1 /* $Id: sungem.c,v 1.44.2.22 2002/03/13 01:18:12 davem Exp $
2 * sungem.c: Sun GEM ethernet driver.
4 * Copyright (C) 2000, 2001, 2002, 2003 David S. Miller (davem@redhat.com)
6 * Support for Apple GMAC and assorted PHYs, WOL, Power Management
7 * (C) 2001,2002,2003 Benjamin Herrenscmidt (benh@kernel.crashing.org)
8 * (C) 2004,2005 Benjamin Herrenscmidt, IBM Corp.
10 * NAPI and NETPOLL support
11 * (C) 2004 by Eric Lemoine (eric.lemoine@gmail.com)
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17 #include <linux/module.h>
18 #include <linux/kernel.h>
19 #include <linux/types.h>
20 #include <linux/fcntl.h>
21 #include <linux/interrupt.h>
22 #include <linux/ioport.h>
24 #include <linux/sched.h>
25 #include <linux/string.h>
26 #include <linux/delay.h>
27 #include <linux/init.h>
28 #include <linux/errno.h>
29 #include <linux/pci.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/netdevice.h>
32 #include <linux/etherdevice.h>
33 #include <linux/skbuff.h>
34 #include <linux/mii.h>
35 #include <linux/ethtool.h>
36 #include <linux/crc32.h>
37 #include <linux/random.h>
38 #include <linux/workqueue.h>
39 #include <linux/if_vlan.h>
40 #include <linux/bitops.h>
42 #include <linux/gfp.h>
45 #include <asm/byteorder.h>
46 #include <asm/uaccess.h>
50 #include <asm/idprom.h>
54 #ifdef CONFIG_PPC_PMAC
55 #include <asm/pci-bridge.h>
57 #include <asm/machdep.h>
58 #include <asm/pmac_feature.h>
61 #include <linux/sungem_phy.h>
64 /* Stripping FCS is causing problems, disabled for now */
67 #define DEFAULT_MSG (NETIF_MSG_DRV | \
71 #define ADVERTISE_MASK (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | \
72 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | \
73 SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full | \
74 SUPPORTED_Pause | SUPPORTED_Autoneg)
76 #define DRV_NAME "sungem"
77 #define DRV_VERSION "1.0"
78 #define DRV_AUTHOR "David S. Miller <davem@redhat.com>"
80 static char version
[] __devinitdata
=
81 DRV_NAME
".c:v" DRV_VERSION
" " DRV_AUTHOR
"\n";
83 MODULE_AUTHOR(DRV_AUTHOR
);
84 MODULE_DESCRIPTION("Sun GEM Gbit ethernet driver");
85 MODULE_LICENSE("GPL");
87 #define GEM_MODULE_NAME "gem"
89 static DEFINE_PCI_DEVICE_TABLE(gem_pci_tbl
) = {
90 { PCI_VENDOR_ID_SUN
, PCI_DEVICE_ID_SUN_GEM
,
91 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
93 /* These models only differ from the original GEM in
94 * that their tx/rx fifos are of a different size and
95 * they only support 10/100 speeds. -DaveM
97 * Apple's GMAC does support gigabit on machines with
98 * the BCM54xx PHYs. -BenH
100 { PCI_VENDOR_ID_SUN
, PCI_DEVICE_ID_SUN_RIO_GEM
,
101 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
102 { PCI_VENDOR_ID_APPLE
, PCI_DEVICE_ID_APPLE_UNI_N_GMAC
,
103 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
104 { PCI_VENDOR_ID_APPLE
, PCI_DEVICE_ID_APPLE_UNI_N_GMACP
,
105 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
106 { PCI_VENDOR_ID_APPLE
, PCI_DEVICE_ID_APPLE_UNI_N_GMAC2
,
107 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
108 { PCI_VENDOR_ID_APPLE
, PCI_DEVICE_ID_APPLE_K2_GMAC
,
109 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
110 { PCI_VENDOR_ID_APPLE
, PCI_DEVICE_ID_APPLE_SH_SUNGEM
,
111 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
112 { PCI_VENDOR_ID_APPLE
, PCI_DEVICE_ID_APPLE_IPID2_GMAC
,
113 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
117 MODULE_DEVICE_TABLE(pci
, gem_pci_tbl
);
119 static u16
__phy_read(struct gem
*gp
, int phy_addr
, int reg
)
126 cmd
|= (phy_addr
<< 23) & MIF_FRAME_PHYAD
;
127 cmd
|= (reg
<< 18) & MIF_FRAME_REGAD
;
128 cmd
|= (MIF_FRAME_TAMSB
);
129 writel(cmd
, gp
->regs
+ MIF_FRAME
);
132 cmd
= readl(gp
->regs
+ MIF_FRAME
);
133 if (cmd
& MIF_FRAME_TALSB
)
142 return cmd
& MIF_FRAME_DATA
;
145 static inline int _phy_read(struct net_device
*dev
, int mii_id
, int reg
)
147 struct gem
*gp
= netdev_priv(dev
);
148 return __phy_read(gp
, mii_id
, reg
);
151 static inline u16
phy_read(struct gem
*gp
, int reg
)
153 return __phy_read(gp
, gp
->mii_phy_addr
, reg
);
156 static void __phy_write(struct gem
*gp
, int phy_addr
, int reg
, u16 val
)
163 cmd
|= (phy_addr
<< 23) & MIF_FRAME_PHYAD
;
164 cmd
|= (reg
<< 18) & MIF_FRAME_REGAD
;
165 cmd
|= (MIF_FRAME_TAMSB
);
166 cmd
|= (val
& MIF_FRAME_DATA
);
167 writel(cmd
, gp
->regs
+ MIF_FRAME
);
170 cmd
= readl(gp
->regs
+ MIF_FRAME
);
171 if (cmd
& MIF_FRAME_TALSB
)
178 static inline void _phy_write(struct net_device
*dev
, int mii_id
, int reg
, int val
)
180 struct gem
*gp
= netdev_priv(dev
);
181 __phy_write(gp
, mii_id
, reg
, val
& 0xffff);
184 static inline void phy_write(struct gem
*gp
, int reg
, u16 val
)
186 __phy_write(gp
, gp
->mii_phy_addr
, reg
, val
);
189 static inline void gem_enable_ints(struct gem
*gp
)
191 /* Enable all interrupts but TXDONE */
192 writel(GREG_STAT_TXDONE
, gp
->regs
+ GREG_IMASK
);
195 static inline void gem_disable_ints(struct gem
*gp
)
197 /* Disable all interrupts, including TXDONE */
198 writel(GREG_STAT_NAPI
| GREG_STAT_TXDONE
, gp
->regs
+ GREG_IMASK
);
199 (void)readl(gp
->regs
+ GREG_IMASK
); /* write posting */
202 static void gem_get_cell(struct gem
*gp
)
204 BUG_ON(gp
->cell_enabled
< 0);
206 #ifdef CONFIG_PPC_PMAC
207 if (gp
->cell_enabled
== 1) {
209 pmac_call_feature(PMAC_FTR_GMAC_ENABLE
, gp
->of_node
, 0, 1);
212 #endif /* CONFIG_PPC_PMAC */
215 /* Turn off the chip's clock */
216 static void gem_put_cell(struct gem
*gp
)
218 BUG_ON(gp
->cell_enabled
<= 0);
220 #ifdef CONFIG_PPC_PMAC
221 if (gp
->cell_enabled
== 0) {
223 pmac_call_feature(PMAC_FTR_GMAC_ENABLE
, gp
->of_node
, 0, 0);
226 #endif /* CONFIG_PPC_PMAC */
229 static inline void gem_netif_stop(struct gem
*gp
)
231 gp
->dev
->trans_start
= jiffies
; /* prevent tx timeout */
232 napi_disable(&gp
->napi
);
233 netif_tx_disable(gp
->dev
);
236 static inline void gem_netif_start(struct gem
*gp
)
238 /* NOTE: unconditional netif_wake_queue is only
239 * appropriate so long as all callers are assured to
240 * have free tx slots.
242 netif_wake_queue(gp
->dev
);
243 napi_enable(&gp
->napi
);
246 static void gem_schedule_reset(struct gem
*gp
)
248 gp
->reset_task_pending
= 1;
249 schedule_work(&gp
->reset_task
);
252 static void gem_handle_mif_event(struct gem
*gp
, u32 reg_val
, u32 changed_bits
)
254 if (netif_msg_intr(gp
))
255 printk(KERN_DEBUG
"%s: mif interrupt\n", gp
->dev
->name
);
258 static int gem_pcs_interrupt(struct net_device
*dev
, struct gem
*gp
, u32 gem_status
)
260 u32 pcs_istat
= readl(gp
->regs
+ PCS_ISTAT
);
263 if (netif_msg_intr(gp
))
264 printk(KERN_DEBUG
"%s: pcs interrupt, pcs_istat: 0x%x\n",
265 gp
->dev
->name
, pcs_istat
);
267 if (!(pcs_istat
& PCS_ISTAT_LSC
)) {
268 netdev_err(dev
, "PCS irq but no link status change???\n");
272 /* The link status bit latches on zero, so you must
273 * read it twice in such a case to see a transition
274 * to the link being up.
276 pcs_miistat
= readl(gp
->regs
+ PCS_MIISTAT
);
277 if (!(pcs_miistat
& PCS_MIISTAT_LS
))
279 (readl(gp
->regs
+ PCS_MIISTAT
) &
282 if (pcs_miistat
& PCS_MIISTAT_ANC
) {
283 /* The remote-fault indication is only valid
284 * when autoneg has completed.
286 if (pcs_miistat
& PCS_MIISTAT_RF
)
287 netdev_info(dev
, "PCS AutoNEG complete, RemoteFault\n");
289 netdev_info(dev
, "PCS AutoNEG complete\n");
292 if (pcs_miistat
& PCS_MIISTAT_LS
) {
293 netdev_info(dev
, "PCS link is now up\n");
294 netif_carrier_on(gp
->dev
);
296 netdev_info(dev
, "PCS link is now down\n");
297 netif_carrier_off(gp
->dev
);
298 /* If this happens and the link timer is not running,
299 * reset so we re-negotiate.
301 if (!timer_pending(&gp
->link_timer
))
308 static int gem_txmac_interrupt(struct net_device
*dev
, struct gem
*gp
, u32 gem_status
)
310 u32 txmac_stat
= readl(gp
->regs
+ MAC_TXSTAT
);
312 if (netif_msg_intr(gp
))
313 printk(KERN_DEBUG
"%s: txmac interrupt, txmac_stat: 0x%x\n",
314 gp
->dev
->name
, txmac_stat
);
316 /* Defer timer expiration is quite normal,
317 * don't even log the event.
319 if ((txmac_stat
& MAC_TXSTAT_DTE
) &&
320 !(txmac_stat
& ~MAC_TXSTAT_DTE
))
323 if (txmac_stat
& MAC_TXSTAT_URUN
) {
324 netdev_err(dev
, "TX MAC xmit underrun\n");
325 dev
->stats
.tx_fifo_errors
++;
328 if (txmac_stat
& MAC_TXSTAT_MPE
) {
329 netdev_err(dev
, "TX MAC max packet size error\n");
330 dev
->stats
.tx_errors
++;
333 /* The rest are all cases of one of the 16-bit TX
336 if (txmac_stat
& MAC_TXSTAT_NCE
)
337 dev
->stats
.collisions
+= 0x10000;
339 if (txmac_stat
& MAC_TXSTAT_ECE
) {
340 dev
->stats
.tx_aborted_errors
+= 0x10000;
341 dev
->stats
.collisions
+= 0x10000;
344 if (txmac_stat
& MAC_TXSTAT_LCE
) {
345 dev
->stats
.tx_aborted_errors
+= 0x10000;
346 dev
->stats
.collisions
+= 0x10000;
349 /* We do not keep track of MAC_TXSTAT_FCE and
350 * MAC_TXSTAT_PCE events.
355 /* When we get a RX fifo overflow, the RX unit in GEM is probably hung
356 * so we do the following.
358 * If any part of the reset goes wrong, we return 1 and that causes the
359 * whole chip to be reset.
361 static int gem_rxmac_reset(struct gem
*gp
)
363 struct net_device
*dev
= gp
->dev
;
368 /* First, reset & disable MAC RX. */
369 writel(MAC_RXRST_CMD
, gp
->regs
+ MAC_RXRST
);
370 for (limit
= 0; limit
< 5000; limit
++) {
371 if (!(readl(gp
->regs
+ MAC_RXRST
) & MAC_RXRST_CMD
))
376 netdev_err(dev
, "RX MAC will not reset, resetting whole chip\n");
380 writel(gp
->mac_rx_cfg
& ~MAC_RXCFG_ENAB
,
381 gp
->regs
+ MAC_RXCFG
);
382 for (limit
= 0; limit
< 5000; limit
++) {
383 if (!(readl(gp
->regs
+ MAC_RXCFG
) & MAC_RXCFG_ENAB
))
388 netdev_err(dev
, "RX MAC will not disable, resetting whole chip\n");
392 /* Second, disable RX DMA. */
393 writel(0, gp
->regs
+ RXDMA_CFG
);
394 for (limit
= 0; limit
< 5000; limit
++) {
395 if (!(readl(gp
->regs
+ RXDMA_CFG
) & RXDMA_CFG_ENABLE
))
400 netdev_err(dev
, "RX DMA will not disable, resetting whole chip\n");
406 /* Execute RX reset command. */
407 writel(gp
->swrst_base
| GREG_SWRST_RXRST
,
408 gp
->regs
+ GREG_SWRST
);
409 for (limit
= 0; limit
< 5000; limit
++) {
410 if (!(readl(gp
->regs
+ GREG_SWRST
) & GREG_SWRST_RXRST
))
415 netdev_err(dev
, "RX reset command will not execute, resetting whole chip\n");
419 /* Refresh the RX ring. */
420 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
421 struct gem_rxd
*rxd
= &gp
->init_block
->rxd
[i
];
423 if (gp
->rx_skbs
[i
] == NULL
) {
424 netdev_err(dev
, "Parts of RX ring empty, resetting whole chip\n");
428 rxd
->status_word
= cpu_to_le64(RXDCTRL_FRESH(gp
));
430 gp
->rx_new
= gp
->rx_old
= 0;
432 /* Now we must reprogram the rest of RX unit. */
433 desc_dma
= (u64
) gp
->gblock_dvma
;
434 desc_dma
+= (INIT_BLOCK_TX_RING_SIZE
* sizeof(struct gem_txd
));
435 writel(desc_dma
>> 32, gp
->regs
+ RXDMA_DBHI
);
436 writel(desc_dma
& 0xffffffff, gp
->regs
+ RXDMA_DBLOW
);
437 writel(RX_RING_SIZE
- 4, gp
->regs
+ RXDMA_KICK
);
438 val
= (RXDMA_CFG_BASE
| (RX_OFFSET
<< 10) |
439 ((14 / 2) << 13) | RXDMA_CFG_FTHRESH_128
);
440 writel(val
, gp
->regs
+ RXDMA_CFG
);
441 if (readl(gp
->regs
+ GREG_BIFCFG
) & GREG_BIFCFG_M66EN
)
442 writel(((5 & RXDMA_BLANK_IPKTS
) |
443 ((8 << 12) & RXDMA_BLANK_ITIME
)),
444 gp
->regs
+ RXDMA_BLANK
);
446 writel(((5 & RXDMA_BLANK_IPKTS
) |
447 ((4 << 12) & RXDMA_BLANK_ITIME
)),
448 gp
->regs
+ RXDMA_BLANK
);
449 val
= (((gp
->rx_pause_off
/ 64) << 0) & RXDMA_PTHRESH_OFF
);
450 val
|= (((gp
->rx_pause_on
/ 64) << 12) & RXDMA_PTHRESH_ON
);
451 writel(val
, gp
->regs
+ RXDMA_PTHRESH
);
452 val
= readl(gp
->regs
+ RXDMA_CFG
);
453 writel(val
| RXDMA_CFG_ENABLE
, gp
->regs
+ RXDMA_CFG
);
454 writel(MAC_RXSTAT_RCV
, gp
->regs
+ MAC_RXMASK
);
455 val
= readl(gp
->regs
+ MAC_RXCFG
);
456 writel(val
| MAC_RXCFG_ENAB
, gp
->regs
+ MAC_RXCFG
);
461 static int gem_rxmac_interrupt(struct net_device
*dev
, struct gem
*gp
, u32 gem_status
)
463 u32 rxmac_stat
= readl(gp
->regs
+ MAC_RXSTAT
);
466 if (netif_msg_intr(gp
))
467 printk(KERN_DEBUG
"%s: rxmac interrupt, rxmac_stat: 0x%x\n",
468 gp
->dev
->name
, rxmac_stat
);
470 if (rxmac_stat
& MAC_RXSTAT_OFLW
) {
471 u32 smac
= readl(gp
->regs
+ MAC_SMACHINE
);
473 netdev_err(dev
, "RX MAC fifo overflow smac[%08x]\n", smac
);
474 dev
->stats
.rx_over_errors
++;
475 dev
->stats
.rx_fifo_errors
++;
477 ret
= gem_rxmac_reset(gp
);
480 if (rxmac_stat
& MAC_RXSTAT_ACE
)
481 dev
->stats
.rx_frame_errors
+= 0x10000;
483 if (rxmac_stat
& MAC_RXSTAT_CCE
)
484 dev
->stats
.rx_crc_errors
+= 0x10000;
486 if (rxmac_stat
& MAC_RXSTAT_LCE
)
487 dev
->stats
.rx_length_errors
+= 0x10000;
489 /* We do not track MAC_RXSTAT_FCE and MAC_RXSTAT_VCE
495 static int gem_mac_interrupt(struct net_device
*dev
, struct gem
*gp
, u32 gem_status
)
497 u32 mac_cstat
= readl(gp
->regs
+ MAC_CSTAT
);
499 if (netif_msg_intr(gp
))
500 printk(KERN_DEBUG
"%s: mac interrupt, mac_cstat: 0x%x\n",
501 gp
->dev
->name
, mac_cstat
);
503 /* This interrupt is just for pause frame and pause
504 * tracking. It is useful for diagnostics and debug
505 * but probably by default we will mask these events.
507 if (mac_cstat
& MAC_CSTAT_PS
)
510 if (mac_cstat
& MAC_CSTAT_PRCV
)
511 gp
->pause_last_time_recvd
= (mac_cstat
>> 16);
516 static int gem_mif_interrupt(struct net_device
*dev
, struct gem
*gp
, u32 gem_status
)
518 u32 mif_status
= readl(gp
->regs
+ MIF_STATUS
);
519 u32 reg_val
, changed_bits
;
521 reg_val
= (mif_status
& MIF_STATUS_DATA
) >> 16;
522 changed_bits
= (mif_status
& MIF_STATUS_STAT
);
524 gem_handle_mif_event(gp
, reg_val
, changed_bits
);
529 static int gem_pci_interrupt(struct net_device
*dev
, struct gem
*gp
, u32 gem_status
)
531 u32 pci_estat
= readl(gp
->regs
+ GREG_PCIESTAT
);
533 if (gp
->pdev
->vendor
== PCI_VENDOR_ID_SUN
&&
534 gp
->pdev
->device
== PCI_DEVICE_ID_SUN_GEM
) {
535 netdev_err(dev
, "PCI error [%04x]", pci_estat
);
537 if (pci_estat
& GREG_PCIESTAT_BADACK
)
538 pr_cont(" <No ACK64# during ABS64 cycle>");
539 if (pci_estat
& GREG_PCIESTAT_DTRTO
)
540 pr_cont(" <Delayed transaction timeout>");
541 if (pci_estat
& GREG_PCIESTAT_OTHER
)
545 pci_estat
|= GREG_PCIESTAT_OTHER
;
546 netdev_err(dev
, "PCI error\n");
549 if (pci_estat
& GREG_PCIESTAT_OTHER
) {
552 /* Interrogate PCI config space for the
555 pci_read_config_word(gp
->pdev
, PCI_STATUS
,
557 netdev_err(dev
, "Read PCI cfg space status [%04x]\n",
559 if (pci_cfg_stat
& PCI_STATUS_PARITY
)
560 netdev_err(dev
, "PCI parity error detected\n");
561 if (pci_cfg_stat
& PCI_STATUS_SIG_TARGET_ABORT
)
562 netdev_err(dev
, "PCI target abort\n");
563 if (pci_cfg_stat
& PCI_STATUS_REC_TARGET_ABORT
)
564 netdev_err(dev
, "PCI master acks target abort\n");
565 if (pci_cfg_stat
& PCI_STATUS_REC_MASTER_ABORT
)
566 netdev_err(dev
, "PCI master abort\n");
567 if (pci_cfg_stat
& PCI_STATUS_SIG_SYSTEM_ERROR
)
568 netdev_err(dev
, "PCI system error SERR#\n");
569 if (pci_cfg_stat
& PCI_STATUS_DETECTED_PARITY
)
570 netdev_err(dev
, "PCI parity error\n");
572 /* Write the error bits back to clear them. */
573 pci_cfg_stat
&= (PCI_STATUS_PARITY
|
574 PCI_STATUS_SIG_TARGET_ABORT
|
575 PCI_STATUS_REC_TARGET_ABORT
|
576 PCI_STATUS_REC_MASTER_ABORT
|
577 PCI_STATUS_SIG_SYSTEM_ERROR
|
578 PCI_STATUS_DETECTED_PARITY
);
579 pci_write_config_word(gp
->pdev
,
580 PCI_STATUS
, pci_cfg_stat
);
583 /* For all PCI errors, we should reset the chip. */
587 /* All non-normal interrupt conditions get serviced here.
588 * Returns non-zero if we should just exit the interrupt
589 * handler right now (ie. if we reset the card which invalidates
590 * all of the other original irq status bits).
592 static int gem_abnormal_irq(struct net_device
*dev
, struct gem
*gp
, u32 gem_status
)
594 if (gem_status
& GREG_STAT_RXNOBUF
) {
595 /* Frame arrived, no free RX buffers available. */
596 if (netif_msg_rx_err(gp
))
597 printk(KERN_DEBUG
"%s: no buffer for rx frame\n",
599 dev
->stats
.rx_dropped
++;
602 if (gem_status
& GREG_STAT_RXTAGERR
) {
603 /* corrupt RX tag framing */
604 if (netif_msg_rx_err(gp
))
605 printk(KERN_DEBUG
"%s: corrupt rx tag framing\n",
607 dev
->stats
.rx_errors
++;
612 if (gem_status
& GREG_STAT_PCS
) {
613 if (gem_pcs_interrupt(dev
, gp
, gem_status
))
617 if (gem_status
& GREG_STAT_TXMAC
) {
618 if (gem_txmac_interrupt(dev
, gp
, gem_status
))
622 if (gem_status
& GREG_STAT_RXMAC
) {
623 if (gem_rxmac_interrupt(dev
, gp
, gem_status
))
627 if (gem_status
& GREG_STAT_MAC
) {
628 if (gem_mac_interrupt(dev
, gp
, gem_status
))
632 if (gem_status
& GREG_STAT_MIF
) {
633 if (gem_mif_interrupt(dev
, gp
, gem_status
))
637 if (gem_status
& GREG_STAT_PCIERR
) {
638 if (gem_pci_interrupt(dev
, gp
, gem_status
))
645 static __inline__
void gem_tx(struct net_device
*dev
, struct gem
*gp
, u32 gem_status
)
650 limit
= ((gem_status
& GREG_STAT_TXNR
) >> GREG_STAT_TXNR_SHIFT
);
651 while (entry
!= limit
) {
658 if (netif_msg_tx_done(gp
))
659 printk(KERN_DEBUG
"%s: tx done, slot %d\n",
660 gp
->dev
->name
, entry
);
661 skb
= gp
->tx_skbs
[entry
];
662 if (skb_shinfo(skb
)->nr_frags
) {
663 int last
= entry
+ skb_shinfo(skb
)->nr_frags
;
667 last
&= (TX_RING_SIZE
- 1);
669 walk
= NEXT_TX(walk
);
678 gp
->tx_skbs
[entry
] = NULL
;
679 dev
->stats
.tx_bytes
+= skb
->len
;
681 for (frag
= 0; frag
<= skb_shinfo(skb
)->nr_frags
; frag
++) {
682 txd
= &gp
->init_block
->txd
[entry
];
684 dma_addr
= le64_to_cpu(txd
->buffer
);
685 dma_len
= le64_to_cpu(txd
->control_word
) & TXDCTRL_BUFSZ
;
687 pci_unmap_page(gp
->pdev
, dma_addr
, dma_len
, PCI_DMA_TODEVICE
);
688 entry
= NEXT_TX(entry
);
691 dev
->stats
.tx_packets
++;
696 /* Need to make the tx_old update visible to gem_start_xmit()
697 * before checking for netif_queue_stopped(). Without the
698 * memory barrier, there is a small possibility that gem_start_xmit()
699 * will miss it and cause the queue to be stopped forever.
703 if (unlikely(netif_queue_stopped(dev
) &&
704 TX_BUFFS_AVAIL(gp
) > (MAX_SKB_FRAGS
+ 1))) {
705 struct netdev_queue
*txq
= netdev_get_tx_queue(dev
, 0);
707 __netif_tx_lock(txq
, smp_processor_id());
708 if (netif_queue_stopped(dev
) &&
709 TX_BUFFS_AVAIL(gp
) > (MAX_SKB_FRAGS
+ 1))
710 netif_wake_queue(dev
);
711 __netif_tx_unlock(txq
);
715 static __inline__
void gem_post_rxds(struct gem
*gp
, int limit
)
717 int cluster_start
, curr
, count
, kick
;
719 cluster_start
= curr
= (gp
->rx_new
& ~(4 - 1));
723 while (curr
!= limit
) {
724 curr
= NEXT_RX(curr
);
726 struct gem_rxd
*rxd
=
727 &gp
->init_block
->rxd
[cluster_start
];
729 rxd
->status_word
= cpu_to_le64(RXDCTRL_FRESH(gp
));
731 cluster_start
= NEXT_RX(cluster_start
);
732 if (cluster_start
== curr
)
741 writel(kick
, gp
->regs
+ RXDMA_KICK
);
745 #define ALIGNED_RX_SKB_ADDR(addr) \
746 ((((unsigned long)(addr) + (64UL - 1UL)) & ~(64UL - 1UL)) - (unsigned long)(addr))
747 static __inline__
struct sk_buff
*gem_alloc_skb(struct net_device
*dev
, int size
,
750 struct sk_buff
*skb
= alloc_skb(size
+ 64, gfp_flags
);
753 unsigned long offset
= ALIGNED_RX_SKB_ADDR(skb
->data
);
754 skb_reserve(skb
, offset
);
760 static int gem_rx(struct gem
*gp
, int work_to_do
)
762 struct net_device
*dev
= gp
->dev
;
763 int entry
, drops
, work_done
= 0;
767 if (netif_msg_rx_status(gp
))
768 printk(KERN_DEBUG
"%s: rx interrupt, done: %d, rx_new: %d\n",
769 gp
->dev
->name
, readl(gp
->regs
+ RXDMA_DONE
), gp
->rx_new
);
773 done
= readl(gp
->regs
+ RXDMA_DONE
);
775 struct gem_rxd
*rxd
= &gp
->init_block
->rxd
[entry
];
777 u64 status
= le64_to_cpu(rxd
->status_word
);
781 if ((status
& RXDCTRL_OWN
) != 0)
784 if (work_done
>= RX_RING_SIZE
|| work_done
>= work_to_do
)
787 /* When writing back RX descriptor, GEM writes status
788 * then buffer address, possibly in separate transactions.
789 * If we don't wait for the chip to write both, we could
790 * post a new buffer to this descriptor then have GEM spam
791 * on the buffer address. We sync on the RX completion
792 * register to prevent this from happening.
795 done
= readl(gp
->regs
+ RXDMA_DONE
);
800 /* We can now account for the work we're about to do */
803 skb
= gp
->rx_skbs
[entry
];
805 len
= (status
& RXDCTRL_BUFSZ
) >> 16;
806 if ((len
< ETH_ZLEN
) || (status
& RXDCTRL_BAD
)) {
807 dev
->stats
.rx_errors
++;
809 dev
->stats
.rx_length_errors
++;
810 if (len
& RXDCTRL_BAD
)
811 dev
->stats
.rx_crc_errors
++;
813 /* We'll just return it to GEM. */
815 dev
->stats
.rx_dropped
++;
819 dma_addr
= le64_to_cpu(rxd
->buffer
);
820 if (len
> RX_COPY_THRESHOLD
) {
821 struct sk_buff
*new_skb
;
823 new_skb
= gem_alloc_skb(dev
, RX_BUF_ALLOC_SIZE(gp
), GFP_ATOMIC
);
824 if (new_skb
== NULL
) {
828 pci_unmap_page(gp
->pdev
, dma_addr
,
829 RX_BUF_ALLOC_SIZE(gp
),
831 gp
->rx_skbs
[entry
] = new_skb
;
832 skb_put(new_skb
, (gp
->rx_buf_sz
+ RX_OFFSET
));
833 rxd
->buffer
= cpu_to_le64(pci_map_page(gp
->pdev
,
834 virt_to_page(new_skb
->data
),
835 offset_in_page(new_skb
->data
),
836 RX_BUF_ALLOC_SIZE(gp
),
837 PCI_DMA_FROMDEVICE
));
838 skb_reserve(new_skb
, RX_OFFSET
);
840 /* Trim the original skb for the netif. */
843 struct sk_buff
*copy_skb
= netdev_alloc_skb(dev
, len
+ 2);
845 if (copy_skb
== NULL
) {
850 skb_reserve(copy_skb
, 2);
851 skb_put(copy_skb
, len
);
852 pci_dma_sync_single_for_cpu(gp
->pdev
, dma_addr
, len
, PCI_DMA_FROMDEVICE
);
853 skb_copy_from_linear_data(skb
, copy_skb
->data
, len
);
854 pci_dma_sync_single_for_device(gp
->pdev
, dma_addr
, len
, PCI_DMA_FROMDEVICE
);
856 /* We'll reuse the original ring buffer. */
860 csum
= (__force __sum16
)htons((status
& RXDCTRL_TCPCSUM
) ^ 0xffff);
861 skb
->csum
= csum_unfold(csum
);
862 skb
->ip_summed
= CHECKSUM_COMPLETE
;
863 skb
->protocol
= eth_type_trans(skb
, gp
->dev
);
865 napi_gro_receive(&gp
->napi
, skb
);
867 dev
->stats
.rx_packets
++;
868 dev
->stats
.rx_bytes
+= len
;
871 entry
= NEXT_RX(entry
);
874 gem_post_rxds(gp
, entry
);
879 netdev_info(gp
->dev
, "Memory squeeze, deferring packet\n");
884 static int gem_poll(struct napi_struct
*napi
, int budget
)
886 struct gem
*gp
= container_of(napi
, struct gem
, napi
);
887 struct net_device
*dev
= gp
->dev
;
892 /* Handle anomalies */
893 if (unlikely(gp
->status
& GREG_STAT_ABNORMAL
)) {
894 struct netdev_queue
*txq
= netdev_get_tx_queue(dev
, 0);
897 /* We run the abnormal interrupt handling code with
898 * the Tx lock. It only resets the Rx portion of the
899 * chip, but we need to guard it against DMA being
900 * restarted by the link poll timer
902 __netif_tx_lock(txq
, smp_processor_id());
903 reset
= gem_abnormal_irq(dev
, gp
, gp
->status
);
904 __netif_tx_unlock(txq
);
906 gem_schedule_reset(gp
);
912 /* Run TX completion thread */
913 gem_tx(dev
, gp
, gp
->status
);
915 /* Run RX thread. We don't use any locking here,
916 * code willing to do bad things - like cleaning the
917 * rx ring - must call napi_disable(), which
918 * schedule_timeout()'s if polling is already disabled.
920 work_done
+= gem_rx(gp
, budget
- work_done
);
922 if (work_done
>= budget
)
925 gp
->status
= readl(gp
->regs
+ GREG_STAT
);
926 } while (gp
->status
& GREG_STAT_NAPI
);
934 static irqreturn_t
gem_interrupt(int irq
, void *dev_id
)
936 struct net_device
*dev
= dev_id
;
937 struct gem
*gp
= netdev_priv(dev
);
939 if (napi_schedule_prep(&gp
->napi
)) {
940 u32 gem_status
= readl(gp
->regs
+ GREG_STAT
);
942 if (unlikely(gem_status
== 0)) {
943 napi_enable(&gp
->napi
);
946 if (netif_msg_intr(gp
))
947 printk(KERN_DEBUG
"%s: gem_interrupt() gem_status: 0x%x\n",
948 gp
->dev
->name
, gem_status
);
950 gp
->status
= gem_status
;
951 gem_disable_ints(gp
);
952 __napi_schedule(&gp
->napi
);
955 /* If polling was disabled at the time we received that
956 * interrupt, we may return IRQ_HANDLED here while we
957 * should return IRQ_NONE. No big deal...
962 #ifdef CONFIG_NET_POLL_CONTROLLER
963 static void gem_poll_controller(struct net_device
*dev
)
965 struct gem
*gp
= netdev_priv(dev
);
967 disable_irq(gp
->pdev
->irq
);
968 gem_interrupt(gp
->pdev
->irq
, dev
);
969 enable_irq(gp
->pdev
->irq
);
973 static void gem_tx_timeout(struct net_device
*dev
)
975 struct gem
*gp
= netdev_priv(dev
);
977 netdev_err(dev
, "transmit timed out, resetting\n");
979 netdev_err(dev
, "TX_STATE[%08x:%08x:%08x]\n",
980 readl(gp
->regs
+ TXDMA_CFG
),
981 readl(gp
->regs
+ MAC_TXSTAT
),
982 readl(gp
->regs
+ MAC_TXCFG
));
983 netdev_err(dev
, "RX_STATE[%08x:%08x:%08x]\n",
984 readl(gp
->regs
+ RXDMA_CFG
),
985 readl(gp
->regs
+ MAC_RXSTAT
),
986 readl(gp
->regs
+ MAC_RXCFG
));
988 gem_schedule_reset(gp
);
991 static __inline__
int gem_intme(int entry
)
993 /* Algorithm: IRQ every 1/2 of descriptors. */
994 if (!(entry
& ((TX_RING_SIZE
>>1)-1)))
1000 static netdev_tx_t
gem_start_xmit(struct sk_buff
*skb
,
1001 struct net_device
*dev
)
1003 struct gem
*gp
= netdev_priv(dev
);
1008 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
1009 const u64 csum_start_off
= skb_checksum_start_offset(skb
);
1010 const u64 csum_stuff_off
= csum_start_off
+ skb
->csum_offset
;
1012 ctrl
= (TXDCTRL_CENAB
|
1013 (csum_start_off
<< 15) |
1014 (csum_stuff_off
<< 21));
1017 if (unlikely(TX_BUFFS_AVAIL(gp
) <= (skb_shinfo(skb
)->nr_frags
+ 1))) {
1018 /* This is a hard error, log it. */
1019 if (!netif_queue_stopped(dev
)) {
1020 netif_stop_queue(dev
);
1021 netdev_err(dev
, "BUG! Tx Ring full when queue awake!\n");
1023 return NETDEV_TX_BUSY
;
1027 gp
->tx_skbs
[entry
] = skb
;
1029 if (skb_shinfo(skb
)->nr_frags
== 0) {
1030 struct gem_txd
*txd
= &gp
->init_block
->txd
[entry
];
1035 mapping
= pci_map_page(gp
->pdev
,
1036 virt_to_page(skb
->data
),
1037 offset_in_page(skb
->data
),
1038 len
, PCI_DMA_TODEVICE
);
1039 ctrl
|= TXDCTRL_SOF
| TXDCTRL_EOF
| len
;
1040 if (gem_intme(entry
))
1041 ctrl
|= TXDCTRL_INTME
;
1042 txd
->buffer
= cpu_to_le64(mapping
);
1044 txd
->control_word
= cpu_to_le64(ctrl
);
1045 entry
= NEXT_TX(entry
);
1047 struct gem_txd
*txd
;
1050 dma_addr_t first_mapping
;
1051 int frag
, first_entry
= entry
;
1054 if (gem_intme(entry
))
1055 intme
|= TXDCTRL_INTME
;
1057 /* We must give this initial chunk to the device last.
1058 * Otherwise we could race with the device.
1060 first_len
= skb_headlen(skb
);
1061 first_mapping
= pci_map_page(gp
->pdev
, virt_to_page(skb
->data
),
1062 offset_in_page(skb
->data
),
1063 first_len
, PCI_DMA_TODEVICE
);
1064 entry
= NEXT_TX(entry
);
1066 for (frag
= 0; frag
< skb_shinfo(skb
)->nr_frags
; frag
++) {
1067 const skb_frag_t
*this_frag
= &skb_shinfo(skb
)->frags
[frag
];
1072 len
= skb_frag_size(this_frag
);
1073 mapping
= skb_frag_dma_map(&gp
->pdev
->dev
, this_frag
,
1074 0, len
, DMA_TO_DEVICE
);
1076 if (frag
== skb_shinfo(skb
)->nr_frags
- 1)
1077 this_ctrl
|= TXDCTRL_EOF
;
1079 txd
= &gp
->init_block
->txd
[entry
];
1080 txd
->buffer
= cpu_to_le64(mapping
);
1082 txd
->control_word
= cpu_to_le64(this_ctrl
| len
);
1084 if (gem_intme(entry
))
1085 intme
|= TXDCTRL_INTME
;
1087 entry
= NEXT_TX(entry
);
1089 txd
= &gp
->init_block
->txd
[first_entry
];
1090 txd
->buffer
= cpu_to_le64(first_mapping
);
1093 cpu_to_le64(ctrl
| TXDCTRL_SOF
| intme
| first_len
);
1097 if (unlikely(TX_BUFFS_AVAIL(gp
) <= (MAX_SKB_FRAGS
+ 1))) {
1098 netif_stop_queue(dev
);
1100 /* netif_stop_queue() must be done before checking
1101 * checking tx index in TX_BUFFS_AVAIL() below, because
1102 * in gem_tx(), we update tx_old before checking for
1103 * netif_queue_stopped().
1106 if (TX_BUFFS_AVAIL(gp
) > (MAX_SKB_FRAGS
+ 1))
1107 netif_wake_queue(dev
);
1109 if (netif_msg_tx_queued(gp
))
1110 printk(KERN_DEBUG
"%s: tx queued, slot %d, skblen %d\n",
1111 dev
->name
, entry
, skb
->len
);
1113 writel(gp
->tx_new
, gp
->regs
+ TXDMA_KICK
);
1115 return NETDEV_TX_OK
;
1118 static void gem_pcs_reset(struct gem
*gp
)
1123 /* Reset PCS unit. */
1124 val
= readl(gp
->regs
+ PCS_MIICTRL
);
1125 val
|= PCS_MIICTRL_RST
;
1126 writel(val
, gp
->regs
+ PCS_MIICTRL
);
1129 while (readl(gp
->regs
+ PCS_MIICTRL
) & PCS_MIICTRL_RST
) {
1135 netdev_warn(gp
->dev
, "PCS reset bit would not clear\n");
1138 static void gem_pcs_reinit_adv(struct gem
*gp
)
1142 /* Make sure PCS is disabled while changing advertisement
1145 val
= readl(gp
->regs
+ PCS_CFG
);
1146 val
&= ~(PCS_CFG_ENABLE
| PCS_CFG_TO
);
1147 writel(val
, gp
->regs
+ PCS_CFG
);
1149 /* Advertise all capabilities except asymmetric
1152 val
= readl(gp
->regs
+ PCS_MIIADV
);
1153 val
|= (PCS_MIIADV_FD
| PCS_MIIADV_HD
|
1154 PCS_MIIADV_SP
| PCS_MIIADV_AP
);
1155 writel(val
, gp
->regs
+ PCS_MIIADV
);
1157 /* Enable and restart auto-negotiation, disable wrapback/loopback,
1158 * and re-enable PCS.
1160 val
= readl(gp
->regs
+ PCS_MIICTRL
);
1161 val
|= (PCS_MIICTRL_RAN
| PCS_MIICTRL_ANE
);
1162 val
&= ~PCS_MIICTRL_WB
;
1163 writel(val
, gp
->regs
+ PCS_MIICTRL
);
1165 val
= readl(gp
->regs
+ PCS_CFG
);
1166 val
|= PCS_CFG_ENABLE
;
1167 writel(val
, gp
->regs
+ PCS_CFG
);
1169 /* Make sure serialink loopback is off. The meaning
1170 * of this bit is logically inverted based upon whether
1171 * you are in Serialink or SERDES mode.
1173 val
= readl(gp
->regs
+ PCS_SCTRL
);
1174 if (gp
->phy_type
== phy_serialink
)
1175 val
&= ~PCS_SCTRL_LOOP
;
1177 val
|= PCS_SCTRL_LOOP
;
1178 writel(val
, gp
->regs
+ PCS_SCTRL
);
1181 #define STOP_TRIES 32
1183 static void gem_reset(struct gem
*gp
)
1188 /* Make sure we won't get any more interrupts */
1189 writel(0xffffffff, gp
->regs
+ GREG_IMASK
);
1191 /* Reset the chip */
1192 writel(gp
->swrst_base
| GREG_SWRST_TXRST
| GREG_SWRST_RXRST
,
1193 gp
->regs
+ GREG_SWRST
);
1199 val
= readl(gp
->regs
+ GREG_SWRST
);
1202 } while (val
& (GREG_SWRST_TXRST
| GREG_SWRST_RXRST
));
1205 netdev_err(gp
->dev
, "SW reset is ghetto\n");
1207 if (gp
->phy_type
== phy_serialink
|| gp
->phy_type
== phy_serdes
)
1208 gem_pcs_reinit_adv(gp
);
1211 static void gem_start_dma(struct gem
*gp
)
1215 /* We are ready to rock, turn everything on. */
1216 val
= readl(gp
->regs
+ TXDMA_CFG
);
1217 writel(val
| TXDMA_CFG_ENABLE
, gp
->regs
+ TXDMA_CFG
);
1218 val
= readl(gp
->regs
+ RXDMA_CFG
);
1219 writel(val
| RXDMA_CFG_ENABLE
, gp
->regs
+ RXDMA_CFG
);
1220 val
= readl(gp
->regs
+ MAC_TXCFG
);
1221 writel(val
| MAC_TXCFG_ENAB
, gp
->regs
+ MAC_TXCFG
);
1222 val
= readl(gp
->regs
+ MAC_RXCFG
);
1223 writel(val
| MAC_RXCFG_ENAB
, gp
->regs
+ MAC_RXCFG
);
1225 (void) readl(gp
->regs
+ MAC_RXCFG
);
1228 gem_enable_ints(gp
);
1230 writel(RX_RING_SIZE
- 4, gp
->regs
+ RXDMA_KICK
);
1233 /* DMA won't be actually stopped before about 4ms tho ...
1235 static void gem_stop_dma(struct gem
*gp
)
1239 /* We are done rocking, turn everything off. */
1240 val
= readl(gp
->regs
+ TXDMA_CFG
);
1241 writel(val
& ~TXDMA_CFG_ENABLE
, gp
->regs
+ TXDMA_CFG
);
1242 val
= readl(gp
->regs
+ RXDMA_CFG
);
1243 writel(val
& ~RXDMA_CFG_ENABLE
, gp
->regs
+ RXDMA_CFG
);
1244 val
= readl(gp
->regs
+ MAC_TXCFG
);
1245 writel(val
& ~MAC_TXCFG_ENAB
, gp
->regs
+ MAC_TXCFG
);
1246 val
= readl(gp
->regs
+ MAC_RXCFG
);
1247 writel(val
& ~MAC_RXCFG_ENAB
, gp
->regs
+ MAC_RXCFG
);
1249 (void) readl(gp
->regs
+ MAC_RXCFG
);
1251 /* Need to wait a bit ... done by the caller */
1255 // XXX dbl check what that function should do when called on PCS PHY
1256 static void gem_begin_auto_negotiation(struct gem
*gp
, struct ethtool_cmd
*ep
)
1258 u32 advertise
, features
;
1263 if (gp
->phy_type
!= phy_mii_mdio0
&&
1264 gp
->phy_type
!= phy_mii_mdio1
)
1267 /* Setup advertise */
1268 if (found_mii_phy(gp
))
1269 features
= gp
->phy_mii
.def
->features
;
1273 advertise
= features
& ADVERTISE_MASK
;
1274 if (gp
->phy_mii
.advertising
!= 0)
1275 advertise
&= gp
->phy_mii
.advertising
;
1277 autoneg
= gp
->want_autoneg
;
1278 speed
= gp
->phy_mii
.speed
;
1279 duplex
= gp
->phy_mii
.duplex
;
1281 /* Setup link parameters */
1284 if (ep
->autoneg
== AUTONEG_ENABLE
) {
1285 advertise
= ep
->advertising
;
1289 speed
= ethtool_cmd_speed(ep
);
1290 duplex
= ep
->duplex
;
1294 /* Sanitize settings based on PHY capabilities */
1295 if ((features
& SUPPORTED_Autoneg
) == 0)
1297 if (speed
== SPEED_1000
&&
1298 !(features
& (SUPPORTED_1000baseT_Half
| SUPPORTED_1000baseT_Full
)))
1300 if (speed
== SPEED_100
&&
1301 !(features
& (SUPPORTED_100baseT_Half
| SUPPORTED_100baseT_Full
)))
1303 if (duplex
== DUPLEX_FULL
&&
1304 !(features
& (SUPPORTED_1000baseT_Full
|
1305 SUPPORTED_100baseT_Full
|
1306 SUPPORTED_10baseT_Full
)))
1307 duplex
= DUPLEX_HALF
;
1311 /* If we are asleep, we don't try to actually setup the PHY, we
1312 * just store the settings
1314 if (!netif_device_present(gp
->dev
)) {
1315 gp
->phy_mii
.autoneg
= gp
->want_autoneg
= autoneg
;
1316 gp
->phy_mii
.speed
= speed
;
1317 gp
->phy_mii
.duplex
= duplex
;
1321 /* Configure PHY & start aneg */
1322 gp
->want_autoneg
= autoneg
;
1324 if (found_mii_phy(gp
))
1325 gp
->phy_mii
.def
->ops
->setup_aneg(&gp
->phy_mii
, advertise
);
1326 gp
->lstate
= link_aneg
;
1328 if (found_mii_phy(gp
))
1329 gp
->phy_mii
.def
->ops
->setup_forced(&gp
->phy_mii
, speed
, duplex
);
1330 gp
->lstate
= link_force_ok
;
1334 gp
->timer_ticks
= 0;
1335 mod_timer(&gp
->link_timer
, jiffies
+ ((12 * HZ
) / 10));
1338 /* A link-up condition has occurred, initialize and enable the
1341 static int gem_set_link_modes(struct gem
*gp
)
1343 struct netdev_queue
*txq
= netdev_get_tx_queue(gp
->dev
, 0);
1344 int full_duplex
, speed
, pause
;
1351 if (found_mii_phy(gp
)) {
1352 if (gp
->phy_mii
.def
->ops
->read_link(&gp
->phy_mii
))
1354 full_duplex
= (gp
->phy_mii
.duplex
== DUPLEX_FULL
);
1355 speed
= gp
->phy_mii
.speed
;
1356 pause
= gp
->phy_mii
.pause
;
1357 } else if (gp
->phy_type
== phy_serialink
||
1358 gp
->phy_type
== phy_serdes
) {
1359 u32 pcs_lpa
= readl(gp
->regs
+ PCS_MIILP
);
1361 if ((pcs_lpa
& PCS_MIIADV_FD
) || gp
->phy_type
== phy_serdes
)
1366 netif_info(gp
, link
, gp
->dev
, "Link is up at %d Mbps, %s-duplex\n",
1367 speed
, (full_duplex
? "full" : "half"));
1370 /* We take the tx queue lock to avoid collisions between
1371 * this code, the tx path and the NAPI-driven error path
1373 __netif_tx_lock(txq
, smp_processor_id());
1375 val
= (MAC_TXCFG_EIPG0
| MAC_TXCFG_NGU
);
1377 val
|= (MAC_TXCFG_ICS
| MAC_TXCFG_ICOLL
);
1379 /* MAC_TXCFG_NBO must be zero. */
1381 writel(val
, gp
->regs
+ MAC_TXCFG
);
1383 val
= (MAC_XIFCFG_OE
| MAC_XIFCFG_LLED
);
1385 (gp
->phy_type
== phy_mii_mdio0
||
1386 gp
->phy_type
== phy_mii_mdio1
)) {
1387 val
|= MAC_XIFCFG_DISE
;
1388 } else if (full_duplex
) {
1389 val
|= MAC_XIFCFG_FLED
;
1392 if (speed
== SPEED_1000
)
1393 val
|= (MAC_XIFCFG_GMII
);
1395 writel(val
, gp
->regs
+ MAC_XIFCFG
);
1397 /* If gigabit and half-duplex, enable carrier extension
1398 * mode. Else, disable it.
1400 if (speed
== SPEED_1000
&& !full_duplex
) {
1401 val
= readl(gp
->regs
+ MAC_TXCFG
);
1402 writel(val
| MAC_TXCFG_TCE
, gp
->regs
+ MAC_TXCFG
);
1404 val
= readl(gp
->regs
+ MAC_RXCFG
);
1405 writel(val
| MAC_RXCFG_RCE
, gp
->regs
+ MAC_RXCFG
);
1407 val
= readl(gp
->regs
+ MAC_TXCFG
);
1408 writel(val
& ~MAC_TXCFG_TCE
, gp
->regs
+ MAC_TXCFG
);
1410 val
= readl(gp
->regs
+ MAC_RXCFG
);
1411 writel(val
& ~MAC_RXCFG_RCE
, gp
->regs
+ MAC_RXCFG
);
1414 if (gp
->phy_type
== phy_serialink
||
1415 gp
->phy_type
== phy_serdes
) {
1416 u32 pcs_lpa
= readl(gp
->regs
+ PCS_MIILP
);
1418 if (pcs_lpa
& (PCS_MIIADV_SP
| PCS_MIIADV_AP
))
1423 writel(512, gp
->regs
+ MAC_STIME
);
1425 writel(64, gp
->regs
+ MAC_STIME
);
1426 val
= readl(gp
->regs
+ MAC_MCCFG
);
1428 val
|= (MAC_MCCFG_SPE
| MAC_MCCFG_RPE
);
1430 val
&= ~(MAC_MCCFG_SPE
| MAC_MCCFG_RPE
);
1431 writel(val
, gp
->regs
+ MAC_MCCFG
);
1435 __netif_tx_unlock(txq
);
1437 if (netif_msg_link(gp
)) {
1439 netdev_info(gp
->dev
,
1440 "Pause is enabled (rxfifo: %d off: %d on: %d)\n",
1445 netdev_info(gp
->dev
, "Pause is disabled\n");
1452 static int gem_mdio_link_not_up(struct gem
*gp
)
1454 switch (gp
->lstate
) {
1455 case link_force_ret
:
1456 netif_info(gp
, link
, gp
->dev
,
1457 "Autoneg failed again, keeping forced mode\n");
1458 gp
->phy_mii
.def
->ops
->setup_forced(&gp
->phy_mii
,
1459 gp
->last_forced_speed
, DUPLEX_HALF
);
1460 gp
->timer_ticks
= 5;
1461 gp
->lstate
= link_force_ok
;
1464 /* We try forced modes after a failed aneg only on PHYs that don't
1465 * have "magic_aneg" bit set, which means they internally do the
1466 * while forced-mode thingy. On these, we just restart aneg
1468 if (gp
->phy_mii
.def
->magic_aneg
)
1470 netif_info(gp
, link
, gp
->dev
, "switching to forced 100bt\n");
1471 /* Try forced modes. */
1472 gp
->phy_mii
.def
->ops
->setup_forced(&gp
->phy_mii
, SPEED_100
,
1474 gp
->timer_ticks
= 5;
1475 gp
->lstate
= link_force_try
;
1477 case link_force_try
:
1478 /* Downgrade from 100 to 10 Mbps if necessary.
1479 * If already at 10Mbps, warn user about the
1480 * situation every 10 ticks.
1482 if (gp
->phy_mii
.speed
== SPEED_100
) {
1483 gp
->phy_mii
.def
->ops
->setup_forced(&gp
->phy_mii
, SPEED_10
,
1485 gp
->timer_ticks
= 5;
1486 netif_info(gp
, link
, gp
->dev
,
1487 "switching to forced 10bt\n");
1496 static void gem_link_timer(unsigned long data
)
1498 struct gem
*gp
= (struct gem
*) data
;
1499 struct net_device
*dev
= gp
->dev
;
1500 int restart_aneg
= 0;
1502 /* There's no point doing anything if we're going to be reset */
1503 if (gp
->reset_task_pending
)
1506 if (gp
->phy_type
== phy_serialink
||
1507 gp
->phy_type
== phy_serdes
) {
1508 u32 val
= readl(gp
->regs
+ PCS_MIISTAT
);
1510 if (!(val
& PCS_MIISTAT_LS
))
1511 val
= readl(gp
->regs
+ PCS_MIISTAT
);
1513 if ((val
& PCS_MIISTAT_LS
) != 0) {
1514 if (gp
->lstate
== link_up
)
1517 gp
->lstate
= link_up
;
1518 netif_carrier_on(dev
);
1519 (void)gem_set_link_modes(gp
);
1523 if (found_mii_phy(gp
) && gp
->phy_mii
.def
->ops
->poll_link(&gp
->phy_mii
)) {
1524 /* Ok, here we got a link. If we had it due to a forced
1525 * fallback, and we were configured for autoneg, we do
1526 * retry a short autoneg pass. If you know your hub is
1527 * broken, use ethtool ;)
1529 if (gp
->lstate
== link_force_try
&& gp
->want_autoneg
) {
1530 gp
->lstate
= link_force_ret
;
1531 gp
->last_forced_speed
= gp
->phy_mii
.speed
;
1532 gp
->timer_ticks
= 5;
1533 if (netif_msg_link(gp
))
1535 "Got link after fallback, retrying autoneg once...\n");
1536 gp
->phy_mii
.def
->ops
->setup_aneg(&gp
->phy_mii
, gp
->phy_mii
.advertising
);
1537 } else if (gp
->lstate
!= link_up
) {
1538 gp
->lstate
= link_up
;
1539 netif_carrier_on(dev
);
1540 if (gem_set_link_modes(gp
))
1544 /* If the link was previously up, we restart the
1547 if (gp
->lstate
== link_up
) {
1548 gp
->lstate
= link_down
;
1549 netif_info(gp
, link
, dev
, "Link down\n");
1550 netif_carrier_off(dev
);
1551 gem_schedule_reset(gp
);
1552 /* The reset task will restart the timer */
1554 } else if (++gp
->timer_ticks
> 10) {
1555 if (found_mii_phy(gp
))
1556 restart_aneg
= gem_mdio_link_not_up(gp
);
1562 gem_begin_auto_negotiation(gp
, NULL
);
1566 mod_timer(&gp
->link_timer
, jiffies
+ ((12 * HZ
) / 10));
1569 static void gem_clean_rings(struct gem
*gp
)
1571 struct gem_init_block
*gb
= gp
->init_block
;
1572 struct sk_buff
*skb
;
1574 dma_addr_t dma_addr
;
1576 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
1577 struct gem_rxd
*rxd
;
1580 if (gp
->rx_skbs
[i
] != NULL
) {
1581 skb
= gp
->rx_skbs
[i
];
1582 dma_addr
= le64_to_cpu(rxd
->buffer
);
1583 pci_unmap_page(gp
->pdev
, dma_addr
,
1584 RX_BUF_ALLOC_SIZE(gp
),
1585 PCI_DMA_FROMDEVICE
);
1586 dev_kfree_skb_any(skb
);
1587 gp
->rx_skbs
[i
] = NULL
;
1589 rxd
->status_word
= 0;
1594 for (i
= 0; i
< TX_RING_SIZE
; i
++) {
1595 if (gp
->tx_skbs
[i
] != NULL
) {
1596 struct gem_txd
*txd
;
1599 skb
= gp
->tx_skbs
[i
];
1600 gp
->tx_skbs
[i
] = NULL
;
1602 for (frag
= 0; frag
<= skb_shinfo(skb
)->nr_frags
; frag
++) {
1603 int ent
= i
& (TX_RING_SIZE
- 1);
1605 txd
= &gb
->txd
[ent
];
1606 dma_addr
= le64_to_cpu(txd
->buffer
);
1607 pci_unmap_page(gp
->pdev
, dma_addr
,
1608 le64_to_cpu(txd
->control_word
) &
1609 TXDCTRL_BUFSZ
, PCI_DMA_TODEVICE
);
1611 if (frag
!= skb_shinfo(skb
)->nr_frags
)
1614 dev_kfree_skb_any(skb
);
1619 static void gem_init_rings(struct gem
*gp
)
1621 struct gem_init_block
*gb
= gp
->init_block
;
1622 struct net_device
*dev
= gp
->dev
;
1624 dma_addr_t dma_addr
;
1626 gp
->rx_new
= gp
->rx_old
= gp
->tx_new
= gp
->tx_old
= 0;
1628 gem_clean_rings(gp
);
1630 gp
->rx_buf_sz
= max(dev
->mtu
+ ETH_HLEN
+ VLAN_HLEN
,
1631 (unsigned)VLAN_ETH_FRAME_LEN
);
1633 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
1634 struct sk_buff
*skb
;
1635 struct gem_rxd
*rxd
= &gb
->rxd
[i
];
1637 skb
= gem_alloc_skb(dev
, RX_BUF_ALLOC_SIZE(gp
), GFP_KERNEL
);
1640 rxd
->status_word
= 0;
1644 gp
->rx_skbs
[i
] = skb
;
1645 skb_put(skb
, (gp
->rx_buf_sz
+ RX_OFFSET
));
1646 dma_addr
= pci_map_page(gp
->pdev
,
1647 virt_to_page(skb
->data
),
1648 offset_in_page(skb
->data
),
1649 RX_BUF_ALLOC_SIZE(gp
),
1650 PCI_DMA_FROMDEVICE
);
1651 rxd
->buffer
= cpu_to_le64(dma_addr
);
1653 rxd
->status_word
= cpu_to_le64(RXDCTRL_FRESH(gp
));
1654 skb_reserve(skb
, RX_OFFSET
);
1657 for (i
= 0; i
< TX_RING_SIZE
; i
++) {
1658 struct gem_txd
*txd
= &gb
->txd
[i
];
1660 txd
->control_word
= 0;
1667 /* Init PHY interface and start link poll state machine */
1668 static void gem_init_phy(struct gem
*gp
)
1672 /* Revert MIF CFG setting done on stop_phy */
1673 mifcfg
= readl(gp
->regs
+ MIF_CFG
);
1674 mifcfg
&= ~MIF_CFG_BBMODE
;
1675 writel(mifcfg
, gp
->regs
+ MIF_CFG
);
1677 if (gp
->pdev
->vendor
== PCI_VENDOR_ID_APPLE
) {
1680 /* Those delay sucks, the HW seem to love them though, I'll
1681 * serisouly consider breaking some locks here to be able
1682 * to schedule instead
1684 for (i
= 0; i
< 3; i
++) {
1685 #ifdef CONFIG_PPC_PMAC
1686 pmac_call_feature(PMAC_FTR_GMAC_PHY_RESET
, gp
->of_node
, 0, 0);
1689 /* Some PHYs used by apple have problem getting back to us,
1690 * we do an additional reset here
1692 phy_write(gp
, MII_BMCR
, BMCR_RESET
);
1694 if (phy_read(gp
, MII_BMCR
) != 0xffff)
1697 netdev_warn(gp
->dev
, "GMAC PHY not responding !\n");
1701 if (gp
->pdev
->vendor
== PCI_VENDOR_ID_SUN
&&
1702 gp
->pdev
->device
== PCI_DEVICE_ID_SUN_GEM
) {
1705 /* Init datapath mode register. */
1706 if (gp
->phy_type
== phy_mii_mdio0
||
1707 gp
->phy_type
== phy_mii_mdio1
) {
1708 val
= PCS_DMODE_MGM
;
1709 } else if (gp
->phy_type
== phy_serialink
) {
1710 val
= PCS_DMODE_SM
| PCS_DMODE_GMOE
;
1712 val
= PCS_DMODE_ESM
;
1715 writel(val
, gp
->regs
+ PCS_DMODE
);
1718 if (gp
->phy_type
== phy_mii_mdio0
||
1719 gp
->phy_type
== phy_mii_mdio1
) {
1720 /* Reset and detect MII PHY */
1721 sungem_phy_probe(&gp
->phy_mii
, gp
->mii_phy_addr
);
1724 if (gp
->phy_mii
.def
&& gp
->phy_mii
.def
->ops
->init
)
1725 gp
->phy_mii
.def
->ops
->init(&gp
->phy_mii
);
1728 gem_pcs_reinit_adv(gp
);
1731 /* Default aneg parameters */
1732 gp
->timer_ticks
= 0;
1733 gp
->lstate
= link_down
;
1734 netif_carrier_off(gp
->dev
);
1736 /* Print things out */
1737 if (gp
->phy_type
== phy_mii_mdio0
||
1738 gp
->phy_type
== phy_mii_mdio1
)
1739 netdev_info(gp
->dev
, "Found %s PHY\n",
1740 gp
->phy_mii
.def
? gp
->phy_mii
.def
->name
: "no");
1742 gem_begin_auto_negotiation(gp
, NULL
);
1745 static void gem_init_dma(struct gem
*gp
)
1747 u64 desc_dma
= (u64
) gp
->gblock_dvma
;
1750 val
= (TXDMA_CFG_BASE
| (0x7ff << 10) | TXDMA_CFG_PMODE
);
1751 writel(val
, gp
->regs
+ TXDMA_CFG
);
1753 writel(desc_dma
>> 32, gp
->regs
+ TXDMA_DBHI
);
1754 writel(desc_dma
& 0xffffffff, gp
->regs
+ TXDMA_DBLOW
);
1755 desc_dma
+= (INIT_BLOCK_TX_RING_SIZE
* sizeof(struct gem_txd
));
1757 writel(0, gp
->regs
+ TXDMA_KICK
);
1759 val
= (RXDMA_CFG_BASE
| (RX_OFFSET
<< 10) |
1760 ((14 / 2) << 13) | RXDMA_CFG_FTHRESH_128
);
1761 writel(val
, gp
->regs
+ RXDMA_CFG
);
1763 writel(desc_dma
>> 32, gp
->regs
+ RXDMA_DBHI
);
1764 writel(desc_dma
& 0xffffffff, gp
->regs
+ RXDMA_DBLOW
);
1766 writel(RX_RING_SIZE
- 4, gp
->regs
+ RXDMA_KICK
);
1768 val
= (((gp
->rx_pause_off
/ 64) << 0) & RXDMA_PTHRESH_OFF
);
1769 val
|= (((gp
->rx_pause_on
/ 64) << 12) & RXDMA_PTHRESH_ON
);
1770 writel(val
, gp
->regs
+ RXDMA_PTHRESH
);
1772 if (readl(gp
->regs
+ GREG_BIFCFG
) & GREG_BIFCFG_M66EN
)
1773 writel(((5 & RXDMA_BLANK_IPKTS
) |
1774 ((8 << 12) & RXDMA_BLANK_ITIME
)),
1775 gp
->regs
+ RXDMA_BLANK
);
1777 writel(((5 & RXDMA_BLANK_IPKTS
) |
1778 ((4 << 12) & RXDMA_BLANK_ITIME
)),
1779 gp
->regs
+ RXDMA_BLANK
);
1782 static u32
gem_setup_multicast(struct gem
*gp
)
1787 if ((gp
->dev
->flags
& IFF_ALLMULTI
) ||
1788 (netdev_mc_count(gp
->dev
) > 256)) {
1789 for (i
=0; i
<16; i
++)
1790 writel(0xffff, gp
->regs
+ MAC_HASH0
+ (i
<< 2));
1791 rxcfg
|= MAC_RXCFG_HFE
;
1792 } else if (gp
->dev
->flags
& IFF_PROMISC
) {
1793 rxcfg
|= MAC_RXCFG_PROM
;
1797 struct netdev_hw_addr
*ha
;
1800 memset(hash_table
, 0, sizeof(hash_table
));
1801 netdev_for_each_mc_addr(ha
, gp
->dev
) {
1802 crc
= ether_crc_le(6, ha
->addr
);
1804 hash_table
[crc
>> 4] |= 1 << (15 - (crc
& 0xf));
1806 for (i
=0; i
<16; i
++)
1807 writel(hash_table
[i
], gp
->regs
+ MAC_HASH0
+ (i
<< 2));
1808 rxcfg
|= MAC_RXCFG_HFE
;
1814 static void gem_init_mac(struct gem
*gp
)
1816 unsigned char *e
= &gp
->dev
->dev_addr
[0];
1818 writel(0x1bf0, gp
->regs
+ MAC_SNDPAUSE
);
1820 writel(0x00, gp
->regs
+ MAC_IPG0
);
1821 writel(0x08, gp
->regs
+ MAC_IPG1
);
1822 writel(0x04, gp
->regs
+ MAC_IPG2
);
1823 writel(0x40, gp
->regs
+ MAC_STIME
);
1824 writel(0x40, gp
->regs
+ MAC_MINFSZ
);
1826 /* Ethernet payload + header + FCS + optional VLAN tag. */
1827 writel(0x20000000 | (gp
->rx_buf_sz
+ 4), gp
->regs
+ MAC_MAXFSZ
);
1829 writel(0x07, gp
->regs
+ MAC_PASIZE
);
1830 writel(0x04, gp
->regs
+ MAC_JAMSIZE
);
1831 writel(0x10, gp
->regs
+ MAC_ATTLIM
);
1832 writel(0x8808, gp
->regs
+ MAC_MCTYPE
);
1834 writel((e
[5] | (e
[4] << 8)) & 0x3ff, gp
->regs
+ MAC_RANDSEED
);
1836 writel((e
[4] << 8) | e
[5], gp
->regs
+ MAC_ADDR0
);
1837 writel((e
[2] << 8) | e
[3], gp
->regs
+ MAC_ADDR1
);
1838 writel((e
[0] << 8) | e
[1], gp
->regs
+ MAC_ADDR2
);
1840 writel(0, gp
->regs
+ MAC_ADDR3
);
1841 writel(0, gp
->regs
+ MAC_ADDR4
);
1842 writel(0, gp
->regs
+ MAC_ADDR5
);
1844 writel(0x0001, gp
->regs
+ MAC_ADDR6
);
1845 writel(0xc200, gp
->regs
+ MAC_ADDR7
);
1846 writel(0x0180, gp
->regs
+ MAC_ADDR8
);
1848 writel(0, gp
->regs
+ MAC_AFILT0
);
1849 writel(0, gp
->regs
+ MAC_AFILT1
);
1850 writel(0, gp
->regs
+ MAC_AFILT2
);
1851 writel(0, gp
->regs
+ MAC_AF21MSK
);
1852 writel(0, gp
->regs
+ MAC_AF0MSK
);
1854 gp
->mac_rx_cfg
= gem_setup_multicast(gp
);
1856 gp
->mac_rx_cfg
|= MAC_RXCFG_SFCS
;
1858 writel(0, gp
->regs
+ MAC_NCOLL
);
1859 writel(0, gp
->regs
+ MAC_FASUCC
);
1860 writel(0, gp
->regs
+ MAC_ECOLL
);
1861 writel(0, gp
->regs
+ MAC_LCOLL
);
1862 writel(0, gp
->regs
+ MAC_DTIMER
);
1863 writel(0, gp
->regs
+ MAC_PATMPS
);
1864 writel(0, gp
->regs
+ MAC_RFCTR
);
1865 writel(0, gp
->regs
+ MAC_LERR
);
1866 writel(0, gp
->regs
+ MAC_AERR
);
1867 writel(0, gp
->regs
+ MAC_FCSERR
);
1868 writel(0, gp
->regs
+ MAC_RXCVERR
);
1870 /* Clear RX/TX/MAC/XIF config, we will set these up and enable
1871 * them once a link is established.
1873 writel(0, gp
->regs
+ MAC_TXCFG
);
1874 writel(gp
->mac_rx_cfg
, gp
->regs
+ MAC_RXCFG
);
1875 writel(0, gp
->regs
+ MAC_MCCFG
);
1876 writel(0, gp
->regs
+ MAC_XIFCFG
);
1878 /* Setup MAC interrupts. We want to get all of the interesting
1879 * counter expiration events, but we do not want to hear about
1880 * normal rx/tx as the DMA engine tells us that.
1882 writel(MAC_TXSTAT_XMIT
, gp
->regs
+ MAC_TXMASK
);
1883 writel(MAC_RXSTAT_RCV
, gp
->regs
+ MAC_RXMASK
);
1885 /* Don't enable even the PAUSE interrupts for now, we
1886 * make no use of those events other than to record them.
1888 writel(0xffffffff, gp
->regs
+ MAC_MCMASK
);
1890 /* Don't enable GEM's WOL in normal operations
1893 writel(0, gp
->regs
+ WOL_WAKECSR
);
1896 static void gem_init_pause_thresholds(struct gem
*gp
)
1900 /* Calculate pause thresholds. Setting the OFF threshold to the
1901 * full RX fifo size effectively disables PAUSE generation which
1902 * is what we do for 10/100 only GEMs which have FIFOs too small
1903 * to make real gains from PAUSE.
1905 if (gp
->rx_fifo_sz
<= (2 * 1024)) {
1906 gp
->rx_pause_off
= gp
->rx_pause_on
= gp
->rx_fifo_sz
;
1908 int max_frame
= (gp
->rx_buf_sz
+ 4 + 64) & ~63;
1909 int off
= (gp
->rx_fifo_sz
- (max_frame
* 2));
1910 int on
= off
- max_frame
;
1912 gp
->rx_pause_off
= off
;
1913 gp
->rx_pause_on
= on
;
1917 /* Configure the chip "burst" DMA mode & enable some
1918 * HW bug fixes on Apple version
1921 if (gp
->pdev
->vendor
== PCI_VENDOR_ID_APPLE
)
1922 cfg
|= GREG_CFG_RONPAULBIT
| GREG_CFG_ENBUG2FIX
;
1923 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
1924 cfg
|= GREG_CFG_IBURST
;
1926 cfg
|= ((31 << 1) & GREG_CFG_TXDMALIM
);
1927 cfg
|= ((31 << 6) & GREG_CFG_RXDMALIM
);
1928 writel(cfg
, gp
->regs
+ GREG_CFG
);
1930 /* If Infinite Burst didn't stick, then use different
1931 * thresholds (and Apple bug fixes don't exist)
1933 if (!(readl(gp
->regs
+ GREG_CFG
) & GREG_CFG_IBURST
)) {
1934 cfg
= ((2 << 1) & GREG_CFG_TXDMALIM
);
1935 cfg
|= ((8 << 6) & GREG_CFG_RXDMALIM
);
1936 writel(cfg
, gp
->regs
+ GREG_CFG
);
1940 static int gem_check_invariants(struct gem
*gp
)
1942 struct pci_dev
*pdev
= gp
->pdev
;
1945 /* On Apple's sungem, we can't rely on registers as the chip
1946 * was been powered down by the firmware. The PHY is looked
1949 if (pdev
->vendor
== PCI_VENDOR_ID_APPLE
) {
1950 gp
->phy_type
= phy_mii_mdio0
;
1951 gp
->tx_fifo_sz
= readl(gp
->regs
+ TXDMA_FSZ
) * 64;
1952 gp
->rx_fifo_sz
= readl(gp
->regs
+ RXDMA_FSZ
) * 64;
1955 mif_cfg
= readl(gp
->regs
+ MIF_CFG
);
1956 mif_cfg
&= ~(MIF_CFG_PSELECT
|MIF_CFG_POLL
|MIF_CFG_BBMODE
|MIF_CFG_MDI1
);
1957 mif_cfg
|= MIF_CFG_MDI0
;
1958 writel(mif_cfg
, gp
->regs
+ MIF_CFG
);
1959 writel(PCS_DMODE_MGM
, gp
->regs
+ PCS_DMODE
);
1960 writel(MAC_XIFCFG_OE
, gp
->regs
+ MAC_XIFCFG
);
1962 /* We hard-code the PHY address so we can properly bring it out of
1963 * reset later on, we can't really probe it at this point, though
1964 * that isn't an issue.
1966 if (gp
->pdev
->device
== PCI_DEVICE_ID_APPLE_K2_GMAC
)
1967 gp
->mii_phy_addr
= 1;
1969 gp
->mii_phy_addr
= 0;
1974 mif_cfg
= readl(gp
->regs
+ MIF_CFG
);
1976 if (pdev
->vendor
== PCI_VENDOR_ID_SUN
&&
1977 pdev
->device
== PCI_DEVICE_ID_SUN_RIO_GEM
) {
1978 /* One of the MII PHYs _must_ be present
1979 * as this chip has no gigabit PHY.
1981 if ((mif_cfg
& (MIF_CFG_MDI0
| MIF_CFG_MDI1
)) == 0) {
1982 pr_err("RIO GEM lacks MII phy, mif_cfg[%08x]\n",
1988 /* Determine initial PHY interface type guess. MDIO1 is the
1989 * external PHY and thus takes precedence over MDIO0.
1992 if (mif_cfg
& MIF_CFG_MDI1
) {
1993 gp
->phy_type
= phy_mii_mdio1
;
1994 mif_cfg
|= MIF_CFG_PSELECT
;
1995 writel(mif_cfg
, gp
->regs
+ MIF_CFG
);
1996 } else if (mif_cfg
& MIF_CFG_MDI0
) {
1997 gp
->phy_type
= phy_mii_mdio0
;
1998 mif_cfg
&= ~MIF_CFG_PSELECT
;
1999 writel(mif_cfg
, gp
->regs
+ MIF_CFG
);
2004 p
= of_get_property(gp
->of_node
, "shared-pins", NULL
);
2005 if (p
&& !strcmp(p
, "serdes"))
2006 gp
->phy_type
= phy_serdes
;
2009 gp
->phy_type
= phy_serialink
;
2011 if (gp
->phy_type
== phy_mii_mdio1
||
2012 gp
->phy_type
== phy_mii_mdio0
) {
2015 for (i
= 0; i
< 32; i
++) {
2016 gp
->mii_phy_addr
= i
;
2017 if (phy_read(gp
, MII_BMCR
) != 0xffff)
2021 if (pdev
->device
!= PCI_DEVICE_ID_SUN_GEM
) {
2022 pr_err("RIO MII phy will not respond\n");
2025 gp
->phy_type
= phy_serdes
;
2029 /* Fetch the FIFO configurations now too. */
2030 gp
->tx_fifo_sz
= readl(gp
->regs
+ TXDMA_FSZ
) * 64;
2031 gp
->rx_fifo_sz
= readl(gp
->regs
+ RXDMA_FSZ
) * 64;
2033 if (pdev
->vendor
== PCI_VENDOR_ID_SUN
) {
2034 if (pdev
->device
== PCI_DEVICE_ID_SUN_GEM
) {
2035 if (gp
->tx_fifo_sz
!= (9 * 1024) ||
2036 gp
->rx_fifo_sz
!= (20 * 1024)) {
2037 pr_err("GEM has bogus fifo sizes tx(%d) rx(%d)\n",
2038 gp
->tx_fifo_sz
, gp
->rx_fifo_sz
);
2043 if (gp
->tx_fifo_sz
!= (2 * 1024) ||
2044 gp
->rx_fifo_sz
!= (2 * 1024)) {
2045 pr_err("RIO GEM has bogus fifo sizes tx(%d) rx(%d)\n",
2046 gp
->tx_fifo_sz
, gp
->rx_fifo_sz
);
2049 gp
->swrst_base
= (64 / 4) << GREG_SWRST_CACHE_SHIFT
;
2056 static void gem_reinit_chip(struct gem
*gp
)
2058 /* Reset the chip */
2061 /* Make sure ints are disabled */
2062 gem_disable_ints(gp
);
2064 /* Allocate & setup ring buffers */
2067 /* Configure pause thresholds */
2068 gem_init_pause_thresholds(gp
);
2070 /* Init DMA & MAC engines */
2076 static void gem_stop_phy(struct gem
*gp
, int wol
)
2080 /* Let the chip settle down a bit, it seems that helps
2081 * for sleep mode on some models
2085 /* Make sure we aren't polling PHY status change. We
2086 * don't currently use that feature though
2088 mifcfg
= readl(gp
->regs
+ MIF_CFG
);
2089 mifcfg
&= ~MIF_CFG_POLL
;
2090 writel(mifcfg
, gp
->regs
+ MIF_CFG
);
2092 if (wol
&& gp
->has_wol
) {
2093 unsigned char *e
= &gp
->dev
->dev_addr
[0];
2096 /* Setup wake-on-lan for MAGIC packet */
2097 writel(MAC_RXCFG_HFE
| MAC_RXCFG_SFCS
| MAC_RXCFG_ENAB
,
2098 gp
->regs
+ MAC_RXCFG
);
2099 writel((e
[4] << 8) | e
[5], gp
->regs
+ WOL_MATCH0
);
2100 writel((e
[2] << 8) | e
[3], gp
->regs
+ WOL_MATCH1
);
2101 writel((e
[0] << 8) | e
[1], gp
->regs
+ WOL_MATCH2
);
2103 writel(WOL_MCOUNT_N
| WOL_MCOUNT_M
, gp
->regs
+ WOL_MCOUNT
);
2104 csr
= WOL_WAKECSR_ENABLE
;
2105 if ((readl(gp
->regs
+ MAC_XIFCFG
) & MAC_XIFCFG_GMII
) == 0)
2106 csr
|= WOL_WAKECSR_MII
;
2107 writel(csr
, gp
->regs
+ WOL_WAKECSR
);
2109 writel(0, gp
->regs
+ MAC_RXCFG
);
2110 (void)readl(gp
->regs
+ MAC_RXCFG
);
2111 /* Machine sleep will die in strange ways if we
2112 * dont wait a bit here, looks like the chip takes
2113 * some time to really shut down
2118 writel(0, gp
->regs
+ MAC_TXCFG
);
2119 writel(0, gp
->regs
+ MAC_XIFCFG
);
2120 writel(0, gp
->regs
+ TXDMA_CFG
);
2121 writel(0, gp
->regs
+ RXDMA_CFG
);
2125 writel(MAC_TXRST_CMD
, gp
->regs
+ MAC_TXRST
);
2126 writel(MAC_RXRST_CMD
, gp
->regs
+ MAC_RXRST
);
2128 if (found_mii_phy(gp
) && gp
->phy_mii
.def
->ops
->suspend
)
2129 gp
->phy_mii
.def
->ops
->suspend(&gp
->phy_mii
);
2131 /* According to Apple, we must set the MDIO pins to this begnign
2132 * state or we may 1) eat more current, 2) damage some PHYs
2134 writel(mifcfg
| MIF_CFG_BBMODE
, gp
->regs
+ MIF_CFG
);
2135 writel(0, gp
->regs
+ MIF_BBCLK
);
2136 writel(0, gp
->regs
+ MIF_BBDATA
);
2137 writel(0, gp
->regs
+ MIF_BBOENAB
);
2138 writel(MAC_XIFCFG_GMII
| MAC_XIFCFG_LBCK
, gp
->regs
+ MAC_XIFCFG
);
2139 (void) readl(gp
->regs
+ MAC_XIFCFG
);
2143 static int gem_do_start(struct net_device
*dev
)
2145 struct gem
*gp
= netdev_priv(dev
);
2148 /* Enable the cell */
2151 /* Make sure PCI access and bus master are enabled */
2152 rc
= pci_enable_device(gp
->pdev
);
2154 netdev_err(dev
, "Failed to enable chip on PCI bus !\n");
2156 /* Put cell and forget it for now, it will be considered as
2157 * still asleep, a new sleep cycle may bring it back
2162 pci_set_master(gp
->pdev
);
2164 /* Init & setup chip hardware */
2165 gem_reinit_chip(gp
);
2167 /* An interrupt might come in handy */
2168 rc
= request_irq(gp
->pdev
->irq
, gem_interrupt
,
2169 IRQF_SHARED
, dev
->name
, (void *)dev
);
2171 netdev_err(dev
, "failed to request irq !\n");
2174 gem_clean_rings(gp
);
2179 /* Mark us as attached again if we come from resume(), this has
2180 * no effect if we weren't detatched and needs to be done now.
2182 netif_device_attach(dev
);
2184 /* Restart NAPI & queues */
2185 gem_netif_start(gp
);
2187 /* Detect & init PHY, start autoneg etc... this will
2188 * eventually result in starting DMA operations when
2196 static void gem_do_stop(struct net_device
*dev
, int wol
)
2198 struct gem
*gp
= netdev_priv(dev
);
2200 /* Stop NAPI and stop tx queue */
2203 /* Make sure ints are disabled. We don't care about
2204 * synchronizing as NAPI is disabled, thus a stray
2205 * interrupt will do nothing bad (our irq handler
2206 * just schedules NAPI)
2208 gem_disable_ints(gp
);
2210 /* Stop the link timer */
2211 del_timer_sync(&gp
->link_timer
);
2213 /* We cannot cancel the reset task while holding the
2214 * rtnl lock, we'd get an A->B / B->A deadlock stituation
2215 * if we did. This is not an issue however as the reset
2216 * task is synchronized vs. us (rtnl_lock) and will do
2217 * nothing if the device is down or suspended. We do
2218 * still clear reset_task_pending to avoid a spurrious
2219 * reset later on in case we do resume before it gets
2222 gp
->reset_task_pending
= 0;
2224 /* If we are going to sleep with WOL */
2231 /* Get rid of rings */
2232 gem_clean_rings(gp
);
2234 /* No irq needed anymore */
2235 free_irq(gp
->pdev
->irq
, (void *) dev
);
2237 /* Shut the PHY down eventually and setup WOL */
2238 gem_stop_phy(gp
, wol
);
2240 /* Make sure bus master is disabled */
2241 pci_disable_device(gp
->pdev
);
2243 /* Cell not needed neither if no WOL */
2248 static void gem_reset_task(struct work_struct
*work
)
2250 struct gem
*gp
= container_of(work
, struct gem
, reset_task
);
2252 /* Lock out the network stack (essentially shield ourselves
2253 * against a racing open, close, control call, or suspend
2257 /* Skip the reset task if suspended or closed, or if it's
2258 * been cancelled by gem_do_stop (see comment there)
2260 if (!netif_device_present(gp
->dev
) ||
2261 !netif_running(gp
->dev
) ||
2262 !gp
->reset_task_pending
) {
2267 /* Stop the link timer */
2268 del_timer_sync(&gp
->link_timer
);
2270 /* Stop NAPI and tx */
2273 /* Reset the chip & rings */
2274 gem_reinit_chip(gp
);
2275 if (gp
->lstate
== link_up
)
2276 gem_set_link_modes(gp
);
2278 /* Restart NAPI and Tx */
2279 gem_netif_start(gp
);
2282 gp
->reset_task_pending
= 0;
2284 /* If the link is not up, restart autoneg, else restart the
2287 if (gp
->lstate
!= link_up
)
2288 gem_begin_auto_negotiation(gp
, NULL
);
2290 mod_timer(&gp
->link_timer
, jiffies
+ ((12 * HZ
) / 10));
2295 static int gem_open(struct net_device
*dev
)
2297 /* We allow open while suspended, we just do nothing,
2298 * the chip will be initialized in resume()
2300 if (netif_device_present(dev
))
2301 return gem_do_start(dev
);
2305 static int gem_close(struct net_device
*dev
)
2307 if (netif_device_present(dev
))
2308 gem_do_stop(dev
, 0);
2314 static int gem_suspend(struct pci_dev
*pdev
, pm_message_t state
)
2316 struct net_device
*dev
= pci_get_drvdata(pdev
);
2317 struct gem
*gp
= netdev_priv(dev
);
2319 /* Lock the network stack first to avoid racing with open/close,
2320 * reset task and setting calls
2324 /* Not running, mark ourselves non-present, no need for
2327 if (!netif_running(dev
)) {
2328 netif_device_detach(dev
);
2332 netdev_info(dev
, "suspending, WakeOnLan %s\n",
2333 (gp
->wake_on_lan
&& netif_running(dev
)) ?
2334 "enabled" : "disabled");
2336 /* Tell the network stack we're gone. gem_do_stop() below will
2337 * synchronize with TX, stop NAPI etc...
2339 netif_device_detach(dev
);
2341 /* Switch off chip, remember WOL setting */
2342 gp
->asleep_wol
= !!gp
->wake_on_lan
;
2343 gem_do_stop(dev
, gp
->asleep_wol
);
2345 /* Unlock the network stack */
2351 static int gem_resume(struct pci_dev
*pdev
)
2353 struct net_device
*dev
= pci_get_drvdata(pdev
);
2354 struct gem
*gp
= netdev_priv(dev
);
2356 /* See locking comment in gem_suspend */
2359 /* Not running, mark ourselves present, no need for
2362 if (!netif_running(dev
)) {
2363 netif_device_attach(dev
);
2368 /* Restart chip. If that fails there isn't much we can do, we
2369 * leave things stopped.
2373 /* If we had WOL enabled, the cell clock was never turned off during
2374 * sleep, so we end up beeing unbalanced. Fix that here
2379 /* Unlock the network stack */
2384 #endif /* CONFIG_PM */
2386 static struct net_device_stats
*gem_get_stats(struct net_device
*dev
)
2388 struct gem
*gp
= netdev_priv(dev
);
2390 /* I have seen this being called while the PM was in progress,
2391 * so we shield against this. Let's also not poke at registers
2392 * while the reset task is going on.
2394 * TODO: Move stats collection elsewhere (link timer ?) and
2395 * make this a nop to avoid all those synchro issues
2397 if (!netif_device_present(dev
) || !netif_running(dev
))
2400 /* Better safe than sorry... */
2401 if (WARN_ON(!gp
->cell_enabled
))
2404 dev
->stats
.rx_crc_errors
+= readl(gp
->regs
+ MAC_FCSERR
);
2405 writel(0, gp
->regs
+ MAC_FCSERR
);
2407 dev
->stats
.rx_frame_errors
+= readl(gp
->regs
+ MAC_AERR
);
2408 writel(0, gp
->regs
+ MAC_AERR
);
2410 dev
->stats
.rx_length_errors
+= readl(gp
->regs
+ MAC_LERR
);
2411 writel(0, gp
->regs
+ MAC_LERR
);
2413 dev
->stats
.tx_aborted_errors
+= readl(gp
->regs
+ MAC_ECOLL
);
2414 dev
->stats
.collisions
+=
2415 (readl(gp
->regs
+ MAC_ECOLL
) + readl(gp
->regs
+ MAC_LCOLL
));
2416 writel(0, gp
->regs
+ MAC_ECOLL
);
2417 writel(0, gp
->regs
+ MAC_LCOLL
);
2422 static int gem_set_mac_address(struct net_device
*dev
, void *addr
)
2424 struct sockaddr
*macaddr
= (struct sockaddr
*) addr
;
2425 struct gem
*gp
= netdev_priv(dev
);
2426 unsigned char *e
= &dev
->dev_addr
[0];
2428 if (!is_valid_ether_addr(macaddr
->sa_data
))
2429 return -EADDRNOTAVAIL
;
2431 memcpy(dev
->dev_addr
, macaddr
->sa_data
, dev
->addr_len
);
2433 /* We'll just catch it later when the device is up'd or resumed */
2434 if (!netif_running(dev
) || !netif_device_present(dev
))
2437 /* Better safe than sorry... */
2438 if (WARN_ON(!gp
->cell_enabled
))
2441 writel((e
[4] << 8) | e
[5], gp
->regs
+ MAC_ADDR0
);
2442 writel((e
[2] << 8) | e
[3], gp
->regs
+ MAC_ADDR1
);
2443 writel((e
[0] << 8) | e
[1], gp
->regs
+ MAC_ADDR2
);
2448 static void gem_set_multicast(struct net_device
*dev
)
2450 struct gem
*gp
= netdev_priv(dev
);
2451 u32 rxcfg
, rxcfg_new
;
2454 if (!netif_running(dev
) || !netif_device_present(dev
))
2457 /* Better safe than sorry... */
2458 if (gp
->reset_task_pending
|| WARN_ON(!gp
->cell_enabled
))
2461 rxcfg
= readl(gp
->regs
+ MAC_RXCFG
);
2462 rxcfg_new
= gem_setup_multicast(gp
);
2464 rxcfg_new
|= MAC_RXCFG_SFCS
;
2466 gp
->mac_rx_cfg
= rxcfg_new
;
2468 writel(rxcfg
& ~MAC_RXCFG_ENAB
, gp
->regs
+ MAC_RXCFG
);
2469 while (readl(gp
->regs
+ MAC_RXCFG
) & MAC_RXCFG_ENAB
) {
2475 rxcfg
&= ~(MAC_RXCFG_PROM
| MAC_RXCFG_HFE
);
2478 writel(rxcfg
, gp
->regs
+ MAC_RXCFG
);
2481 /* Jumbo-grams don't seem to work :-( */
2482 #define GEM_MIN_MTU 68
2484 #define GEM_MAX_MTU 1500
2486 #define GEM_MAX_MTU 9000
2489 static int gem_change_mtu(struct net_device
*dev
, int new_mtu
)
2491 struct gem
*gp
= netdev_priv(dev
);
2493 if (new_mtu
< GEM_MIN_MTU
|| new_mtu
> GEM_MAX_MTU
)
2498 /* We'll just catch it later when the device is up'd or resumed */
2499 if (!netif_running(dev
) || !netif_device_present(dev
))
2502 /* Better safe than sorry... */
2503 if (WARN_ON(!gp
->cell_enabled
))
2507 gem_reinit_chip(gp
);
2508 if (gp
->lstate
== link_up
)
2509 gem_set_link_modes(gp
);
2510 gem_netif_start(gp
);
2515 static void gem_get_drvinfo(struct net_device
*dev
, struct ethtool_drvinfo
*info
)
2517 struct gem
*gp
= netdev_priv(dev
);
2519 strlcpy(info
->driver
, DRV_NAME
, sizeof(info
->driver
));
2520 strlcpy(info
->version
, DRV_VERSION
, sizeof(info
->version
));
2521 strlcpy(info
->bus_info
, pci_name(gp
->pdev
), sizeof(info
->bus_info
));
2524 static int gem_get_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
2526 struct gem
*gp
= netdev_priv(dev
);
2528 if (gp
->phy_type
== phy_mii_mdio0
||
2529 gp
->phy_type
== phy_mii_mdio1
) {
2530 if (gp
->phy_mii
.def
)
2531 cmd
->supported
= gp
->phy_mii
.def
->features
;
2533 cmd
->supported
= (SUPPORTED_10baseT_Half
|
2534 SUPPORTED_10baseT_Full
);
2536 /* XXX hardcoded stuff for now */
2537 cmd
->port
= PORT_MII
;
2538 cmd
->transceiver
= XCVR_EXTERNAL
;
2539 cmd
->phy_address
= 0; /* XXX fixed PHYAD */
2541 /* Return current PHY settings */
2542 cmd
->autoneg
= gp
->want_autoneg
;
2543 ethtool_cmd_speed_set(cmd
, gp
->phy_mii
.speed
);
2544 cmd
->duplex
= gp
->phy_mii
.duplex
;
2545 cmd
->advertising
= gp
->phy_mii
.advertising
;
2547 /* If we started with a forced mode, we don't have a default
2548 * advertise set, we need to return something sensible so
2549 * userland can re-enable autoneg properly.
2551 if (cmd
->advertising
== 0)
2552 cmd
->advertising
= cmd
->supported
;
2553 } else { // XXX PCS ?
2555 (SUPPORTED_10baseT_Half
| SUPPORTED_10baseT_Full
|
2556 SUPPORTED_100baseT_Half
| SUPPORTED_100baseT_Full
|
2558 cmd
->advertising
= cmd
->supported
;
2559 ethtool_cmd_speed_set(cmd
, 0);
2560 cmd
->duplex
= cmd
->port
= cmd
->phy_address
=
2561 cmd
->transceiver
= cmd
->autoneg
= 0;
2563 /* serdes means usually a Fibre connector, with most fixed */
2564 if (gp
->phy_type
== phy_serdes
) {
2565 cmd
->port
= PORT_FIBRE
;
2566 cmd
->supported
= (SUPPORTED_1000baseT_Half
|
2567 SUPPORTED_1000baseT_Full
|
2568 SUPPORTED_FIBRE
| SUPPORTED_Autoneg
|
2569 SUPPORTED_Pause
| SUPPORTED_Asym_Pause
);
2570 cmd
->advertising
= cmd
->supported
;
2571 cmd
->transceiver
= XCVR_INTERNAL
;
2572 if (gp
->lstate
== link_up
)
2573 ethtool_cmd_speed_set(cmd
, SPEED_1000
);
2574 cmd
->duplex
= DUPLEX_FULL
;
2578 cmd
->maxtxpkt
= cmd
->maxrxpkt
= 0;
2583 static int gem_set_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
2585 struct gem
*gp
= netdev_priv(dev
);
2586 u32 speed
= ethtool_cmd_speed(cmd
);
2588 /* Verify the settings we care about. */
2589 if (cmd
->autoneg
!= AUTONEG_ENABLE
&&
2590 cmd
->autoneg
!= AUTONEG_DISABLE
)
2593 if (cmd
->autoneg
== AUTONEG_ENABLE
&&
2594 cmd
->advertising
== 0)
2597 if (cmd
->autoneg
== AUTONEG_DISABLE
&&
2598 ((speed
!= SPEED_1000
&&
2599 speed
!= SPEED_100
&&
2600 speed
!= SPEED_10
) ||
2601 (cmd
->duplex
!= DUPLEX_HALF
&&
2602 cmd
->duplex
!= DUPLEX_FULL
)))
2605 /* Apply settings and restart link process. */
2606 if (netif_device_present(gp
->dev
)) {
2607 del_timer_sync(&gp
->link_timer
);
2608 gem_begin_auto_negotiation(gp
, cmd
);
2614 static int gem_nway_reset(struct net_device
*dev
)
2616 struct gem
*gp
= netdev_priv(dev
);
2618 if (!gp
->want_autoneg
)
2621 /* Restart link process */
2622 if (netif_device_present(gp
->dev
)) {
2623 del_timer_sync(&gp
->link_timer
);
2624 gem_begin_auto_negotiation(gp
, NULL
);
2630 static u32
gem_get_msglevel(struct net_device
*dev
)
2632 struct gem
*gp
= netdev_priv(dev
);
2633 return gp
->msg_enable
;
2636 static void gem_set_msglevel(struct net_device
*dev
, u32 value
)
2638 struct gem
*gp
= netdev_priv(dev
);
2639 gp
->msg_enable
= value
;
2643 /* Add more when I understand how to program the chip */
2644 /* like WAKE_UCAST | WAKE_MCAST | WAKE_BCAST */
2646 #define WOL_SUPPORTED_MASK (WAKE_MAGIC)
2648 static void gem_get_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
2650 struct gem
*gp
= netdev_priv(dev
);
2652 /* Add more when I understand how to program the chip */
2654 wol
->supported
= WOL_SUPPORTED_MASK
;
2655 wol
->wolopts
= gp
->wake_on_lan
;
2662 static int gem_set_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
2664 struct gem
*gp
= netdev_priv(dev
);
2668 gp
->wake_on_lan
= wol
->wolopts
& WOL_SUPPORTED_MASK
;
2672 static const struct ethtool_ops gem_ethtool_ops
= {
2673 .get_drvinfo
= gem_get_drvinfo
,
2674 .get_link
= ethtool_op_get_link
,
2675 .get_settings
= gem_get_settings
,
2676 .set_settings
= gem_set_settings
,
2677 .nway_reset
= gem_nway_reset
,
2678 .get_msglevel
= gem_get_msglevel
,
2679 .set_msglevel
= gem_set_msglevel
,
2680 .get_wol
= gem_get_wol
,
2681 .set_wol
= gem_set_wol
,
2684 static int gem_ioctl(struct net_device
*dev
, struct ifreq
*ifr
, int cmd
)
2686 struct gem
*gp
= netdev_priv(dev
);
2687 struct mii_ioctl_data
*data
= if_mii(ifr
);
2688 int rc
= -EOPNOTSUPP
;
2690 /* For SIOCGMIIREG and SIOCSMIIREG the core checks for us that
2691 * netif_device_present() is true and holds rtnl_lock for us
2692 * so we have nothing to worry about
2696 case SIOCGMIIPHY
: /* Get address of MII PHY in use. */
2697 data
->phy_id
= gp
->mii_phy_addr
;
2698 /* Fallthrough... */
2700 case SIOCGMIIREG
: /* Read MII PHY register. */
2701 data
->val_out
= __phy_read(gp
, data
->phy_id
& 0x1f,
2702 data
->reg_num
& 0x1f);
2706 case SIOCSMIIREG
: /* Write MII PHY register. */
2707 __phy_write(gp
, data
->phy_id
& 0x1f, data
->reg_num
& 0x1f,
2715 #if (!defined(CONFIG_SPARC) && !defined(CONFIG_PPC_PMAC))
2716 /* Fetch MAC address from vital product data of PCI ROM. */
2717 static int find_eth_addr_in_vpd(void __iomem
*rom_base
, int len
, unsigned char *dev_addr
)
2721 for (this_offset
= 0x20; this_offset
< len
; this_offset
++) {
2722 void __iomem
*p
= rom_base
+ this_offset
;
2725 if (readb(p
+ 0) != 0x90 ||
2726 readb(p
+ 1) != 0x00 ||
2727 readb(p
+ 2) != 0x09 ||
2728 readb(p
+ 3) != 0x4e ||
2729 readb(p
+ 4) != 0x41 ||
2730 readb(p
+ 5) != 0x06)
2736 for (i
= 0; i
< 6; i
++)
2737 dev_addr
[i
] = readb(p
+ i
);
2743 static void get_gem_mac_nonobp(struct pci_dev
*pdev
, unsigned char *dev_addr
)
2746 void __iomem
*p
= pci_map_rom(pdev
, &size
);
2751 found
= readb(p
) == 0x55 &&
2752 readb(p
+ 1) == 0xaa &&
2753 find_eth_addr_in_vpd(p
, (64 * 1024), dev_addr
);
2754 pci_unmap_rom(pdev
, p
);
2759 /* Sun MAC prefix then 3 random bytes. */
2763 get_random_bytes(dev_addr
+ 3, 3);
2765 #endif /* not Sparc and not PPC */
2767 static int __devinit
gem_get_device_address(struct gem
*gp
)
2769 #if defined(CONFIG_SPARC) || defined(CONFIG_PPC_PMAC)
2770 struct net_device
*dev
= gp
->dev
;
2771 const unsigned char *addr
;
2773 addr
= of_get_property(gp
->of_node
, "local-mac-address", NULL
);
2776 addr
= idprom
->id_ethaddr
;
2779 pr_err("%s: can't get mac-address\n", dev
->name
);
2783 memcpy(dev
->dev_addr
, addr
, 6);
2785 get_gem_mac_nonobp(gp
->pdev
, gp
->dev
->dev_addr
);
2790 static void gem_remove_one(struct pci_dev
*pdev
)
2792 struct net_device
*dev
= pci_get_drvdata(pdev
);
2795 struct gem
*gp
= netdev_priv(dev
);
2797 unregister_netdev(dev
);
2799 /* Ensure reset task is truely gone */
2800 cancel_work_sync(&gp
->reset_task
);
2802 /* Free resources */
2803 pci_free_consistent(pdev
,
2804 sizeof(struct gem_init_block
),
2808 pci_release_regions(pdev
);
2811 pci_set_drvdata(pdev
, NULL
);
2815 static const struct net_device_ops gem_netdev_ops
= {
2816 .ndo_open
= gem_open
,
2817 .ndo_stop
= gem_close
,
2818 .ndo_start_xmit
= gem_start_xmit
,
2819 .ndo_get_stats
= gem_get_stats
,
2820 .ndo_set_rx_mode
= gem_set_multicast
,
2821 .ndo_do_ioctl
= gem_ioctl
,
2822 .ndo_tx_timeout
= gem_tx_timeout
,
2823 .ndo_change_mtu
= gem_change_mtu
,
2824 .ndo_validate_addr
= eth_validate_addr
,
2825 .ndo_set_mac_address
= gem_set_mac_address
,
2826 #ifdef CONFIG_NET_POLL_CONTROLLER
2827 .ndo_poll_controller
= gem_poll_controller
,
2831 static int __devinit
gem_init_one(struct pci_dev
*pdev
,
2832 const struct pci_device_id
*ent
)
2834 unsigned long gemreg_base
, gemreg_len
;
2835 struct net_device
*dev
;
2837 int err
, pci_using_dac
;
2839 printk_once(KERN_INFO
"%s", version
);
2841 /* Apple gmac note: during probe, the chip is powered up by
2842 * the arch code to allow the code below to work (and to let
2843 * the chip be probed on the config space. It won't stay powered
2844 * up until the interface is brought up however, so we can't rely
2845 * on register configuration done at this point.
2847 err
= pci_enable_device(pdev
);
2849 pr_err("Cannot enable MMIO operation, aborting\n");
2852 pci_set_master(pdev
);
2854 /* Configure DMA attributes. */
2856 /* All of the GEM documentation states that 64-bit DMA addressing
2857 * is fully supported and should work just fine. However the
2858 * front end for RIO based GEMs is different and only supports
2859 * 32-bit addressing.
2861 * For now we assume the various PPC GEMs are 32-bit only as well.
2863 if (pdev
->vendor
== PCI_VENDOR_ID_SUN
&&
2864 pdev
->device
== PCI_DEVICE_ID_SUN_GEM
&&
2865 !pci_set_dma_mask(pdev
, DMA_BIT_MASK(64))) {
2868 err
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32));
2870 pr_err("No usable DMA configuration, aborting\n");
2871 goto err_disable_device
;
2876 gemreg_base
= pci_resource_start(pdev
, 0);
2877 gemreg_len
= pci_resource_len(pdev
, 0);
2879 if ((pci_resource_flags(pdev
, 0) & IORESOURCE_IO
) != 0) {
2880 pr_err("Cannot find proper PCI device base address, aborting\n");
2882 goto err_disable_device
;
2885 dev
= alloc_etherdev(sizeof(*gp
));
2888 goto err_disable_device
;
2890 SET_NETDEV_DEV(dev
, &pdev
->dev
);
2892 gp
= netdev_priv(dev
);
2894 err
= pci_request_regions(pdev
, DRV_NAME
);
2896 pr_err("Cannot obtain PCI resources, aborting\n");
2897 goto err_out_free_netdev
;
2901 dev
->base_addr
= (long) pdev
;
2904 gp
->msg_enable
= DEFAULT_MSG
;
2906 init_timer(&gp
->link_timer
);
2907 gp
->link_timer
.function
= gem_link_timer
;
2908 gp
->link_timer
.data
= (unsigned long) gp
;
2910 INIT_WORK(&gp
->reset_task
, gem_reset_task
);
2912 gp
->lstate
= link_down
;
2913 gp
->timer_ticks
= 0;
2914 netif_carrier_off(dev
);
2916 gp
->regs
= ioremap(gemreg_base
, gemreg_len
);
2918 pr_err("Cannot map device registers, aborting\n");
2920 goto err_out_free_res
;
2923 /* On Apple, we want a reference to the Open Firmware device-tree
2924 * node. We use it for clock control.
2926 #if defined(CONFIG_PPC_PMAC) || defined(CONFIG_SPARC)
2927 gp
->of_node
= pci_device_to_OF_node(pdev
);
2930 /* Only Apple version supports WOL afaik */
2931 if (pdev
->vendor
== PCI_VENDOR_ID_APPLE
)
2934 /* Make sure cell is enabled */
2937 /* Make sure everything is stopped and in init state */
2940 /* Fill up the mii_phy structure (even if we won't use it) */
2941 gp
->phy_mii
.dev
= dev
;
2942 gp
->phy_mii
.mdio_read
= _phy_read
;
2943 gp
->phy_mii
.mdio_write
= _phy_write
;
2944 #ifdef CONFIG_PPC_PMAC
2945 gp
->phy_mii
.platform_data
= gp
->of_node
;
2947 /* By default, we start with autoneg */
2948 gp
->want_autoneg
= 1;
2950 /* Check fifo sizes, PHY type, etc... */
2951 if (gem_check_invariants(gp
)) {
2953 goto err_out_iounmap
;
2956 /* It is guaranteed that the returned buffer will be at least
2957 * PAGE_SIZE aligned.
2959 gp
->init_block
= (struct gem_init_block
*)
2960 pci_alloc_consistent(pdev
, sizeof(struct gem_init_block
),
2962 if (!gp
->init_block
) {
2963 pr_err("Cannot allocate init block, aborting\n");
2965 goto err_out_iounmap
;
2968 if (gem_get_device_address(gp
))
2969 goto err_out_free_consistent
;
2971 dev
->netdev_ops
= &gem_netdev_ops
;
2972 netif_napi_add(dev
, &gp
->napi
, gem_poll
, 64);
2973 dev
->ethtool_ops
= &gem_ethtool_ops
;
2974 dev
->watchdog_timeo
= 5 * HZ
;
2975 dev
->irq
= pdev
->irq
;
2978 /* Set that now, in case PM kicks in now */
2979 pci_set_drvdata(pdev
, dev
);
2981 /* We can do scatter/gather and HW checksum */
2982 dev
->hw_features
= NETIF_F_SG
| NETIF_F_HW_CSUM
;
2983 dev
->features
|= dev
->hw_features
| NETIF_F_RXCSUM
;
2985 dev
->features
|= NETIF_F_HIGHDMA
;
2987 /* Register with kernel */
2988 if (register_netdev(dev
)) {
2989 pr_err("Cannot register net device, aborting\n");
2991 goto err_out_free_consistent
;
2994 /* Undo the get_cell with appropriate locking (we could use
2995 * ndo_init/uninit but that would be even more clumsy imho)
3001 netdev_info(dev
, "Sun GEM (PCI) 10/100/1000BaseT Ethernet %pM\n",
3005 err_out_free_consistent
:
3006 gem_remove_one(pdev
);
3012 pci_release_regions(pdev
);
3014 err_out_free_netdev
:
3017 pci_disable_device(pdev
);
3023 static struct pci_driver gem_driver
= {
3024 .name
= GEM_MODULE_NAME
,
3025 .id_table
= gem_pci_tbl
,
3026 .probe
= gem_init_one
,
3027 .remove
= gem_remove_one
,
3029 .suspend
= gem_suspend
,
3030 .resume
= gem_resume
,
3031 #endif /* CONFIG_PM */
3034 static int __init
gem_init(void)
3036 return pci_register_driver(&gem_driver
);
3039 static void __exit
gem_cleanup(void)
3041 pci_unregister_driver(&gem_driver
);
3044 module_init(gem_init
);
3045 module_exit(gem_cleanup
);