue *tx_queue;
365 unsigned index, type;
367 EFX_WARN_ON_PARANOID(!netif_device_present(net_dev));
369 index = skb_get_queue_mapping(skb);
370 type = skb->ip_summed == CHECKSUM_PARTIAL ? EFX_TXQ_TYPE_OFFLOAD : 0;
371 if (index >= efx->n_tx_channels) {
372 index -= efx->n_tx_channels;
373 type |= EFX_TXQ_TYPE_HIGHPRI;
375 tx_queue = efx_get_tx_queue(efx, index, type);
377 return efx_enqueue_skb(tx_queue, skb);
380 void efx_init_tx_queue_core_txq(struct efx_tx_queue *tx_queue)
382 struct efx_nic *efx = tx_queue->efx;
384 /* Must be inverse of queue lookup in efx_hard_start_xmit() */
385 tx_queue->core_txq =
386 netdev_get_tx_queue(efx->net_dev,
387 tx_queue->queue / EFX_TXQ_TYPES +
388 ((tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
389 efx->n_tx_channels : 0));
392 int efx_setup_tc(struct net_device *net_dev, u8 num_tc)
394 struct efx_nic *efx = netdev_priv(net_dev);
395 struct efx_channel *channel;
396 struct efx_tx_queue *tx_queue;
397 unsigned tc;
398 int rc;
400 if (efx_nic_rev(efx) < EFX_REV_FALCON_B0 || num_tc > EFX_MAX_TX_TC)
401 return -EINVAL;
403 if (num_tc == net_dev->num_tc)
404 return 0;
406 for (tc = 0; tc < num_tc; tc++) {
407 net_dev->tc_to_txq[tc].offset = tc * efx->n_tx_channels;
408 net_dev->tc_to_txq[tc].count = efx->n_tx_channels;
411 if (num_tc > net_dev->num_tc) {
412 /* Initialise high-priority queues as necessary */
413 efx_for_each_channel(channel, efx) {
414 efx_for_each_possible_channel_tx_queue(tx_queue,
415 channel) {
416 if (!(tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI))
417 continue;
418 if (!tx_queue->buffer) {
419 rc = efx_probe_tx_queue(tx_queue);
420 if (rc)
421 return rc;
423 if (!tx_queue->initialised)
424 efx_init_tx_queue(tx_queue);
425 efx_init_tx_queue_core_txq(tx_queue);
428 } else {
429 /* Reduce number of classes before number of queues */
430 net_dev->num_tc = num_tc;
433 rc = netif_set_real_num_tx_queues(net_dev,
434 max_t(int, num_tc, 1) *
435 efx->n_tx_channels);
436 if (rc)
437 return rc;
439 /* Do not destroy high-priority queues when they become
440 * unused. We would have to flush them first, and it is
441 * fairly difficult to flush a subset of TX queues. Leave
442 * it to efx_fini_channels().
445 net_dev->num_tc = num_tc;
446 return 0;
449 void efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index)
451 unsigned fill_level;
452 struct efx_nic *efx = tx_queue->efx;
453 unsigned int pkts_compl = 0, bytes_compl = 0;
455 EFX_BUG_ON_PARANOID(index > tx_queue->ptr_mask);
457 efx_dequeue_buffers(tx_queue, index, &pkts_compl, &bytes_compl);
458 netdev_tx_completed_queue(tx_queue->core_txq, pkts_compl, bytes_compl);
460 /* See if we need to restart the netif queue. This barrier
461 * separates the update of read_count from the test of the
462 * queue state. */
463 smp_mb();
464 if (unlikely(netif_tx_queue_stopped(tx_queue->core_txq)) &&
465 likely(efx->port_enabled) &&
466 likely(netif_device_present(efx->net_dev))) {
467 fill_level = tx_queue->insert_count - tx_queue->read_count;
468 if (fill_level < EFX_TXQ_THRESHOLD(efx))
469 netif_tx_wake_queue(tx_queue->core_txq);
472 /* Check whether the hardware queue is now empty */
473 if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) {
474 tx_queue->old_write_count = ACCESS_ONCE(tx_queue->write_count);
475 if (tx_queue->read_count == tx_queue->old_write_count) {
476 smp_mb();
477 tx_queue->empty_read_count =
478 tx_queue->read_count | EFX_EMPTY_COUNT_VALID;
483 int efx_probe_tx_queue(struct efx_tx_queue *tx_queue)
485 struct efx_nic *efx = tx_queue->efx;
486 unsigned int entries;
487 int i, rc;
489 /* Create the smallest power-of-two aligned ring */
490 entries = max(roundup_pow_of_two(efx->txq_entries), EFX_MIN_DMAQ_SIZE);
491 EFX_BUG_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
492 tx_queue->ptr_mask = entries - 1;
494 netif_dbg(efx, probe, efx->net_dev,
495 "creating TX queue %d size %#x mask %#x\n",
496 tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask);
498 /* Allocate software ring */
499 tx_queue->buffer = kcalloc(entries, sizeof(*tx_queue->buffer),
500 GFP_KERNEL);
501 if (!tx_queue->buffer)
502 return -ENOMEM;
503 for (i = 0; i <= tx_queue->ptr_mask; ++i)
504 tx_queue->buffer[i].continuation = true;
506 /* Allocate hardware ring */
507 rc = efx_nic_probe_tx(tx_queue);
508 if (rc)
509 goto fail;
511 return 0;
513 fail:
514 kfree(tx_queue->buffer);
515 tx_queue->buffer = NULL;
516 return rc;
519 void efx_init_tx_queue(struct efx_tx_queue *tx_queue)
521 netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
522 "initialising TX queue %d\n", tx_queue->queue);
524 tx_queue->insert_count = 0;
525 tx_queue->write_count = 0;
526 tx_queue->old_write_count = 0;
527 tx_queue->read_count = 0;
528 tx_queue->old_read_count = 0;
529 tx_queue->empty_read_count = 0 | EFX_EMPTY_COUNT_VALID;
531 /* Set up TX descriptor ring */
532 efx_nic_init_tx(tx_queue);
534 tx_queue->initialised = true;
537 void efx_release_tx_buffers(struct efx_tx_queue *tx_queue)
539 struct efx_tx_buffer *buffer;
541 if (!tx_queue->buffer)
542 return;
544 /* Free any buffers left in the ring */
545 while (tx_queue->read_count != tx_queue->write_count) {
546 unsigned int pkts_compl = 0, bytes_compl = 0;
547 buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask];
548 efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
549 buffer->continuation = true;
550 buffer->len = 0;
552 ++tx_queue->read_count;
554 netdev_tx_reset_queue(tx_queue->core_txq);
557 void efx_fini_tx_queue(struct efx_tx_queue *tx_queue)
559 if (!tx_queue->initialised)
560 return;
562 netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
563 "shutting down TX queue %d\n", tx_queue->queue);
565 tx_queue->initialised = false;
567 /* Flush TX queue, remove descriptor ring */
568 efx_nic_fini_tx(tx_queue);
570 efx_release_tx_buffers(tx_queue);
572 /* Free up TSO header cache */
573 efx_fini_tso(tx_queue);
576 void efx_remove_tx_queue(struct efx_tx_queue *tx_queue)
578 if (!tx_queue->buffer)
579 return;
581 netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
582 "destroying TX queue %d\n", tx_queue->queue);
583 efx_nic_remove_tx(tx_queue);
585 kfree(tx_queue->buffer);
586 tx_queue->buffer = NULL;
590 /* Efx TCP segmentation acceleration.
592 * Why? Because by doing it here in the driver we can go significantly
593 * faster than the GSO.
595 * Requires TX checksum offload support.
598 /* Number of bytes inserted at the start of a TSO header buffer,
599 * similar to NET_IP_ALIGN.
601 #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
602 #define TSOH_OFFSET 0
603 #else
604 #define TSOH_OFFSET NET_IP_ALIGN
605 #endif
607 #define TSOH_BUFFER(tsoh) ((u8 *)(tsoh + 1) + TSOH_OFFSET)
609 /* Total size of struct efx_tso_header, buffer and padding */
610 #define TSOH_SIZE(hdr_len) \
611 (sizeof(struct efx_tso_header) + TSOH_OFFSET + hdr_len)
613 /* Size of blocks on free list. Larger blocks must be allocated from
614 * the heap.
616 #define TSOH_STD_SIZE 128
618 #define PTR_DIFF(p1, p2) ((u8 *)(p1) - (u8 *)(p2))
619 #define ETH_HDR_LEN(skb) (skb_network_header(skb) - (skb)->data)
620 #define SKB_TCP_OFF(skb) PTR_DIFF(tcp_hdr(skb), (skb)->data)
621 #define SKB_IPV4_OFF(skb) PTR_DIFF(ip_hdr(skb), (skb)->data)
622 #define SKB_IPV6_OFF(skb) PTR_DIFF(ipv6_hdr(skb), (skb)->data)
625 * struct tso_state - TSO state for an SKB
626 * @out_len: Remaining length in current segment
627 * @seqnum: Current sequence number
628 * @ipv4_id: Current IPv4 ID, host endian
629 * @packet_space: Remaining space in current packet
630 * @dma_addr: DMA address of current position
631 * @in_len: Remaining length in current SKB fragment
632 * @unmap_len: Length of SKB fragment
633 * @unmap_addr: DMA address of SKB fragment
634 * @unmap_single: DMA single vs page mapping flag
635 * @protocol: Network protocol (after any VLAN header)
636 * @header_len: Number of bytes of header
637 * @full_packet_size: Number of bytes to put in each outgoing segment
639 * The state used during segmentation. It is put into this data structure
640 * just to make it easy to pass into inline functions.
642 struct tso_state {
643 /* Output position */
644 unsigned out_len;
645 unsigned seqnum;
646 unsigned ipv4_id;
647 unsigned packet_space;
649 /* Input position */
650 dma_addr_t dma_addr;
651 unsigned in_len;
652 unsigned unmap_len;
653 dma_addr_t unmap_addr;
654 bool unmap_single;
656 __be16 protocol;
657 unsigned header_len;
658 int full_packet_size;
663 * Verify that our various assumptions about sk_buffs and the conditions
664 * under which TSO will be attempted hold true. Return the protocol number.
666 static __be16 efx_tso_check_protocol(struct sk_buff *skb)
668 __be16 protocol = skb->protocol;
670 EFX_BUG_ON_PARANOID(((struct ethhdr *)skb->data)->h_proto !=
671 protocol);
672 if (protocol == htons(ETH_P_8021Q)) {
673 /* Find the encapsulated protocol; reset network header
674 * and transport header based on that. */
675 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
676 protocol = veh->h_vlan_encapsulated_proto;
677 skb_set_network_header(skb, sizeof(*veh));
678 if (protocol == htons(ETH_P_IP))
679 skb_set_transport_header(skb, sizeof(*veh) +
680 4 * ip_hdr(skb)->ihl);
681 else if (protocol == htons(ETH_P_IPV6))
682 skb_set_transport_header(skb, sizeof(*veh) +
683 sizeof(struct ipv6hdr));
686 if (protocol == htons(ETH_P_IP)) {
687 EFX_BUG_ON_PARANOID(ip_hdr(skb)->protocol != IPPROTO_TCP);
688 } else {
689 EFX_BUG_ON_PARANOID(protocol != htons(ETH_P_IPV6));
690 EFX_BUG_ON_PARANOID(ipv6_hdr(skb)->nexthdr != NEXTHDR_TCP);
692 EFX_BUG_ON_PARANOID((PTR_DIFF(tcp_hdr(skb), skb->data)
693 + (tcp_hdr(skb)->doff << 2u)) >
694 skb_headlen(skb));
696 return protocol;
701 * Allocate a page worth of efx_tso_header structures, and string them
702 * into the tx_queue->tso_headers_free linked list. Return 0 or -ENOMEM.
704 static int efx_tsoh_block_alloc(struct efx_tx_queue *tx_queue)
707 struct pci_dev *pci_dev = tx_queue->efx->pci_dev;
708 struct efx_tso_header *tsoh;
709 dma_addr_t dma_addr;
710 u8 *base_kva, *kva;
712 base_kva = pci_alloc_consistent(pci_dev, PAGE_SIZE, &dma_addr);
713 if (base_kva == NULL) {
714 netif_err(tx_queue->efx, tx_err, tx_queue->efx->net_dev,
715 "Unable to allocate page for TSO headers\n");
716 return -ENOMEM;
719 /* pci_alloc_consistent() allocates pages. */
720 EFX_BUG_ON_PARANOID(dma_addr & (PAGE_SIZE - 1u));
722 for (kva = base_kva; kva < base_kva + PAGE_SIZE; kva += TSOH_STD_SIZE) {
723 tsoh = (struct efx_tso_header *)kva;
724 tsoh->dma_addr = dma_addr + (TSOH_BUFFER(tsoh) - base_kva);
725 tsoh->next = tx_queue->tso_headers_free;
726 tx_queue->tso_headers_free = tsoh;
729 return 0;
733 /* Free up a TSO header, and all others in the same page. */
734 static void efx_tsoh_block_free(struct efx_tx_queue *tx_queue,
735 struct efx_tso_header *tsoh,
736 struct pci_dev *pci_dev)
738 struct efx_tso_header **p;
739 unsigned long base_kva;
740 dma_addr_t base_dma;
742 base_kva = (unsigned long)tsoh & PAGE_MASK;
743 base_dma = tsoh->dma_addr & PAGE_MASK;
745 p = &tx_queue->tso_headers_free;
746 while (*p != NULL) {
747 if (((unsigned long)*p & PAGE_MASK) == base_kva)
748 *p = (*p)->next;
749 else
750 p = &(*p)->next;
753 pci_free_consistent(pci_dev, PAGE_SIZE, (void *)base_kva, base_dma);
756 static struct efx_tso_header *
757 efx_tsoh_heap_alloc(struct efx_tx_queue *tx_queue, size_t header_len)
759 struct efx_tso_header *tsoh;
761 tsoh = kmalloc(TSOH_SIZE(header_len), GFP_ATOMIC | GFP_DMA);
762 if (unlikely(!tsoh))
763 return NULL;
765 tsoh->dma_addr = pci_map_single(tx_queue->efx->pci_dev,
766 TSOH_BUFFER(tsoh), header_len,
767 PCI_DMA_TODEVICE);
768 if (unlikely(pci_dma_mapping_error(tx_queue->efx->pci_dev,
769 tsoh->dma_addr))) {
770 kfree(tsoh);
771 return NULL;
774 tsoh->unmap_len = header_len;
775 return tsoh;
778 static void
779 efx_tsoh_heap_free(struct efx_tx_queue *tx_queue, struct efx_tso_header *tsoh)
781 pci_unmap_single(tx_queue->efx->pci_dev,
782 tsoh->dma_addr, tsoh->unmap_len,
783 PCI_DMA_TODEVICE);
784 kfree(tsoh);
788 * efx_tx_queue_insert - push descriptors onto the TX queue
789 * @tx_queue: Efx TX queue
790 * @dma_addr: DMA address of fragment
791 * @len: Length of fragment
792 * @final_buffer: The final buffer inserted into the queue
794 * Push descriptors onto the TX queue. Return 0 on success or 1 if
795 * @tx_queue full.
797 static int efx_tx_queue_insert(struct efx_tx_queue *tx_queue,
798 dma_addr_t dma_addr, unsigned len,
799 struct efx_tx_buffer **final_buffer)
801 struct efx_tx_buffer *buffer;
802 struct efx_nic *efx = tx_queue->efx;
803 unsigned dma_len, fill_level, insert_ptr;
804 int q_space;
806 EFX_BUG_ON_PARANOID(len <= 0);
808 fill_level = tx_queue->insert_count - tx_queue->old_read_count;
809 /* -1 as there is no way to represent all descriptors used */
810 q_space = efx->txq_entries - 1 - fill_level;
812 while (1) {
813 if (unlikely(q_space-- <= 0)) {
814 /* It might be that completions have happened
815 * since the xmit path last checked. Update
816 * the xmit path's copy of read_count.
818 netif_tx_stop_queue(tx_queue->core_txq);
819 /* This memory barrier protects the change of
820 * queue state from the access of read_count. */
821 smp_mb();
822 tx_queue->old_read_count =
823 ACCESS_ONCE(tx_queue->read_count);
824 fill_level = (tx_queue->insert_count
825 - tx_queue->old_read_count);
826 q_space = efx->txq_entries - 1 - fill_level;
827 if (unlikely(q_space-- <= 0)) {
828 *final_buffer = NULL;
829 return 1;
831 smp_mb();
832 netif_tx_start_queue(tx_queue->core_txq);
835 insert_ptr = tx_queue->insert_count & tx_queue->ptr_mask;
836 buffer = &tx_queue->buffer[insert_ptr];
837 ++tx_queue->insert_count;
839 EFX_BUG_ON_PARANOID(tx_queue->insert_count -
840 tx_queue->read_count >=
841 efx->txq_entries);
843 efx_tsoh_free(tx_queue, buffer);
844 EFX_BUG_ON_PARANOID(buffer->len);
845 EFX_BUG_ON_PARANOID(buffer->unmap_len);
846 EFX_BUG_ON_PARANOID(buffer->skb);
847 EFX_BUG_ON_PARANOID(!buffer->continuation);
848 EFX_BUG_ON_PARANOID(buffer->tsoh);
850 buffer->dma_addr = dma_addr;
852 dma_len = efx_max_tx_len(efx, dma_addr);
854 /* If there is enough space to send then do so */
855 if (dma_len >= len)
856 break;
858 buffer->len = dma_len; /* Don't set the other members */
859 dma_addr += dma_len;
860 len -= dma_len;
863 EFX_BUG_ON_PARANOID(!len);
864 buffer->len = len;
865 *final_buffer = buffer;
866 return 0;
871 * Put a TSO header into the TX queue.
873 * This is special-cased because we know that it is small enough to fit in
874 * a single fragment, and we know it doesn't cross a page boundary. It
875 * also allows us to not worry about end-of-packet etc.
877 static void efx_tso_put_header(struct efx_tx_queue *tx_queue,
878 struct efx_tso_header *tsoh, unsigned len)
880 struct efx_tx_buffer *buffer;
882 buffer = &tx_queue->buffer[tx_queue->insert_count & tx_queue->ptr_mask];
883 efx_tsoh_free(tx_queue, buffer);
884 EFX_BUG_ON_PARANOID(buffer->len);
885 EFX_BUG_ON_PARANOID(buffer->unmap_len);
886 EFX_BUG_ON_PARANOID(buffer->skb);
887 EFX_BUG_ON_PARANOID(!buffer->continuation);
888 EFX_BUG_ON_PARANOID(buffer->tsoh);
889 buffer->len = len;
890 buffer->dma_addr = tsoh->dma_addr;
891 buffer->tsoh = tsoh;
893 ++tx_queue->insert_count;
897 /* Remove descriptors put into a tx_queue. */
898 static void efx_enqueue_unwind(struct efx_tx_queue *tx_queue)
900 struct efx_tx_buffer *buffer;
901 dma_addr_t unmap_addr;
903 /* Work backwards until we hit the original insert pointer value */
904 while (tx_queue->insert_count != tx_queue->write_count) {
905 --tx_queue->insert_count;
906 buffer = &tx_queue->buffer[tx_queue->insert_count &
907 tx_queue->ptr_mask];
908 efx_tsoh_free(tx_queue, buffer);
909 EFX_BUG_ON_PARANOID(buffer->skb);
910 if (buffer->unmap_len) {
911 unmap_addr = (buffer->dma_addr + buffer->len -
912 buffer->unmap_len);
913 if (buffer->unmap_single)
914 pci_unmap_single(tx_queue->efx->pci_dev,
915 unmap_addr, buffer->unmap_len,
916 PCI_DMA_TODEVICE);
917 else
918 pci_unmap_page(tx_queue->efx->pci_dev,
919 unmap_addr, buffer->unmap_len,
920 PCI_DMA_TODEVICE);
921 buffer->unmap_len = 0;
923 buffer->len = 0;
924 buffer->continuation = true;
929 /* Parse the SKB header and initialise state. */
930 static void tso_start(struct tso_state *st, const struct sk_buff *skb)
932 /* All ethernet/IP/TCP headers combined size is TCP header size
933 * plus offset of TCP header relative to start of packet.
935 st->header_len = ((tcp_hdr(skb)->doff << 2u)
936 + PTR_DIFF(tcp_hdr(skb), skb->data));
937 st->full_packet_size = st->header_len + skb_shinfo(skb)->gso_size;
939 if (st->protocol == htons(ETH_P_IP))
940 st->ipv4_id = ntohs(ip_hdr(skb)->id);
941 else
942 st->ipv4_id = 0;
943 st->seqnum = ntohl(tcp_hdr(skb)->seq);
945 EFX_BUG_ON_PARANOID(tcp_hdr(skb)->urg);
946 EFX_BUG_ON_PARANOID(tcp_hdr(skb)->syn);
947 EFX_BUG_ON_PARANOID(tcp_hdr(skb)->rst);
949 st->packet_space = st->full_packet_size;
950 st->out_len = skb->len - st->header_len;
951 st->unmap_len = 0;
952 st->unmap_single = false;
955 static int tso_get_fragment(struct tso_state *st, struct efx_nic *efx,
956 skb_frag_t *frag)
958 st->unmap_addr = skb_frag_dma_map(&efx->pci_dev->dev, frag, 0,
959 skb_frag_size(frag), DMA_TO_DEVICE);
960 if (likely(!dma_mapping_error(&efx->pci_dev->dev, st->unmap_addr))) {
961 st->unmap_single = false;
962 st->unmap_len = skb_frag_size(frag);
963 st->in_len = skb_frag_size(frag);
964 st->dma_addr = st->unmap_addr;
965 return 0;
967 return -ENOMEM;
970 static int tso_get_head_fragment(struct tso_state *st, struct efx_nic *efx,
971 const struct sk_buff *skb)
973 int hl = st->header_len;
974 int len = skb_headlen(skb) - hl;
976 st->unmap_addr = pci_map_single(efx->pci_dev, skb->data + hl,
977 len, PCI_DMA_TODEVICE);
978 if (likely(!pci_dma_mapping_error(efx->pci_dev, st->unmap_addr))) {
979 st->unmap_single = true;
980 st->unmap_len = len;
981 st->in_len = len;
982 st->dma_addr = st->unmap_addr;
983 return 0;
985 return -ENOMEM;
990 * tso_fill_packet_with_fragment - form descriptors for the current fragment
991 * @tx_queue: Efx TX queue
992 * @skb: Socket buffer
993 * @st: TSO state
995 * Form descriptors for the current fragment, until we reach the end
996 * of fragment or end-of-packet. Return 0 on success, 1 if not enough
997 * space in @tx_queue.
999 static int tso_fill_packet_with_fragment(struct efx_tx_queue *tx_queue,
1000 const struct sk_buff *skb,
1001 struct tso_state *st)
1003 struct efx_tx_buffer *buffer;
1004 int n, end_of_packet, rc;
1006 if (st->in_len == 0)
1007 return 0;
1008 if (st->packet_space == 0)
1009 return 0;
1011 EFX_BUG_ON_PARANOID(st->in_len <= 0);
1012 EFX_BUG_ON_PARANOID(st->packet_space <= 0);
1014 n = min(st->in_len, st->packet_space);
1016 st->packet_space -= n;
1017 st->out_len -= n;
1018 st->in_len -= n;
1020 rc = efx_tx_queue_insert(tx_queue, st->dma_addr, n, &buffer);
1021 if (likely(rc == 0)) {
1022 if (st->out_len == 0)
1023 /* Transfer ownership of the skb */
1024 buffer->skb = skb;
1026 end_of_packet = st->out_len == 0 || st->packet_space == 0;
1027 buffer->continuation = !end_of_packet;
1029 if (st->in_len == 0) {
1030 /* Transfer ownership of the pci mapping */
1031 buffer->unmap_len = st->unmap_len;
1032 buffer->unmap_single = st->unmap_single;
1033 st->unmap_len = 0;
1037 st->dma_addr += n;
1038 return rc;
1043 * tso_start_new_packet - generate a new header and prepare for the new packet
1044 * @tx_queue: Efx TX queue
1045 * @skb: Socket buffer
1046 * @st: TSO state
1048 * Generate a new header and prepare for the new packet. Return 0 on
1049 * success, or -1 if failed to alloc header.
1051 static int tso_start_new_packet(struct efx_tx_queue *tx_queue,
1052 const struct sk_buff *skb,
1053 struct tso_state *st)
1055 struct efx_tso_header *tsoh;
1056 struct tcphdr *tsoh_th;
1057 unsigned ip_length;
1058 u8 *header;
1060 /* Allocate a DMA-mapped header buffer. */
1061 if (likely(TSOH_SIZE(st->header_len) <= TSOH_STD_SIZE)) {
1062 if (tx_queue->tso_headers_free == NULL) {
1063 if (efx_tsoh_block_alloc(tx_queue))
1064 return -1;
1066 EFX_BUG_ON_PARANOID(!tx_queue->tso_headers_free);
1067 tsoh = tx_queue->tso_headers_free;
1068 tx_queue->tso_headers_free = tsoh->next;
1069 tsoh->unmap_len = 0;
1070 } else {
1071 tx_queue->tso_long_headers++;
1072 tsoh = efx_tsoh_heap_alloc(tx_queue, st->header_len);
1073 if (unlikely(!tsoh))
1074 return -1;
1077 header = TSOH_BUFFER(tsoh);
1078 tsoh_th = (struct tcphdr *)(header + SKB_TCP_OFF(skb));
1080 /* Copy and update the headers. */
1081 memcpy(header, skb->data, st->header_len);
1083 tsoh_th->seq = htonl(st->seqnum);
1084 st->seqnum += skb_shinfo(skb)->gso_size;
1085 if (st->out_len > skb_shinfo(skb)->gso_size) {
1086 /* This packet will not finish the TSO burst. */
1087 ip_length = st->full_packet_size - ETH_HDR_LEN(skb);
1088 tsoh_th->fin = 0;
1089 tsoh_th->psh = 0;
1090 } else {
1091 /* This packet will be the last in the TSO burst. */
1092 ip_length = st->header_len - ETH_HDR_LEN(skb) + st->out_len;
1093 tsoh_th->fin = tcp_hdr(skb)->fin;
1094 tsoh_th->psh = tcp_hdr(skb)->psh;
1097 if (st->protocol == htons(ETH_P_IP)) {
1098 struct iphdr *tsoh_iph =
1099 (struct iphdr *)(header + SKB_IPV4_OFF(skb));
1101 tsoh_iph->tot_len = htons(ip_length);
1103 /* Linux leaves suitable gaps in the IP ID space for us to fill. */
1104 tsoh_iph->id = htons(st->ipv4_id);
1105 st->ipv4_id++;
1106 } else {
1107 struct ipv6hdr *tsoh_iph =
1108 (struct ipv6hdr *)(header + SKB_IPV6_OFF(skb));
1110 tsoh_iph->payload_len = htons(ip_length - sizeof(*tsoh_iph));
1113 st->packet_space = skb_shinfo(skb)->gso_size;
1114 ++tx_queue->tso_packets;
1116 /* Form a descriptor for this header. */
1117 efx_tso_put_header(tx_queue, tsoh, st->header_len);
1119 return 0;
1124 * efx_enqueue_skb_tso - segment and transmit a TSO socket buffer
1125 * @tx_queue: Efx TX queue
1126 * @skb: Socket buffer
1128 * Context: You must hold netif_tx_lock() to call this function.
1130 * Add socket buffer @skb to @tx_queue, doing TSO or return != 0 if
1131 * @skb was not enqueued. In all cases @skb is consumed. Return
1132 * %NETDEV_TX_OK or %NETDEV_TX_BUSY.
1134 static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
1135 struct sk_buff *skb)
1137 struct efx_nic *efx = tx_queue->efx;
1138 int frag_i, rc, rc2 = NETDEV_TX_OK;
1139 struct tso_state state;
1141 /* Find the packet protocol and sanity-check it */
1142 state.protocol = efx_tso_check_protocol(skb);
1144 EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count);
1146 tso_start(&state, skb);
1148 /* Assume that skb header area contains exactly the headers, and
1149 * all payload is in the frag list.
1151 if (skb_headlen(skb) == state.header_len) {
1152 /* Grab the first payload fragment. */
1153 EFX_BUG_ON_PARANOID(skb_shinfo(skb)->nr_frags < 1);
1154 frag_i = 0;
1155 rc = tso_get_fragment(&state, efx,
1156 skb_shinfo(skb)->frags + frag_i);
1157 if (rc)
1158 goto mem_err;
1159 } else {
1160 rc = tso_get_head_fragment(&state, efx, skb);
1161 if (rc)
1162 goto mem_err;
1163 frag_i = -1;
1166 if (tso_start_new_packet(tx_queue, skb, &state) < 0)
1167 goto mem_err;
1169 while (1) {
1170 rc = tso_fill_packet_with_fragment(tx_queue, skb, &state);
1171 if (unlikely(rc)) {
1172 rc2 = NETDEV_TX_BUSY;
1173 goto unwind;
1176 /* Move onto the next fragment? */
1177 if (state.in_len == 0) {
1178 if (++frag_i >= skb_shinfo(skb)->nr_frags)
1179 /* End of payload reached. */
1180 break;
1181 rc = tso_get_fragment(&state, efx,
1182 skb_shinfo(skb)->frags + frag_i);
1183 if (rc)
1184 goto mem_err;
1187 /* Start at new packet? */
1188 if (state.packet_space == 0 &&
1189 tso_start_new_packet(tx_queue, skb, &state) < 0)
1190 goto mem_err;
1193 netdev_tx_sent_queue(tx_queue->core_txq, skb->len);
1195 /* Pass off to hardware */
1196 efx_nic_push_buffers(tx_queue);
1198 tx_queue->tso_bursts++;
1199 return NETDEV_TX_OK;
1201 mem_err:
1202 netif_err(efx, tx_err, efx->net_dev,
1203 "Out of memory for TSO headers, or PCI mapping error\n");
1204 dev_kfree_skb_any(skb);
1206 unwind:
1207 /* Free the DMA mapping we were in the process of writing out */
1208 if (state.unmap_len) {
1209 if (state.unmap_single)
1210 pci_unmap_single(efx->pci_dev, state.unmap_addr,
1211 state.unmap_len, PCI_DMA_TODEVICE);
1212 else
1213 pci_unmap_page(efx->pci_dev, state.unmap_addr,
1214 state.unmap_len, PCI_DMA_TODEVICE);
1217 efx_enqueue_unwind(tx_queue);
1218 return rc2;
1223 * Free up all TSO datastructures associated with tx_queue. This
1224 * routine should be called only once the tx_queue is both empty and
1225 * will no longer be used.
1227 static void efx_fini_tso(struct efx_tx_queue *tx_queue)
1229 unsigned i;
1231 if (tx_queue->buffer) {
1232 for (i = 0; i <= tx_queue->ptr_mask; ++i)
1233 efx_tsoh_free(tx_queue, &tx_queue->buffer[i]);
1236 while (tx_queue->tso_headers_free != NULL)
1237 efx_tsoh_block_free(tx_queue, tx_queue->tso_headers_free,
1238 tx_queue->efx->pci_dev);