Linux 3.4.102
[linux/fpc-iii.git] / drivers / net / ethernet / xscale / ixp4xx_eth.c
blob41a8b5a9849e00f8e03cfa1c541f2134e3af6557
1 /*
2 * Intel IXP4xx Ethernet driver for Linux
4 * Copyright (C) 2007 Krzysztof Halasa <khc@pm.waw.pl>
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of version 2 of the GNU General Public License
8 * as published by the Free Software Foundation.
10 * Ethernet port config (0x00 is not present on IXP42X):
12 * logical port 0x00 0x10 0x20
13 * NPE 0 (NPE-A) 1 (NPE-B) 2 (NPE-C)
14 * physical PortId 2 0 1
15 * TX queue 23 24 25
16 * RX-free queue 26 27 28
17 * TX-done queue is always 31, per-port RX and TX-ready queues are configurable
20 * Queue entries:
21 * bits 0 -> 1 - NPE ID (RX and TX-done)
22 * bits 0 -> 2 - priority (TX, per 802.1D)
23 * bits 3 -> 4 - port ID (user-set?)
24 * bits 5 -> 31 - physical descriptor address
27 #include <linux/delay.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/dmapool.h>
30 #include <linux/etherdevice.h>
31 #include <linux/io.h>
32 #include <linux/kernel.h>
33 #include <linux/net_tstamp.h>
34 #include <linux/phy.h>
35 #include <linux/platform_device.h>
36 #include <linux/ptp_classify.h>
37 #include <linux/slab.h>
38 #include <linux/module.h>
39 #include <mach/ixp46x_ts.h>
40 #include <mach/npe.h>
41 #include <mach/qmgr.h>
43 #define DEBUG_DESC 0
44 #define DEBUG_RX 0
45 #define DEBUG_TX 0
46 #define DEBUG_PKT_BYTES 0
47 #define DEBUG_MDIO 0
48 #define DEBUG_CLOSE 0
50 #define DRV_NAME "ixp4xx_eth"
52 #define MAX_NPES 3
54 #define RX_DESCS 64 /* also length of all RX queues */
55 #define TX_DESCS 16 /* also length of all TX queues */
56 #define TXDONE_QUEUE_LEN 64 /* dwords */
58 #define POOL_ALLOC_SIZE (sizeof(struct desc) * (RX_DESCS + TX_DESCS))
59 #define REGS_SIZE 0x1000
60 #define MAX_MRU 1536 /* 0x600 */
61 #define RX_BUFF_SIZE ALIGN((NET_IP_ALIGN) + MAX_MRU, 4)
63 #define NAPI_WEIGHT 16
64 #define MDIO_INTERVAL (3 * HZ)
65 #define MAX_MDIO_RETRIES 100 /* microseconds, typically 30 cycles */
66 #define MAX_CLOSE_WAIT 1000 /* microseconds, typically 2-3 cycles */
68 #define NPE_ID(port_id) ((port_id) >> 4)
69 #define PHYSICAL_ID(port_id) ((NPE_ID(port_id) + 2) % 3)
70 #define TX_QUEUE(port_id) (NPE_ID(port_id) + 23)
71 #define RXFREE_QUEUE(port_id) (NPE_ID(port_id) + 26)
72 #define TXDONE_QUEUE 31
74 #define PTP_SLAVE_MODE 1
75 #define PTP_MASTER_MODE 2
76 #define PORT2CHANNEL(p) NPE_ID(p->id)
78 /* TX Control Registers */
79 #define TX_CNTRL0_TX_EN 0x01
80 #define TX_CNTRL0_HALFDUPLEX 0x02
81 #define TX_CNTRL0_RETRY 0x04
82 #define TX_CNTRL0_PAD_EN 0x08
83 #define TX_CNTRL0_APPEND_FCS 0x10
84 #define TX_CNTRL0_2DEFER 0x20
85 #define TX_CNTRL0_RMII 0x40 /* reduced MII */
86 #define TX_CNTRL1_RETRIES 0x0F /* 4 bits */
88 /* RX Control Registers */
89 #define RX_CNTRL0_RX_EN 0x01
90 #define RX_CNTRL0_PADSTRIP_EN 0x02
91 #define RX_CNTRL0_SEND_FCS 0x04
92 #define RX_CNTRL0_PAUSE_EN 0x08
93 #define RX_CNTRL0_LOOP_EN 0x10
94 #define RX_CNTRL0_ADDR_FLTR_EN 0x20
95 #define RX_CNTRL0_RX_RUNT_EN 0x40
96 #define RX_CNTRL0_BCAST_DIS 0x80
97 #define RX_CNTRL1_DEFER_EN 0x01
99 /* Core Control Register */
100 #define CORE_RESET 0x01
101 #define CORE_RX_FIFO_FLUSH 0x02
102 #define CORE_TX_FIFO_FLUSH 0x04
103 #define CORE_SEND_JAM 0x08
104 #define CORE_MDC_EN 0x10 /* MDIO using NPE-B ETH-0 only */
106 #define DEFAULT_TX_CNTRL0 (TX_CNTRL0_TX_EN | TX_CNTRL0_RETRY | \
107 TX_CNTRL0_PAD_EN | TX_CNTRL0_APPEND_FCS | \
108 TX_CNTRL0_2DEFER)
109 #define DEFAULT_RX_CNTRL0 RX_CNTRL0_RX_EN
110 #define DEFAULT_CORE_CNTRL CORE_MDC_EN
113 /* NPE message codes */
114 #define NPE_GETSTATUS 0x00
115 #define NPE_EDB_SETPORTADDRESS 0x01
116 #define NPE_EDB_GETMACADDRESSDATABASE 0x02
117 #define NPE_EDB_SETMACADDRESSSDATABASE 0x03
118 #define NPE_GETSTATS 0x04
119 #define NPE_RESETSTATS 0x05
120 #define NPE_SETMAXFRAMELENGTHS 0x06
121 #define NPE_VLAN_SETRXTAGMODE 0x07
122 #define NPE_VLAN_SETDEFAULTRXVID 0x08
123 #define NPE_VLAN_SETPORTVLANTABLEENTRY 0x09
124 #define NPE_VLAN_SETPORTVLANTABLERANGE 0x0A
125 #define NPE_VLAN_SETRXQOSENTRY 0x0B
126 #define NPE_VLAN_SETPORTIDEXTRACTIONMODE 0x0C
127 #define NPE_STP_SETBLOCKINGSTATE 0x0D
128 #define NPE_FW_SETFIREWALLMODE 0x0E
129 #define NPE_PC_SETFRAMECONTROLDURATIONID 0x0F
130 #define NPE_PC_SETAPMACTABLE 0x11
131 #define NPE_SETLOOPBACK_MODE 0x12
132 #define NPE_PC_SETBSSIDTABLE 0x13
133 #define NPE_ADDRESS_FILTER_CONFIG 0x14
134 #define NPE_APPENDFCSCONFIG 0x15
135 #define NPE_NOTIFY_MAC_RECOVERY_DONE 0x16
136 #define NPE_MAC_RECOVERY_START 0x17
139 #ifdef __ARMEB__
140 typedef struct sk_buff buffer_t;
141 #define free_buffer dev_kfree_skb
142 #define free_buffer_irq dev_kfree_skb_irq
143 #else
144 typedef void buffer_t;
145 #define free_buffer kfree
146 #define free_buffer_irq kfree
147 #endif
149 struct eth_regs {
150 u32 tx_control[2], __res1[2]; /* 000 */
151 u32 rx_control[2], __res2[2]; /* 010 */
152 u32 random_seed, __res3[3]; /* 020 */
153 u32 partial_empty_threshold, __res4; /* 030 */
154 u32 partial_full_threshold, __res5; /* 038 */
155 u32 tx_start_bytes, __res6[3]; /* 040 */
156 u32 tx_deferral, rx_deferral, __res7[2];/* 050 */
157 u32 tx_2part_deferral[2], __res8[2]; /* 060 */
158 u32 slot_time, __res9[3]; /* 070 */
159 u32 mdio_command[4]; /* 080 */
160 u32 mdio_status[4]; /* 090 */
161 u32 mcast_mask[6], __res10[2]; /* 0A0 */
162 u32 mcast_addr[6], __res11[2]; /* 0C0 */
163 u32 int_clock_threshold, __res12[3]; /* 0E0 */
164 u32 hw_addr[6], __res13[61]; /* 0F0 */
165 u32 core_control; /* 1FC */
168 struct port {
169 struct resource *mem_res;
170 struct eth_regs __iomem *regs;
171 struct npe *npe;
172 struct net_device *netdev;
173 struct napi_struct napi;
174 struct phy_device *phydev;
175 struct eth_plat_info *plat;
176 buffer_t *rx_buff_tab[RX_DESCS], *tx_buff_tab[TX_DESCS];
177 struct desc *desc_tab; /* coherent */
178 u32 desc_tab_phys;
179 int id; /* logical port ID */
180 int speed, duplex;
181 u8 firmware[4];
182 int hwts_tx_en;
183 int hwts_rx_en;
186 /* NPE message structure */
187 struct msg {
188 #ifdef __ARMEB__
189 u8 cmd, eth_id, byte2, byte3;
190 u8 byte4, byte5, byte6, byte7;
191 #else
192 u8 byte3, byte2, eth_id, cmd;
193 u8 byte7, byte6, byte5, byte4;
194 #endif
197 /* Ethernet packet descriptor */
198 struct desc {
199 u32 next; /* pointer to next buffer, unused */
201 #ifdef __ARMEB__
202 u16 buf_len; /* buffer length */
203 u16 pkt_len; /* packet length */
204 u32 data; /* pointer to data buffer in RAM */
205 u8 dest_id;
206 u8 src_id;
207 u16 flags;
208 u8 qos;
209 u8 padlen;
210 u16 vlan_tci;
211 #else
212 u16 pkt_len; /* packet length */
213 u16 buf_len; /* buffer length */
214 u32 data; /* pointer to data buffer in RAM */
215 u16 flags;
216 u8 src_id;
217 u8 dest_id;
218 u16 vlan_tci;
219 u8 padlen;
220 u8 qos;
221 #endif
223 #ifdef __ARMEB__
224 u8 dst_mac_0, dst_mac_1, dst_mac_2, dst_mac_3;
225 u8 dst_mac_4, dst_mac_5, src_mac_0, src_mac_1;
226 u8 src_mac_2, src_mac_3, src_mac_4, src_mac_5;
227 #else
228 u8 dst_mac_3, dst_mac_2, dst_mac_1, dst_mac_0;
229 u8 src_mac_1, src_mac_0, dst_mac_5, dst_mac_4;
230 u8 src_mac_5, src_mac_4, src_mac_3, src_mac_2;
231 #endif
235 #define rx_desc_phys(port, n) ((port)->desc_tab_phys + \
236 (n) * sizeof(struct desc))
237 #define rx_desc_ptr(port, n) (&(port)->desc_tab[n])
239 #define tx_desc_phys(port, n) ((port)->desc_tab_phys + \
240 ((n) + RX_DESCS) * sizeof(struct desc))
241 #define tx_desc_ptr(port, n) (&(port)->desc_tab[(n) + RX_DESCS])
243 #ifndef __ARMEB__
244 static inline void memcpy_swab32(u32 *dest, u32 *src, int cnt)
246 int i;
247 for (i = 0; i < cnt; i++)
248 dest[i] = swab32(src[i]);
250 #endif
252 static spinlock_t mdio_lock;
253 static struct eth_regs __iomem *mdio_regs; /* mdio command and status only */
254 static struct mii_bus *mdio_bus;
255 static int ports_open;
256 static struct port *npe_port_tab[MAX_NPES];
257 static struct dma_pool *dma_pool;
259 static struct sock_filter ptp_filter[] = {
260 PTP_FILTER
263 static int ixp_ptp_match(struct sk_buff *skb, u16 uid_hi, u32 uid_lo, u16 seqid)
265 u8 *data = skb->data;
266 unsigned int offset;
267 u16 *hi, *id;
268 u32 lo;
270 if (sk_run_filter(skb, ptp_filter) != PTP_CLASS_V1_IPV4)
271 return 0;
273 offset = ETH_HLEN + IPV4_HLEN(data) + UDP_HLEN;
275 if (skb->len < offset + OFF_PTP_SEQUENCE_ID + sizeof(seqid))
276 return 0;
278 hi = (u16 *)(data + offset + OFF_PTP_SOURCE_UUID);
279 id = (u16 *)(data + offset + OFF_PTP_SEQUENCE_ID);
281 memcpy(&lo, &hi[1], sizeof(lo));
283 return (uid_hi == ntohs(*hi) &&
284 uid_lo == ntohl(lo) &&
285 seqid == ntohs(*id));
288 static void ixp_rx_timestamp(struct port *port, struct sk_buff *skb)
290 struct skb_shared_hwtstamps *shhwtstamps;
291 struct ixp46x_ts_regs *regs;
292 u64 ns;
293 u32 ch, hi, lo, val;
294 u16 uid, seq;
296 if (!port->hwts_rx_en)
297 return;
299 ch = PORT2CHANNEL(port);
301 regs = (struct ixp46x_ts_regs __iomem *) IXP4XX_TIMESYNC_BASE_VIRT;
303 val = __raw_readl(&regs->channel[ch].ch_event);
305 if (!(val & RX_SNAPSHOT_LOCKED))
306 return;
308 lo = __raw_readl(&regs->channel[ch].src_uuid_lo);
309 hi = __raw_readl(&regs->channel[ch].src_uuid_hi);
311 uid = hi & 0xffff;
312 seq = (hi >> 16) & 0xffff;
314 if (!ixp_ptp_match(skb, htons(uid), htonl(lo), htons(seq)))
315 goto out;
317 lo = __raw_readl(&regs->channel[ch].rx_snap_lo);
318 hi = __raw_readl(&regs->channel[ch].rx_snap_hi);
319 ns = ((u64) hi) << 32;
320 ns |= lo;
321 ns <<= TICKS_NS_SHIFT;
323 shhwtstamps = skb_hwtstamps(skb);
324 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
325 shhwtstamps->hwtstamp = ns_to_ktime(ns);
326 out:
327 __raw_writel(RX_SNAPSHOT_LOCKED, &regs->channel[ch].ch_event);
330 static void ixp_tx_timestamp(struct port *port, struct sk_buff *skb)
332 struct skb_shared_hwtstamps shhwtstamps;
333 struct ixp46x_ts_regs *regs;
334 struct skb_shared_info *shtx;
335 u64 ns;
336 u32 ch, cnt, hi, lo, val;
338 shtx = skb_shinfo(skb);
339 if (unlikely(shtx->tx_flags & SKBTX_HW_TSTAMP && port->hwts_tx_en))
340 shtx->tx_flags |= SKBTX_IN_PROGRESS;
341 else
342 return;
344 ch = PORT2CHANNEL(port);
346 regs = (struct ixp46x_ts_regs __iomem *) IXP4XX_TIMESYNC_BASE_VIRT;
349 * This really stinks, but we have to poll for the Tx time stamp.
350 * Usually, the time stamp is ready after 4 to 6 microseconds.
352 for (cnt = 0; cnt < 100; cnt++) {
353 val = __raw_readl(&regs->channel[ch].ch_event);
354 if (val & TX_SNAPSHOT_LOCKED)
355 break;
356 udelay(1);
358 if (!(val & TX_SNAPSHOT_LOCKED)) {
359 shtx->tx_flags &= ~SKBTX_IN_PROGRESS;
360 return;
363 lo = __raw_readl(&regs->channel[ch].tx_snap_lo);
364 hi = __raw_readl(&regs->channel[ch].tx_snap_hi);
365 ns = ((u64) hi) << 32;
366 ns |= lo;
367 ns <<= TICKS_NS_SHIFT;
369 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
370 shhwtstamps.hwtstamp = ns_to_ktime(ns);
371 skb_tstamp_tx(skb, &shhwtstamps);
373 __raw_writel(TX_SNAPSHOT_LOCKED, &regs->channel[ch].ch_event);
376 static int hwtstamp_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
378 struct hwtstamp_config cfg;
379 struct ixp46x_ts_regs *regs;
380 struct port *port = netdev_priv(netdev);
381 int ch;
383 if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
384 return -EFAULT;
386 if (cfg.flags) /* reserved for future extensions */
387 return -EINVAL;
389 ch = PORT2CHANNEL(port);
390 regs = (struct ixp46x_ts_regs __iomem *) IXP4XX_TIMESYNC_BASE_VIRT;
392 switch (cfg.tx_type) {
393 case HWTSTAMP_TX_OFF:
394 port->hwts_tx_en = 0;
395 break;
396 case HWTSTAMP_TX_ON:
397 port->hwts_tx_en = 1;
398 break;
399 default:
400 return -ERANGE;
403 switch (cfg.rx_filter) {
404 case HWTSTAMP_FILTER_NONE:
405 port->hwts_rx_en = 0;
406 break;
407 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
408 port->hwts_rx_en = PTP_SLAVE_MODE;
409 __raw_writel(0, &regs->channel[ch].ch_control);
410 break;
411 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
412 port->hwts_rx_en = PTP_MASTER_MODE;
413 __raw_writel(MASTER_MODE, &regs->channel[ch].ch_control);
414 break;
415 default:
416 return -ERANGE;
419 /* Clear out any old time stamps. */
420 __raw_writel(TX_SNAPSHOT_LOCKED | RX_SNAPSHOT_LOCKED,
421 &regs->channel[ch].ch_event);
423 return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
426 static int ixp4xx_mdio_cmd(struct mii_bus *bus, int phy_id, int location,
427 int write, u16 cmd)
429 int cycles = 0;
431 if (__raw_readl(&mdio_regs->mdio_command[3]) & 0x80) {
432 printk(KERN_ERR "%s: MII not ready to transmit\n", bus->name);
433 return -1;
436 if (write) {
437 __raw_writel(cmd & 0xFF, &mdio_regs->mdio_command[0]);
438 __raw_writel(cmd >> 8, &mdio_regs->mdio_command[1]);
440 __raw_writel(((phy_id << 5) | location) & 0xFF,
441 &mdio_regs->mdio_command[2]);
442 __raw_writel((phy_id >> 3) | (write << 2) | 0x80 /* GO */,
443 &mdio_regs->mdio_command[3]);
445 while ((cycles < MAX_MDIO_RETRIES) &&
446 (__raw_readl(&mdio_regs->mdio_command[3]) & 0x80)) {
447 udelay(1);
448 cycles++;
451 if (cycles == MAX_MDIO_RETRIES) {
452 printk(KERN_ERR "%s #%i: MII write failed\n", bus->name,
453 phy_id);
454 return -1;
457 #if DEBUG_MDIO
458 printk(KERN_DEBUG "%s #%i: mdio_%s() took %i cycles\n", bus->name,
459 phy_id, write ? "write" : "read", cycles);
460 #endif
462 if (write)
463 return 0;
465 if (__raw_readl(&mdio_regs->mdio_status[3]) & 0x80) {
466 #if DEBUG_MDIO
467 printk(KERN_DEBUG "%s #%i: MII read failed\n", bus->name,
468 phy_id);
469 #endif
470 return 0xFFFF; /* don't return error */
473 return (__raw_readl(&mdio_regs->mdio_status[0]) & 0xFF) |
474 ((__raw_readl(&mdio_regs->mdio_status[1]) & 0xFF) << 8);
477 static int ixp4xx_mdio_read(struct mii_bus *bus, int phy_id, int location)
479 unsigned long flags;
480 int ret;
482 spin_lock_irqsave(&mdio_lock, flags);
483 ret = ixp4xx_mdio_cmd(bus, phy_id, location, 0, 0);
484 spin_unlock_irqrestore(&mdio_lock, flags);
485 #if DEBUG_MDIO
486 printk(KERN_DEBUG "%s #%i: MII read [%i] -> 0x%X\n", bus->name,
487 phy_id, location, ret);
488 #endif
489 return ret;
492 static int ixp4xx_mdio_write(struct mii_bus *bus, int phy_id, int location,
493 u16 val)
495 unsigned long flags;
496 int ret;
498 spin_lock_irqsave(&mdio_lock, flags);
499 ret = ixp4xx_mdio_cmd(bus, phy_id, location, 1, val);
500 spin_unlock_irqrestore(&mdio_lock, flags);
501 #if DEBUG_MDIO
502 printk(KERN_DEBUG "%s #%i: MII write [%i] <- 0x%X, err = %i\n",
503 bus->name, phy_id, location, val, ret);
504 #endif
505 return ret;
508 static int ixp4xx_mdio_register(void)
510 int err;
512 if (!(mdio_bus = mdiobus_alloc()))
513 return -ENOMEM;
515 if (cpu_is_ixp43x()) {
516 /* IXP43x lacks NPE-B and uses NPE-C for MII PHY access */
517 if (!(ixp4xx_read_feature_bits() & IXP4XX_FEATURE_NPEC_ETH))
518 return -ENODEV;
519 mdio_regs = (struct eth_regs __iomem *)IXP4XX_EthC_BASE_VIRT;
520 } else {
521 /* All MII PHY accesses use NPE-B Ethernet registers */
522 if (!(ixp4xx_read_feature_bits() & IXP4XX_FEATURE_NPEB_ETH0))
523 return -ENODEV;
524 mdio_regs = (struct eth_regs __iomem *)IXP4XX_EthB_BASE_VIRT;
527 __raw_writel(DEFAULT_CORE_CNTRL, &mdio_regs->core_control);
528 spin_lock_init(&mdio_lock);
529 mdio_bus->name = "IXP4xx MII Bus";
530 mdio_bus->read = &ixp4xx_mdio_read;
531 mdio_bus->write = &ixp4xx_mdio_write;
532 snprintf(mdio_bus->id, MII_BUS_ID_SIZE, "ixp4xx-eth-0");
534 if ((err = mdiobus_register(mdio_bus)))
535 mdiobus_free(mdio_bus);
536 return err;
539 static void ixp4xx_mdio_remove(void)
541 mdiobus_unregister(mdio_bus);
542 mdiobus_free(mdio_bus);
546 static void ixp4xx_adjust_link(struct net_device *dev)
548 struct port *port = netdev_priv(dev);
549 struct phy_device *phydev = port->phydev;
551 if (!phydev->link) {
552 if (port->speed) {
553 port->speed = 0;
554 printk(KERN_INFO "%s: link down\n", dev->name);
556 return;
559 if (port->speed == phydev->speed && port->duplex == phydev->duplex)
560 return;
562 port->speed = phydev->speed;
563 port->duplex = phydev->duplex;
565 if (port->duplex)
566 __raw_writel(DEFAULT_TX_CNTRL0 & ~TX_CNTRL0_HALFDUPLEX,
567 &port->regs->tx_control[0]);
568 else
569 __raw_writel(DEFAULT_TX_CNTRL0 | TX_CNTRL0_HALFDUPLEX,
570 &port->regs->tx_control[0]);
572 printk(KERN_INFO "%s: link up, speed %u Mb/s, %s duplex\n",
573 dev->name, port->speed, port->duplex ? "full" : "half");
577 static inline void debug_pkt(struct net_device *dev, const char *func,
578 u8 *data, int len)
580 #if DEBUG_PKT_BYTES
581 int i;
583 printk(KERN_DEBUG "%s: %s(%i) ", dev->name, func, len);
584 for (i = 0; i < len; i++) {
585 if (i >= DEBUG_PKT_BYTES)
586 break;
587 printk("%s%02X",
588 ((i == 6) || (i == 12) || (i >= 14)) ? " " : "",
589 data[i]);
591 printk("\n");
592 #endif
596 static inline void debug_desc(u32 phys, struct desc *desc)
598 #if DEBUG_DESC
599 printk(KERN_DEBUG "%X: %X %3X %3X %08X %2X < %2X %4X %X"
600 " %X %X %02X%02X%02X%02X%02X%02X < %02X%02X%02X%02X%02X%02X\n",
601 phys, desc->next, desc->buf_len, desc->pkt_len,
602 desc->data, desc->dest_id, desc->src_id, desc->flags,
603 desc->qos, desc->padlen, desc->vlan_tci,
604 desc->dst_mac_0, desc->dst_mac_1, desc->dst_mac_2,
605 desc->dst_mac_3, desc->dst_mac_4, desc->dst_mac_5,
606 desc->src_mac_0, desc->src_mac_1, desc->src_mac_2,
607 desc->src_mac_3, desc->src_mac_4, desc->src_mac_5);
608 #endif
611 static inline int queue_get_desc(unsigned int queue, struct port *port,
612 int is_tx)
614 u32 phys, tab_phys, n_desc;
615 struct desc *tab;
617 if (!(phys = qmgr_get_entry(queue)))
618 return -1;
620 phys &= ~0x1F; /* mask out non-address bits */
621 tab_phys = is_tx ? tx_desc_phys(port, 0) : rx_desc_phys(port, 0);
622 tab = is_tx ? tx_desc_ptr(port, 0) : rx_desc_ptr(port, 0);
623 n_desc = (phys - tab_phys) / sizeof(struct desc);
624 BUG_ON(n_desc >= (is_tx ? TX_DESCS : RX_DESCS));
625 debug_desc(phys, &tab[n_desc]);
626 BUG_ON(tab[n_desc].next);
627 return n_desc;
630 static inline void queue_put_desc(unsigned int queue, u32 phys,
631 struct desc *desc)
633 debug_desc(phys, desc);
634 BUG_ON(phys & 0x1F);
635 qmgr_put_entry(queue, phys);
636 /* Don't check for queue overflow here, we've allocated sufficient
637 length and queues >= 32 don't support this check anyway. */
641 static inline void dma_unmap_tx(struct port *port, struct desc *desc)
643 #ifdef __ARMEB__
644 dma_unmap_single(&port->netdev->dev, desc->data,
645 desc->buf_len, DMA_TO_DEVICE);
646 #else
647 dma_unmap_single(&port->netdev->dev, desc->data & ~3,
648 ALIGN((desc->data & 3) + desc->buf_len, 4),
649 DMA_TO_DEVICE);
650 #endif
654 static void eth_rx_irq(void *pdev)
656 struct net_device *dev = pdev;
657 struct port *port = netdev_priv(dev);
659 #if DEBUG_RX
660 printk(KERN_DEBUG "%s: eth_rx_irq\n", dev->name);
661 #endif
662 qmgr_disable_irq(port->plat->rxq);
663 napi_schedule(&port->napi);
666 static int eth_poll(struct napi_struct *napi, int budget)
668 struct port *port = container_of(napi, struct port, napi);
669 struct net_device *dev = port->netdev;
670 unsigned int rxq = port->plat->rxq, rxfreeq = RXFREE_QUEUE(port->id);
671 int received = 0;
673 #if DEBUG_RX
674 printk(KERN_DEBUG "%s: eth_poll\n", dev->name);
675 #endif
677 while (received < budget) {
678 struct sk_buff *skb;
679 struct desc *desc;
680 int n;
681 #ifdef __ARMEB__
682 struct sk_buff *temp;
683 u32 phys;
684 #endif
686 if ((n = queue_get_desc(rxq, port, 0)) < 0) {
687 #if DEBUG_RX
688 printk(KERN_DEBUG "%s: eth_poll napi_complete\n",
689 dev->name);
690 #endif
691 napi_complete(napi);
692 qmgr_enable_irq(rxq);
693 if (!qmgr_stat_below_low_watermark(rxq) &&
694 napi_reschedule(napi)) { /* not empty again */
695 #if DEBUG_RX
696 printk(KERN_DEBUG "%s: eth_poll"
697 " napi_reschedule successed\n",
698 dev->name);
699 #endif
700 qmgr_disable_irq(rxq);
701 continue;
703 #if DEBUG_RX
704 printk(KERN_DEBUG "%s: eth_poll all done\n",
705 dev->name);
706 #endif
707 return received; /* all work done */
710 desc = rx_desc_ptr(port, n);
712 #ifdef __ARMEB__
713 if ((skb = netdev_alloc_skb(dev, RX_BUFF_SIZE))) {
714 phys = dma_map_single(&dev->dev, skb->data,
715 RX_BUFF_SIZE, DMA_FROM_DEVICE);
716 if (dma_mapping_error(&dev->dev, phys)) {
717 dev_kfree_skb(skb);
718 skb = NULL;
721 #else
722 skb = netdev_alloc_skb(dev,
723 ALIGN(NET_IP_ALIGN + desc->pkt_len, 4));
724 #endif
726 if (!skb) {
727 dev->stats.rx_dropped++;
728 /* put the desc back on RX-ready queue */
729 desc->buf_len = MAX_MRU;
730 desc->pkt_len = 0;
731 queue_put_desc(rxfreeq, rx_desc_phys(port, n), desc);
732 continue;
735 /* process received frame */
736 #ifdef __ARMEB__
737 temp = skb;
738 skb = port->rx_buff_tab[n];
739 dma_unmap_single(&dev->dev, desc->data - NET_IP_ALIGN,
740 RX_BUFF_SIZE, DMA_FROM_DEVICE);
741 #else
742 dma_sync_single_for_cpu(&dev->dev, desc->data - NET_IP_ALIGN,
743 RX_BUFF_SIZE, DMA_FROM_DEVICE);
744 memcpy_swab32((u32 *)skb->data, (u32 *)port->rx_buff_tab[n],
745 ALIGN(NET_IP_ALIGN + desc->pkt_len, 4) / 4);
746 #endif
747 skb_reserve(skb, NET_IP_ALIGN);
748 skb_put(skb, desc->pkt_len);
750 debug_pkt(dev, "eth_poll", skb->data, skb->len);
752 ixp_rx_timestamp(port, skb);
753 skb->protocol = eth_type_trans(skb, dev);
754 dev->stats.rx_packets++;
755 dev->stats.rx_bytes += skb->len;
756 netif_receive_skb(skb);
758 /* put the new buffer on RX-free queue */
759 #ifdef __ARMEB__
760 port->rx_buff_tab[n] = temp;
761 desc->data = phys + NET_IP_ALIGN;
762 #endif
763 desc->buf_len = MAX_MRU;
764 desc->pkt_len = 0;
765 queue_put_desc(rxfreeq, rx_desc_phys(port, n), desc);
766 received++;
769 #if DEBUG_RX
770 printk(KERN_DEBUG "eth_poll(): end, not all work done\n");
771 #endif
772 return received; /* not all work done */
776 static void eth_txdone_irq(void *unused)
778 u32 phys;
780 #if DEBUG_TX
781 printk(KERN_DEBUG DRV_NAME ": eth_txdone_irq\n");
782 #endif
783 while ((phys = qmgr_get_entry(TXDONE_QUEUE)) != 0) {
784 u32 npe_id, n_desc;
785 struct port *port;
786 struct desc *desc;
787 int start;
789 npe_id = phys & 3;
790 BUG_ON(npe_id >= MAX_NPES);
791 port = npe_port_tab[npe_id];
792 BUG_ON(!port);
793 phys &= ~0x1F; /* mask out non-address bits */
794 n_desc = (phys - tx_desc_phys(port, 0)) / sizeof(struct desc);
795 BUG_ON(n_desc >= TX_DESCS);
796 desc = tx_desc_ptr(port, n_desc);
797 debug_desc(phys, desc);
799 if (port->tx_buff_tab[n_desc]) { /* not the draining packet */
800 port->netdev->stats.tx_packets++;
801 port->netdev->stats.tx_bytes += desc->pkt_len;
803 dma_unmap_tx(port, desc);
804 #if DEBUG_TX
805 printk(KERN_DEBUG "%s: eth_txdone_irq free %p\n",
806 port->netdev->name, port->tx_buff_tab[n_desc]);
807 #endif
808 free_buffer_irq(port->tx_buff_tab[n_desc]);
809 port->tx_buff_tab[n_desc] = NULL;
812 start = qmgr_stat_below_low_watermark(port->plat->txreadyq);
813 queue_put_desc(port->plat->txreadyq, phys, desc);
814 if (start) { /* TX-ready queue was empty */
815 #if DEBUG_TX
816 printk(KERN_DEBUG "%s: eth_txdone_irq xmit ready\n",
817 port->netdev->name);
818 #endif
819 netif_wake_queue(port->netdev);
824 static int eth_xmit(struct sk_buff *skb, struct net_device *dev)
826 struct port *port = netdev_priv(dev);
827 unsigned int txreadyq = port->plat->txreadyq;
828 int len, offset, bytes, n;
829 void *mem;
830 u32 phys;
831 struct desc *desc;
833 #if DEBUG_TX
834 printk(KERN_DEBUG "%s: eth_xmit\n", dev->name);
835 #endif
837 if (unlikely(skb->len > MAX_MRU)) {
838 dev_kfree_skb(skb);
839 dev->stats.tx_errors++;
840 return NETDEV_TX_OK;
843 debug_pkt(dev, "eth_xmit", skb->data, skb->len);
845 len = skb->len;
846 #ifdef __ARMEB__
847 offset = 0; /* no need to keep alignment */
848 bytes = len;
849 mem = skb->data;
850 #else
851 offset = (int)skb->data & 3; /* keep 32-bit alignment */
852 bytes = ALIGN(offset + len, 4);
853 if (!(mem = kmalloc(bytes, GFP_ATOMIC))) {
854 dev_kfree_skb(skb);
855 dev->stats.tx_dropped++;
856 return NETDEV_TX_OK;
858 memcpy_swab32(mem, (u32 *)((int)skb->data & ~3), bytes / 4);
859 #endif
861 phys = dma_map_single(&dev->dev, mem, bytes, DMA_TO_DEVICE);
862 if (dma_mapping_error(&dev->dev, phys)) {
863 dev_kfree_skb(skb);
864 #ifndef __ARMEB__
865 kfree(mem);
866 #endif
867 dev->stats.tx_dropped++;
868 return NETDEV_TX_OK;
871 n = queue_get_desc(txreadyq, port, 1);
872 BUG_ON(n < 0);
873 desc = tx_desc_ptr(port, n);
875 #ifdef __ARMEB__
876 port->tx_buff_tab[n] = skb;
877 #else
878 port->tx_buff_tab[n] = mem;
879 #endif
880 desc->data = phys + offset;
881 desc->buf_len = desc->pkt_len = len;
883 /* NPE firmware pads short frames with zeros internally */
884 wmb();
885 queue_put_desc(TX_QUEUE(port->id), tx_desc_phys(port, n), desc);
887 if (qmgr_stat_below_low_watermark(txreadyq)) { /* empty */
888 #if DEBUG_TX
889 printk(KERN_DEBUG "%s: eth_xmit queue full\n", dev->name);
890 #endif
891 netif_stop_queue(dev);
892 /* we could miss TX ready interrupt */
893 /* really empty in fact */
894 if (!qmgr_stat_below_low_watermark(txreadyq)) {
895 #if DEBUG_TX
896 printk(KERN_DEBUG "%s: eth_xmit ready again\n",
897 dev->name);
898 #endif
899 netif_wake_queue(dev);
903 #if DEBUG_TX
904 printk(KERN_DEBUG "%s: eth_xmit end\n", dev->name);
905 #endif
907 ixp_tx_timestamp(port, skb);
908 skb_tx_timestamp(skb);
910 #ifndef __ARMEB__
911 dev_kfree_skb(skb);
912 #endif
913 return NETDEV_TX_OK;
917 static void eth_set_mcast_list(struct net_device *dev)
919 struct port *port = netdev_priv(dev);
920 struct netdev_hw_addr *ha;
921 u8 diffs[ETH_ALEN], *addr;
922 int i;
923 static const u8 allmulti[] = { 0x01, 0x00, 0x00, 0x00, 0x00, 0x00 };
925 if (dev->flags & IFF_ALLMULTI) {
926 for (i = 0; i < ETH_ALEN; i++) {
927 __raw_writel(allmulti[i], &port->regs->mcast_addr[i]);
928 __raw_writel(allmulti[i], &port->regs->mcast_mask[i]);
930 __raw_writel(DEFAULT_RX_CNTRL0 | RX_CNTRL0_ADDR_FLTR_EN,
931 &port->regs->rx_control[0]);
932 return;
935 if ((dev->flags & IFF_PROMISC) || netdev_mc_empty(dev)) {
936 __raw_writel(DEFAULT_RX_CNTRL0 & ~RX_CNTRL0_ADDR_FLTR_EN,
937 &port->regs->rx_control[0]);
938 return;
941 memset(diffs, 0, ETH_ALEN);
943 addr = NULL;
944 netdev_for_each_mc_addr(ha, dev) {
945 if (!addr)
946 addr = ha->addr; /* first MAC address */
947 for (i = 0; i < ETH_ALEN; i++)
948 diffs[i] |= addr[i] ^ ha->addr[i];
951 for (i = 0; i < ETH_ALEN; i++) {
952 __raw_writel(addr[i], &port->regs->mcast_addr[i]);
953 __raw_writel(~diffs[i], &port->regs->mcast_mask[i]);
956 __raw_writel(DEFAULT_RX_CNTRL0 | RX_CNTRL0_ADDR_FLTR_EN,
957 &port->regs->rx_control[0]);
961 static int eth_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
963 struct port *port = netdev_priv(dev);
965 if (!netif_running(dev))
966 return -EINVAL;
968 if (cpu_is_ixp46x() && cmd == SIOCSHWTSTAMP)
969 return hwtstamp_ioctl(dev, req, cmd);
971 return phy_mii_ioctl(port->phydev, req, cmd);
974 /* ethtool support */
976 static void ixp4xx_get_drvinfo(struct net_device *dev,
977 struct ethtool_drvinfo *info)
979 struct port *port = netdev_priv(dev);
980 strcpy(info->driver, DRV_NAME);
981 snprintf(info->fw_version, sizeof(info->fw_version), "%u:%u:%u:%u",
982 port->firmware[0], port->firmware[1],
983 port->firmware[2], port->firmware[3]);
984 strcpy(info->bus_info, "internal");
987 static int ixp4xx_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
989 struct port *port = netdev_priv(dev);
990 return phy_ethtool_gset(port->phydev, cmd);
993 static int ixp4xx_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
995 struct port *port = netdev_priv(dev);
996 return phy_ethtool_sset(port->phydev, cmd);
999 static int ixp4xx_nway_reset(struct net_device *dev)
1001 struct port *port = netdev_priv(dev);
1002 return phy_start_aneg(port->phydev);
1005 static const struct ethtool_ops ixp4xx_ethtool_ops = {
1006 .get_drvinfo = ixp4xx_get_drvinfo,
1007 .get_settings = ixp4xx_get_settings,
1008 .set_settings = ixp4xx_set_settings,
1009 .nway_reset = ixp4xx_nway_reset,
1010 .get_link = ethtool_op_get_link,
1014 static int request_queues(struct port *port)
1016 int err;
1018 err = qmgr_request_queue(RXFREE_QUEUE(port->id), RX_DESCS, 0, 0,
1019 "%s:RX-free", port->netdev->name);
1020 if (err)
1021 return err;
1023 err = qmgr_request_queue(port->plat->rxq, RX_DESCS, 0, 0,
1024 "%s:RX", port->netdev->name);
1025 if (err)
1026 goto rel_rxfree;
1028 err = qmgr_request_queue(TX_QUEUE(port->id), TX_DESCS, 0, 0,
1029 "%s:TX", port->netdev->name);
1030 if (err)
1031 goto rel_rx;
1033 err = qmgr_request_queue(port->plat->txreadyq, TX_DESCS, 0, 0,
1034 "%s:TX-ready", port->netdev->name);
1035 if (err)
1036 goto rel_tx;
1038 /* TX-done queue handles skbs sent out by the NPEs */
1039 if (!ports_open) {
1040 err = qmgr_request_queue(TXDONE_QUEUE, TXDONE_QUEUE_LEN, 0, 0,
1041 "%s:TX-done", DRV_NAME);
1042 if (err)
1043 goto rel_txready;
1045 return 0;
1047 rel_txready:
1048 qmgr_release_queue(port->plat->txreadyq);
1049 rel_tx:
1050 qmgr_release_queue(TX_QUEUE(port->id));
1051 rel_rx:
1052 qmgr_release_queue(port->plat->rxq);
1053 rel_rxfree:
1054 qmgr_release_queue(RXFREE_QUEUE(port->id));
1055 printk(KERN_DEBUG "%s: unable to request hardware queues\n",
1056 port->netdev->name);
1057 return err;
1060 static void release_queues(struct port *port)
1062 qmgr_release_queue(RXFREE_QUEUE(port->id));
1063 qmgr_release_queue(port->plat->rxq);
1064 qmgr_release_queue(TX_QUEUE(port->id));
1065 qmgr_release_queue(port->plat->txreadyq);
1067 if (!ports_open)
1068 qmgr_release_queue(TXDONE_QUEUE);
1071 static int init_queues(struct port *port)
1073 int i;
1075 if (!ports_open)
1076 if (!(dma_pool = dma_pool_create(DRV_NAME, NULL,
1077 POOL_ALLOC_SIZE, 32, 0)))
1078 return -ENOMEM;
1080 if (!(port->desc_tab = dma_pool_alloc(dma_pool, GFP_KERNEL,
1081 &port->desc_tab_phys)))
1082 return -ENOMEM;
1083 memset(port->desc_tab, 0, POOL_ALLOC_SIZE);
1084 memset(port->rx_buff_tab, 0, sizeof(port->rx_buff_tab)); /* tables */
1085 memset(port->tx_buff_tab, 0, sizeof(port->tx_buff_tab));
1087 /* Setup RX buffers */
1088 for (i = 0; i < RX_DESCS; i++) {
1089 struct desc *desc = rx_desc_ptr(port, i);
1090 buffer_t *buff; /* skb or kmalloc()ated memory */
1091 void *data;
1092 #ifdef __ARMEB__
1093 if (!(buff = netdev_alloc_skb(port->netdev, RX_BUFF_SIZE)))
1094 return -ENOMEM;
1095 data = buff->data;
1096 #else
1097 if (!(buff = kmalloc(RX_BUFF_SIZE, GFP_KERNEL)))
1098 return -ENOMEM;
1099 data = buff;
1100 #endif
1101 desc->buf_len = MAX_MRU;
1102 desc->data = dma_map_single(&port->netdev->dev, data,
1103 RX_BUFF_SIZE, DMA_FROM_DEVICE);
1104 if (dma_mapping_error(&port->netdev->dev, desc->data)) {
1105 free_buffer(buff);
1106 return -EIO;
1108 desc->data += NET_IP_ALIGN;
1109 port->rx_buff_tab[i] = buff;
1112 return 0;
1115 static void destroy_queues(struct port *port)
1117 int i;
1119 if (port->desc_tab) {
1120 for (i = 0; i < RX_DESCS; i++) {
1121 struct desc *desc = rx_desc_ptr(port, i);
1122 buffer_t *buff = port->rx_buff_tab[i];
1123 if (buff) {
1124 dma_unmap_single(&port->netdev->dev,
1125 desc->data - NET_IP_ALIGN,
1126 RX_BUFF_SIZE, DMA_FROM_DEVICE);
1127 free_buffer(buff);
1130 for (i = 0; i < TX_DESCS; i++) {
1131 struct desc *desc = tx_desc_ptr(port, i);
1132 buffer_t *buff = port->tx_buff_tab[i];
1133 if (buff) {
1134 dma_unmap_tx(port, desc);
1135 free_buffer(buff);
1138 dma_pool_free(dma_pool, port->desc_tab, port->desc_tab_phys);
1139 port->desc_tab = NULL;
1142 if (!ports_open && dma_pool) {
1143 dma_pool_destroy(dma_pool);
1144 dma_pool = NULL;
1148 static int eth_open(struct net_device *dev)
1150 struct port *port = netdev_priv(dev);
1151 struct npe *npe = port->npe;
1152 struct msg msg;
1153 int i, err;
1155 if (!npe_running(npe)) {
1156 err = npe_load_firmware(npe, npe_name(npe), &dev->dev);
1157 if (err)
1158 return err;
1160 if (npe_recv_message(npe, &msg, "ETH_GET_STATUS")) {
1161 printk(KERN_ERR "%s: %s not responding\n", dev->name,
1162 npe_name(npe));
1163 return -EIO;
1165 port->firmware[0] = msg.byte4;
1166 port->firmware[1] = msg.byte5;
1167 port->firmware[2] = msg.byte6;
1168 port->firmware[3] = msg.byte7;
1171 memset(&msg, 0, sizeof(msg));
1172 msg.cmd = NPE_VLAN_SETRXQOSENTRY;
1173 msg.eth_id = port->id;
1174 msg.byte5 = port->plat->rxq | 0x80;
1175 msg.byte7 = port->plat->rxq << 4;
1176 for (i = 0; i < 8; i++) {
1177 msg.byte3 = i;
1178 if (npe_send_recv_message(port->npe, &msg, "ETH_SET_RXQ"))
1179 return -EIO;
1182 msg.cmd = NPE_EDB_SETPORTADDRESS;
1183 msg.eth_id = PHYSICAL_ID(port->id);
1184 msg.byte2 = dev->dev_addr[0];
1185 msg.byte3 = dev->dev_addr[1];
1186 msg.byte4 = dev->dev_addr[2];
1187 msg.byte5 = dev->dev_addr[3];
1188 msg.byte6 = dev->dev_addr[4];
1189 msg.byte7 = dev->dev_addr[5];
1190 if (npe_send_recv_message(port->npe, &msg, "ETH_SET_MAC"))
1191 return -EIO;
1193 memset(&msg, 0, sizeof(msg));
1194 msg.cmd = NPE_FW_SETFIREWALLMODE;
1195 msg.eth_id = port->id;
1196 if (npe_send_recv_message(port->npe, &msg, "ETH_SET_FIREWALL_MODE"))
1197 return -EIO;
1199 if ((err = request_queues(port)) != 0)
1200 return err;
1202 if ((err = init_queues(port)) != 0) {
1203 destroy_queues(port);
1204 release_queues(port);
1205 return err;
1208 port->speed = 0; /* force "link up" message */
1209 phy_start(port->phydev);
1211 for (i = 0; i < ETH_ALEN; i++)
1212 __raw_writel(dev->dev_addr[i], &port->regs->hw_addr[i]);
1213 __raw_writel(0x08, &port->regs->random_seed);
1214 __raw_writel(0x12, &port->regs->partial_empty_threshold);
1215 __raw_writel(0x30, &port->regs->partial_full_threshold);
1216 __raw_writel(0x08, &port->regs->tx_start_bytes);
1217 __raw_writel(0x15, &port->regs->tx_deferral);
1218 __raw_writel(0x08, &port->regs->tx_2part_deferral[0]);
1219 __raw_writel(0x07, &port->regs->tx_2part_deferral[1]);
1220 __raw_writel(0x80, &port->regs->slot_time);
1221 __raw_writel(0x01, &port->regs->int_clock_threshold);
1223 /* Populate queues with buffers, no failure after this point */
1224 for (i = 0; i < TX_DESCS; i++)
1225 queue_put_desc(port->plat->txreadyq,
1226 tx_desc_phys(port, i), tx_desc_ptr(port, i));
1228 for (i = 0; i < RX_DESCS; i++)
1229 queue_put_desc(RXFREE_QUEUE(port->id),
1230 rx_desc_phys(port, i), rx_desc_ptr(port, i));
1232 __raw_writel(TX_CNTRL1_RETRIES, &port->regs->tx_control[1]);
1233 __raw_writel(DEFAULT_TX_CNTRL0, &port->regs->tx_control[0]);
1234 __raw_writel(0, &port->regs->rx_control[1]);
1235 __raw_writel(DEFAULT_RX_CNTRL0, &port->regs->rx_control[0]);
1237 napi_enable(&port->napi);
1238 eth_set_mcast_list(dev);
1239 netif_start_queue(dev);
1241 qmgr_set_irq(port->plat->rxq, QUEUE_IRQ_SRC_NOT_EMPTY,
1242 eth_rx_irq, dev);
1243 if (!ports_open) {
1244 qmgr_set_irq(TXDONE_QUEUE, QUEUE_IRQ_SRC_NOT_EMPTY,
1245 eth_txdone_irq, NULL);
1246 qmgr_enable_irq(TXDONE_QUEUE);
1248 ports_open++;
1249 /* we may already have RX data, enables IRQ */
1250 napi_schedule(&port->napi);
1251 return 0;
1254 static int eth_close(struct net_device *dev)
1256 struct port *port = netdev_priv(dev);
1257 struct msg msg;
1258 int buffs = RX_DESCS; /* allocated RX buffers */
1259 int i;
1261 ports_open--;
1262 qmgr_disable_irq(port->plat->rxq);
1263 napi_disable(&port->napi);
1264 netif_stop_queue(dev);
1266 while (queue_get_desc(RXFREE_QUEUE(port->id), port, 0) >= 0)
1267 buffs--;
1269 memset(&msg, 0, sizeof(msg));
1270 msg.cmd = NPE_SETLOOPBACK_MODE;
1271 msg.eth_id = port->id;
1272 msg.byte3 = 1;
1273 if (npe_send_recv_message(port->npe, &msg, "ETH_ENABLE_LOOPBACK"))
1274 printk(KERN_CRIT "%s: unable to enable loopback\n", dev->name);
1276 i = 0;
1277 do { /* drain RX buffers */
1278 while (queue_get_desc(port->plat->rxq, port, 0) >= 0)
1279 buffs--;
1280 if (!buffs)
1281 break;
1282 if (qmgr_stat_empty(TX_QUEUE(port->id))) {
1283 /* we have to inject some packet */
1284 struct desc *desc;
1285 u32 phys;
1286 int n = queue_get_desc(port->plat->txreadyq, port, 1);
1287 BUG_ON(n < 0);
1288 desc = tx_desc_ptr(port, n);
1289 phys = tx_desc_phys(port, n);
1290 desc->buf_len = desc->pkt_len = 1;
1291 wmb();
1292 queue_put_desc(TX_QUEUE(port->id), phys, desc);
1294 udelay(1);
1295 } while (++i < MAX_CLOSE_WAIT);
1297 if (buffs)
1298 printk(KERN_CRIT "%s: unable to drain RX queue, %i buffer(s)"
1299 " left in NPE\n", dev->name, buffs);
1300 #if DEBUG_CLOSE
1301 if (!buffs)
1302 printk(KERN_DEBUG "Draining RX queue took %i cycles\n", i);
1303 #endif
1305 buffs = TX_DESCS;
1306 while (queue_get_desc(TX_QUEUE(port->id), port, 1) >= 0)
1307 buffs--; /* cancel TX */
1309 i = 0;
1310 do {
1311 while (queue_get_desc(port->plat->txreadyq, port, 1) >= 0)
1312 buffs--;
1313 if (!buffs)
1314 break;
1315 } while (++i < MAX_CLOSE_WAIT);
1317 if (buffs)
1318 printk(KERN_CRIT "%s: unable to drain TX queue, %i buffer(s) "
1319 "left in NPE\n", dev->name, buffs);
1320 #if DEBUG_CLOSE
1321 if (!buffs)
1322 printk(KERN_DEBUG "Draining TX queues took %i cycles\n", i);
1323 #endif
1325 msg.byte3 = 0;
1326 if (npe_send_recv_message(port->npe, &msg, "ETH_DISABLE_LOOPBACK"))
1327 printk(KERN_CRIT "%s: unable to disable loopback\n",
1328 dev->name);
1330 phy_stop(port->phydev);
1332 if (!ports_open)
1333 qmgr_disable_irq(TXDONE_QUEUE);
1334 destroy_queues(port);
1335 release_queues(port);
1336 return 0;
1339 static const struct net_device_ops ixp4xx_netdev_ops = {
1340 .ndo_open = eth_open,
1341 .ndo_stop = eth_close,
1342 .ndo_start_xmit = eth_xmit,
1343 .ndo_set_rx_mode = eth_set_mcast_list,
1344 .ndo_do_ioctl = eth_ioctl,
1345 .ndo_change_mtu = eth_change_mtu,
1346 .ndo_set_mac_address = eth_mac_addr,
1347 .ndo_validate_addr = eth_validate_addr,
1350 static int __devinit eth_init_one(struct platform_device *pdev)
1352 struct port *port;
1353 struct net_device *dev;
1354 struct eth_plat_info *plat = pdev->dev.platform_data;
1355 u32 regs_phys;
1356 char phy_id[MII_BUS_ID_SIZE + 3];
1357 int err;
1359 if (ptp_filter_init(ptp_filter, ARRAY_SIZE(ptp_filter))) {
1360 pr_err("ixp4xx_eth: bad ptp filter\n");
1361 return -EINVAL;
1364 if (!(dev = alloc_etherdev(sizeof(struct port))))
1365 return -ENOMEM;
1367 SET_NETDEV_DEV(dev, &pdev->dev);
1368 port = netdev_priv(dev);
1369 port->netdev = dev;
1370 port->id = pdev->id;
1372 switch (port->id) {
1373 case IXP4XX_ETH_NPEA:
1374 port->regs = (struct eth_regs __iomem *)IXP4XX_EthA_BASE_VIRT;
1375 regs_phys = IXP4XX_EthA_BASE_PHYS;
1376 break;
1377 case IXP4XX_ETH_NPEB:
1378 port->regs = (struct eth_regs __iomem *)IXP4XX_EthB_BASE_VIRT;
1379 regs_phys = IXP4XX_EthB_BASE_PHYS;
1380 break;
1381 case IXP4XX_ETH_NPEC:
1382 port->regs = (struct eth_regs __iomem *)IXP4XX_EthC_BASE_VIRT;
1383 regs_phys = IXP4XX_EthC_BASE_PHYS;
1384 break;
1385 default:
1386 err = -ENODEV;
1387 goto err_free;
1390 dev->netdev_ops = &ixp4xx_netdev_ops;
1391 dev->ethtool_ops = &ixp4xx_ethtool_ops;
1392 dev->tx_queue_len = 100;
1394 netif_napi_add(dev, &port->napi, eth_poll, NAPI_WEIGHT);
1396 if (!(port->npe = npe_request(NPE_ID(port->id)))) {
1397 err = -EIO;
1398 goto err_free;
1401 port->mem_res = request_mem_region(regs_phys, REGS_SIZE, dev->name);
1402 if (!port->mem_res) {
1403 err = -EBUSY;
1404 goto err_npe_rel;
1407 port->plat = plat;
1408 npe_port_tab[NPE_ID(port->id)] = port;
1409 memcpy(dev->dev_addr, plat->hwaddr, ETH_ALEN);
1411 platform_set_drvdata(pdev, dev);
1413 __raw_writel(DEFAULT_CORE_CNTRL | CORE_RESET,
1414 &port->regs->core_control);
1415 udelay(50);
1416 __raw_writel(DEFAULT_CORE_CNTRL, &port->regs->core_control);
1417 udelay(50);
1419 snprintf(phy_id, MII_BUS_ID_SIZE + 3, PHY_ID_FMT,
1420 mdio_bus->id, plat->phy);
1421 port->phydev = phy_connect(dev, phy_id, &ixp4xx_adjust_link, 0,
1422 PHY_INTERFACE_MODE_MII);
1423 if (IS_ERR(port->phydev)) {
1424 err = PTR_ERR(port->phydev);
1425 goto err_free_mem;
1428 port->phydev->irq = PHY_POLL;
1430 if ((err = register_netdev(dev)))
1431 goto err_phy_dis;
1433 printk(KERN_INFO "%s: MII PHY %i on %s\n", dev->name, plat->phy,
1434 npe_name(port->npe));
1436 return 0;
1438 err_phy_dis:
1439 phy_disconnect(port->phydev);
1440 err_free_mem:
1441 npe_port_tab[NPE_ID(port->id)] = NULL;
1442 platform_set_drvdata(pdev, NULL);
1443 release_resource(port->mem_res);
1444 err_npe_rel:
1445 npe_release(port->npe);
1446 err_free:
1447 free_netdev(dev);
1448 return err;
1451 static int __devexit eth_remove_one(struct platform_device *pdev)
1453 struct net_device *dev = platform_get_drvdata(pdev);
1454 struct port *port = netdev_priv(dev);
1456 unregister_netdev(dev);
1457 phy_disconnect(port->phydev);
1458 npe_port_tab[NPE_ID(port->id)] = NULL;
1459 platform_set_drvdata(pdev, NULL);
1460 npe_release(port->npe);
1461 release_resource(port->mem_res);
1462 free_netdev(dev);
1463 return 0;
1466 static struct platform_driver ixp4xx_eth_driver = {
1467 .driver.name = DRV_NAME,
1468 .probe = eth_init_one,
1469 .remove = eth_remove_one,
1472 static int __init eth_init_module(void)
1474 int err;
1475 if ((err = ixp4xx_mdio_register()))
1476 return err;
1477 return platform_driver_register(&ixp4xx_eth_driver);
1480 static void __exit eth_cleanup_module(void)
1482 platform_driver_unregister(&ixp4xx_eth_driver);
1483 ixp4xx_mdio_remove();
1486 MODULE_AUTHOR("Krzysztof Halasa");
1487 MODULE_DESCRIPTION("Intel IXP4xx Ethernet driver");
1488 MODULE_LICENSE("GPL v2");
1489 MODULE_ALIAS("platform:ixp4xx_eth");
1490 module_init(eth_init_module);
1491 module_exit(eth_cleanup_module);