2 * core.c -- Voltage/Current Regulator framework.
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
27 #include <linux/regulator/of_regulator.h>
28 #include <linux/regulator/consumer.h>
29 #include <linux/regulator/driver.h>
30 #include <linux/regulator/machine.h>
31 #include <linux/module.h>
33 #define CREATE_TRACE_POINTS
34 #include <trace/events/regulator.h>
38 #define rdev_crit(rdev, fmt, ...) \
39 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
40 #define rdev_err(rdev, fmt, ...) \
41 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42 #define rdev_warn(rdev, fmt, ...) \
43 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_info(rdev, fmt, ...) \
45 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_dbg(rdev, fmt, ...) \
47 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
49 static DEFINE_MUTEX(regulator_list_mutex
);
50 static LIST_HEAD(regulator_list
);
51 static LIST_HEAD(regulator_map_list
);
52 static bool has_full_constraints
;
53 static bool board_wants_dummy_regulator
;
55 static struct dentry
*debugfs_root
;
58 * struct regulator_map
60 * Used to provide symbolic supply names to devices.
62 struct regulator_map
{
63 struct list_head list
;
64 const char *dev_name
; /* The dev_name() for the consumer */
66 struct regulator_dev
*regulator
;
72 * One for each consumer device.
76 struct list_head list
;
81 struct device_attribute dev_attr
;
82 struct regulator_dev
*rdev
;
83 struct dentry
*debugfs
;
86 static int _regulator_is_enabled(struct regulator_dev
*rdev
);
87 static int _regulator_disable(struct regulator_dev
*rdev
);
88 static int _regulator_get_voltage(struct regulator_dev
*rdev
);
89 static int _regulator_get_current_limit(struct regulator_dev
*rdev
);
90 static unsigned int _regulator_get_mode(struct regulator_dev
*rdev
);
91 static void _notifier_call_chain(struct regulator_dev
*rdev
,
92 unsigned long event
, void *data
);
93 static int _regulator_do_set_voltage(struct regulator_dev
*rdev
,
94 int min_uV
, int max_uV
);
95 static struct regulator
*create_regulator(struct regulator_dev
*rdev
,
97 const char *supply_name
);
99 static const char *rdev_get_name(struct regulator_dev
*rdev
)
101 if (rdev
->constraints
&& rdev
->constraints
->name
)
102 return rdev
->constraints
->name
;
103 else if (rdev
->desc
->name
)
104 return rdev
->desc
->name
;
109 /* gets the regulator for a given consumer device */
110 static struct regulator
*get_device_regulator(struct device
*dev
)
112 struct regulator
*regulator
= NULL
;
113 struct regulator_dev
*rdev
;
115 mutex_lock(®ulator_list_mutex
);
116 list_for_each_entry(rdev
, ®ulator_list
, list
) {
117 mutex_lock(&rdev
->mutex
);
118 list_for_each_entry(regulator
, &rdev
->consumer_list
, list
) {
119 if (regulator
->dev
== dev
) {
120 mutex_unlock(&rdev
->mutex
);
121 mutex_unlock(®ulator_list_mutex
);
125 mutex_unlock(&rdev
->mutex
);
127 mutex_unlock(®ulator_list_mutex
);
132 * of_get_regulator - get a regulator device node based on supply name
133 * @dev: Device pointer for the consumer (of regulator) device
134 * @supply: regulator supply name
136 * Extract the regulator device node corresponding to the supply name.
137 * retruns the device node corresponding to the regulator if found, else
140 static struct device_node
*of_get_regulator(struct device
*dev
, const char *supply
)
142 struct device_node
*regnode
= NULL
;
143 char prop_name
[32]; /* 32 is max size of property name */
145 dev_dbg(dev
, "Looking up %s-supply from device tree\n", supply
);
147 snprintf(prop_name
, 32, "%s-supply", supply
);
148 regnode
= of_parse_phandle(dev
->of_node
, prop_name
, 0);
151 dev_dbg(dev
, "Looking up %s property in node %s failed",
152 prop_name
, dev
->of_node
->full_name
);
158 /* Platform voltage constraint check */
159 static int regulator_check_voltage(struct regulator_dev
*rdev
,
160 int *min_uV
, int *max_uV
)
162 BUG_ON(*min_uV
> *max_uV
);
164 if (!rdev
->constraints
) {
165 rdev_err(rdev
, "no constraints\n");
168 if (!(rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_VOLTAGE
)) {
169 rdev_err(rdev
, "operation not allowed\n");
173 if (*max_uV
> rdev
->constraints
->max_uV
)
174 *max_uV
= rdev
->constraints
->max_uV
;
175 if (*min_uV
< rdev
->constraints
->min_uV
)
176 *min_uV
= rdev
->constraints
->min_uV
;
178 if (*min_uV
> *max_uV
) {
179 rdev_err(rdev
, "unsupportable voltage range: %d-%duV\n",
187 /* Make sure we select a voltage that suits the needs of all
188 * regulator consumers
190 static int regulator_check_consumers(struct regulator_dev
*rdev
,
191 int *min_uV
, int *max_uV
)
193 struct regulator
*regulator
;
195 list_for_each_entry(regulator
, &rdev
->consumer_list
, list
) {
197 * Assume consumers that didn't say anything are OK
198 * with anything in the constraint range.
200 if (!regulator
->min_uV
&& !regulator
->max_uV
)
203 if (*max_uV
> regulator
->max_uV
)
204 *max_uV
= regulator
->max_uV
;
205 if (*min_uV
< regulator
->min_uV
)
206 *min_uV
= regulator
->min_uV
;
209 if (*min_uV
> *max_uV
)
215 /* current constraint check */
216 static int regulator_check_current_limit(struct regulator_dev
*rdev
,
217 int *min_uA
, int *max_uA
)
219 BUG_ON(*min_uA
> *max_uA
);
221 if (!rdev
->constraints
) {
222 rdev_err(rdev
, "no constraints\n");
225 if (!(rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_CURRENT
)) {
226 rdev_err(rdev
, "operation not allowed\n");
230 if (*max_uA
> rdev
->constraints
->max_uA
)
231 *max_uA
= rdev
->constraints
->max_uA
;
232 if (*min_uA
< rdev
->constraints
->min_uA
)
233 *min_uA
= rdev
->constraints
->min_uA
;
235 if (*min_uA
> *max_uA
) {
236 rdev_err(rdev
, "unsupportable current range: %d-%duA\n",
244 /* operating mode constraint check */
245 static int regulator_mode_constrain(struct regulator_dev
*rdev
, int *mode
)
248 case REGULATOR_MODE_FAST
:
249 case REGULATOR_MODE_NORMAL
:
250 case REGULATOR_MODE_IDLE
:
251 case REGULATOR_MODE_STANDBY
:
254 rdev_err(rdev
, "invalid mode %x specified\n", *mode
);
258 if (!rdev
->constraints
) {
259 rdev_err(rdev
, "no constraints\n");
262 if (!(rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_MODE
)) {
263 rdev_err(rdev
, "operation not allowed\n");
267 /* The modes are bitmasks, the most power hungry modes having
268 * the lowest values. If the requested mode isn't supported
269 * try higher modes. */
271 if (rdev
->constraints
->valid_modes_mask
& *mode
)
279 /* dynamic regulator mode switching constraint check */
280 static int regulator_check_drms(struct regulator_dev
*rdev
)
282 if (!rdev
->constraints
) {
283 rdev_err(rdev
, "no constraints\n");
286 if (!(rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_DRMS
)) {
287 rdev_err(rdev
, "operation not allowed\n");
293 static ssize_t
device_requested_uA_show(struct device
*dev
,
294 struct device_attribute
*attr
, char *buf
)
296 struct regulator
*regulator
;
298 regulator
= get_device_regulator(dev
);
299 if (regulator
== NULL
)
302 return sprintf(buf
, "%d\n", regulator
->uA_load
);
305 static ssize_t
regulator_uV_show(struct device
*dev
,
306 struct device_attribute
*attr
, char *buf
)
308 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
311 mutex_lock(&rdev
->mutex
);
312 ret
= sprintf(buf
, "%d\n", _regulator_get_voltage(rdev
));
313 mutex_unlock(&rdev
->mutex
);
317 static DEVICE_ATTR(microvolts
, 0444, regulator_uV_show
, NULL
);
319 static ssize_t
regulator_uA_show(struct device
*dev
,
320 struct device_attribute
*attr
, char *buf
)
322 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
324 return sprintf(buf
, "%d\n", _regulator_get_current_limit(rdev
));
326 static DEVICE_ATTR(microamps
, 0444, regulator_uA_show
, NULL
);
328 static ssize_t
regulator_name_show(struct device
*dev
,
329 struct device_attribute
*attr
, char *buf
)
331 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
333 return sprintf(buf
, "%s\n", rdev_get_name(rdev
));
336 static ssize_t
regulator_print_opmode(char *buf
, int mode
)
339 case REGULATOR_MODE_FAST
:
340 return sprintf(buf
, "fast\n");
341 case REGULATOR_MODE_NORMAL
:
342 return sprintf(buf
, "normal\n");
343 case REGULATOR_MODE_IDLE
:
344 return sprintf(buf
, "idle\n");
345 case REGULATOR_MODE_STANDBY
:
346 return sprintf(buf
, "standby\n");
348 return sprintf(buf
, "unknown\n");
351 static ssize_t
regulator_opmode_show(struct device
*dev
,
352 struct device_attribute
*attr
, char *buf
)
354 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
356 return regulator_print_opmode(buf
, _regulator_get_mode(rdev
));
358 static DEVICE_ATTR(opmode
, 0444, regulator_opmode_show
, NULL
);
360 static ssize_t
regulator_print_state(char *buf
, int state
)
363 return sprintf(buf
, "enabled\n");
365 return sprintf(buf
, "disabled\n");
367 return sprintf(buf
, "unknown\n");
370 static ssize_t
regulator_state_show(struct device
*dev
,
371 struct device_attribute
*attr
, char *buf
)
373 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
376 mutex_lock(&rdev
->mutex
);
377 ret
= regulator_print_state(buf
, _regulator_is_enabled(rdev
));
378 mutex_unlock(&rdev
->mutex
);
382 static DEVICE_ATTR(state
, 0444, regulator_state_show
, NULL
);
384 static ssize_t
regulator_status_show(struct device
*dev
,
385 struct device_attribute
*attr
, char *buf
)
387 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
391 status
= rdev
->desc
->ops
->get_status(rdev
);
396 case REGULATOR_STATUS_OFF
:
399 case REGULATOR_STATUS_ON
:
402 case REGULATOR_STATUS_ERROR
:
405 case REGULATOR_STATUS_FAST
:
408 case REGULATOR_STATUS_NORMAL
:
411 case REGULATOR_STATUS_IDLE
:
414 case REGULATOR_STATUS_STANDBY
:
421 return sprintf(buf
, "%s\n", label
);
423 static DEVICE_ATTR(status
, 0444, regulator_status_show
, NULL
);
425 static ssize_t
regulator_min_uA_show(struct device
*dev
,
426 struct device_attribute
*attr
, char *buf
)
428 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
430 if (!rdev
->constraints
)
431 return sprintf(buf
, "constraint not defined\n");
433 return sprintf(buf
, "%d\n", rdev
->constraints
->min_uA
);
435 static DEVICE_ATTR(min_microamps
, 0444, regulator_min_uA_show
, NULL
);
437 static ssize_t
regulator_max_uA_show(struct device
*dev
,
438 struct device_attribute
*attr
, char *buf
)
440 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
442 if (!rdev
->constraints
)
443 return sprintf(buf
, "constraint not defined\n");
445 return sprintf(buf
, "%d\n", rdev
->constraints
->max_uA
);
447 static DEVICE_ATTR(max_microamps
, 0444, regulator_max_uA_show
, NULL
);
449 static ssize_t
regulator_min_uV_show(struct device
*dev
,
450 struct device_attribute
*attr
, char *buf
)
452 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
454 if (!rdev
->constraints
)
455 return sprintf(buf
, "constraint not defined\n");
457 return sprintf(buf
, "%d\n", rdev
->constraints
->min_uV
);
459 static DEVICE_ATTR(min_microvolts
, 0444, regulator_min_uV_show
, NULL
);
461 static ssize_t
regulator_max_uV_show(struct device
*dev
,
462 struct device_attribute
*attr
, char *buf
)
464 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
466 if (!rdev
->constraints
)
467 return sprintf(buf
, "constraint not defined\n");
469 return sprintf(buf
, "%d\n", rdev
->constraints
->max_uV
);
471 static DEVICE_ATTR(max_microvolts
, 0444, regulator_max_uV_show
, NULL
);
473 static ssize_t
regulator_total_uA_show(struct device
*dev
,
474 struct device_attribute
*attr
, char *buf
)
476 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
477 struct regulator
*regulator
;
480 mutex_lock(&rdev
->mutex
);
481 list_for_each_entry(regulator
, &rdev
->consumer_list
, list
)
482 uA
+= regulator
->uA_load
;
483 mutex_unlock(&rdev
->mutex
);
484 return sprintf(buf
, "%d\n", uA
);
486 static DEVICE_ATTR(requested_microamps
, 0444, regulator_total_uA_show
, NULL
);
488 static ssize_t
regulator_num_users_show(struct device
*dev
,
489 struct device_attribute
*attr
, char *buf
)
491 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
492 return sprintf(buf
, "%d\n", rdev
->use_count
);
495 static ssize_t
regulator_type_show(struct device
*dev
,
496 struct device_attribute
*attr
, char *buf
)
498 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
500 switch (rdev
->desc
->type
) {
501 case REGULATOR_VOLTAGE
:
502 return sprintf(buf
, "voltage\n");
503 case REGULATOR_CURRENT
:
504 return sprintf(buf
, "current\n");
506 return sprintf(buf
, "unknown\n");
509 static ssize_t
regulator_suspend_mem_uV_show(struct device
*dev
,
510 struct device_attribute
*attr
, char *buf
)
512 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
514 return sprintf(buf
, "%d\n", rdev
->constraints
->state_mem
.uV
);
516 static DEVICE_ATTR(suspend_mem_microvolts
, 0444,
517 regulator_suspend_mem_uV_show
, NULL
);
519 static ssize_t
regulator_suspend_disk_uV_show(struct device
*dev
,
520 struct device_attribute
*attr
, char *buf
)
522 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
524 return sprintf(buf
, "%d\n", rdev
->constraints
->state_disk
.uV
);
526 static DEVICE_ATTR(suspend_disk_microvolts
, 0444,
527 regulator_suspend_disk_uV_show
, NULL
);
529 static ssize_t
regulator_suspend_standby_uV_show(struct device
*dev
,
530 struct device_attribute
*attr
, char *buf
)
532 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
534 return sprintf(buf
, "%d\n", rdev
->constraints
->state_standby
.uV
);
536 static DEVICE_ATTR(suspend_standby_microvolts
, 0444,
537 regulator_suspend_standby_uV_show
, NULL
);
539 static ssize_t
regulator_suspend_mem_mode_show(struct device
*dev
,
540 struct device_attribute
*attr
, char *buf
)
542 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
544 return regulator_print_opmode(buf
,
545 rdev
->constraints
->state_mem
.mode
);
547 static DEVICE_ATTR(suspend_mem_mode
, 0444,
548 regulator_suspend_mem_mode_show
, NULL
);
550 static ssize_t
regulator_suspend_disk_mode_show(struct device
*dev
,
551 struct device_attribute
*attr
, char *buf
)
553 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
555 return regulator_print_opmode(buf
,
556 rdev
->constraints
->state_disk
.mode
);
558 static DEVICE_ATTR(suspend_disk_mode
, 0444,
559 regulator_suspend_disk_mode_show
, NULL
);
561 static ssize_t
regulator_suspend_standby_mode_show(struct device
*dev
,
562 struct device_attribute
*attr
, char *buf
)
564 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
566 return regulator_print_opmode(buf
,
567 rdev
->constraints
->state_standby
.mode
);
569 static DEVICE_ATTR(suspend_standby_mode
, 0444,
570 regulator_suspend_standby_mode_show
, NULL
);
572 static ssize_t
regulator_suspend_mem_state_show(struct device
*dev
,
573 struct device_attribute
*attr
, char *buf
)
575 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
577 return regulator_print_state(buf
,
578 rdev
->constraints
->state_mem
.enabled
);
580 static DEVICE_ATTR(suspend_mem_state
, 0444,
581 regulator_suspend_mem_state_show
, NULL
);
583 static ssize_t
regulator_suspend_disk_state_show(struct device
*dev
,
584 struct device_attribute
*attr
, char *buf
)
586 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
588 return regulator_print_state(buf
,
589 rdev
->constraints
->state_disk
.enabled
);
591 static DEVICE_ATTR(suspend_disk_state
, 0444,
592 regulator_suspend_disk_state_show
, NULL
);
594 static ssize_t
regulator_suspend_standby_state_show(struct device
*dev
,
595 struct device_attribute
*attr
, char *buf
)
597 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
599 return regulator_print_state(buf
,
600 rdev
->constraints
->state_standby
.enabled
);
602 static DEVICE_ATTR(suspend_standby_state
, 0444,
603 regulator_suspend_standby_state_show
, NULL
);
607 * These are the only attributes are present for all regulators.
608 * Other attributes are a function of regulator functionality.
610 static struct device_attribute regulator_dev_attrs
[] = {
611 __ATTR(name
, 0444, regulator_name_show
, NULL
),
612 __ATTR(num_users
, 0444, regulator_num_users_show
, NULL
),
613 __ATTR(type
, 0444, regulator_type_show
, NULL
),
617 static void regulator_dev_release(struct device
*dev
)
619 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
623 static struct class regulator_class
= {
625 .dev_release
= regulator_dev_release
,
626 .dev_attrs
= regulator_dev_attrs
,
629 /* Calculate the new optimum regulator operating mode based on the new total
630 * consumer load. All locks held by caller */
631 static void drms_uA_update(struct regulator_dev
*rdev
)
633 struct regulator
*sibling
;
634 int current_uA
= 0, output_uV
, input_uV
, err
;
637 err
= regulator_check_drms(rdev
);
638 if (err
< 0 || !rdev
->desc
->ops
->get_optimum_mode
||
639 (!rdev
->desc
->ops
->get_voltage
&&
640 !rdev
->desc
->ops
->get_voltage_sel
) ||
641 !rdev
->desc
->ops
->set_mode
)
644 /* get output voltage */
645 output_uV
= _regulator_get_voltage(rdev
);
649 /* get input voltage */
652 input_uV
= _regulator_get_voltage(rdev
);
654 input_uV
= rdev
->constraints
->input_uV
;
658 /* calc total requested load */
659 list_for_each_entry(sibling
, &rdev
->consumer_list
, list
)
660 current_uA
+= sibling
->uA_load
;
662 /* now get the optimum mode for our new total regulator load */
663 mode
= rdev
->desc
->ops
->get_optimum_mode(rdev
, input_uV
,
664 output_uV
, current_uA
);
666 /* check the new mode is allowed */
667 err
= regulator_mode_constrain(rdev
, &mode
);
669 rdev
->desc
->ops
->set_mode(rdev
, mode
);
672 static int suspend_set_state(struct regulator_dev
*rdev
,
673 struct regulator_state
*rstate
)
678 can_set_state
= rdev
->desc
->ops
->set_suspend_enable
&&
679 rdev
->desc
->ops
->set_suspend_disable
;
681 /* If we have no suspend mode configration don't set anything;
682 * only warn if the driver actually makes the suspend mode
685 if (!rstate
->enabled
&& !rstate
->disabled
) {
687 rdev_warn(rdev
, "No configuration\n");
691 if (rstate
->enabled
&& rstate
->disabled
) {
692 rdev_err(rdev
, "invalid configuration\n");
696 if (!can_set_state
) {
697 rdev_err(rdev
, "no way to set suspend state\n");
702 ret
= rdev
->desc
->ops
->set_suspend_enable(rdev
);
704 ret
= rdev
->desc
->ops
->set_suspend_disable(rdev
);
706 rdev_err(rdev
, "failed to enabled/disable\n");
710 if (rdev
->desc
->ops
->set_suspend_voltage
&& rstate
->uV
> 0) {
711 ret
= rdev
->desc
->ops
->set_suspend_voltage(rdev
, rstate
->uV
);
713 rdev_err(rdev
, "failed to set voltage\n");
718 if (rdev
->desc
->ops
->set_suspend_mode
&& rstate
->mode
> 0) {
719 ret
= rdev
->desc
->ops
->set_suspend_mode(rdev
, rstate
->mode
);
721 rdev_err(rdev
, "failed to set mode\n");
728 /* locks held by caller */
729 static int suspend_prepare(struct regulator_dev
*rdev
, suspend_state_t state
)
731 if (!rdev
->constraints
)
735 case PM_SUSPEND_STANDBY
:
736 return suspend_set_state(rdev
,
737 &rdev
->constraints
->state_standby
);
739 return suspend_set_state(rdev
,
740 &rdev
->constraints
->state_mem
);
742 return suspend_set_state(rdev
,
743 &rdev
->constraints
->state_disk
);
749 static void print_constraints(struct regulator_dev
*rdev
)
751 struct regulation_constraints
*constraints
= rdev
->constraints
;
756 if (constraints
->min_uV
&& constraints
->max_uV
) {
757 if (constraints
->min_uV
== constraints
->max_uV
)
758 count
+= sprintf(buf
+ count
, "%d mV ",
759 constraints
->min_uV
/ 1000);
761 count
+= sprintf(buf
+ count
, "%d <--> %d mV ",
762 constraints
->min_uV
/ 1000,
763 constraints
->max_uV
/ 1000);
766 if (!constraints
->min_uV
||
767 constraints
->min_uV
!= constraints
->max_uV
) {
768 ret
= _regulator_get_voltage(rdev
);
770 count
+= sprintf(buf
+ count
, "at %d mV ", ret
/ 1000);
773 if (constraints
->uV_offset
)
774 count
+= sprintf(buf
, "%dmV offset ",
775 constraints
->uV_offset
/ 1000);
777 if (constraints
->min_uA
&& constraints
->max_uA
) {
778 if (constraints
->min_uA
== constraints
->max_uA
)
779 count
+= sprintf(buf
+ count
, "%d mA ",
780 constraints
->min_uA
/ 1000);
782 count
+= sprintf(buf
+ count
, "%d <--> %d mA ",
783 constraints
->min_uA
/ 1000,
784 constraints
->max_uA
/ 1000);
787 if (!constraints
->min_uA
||
788 constraints
->min_uA
!= constraints
->max_uA
) {
789 ret
= _regulator_get_current_limit(rdev
);
791 count
+= sprintf(buf
+ count
, "at %d mA ", ret
/ 1000);
794 if (constraints
->valid_modes_mask
& REGULATOR_MODE_FAST
)
795 count
+= sprintf(buf
+ count
, "fast ");
796 if (constraints
->valid_modes_mask
& REGULATOR_MODE_NORMAL
)
797 count
+= sprintf(buf
+ count
, "normal ");
798 if (constraints
->valid_modes_mask
& REGULATOR_MODE_IDLE
)
799 count
+= sprintf(buf
+ count
, "idle ");
800 if (constraints
->valid_modes_mask
& REGULATOR_MODE_STANDBY
)
801 count
+= sprintf(buf
+ count
, "standby");
803 rdev_info(rdev
, "%s\n", buf
);
805 if ((constraints
->min_uV
!= constraints
->max_uV
) &&
806 !(constraints
->valid_ops_mask
& REGULATOR_CHANGE_VOLTAGE
))
808 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
811 static int machine_constraints_voltage(struct regulator_dev
*rdev
,
812 struct regulation_constraints
*constraints
)
814 struct regulator_ops
*ops
= rdev
->desc
->ops
;
817 /* do we need to apply the constraint voltage */
818 if (rdev
->constraints
->apply_uV
&&
819 rdev
->constraints
->min_uV
== rdev
->constraints
->max_uV
) {
820 ret
= _regulator_do_set_voltage(rdev
,
821 rdev
->constraints
->min_uV
,
822 rdev
->constraints
->max_uV
);
824 rdev_err(rdev
, "failed to apply %duV constraint\n",
825 rdev
->constraints
->min_uV
);
830 /* constrain machine-level voltage specs to fit
831 * the actual range supported by this regulator.
833 if (ops
->list_voltage
&& rdev
->desc
->n_voltages
) {
834 int count
= rdev
->desc
->n_voltages
;
836 int min_uV
= INT_MAX
;
837 int max_uV
= INT_MIN
;
838 int cmin
= constraints
->min_uV
;
839 int cmax
= constraints
->max_uV
;
841 /* it's safe to autoconfigure fixed-voltage supplies
842 and the constraints are used by list_voltage. */
843 if (count
== 1 && !cmin
) {
846 constraints
->min_uV
= cmin
;
847 constraints
->max_uV
= cmax
;
850 /* voltage constraints are optional */
851 if ((cmin
== 0) && (cmax
== 0))
854 /* else require explicit machine-level constraints */
855 if (cmin
<= 0 || cmax
<= 0 || cmax
< cmin
) {
856 rdev_err(rdev
, "invalid voltage constraints\n");
860 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
861 for (i
= 0; i
< count
; i
++) {
864 value
= ops
->list_voltage(rdev
, i
);
868 /* maybe adjust [min_uV..max_uV] */
869 if (value
>= cmin
&& value
< min_uV
)
871 if (value
<= cmax
&& value
> max_uV
)
875 /* final: [min_uV..max_uV] valid iff constraints valid */
876 if (max_uV
< min_uV
) {
877 rdev_err(rdev
, "unsupportable voltage constraints\n");
881 /* use regulator's subset of machine constraints */
882 if (constraints
->min_uV
< min_uV
) {
883 rdev_dbg(rdev
, "override min_uV, %d -> %d\n",
884 constraints
->min_uV
, min_uV
);
885 constraints
->min_uV
= min_uV
;
887 if (constraints
->max_uV
> max_uV
) {
888 rdev_dbg(rdev
, "override max_uV, %d -> %d\n",
889 constraints
->max_uV
, max_uV
);
890 constraints
->max_uV
= max_uV
;
898 * set_machine_constraints - sets regulator constraints
899 * @rdev: regulator source
900 * @constraints: constraints to apply
902 * Allows platform initialisation code to define and constrain
903 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
904 * Constraints *must* be set by platform code in order for some
905 * regulator operations to proceed i.e. set_voltage, set_current_limit,
908 static int set_machine_constraints(struct regulator_dev
*rdev
,
909 const struct regulation_constraints
*constraints
)
912 struct regulator_ops
*ops
= rdev
->desc
->ops
;
915 rdev
->constraints
= kmemdup(constraints
, sizeof(*constraints
),
918 rdev
->constraints
= kzalloc(sizeof(*constraints
),
920 if (!rdev
->constraints
)
923 ret
= machine_constraints_voltage(rdev
, rdev
->constraints
);
927 /* do we need to setup our suspend state */
928 if (rdev
->constraints
->initial_state
) {
929 ret
= suspend_prepare(rdev
, rdev
->constraints
->initial_state
);
931 rdev_err(rdev
, "failed to set suspend state\n");
936 if (rdev
->constraints
->initial_mode
) {
937 if (!ops
->set_mode
) {
938 rdev_err(rdev
, "no set_mode operation\n");
943 ret
= ops
->set_mode(rdev
, rdev
->constraints
->initial_mode
);
945 rdev_err(rdev
, "failed to set initial mode: %d\n", ret
);
950 /* If the constraints say the regulator should be on at this point
951 * and we have control then make sure it is enabled.
953 if ((rdev
->constraints
->always_on
|| rdev
->constraints
->boot_on
) &&
955 ret
= ops
->enable(rdev
);
957 rdev_err(rdev
, "failed to enable\n");
962 print_constraints(rdev
);
965 kfree(rdev
->constraints
);
966 rdev
->constraints
= NULL
;
971 * set_supply - set regulator supply regulator
972 * @rdev: regulator name
973 * @supply_rdev: supply regulator name
975 * Called by platform initialisation code to set the supply regulator for this
976 * regulator. This ensures that a regulators supply will also be enabled by the
977 * core if it's child is enabled.
979 static int set_supply(struct regulator_dev
*rdev
,
980 struct regulator_dev
*supply_rdev
)
984 rdev_info(rdev
, "supplied by %s\n", rdev_get_name(supply_rdev
));
986 rdev
->supply
= create_regulator(supply_rdev
, &rdev
->dev
, "SUPPLY");
987 if (rdev
->supply
== NULL
) {
996 * set_consumer_device_supply - Bind a regulator to a symbolic supply
997 * @rdev: regulator source
998 * @consumer_dev_name: dev_name() string for device supply applies to
999 * @supply: symbolic name for supply
1001 * Allows platform initialisation code to map physical regulator
1002 * sources to symbolic names for supplies for use by devices. Devices
1003 * should use these symbolic names to request regulators, avoiding the
1004 * need to provide board-specific regulator names as platform data.
1006 static int set_consumer_device_supply(struct regulator_dev
*rdev
,
1007 const char *consumer_dev_name
,
1010 struct regulator_map
*node
;
1016 if (consumer_dev_name
!= NULL
)
1021 list_for_each_entry(node
, ®ulator_map_list
, list
) {
1022 if (node
->dev_name
&& consumer_dev_name
) {
1023 if (strcmp(node
->dev_name
, consumer_dev_name
) != 0)
1025 } else if (node
->dev_name
|| consumer_dev_name
) {
1029 if (strcmp(node
->supply
, supply
) != 0)
1032 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1034 dev_name(&node
->regulator
->dev
),
1035 node
->regulator
->desc
->name
,
1037 dev_name(&rdev
->dev
), rdev_get_name(rdev
));
1041 node
= kzalloc(sizeof(struct regulator_map
), GFP_KERNEL
);
1045 node
->regulator
= rdev
;
1046 node
->supply
= supply
;
1049 node
->dev_name
= kstrdup(consumer_dev_name
, GFP_KERNEL
);
1050 if (node
->dev_name
== NULL
) {
1056 list_add(&node
->list
, ®ulator_map_list
);
1060 static void unset_regulator_supplies(struct regulator_dev
*rdev
)
1062 struct regulator_map
*node
, *n
;
1064 list_for_each_entry_safe(node
, n
, ®ulator_map_list
, list
) {
1065 if (rdev
== node
->regulator
) {
1066 list_del(&node
->list
);
1067 kfree(node
->dev_name
);
1073 #define REG_STR_SIZE 64
1075 static struct regulator
*create_regulator(struct regulator_dev
*rdev
,
1077 const char *supply_name
)
1079 struct regulator
*regulator
;
1080 char buf
[REG_STR_SIZE
];
1083 regulator
= kzalloc(sizeof(*regulator
), GFP_KERNEL
);
1084 if (regulator
== NULL
)
1087 mutex_lock(&rdev
->mutex
);
1088 regulator
->rdev
= rdev
;
1089 list_add(®ulator
->list
, &rdev
->consumer_list
);
1092 /* create a 'requested_microamps_name' sysfs entry */
1093 size
= scnprintf(buf
, REG_STR_SIZE
,
1094 "microamps_requested_%s-%s",
1095 dev_name(dev
), supply_name
);
1096 if (size
>= REG_STR_SIZE
)
1099 regulator
->dev
= dev
;
1100 sysfs_attr_init(®ulator
->dev_attr
.attr
);
1101 regulator
->dev_attr
.attr
.name
= kstrdup(buf
, GFP_KERNEL
);
1102 if (regulator
->dev_attr
.attr
.name
== NULL
)
1105 regulator
->dev_attr
.attr
.mode
= 0444;
1106 regulator
->dev_attr
.show
= device_requested_uA_show
;
1107 err
= device_create_file(dev
, ®ulator
->dev_attr
);
1109 rdev_warn(rdev
, "could not add regulator_dev requested microamps sysfs entry\n");
1113 /* also add a link to the device sysfs entry */
1114 size
= scnprintf(buf
, REG_STR_SIZE
, "%s-%s",
1115 dev
->kobj
.name
, supply_name
);
1116 if (size
>= REG_STR_SIZE
)
1119 regulator
->supply_name
= kstrdup(buf
, GFP_KERNEL
);
1120 if (regulator
->supply_name
== NULL
)
1123 err
= sysfs_create_link(&rdev
->dev
.kobj
, &dev
->kobj
,
1126 rdev_warn(rdev
, "could not add device link %s err %d\n",
1127 dev
->kobj
.name
, err
);
1131 regulator
->supply_name
= kstrdup(supply_name
, GFP_KERNEL
);
1132 if (regulator
->supply_name
== NULL
)
1136 regulator
->debugfs
= debugfs_create_dir(regulator
->supply_name
,
1138 if (!regulator
->debugfs
) {
1139 rdev_warn(rdev
, "Failed to create debugfs directory\n");
1141 debugfs_create_u32("uA_load", 0444, regulator
->debugfs
,
1142 ®ulator
->uA_load
);
1143 debugfs_create_u32("min_uV", 0444, regulator
->debugfs
,
1144 ®ulator
->min_uV
);
1145 debugfs_create_u32("max_uV", 0444, regulator
->debugfs
,
1146 ®ulator
->max_uV
);
1149 mutex_unlock(&rdev
->mutex
);
1152 kfree(regulator
->supply_name
);
1154 device_remove_file(regulator
->dev
, ®ulator
->dev_attr
);
1156 kfree(regulator
->dev_attr
.attr
.name
);
1158 list_del(®ulator
->list
);
1160 mutex_unlock(&rdev
->mutex
);
1164 static int _regulator_get_enable_time(struct regulator_dev
*rdev
)
1166 if (!rdev
->desc
->ops
->enable_time
)
1168 return rdev
->desc
->ops
->enable_time(rdev
);
1171 static struct regulator_dev
*regulator_dev_lookup(struct device
*dev
,
1174 struct regulator_dev
*r
;
1175 struct device_node
*node
;
1177 /* first do a dt based lookup */
1178 if (dev
&& dev
->of_node
) {
1179 node
= of_get_regulator(dev
, supply
);
1181 list_for_each_entry(r
, ®ulator_list
, list
)
1182 if (r
->dev
.parent
&&
1183 node
== r
->dev
.of_node
)
1187 /* if not found, try doing it non-dt way */
1188 list_for_each_entry(r
, ®ulator_list
, list
)
1189 if (strcmp(rdev_get_name(r
), supply
) == 0)
1195 /* Internal regulator request function */
1196 static struct regulator
*_regulator_get(struct device
*dev
, const char *id
,
1199 struct regulator_dev
*rdev
;
1200 struct regulator_map
*map
;
1201 struct regulator
*regulator
= ERR_PTR(-EPROBE_DEFER
);
1202 const char *devname
= NULL
;
1206 pr_err("get() with no identifier\n");
1211 devname
= dev_name(dev
);
1213 mutex_lock(®ulator_list_mutex
);
1215 rdev
= regulator_dev_lookup(dev
, id
);
1219 list_for_each_entry(map
, ®ulator_map_list
, list
) {
1220 /* If the mapping has a device set up it must match */
1221 if (map
->dev_name
&&
1222 (!devname
|| strcmp(map
->dev_name
, devname
)))
1225 if (strcmp(map
->supply
, id
) == 0) {
1226 rdev
= map
->regulator
;
1231 if (board_wants_dummy_regulator
) {
1232 rdev
= dummy_regulator_rdev
;
1236 #ifdef CONFIG_REGULATOR_DUMMY
1238 devname
= "deviceless";
1240 /* If the board didn't flag that it was fully constrained then
1241 * substitute in a dummy regulator so consumers can continue.
1243 if (!has_full_constraints
) {
1244 pr_warn("%s supply %s not found, using dummy regulator\n",
1246 rdev
= dummy_regulator_rdev
;
1251 mutex_unlock(®ulator_list_mutex
);
1255 if (rdev
->exclusive
) {
1256 regulator
= ERR_PTR(-EPERM
);
1260 if (exclusive
&& rdev
->open_count
) {
1261 regulator
= ERR_PTR(-EBUSY
);
1265 if (!try_module_get(rdev
->owner
))
1268 regulator
= create_regulator(rdev
, dev
, id
);
1269 if (regulator
== NULL
) {
1270 regulator
= ERR_PTR(-ENOMEM
);
1271 module_put(rdev
->owner
);
1277 rdev
->exclusive
= 1;
1279 ret
= _regulator_is_enabled(rdev
);
1281 rdev
->use_count
= 1;
1283 rdev
->use_count
= 0;
1287 mutex_unlock(®ulator_list_mutex
);
1293 * regulator_get - lookup and obtain a reference to a regulator.
1294 * @dev: device for regulator "consumer"
1295 * @id: Supply name or regulator ID.
1297 * Returns a struct regulator corresponding to the regulator producer,
1298 * or IS_ERR() condition containing errno.
1300 * Use of supply names configured via regulator_set_device_supply() is
1301 * strongly encouraged. It is recommended that the supply name used
1302 * should match the name used for the supply and/or the relevant
1303 * device pins in the datasheet.
1305 struct regulator
*regulator_get(struct device
*dev
, const char *id
)
1307 return _regulator_get(dev
, id
, 0);
1309 EXPORT_SYMBOL_GPL(regulator_get
);
1311 static void devm_regulator_release(struct device
*dev
, void *res
)
1313 regulator_put(*(struct regulator
**)res
);
1317 * devm_regulator_get - Resource managed regulator_get()
1318 * @dev: device for regulator "consumer"
1319 * @id: Supply name or regulator ID.
1321 * Managed regulator_get(). Regulators returned from this function are
1322 * automatically regulator_put() on driver detach. See regulator_get() for more
1325 struct regulator
*devm_regulator_get(struct device
*dev
, const char *id
)
1327 struct regulator
**ptr
, *regulator
;
1329 ptr
= devres_alloc(devm_regulator_release
, sizeof(*ptr
), GFP_KERNEL
);
1331 return ERR_PTR(-ENOMEM
);
1333 regulator
= regulator_get(dev
, id
);
1334 if (!IS_ERR(regulator
)) {
1336 devres_add(dev
, ptr
);
1343 EXPORT_SYMBOL_GPL(devm_regulator_get
);
1346 * regulator_get_exclusive - obtain exclusive access to a regulator.
1347 * @dev: device for regulator "consumer"
1348 * @id: Supply name or regulator ID.
1350 * Returns a struct regulator corresponding to the regulator producer,
1351 * or IS_ERR() condition containing errno. Other consumers will be
1352 * unable to obtain this reference is held and the use count for the
1353 * regulator will be initialised to reflect the current state of the
1356 * This is intended for use by consumers which cannot tolerate shared
1357 * use of the regulator such as those which need to force the
1358 * regulator off for correct operation of the hardware they are
1361 * Use of supply names configured via regulator_set_device_supply() is
1362 * strongly encouraged. It is recommended that the supply name used
1363 * should match the name used for the supply and/or the relevant
1364 * device pins in the datasheet.
1366 struct regulator
*regulator_get_exclusive(struct device
*dev
, const char *id
)
1368 return _regulator_get(dev
, id
, 1);
1370 EXPORT_SYMBOL_GPL(regulator_get_exclusive
);
1373 * regulator_put - "free" the regulator source
1374 * @regulator: regulator source
1376 * Note: drivers must ensure that all regulator_enable calls made on this
1377 * regulator source are balanced by regulator_disable calls prior to calling
1380 void regulator_put(struct regulator
*regulator
)
1382 struct regulator_dev
*rdev
;
1384 if (regulator
== NULL
|| IS_ERR(regulator
))
1387 mutex_lock(®ulator_list_mutex
);
1388 rdev
= regulator
->rdev
;
1390 debugfs_remove_recursive(regulator
->debugfs
);
1392 /* remove any sysfs entries */
1393 if (regulator
->dev
) {
1394 sysfs_remove_link(&rdev
->dev
.kobj
, regulator
->supply_name
);
1395 device_remove_file(regulator
->dev
, ®ulator
->dev_attr
);
1396 kfree(regulator
->dev_attr
.attr
.name
);
1398 kfree(regulator
->supply_name
);
1399 list_del(®ulator
->list
);
1403 rdev
->exclusive
= 0;
1405 module_put(rdev
->owner
);
1406 mutex_unlock(®ulator_list_mutex
);
1408 EXPORT_SYMBOL_GPL(regulator_put
);
1410 static int devm_regulator_match(struct device
*dev
, void *res
, void *data
)
1412 struct regulator
**r
= res
;
1421 * devm_regulator_put - Resource managed regulator_put()
1422 * @regulator: regulator to free
1424 * Deallocate a regulator allocated with devm_regulator_get(). Normally
1425 * this function will not need to be called and the resource management
1426 * code will ensure that the resource is freed.
1428 void devm_regulator_put(struct regulator
*regulator
)
1432 rc
= devres_destroy(regulator
->dev
, devm_regulator_release
,
1433 devm_regulator_match
, regulator
);
1435 regulator_put(regulator
);
1439 EXPORT_SYMBOL_GPL(devm_regulator_put
);
1441 static int _regulator_can_change_status(struct regulator_dev
*rdev
)
1443 if (!rdev
->constraints
)
1446 if (rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_STATUS
)
1452 /* locks held by regulator_enable() */
1453 static int _regulator_enable(struct regulator_dev
*rdev
)
1457 /* check voltage and requested load before enabling */
1458 if (rdev
->constraints
&&
1459 (rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_DRMS
))
1460 drms_uA_update(rdev
);
1462 if (rdev
->use_count
== 0) {
1463 /* The regulator may on if it's not switchable or left on */
1464 ret
= _regulator_is_enabled(rdev
);
1465 if (ret
== -EINVAL
|| ret
== 0) {
1466 if (!_regulator_can_change_status(rdev
))
1469 if (!rdev
->desc
->ops
->enable
)
1472 /* Query before enabling in case configuration
1474 ret
= _regulator_get_enable_time(rdev
);
1478 rdev_warn(rdev
, "enable_time() failed: %d\n",
1483 trace_regulator_enable(rdev_get_name(rdev
));
1485 /* Allow the regulator to ramp; it would be useful
1486 * to extend this for bulk operations so that the
1487 * regulators can ramp together. */
1488 ret
= rdev
->desc
->ops
->enable(rdev
);
1492 trace_regulator_enable_delay(rdev_get_name(rdev
));
1494 if (delay
>= 1000) {
1495 mdelay(delay
/ 1000);
1496 udelay(delay
% 1000);
1501 trace_regulator_enable_complete(rdev_get_name(rdev
));
1503 } else if (ret
< 0) {
1504 rdev_err(rdev
, "is_enabled() failed: %d\n", ret
);
1507 /* Fallthrough on positive return values - already enabled */
1516 * regulator_enable - enable regulator output
1517 * @regulator: regulator source
1519 * Request that the regulator be enabled with the regulator output at
1520 * the predefined voltage or current value. Calls to regulator_enable()
1521 * must be balanced with calls to regulator_disable().
1523 * NOTE: the output value can be set by other drivers, boot loader or may be
1524 * hardwired in the regulator.
1526 int regulator_enable(struct regulator
*regulator
)
1528 struct regulator_dev
*rdev
= regulator
->rdev
;
1532 ret
= regulator_enable(rdev
->supply
);
1537 mutex_lock(&rdev
->mutex
);
1538 ret
= _regulator_enable(rdev
);
1539 mutex_unlock(&rdev
->mutex
);
1541 if (ret
!= 0 && rdev
->supply
)
1542 regulator_disable(rdev
->supply
);
1546 EXPORT_SYMBOL_GPL(regulator_enable
);
1548 /* locks held by regulator_disable() */
1549 static int _regulator_disable(struct regulator_dev
*rdev
)
1553 if (WARN(rdev
->use_count
<= 0,
1554 "unbalanced disables for %s\n", rdev_get_name(rdev
)))
1557 /* are we the last user and permitted to disable ? */
1558 if (rdev
->use_count
== 1 &&
1559 (rdev
->constraints
&& !rdev
->constraints
->always_on
)) {
1561 /* we are last user */
1562 if (_regulator_can_change_status(rdev
) &&
1563 rdev
->desc
->ops
->disable
) {
1564 trace_regulator_disable(rdev_get_name(rdev
));
1566 ret
= rdev
->desc
->ops
->disable(rdev
);
1568 rdev_err(rdev
, "failed to disable\n");
1572 trace_regulator_disable_complete(rdev_get_name(rdev
));
1574 _notifier_call_chain(rdev
, REGULATOR_EVENT_DISABLE
,
1578 rdev
->use_count
= 0;
1579 } else if (rdev
->use_count
> 1) {
1581 if (rdev
->constraints
&&
1582 (rdev
->constraints
->valid_ops_mask
&
1583 REGULATOR_CHANGE_DRMS
))
1584 drms_uA_update(rdev
);
1593 * regulator_disable - disable regulator output
1594 * @regulator: regulator source
1596 * Disable the regulator output voltage or current. Calls to
1597 * regulator_enable() must be balanced with calls to
1598 * regulator_disable().
1600 * NOTE: this will only disable the regulator output if no other consumer
1601 * devices have it enabled, the regulator device supports disabling and
1602 * machine constraints permit this operation.
1604 int regulator_disable(struct regulator
*regulator
)
1606 struct regulator_dev
*rdev
= regulator
->rdev
;
1609 mutex_lock(&rdev
->mutex
);
1610 ret
= _regulator_disable(rdev
);
1611 mutex_unlock(&rdev
->mutex
);
1613 if (ret
== 0 && rdev
->supply
)
1614 regulator_disable(rdev
->supply
);
1618 EXPORT_SYMBOL_GPL(regulator_disable
);
1620 /* locks held by regulator_force_disable() */
1621 static int _regulator_force_disable(struct regulator_dev
*rdev
)
1626 if (rdev
->desc
->ops
->disable
) {
1627 /* ah well, who wants to live forever... */
1628 ret
= rdev
->desc
->ops
->disable(rdev
);
1630 rdev_err(rdev
, "failed to force disable\n");
1633 /* notify other consumers that power has been forced off */
1634 _notifier_call_chain(rdev
, REGULATOR_EVENT_FORCE_DISABLE
|
1635 REGULATOR_EVENT_DISABLE
, NULL
);
1642 * regulator_force_disable - force disable regulator output
1643 * @regulator: regulator source
1645 * Forcibly disable the regulator output voltage or current.
1646 * NOTE: this *will* disable the regulator output even if other consumer
1647 * devices have it enabled. This should be used for situations when device
1648 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1650 int regulator_force_disable(struct regulator
*regulator
)
1652 struct regulator_dev
*rdev
= regulator
->rdev
;
1655 mutex_lock(&rdev
->mutex
);
1656 regulator
->uA_load
= 0;
1657 ret
= _regulator_force_disable(regulator
->rdev
);
1658 mutex_unlock(&rdev
->mutex
);
1661 while (rdev
->open_count
--)
1662 regulator_disable(rdev
->supply
);
1666 EXPORT_SYMBOL_GPL(regulator_force_disable
);
1668 static void regulator_disable_work(struct work_struct
*work
)
1670 struct regulator_dev
*rdev
= container_of(work
, struct regulator_dev
,
1674 mutex_lock(&rdev
->mutex
);
1676 BUG_ON(!rdev
->deferred_disables
);
1678 count
= rdev
->deferred_disables
;
1679 rdev
->deferred_disables
= 0;
1681 for (i
= 0; i
< count
; i
++) {
1682 ret
= _regulator_disable(rdev
);
1684 rdev_err(rdev
, "Deferred disable failed: %d\n", ret
);
1687 mutex_unlock(&rdev
->mutex
);
1690 for (i
= 0; i
< count
; i
++) {
1691 ret
= regulator_disable(rdev
->supply
);
1694 "Supply disable failed: %d\n", ret
);
1701 * regulator_disable_deferred - disable regulator output with delay
1702 * @regulator: regulator source
1703 * @ms: miliseconds until the regulator is disabled
1705 * Execute regulator_disable() on the regulator after a delay. This
1706 * is intended for use with devices that require some time to quiesce.
1708 * NOTE: this will only disable the regulator output if no other consumer
1709 * devices have it enabled, the regulator device supports disabling and
1710 * machine constraints permit this operation.
1712 int regulator_disable_deferred(struct regulator
*regulator
, int ms
)
1714 struct regulator_dev
*rdev
= regulator
->rdev
;
1717 mutex_lock(&rdev
->mutex
);
1718 rdev
->deferred_disables
++;
1719 mutex_unlock(&rdev
->mutex
);
1721 ret
= schedule_delayed_work(&rdev
->disable_work
,
1722 msecs_to_jiffies(ms
));
1728 EXPORT_SYMBOL_GPL(regulator_disable_deferred
);
1730 static int _regulator_is_enabled(struct regulator_dev
*rdev
)
1732 /* If we don't know then assume that the regulator is always on */
1733 if (!rdev
->desc
->ops
->is_enabled
)
1736 return rdev
->desc
->ops
->is_enabled(rdev
);
1740 * regulator_is_enabled - is the regulator output enabled
1741 * @regulator: regulator source
1743 * Returns positive if the regulator driver backing the source/client
1744 * has requested that the device be enabled, zero if it hasn't, else a
1745 * negative errno code.
1747 * Note that the device backing this regulator handle can have multiple
1748 * users, so it might be enabled even if regulator_enable() was never
1749 * called for this particular source.
1751 int regulator_is_enabled(struct regulator
*regulator
)
1755 mutex_lock(®ulator
->rdev
->mutex
);
1756 ret
= _regulator_is_enabled(regulator
->rdev
);
1757 mutex_unlock(®ulator
->rdev
->mutex
);
1761 EXPORT_SYMBOL_GPL(regulator_is_enabled
);
1764 * regulator_count_voltages - count regulator_list_voltage() selectors
1765 * @regulator: regulator source
1767 * Returns number of selectors, or negative errno. Selectors are
1768 * numbered starting at zero, and typically correspond to bitfields
1769 * in hardware registers.
1771 int regulator_count_voltages(struct regulator
*regulator
)
1773 struct regulator_dev
*rdev
= regulator
->rdev
;
1775 return rdev
->desc
->n_voltages
? : -EINVAL
;
1777 EXPORT_SYMBOL_GPL(regulator_count_voltages
);
1780 * regulator_list_voltage - enumerate supported voltages
1781 * @regulator: regulator source
1782 * @selector: identify voltage to list
1783 * Context: can sleep
1785 * Returns a voltage that can be passed to @regulator_set_voltage(),
1786 * zero if this selector code can't be used on this system, or a
1789 int regulator_list_voltage(struct regulator
*regulator
, unsigned selector
)
1791 struct regulator_dev
*rdev
= regulator
->rdev
;
1792 struct regulator_ops
*ops
= rdev
->desc
->ops
;
1795 if (!ops
->list_voltage
|| selector
>= rdev
->desc
->n_voltages
)
1798 mutex_lock(&rdev
->mutex
);
1799 ret
= ops
->list_voltage(rdev
, selector
);
1800 mutex_unlock(&rdev
->mutex
);
1803 if (ret
< rdev
->constraints
->min_uV
)
1805 else if (ret
> rdev
->constraints
->max_uV
)
1811 EXPORT_SYMBOL_GPL(regulator_list_voltage
);
1814 * regulator_is_supported_voltage - check if a voltage range can be supported
1816 * @regulator: Regulator to check.
1817 * @min_uV: Minimum required voltage in uV.
1818 * @max_uV: Maximum required voltage in uV.
1820 * Returns a boolean or a negative error code.
1822 int regulator_is_supported_voltage(struct regulator
*regulator
,
1823 int min_uV
, int max_uV
)
1825 int i
, voltages
, ret
;
1827 ret
= regulator_count_voltages(regulator
);
1832 for (i
= 0; i
< voltages
; i
++) {
1833 ret
= regulator_list_voltage(regulator
, i
);
1835 if (ret
>= min_uV
&& ret
<= max_uV
)
1841 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage
);
1843 static int _regulator_do_set_voltage(struct regulator_dev
*rdev
,
1844 int min_uV
, int max_uV
)
1848 unsigned int selector
;
1850 trace_regulator_set_voltage(rdev_get_name(rdev
), min_uV
, max_uV
);
1852 min_uV
+= rdev
->constraints
->uV_offset
;
1853 max_uV
+= rdev
->constraints
->uV_offset
;
1855 if (rdev
->desc
->ops
->set_voltage
) {
1856 ret
= rdev
->desc
->ops
->set_voltage(rdev
, min_uV
, max_uV
,
1859 if (rdev
->desc
->ops
->list_voltage
)
1860 selector
= rdev
->desc
->ops
->list_voltage(rdev
,
1864 } else if (rdev
->desc
->ops
->set_voltage_sel
) {
1865 int best_val
= INT_MAX
;
1870 /* Find the smallest voltage that falls within the specified
1873 for (i
= 0; i
< rdev
->desc
->n_voltages
; i
++) {
1874 ret
= rdev
->desc
->ops
->list_voltage(rdev
, i
);
1878 if (ret
< best_val
&& ret
>= min_uV
&& ret
<= max_uV
) {
1885 * If we can't obtain the old selector there is not enough
1886 * info to call set_voltage_time_sel().
1888 if (rdev
->desc
->ops
->set_voltage_time_sel
&&
1889 rdev
->desc
->ops
->get_voltage_sel
) {
1890 unsigned int old_selector
= 0;
1892 ret
= rdev
->desc
->ops
->get_voltage_sel(rdev
);
1896 ret
= rdev
->desc
->ops
->set_voltage_time_sel(rdev
,
1897 old_selector
, selector
);
1899 rdev_warn(rdev
, "set_voltage_time_sel() failed: %d\n", ret
);
1904 if (best_val
!= INT_MAX
) {
1905 ret
= rdev
->desc
->ops
->set_voltage_sel(rdev
, selector
);
1906 selector
= best_val
;
1914 /* Insert any necessary delays */
1915 if (delay
>= 1000) {
1916 mdelay(delay
/ 1000);
1917 udelay(delay
% 1000);
1923 _notifier_call_chain(rdev
, REGULATOR_EVENT_VOLTAGE_CHANGE
,
1926 trace_regulator_set_voltage_complete(rdev_get_name(rdev
), selector
);
1932 * regulator_set_voltage - set regulator output voltage
1933 * @regulator: regulator source
1934 * @min_uV: Minimum required voltage in uV
1935 * @max_uV: Maximum acceptable voltage in uV
1937 * Sets a voltage regulator to the desired output voltage. This can be set
1938 * during any regulator state. IOW, regulator can be disabled or enabled.
1940 * If the regulator is enabled then the voltage will change to the new value
1941 * immediately otherwise if the regulator is disabled the regulator will
1942 * output at the new voltage when enabled.
1944 * NOTE: If the regulator is shared between several devices then the lowest
1945 * request voltage that meets the system constraints will be used.
1946 * Regulator system constraints must be set for this regulator before
1947 * calling this function otherwise this call will fail.
1949 int regulator_set_voltage(struct regulator
*regulator
, int min_uV
, int max_uV
)
1951 struct regulator_dev
*rdev
= regulator
->rdev
;
1954 mutex_lock(&rdev
->mutex
);
1956 /* If we're setting the same range as last time the change
1957 * should be a noop (some cpufreq implementations use the same
1958 * voltage for multiple frequencies, for example).
1960 if (regulator
->min_uV
== min_uV
&& regulator
->max_uV
== max_uV
)
1964 if (!rdev
->desc
->ops
->set_voltage
&&
1965 !rdev
->desc
->ops
->set_voltage_sel
) {
1970 /* constraints check */
1971 ret
= regulator_check_voltage(rdev
, &min_uV
, &max_uV
);
1974 regulator
->min_uV
= min_uV
;
1975 regulator
->max_uV
= max_uV
;
1977 ret
= regulator_check_consumers(rdev
, &min_uV
, &max_uV
);
1981 ret
= _regulator_do_set_voltage(rdev
, min_uV
, max_uV
);
1984 mutex_unlock(&rdev
->mutex
);
1987 EXPORT_SYMBOL_GPL(regulator_set_voltage
);
1990 * regulator_set_voltage_time - get raise/fall time
1991 * @regulator: regulator source
1992 * @old_uV: starting voltage in microvolts
1993 * @new_uV: target voltage in microvolts
1995 * Provided with the starting and ending voltage, this function attempts to
1996 * calculate the time in microseconds required to rise or fall to this new
1999 int regulator_set_voltage_time(struct regulator
*regulator
,
2000 int old_uV
, int new_uV
)
2002 struct regulator_dev
*rdev
= regulator
->rdev
;
2003 struct regulator_ops
*ops
= rdev
->desc
->ops
;
2009 /* Currently requires operations to do this */
2010 if (!ops
->list_voltage
|| !ops
->set_voltage_time_sel
2011 || !rdev
->desc
->n_voltages
)
2014 for (i
= 0; i
< rdev
->desc
->n_voltages
; i
++) {
2015 /* We only look for exact voltage matches here */
2016 voltage
= regulator_list_voltage(regulator
, i
);
2021 if (voltage
== old_uV
)
2023 if (voltage
== new_uV
)
2027 if (old_sel
< 0 || new_sel
< 0)
2030 return ops
->set_voltage_time_sel(rdev
, old_sel
, new_sel
);
2032 EXPORT_SYMBOL_GPL(regulator_set_voltage_time
);
2035 * regulator_sync_voltage - re-apply last regulator output voltage
2036 * @regulator: regulator source
2038 * Re-apply the last configured voltage. This is intended to be used
2039 * where some external control source the consumer is cooperating with
2040 * has caused the configured voltage to change.
2042 int regulator_sync_voltage(struct regulator
*regulator
)
2044 struct regulator_dev
*rdev
= regulator
->rdev
;
2045 int ret
, min_uV
, max_uV
;
2047 mutex_lock(&rdev
->mutex
);
2049 if (!rdev
->desc
->ops
->set_voltage
&&
2050 !rdev
->desc
->ops
->set_voltage_sel
) {
2055 /* This is only going to work if we've had a voltage configured. */
2056 if (!regulator
->min_uV
&& !regulator
->max_uV
) {
2061 min_uV
= regulator
->min_uV
;
2062 max_uV
= regulator
->max_uV
;
2064 /* This should be a paranoia check... */
2065 ret
= regulator_check_voltage(rdev
, &min_uV
, &max_uV
);
2069 ret
= regulator_check_consumers(rdev
, &min_uV
, &max_uV
);
2073 ret
= _regulator_do_set_voltage(rdev
, min_uV
, max_uV
);
2076 mutex_unlock(&rdev
->mutex
);
2079 EXPORT_SYMBOL_GPL(regulator_sync_voltage
);
2081 static int _regulator_get_voltage(struct regulator_dev
*rdev
)
2085 if (rdev
->desc
->ops
->get_voltage_sel
) {
2086 sel
= rdev
->desc
->ops
->get_voltage_sel(rdev
);
2089 ret
= rdev
->desc
->ops
->list_voltage(rdev
, sel
);
2090 } else if (rdev
->desc
->ops
->get_voltage
) {
2091 ret
= rdev
->desc
->ops
->get_voltage(rdev
);
2098 return ret
- rdev
->constraints
->uV_offset
;
2102 * regulator_get_voltage - get regulator output voltage
2103 * @regulator: regulator source
2105 * This returns the current regulator voltage in uV.
2107 * NOTE: If the regulator is disabled it will return the voltage value. This
2108 * function should not be used to determine regulator state.
2110 int regulator_get_voltage(struct regulator
*regulator
)
2114 mutex_lock(®ulator
->rdev
->mutex
);
2116 ret
= _regulator_get_voltage(regulator
->rdev
);
2118 mutex_unlock(®ulator
->rdev
->mutex
);
2122 EXPORT_SYMBOL_GPL(regulator_get_voltage
);
2125 * regulator_set_current_limit - set regulator output current limit
2126 * @regulator: regulator source
2127 * @min_uA: Minimuum supported current in uA
2128 * @max_uA: Maximum supported current in uA
2130 * Sets current sink to the desired output current. This can be set during
2131 * any regulator state. IOW, regulator can be disabled or enabled.
2133 * If the regulator is enabled then the current will change to the new value
2134 * immediately otherwise if the regulator is disabled the regulator will
2135 * output at the new current when enabled.
2137 * NOTE: Regulator system constraints must be set for this regulator before
2138 * calling this function otherwise this call will fail.
2140 int regulator_set_current_limit(struct regulator
*regulator
,
2141 int min_uA
, int max_uA
)
2143 struct regulator_dev
*rdev
= regulator
->rdev
;
2146 mutex_lock(&rdev
->mutex
);
2149 if (!rdev
->desc
->ops
->set_current_limit
) {
2154 /* constraints check */
2155 ret
= regulator_check_current_limit(rdev
, &min_uA
, &max_uA
);
2159 ret
= rdev
->desc
->ops
->set_current_limit(rdev
, min_uA
, max_uA
);
2161 mutex_unlock(&rdev
->mutex
);
2164 EXPORT_SYMBOL_GPL(regulator_set_current_limit
);
2166 static int _regulator_get_current_limit(struct regulator_dev
*rdev
)
2170 mutex_lock(&rdev
->mutex
);
2173 if (!rdev
->desc
->ops
->get_current_limit
) {
2178 ret
= rdev
->desc
->ops
->get_current_limit(rdev
);
2180 mutex_unlock(&rdev
->mutex
);
2185 * regulator_get_current_limit - get regulator output current
2186 * @regulator: regulator source
2188 * This returns the current supplied by the specified current sink in uA.
2190 * NOTE: If the regulator is disabled it will return the current value. This
2191 * function should not be used to determine regulator state.
2193 int regulator_get_current_limit(struct regulator
*regulator
)
2195 return _regulator_get_current_limit(regulator
->rdev
);
2197 EXPORT_SYMBOL_GPL(regulator_get_current_limit
);
2200 * regulator_set_mode - set regulator operating mode
2201 * @regulator: regulator source
2202 * @mode: operating mode - one of the REGULATOR_MODE constants
2204 * Set regulator operating mode to increase regulator efficiency or improve
2205 * regulation performance.
2207 * NOTE: Regulator system constraints must be set for this regulator before
2208 * calling this function otherwise this call will fail.
2210 int regulator_set_mode(struct regulator
*regulator
, unsigned int mode
)
2212 struct regulator_dev
*rdev
= regulator
->rdev
;
2214 int regulator_curr_mode
;
2216 mutex_lock(&rdev
->mutex
);
2219 if (!rdev
->desc
->ops
->set_mode
) {
2224 /* return if the same mode is requested */
2225 if (rdev
->desc
->ops
->get_mode
) {
2226 regulator_curr_mode
= rdev
->desc
->ops
->get_mode(rdev
);
2227 if (regulator_curr_mode
== mode
) {
2233 /* constraints check */
2234 ret
= regulator_mode_constrain(rdev
, &mode
);
2238 ret
= rdev
->desc
->ops
->set_mode(rdev
, mode
);
2240 mutex_unlock(&rdev
->mutex
);
2243 EXPORT_SYMBOL_GPL(regulator_set_mode
);
2245 static unsigned int _regulator_get_mode(struct regulator_dev
*rdev
)
2249 mutex_lock(&rdev
->mutex
);
2252 if (!rdev
->desc
->ops
->get_mode
) {
2257 ret
= rdev
->desc
->ops
->get_mode(rdev
);
2259 mutex_unlock(&rdev
->mutex
);
2264 * regulator_get_mode - get regulator operating mode
2265 * @regulator: regulator source
2267 * Get the current regulator operating mode.
2269 unsigned int regulator_get_mode(struct regulator
*regulator
)
2271 return _regulator_get_mode(regulator
->rdev
);
2273 EXPORT_SYMBOL_GPL(regulator_get_mode
);
2276 * regulator_set_optimum_mode - set regulator optimum operating mode
2277 * @regulator: regulator source
2278 * @uA_load: load current
2280 * Notifies the regulator core of a new device load. This is then used by
2281 * DRMS (if enabled by constraints) to set the most efficient regulator
2282 * operating mode for the new regulator loading.
2284 * Consumer devices notify their supply regulator of the maximum power
2285 * they will require (can be taken from device datasheet in the power
2286 * consumption tables) when they change operational status and hence power
2287 * state. Examples of operational state changes that can affect power
2288 * consumption are :-
2290 * o Device is opened / closed.
2291 * o Device I/O is about to begin or has just finished.
2292 * o Device is idling in between work.
2294 * This information is also exported via sysfs to userspace.
2296 * DRMS will sum the total requested load on the regulator and change
2297 * to the most efficient operating mode if platform constraints allow.
2299 * Returns the new regulator mode or error.
2301 int regulator_set_optimum_mode(struct regulator
*regulator
, int uA_load
)
2303 struct regulator_dev
*rdev
= regulator
->rdev
;
2304 struct regulator
*consumer
;
2305 int ret
, output_uV
, input_uV
, total_uA_load
= 0;
2308 mutex_lock(&rdev
->mutex
);
2311 * first check to see if we can set modes at all, otherwise just
2312 * tell the consumer everything is OK.
2314 regulator
->uA_load
= uA_load
;
2315 ret
= regulator_check_drms(rdev
);
2321 if (!rdev
->desc
->ops
->get_optimum_mode
)
2325 * we can actually do this so any errors are indicators of
2326 * potential real failure.
2330 /* get output voltage */
2331 output_uV
= _regulator_get_voltage(rdev
);
2332 if (output_uV
<= 0) {
2333 rdev_err(rdev
, "invalid output voltage found\n");
2337 /* get input voltage */
2340 input_uV
= regulator_get_voltage(rdev
->supply
);
2342 input_uV
= rdev
->constraints
->input_uV
;
2343 if (input_uV
<= 0) {
2344 rdev_err(rdev
, "invalid input voltage found\n");
2348 /* calc total requested load for this regulator */
2349 list_for_each_entry(consumer
, &rdev
->consumer_list
, list
)
2350 total_uA_load
+= consumer
->uA_load
;
2352 mode
= rdev
->desc
->ops
->get_optimum_mode(rdev
,
2353 input_uV
, output_uV
,
2355 ret
= regulator_mode_constrain(rdev
, &mode
);
2357 rdev_err(rdev
, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2358 total_uA_load
, input_uV
, output_uV
);
2362 ret
= rdev
->desc
->ops
->set_mode(rdev
, mode
);
2364 rdev_err(rdev
, "failed to set optimum mode %x\n", mode
);
2369 mutex_unlock(&rdev
->mutex
);
2372 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode
);
2375 * regulator_register_notifier - register regulator event notifier
2376 * @regulator: regulator source
2377 * @nb: notifier block
2379 * Register notifier block to receive regulator events.
2381 int regulator_register_notifier(struct regulator
*regulator
,
2382 struct notifier_block
*nb
)
2384 return blocking_notifier_chain_register(®ulator
->rdev
->notifier
,
2387 EXPORT_SYMBOL_GPL(regulator_register_notifier
);
2390 * regulator_unregister_notifier - unregister regulator event notifier
2391 * @regulator: regulator source
2392 * @nb: notifier block
2394 * Unregister regulator event notifier block.
2396 int regulator_unregister_notifier(struct regulator
*regulator
,
2397 struct notifier_block
*nb
)
2399 return blocking_notifier_chain_unregister(®ulator
->rdev
->notifier
,
2402 EXPORT_SYMBOL_GPL(regulator_unregister_notifier
);
2404 /* notify regulator consumers and downstream regulator consumers.
2405 * Note mutex must be held by caller.
2407 static void _notifier_call_chain(struct regulator_dev
*rdev
,
2408 unsigned long event
, void *data
)
2410 /* call rdev chain first */
2411 blocking_notifier_call_chain(&rdev
->notifier
, event
, NULL
);
2415 * regulator_bulk_get - get multiple regulator consumers
2417 * @dev: Device to supply
2418 * @num_consumers: Number of consumers to register
2419 * @consumers: Configuration of consumers; clients are stored here.
2421 * @return 0 on success, an errno on failure.
2423 * This helper function allows drivers to get several regulator
2424 * consumers in one operation. If any of the regulators cannot be
2425 * acquired then any regulators that were allocated will be freed
2426 * before returning to the caller.
2428 int regulator_bulk_get(struct device
*dev
, int num_consumers
,
2429 struct regulator_bulk_data
*consumers
)
2434 for (i
= 0; i
< num_consumers
; i
++)
2435 consumers
[i
].consumer
= NULL
;
2437 for (i
= 0; i
< num_consumers
; i
++) {
2438 consumers
[i
].consumer
= regulator_get(dev
,
2439 consumers
[i
].supply
);
2440 if (IS_ERR(consumers
[i
].consumer
)) {
2441 ret
= PTR_ERR(consumers
[i
].consumer
);
2442 dev_err(dev
, "Failed to get supply '%s': %d\n",
2443 consumers
[i
].supply
, ret
);
2444 consumers
[i
].consumer
= NULL
;
2453 regulator_put(consumers
[i
].consumer
);
2457 EXPORT_SYMBOL_GPL(regulator_bulk_get
);
2460 * devm_regulator_bulk_get - managed get multiple regulator consumers
2462 * @dev: Device to supply
2463 * @num_consumers: Number of consumers to register
2464 * @consumers: Configuration of consumers; clients are stored here.
2466 * @return 0 on success, an errno on failure.
2468 * This helper function allows drivers to get several regulator
2469 * consumers in one operation with management, the regulators will
2470 * automatically be freed when the device is unbound. If any of the
2471 * regulators cannot be acquired then any regulators that were
2472 * allocated will be freed before returning to the caller.
2474 int devm_regulator_bulk_get(struct device
*dev
, int num_consumers
,
2475 struct regulator_bulk_data
*consumers
)
2480 for (i
= 0; i
< num_consumers
; i
++)
2481 consumers
[i
].consumer
= NULL
;
2483 for (i
= 0; i
< num_consumers
; i
++) {
2484 consumers
[i
].consumer
= devm_regulator_get(dev
,
2485 consumers
[i
].supply
);
2486 if (IS_ERR(consumers
[i
].consumer
)) {
2487 ret
= PTR_ERR(consumers
[i
].consumer
);
2488 dev_err(dev
, "Failed to get supply '%s': %d\n",
2489 consumers
[i
].supply
, ret
);
2490 consumers
[i
].consumer
= NULL
;
2498 for (i
= 0; i
< num_consumers
&& consumers
[i
].consumer
; i
++)
2499 devm_regulator_put(consumers
[i
].consumer
);
2503 EXPORT_SYMBOL_GPL(devm_regulator_bulk_get
);
2505 static void regulator_bulk_enable_async(void *data
, async_cookie_t cookie
)
2507 struct regulator_bulk_data
*bulk
= data
;
2509 bulk
->ret
= regulator_enable(bulk
->consumer
);
2513 * regulator_bulk_enable - enable multiple regulator consumers
2515 * @num_consumers: Number of consumers
2516 * @consumers: Consumer data; clients are stored here.
2517 * @return 0 on success, an errno on failure
2519 * This convenience API allows consumers to enable multiple regulator
2520 * clients in a single API call. If any consumers cannot be enabled
2521 * then any others that were enabled will be disabled again prior to
2524 int regulator_bulk_enable(int num_consumers
,
2525 struct regulator_bulk_data
*consumers
)
2527 LIST_HEAD(async_domain
);
2531 for (i
= 0; i
< num_consumers
; i
++)
2532 async_schedule_domain(regulator_bulk_enable_async
,
2533 &consumers
[i
], &async_domain
);
2535 async_synchronize_full_domain(&async_domain
);
2537 /* If any consumer failed we need to unwind any that succeeded */
2538 for (i
= 0; i
< num_consumers
; i
++) {
2539 if (consumers
[i
].ret
!= 0) {
2540 ret
= consumers
[i
].ret
;
2548 pr_err("Failed to enable %s: %d\n", consumers
[i
].supply
, ret
);
2550 regulator_disable(consumers
[i
].consumer
);
2554 EXPORT_SYMBOL_GPL(regulator_bulk_enable
);
2557 * regulator_bulk_disable - disable multiple regulator consumers
2559 * @num_consumers: Number of consumers
2560 * @consumers: Consumer data; clients are stored here.
2561 * @return 0 on success, an errno on failure
2563 * This convenience API allows consumers to disable multiple regulator
2564 * clients in a single API call. If any consumers cannot be disabled
2565 * then any others that were disabled will be enabled again prior to
2568 int regulator_bulk_disable(int num_consumers
,
2569 struct regulator_bulk_data
*consumers
)
2574 for (i
= num_consumers
- 1; i
>= 0; --i
) {
2575 ret
= regulator_disable(consumers
[i
].consumer
);
2583 pr_err("Failed to disable %s: %d\n", consumers
[i
].supply
, ret
);
2584 for (++i
; i
< num_consumers
; ++i
)
2585 regulator_enable(consumers
[i
].consumer
);
2589 EXPORT_SYMBOL_GPL(regulator_bulk_disable
);
2592 * regulator_bulk_force_disable - force disable multiple regulator consumers
2594 * @num_consumers: Number of consumers
2595 * @consumers: Consumer data; clients are stored here.
2596 * @return 0 on success, an errno on failure
2598 * This convenience API allows consumers to forcibly disable multiple regulator
2599 * clients in a single API call.
2600 * NOTE: This should be used for situations when device damage will
2601 * likely occur if the regulators are not disabled (e.g. over temp).
2602 * Although regulator_force_disable function call for some consumers can
2603 * return error numbers, the function is called for all consumers.
2605 int regulator_bulk_force_disable(int num_consumers
,
2606 struct regulator_bulk_data
*consumers
)
2611 for (i
= 0; i
< num_consumers
; i
++)
2613 regulator_force_disable(consumers
[i
].consumer
);
2615 for (i
= 0; i
< num_consumers
; i
++) {
2616 if (consumers
[i
].ret
!= 0) {
2617 ret
= consumers
[i
].ret
;
2626 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable
);
2629 * regulator_bulk_free - free multiple regulator consumers
2631 * @num_consumers: Number of consumers
2632 * @consumers: Consumer data; clients are stored here.
2634 * This convenience API allows consumers to free multiple regulator
2635 * clients in a single API call.
2637 void regulator_bulk_free(int num_consumers
,
2638 struct regulator_bulk_data
*consumers
)
2642 for (i
= 0; i
< num_consumers
; i
++) {
2643 regulator_put(consumers
[i
].consumer
);
2644 consumers
[i
].consumer
= NULL
;
2647 EXPORT_SYMBOL_GPL(regulator_bulk_free
);
2650 * regulator_notifier_call_chain - call regulator event notifier
2651 * @rdev: regulator source
2652 * @event: notifier block
2653 * @data: callback-specific data.
2655 * Called by regulator drivers to notify clients a regulator event has
2656 * occurred. We also notify regulator clients downstream.
2657 * Note lock must be held by caller.
2659 int regulator_notifier_call_chain(struct regulator_dev
*rdev
,
2660 unsigned long event
, void *data
)
2662 _notifier_call_chain(rdev
, event
, data
);
2666 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain
);
2669 * regulator_mode_to_status - convert a regulator mode into a status
2671 * @mode: Mode to convert
2673 * Convert a regulator mode into a status.
2675 int regulator_mode_to_status(unsigned int mode
)
2678 case REGULATOR_MODE_FAST
:
2679 return REGULATOR_STATUS_FAST
;
2680 case REGULATOR_MODE_NORMAL
:
2681 return REGULATOR_STATUS_NORMAL
;
2682 case REGULATOR_MODE_IDLE
:
2683 return REGULATOR_STATUS_IDLE
;
2684 case REGULATOR_STATUS_STANDBY
:
2685 return REGULATOR_STATUS_STANDBY
;
2690 EXPORT_SYMBOL_GPL(regulator_mode_to_status
);
2693 * To avoid cluttering sysfs (and memory) with useless state, only
2694 * create attributes that can be meaningfully displayed.
2696 static int add_regulator_attributes(struct regulator_dev
*rdev
)
2698 struct device
*dev
= &rdev
->dev
;
2699 struct regulator_ops
*ops
= rdev
->desc
->ops
;
2702 /* some attributes need specific methods to be displayed */
2703 if ((ops
->get_voltage
&& ops
->get_voltage(rdev
) >= 0) ||
2704 (ops
->get_voltage_sel
&& ops
->get_voltage_sel(rdev
) >= 0)) {
2705 status
= device_create_file(dev
, &dev_attr_microvolts
);
2709 if (ops
->get_current_limit
) {
2710 status
= device_create_file(dev
, &dev_attr_microamps
);
2714 if (ops
->get_mode
) {
2715 status
= device_create_file(dev
, &dev_attr_opmode
);
2719 if (ops
->is_enabled
) {
2720 status
= device_create_file(dev
, &dev_attr_state
);
2724 if (ops
->get_status
) {
2725 status
= device_create_file(dev
, &dev_attr_status
);
2730 /* some attributes are type-specific */
2731 if (rdev
->desc
->type
== REGULATOR_CURRENT
) {
2732 status
= device_create_file(dev
, &dev_attr_requested_microamps
);
2737 /* all the other attributes exist to support constraints;
2738 * don't show them if there are no constraints, or if the
2739 * relevant supporting methods are missing.
2741 if (!rdev
->constraints
)
2744 /* constraints need specific supporting methods */
2745 if (ops
->set_voltage
|| ops
->set_voltage_sel
) {
2746 status
= device_create_file(dev
, &dev_attr_min_microvolts
);
2749 status
= device_create_file(dev
, &dev_attr_max_microvolts
);
2753 if (ops
->set_current_limit
) {
2754 status
= device_create_file(dev
, &dev_attr_min_microamps
);
2757 status
= device_create_file(dev
, &dev_attr_max_microamps
);
2762 /* suspend mode constraints need multiple supporting methods */
2763 if (!(ops
->set_suspend_enable
&& ops
->set_suspend_disable
))
2766 status
= device_create_file(dev
, &dev_attr_suspend_standby_state
);
2769 status
= device_create_file(dev
, &dev_attr_suspend_mem_state
);
2772 status
= device_create_file(dev
, &dev_attr_suspend_disk_state
);
2776 if (ops
->set_suspend_voltage
) {
2777 status
= device_create_file(dev
,
2778 &dev_attr_suspend_standby_microvolts
);
2781 status
= device_create_file(dev
,
2782 &dev_attr_suspend_mem_microvolts
);
2785 status
= device_create_file(dev
,
2786 &dev_attr_suspend_disk_microvolts
);
2791 if (ops
->set_suspend_mode
) {
2792 status
= device_create_file(dev
,
2793 &dev_attr_suspend_standby_mode
);
2796 status
= device_create_file(dev
,
2797 &dev_attr_suspend_mem_mode
);
2800 status
= device_create_file(dev
,
2801 &dev_attr_suspend_disk_mode
);
2809 static void rdev_init_debugfs(struct regulator_dev
*rdev
)
2811 rdev
->debugfs
= debugfs_create_dir(rdev_get_name(rdev
), debugfs_root
);
2812 if (!rdev
->debugfs
) {
2813 rdev_warn(rdev
, "Failed to create debugfs directory\n");
2817 debugfs_create_u32("use_count", 0444, rdev
->debugfs
,
2819 debugfs_create_u32("open_count", 0444, rdev
->debugfs
,
2824 * regulator_register - register regulator
2825 * @regulator_desc: regulator to register
2826 * @dev: struct device for the regulator
2827 * @init_data: platform provided init data, passed through by driver
2828 * @driver_data: private regulator data
2829 * @of_node: OpenFirmware node to parse for device tree bindings (may be
2832 * Called by regulator drivers to register a regulator.
2833 * Returns 0 on success.
2835 struct regulator_dev
*regulator_register(struct regulator_desc
*regulator_desc
,
2836 struct device
*dev
, const struct regulator_init_data
*init_data
,
2837 void *driver_data
, struct device_node
*of_node
)
2839 const struct regulation_constraints
*constraints
= NULL
;
2840 static atomic_t regulator_no
= ATOMIC_INIT(0);
2841 struct regulator_dev
*rdev
;
2843 const char *supply
= NULL
;
2845 if (regulator_desc
== NULL
)
2846 return ERR_PTR(-EINVAL
);
2848 if (regulator_desc
->name
== NULL
|| regulator_desc
->ops
== NULL
)
2849 return ERR_PTR(-EINVAL
);
2851 if (regulator_desc
->type
!= REGULATOR_VOLTAGE
&&
2852 regulator_desc
->type
!= REGULATOR_CURRENT
)
2853 return ERR_PTR(-EINVAL
);
2855 /* Only one of each should be implemented */
2856 WARN_ON(regulator_desc
->ops
->get_voltage
&&
2857 regulator_desc
->ops
->get_voltage_sel
);
2858 WARN_ON(regulator_desc
->ops
->set_voltage
&&
2859 regulator_desc
->ops
->set_voltage_sel
);
2861 /* If we're using selectors we must implement list_voltage. */
2862 if (regulator_desc
->ops
->get_voltage_sel
&&
2863 !regulator_desc
->ops
->list_voltage
) {
2864 return ERR_PTR(-EINVAL
);
2866 if (regulator_desc
->ops
->set_voltage_sel
&&
2867 !regulator_desc
->ops
->list_voltage
) {
2868 return ERR_PTR(-EINVAL
);
2871 rdev
= kzalloc(sizeof(struct regulator_dev
), GFP_KERNEL
);
2873 return ERR_PTR(-ENOMEM
);
2875 mutex_lock(®ulator_list_mutex
);
2877 mutex_init(&rdev
->mutex
);
2878 rdev
->reg_data
= driver_data
;
2879 rdev
->owner
= regulator_desc
->owner
;
2880 rdev
->desc
= regulator_desc
;
2881 INIT_LIST_HEAD(&rdev
->consumer_list
);
2882 INIT_LIST_HEAD(&rdev
->list
);
2883 BLOCKING_INIT_NOTIFIER_HEAD(&rdev
->notifier
);
2884 INIT_DELAYED_WORK(&rdev
->disable_work
, regulator_disable_work
);
2886 /* preform any regulator specific init */
2887 if (init_data
&& init_data
->regulator_init
) {
2888 ret
= init_data
->regulator_init(rdev
->reg_data
);
2893 /* register with sysfs */
2894 rdev
->dev
.class = ®ulator_class
;
2895 rdev
->dev
.of_node
= of_node
;
2896 rdev
->dev
.parent
= dev
;
2897 dev_set_name(&rdev
->dev
, "regulator.%d",
2898 atomic_inc_return(®ulator_no
) - 1);
2899 ret
= device_register(&rdev
->dev
);
2901 put_device(&rdev
->dev
);
2905 dev_set_drvdata(&rdev
->dev
, rdev
);
2907 /* set regulator constraints */
2909 constraints
= &init_data
->constraints
;
2911 ret
= set_machine_constraints(rdev
, constraints
);
2915 /* add attributes supported by this regulator */
2916 ret
= add_regulator_attributes(rdev
);
2920 if (init_data
&& init_data
->supply_regulator
)
2921 supply
= init_data
->supply_regulator
;
2922 else if (regulator_desc
->supply_name
)
2923 supply
= regulator_desc
->supply_name
;
2926 struct regulator_dev
*r
;
2928 r
= regulator_dev_lookup(dev
, supply
);
2931 dev_err(dev
, "Failed to find supply %s\n", supply
);
2932 ret
= -EPROBE_DEFER
;
2936 ret
= set_supply(rdev
, r
);
2940 /* Enable supply if rail is enabled */
2941 if (rdev
->desc
->ops
->is_enabled
&&
2942 rdev
->desc
->ops
->is_enabled(rdev
)) {
2943 ret
= regulator_enable(rdev
->supply
);
2949 /* add consumers devices */
2951 for (i
= 0; i
< init_data
->num_consumer_supplies
; i
++) {
2952 ret
= set_consumer_device_supply(rdev
,
2953 init_data
->consumer_supplies
[i
].dev_name
,
2954 init_data
->consumer_supplies
[i
].supply
);
2956 dev_err(dev
, "Failed to set supply %s\n",
2957 init_data
->consumer_supplies
[i
].supply
);
2958 goto unset_supplies
;
2963 list_add(&rdev
->list
, ®ulator_list
);
2965 rdev_init_debugfs(rdev
);
2967 mutex_unlock(®ulator_list_mutex
);
2971 unset_regulator_supplies(rdev
);
2975 regulator_put(rdev
->supply
);
2976 kfree(rdev
->constraints
);
2977 device_unregister(&rdev
->dev
);
2978 /* device core frees rdev */
2979 rdev
= ERR_PTR(ret
);
2984 rdev
= ERR_PTR(ret
);
2987 EXPORT_SYMBOL_GPL(regulator_register
);
2990 * regulator_unregister - unregister regulator
2991 * @rdev: regulator to unregister
2993 * Called by regulator drivers to unregister a regulator.
2995 void regulator_unregister(struct regulator_dev
*rdev
)
3001 regulator_put(rdev
->supply
);
3002 mutex_lock(®ulator_list_mutex
);
3003 debugfs_remove_recursive(rdev
->debugfs
);
3004 flush_work_sync(&rdev
->disable_work
.work
);
3005 WARN_ON(rdev
->open_count
);
3006 unset_regulator_supplies(rdev
);
3007 list_del(&rdev
->list
);
3008 kfree(rdev
->constraints
);
3009 device_unregister(&rdev
->dev
);
3010 mutex_unlock(®ulator_list_mutex
);
3012 EXPORT_SYMBOL_GPL(regulator_unregister
);
3015 * regulator_suspend_prepare - prepare regulators for system wide suspend
3016 * @state: system suspend state
3018 * Configure each regulator with it's suspend operating parameters for state.
3019 * This will usually be called by machine suspend code prior to supending.
3021 int regulator_suspend_prepare(suspend_state_t state
)
3023 struct regulator_dev
*rdev
;
3026 /* ON is handled by regulator active state */
3027 if (state
== PM_SUSPEND_ON
)
3030 mutex_lock(®ulator_list_mutex
);
3031 list_for_each_entry(rdev
, ®ulator_list
, list
) {
3033 mutex_lock(&rdev
->mutex
);
3034 ret
= suspend_prepare(rdev
, state
);
3035 mutex_unlock(&rdev
->mutex
);
3038 rdev_err(rdev
, "failed to prepare\n");
3043 mutex_unlock(®ulator_list_mutex
);
3046 EXPORT_SYMBOL_GPL(regulator_suspend_prepare
);
3049 * regulator_suspend_finish - resume regulators from system wide suspend
3051 * Turn on regulators that might be turned off by regulator_suspend_prepare
3052 * and that should be turned on according to the regulators properties.
3054 int regulator_suspend_finish(void)
3056 struct regulator_dev
*rdev
;
3059 mutex_lock(®ulator_list_mutex
);
3060 list_for_each_entry(rdev
, ®ulator_list
, list
) {
3061 struct regulator_ops
*ops
= rdev
->desc
->ops
;
3063 mutex_lock(&rdev
->mutex
);
3064 if ((rdev
->use_count
> 0 || rdev
->constraints
->always_on
) &&
3066 error
= ops
->enable(rdev
);
3070 if (!has_full_constraints
)
3074 if (ops
->is_enabled
&& !ops
->is_enabled(rdev
))
3077 error
= ops
->disable(rdev
);
3082 mutex_unlock(&rdev
->mutex
);
3084 mutex_unlock(®ulator_list_mutex
);
3087 EXPORT_SYMBOL_GPL(regulator_suspend_finish
);
3090 * regulator_has_full_constraints - the system has fully specified constraints
3092 * Calling this function will cause the regulator API to disable all
3093 * regulators which have a zero use count and don't have an always_on
3094 * constraint in a late_initcall.
3096 * The intention is that this will become the default behaviour in a
3097 * future kernel release so users are encouraged to use this facility
3100 void regulator_has_full_constraints(void)
3102 has_full_constraints
= 1;
3104 EXPORT_SYMBOL_GPL(regulator_has_full_constraints
);
3107 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
3109 * Calling this function will cause the regulator API to provide a
3110 * dummy regulator to consumers if no physical regulator is found,
3111 * allowing most consumers to proceed as though a regulator were
3112 * configured. This allows systems such as those with software
3113 * controllable regulators for the CPU core only to be brought up more
3116 void regulator_use_dummy_regulator(void)
3118 board_wants_dummy_regulator
= true;
3120 EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator
);
3123 * rdev_get_drvdata - get rdev regulator driver data
3126 * Get rdev regulator driver private data. This call can be used in the
3127 * regulator driver context.
3129 void *rdev_get_drvdata(struct regulator_dev
*rdev
)
3131 return rdev
->reg_data
;
3133 EXPORT_SYMBOL_GPL(rdev_get_drvdata
);
3136 * regulator_get_drvdata - get regulator driver data
3137 * @regulator: regulator
3139 * Get regulator driver private data. This call can be used in the consumer
3140 * driver context when non API regulator specific functions need to be called.
3142 void *regulator_get_drvdata(struct regulator
*regulator
)
3144 return regulator
->rdev
->reg_data
;
3146 EXPORT_SYMBOL_GPL(regulator_get_drvdata
);
3149 * regulator_set_drvdata - set regulator driver data
3150 * @regulator: regulator
3153 void regulator_set_drvdata(struct regulator
*regulator
, void *data
)
3155 regulator
->rdev
->reg_data
= data
;
3157 EXPORT_SYMBOL_GPL(regulator_set_drvdata
);
3160 * regulator_get_id - get regulator ID
3163 int rdev_get_id(struct regulator_dev
*rdev
)
3165 return rdev
->desc
->id
;
3167 EXPORT_SYMBOL_GPL(rdev_get_id
);
3169 struct device
*rdev_get_dev(struct regulator_dev
*rdev
)
3173 EXPORT_SYMBOL_GPL(rdev_get_dev
);
3175 void *regulator_get_init_drvdata(struct regulator_init_data
*reg_init_data
)
3177 return reg_init_data
->driver_data
;
3179 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata
);
3181 #ifdef CONFIG_DEBUG_FS
3182 static ssize_t
supply_map_read_file(struct file
*file
, char __user
*user_buf
,
3183 size_t count
, loff_t
*ppos
)
3185 char *buf
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
3186 ssize_t len
, ret
= 0;
3187 struct regulator_map
*map
;
3192 list_for_each_entry(map
, ®ulator_map_list
, list
) {
3193 len
= snprintf(buf
+ ret
, PAGE_SIZE
- ret
,
3195 rdev_get_name(map
->regulator
), map
->dev_name
,
3199 if (ret
> PAGE_SIZE
) {
3205 ret
= simple_read_from_buffer(user_buf
, count
, ppos
, buf
, ret
);
3213 static const struct file_operations supply_map_fops
= {
3214 #ifdef CONFIG_DEBUG_FS
3215 .read
= supply_map_read_file
,
3216 .llseek
= default_llseek
,
3220 static int __init
regulator_init(void)
3224 ret
= class_register(®ulator_class
);
3226 debugfs_root
= debugfs_create_dir("regulator", NULL
);
3228 pr_warn("regulator: Failed to create debugfs directory\n");
3230 debugfs_create_file("supply_map", 0444, debugfs_root
, NULL
,
3233 regulator_dummy_init();
3238 /* init early to allow our consumers to complete system booting */
3239 core_initcall(regulator_init
);
3241 static int __init
regulator_init_complete(void)
3243 struct regulator_dev
*rdev
;
3244 struct regulator_ops
*ops
;
3245 struct regulation_constraints
*c
;
3248 mutex_lock(®ulator_list_mutex
);
3250 /* If we have a full configuration then disable any regulators
3251 * which are not in use or always_on. This will become the
3252 * default behaviour in the future.
3254 list_for_each_entry(rdev
, ®ulator_list
, list
) {
3255 ops
= rdev
->desc
->ops
;
3256 c
= rdev
->constraints
;
3258 if (!ops
->disable
|| (c
&& c
->always_on
))
3261 mutex_lock(&rdev
->mutex
);
3263 if (rdev
->use_count
)
3266 /* If we can't read the status assume it's on. */
3267 if (ops
->is_enabled
)
3268 enabled
= ops
->is_enabled(rdev
);
3275 if (has_full_constraints
) {
3276 /* We log since this may kill the system if it
3278 rdev_info(rdev
, "disabling\n");
3279 ret
= ops
->disable(rdev
);
3281 rdev_err(rdev
, "couldn't disable: %d\n", ret
);
3284 /* The intention is that in future we will
3285 * assume that full constraints are provided
3286 * so warn even if we aren't going to do
3289 rdev_warn(rdev
, "incomplete constraints, leaving on\n");
3293 mutex_unlock(&rdev
->mutex
);
3296 mutex_unlock(®ulator_list_mutex
);
3300 late_initcall(regulator_init_complete
);