Linux 3.4.102
[linux/fpc-iii.git] / drivers / net / ethernet / via / via-rhine.c
blob60f4a51153af303b74712fdc5dcc7cd0f6233d4f
1 /* via-rhine.c: A Linux Ethernet device driver for VIA Rhine family chips. */
2 /*
3 Written 1998-2001 by Donald Becker.
5 Current Maintainer: Roger Luethi <rl@hellgate.ch>
7 This software may be used and distributed according to the terms of
8 the GNU General Public License (GPL), incorporated herein by reference.
9 Drivers based on or derived from this code fall under the GPL and must
10 retain the authorship, copyright and license notice. This file is not
11 a complete program and may only be used when the entire operating
12 system is licensed under the GPL.
14 This driver is designed for the VIA VT86C100A Rhine-I.
15 It also works with the Rhine-II (6102) and Rhine-III (6105/6105L/6105LOM
16 and management NIC 6105M).
18 The author may be reached as becker@scyld.com, or C/O
19 Scyld Computing Corporation
20 410 Severn Ave., Suite 210
21 Annapolis MD 21403
24 This driver contains some changes from the original Donald Becker
25 version. He may or may not be interested in bug reports on this
26 code. You can find his versions at:
27 http://www.scyld.com/network/via-rhine.html
28 [link no longer provides useful info -jgarzik]
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34 #define DRV_NAME "via-rhine"
35 #define DRV_VERSION "1.5.1"
36 #define DRV_RELDATE "2010-10-09"
38 #include <linux/types.h>
40 /* A few user-configurable values.
41 These may be modified when a driver module is loaded. */
42 static int debug = 0;
43 #define RHINE_MSG_DEFAULT \
44 (0x0000)
46 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
47 Setting to > 1518 effectively disables this feature. */
48 #if defined(__alpha__) || defined(__arm__) || defined(__hppa__) || \
49 defined(CONFIG_SPARC) || defined(__ia64__) || \
50 defined(__sh__) || defined(__mips__)
51 static int rx_copybreak = 1518;
52 #else
53 static int rx_copybreak;
54 #endif
56 /* Work-around for broken BIOSes: they are unable to get the chip back out of
57 power state D3 so PXE booting fails. bootparam(7): via-rhine.avoid_D3=1 */
58 static bool avoid_D3;
61 * In case you are looking for 'options[]' or 'full_duplex[]', they
62 * are gone. Use ethtool(8) instead.
65 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
66 The Rhine has a 64 element 8390-like hash table. */
67 static const int multicast_filter_limit = 32;
70 /* Operational parameters that are set at compile time. */
72 /* Keep the ring sizes a power of two for compile efficiency.
73 The compiler will convert <unsigned>'%'<2^N> into a bit mask.
74 Making the Tx ring too large decreases the effectiveness of channel
75 bonding and packet priority.
76 There are no ill effects from too-large receive rings. */
77 #define TX_RING_SIZE 16
78 #define TX_QUEUE_LEN 10 /* Limit ring entries actually used. */
79 #define RX_RING_SIZE 64
81 /* Operational parameters that usually are not changed. */
83 /* Time in jiffies before concluding the transmitter is hung. */
84 #define TX_TIMEOUT (2*HZ)
86 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
88 #include <linux/module.h>
89 #include <linux/moduleparam.h>
90 #include <linux/kernel.h>
91 #include <linux/string.h>
92 #include <linux/timer.h>
93 #include <linux/errno.h>
94 #include <linux/ioport.h>
95 #include <linux/interrupt.h>
96 #include <linux/pci.h>
97 #include <linux/dma-mapping.h>
98 #include <linux/netdevice.h>
99 #include <linux/etherdevice.h>
100 #include <linux/skbuff.h>
101 #include <linux/init.h>
102 #include <linux/delay.h>
103 #include <linux/mii.h>
104 #include <linux/ethtool.h>
105 #include <linux/crc32.h>
106 #include <linux/if_vlan.h>
107 #include <linux/bitops.h>
108 #include <linux/workqueue.h>
109 #include <asm/processor.h> /* Processor type for cache alignment. */
110 #include <asm/io.h>
111 #include <asm/irq.h>
112 #include <asm/uaccess.h>
113 #include <linux/dmi.h>
115 /* These identify the driver base version and may not be removed. */
116 static const char version[] __devinitconst =
117 "v1.10-LK" DRV_VERSION " " DRV_RELDATE " Written by Donald Becker";
119 /* This driver was written to use PCI memory space. Some early versions
120 of the Rhine may only work correctly with I/O space accesses. */
121 #ifdef CONFIG_VIA_RHINE_MMIO
122 #define USE_MMIO
123 #else
124 #endif
126 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
127 MODULE_DESCRIPTION("VIA Rhine PCI Fast Ethernet driver");
128 MODULE_LICENSE("GPL");
130 module_param(debug, int, 0);
131 module_param(rx_copybreak, int, 0);
132 module_param(avoid_D3, bool, 0);
133 MODULE_PARM_DESC(debug, "VIA Rhine debug message flags");
134 MODULE_PARM_DESC(rx_copybreak, "VIA Rhine copy breakpoint for copy-only-tiny-frames");
135 MODULE_PARM_DESC(avoid_D3, "Avoid power state D3 (work-around for broken BIOSes)");
137 #define MCAM_SIZE 32
138 #define VCAM_SIZE 32
141 Theory of Operation
143 I. Board Compatibility
145 This driver is designed for the VIA 86c100A Rhine-II PCI Fast Ethernet
146 controller.
148 II. Board-specific settings
150 Boards with this chip are functional only in a bus-master PCI slot.
152 Many operational settings are loaded from the EEPROM to the Config word at
153 offset 0x78. For most of these settings, this driver assumes that they are
154 correct.
155 If this driver is compiled to use PCI memory space operations the EEPROM
156 must be configured to enable memory ops.
158 III. Driver operation
160 IIIa. Ring buffers
162 This driver uses two statically allocated fixed-size descriptor lists
163 formed into rings by a branch from the final descriptor to the beginning of
164 the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.
166 IIIb/c. Transmit/Receive Structure
168 This driver attempts to use a zero-copy receive and transmit scheme.
170 Alas, all data buffers are required to start on a 32 bit boundary, so
171 the driver must often copy transmit packets into bounce buffers.
173 The driver allocates full frame size skbuffs for the Rx ring buffers at
174 open() time and passes the skb->data field to the chip as receive data
175 buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
176 a fresh skbuff is allocated and the frame is copied to the new skbuff.
177 When the incoming frame is larger, the skbuff is passed directly up the
178 protocol stack. Buffers consumed this way are replaced by newly allocated
179 skbuffs in the last phase of rhine_rx().
181 The RX_COPYBREAK value is chosen to trade-off the memory wasted by
182 using a full-sized skbuff for small frames vs. the copying costs of larger
183 frames. New boards are typically used in generously configured machines
184 and the underfilled buffers have negligible impact compared to the benefit of
185 a single allocation size, so the default value of zero results in never
186 copying packets. When copying is done, the cost is usually mitigated by using
187 a combined copy/checksum routine. Copying also preloads the cache, which is
188 most useful with small frames.
190 Since the VIA chips are only able to transfer data to buffers on 32 bit
191 boundaries, the IP header at offset 14 in an ethernet frame isn't
192 longword aligned for further processing. Copying these unaligned buffers
193 has the beneficial effect of 16-byte aligning the IP header.
195 IIId. Synchronization
197 The driver runs as two independent, single-threaded flows of control. One
198 is the send-packet routine, which enforces single-threaded use by the
199 netdev_priv(dev)->lock spinlock. The other thread is the interrupt handler,
200 which is single threaded by the hardware and interrupt handling software.
202 The send packet thread has partial control over the Tx ring. It locks the
203 netdev_priv(dev)->lock whenever it's queuing a Tx packet. If the next slot in
204 the ring is not available it stops the transmit queue by
205 calling netif_stop_queue.
207 The interrupt handler has exclusive control over the Rx ring and records stats
208 from the Tx ring. After reaping the stats, it marks the Tx queue entry as
209 empty by incrementing the dirty_tx mark. If at least half of the entries in
210 the Rx ring are available the transmit queue is woken up if it was stopped.
212 IV. Notes
214 IVb. References
216 Preliminary VT86C100A manual from http://www.via.com.tw/
217 http://www.scyld.com/expert/100mbps.html
218 http://www.scyld.com/expert/NWay.html
219 ftp://ftp.via.com.tw/public/lan/Products/NIC/VT86C100A/Datasheet/VT86C100A03.pdf
220 ftp://ftp.via.com.tw/public/lan/Products/NIC/VT6102/Datasheet/VT6102_021.PDF
223 IVc. Errata
225 The VT86C100A manual is not reliable information.
226 The 3043 chip does not handle unaligned transmit or receive buffers, resulting
227 in significant performance degradation for bounce buffer copies on transmit
228 and unaligned IP headers on receive.
229 The chip does not pad to minimum transmit length.
234 /* This table drives the PCI probe routines. It's mostly boilerplate in all
235 of the drivers, and will likely be provided by some future kernel.
236 Note the matching code -- the first table entry matchs all 56** cards but
237 second only the 1234 card.
240 enum rhine_revs {
241 VT86C100A = 0x00,
242 VTunknown0 = 0x20,
243 VT6102 = 0x40,
244 VT8231 = 0x50, /* Integrated MAC */
245 VT8233 = 0x60, /* Integrated MAC */
246 VT8235 = 0x74, /* Integrated MAC */
247 VT8237 = 0x78, /* Integrated MAC */
248 VTunknown1 = 0x7C,
249 VT6105 = 0x80,
250 VT6105_B0 = 0x83,
251 VT6105L = 0x8A,
252 VT6107 = 0x8C,
253 VTunknown2 = 0x8E,
254 VT6105M = 0x90, /* Management adapter */
257 enum rhine_quirks {
258 rqWOL = 0x0001, /* Wake-On-LAN support */
259 rqForceReset = 0x0002,
260 rq6patterns = 0x0040, /* 6 instead of 4 patterns for WOL */
261 rqStatusWBRace = 0x0080, /* Tx Status Writeback Error possible */
262 rqRhineI = 0x0100, /* See comment below */
265 * rqRhineI: VT86C100A (aka Rhine-I) uses different bits to enable
266 * MMIO as well as for the collision counter and the Tx FIFO underflow
267 * indicator. In addition, Tx and Rx buffers need to 4 byte aligned.
270 /* Beware of PCI posted writes */
271 #define IOSYNC do { ioread8(ioaddr + StationAddr); } while (0)
273 static DEFINE_PCI_DEVICE_TABLE(rhine_pci_tbl) = {
274 { 0x1106, 0x3043, PCI_ANY_ID, PCI_ANY_ID, }, /* VT86C100A */
275 { 0x1106, 0x3065, PCI_ANY_ID, PCI_ANY_ID, }, /* VT6102 */
276 { 0x1106, 0x3106, PCI_ANY_ID, PCI_ANY_ID, }, /* 6105{,L,LOM} */
277 { 0x1106, 0x3053, PCI_ANY_ID, PCI_ANY_ID, }, /* VT6105M */
278 { } /* terminate list */
280 MODULE_DEVICE_TABLE(pci, rhine_pci_tbl);
283 /* Offsets to the device registers. */
284 enum register_offsets {
285 StationAddr=0x00, RxConfig=0x06, TxConfig=0x07, ChipCmd=0x08,
286 ChipCmd1=0x09, TQWake=0x0A,
287 IntrStatus=0x0C, IntrEnable=0x0E,
288 MulticastFilter0=0x10, MulticastFilter1=0x14,
289 RxRingPtr=0x18, TxRingPtr=0x1C, GFIFOTest=0x54,
290 MIIPhyAddr=0x6C, MIIStatus=0x6D, PCIBusConfig=0x6E, PCIBusConfig1=0x6F,
291 MIICmd=0x70, MIIRegAddr=0x71, MIIData=0x72, MACRegEEcsr=0x74,
292 ConfigA=0x78, ConfigB=0x79, ConfigC=0x7A, ConfigD=0x7B,
293 RxMissed=0x7C, RxCRCErrs=0x7E, MiscCmd=0x81,
294 StickyHW=0x83, IntrStatus2=0x84,
295 CamMask=0x88, CamCon=0x92, CamAddr=0x93,
296 WOLcrSet=0xA0, PwcfgSet=0xA1, WOLcgSet=0xA3, WOLcrClr=0xA4,
297 WOLcrClr1=0xA6, WOLcgClr=0xA7,
298 PwrcsrSet=0xA8, PwrcsrSet1=0xA9, PwrcsrClr=0xAC, PwrcsrClr1=0xAD,
301 /* Bits in ConfigD */
302 enum backoff_bits {
303 BackOptional=0x01, BackModify=0x02,
304 BackCaptureEffect=0x04, BackRandom=0x08
307 /* Bits in the TxConfig (TCR) register */
308 enum tcr_bits {
309 TCR_PQEN=0x01,
310 TCR_LB0=0x02, /* loopback[0] */
311 TCR_LB1=0x04, /* loopback[1] */
312 TCR_OFSET=0x08,
313 TCR_RTGOPT=0x10,
314 TCR_RTFT0=0x20,
315 TCR_RTFT1=0x40,
316 TCR_RTSF=0x80,
319 /* Bits in the CamCon (CAMC) register */
320 enum camcon_bits {
321 CAMC_CAMEN=0x01,
322 CAMC_VCAMSL=0x02,
323 CAMC_CAMWR=0x04,
324 CAMC_CAMRD=0x08,
327 /* Bits in the PCIBusConfig1 (BCR1) register */
328 enum bcr1_bits {
329 BCR1_POT0=0x01,
330 BCR1_POT1=0x02,
331 BCR1_POT2=0x04,
332 BCR1_CTFT0=0x08,
333 BCR1_CTFT1=0x10,
334 BCR1_CTSF=0x20,
335 BCR1_TXQNOBK=0x40, /* for VT6105 */
336 BCR1_VIDFR=0x80, /* for VT6105 */
337 BCR1_MED0=0x40, /* for VT6102 */
338 BCR1_MED1=0x80, /* for VT6102 */
341 #ifdef USE_MMIO
342 /* Registers we check that mmio and reg are the same. */
343 static const int mmio_verify_registers[] = {
344 RxConfig, TxConfig, IntrEnable, ConfigA, ConfigB, ConfigC, ConfigD,
347 #endif
349 /* Bits in the interrupt status/mask registers. */
350 enum intr_status_bits {
351 IntrRxDone = 0x0001,
352 IntrTxDone = 0x0002,
353 IntrRxErr = 0x0004,
354 IntrTxError = 0x0008,
355 IntrRxEmpty = 0x0020,
356 IntrPCIErr = 0x0040,
357 IntrStatsMax = 0x0080,
358 IntrRxEarly = 0x0100,
359 IntrTxUnderrun = 0x0210,
360 IntrRxOverflow = 0x0400,
361 IntrRxDropped = 0x0800,
362 IntrRxNoBuf = 0x1000,
363 IntrTxAborted = 0x2000,
364 IntrLinkChange = 0x4000,
365 IntrRxWakeUp = 0x8000,
366 IntrTxDescRace = 0x080000, /* mapped from IntrStatus2 */
367 IntrNormalSummary = IntrRxDone | IntrTxDone,
368 IntrTxErrSummary = IntrTxDescRace | IntrTxAborted | IntrTxError |
369 IntrTxUnderrun,
372 /* Bits in WOLcrSet/WOLcrClr and PwrcsrSet/PwrcsrClr */
373 enum wol_bits {
374 WOLucast = 0x10,
375 WOLmagic = 0x20,
376 WOLbmcast = 0x30,
377 WOLlnkon = 0x40,
378 WOLlnkoff = 0x80,
381 /* The Rx and Tx buffer descriptors. */
382 struct rx_desc {
383 __le32 rx_status;
384 __le32 desc_length; /* Chain flag, Buffer/frame length */
385 __le32 addr;
386 __le32 next_desc;
388 struct tx_desc {
389 __le32 tx_status;
390 __le32 desc_length; /* Chain flag, Tx Config, Frame length */
391 __le32 addr;
392 __le32 next_desc;
395 /* Initial value for tx_desc.desc_length, Buffer size goes to bits 0-10 */
396 #define TXDESC 0x00e08000
398 enum rx_status_bits {
399 RxOK=0x8000, RxWholePkt=0x0300, RxErr=0x008F
402 /* Bits in *_desc.*_status */
403 enum desc_status_bits {
404 DescOwn=0x80000000
407 /* Bits in *_desc.*_length */
408 enum desc_length_bits {
409 DescTag=0x00010000
412 /* Bits in ChipCmd. */
413 enum chip_cmd_bits {
414 CmdInit=0x01, CmdStart=0x02, CmdStop=0x04, CmdRxOn=0x08,
415 CmdTxOn=0x10, Cmd1TxDemand=0x20, CmdRxDemand=0x40,
416 Cmd1EarlyRx=0x01, Cmd1EarlyTx=0x02, Cmd1FDuplex=0x04,
417 Cmd1NoTxPoll=0x08, Cmd1Reset=0x80,
420 struct rhine_private {
421 /* Bit mask for configured VLAN ids */
422 unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)];
424 /* Descriptor rings */
425 struct rx_desc *rx_ring;
426 struct tx_desc *tx_ring;
427 dma_addr_t rx_ring_dma;
428 dma_addr_t tx_ring_dma;
430 /* The addresses of receive-in-place skbuffs. */
431 struct sk_buff *rx_skbuff[RX_RING_SIZE];
432 dma_addr_t rx_skbuff_dma[RX_RING_SIZE];
434 /* The saved address of a sent-in-place packet/buffer, for later free(). */
435 struct sk_buff *tx_skbuff[TX_RING_SIZE];
436 dma_addr_t tx_skbuff_dma[TX_RING_SIZE];
438 /* Tx bounce buffers (Rhine-I only) */
439 unsigned char *tx_buf[TX_RING_SIZE];
440 unsigned char *tx_bufs;
441 dma_addr_t tx_bufs_dma;
443 struct pci_dev *pdev;
444 long pioaddr;
445 struct net_device *dev;
446 struct napi_struct napi;
447 spinlock_t lock;
448 struct mutex task_lock;
449 bool task_enable;
450 struct work_struct slow_event_task;
451 struct work_struct reset_task;
453 u32 msg_enable;
455 /* Frequently used values: keep some adjacent for cache effect. */
456 u32 quirks;
457 struct rx_desc *rx_head_desc;
458 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
459 unsigned int cur_tx, dirty_tx;
460 unsigned int rx_buf_sz; /* Based on MTU+slack. */
461 u8 wolopts;
463 u8 tx_thresh, rx_thresh;
465 struct mii_if_info mii_if;
466 void __iomem *base;
469 #define BYTE_REG_BITS_ON(x, p) do { iowrite8((ioread8((p))|(x)), (p)); } while (0)
470 #define WORD_REG_BITS_ON(x, p) do { iowrite16((ioread16((p))|(x)), (p)); } while (0)
471 #define DWORD_REG_BITS_ON(x, p) do { iowrite32((ioread32((p))|(x)), (p)); } while (0)
473 #define BYTE_REG_BITS_IS_ON(x, p) (ioread8((p)) & (x))
474 #define WORD_REG_BITS_IS_ON(x, p) (ioread16((p)) & (x))
475 #define DWORD_REG_BITS_IS_ON(x, p) (ioread32((p)) & (x))
477 #define BYTE_REG_BITS_OFF(x, p) do { iowrite8(ioread8((p)) & (~(x)), (p)); } while (0)
478 #define WORD_REG_BITS_OFF(x, p) do { iowrite16(ioread16((p)) & (~(x)), (p)); } while (0)
479 #define DWORD_REG_BITS_OFF(x, p) do { iowrite32(ioread32((p)) & (~(x)), (p)); } while (0)
481 #define BYTE_REG_BITS_SET(x, m, p) do { iowrite8((ioread8((p)) & (~(m)))|(x), (p)); } while (0)
482 #define WORD_REG_BITS_SET(x, m, p) do { iowrite16((ioread16((p)) & (~(m)))|(x), (p)); } while (0)
483 #define DWORD_REG_BITS_SET(x, m, p) do { iowrite32((ioread32((p)) & (~(m)))|(x), (p)); } while (0)
486 static int mdio_read(struct net_device *dev, int phy_id, int location);
487 static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
488 static int rhine_open(struct net_device *dev);
489 static void rhine_reset_task(struct work_struct *work);
490 static void rhine_slow_event_task(struct work_struct *work);
491 static void rhine_tx_timeout(struct net_device *dev);
492 static netdev_tx_t rhine_start_tx(struct sk_buff *skb,
493 struct net_device *dev);
494 static irqreturn_t rhine_interrupt(int irq, void *dev_instance);
495 static void rhine_tx(struct net_device *dev);
496 static int rhine_rx(struct net_device *dev, int limit);
497 static void rhine_set_rx_mode(struct net_device *dev);
498 static struct net_device_stats *rhine_get_stats(struct net_device *dev);
499 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
500 static const struct ethtool_ops netdev_ethtool_ops;
501 static int rhine_close(struct net_device *dev);
502 static int rhine_vlan_rx_add_vid(struct net_device *dev, unsigned short vid);
503 static int rhine_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid);
504 static void rhine_restart_tx(struct net_device *dev);
506 static void rhine_wait_bit(struct rhine_private *rp, u8 reg, u8 mask, bool low)
508 void __iomem *ioaddr = rp->base;
509 int i;
511 for (i = 0; i < 1024; i++) {
512 bool has_mask_bits = !!(ioread8(ioaddr + reg) & mask);
514 if (low ^ has_mask_bits)
515 break;
516 udelay(10);
518 if (i > 64) {
519 netif_dbg(rp, hw, rp->dev, "%s bit wait (%02x/%02x) cycle "
520 "count: %04d\n", low ? "low" : "high", reg, mask, i);
524 static void rhine_wait_bit_high(struct rhine_private *rp, u8 reg, u8 mask)
526 rhine_wait_bit(rp, reg, mask, false);
529 static void rhine_wait_bit_low(struct rhine_private *rp, u8 reg, u8 mask)
531 rhine_wait_bit(rp, reg, mask, true);
534 static u32 rhine_get_events(struct rhine_private *rp)
536 void __iomem *ioaddr = rp->base;
537 u32 intr_status;
539 intr_status = ioread16(ioaddr + IntrStatus);
540 /* On Rhine-II, Bit 3 indicates Tx descriptor write-back race. */
541 if (rp->quirks & rqStatusWBRace)
542 intr_status |= ioread8(ioaddr + IntrStatus2) << 16;
543 return intr_status;
546 static void rhine_ack_events(struct rhine_private *rp, u32 mask)
548 void __iomem *ioaddr = rp->base;
550 if (rp->quirks & rqStatusWBRace)
551 iowrite8(mask >> 16, ioaddr + IntrStatus2);
552 iowrite16(mask, ioaddr + IntrStatus);
553 mmiowb();
557 * Get power related registers into sane state.
558 * Notify user about past WOL event.
560 static void rhine_power_init(struct net_device *dev)
562 struct rhine_private *rp = netdev_priv(dev);
563 void __iomem *ioaddr = rp->base;
564 u16 wolstat;
566 if (rp->quirks & rqWOL) {
567 /* Make sure chip is in power state D0 */
568 iowrite8(ioread8(ioaddr + StickyHW) & 0xFC, ioaddr + StickyHW);
570 /* Disable "force PME-enable" */
571 iowrite8(0x80, ioaddr + WOLcgClr);
573 /* Clear power-event config bits (WOL) */
574 iowrite8(0xFF, ioaddr + WOLcrClr);
575 /* More recent cards can manage two additional patterns */
576 if (rp->quirks & rq6patterns)
577 iowrite8(0x03, ioaddr + WOLcrClr1);
579 /* Save power-event status bits */
580 wolstat = ioread8(ioaddr + PwrcsrSet);
581 if (rp->quirks & rq6patterns)
582 wolstat |= (ioread8(ioaddr + PwrcsrSet1) & 0x03) << 8;
584 /* Clear power-event status bits */
585 iowrite8(0xFF, ioaddr + PwrcsrClr);
586 if (rp->quirks & rq6patterns)
587 iowrite8(0x03, ioaddr + PwrcsrClr1);
589 if (wolstat) {
590 char *reason;
591 switch (wolstat) {
592 case WOLmagic:
593 reason = "Magic packet";
594 break;
595 case WOLlnkon:
596 reason = "Link went up";
597 break;
598 case WOLlnkoff:
599 reason = "Link went down";
600 break;
601 case WOLucast:
602 reason = "Unicast packet";
603 break;
604 case WOLbmcast:
605 reason = "Multicast/broadcast packet";
606 break;
607 default:
608 reason = "Unknown";
610 netdev_info(dev, "Woke system up. Reason: %s\n",
611 reason);
616 static void rhine_chip_reset(struct net_device *dev)
618 struct rhine_private *rp = netdev_priv(dev);
619 void __iomem *ioaddr = rp->base;
620 u8 cmd1;
622 iowrite8(Cmd1Reset, ioaddr + ChipCmd1);
623 IOSYNC;
625 if (ioread8(ioaddr + ChipCmd1) & Cmd1Reset) {
626 netdev_info(dev, "Reset not complete yet. Trying harder.\n");
628 /* Force reset */
629 if (rp->quirks & rqForceReset)
630 iowrite8(0x40, ioaddr + MiscCmd);
632 /* Reset can take somewhat longer (rare) */
633 rhine_wait_bit_low(rp, ChipCmd1, Cmd1Reset);
636 cmd1 = ioread8(ioaddr + ChipCmd1);
637 netif_info(rp, hw, dev, "Reset %s\n", (cmd1 & Cmd1Reset) ?
638 "failed" : "succeeded");
641 #ifdef USE_MMIO
642 static void enable_mmio(long pioaddr, u32 quirks)
644 int n;
645 if (quirks & rqRhineI) {
646 /* More recent docs say that this bit is reserved ... */
647 n = inb(pioaddr + ConfigA) | 0x20;
648 outb(n, pioaddr + ConfigA);
649 } else {
650 n = inb(pioaddr + ConfigD) | 0x80;
651 outb(n, pioaddr + ConfigD);
654 #endif
657 * Loads bytes 0x00-0x05, 0x6E-0x6F, 0x78-0x7B from EEPROM
658 * (plus 0x6C for Rhine-I/II)
660 static void __devinit rhine_reload_eeprom(long pioaddr, struct net_device *dev)
662 struct rhine_private *rp = netdev_priv(dev);
663 void __iomem *ioaddr = rp->base;
664 int i;
666 outb(0x20, pioaddr + MACRegEEcsr);
667 for (i = 0; i < 1024; i++) {
668 if (!(inb(pioaddr + MACRegEEcsr) & 0x20))
669 break;
671 if (i > 512)
672 pr_info("%4d cycles used @ %s:%d\n", i, __func__, __LINE__);
674 #ifdef USE_MMIO
676 * Reloading from EEPROM overwrites ConfigA-D, so we must re-enable
677 * MMIO. If reloading EEPROM was done first this could be avoided, but
678 * it is not known if that still works with the "win98-reboot" problem.
680 enable_mmio(pioaddr, rp->quirks);
681 #endif
683 /* Turn off EEPROM-controlled wake-up (magic packet) */
684 if (rp->quirks & rqWOL)
685 iowrite8(ioread8(ioaddr + ConfigA) & 0xFC, ioaddr + ConfigA);
689 #ifdef CONFIG_NET_POLL_CONTROLLER
690 static void rhine_poll(struct net_device *dev)
692 disable_irq(dev->irq);
693 rhine_interrupt(dev->irq, (void *)dev);
694 enable_irq(dev->irq);
696 #endif
698 static void rhine_kick_tx_threshold(struct rhine_private *rp)
700 if (rp->tx_thresh < 0xe0) {
701 void __iomem *ioaddr = rp->base;
703 rp->tx_thresh += 0x20;
704 BYTE_REG_BITS_SET(rp->tx_thresh, 0x80, ioaddr + TxConfig);
708 static void rhine_tx_err(struct rhine_private *rp, u32 status)
710 struct net_device *dev = rp->dev;
712 if (status & IntrTxAborted) {
713 netif_info(rp, tx_err, dev,
714 "Abort %08x, frame dropped\n", status);
717 if (status & IntrTxUnderrun) {
718 rhine_kick_tx_threshold(rp);
719 netif_info(rp, tx_err ,dev, "Transmitter underrun, "
720 "Tx threshold now %02x\n", rp->tx_thresh);
723 if (status & IntrTxDescRace)
724 netif_info(rp, tx_err, dev, "Tx descriptor write-back race\n");
726 if ((status & IntrTxError) &&
727 (status & (IntrTxAborted | IntrTxUnderrun | IntrTxDescRace)) == 0) {
728 rhine_kick_tx_threshold(rp);
729 netif_info(rp, tx_err, dev, "Unspecified error. "
730 "Tx threshold now %02x\n", rp->tx_thresh);
733 rhine_restart_tx(dev);
736 static void rhine_update_rx_crc_and_missed_errord(struct rhine_private *rp)
738 void __iomem *ioaddr = rp->base;
739 struct net_device_stats *stats = &rp->dev->stats;
741 stats->rx_crc_errors += ioread16(ioaddr + RxCRCErrs);
742 stats->rx_missed_errors += ioread16(ioaddr + RxMissed);
745 * Clears the "tally counters" for CRC errors and missed frames(?).
746 * It has been reported that some chips need a write of 0 to clear
747 * these, for others the counters are set to 1 when written to and
748 * instead cleared when read. So we clear them both ways ...
750 iowrite32(0, ioaddr + RxMissed);
751 ioread16(ioaddr + RxCRCErrs);
752 ioread16(ioaddr + RxMissed);
755 #define RHINE_EVENT_NAPI_RX (IntrRxDone | \
756 IntrRxErr | \
757 IntrRxEmpty | \
758 IntrRxOverflow | \
759 IntrRxDropped | \
760 IntrRxNoBuf | \
761 IntrRxWakeUp)
763 #define RHINE_EVENT_NAPI_TX_ERR (IntrTxError | \
764 IntrTxAborted | \
765 IntrTxUnderrun | \
766 IntrTxDescRace)
767 #define RHINE_EVENT_NAPI_TX (IntrTxDone | RHINE_EVENT_NAPI_TX_ERR)
769 #define RHINE_EVENT_NAPI (RHINE_EVENT_NAPI_RX | \
770 RHINE_EVENT_NAPI_TX | \
771 IntrStatsMax)
772 #define RHINE_EVENT_SLOW (IntrPCIErr | IntrLinkChange)
773 #define RHINE_EVENT (RHINE_EVENT_NAPI | RHINE_EVENT_SLOW)
775 static int rhine_napipoll(struct napi_struct *napi, int budget)
777 struct rhine_private *rp = container_of(napi, struct rhine_private, napi);
778 struct net_device *dev = rp->dev;
779 void __iomem *ioaddr = rp->base;
780 u16 enable_mask = RHINE_EVENT & 0xffff;
781 int work_done = 0;
782 u32 status;
784 status = rhine_get_events(rp);
785 rhine_ack_events(rp, status & ~RHINE_EVENT_SLOW);
787 if (status & RHINE_EVENT_NAPI_RX)
788 work_done += rhine_rx(dev, budget);
790 if (status & RHINE_EVENT_NAPI_TX) {
791 if (status & RHINE_EVENT_NAPI_TX_ERR) {
792 /* Avoid scavenging before Tx engine turned off */
793 rhine_wait_bit_low(rp, ChipCmd, CmdTxOn);
794 if (ioread8(ioaddr + ChipCmd) & CmdTxOn)
795 netif_warn(rp, tx_err, dev, "Tx still on\n");
798 rhine_tx(dev);
800 if (status & RHINE_EVENT_NAPI_TX_ERR)
801 rhine_tx_err(rp, status);
804 if (status & IntrStatsMax) {
805 spin_lock(&rp->lock);
806 rhine_update_rx_crc_and_missed_errord(rp);
807 spin_unlock(&rp->lock);
810 if (status & RHINE_EVENT_SLOW) {
811 enable_mask &= ~RHINE_EVENT_SLOW;
812 schedule_work(&rp->slow_event_task);
815 if (work_done < budget) {
816 napi_complete(napi);
817 iowrite16(enable_mask, ioaddr + IntrEnable);
818 mmiowb();
820 return work_done;
823 static void __devinit rhine_hw_init(struct net_device *dev, long pioaddr)
825 struct rhine_private *rp = netdev_priv(dev);
827 /* Reset the chip to erase previous misconfiguration. */
828 rhine_chip_reset(dev);
830 /* Rhine-I needs extra time to recuperate before EEPROM reload */
831 if (rp->quirks & rqRhineI)
832 msleep(5);
834 /* Reload EEPROM controlled bytes cleared by soft reset */
835 rhine_reload_eeprom(pioaddr, dev);
838 static const struct net_device_ops rhine_netdev_ops = {
839 .ndo_open = rhine_open,
840 .ndo_stop = rhine_close,
841 .ndo_start_xmit = rhine_start_tx,
842 .ndo_get_stats = rhine_get_stats,
843 .ndo_set_rx_mode = rhine_set_rx_mode,
844 .ndo_change_mtu = eth_change_mtu,
845 .ndo_validate_addr = eth_validate_addr,
846 .ndo_set_mac_address = eth_mac_addr,
847 .ndo_do_ioctl = netdev_ioctl,
848 .ndo_tx_timeout = rhine_tx_timeout,
849 .ndo_vlan_rx_add_vid = rhine_vlan_rx_add_vid,
850 .ndo_vlan_rx_kill_vid = rhine_vlan_rx_kill_vid,
851 #ifdef CONFIG_NET_POLL_CONTROLLER
852 .ndo_poll_controller = rhine_poll,
853 #endif
856 static int __devinit rhine_init_one(struct pci_dev *pdev,
857 const struct pci_device_id *ent)
859 struct net_device *dev;
860 struct rhine_private *rp;
861 int i, rc;
862 u32 quirks;
863 long pioaddr;
864 long memaddr;
865 void __iomem *ioaddr;
866 int io_size, phy_id;
867 const char *name;
868 #ifdef USE_MMIO
869 int bar = 1;
870 #else
871 int bar = 0;
872 #endif
874 /* when built into the kernel, we only print version if device is found */
875 #ifndef MODULE
876 pr_info_once("%s\n", version);
877 #endif
879 io_size = 256;
880 phy_id = 0;
881 quirks = 0;
882 name = "Rhine";
883 if (pdev->revision < VTunknown0) {
884 quirks = rqRhineI;
885 io_size = 128;
887 else if (pdev->revision >= VT6102) {
888 quirks = rqWOL | rqForceReset;
889 if (pdev->revision < VT6105) {
890 name = "Rhine II";
891 quirks |= rqStatusWBRace; /* Rhine-II exclusive */
893 else {
894 phy_id = 1; /* Integrated PHY, phy_id fixed to 1 */
895 if (pdev->revision >= VT6105_B0)
896 quirks |= rq6patterns;
897 if (pdev->revision < VT6105M)
898 name = "Rhine III";
899 else
900 name = "Rhine III (Management Adapter)";
904 rc = pci_enable_device(pdev);
905 if (rc)
906 goto err_out;
908 /* this should always be supported */
909 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
910 if (rc) {
911 dev_err(&pdev->dev,
912 "32-bit PCI DMA addresses not supported by the card!?\n");
913 goto err_out;
916 /* sanity check */
917 if ((pci_resource_len(pdev, 0) < io_size) ||
918 (pci_resource_len(pdev, 1) < io_size)) {
919 rc = -EIO;
920 dev_err(&pdev->dev, "Insufficient PCI resources, aborting\n");
921 goto err_out;
924 pioaddr = pci_resource_start(pdev, 0);
925 memaddr = pci_resource_start(pdev, 1);
927 pci_set_master(pdev);
929 dev = alloc_etherdev(sizeof(struct rhine_private));
930 if (!dev) {
931 rc = -ENOMEM;
932 goto err_out;
934 SET_NETDEV_DEV(dev, &pdev->dev);
936 rp = netdev_priv(dev);
937 rp->dev = dev;
938 rp->quirks = quirks;
939 rp->pioaddr = pioaddr;
940 rp->pdev = pdev;
941 rp->msg_enable = netif_msg_init(debug, RHINE_MSG_DEFAULT);
943 rc = pci_request_regions(pdev, DRV_NAME);
944 if (rc)
945 goto err_out_free_netdev;
947 ioaddr = pci_iomap(pdev, bar, io_size);
948 if (!ioaddr) {
949 rc = -EIO;
950 dev_err(&pdev->dev,
951 "ioremap failed for device %s, region 0x%X @ 0x%lX\n",
952 pci_name(pdev), io_size, memaddr);
953 goto err_out_free_res;
956 #ifdef USE_MMIO
957 enable_mmio(pioaddr, quirks);
959 /* Check that selected MMIO registers match the PIO ones */
960 i = 0;
961 while (mmio_verify_registers[i]) {
962 int reg = mmio_verify_registers[i++];
963 unsigned char a = inb(pioaddr+reg);
964 unsigned char b = readb(ioaddr+reg);
965 if (a != b) {
966 rc = -EIO;
967 dev_err(&pdev->dev,
968 "MMIO do not match PIO [%02x] (%02x != %02x)\n",
969 reg, a, b);
970 goto err_out_unmap;
973 #endif /* USE_MMIO */
975 dev->base_addr = (unsigned long)ioaddr;
976 rp->base = ioaddr;
978 /* Get chip registers into a sane state */
979 rhine_power_init(dev);
980 rhine_hw_init(dev, pioaddr);
982 for (i = 0; i < 6; i++)
983 dev->dev_addr[i] = ioread8(ioaddr + StationAddr + i);
985 if (!is_valid_ether_addr(dev->dev_addr)) {
986 /* Report it and use a random ethernet address instead */
987 netdev_err(dev, "Invalid MAC address: %pM\n", dev->dev_addr);
988 eth_hw_addr_random(dev);
989 netdev_info(dev, "Using random MAC address: %pM\n",
990 dev->dev_addr);
992 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
994 /* For Rhine-I/II, phy_id is loaded from EEPROM */
995 if (!phy_id)
996 phy_id = ioread8(ioaddr + 0x6C);
998 dev->irq = pdev->irq;
1000 spin_lock_init(&rp->lock);
1001 mutex_init(&rp->task_lock);
1002 INIT_WORK(&rp->reset_task, rhine_reset_task);
1003 INIT_WORK(&rp->slow_event_task, rhine_slow_event_task);
1005 rp->mii_if.dev = dev;
1006 rp->mii_if.mdio_read = mdio_read;
1007 rp->mii_if.mdio_write = mdio_write;
1008 rp->mii_if.phy_id_mask = 0x1f;
1009 rp->mii_if.reg_num_mask = 0x1f;
1011 /* The chip-specific entries in the device structure. */
1012 dev->netdev_ops = &rhine_netdev_ops;
1013 dev->ethtool_ops = &netdev_ethtool_ops,
1014 dev->watchdog_timeo = TX_TIMEOUT;
1016 netif_napi_add(dev, &rp->napi, rhine_napipoll, 64);
1018 if (rp->quirks & rqRhineI)
1019 dev->features |= NETIF_F_SG|NETIF_F_HW_CSUM;
1021 if (pdev->revision >= VT6105M)
1022 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX |
1023 NETIF_F_HW_VLAN_FILTER;
1025 /* dev->name not defined before register_netdev()! */
1026 rc = register_netdev(dev);
1027 if (rc)
1028 goto err_out_unmap;
1030 netdev_info(dev, "VIA %s at 0x%lx, %pM, IRQ %d\n",
1031 name,
1032 #ifdef USE_MMIO
1033 memaddr,
1034 #else
1035 (long)ioaddr,
1036 #endif
1037 dev->dev_addr, pdev->irq);
1039 pci_set_drvdata(pdev, dev);
1042 u16 mii_cmd;
1043 int mii_status = mdio_read(dev, phy_id, 1);
1044 mii_cmd = mdio_read(dev, phy_id, MII_BMCR) & ~BMCR_ISOLATE;
1045 mdio_write(dev, phy_id, MII_BMCR, mii_cmd);
1046 if (mii_status != 0xffff && mii_status != 0x0000) {
1047 rp->mii_if.advertising = mdio_read(dev, phy_id, 4);
1048 netdev_info(dev,
1049 "MII PHY found at address %d, status 0x%04x advertising %04x Link %04x\n",
1050 phy_id,
1051 mii_status, rp->mii_if.advertising,
1052 mdio_read(dev, phy_id, 5));
1054 /* set IFF_RUNNING */
1055 if (mii_status & BMSR_LSTATUS)
1056 netif_carrier_on(dev);
1057 else
1058 netif_carrier_off(dev);
1062 rp->mii_if.phy_id = phy_id;
1063 if (avoid_D3)
1064 netif_info(rp, probe, dev, "No D3 power state at shutdown\n");
1066 return 0;
1068 err_out_unmap:
1069 pci_iounmap(pdev, ioaddr);
1070 err_out_free_res:
1071 pci_release_regions(pdev);
1072 err_out_free_netdev:
1073 free_netdev(dev);
1074 err_out:
1075 return rc;
1078 static int alloc_ring(struct net_device* dev)
1080 struct rhine_private *rp = netdev_priv(dev);
1081 void *ring;
1082 dma_addr_t ring_dma;
1084 ring = pci_alloc_consistent(rp->pdev,
1085 RX_RING_SIZE * sizeof(struct rx_desc) +
1086 TX_RING_SIZE * sizeof(struct tx_desc),
1087 &ring_dma);
1088 if (!ring) {
1089 netdev_err(dev, "Could not allocate DMA memory\n");
1090 return -ENOMEM;
1092 if (rp->quirks & rqRhineI) {
1093 rp->tx_bufs = pci_alloc_consistent(rp->pdev,
1094 PKT_BUF_SZ * TX_RING_SIZE,
1095 &rp->tx_bufs_dma);
1096 if (rp->tx_bufs == NULL) {
1097 pci_free_consistent(rp->pdev,
1098 RX_RING_SIZE * sizeof(struct rx_desc) +
1099 TX_RING_SIZE * sizeof(struct tx_desc),
1100 ring, ring_dma);
1101 return -ENOMEM;
1105 rp->rx_ring = ring;
1106 rp->tx_ring = ring + RX_RING_SIZE * sizeof(struct rx_desc);
1107 rp->rx_ring_dma = ring_dma;
1108 rp->tx_ring_dma = ring_dma + RX_RING_SIZE * sizeof(struct rx_desc);
1110 return 0;
1113 static void free_ring(struct net_device* dev)
1115 struct rhine_private *rp = netdev_priv(dev);
1117 pci_free_consistent(rp->pdev,
1118 RX_RING_SIZE * sizeof(struct rx_desc) +
1119 TX_RING_SIZE * sizeof(struct tx_desc),
1120 rp->rx_ring, rp->rx_ring_dma);
1121 rp->tx_ring = NULL;
1123 if (rp->tx_bufs)
1124 pci_free_consistent(rp->pdev, PKT_BUF_SZ * TX_RING_SIZE,
1125 rp->tx_bufs, rp->tx_bufs_dma);
1127 rp->tx_bufs = NULL;
1131 static void alloc_rbufs(struct net_device *dev)
1133 struct rhine_private *rp = netdev_priv(dev);
1134 dma_addr_t next;
1135 int i;
1137 rp->dirty_rx = rp->cur_rx = 0;
1139 rp->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
1140 rp->rx_head_desc = &rp->rx_ring[0];
1141 next = rp->rx_ring_dma;
1143 /* Init the ring entries */
1144 for (i = 0; i < RX_RING_SIZE; i++) {
1145 rp->rx_ring[i].rx_status = 0;
1146 rp->rx_ring[i].desc_length = cpu_to_le32(rp->rx_buf_sz);
1147 next += sizeof(struct rx_desc);
1148 rp->rx_ring[i].next_desc = cpu_to_le32(next);
1149 rp->rx_skbuff[i] = NULL;
1151 /* Mark the last entry as wrapping the ring. */
1152 rp->rx_ring[i-1].next_desc = cpu_to_le32(rp->rx_ring_dma);
1154 /* Fill in the Rx buffers. Handle allocation failure gracefully. */
1155 for (i = 0; i < RX_RING_SIZE; i++) {
1156 struct sk_buff *skb = netdev_alloc_skb(dev, rp->rx_buf_sz);
1157 rp->rx_skbuff[i] = skb;
1158 if (skb == NULL)
1159 break;
1161 rp->rx_skbuff_dma[i] =
1162 pci_map_single(rp->pdev, skb->data, rp->rx_buf_sz,
1163 PCI_DMA_FROMDEVICE);
1165 rp->rx_ring[i].addr = cpu_to_le32(rp->rx_skbuff_dma[i]);
1166 rp->rx_ring[i].rx_status = cpu_to_le32(DescOwn);
1168 rp->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
1171 static void free_rbufs(struct net_device* dev)
1173 struct rhine_private *rp = netdev_priv(dev);
1174 int i;
1176 /* Free all the skbuffs in the Rx queue. */
1177 for (i = 0; i < RX_RING_SIZE; i++) {
1178 rp->rx_ring[i].rx_status = 0;
1179 rp->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
1180 if (rp->rx_skbuff[i]) {
1181 pci_unmap_single(rp->pdev,
1182 rp->rx_skbuff_dma[i],
1183 rp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1184 dev_kfree_skb(rp->rx_skbuff[i]);
1186 rp->rx_skbuff[i] = NULL;
1190 static void alloc_tbufs(struct net_device* dev)
1192 struct rhine_private *rp = netdev_priv(dev);
1193 dma_addr_t next;
1194 int i;
1196 rp->dirty_tx = rp->cur_tx = 0;
1197 next = rp->tx_ring_dma;
1198 for (i = 0; i < TX_RING_SIZE; i++) {
1199 rp->tx_skbuff[i] = NULL;
1200 rp->tx_ring[i].tx_status = 0;
1201 rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC);
1202 next += sizeof(struct tx_desc);
1203 rp->tx_ring[i].next_desc = cpu_to_le32(next);
1204 if (rp->quirks & rqRhineI)
1205 rp->tx_buf[i] = &rp->tx_bufs[i * PKT_BUF_SZ];
1207 rp->tx_ring[i-1].next_desc = cpu_to_le32(rp->tx_ring_dma);
1211 static void free_tbufs(struct net_device* dev)
1213 struct rhine_private *rp = netdev_priv(dev);
1214 int i;
1216 for (i = 0; i < TX_RING_SIZE; i++) {
1217 rp->tx_ring[i].tx_status = 0;
1218 rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC);
1219 rp->tx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
1220 if (rp->tx_skbuff[i]) {
1221 if (rp->tx_skbuff_dma[i]) {
1222 pci_unmap_single(rp->pdev,
1223 rp->tx_skbuff_dma[i],
1224 rp->tx_skbuff[i]->len,
1225 PCI_DMA_TODEVICE);
1227 dev_kfree_skb(rp->tx_skbuff[i]);
1229 rp->tx_skbuff[i] = NULL;
1230 rp->tx_buf[i] = NULL;
1234 static void rhine_check_media(struct net_device *dev, unsigned int init_media)
1236 struct rhine_private *rp = netdev_priv(dev);
1237 void __iomem *ioaddr = rp->base;
1239 mii_check_media(&rp->mii_if, netif_msg_link(rp), init_media);
1241 if (rp->mii_if.full_duplex)
1242 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1FDuplex,
1243 ioaddr + ChipCmd1);
1244 else
1245 iowrite8(ioread8(ioaddr + ChipCmd1) & ~Cmd1FDuplex,
1246 ioaddr + ChipCmd1);
1248 netif_info(rp, link, dev, "force_media %d, carrier %d\n",
1249 rp->mii_if.force_media, netif_carrier_ok(dev));
1252 /* Called after status of force_media possibly changed */
1253 static void rhine_set_carrier(struct mii_if_info *mii)
1255 struct net_device *dev = mii->dev;
1256 struct rhine_private *rp = netdev_priv(dev);
1258 if (mii->force_media) {
1259 /* autoneg is off: Link is always assumed to be up */
1260 if (!netif_carrier_ok(dev))
1261 netif_carrier_on(dev);
1262 } else /* Let MMI library update carrier status */
1263 rhine_check_media(dev, 0);
1265 netif_info(rp, link, dev, "force_media %d, carrier %d\n",
1266 mii->force_media, netif_carrier_ok(dev));
1270 * rhine_set_cam - set CAM multicast filters
1271 * @ioaddr: register block of this Rhine
1272 * @idx: multicast CAM index [0..MCAM_SIZE-1]
1273 * @addr: multicast address (6 bytes)
1275 * Load addresses into multicast filters.
1277 static void rhine_set_cam(void __iomem *ioaddr, int idx, u8 *addr)
1279 int i;
1281 iowrite8(CAMC_CAMEN, ioaddr + CamCon);
1282 wmb();
1284 /* Paranoid -- idx out of range should never happen */
1285 idx &= (MCAM_SIZE - 1);
1287 iowrite8((u8) idx, ioaddr + CamAddr);
1289 for (i = 0; i < 6; i++, addr++)
1290 iowrite8(*addr, ioaddr + MulticastFilter0 + i);
1291 udelay(10);
1292 wmb();
1294 iowrite8(CAMC_CAMWR | CAMC_CAMEN, ioaddr + CamCon);
1295 udelay(10);
1297 iowrite8(0, ioaddr + CamCon);
1301 * rhine_set_vlan_cam - set CAM VLAN filters
1302 * @ioaddr: register block of this Rhine
1303 * @idx: VLAN CAM index [0..VCAM_SIZE-1]
1304 * @addr: VLAN ID (2 bytes)
1306 * Load addresses into VLAN filters.
1308 static void rhine_set_vlan_cam(void __iomem *ioaddr, int idx, u8 *addr)
1310 iowrite8(CAMC_CAMEN | CAMC_VCAMSL, ioaddr + CamCon);
1311 wmb();
1313 /* Paranoid -- idx out of range should never happen */
1314 idx &= (VCAM_SIZE - 1);
1316 iowrite8((u8) idx, ioaddr + CamAddr);
1318 iowrite16(*((u16 *) addr), ioaddr + MulticastFilter0 + 6);
1319 udelay(10);
1320 wmb();
1322 iowrite8(CAMC_CAMWR | CAMC_CAMEN, ioaddr + CamCon);
1323 udelay(10);
1325 iowrite8(0, ioaddr + CamCon);
1329 * rhine_set_cam_mask - set multicast CAM mask
1330 * @ioaddr: register block of this Rhine
1331 * @mask: multicast CAM mask
1333 * Mask sets multicast filters active/inactive.
1335 static void rhine_set_cam_mask(void __iomem *ioaddr, u32 mask)
1337 iowrite8(CAMC_CAMEN, ioaddr + CamCon);
1338 wmb();
1340 /* write mask */
1341 iowrite32(mask, ioaddr + CamMask);
1343 /* disable CAMEN */
1344 iowrite8(0, ioaddr + CamCon);
1348 * rhine_set_vlan_cam_mask - set VLAN CAM mask
1349 * @ioaddr: register block of this Rhine
1350 * @mask: VLAN CAM mask
1352 * Mask sets VLAN filters active/inactive.
1354 static void rhine_set_vlan_cam_mask(void __iomem *ioaddr, u32 mask)
1356 iowrite8(CAMC_CAMEN | CAMC_VCAMSL, ioaddr + CamCon);
1357 wmb();
1359 /* write mask */
1360 iowrite32(mask, ioaddr + CamMask);
1362 /* disable CAMEN */
1363 iowrite8(0, ioaddr + CamCon);
1367 * rhine_init_cam_filter - initialize CAM filters
1368 * @dev: network device
1370 * Initialize (disable) hardware VLAN and multicast support on this
1371 * Rhine.
1373 static void rhine_init_cam_filter(struct net_device *dev)
1375 struct rhine_private *rp = netdev_priv(dev);
1376 void __iomem *ioaddr = rp->base;
1378 /* Disable all CAMs */
1379 rhine_set_vlan_cam_mask(ioaddr, 0);
1380 rhine_set_cam_mask(ioaddr, 0);
1382 /* disable hardware VLAN support */
1383 BYTE_REG_BITS_ON(TCR_PQEN, ioaddr + TxConfig);
1384 BYTE_REG_BITS_OFF(BCR1_VIDFR, ioaddr + PCIBusConfig1);
1388 * rhine_update_vcam - update VLAN CAM filters
1389 * @rp: rhine_private data of this Rhine
1391 * Update VLAN CAM filters to match configuration change.
1393 static void rhine_update_vcam(struct net_device *dev)
1395 struct rhine_private *rp = netdev_priv(dev);
1396 void __iomem *ioaddr = rp->base;
1397 u16 vid;
1398 u32 vCAMmask = 0; /* 32 vCAMs (6105M and better) */
1399 unsigned int i = 0;
1401 for_each_set_bit(vid, rp->active_vlans, VLAN_N_VID) {
1402 rhine_set_vlan_cam(ioaddr, i, (u8 *)&vid);
1403 vCAMmask |= 1 << i;
1404 if (++i >= VCAM_SIZE)
1405 break;
1407 rhine_set_vlan_cam_mask(ioaddr, vCAMmask);
1410 static int rhine_vlan_rx_add_vid(struct net_device *dev, unsigned short vid)
1412 struct rhine_private *rp = netdev_priv(dev);
1414 spin_lock_bh(&rp->lock);
1415 set_bit(vid, rp->active_vlans);
1416 rhine_update_vcam(dev);
1417 spin_unlock_bh(&rp->lock);
1418 return 0;
1421 static int rhine_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
1423 struct rhine_private *rp = netdev_priv(dev);
1425 spin_lock_bh(&rp->lock);
1426 clear_bit(vid, rp->active_vlans);
1427 rhine_update_vcam(dev);
1428 spin_unlock_bh(&rp->lock);
1429 return 0;
1432 static void init_registers(struct net_device *dev)
1434 struct rhine_private *rp = netdev_priv(dev);
1435 void __iomem *ioaddr = rp->base;
1436 int i;
1438 for (i = 0; i < 6; i++)
1439 iowrite8(dev->dev_addr[i], ioaddr + StationAddr + i);
1441 /* Initialize other registers. */
1442 iowrite16(0x0006, ioaddr + PCIBusConfig); /* Tune configuration??? */
1443 /* Configure initial FIFO thresholds. */
1444 iowrite8(0x20, ioaddr + TxConfig);
1445 rp->tx_thresh = 0x20;
1446 rp->rx_thresh = 0x60; /* Written in rhine_set_rx_mode(). */
1448 iowrite32(rp->rx_ring_dma, ioaddr + RxRingPtr);
1449 iowrite32(rp->tx_ring_dma, ioaddr + TxRingPtr);
1451 rhine_set_rx_mode(dev);
1453 if (rp->pdev->revision >= VT6105M)
1454 rhine_init_cam_filter(dev);
1456 napi_enable(&rp->napi);
1458 iowrite16(RHINE_EVENT & 0xffff, ioaddr + IntrEnable);
1460 iowrite16(CmdStart | CmdTxOn | CmdRxOn | (Cmd1NoTxPoll << 8),
1461 ioaddr + ChipCmd);
1462 rhine_check_media(dev, 1);
1465 /* Enable MII link status auto-polling (required for IntrLinkChange) */
1466 static void rhine_enable_linkmon(struct rhine_private *rp)
1468 void __iomem *ioaddr = rp->base;
1470 iowrite8(0, ioaddr + MIICmd);
1471 iowrite8(MII_BMSR, ioaddr + MIIRegAddr);
1472 iowrite8(0x80, ioaddr + MIICmd);
1474 rhine_wait_bit_high(rp, MIIRegAddr, 0x20);
1476 iowrite8(MII_BMSR | 0x40, ioaddr + MIIRegAddr);
1479 /* Disable MII link status auto-polling (required for MDIO access) */
1480 static void rhine_disable_linkmon(struct rhine_private *rp)
1482 void __iomem *ioaddr = rp->base;
1484 iowrite8(0, ioaddr + MIICmd);
1486 if (rp->quirks & rqRhineI) {
1487 iowrite8(0x01, ioaddr + MIIRegAddr); // MII_BMSR
1489 /* Can be called from ISR. Evil. */
1490 mdelay(1);
1492 /* 0x80 must be set immediately before turning it off */
1493 iowrite8(0x80, ioaddr + MIICmd);
1495 rhine_wait_bit_high(rp, MIIRegAddr, 0x20);
1497 /* Heh. Now clear 0x80 again. */
1498 iowrite8(0, ioaddr + MIICmd);
1500 else
1501 rhine_wait_bit_high(rp, MIIRegAddr, 0x80);
1504 /* Read and write over the MII Management Data I/O (MDIO) interface. */
1506 static int mdio_read(struct net_device *dev, int phy_id, int regnum)
1508 struct rhine_private *rp = netdev_priv(dev);
1509 void __iomem *ioaddr = rp->base;
1510 int result;
1512 rhine_disable_linkmon(rp);
1514 /* rhine_disable_linkmon already cleared MIICmd */
1515 iowrite8(phy_id, ioaddr + MIIPhyAddr);
1516 iowrite8(regnum, ioaddr + MIIRegAddr);
1517 iowrite8(0x40, ioaddr + MIICmd); /* Trigger read */
1518 rhine_wait_bit_low(rp, MIICmd, 0x40);
1519 result = ioread16(ioaddr + MIIData);
1521 rhine_enable_linkmon(rp);
1522 return result;
1525 static void mdio_write(struct net_device *dev, int phy_id, int regnum, int value)
1527 struct rhine_private *rp = netdev_priv(dev);
1528 void __iomem *ioaddr = rp->base;
1530 rhine_disable_linkmon(rp);
1532 /* rhine_disable_linkmon already cleared MIICmd */
1533 iowrite8(phy_id, ioaddr + MIIPhyAddr);
1534 iowrite8(regnum, ioaddr + MIIRegAddr);
1535 iowrite16(value, ioaddr + MIIData);
1536 iowrite8(0x20, ioaddr + MIICmd); /* Trigger write */
1537 rhine_wait_bit_low(rp, MIICmd, 0x20);
1539 rhine_enable_linkmon(rp);
1542 static void rhine_task_disable(struct rhine_private *rp)
1544 mutex_lock(&rp->task_lock);
1545 rp->task_enable = false;
1546 mutex_unlock(&rp->task_lock);
1548 cancel_work_sync(&rp->slow_event_task);
1549 cancel_work_sync(&rp->reset_task);
1552 static void rhine_task_enable(struct rhine_private *rp)
1554 mutex_lock(&rp->task_lock);
1555 rp->task_enable = true;
1556 mutex_unlock(&rp->task_lock);
1559 static int rhine_open(struct net_device *dev)
1561 struct rhine_private *rp = netdev_priv(dev);
1562 void __iomem *ioaddr = rp->base;
1563 int rc;
1565 rc = request_irq(rp->pdev->irq, rhine_interrupt, IRQF_SHARED, dev->name,
1566 dev);
1567 if (rc)
1568 return rc;
1570 netif_dbg(rp, ifup, dev, "%s() irq %d\n", __func__, rp->pdev->irq);
1572 rc = alloc_ring(dev);
1573 if (rc) {
1574 free_irq(rp->pdev->irq, dev);
1575 return rc;
1577 alloc_rbufs(dev);
1578 alloc_tbufs(dev);
1579 rhine_chip_reset(dev);
1580 rhine_task_enable(rp);
1581 init_registers(dev);
1583 netif_dbg(rp, ifup, dev, "%s() Done - status %04x MII status: %04x\n",
1584 __func__, ioread16(ioaddr + ChipCmd),
1585 mdio_read(dev, rp->mii_if.phy_id, MII_BMSR));
1587 netif_start_queue(dev);
1589 return 0;
1592 static void rhine_reset_task(struct work_struct *work)
1594 struct rhine_private *rp = container_of(work, struct rhine_private,
1595 reset_task);
1596 struct net_device *dev = rp->dev;
1598 mutex_lock(&rp->task_lock);
1600 if (!rp->task_enable)
1601 goto out_unlock;
1603 napi_disable(&rp->napi);
1604 netif_tx_disable(dev);
1605 spin_lock_bh(&rp->lock);
1607 /* clear all descriptors */
1608 free_tbufs(dev);
1609 free_rbufs(dev);
1610 alloc_tbufs(dev);
1611 alloc_rbufs(dev);
1613 /* Reinitialize the hardware. */
1614 rhine_chip_reset(dev);
1615 init_registers(dev);
1617 spin_unlock_bh(&rp->lock);
1619 dev->trans_start = jiffies; /* prevent tx timeout */
1620 dev->stats.tx_errors++;
1621 netif_wake_queue(dev);
1623 out_unlock:
1624 mutex_unlock(&rp->task_lock);
1627 static void rhine_tx_timeout(struct net_device *dev)
1629 struct rhine_private *rp = netdev_priv(dev);
1630 void __iomem *ioaddr = rp->base;
1632 netdev_warn(dev, "Transmit timed out, status %04x, PHY status %04x, resetting...\n",
1633 ioread16(ioaddr + IntrStatus),
1634 mdio_read(dev, rp->mii_if.phy_id, MII_BMSR));
1636 schedule_work(&rp->reset_task);
1639 static netdev_tx_t rhine_start_tx(struct sk_buff *skb,
1640 struct net_device *dev)
1642 struct rhine_private *rp = netdev_priv(dev);
1643 void __iomem *ioaddr = rp->base;
1644 unsigned entry;
1646 /* Caution: the write order is important here, set the field
1647 with the "ownership" bits last. */
1649 /* Calculate the next Tx descriptor entry. */
1650 entry = rp->cur_tx % TX_RING_SIZE;
1652 if (skb_padto(skb, ETH_ZLEN))
1653 return NETDEV_TX_OK;
1655 rp->tx_skbuff[entry] = skb;
1657 if ((rp->quirks & rqRhineI) &&
1658 (((unsigned long)skb->data & 3) || skb_shinfo(skb)->nr_frags != 0 || skb->ip_summed == CHECKSUM_PARTIAL)) {
1659 /* Must use alignment buffer. */
1660 if (skb->len > PKT_BUF_SZ) {
1661 /* packet too long, drop it */
1662 dev_kfree_skb(skb);
1663 rp->tx_skbuff[entry] = NULL;
1664 dev->stats.tx_dropped++;
1665 return NETDEV_TX_OK;
1668 /* Padding is not copied and so must be redone. */
1669 skb_copy_and_csum_dev(skb, rp->tx_buf[entry]);
1670 if (skb->len < ETH_ZLEN)
1671 memset(rp->tx_buf[entry] + skb->len, 0,
1672 ETH_ZLEN - skb->len);
1673 rp->tx_skbuff_dma[entry] = 0;
1674 rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_bufs_dma +
1675 (rp->tx_buf[entry] -
1676 rp->tx_bufs));
1677 } else {
1678 rp->tx_skbuff_dma[entry] =
1679 pci_map_single(rp->pdev, skb->data, skb->len,
1680 PCI_DMA_TODEVICE);
1681 rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_skbuff_dma[entry]);
1684 rp->tx_ring[entry].desc_length =
1685 cpu_to_le32(TXDESC | (skb->len >= ETH_ZLEN ? skb->len : ETH_ZLEN));
1687 if (unlikely(vlan_tx_tag_present(skb))) {
1688 u16 vid_pcp = vlan_tx_tag_get(skb);
1690 /* drop CFI/DEI bit, register needs VID and PCP */
1691 vid_pcp = (vid_pcp & VLAN_VID_MASK) |
1692 ((vid_pcp & VLAN_PRIO_MASK) >> 1);
1693 rp->tx_ring[entry].tx_status = cpu_to_le32((vid_pcp) << 16);
1694 /* request tagging */
1695 rp->tx_ring[entry].desc_length |= cpu_to_le32(0x020000);
1697 else
1698 rp->tx_ring[entry].tx_status = 0;
1700 /* lock eth irq */
1701 wmb();
1702 rp->tx_ring[entry].tx_status |= cpu_to_le32(DescOwn);
1703 wmb();
1705 rp->cur_tx++;
1707 /* Non-x86 Todo: explicitly flush cache lines here. */
1709 if (vlan_tx_tag_present(skb))
1710 /* Tx queues are bits 7-0 (first Tx queue: bit 7) */
1711 BYTE_REG_BITS_ON(1 << 7, ioaddr + TQWake);
1713 /* Wake the potentially-idle transmit channel */
1714 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand,
1715 ioaddr + ChipCmd1);
1716 IOSYNC;
1718 if (rp->cur_tx == rp->dirty_tx + TX_QUEUE_LEN)
1719 netif_stop_queue(dev);
1721 netif_dbg(rp, tx_queued, dev, "Transmit frame #%d queued in slot %d\n",
1722 rp->cur_tx - 1, entry);
1724 return NETDEV_TX_OK;
1727 static void rhine_irq_disable(struct rhine_private *rp)
1729 iowrite16(0x0000, rp->base + IntrEnable);
1730 mmiowb();
1733 /* The interrupt handler does all of the Rx thread work and cleans up
1734 after the Tx thread. */
1735 static irqreturn_t rhine_interrupt(int irq, void *dev_instance)
1737 struct net_device *dev = dev_instance;
1738 struct rhine_private *rp = netdev_priv(dev);
1739 u32 status;
1740 int handled = 0;
1742 status = rhine_get_events(rp);
1744 netif_dbg(rp, intr, dev, "Interrupt, status %08x\n", status);
1746 if (status & RHINE_EVENT) {
1747 handled = 1;
1749 rhine_irq_disable(rp);
1750 napi_schedule(&rp->napi);
1753 if (status & ~(IntrLinkChange | IntrStatsMax | RHINE_EVENT_NAPI)) {
1754 netif_err(rp, intr, dev, "Something Wicked happened! %08x\n",
1755 status);
1758 return IRQ_RETVAL(handled);
1761 /* This routine is logically part of the interrupt handler, but isolated
1762 for clarity. */
1763 static void rhine_tx(struct net_device *dev)
1765 struct rhine_private *rp = netdev_priv(dev);
1766 int txstatus = 0, entry = rp->dirty_tx % TX_RING_SIZE;
1768 /* find and cleanup dirty tx descriptors */
1769 while (rp->dirty_tx != rp->cur_tx) {
1770 txstatus = le32_to_cpu(rp->tx_ring[entry].tx_status);
1771 netif_dbg(rp, tx_done, dev, "Tx scavenge %d status %08x\n",
1772 entry, txstatus);
1773 if (txstatus & DescOwn)
1774 break;
1775 if (txstatus & 0x8000) {
1776 netif_dbg(rp, tx_done, dev,
1777 "Transmit error, Tx status %08x\n", txstatus);
1778 dev->stats.tx_errors++;
1779 if (txstatus & 0x0400)
1780 dev->stats.tx_carrier_errors++;
1781 if (txstatus & 0x0200)
1782 dev->stats.tx_window_errors++;
1783 if (txstatus & 0x0100)
1784 dev->stats.tx_aborted_errors++;
1785 if (txstatus & 0x0080)
1786 dev->stats.tx_heartbeat_errors++;
1787 if (((rp->quirks & rqRhineI) && txstatus & 0x0002) ||
1788 (txstatus & 0x0800) || (txstatus & 0x1000)) {
1789 dev->stats.tx_fifo_errors++;
1790 rp->tx_ring[entry].tx_status = cpu_to_le32(DescOwn);
1791 break; /* Keep the skb - we try again */
1793 /* Transmitter restarted in 'abnormal' handler. */
1794 } else {
1795 if (rp->quirks & rqRhineI)
1796 dev->stats.collisions += (txstatus >> 3) & 0x0F;
1797 else
1798 dev->stats.collisions += txstatus & 0x0F;
1799 netif_dbg(rp, tx_done, dev, "collisions: %1.1x:%1.1x\n",
1800 (txstatus >> 3) & 0xF, txstatus & 0xF);
1801 dev->stats.tx_bytes += rp->tx_skbuff[entry]->len;
1802 dev->stats.tx_packets++;
1804 /* Free the original skb. */
1805 if (rp->tx_skbuff_dma[entry]) {
1806 pci_unmap_single(rp->pdev,
1807 rp->tx_skbuff_dma[entry],
1808 rp->tx_skbuff[entry]->len,
1809 PCI_DMA_TODEVICE);
1811 dev_kfree_skb(rp->tx_skbuff[entry]);
1812 rp->tx_skbuff[entry] = NULL;
1813 entry = (++rp->dirty_tx) % TX_RING_SIZE;
1815 if ((rp->cur_tx - rp->dirty_tx) < TX_QUEUE_LEN - 4)
1816 netif_wake_queue(dev);
1820 * rhine_get_vlan_tci - extract TCI from Rx data buffer
1821 * @skb: pointer to sk_buff
1822 * @data_size: used data area of the buffer including CRC
1824 * If hardware VLAN tag extraction is enabled and the chip indicates a 802.1Q
1825 * packet, the extracted 802.1Q header (2 bytes TPID + 2 bytes TCI) is 4-byte
1826 * aligned following the CRC.
1828 static inline u16 rhine_get_vlan_tci(struct sk_buff *skb, int data_size)
1830 u8 *trailer = (u8 *)skb->data + ((data_size + 3) & ~3) + 2;
1831 return be16_to_cpup((__be16 *)trailer);
1834 /* Process up to limit frames from receive ring */
1835 static int rhine_rx(struct net_device *dev, int limit)
1837 struct rhine_private *rp = netdev_priv(dev);
1838 int count;
1839 int entry = rp->cur_rx % RX_RING_SIZE;
1841 netif_dbg(rp, rx_status, dev, "%s(), entry %d status %08x\n", __func__,
1842 entry, le32_to_cpu(rp->rx_head_desc->rx_status));
1844 /* If EOP is set on the next entry, it's a new packet. Send it up. */
1845 for (count = 0; count < limit; ++count) {
1846 struct rx_desc *desc = rp->rx_head_desc;
1847 u32 desc_status = le32_to_cpu(desc->rx_status);
1848 u32 desc_length = le32_to_cpu(desc->desc_length);
1849 int data_size = desc_status >> 16;
1851 if (desc_status & DescOwn)
1852 break;
1854 netif_dbg(rp, rx_status, dev, "%s() status %08x\n", __func__,
1855 desc_status);
1857 if ((desc_status & (RxWholePkt | RxErr)) != RxWholePkt) {
1858 if ((desc_status & RxWholePkt) != RxWholePkt) {
1859 netdev_warn(dev,
1860 "Oversized Ethernet frame spanned multiple buffers, "
1861 "entry %#x length %d status %08x!\n",
1862 entry, data_size,
1863 desc_status);
1864 netdev_warn(dev,
1865 "Oversized Ethernet frame %p vs %p\n",
1866 rp->rx_head_desc,
1867 &rp->rx_ring[entry]);
1868 dev->stats.rx_length_errors++;
1869 } else if (desc_status & RxErr) {
1870 /* There was a error. */
1871 netif_dbg(rp, rx_err, dev,
1872 "%s() Rx error %08x\n", __func__,
1873 desc_status);
1874 dev->stats.rx_errors++;
1875 if (desc_status & 0x0030)
1876 dev->stats.rx_length_errors++;
1877 if (desc_status & 0x0048)
1878 dev->stats.rx_fifo_errors++;
1879 if (desc_status & 0x0004)
1880 dev->stats.rx_frame_errors++;
1881 if (desc_status & 0x0002) {
1882 /* this can also be updated outside the interrupt handler */
1883 spin_lock(&rp->lock);
1884 dev->stats.rx_crc_errors++;
1885 spin_unlock(&rp->lock);
1888 } else {
1889 struct sk_buff *skb = NULL;
1890 /* Length should omit the CRC */
1891 int pkt_len = data_size - 4;
1892 u16 vlan_tci = 0;
1894 /* Check if the packet is long enough to accept without
1895 copying to a minimally-sized skbuff. */
1896 if (pkt_len < rx_copybreak)
1897 skb = netdev_alloc_skb_ip_align(dev, pkt_len);
1898 if (skb) {
1899 pci_dma_sync_single_for_cpu(rp->pdev,
1900 rp->rx_skbuff_dma[entry],
1901 rp->rx_buf_sz,
1902 PCI_DMA_FROMDEVICE);
1904 skb_copy_to_linear_data(skb,
1905 rp->rx_skbuff[entry]->data,
1906 pkt_len);
1907 skb_put(skb, pkt_len);
1908 pci_dma_sync_single_for_device(rp->pdev,
1909 rp->rx_skbuff_dma[entry],
1910 rp->rx_buf_sz,
1911 PCI_DMA_FROMDEVICE);
1912 } else {
1913 skb = rp->rx_skbuff[entry];
1914 if (skb == NULL) {
1915 netdev_err(dev, "Inconsistent Rx descriptor chain\n");
1916 break;
1918 rp->rx_skbuff[entry] = NULL;
1919 skb_put(skb, pkt_len);
1920 pci_unmap_single(rp->pdev,
1921 rp->rx_skbuff_dma[entry],
1922 rp->rx_buf_sz,
1923 PCI_DMA_FROMDEVICE);
1926 if (unlikely(desc_length & DescTag))
1927 vlan_tci = rhine_get_vlan_tci(skb, data_size);
1929 skb->protocol = eth_type_trans(skb, dev);
1931 if (unlikely(desc_length & DescTag))
1932 __vlan_hwaccel_put_tag(skb, vlan_tci);
1933 netif_receive_skb(skb);
1934 dev->stats.rx_bytes += pkt_len;
1935 dev->stats.rx_packets++;
1937 entry = (++rp->cur_rx) % RX_RING_SIZE;
1938 rp->rx_head_desc = &rp->rx_ring[entry];
1941 /* Refill the Rx ring buffers. */
1942 for (; rp->cur_rx - rp->dirty_rx > 0; rp->dirty_rx++) {
1943 struct sk_buff *skb;
1944 entry = rp->dirty_rx % RX_RING_SIZE;
1945 if (rp->rx_skbuff[entry] == NULL) {
1946 skb = netdev_alloc_skb(dev, rp->rx_buf_sz);
1947 rp->rx_skbuff[entry] = skb;
1948 if (skb == NULL)
1949 break; /* Better luck next round. */
1950 rp->rx_skbuff_dma[entry] =
1951 pci_map_single(rp->pdev, skb->data,
1952 rp->rx_buf_sz,
1953 PCI_DMA_FROMDEVICE);
1954 rp->rx_ring[entry].addr = cpu_to_le32(rp->rx_skbuff_dma[entry]);
1956 rp->rx_ring[entry].rx_status = cpu_to_le32(DescOwn);
1959 return count;
1962 static void rhine_restart_tx(struct net_device *dev) {
1963 struct rhine_private *rp = netdev_priv(dev);
1964 void __iomem *ioaddr = rp->base;
1965 int entry = rp->dirty_tx % TX_RING_SIZE;
1966 u32 intr_status;
1969 * If new errors occurred, we need to sort them out before doing Tx.
1970 * In that case the ISR will be back here RSN anyway.
1972 intr_status = rhine_get_events(rp);
1974 if ((intr_status & IntrTxErrSummary) == 0) {
1976 /* We know better than the chip where it should continue. */
1977 iowrite32(rp->tx_ring_dma + entry * sizeof(struct tx_desc),
1978 ioaddr + TxRingPtr);
1980 iowrite8(ioread8(ioaddr + ChipCmd) | CmdTxOn,
1981 ioaddr + ChipCmd);
1983 if (rp->tx_ring[entry].desc_length & cpu_to_le32(0x020000))
1984 /* Tx queues are bits 7-0 (first Tx queue: bit 7) */
1985 BYTE_REG_BITS_ON(1 << 7, ioaddr + TQWake);
1987 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand,
1988 ioaddr + ChipCmd1);
1989 IOSYNC;
1991 else {
1992 /* This should never happen */
1993 netif_warn(rp, tx_err, dev, "another error occurred %08x\n",
1994 intr_status);
1999 static void rhine_slow_event_task(struct work_struct *work)
2001 struct rhine_private *rp =
2002 container_of(work, struct rhine_private, slow_event_task);
2003 struct net_device *dev = rp->dev;
2004 u32 intr_status;
2006 mutex_lock(&rp->task_lock);
2008 if (!rp->task_enable)
2009 goto out_unlock;
2011 intr_status = rhine_get_events(rp);
2012 rhine_ack_events(rp, intr_status & RHINE_EVENT_SLOW);
2014 if (intr_status & IntrLinkChange)
2015 rhine_check_media(dev, 0);
2017 if (intr_status & IntrPCIErr)
2018 netif_warn(rp, hw, dev, "PCI error\n");
2020 iowrite16(RHINE_EVENT & 0xffff, rp->base + IntrEnable);
2022 out_unlock:
2023 mutex_unlock(&rp->task_lock);
2026 static struct net_device_stats *rhine_get_stats(struct net_device *dev)
2028 struct rhine_private *rp = netdev_priv(dev);
2030 spin_lock_bh(&rp->lock);
2031 rhine_update_rx_crc_and_missed_errord(rp);
2032 spin_unlock_bh(&rp->lock);
2034 return &dev->stats;
2037 static void rhine_set_rx_mode(struct net_device *dev)
2039 struct rhine_private *rp = netdev_priv(dev);
2040 void __iomem *ioaddr = rp->base;
2041 u32 mc_filter[2]; /* Multicast hash filter */
2042 u8 rx_mode = 0x0C; /* Note: 0x02=accept runt, 0x01=accept errs */
2043 struct netdev_hw_addr *ha;
2045 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
2046 rx_mode = 0x1C;
2047 iowrite32(0xffffffff, ioaddr + MulticastFilter0);
2048 iowrite32(0xffffffff, ioaddr + MulticastFilter1);
2049 } else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
2050 (dev->flags & IFF_ALLMULTI)) {
2051 /* Too many to match, or accept all multicasts. */
2052 iowrite32(0xffffffff, ioaddr + MulticastFilter0);
2053 iowrite32(0xffffffff, ioaddr + MulticastFilter1);
2054 } else if (rp->pdev->revision >= VT6105M) {
2055 int i = 0;
2056 u32 mCAMmask = 0; /* 32 mCAMs (6105M and better) */
2057 netdev_for_each_mc_addr(ha, dev) {
2058 if (i == MCAM_SIZE)
2059 break;
2060 rhine_set_cam(ioaddr, i, ha->addr);
2061 mCAMmask |= 1 << i;
2062 i++;
2064 rhine_set_cam_mask(ioaddr, mCAMmask);
2065 } else {
2066 memset(mc_filter, 0, sizeof(mc_filter));
2067 netdev_for_each_mc_addr(ha, dev) {
2068 int bit_nr = ether_crc(ETH_ALEN, ha->addr) >> 26;
2070 mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
2072 iowrite32(mc_filter[0], ioaddr + MulticastFilter0);
2073 iowrite32(mc_filter[1], ioaddr + MulticastFilter1);
2075 /* enable/disable VLAN receive filtering */
2076 if (rp->pdev->revision >= VT6105M) {
2077 if (dev->flags & IFF_PROMISC)
2078 BYTE_REG_BITS_OFF(BCR1_VIDFR, ioaddr + PCIBusConfig1);
2079 else
2080 BYTE_REG_BITS_ON(BCR1_VIDFR, ioaddr + PCIBusConfig1);
2082 BYTE_REG_BITS_ON(rx_mode, ioaddr + RxConfig);
2085 static void netdev_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2087 struct rhine_private *rp = netdev_priv(dev);
2089 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
2090 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
2091 strlcpy(info->bus_info, pci_name(rp->pdev), sizeof(info->bus_info));
2094 static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2096 struct rhine_private *rp = netdev_priv(dev);
2097 int rc;
2099 mutex_lock(&rp->task_lock);
2100 rc = mii_ethtool_gset(&rp->mii_if, cmd);
2101 mutex_unlock(&rp->task_lock);
2103 return rc;
2106 static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2108 struct rhine_private *rp = netdev_priv(dev);
2109 int rc;
2111 mutex_lock(&rp->task_lock);
2112 rc = mii_ethtool_sset(&rp->mii_if, cmd);
2113 rhine_set_carrier(&rp->mii_if);
2114 mutex_unlock(&rp->task_lock);
2116 return rc;
2119 static int netdev_nway_reset(struct net_device *dev)
2121 struct rhine_private *rp = netdev_priv(dev);
2123 return mii_nway_restart(&rp->mii_if);
2126 static u32 netdev_get_link(struct net_device *dev)
2128 struct rhine_private *rp = netdev_priv(dev);
2130 return mii_link_ok(&rp->mii_if);
2133 static u32 netdev_get_msglevel(struct net_device *dev)
2135 struct rhine_private *rp = netdev_priv(dev);
2137 return rp->msg_enable;
2140 static void netdev_set_msglevel(struct net_device *dev, u32 value)
2142 struct rhine_private *rp = netdev_priv(dev);
2144 rp->msg_enable = value;
2147 static void rhine_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2149 struct rhine_private *rp = netdev_priv(dev);
2151 if (!(rp->quirks & rqWOL))
2152 return;
2154 spin_lock_irq(&rp->lock);
2155 wol->supported = WAKE_PHY | WAKE_MAGIC |
2156 WAKE_UCAST | WAKE_MCAST | WAKE_BCAST; /* Untested */
2157 wol->wolopts = rp->wolopts;
2158 spin_unlock_irq(&rp->lock);
2161 static int rhine_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2163 struct rhine_private *rp = netdev_priv(dev);
2164 u32 support = WAKE_PHY | WAKE_MAGIC |
2165 WAKE_UCAST | WAKE_MCAST | WAKE_BCAST; /* Untested */
2167 if (!(rp->quirks & rqWOL))
2168 return -EINVAL;
2170 if (wol->wolopts & ~support)
2171 return -EINVAL;
2173 spin_lock_irq(&rp->lock);
2174 rp->wolopts = wol->wolopts;
2175 spin_unlock_irq(&rp->lock);
2177 return 0;
2180 static const struct ethtool_ops netdev_ethtool_ops = {
2181 .get_drvinfo = netdev_get_drvinfo,
2182 .get_settings = netdev_get_settings,
2183 .set_settings = netdev_set_settings,
2184 .nway_reset = netdev_nway_reset,
2185 .get_link = netdev_get_link,
2186 .get_msglevel = netdev_get_msglevel,
2187 .set_msglevel = netdev_set_msglevel,
2188 .get_wol = rhine_get_wol,
2189 .set_wol = rhine_set_wol,
2192 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2194 struct rhine_private *rp = netdev_priv(dev);
2195 int rc;
2197 if (!netif_running(dev))
2198 return -EINVAL;
2200 mutex_lock(&rp->task_lock);
2201 rc = generic_mii_ioctl(&rp->mii_if, if_mii(rq), cmd, NULL);
2202 rhine_set_carrier(&rp->mii_if);
2203 mutex_unlock(&rp->task_lock);
2205 return rc;
2208 static int rhine_close(struct net_device *dev)
2210 struct rhine_private *rp = netdev_priv(dev);
2211 void __iomem *ioaddr = rp->base;
2213 rhine_task_disable(rp);
2214 napi_disable(&rp->napi);
2215 netif_stop_queue(dev);
2217 netif_dbg(rp, ifdown, dev, "Shutting down ethercard, status was %04x\n",
2218 ioread16(ioaddr + ChipCmd));
2220 /* Switch to loopback mode to avoid hardware races. */
2221 iowrite8(rp->tx_thresh | 0x02, ioaddr + TxConfig);
2223 rhine_irq_disable(rp);
2225 /* Stop the chip's Tx and Rx processes. */
2226 iowrite16(CmdStop, ioaddr + ChipCmd);
2228 free_irq(rp->pdev->irq, dev);
2229 free_rbufs(dev);
2230 free_tbufs(dev);
2231 free_ring(dev);
2233 return 0;
2237 static void __devexit rhine_remove_one(struct pci_dev *pdev)
2239 struct net_device *dev = pci_get_drvdata(pdev);
2240 struct rhine_private *rp = netdev_priv(dev);
2242 unregister_netdev(dev);
2244 pci_iounmap(pdev, rp->base);
2245 pci_release_regions(pdev);
2247 free_netdev(dev);
2248 pci_disable_device(pdev);
2249 pci_set_drvdata(pdev, NULL);
2252 static void rhine_shutdown (struct pci_dev *pdev)
2254 struct net_device *dev = pci_get_drvdata(pdev);
2255 struct rhine_private *rp = netdev_priv(dev);
2256 void __iomem *ioaddr = rp->base;
2258 if (!(rp->quirks & rqWOL))
2259 return; /* Nothing to do for non-WOL adapters */
2261 rhine_power_init(dev);
2263 /* Make sure we use pattern 0, 1 and not 4, 5 */
2264 if (rp->quirks & rq6patterns)
2265 iowrite8(0x04, ioaddr + WOLcgClr);
2267 spin_lock(&rp->lock);
2269 if (rp->wolopts & WAKE_MAGIC) {
2270 iowrite8(WOLmagic, ioaddr + WOLcrSet);
2272 * Turn EEPROM-controlled wake-up back on -- some hardware may
2273 * not cooperate otherwise.
2275 iowrite8(ioread8(ioaddr + ConfigA) | 0x03, ioaddr + ConfigA);
2278 if (rp->wolopts & (WAKE_BCAST|WAKE_MCAST))
2279 iowrite8(WOLbmcast, ioaddr + WOLcgSet);
2281 if (rp->wolopts & WAKE_PHY)
2282 iowrite8(WOLlnkon | WOLlnkoff, ioaddr + WOLcrSet);
2284 if (rp->wolopts & WAKE_UCAST)
2285 iowrite8(WOLucast, ioaddr + WOLcrSet);
2287 if (rp->wolopts) {
2288 /* Enable legacy WOL (for old motherboards) */
2289 iowrite8(0x01, ioaddr + PwcfgSet);
2290 iowrite8(ioread8(ioaddr + StickyHW) | 0x04, ioaddr + StickyHW);
2293 spin_unlock(&rp->lock);
2295 if (system_state == SYSTEM_POWER_OFF && !avoid_D3) {
2296 iowrite8(ioread8(ioaddr + StickyHW) | 0x03, ioaddr + StickyHW);
2298 pci_wake_from_d3(pdev, true);
2299 pci_set_power_state(pdev, PCI_D3hot);
2303 #ifdef CONFIG_PM_SLEEP
2304 static int rhine_suspend(struct device *device)
2306 struct pci_dev *pdev = to_pci_dev(device);
2307 struct net_device *dev = pci_get_drvdata(pdev);
2308 struct rhine_private *rp = netdev_priv(dev);
2310 if (!netif_running(dev))
2311 return 0;
2313 rhine_task_disable(rp);
2314 rhine_irq_disable(rp);
2315 napi_disable(&rp->napi);
2317 netif_device_detach(dev);
2319 rhine_shutdown(pdev);
2321 return 0;
2324 static int rhine_resume(struct device *device)
2326 struct pci_dev *pdev = to_pci_dev(device);
2327 struct net_device *dev = pci_get_drvdata(pdev);
2328 struct rhine_private *rp = netdev_priv(dev);
2330 if (!netif_running(dev))
2331 return 0;
2333 #ifdef USE_MMIO
2334 enable_mmio(rp->pioaddr, rp->quirks);
2335 #endif
2336 rhine_power_init(dev);
2337 free_tbufs(dev);
2338 free_rbufs(dev);
2339 alloc_tbufs(dev);
2340 alloc_rbufs(dev);
2341 rhine_task_enable(rp);
2342 spin_lock_bh(&rp->lock);
2343 init_registers(dev);
2344 spin_unlock_bh(&rp->lock);
2346 netif_device_attach(dev);
2348 return 0;
2351 static SIMPLE_DEV_PM_OPS(rhine_pm_ops, rhine_suspend, rhine_resume);
2352 #define RHINE_PM_OPS (&rhine_pm_ops)
2354 #else
2356 #define RHINE_PM_OPS NULL
2358 #endif /* !CONFIG_PM_SLEEP */
2360 static struct pci_driver rhine_driver = {
2361 .name = DRV_NAME,
2362 .id_table = rhine_pci_tbl,
2363 .probe = rhine_init_one,
2364 .remove = __devexit_p(rhine_remove_one),
2365 .shutdown = rhine_shutdown,
2366 .driver.pm = RHINE_PM_OPS,
2369 static struct dmi_system_id __initdata rhine_dmi_table[] = {
2371 .ident = "EPIA-M",
2372 .matches = {
2373 DMI_MATCH(DMI_BIOS_VENDOR, "Award Software International, Inc."),
2374 DMI_MATCH(DMI_BIOS_VERSION, "6.00 PG"),
2378 .ident = "KV7",
2379 .matches = {
2380 DMI_MATCH(DMI_BIOS_VENDOR, "Phoenix Technologies, LTD"),
2381 DMI_MATCH(DMI_BIOS_VERSION, "6.00 PG"),
2384 { NULL }
2387 static int __init rhine_init(void)
2389 /* when a module, this is printed whether or not devices are found in probe */
2390 #ifdef MODULE
2391 pr_info("%s\n", version);
2392 #endif
2393 if (dmi_check_system(rhine_dmi_table)) {
2394 /* these BIOSes fail at PXE boot if chip is in D3 */
2395 avoid_D3 = true;
2396 pr_warn("Broken BIOS detected, avoid_D3 enabled\n");
2398 else if (avoid_D3)
2399 pr_info("avoid_D3 set\n");
2401 return pci_register_driver(&rhine_driver);
2405 static void __exit rhine_cleanup(void)
2407 pci_unregister_driver(&rhine_driver);
2411 module_init(rhine_init);
2412 module_exit(rhine_cleanup);