Linux 3.4.102
[linux/fpc-iii.git] / drivers / regulator / core.c
blobc18f0fd1577fd446b3d986f5823717a6c5af2242
1 /*
2 * core.c -- Voltage/Current Regulator framework.
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/of.h>
27 #include <linux/regulator/of_regulator.h>
28 #include <linux/regulator/consumer.h>
29 #include <linux/regulator/driver.h>
30 #include <linux/regulator/machine.h>
31 #include <linux/module.h>
33 #define CREATE_TRACE_POINTS
34 #include <trace/events/regulator.h>
36 #include "dummy.h"
38 #define rdev_crit(rdev, fmt, ...) \
39 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
40 #define rdev_err(rdev, fmt, ...) \
41 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42 #define rdev_warn(rdev, fmt, ...) \
43 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_info(rdev, fmt, ...) \
45 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_dbg(rdev, fmt, ...) \
47 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
49 static DEFINE_MUTEX(regulator_list_mutex);
50 static LIST_HEAD(regulator_list);
51 static LIST_HEAD(regulator_map_list);
52 static bool has_full_constraints;
53 static bool board_wants_dummy_regulator;
55 static struct dentry *debugfs_root;
58 * struct regulator_map
60 * Used to provide symbolic supply names to devices.
62 struct regulator_map {
63 struct list_head list;
64 const char *dev_name; /* The dev_name() for the consumer */
65 const char *supply;
66 struct regulator_dev *regulator;
70 * struct regulator
72 * One for each consumer device.
74 struct regulator {
75 struct device *dev;
76 struct list_head list;
77 int uA_load;
78 int min_uV;
79 int max_uV;
80 char *supply_name;
81 struct device_attribute dev_attr;
82 struct regulator_dev *rdev;
83 struct dentry *debugfs;
86 static int _regulator_is_enabled(struct regulator_dev *rdev);
87 static int _regulator_disable(struct regulator_dev *rdev);
88 static int _regulator_get_voltage(struct regulator_dev *rdev);
89 static int _regulator_get_current_limit(struct regulator_dev *rdev);
90 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
91 static void _notifier_call_chain(struct regulator_dev *rdev,
92 unsigned long event, void *data);
93 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
94 int min_uV, int max_uV);
95 static struct regulator *create_regulator(struct regulator_dev *rdev,
96 struct device *dev,
97 const char *supply_name);
99 static const char *rdev_get_name(struct regulator_dev *rdev)
101 if (rdev->constraints && rdev->constraints->name)
102 return rdev->constraints->name;
103 else if (rdev->desc->name)
104 return rdev->desc->name;
105 else
106 return "";
109 /* gets the regulator for a given consumer device */
110 static struct regulator *get_device_regulator(struct device *dev)
112 struct regulator *regulator = NULL;
113 struct regulator_dev *rdev;
115 mutex_lock(&regulator_list_mutex);
116 list_for_each_entry(rdev, &regulator_list, list) {
117 mutex_lock(&rdev->mutex);
118 list_for_each_entry(regulator, &rdev->consumer_list, list) {
119 if (regulator->dev == dev) {
120 mutex_unlock(&rdev->mutex);
121 mutex_unlock(&regulator_list_mutex);
122 return regulator;
125 mutex_unlock(&rdev->mutex);
127 mutex_unlock(&regulator_list_mutex);
128 return NULL;
132 * of_get_regulator - get a regulator device node based on supply name
133 * @dev: Device pointer for the consumer (of regulator) device
134 * @supply: regulator supply name
136 * Extract the regulator device node corresponding to the supply name.
137 * retruns the device node corresponding to the regulator if found, else
138 * returns NULL.
140 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
142 struct device_node *regnode = NULL;
143 char prop_name[32]; /* 32 is max size of property name */
145 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
147 snprintf(prop_name, 32, "%s-supply", supply);
148 regnode = of_parse_phandle(dev->of_node, prop_name, 0);
150 if (!regnode) {
151 dev_dbg(dev, "Looking up %s property in node %s failed",
152 prop_name, dev->of_node->full_name);
153 return NULL;
155 return regnode;
158 /* Platform voltage constraint check */
159 static int regulator_check_voltage(struct regulator_dev *rdev,
160 int *min_uV, int *max_uV)
162 BUG_ON(*min_uV > *max_uV);
164 if (!rdev->constraints) {
165 rdev_err(rdev, "no constraints\n");
166 return -ENODEV;
168 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
169 rdev_err(rdev, "operation not allowed\n");
170 return -EPERM;
173 if (*max_uV > rdev->constraints->max_uV)
174 *max_uV = rdev->constraints->max_uV;
175 if (*min_uV < rdev->constraints->min_uV)
176 *min_uV = rdev->constraints->min_uV;
178 if (*min_uV > *max_uV) {
179 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
180 *min_uV, *max_uV);
181 return -EINVAL;
184 return 0;
187 /* Make sure we select a voltage that suits the needs of all
188 * regulator consumers
190 static int regulator_check_consumers(struct regulator_dev *rdev,
191 int *min_uV, int *max_uV)
193 struct regulator *regulator;
195 list_for_each_entry(regulator, &rdev->consumer_list, list) {
197 * Assume consumers that didn't say anything are OK
198 * with anything in the constraint range.
200 if (!regulator->min_uV && !regulator->max_uV)
201 continue;
203 if (*max_uV > regulator->max_uV)
204 *max_uV = regulator->max_uV;
205 if (*min_uV < regulator->min_uV)
206 *min_uV = regulator->min_uV;
209 if (*min_uV > *max_uV)
210 return -EINVAL;
212 return 0;
215 /* current constraint check */
216 static int regulator_check_current_limit(struct regulator_dev *rdev,
217 int *min_uA, int *max_uA)
219 BUG_ON(*min_uA > *max_uA);
221 if (!rdev->constraints) {
222 rdev_err(rdev, "no constraints\n");
223 return -ENODEV;
225 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
226 rdev_err(rdev, "operation not allowed\n");
227 return -EPERM;
230 if (*max_uA > rdev->constraints->max_uA)
231 *max_uA = rdev->constraints->max_uA;
232 if (*min_uA < rdev->constraints->min_uA)
233 *min_uA = rdev->constraints->min_uA;
235 if (*min_uA > *max_uA) {
236 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
237 *min_uA, *max_uA);
238 return -EINVAL;
241 return 0;
244 /* operating mode constraint check */
245 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
247 switch (*mode) {
248 case REGULATOR_MODE_FAST:
249 case REGULATOR_MODE_NORMAL:
250 case REGULATOR_MODE_IDLE:
251 case REGULATOR_MODE_STANDBY:
252 break;
253 default:
254 rdev_err(rdev, "invalid mode %x specified\n", *mode);
255 return -EINVAL;
258 if (!rdev->constraints) {
259 rdev_err(rdev, "no constraints\n");
260 return -ENODEV;
262 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
263 rdev_err(rdev, "operation not allowed\n");
264 return -EPERM;
267 /* The modes are bitmasks, the most power hungry modes having
268 * the lowest values. If the requested mode isn't supported
269 * try higher modes. */
270 while (*mode) {
271 if (rdev->constraints->valid_modes_mask & *mode)
272 return 0;
273 *mode /= 2;
276 return -EINVAL;
279 /* dynamic regulator mode switching constraint check */
280 static int regulator_check_drms(struct regulator_dev *rdev)
282 if (!rdev->constraints) {
283 rdev_err(rdev, "no constraints\n");
284 return -ENODEV;
286 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
287 rdev_err(rdev, "operation not allowed\n");
288 return -EPERM;
290 return 0;
293 static ssize_t device_requested_uA_show(struct device *dev,
294 struct device_attribute *attr, char *buf)
296 struct regulator *regulator;
298 regulator = get_device_regulator(dev);
299 if (regulator == NULL)
300 return 0;
302 return sprintf(buf, "%d\n", regulator->uA_load);
305 static ssize_t regulator_uV_show(struct device *dev,
306 struct device_attribute *attr, char *buf)
308 struct regulator_dev *rdev = dev_get_drvdata(dev);
309 ssize_t ret;
311 mutex_lock(&rdev->mutex);
312 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
313 mutex_unlock(&rdev->mutex);
315 return ret;
317 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
319 static ssize_t regulator_uA_show(struct device *dev,
320 struct device_attribute *attr, char *buf)
322 struct regulator_dev *rdev = dev_get_drvdata(dev);
324 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
326 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
328 static ssize_t regulator_name_show(struct device *dev,
329 struct device_attribute *attr, char *buf)
331 struct regulator_dev *rdev = dev_get_drvdata(dev);
333 return sprintf(buf, "%s\n", rdev_get_name(rdev));
336 static ssize_t regulator_print_opmode(char *buf, int mode)
338 switch (mode) {
339 case REGULATOR_MODE_FAST:
340 return sprintf(buf, "fast\n");
341 case REGULATOR_MODE_NORMAL:
342 return sprintf(buf, "normal\n");
343 case REGULATOR_MODE_IDLE:
344 return sprintf(buf, "idle\n");
345 case REGULATOR_MODE_STANDBY:
346 return sprintf(buf, "standby\n");
348 return sprintf(buf, "unknown\n");
351 static ssize_t regulator_opmode_show(struct device *dev,
352 struct device_attribute *attr, char *buf)
354 struct regulator_dev *rdev = dev_get_drvdata(dev);
356 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
358 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
360 static ssize_t regulator_print_state(char *buf, int state)
362 if (state > 0)
363 return sprintf(buf, "enabled\n");
364 else if (state == 0)
365 return sprintf(buf, "disabled\n");
366 else
367 return sprintf(buf, "unknown\n");
370 static ssize_t regulator_state_show(struct device *dev,
371 struct device_attribute *attr, char *buf)
373 struct regulator_dev *rdev = dev_get_drvdata(dev);
374 ssize_t ret;
376 mutex_lock(&rdev->mutex);
377 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
378 mutex_unlock(&rdev->mutex);
380 return ret;
382 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
384 static ssize_t regulator_status_show(struct device *dev,
385 struct device_attribute *attr, char *buf)
387 struct regulator_dev *rdev = dev_get_drvdata(dev);
388 int status;
389 char *label;
391 status = rdev->desc->ops->get_status(rdev);
392 if (status < 0)
393 return status;
395 switch (status) {
396 case REGULATOR_STATUS_OFF:
397 label = "off";
398 break;
399 case REGULATOR_STATUS_ON:
400 label = "on";
401 break;
402 case REGULATOR_STATUS_ERROR:
403 label = "error";
404 break;
405 case REGULATOR_STATUS_FAST:
406 label = "fast";
407 break;
408 case REGULATOR_STATUS_NORMAL:
409 label = "normal";
410 break;
411 case REGULATOR_STATUS_IDLE:
412 label = "idle";
413 break;
414 case REGULATOR_STATUS_STANDBY:
415 label = "standby";
416 break;
417 default:
418 return -ERANGE;
421 return sprintf(buf, "%s\n", label);
423 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
425 static ssize_t regulator_min_uA_show(struct device *dev,
426 struct device_attribute *attr, char *buf)
428 struct regulator_dev *rdev = dev_get_drvdata(dev);
430 if (!rdev->constraints)
431 return sprintf(buf, "constraint not defined\n");
433 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
435 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
437 static ssize_t regulator_max_uA_show(struct device *dev,
438 struct device_attribute *attr, char *buf)
440 struct regulator_dev *rdev = dev_get_drvdata(dev);
442 if (!rdev->constraints)
443 return sprintf(buf, "constraint not defined\n");
445 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
447 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
449 static ssize_t regulator_min_uV_show(struct device *dev,
450 struct device_attribute *attr, char *buf)
452 struct regulator_dev *rdev = dev_get_drvdata(dev);
454 if (!rdev->constraints)
455 return sprintf(buf, "constraint not defined\n");
457 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
459 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
461 static ssize_t regulator_max_uV_show(struct device *dev,
462 struct device_attribute *attr, char *buf)
464 struct regulator_dev *rdev = dev_get_drvdata(dev);
466 if (!rdev->constraints)
467 return sprintf(buf, "constraint not defined\n");
469 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
471 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
473 static ssize_t regulator_total_uA_show(struct device *dev,
474 struct device_attribute *attr, char *buf)
476 struct regulator_dev *rdev = dev_get_drvdata(dev);
477 struct regulator *regulator;
478 int uA = 0;
480 mutex_lock(&rdev->mutex);
481 list_for_each_entry(regulator, &rdev->consumer_list, list)
482 uA += regulator->uA_load;
483 mutex_unlock(&rdev->mutex);
484 return sprintf(buf, "%d\n", uA);
486 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
488 static ssize_t regulator_num_users_show(struct device *dev,
489 struct device_attribute *attr, char *buf)
491 struct regulator_dev *rdev = dev_get_drvdata(dev);
492 return sprintf(buf, "%d\n", rdev->use_count);
495 static ssize_t regulator_type_show(struct device *dev,
496 struct device_attribute *attr, char *buf)
498 struct regulator_dev *rdev = dev_get_drvdata(dev);
500 switch (rdev->desc->type) {
501 case REGULATOR_VOLTAGE:
502 return sprintf(buf, "voltage\n");
503 case REGULATOR_CURRENT:
504 return sprintf(buf, "current\n");
506 return sprintf(buf, "unknown\n");
509 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
510 struct device_attribute *attr, char *buf)
512 struct regulator_dev *rdev = dev_get_drvdata(dev);
514 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
516 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
517 regulator_suspend_mem_uV_show, NULL);
519 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
520 struct device_attribute *attr, char *buf)
522 struct regulator_dev *rdev = dev_get_drvdata(dev);
524 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
526 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
527 regulator_suspend_disk_uV_show, NULL);
529 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
530 struct device_attribute *attr, char *buf)
532 struct regulator_dev *rdev = dev_get_drvdata(dev);
534 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
536 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
537 regulator_suspend_standby_uV_show, NULL);
539 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
540 struct device_attribute *attr, char *buf)
542 struct regulator_dev *rdev = dev_get_drvdata(dev);
544 return regulator_print_opmode(buf,
545 rdev->constraints->state_mem.mode);
547 static DEVICE_ATTR(suspend_mem_mode, 0444,
548 regulator_suspend_mem_mode_show, NULL);
550 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
551 struct device_attribute *attr, char *buf)
553 struct regulator_dev *rdev = dev_get_drvdata(dev);
555 return regulator_print_opmode(buf,
556 rdev->constraints->state_disk.mode);
558 static DEVICE_ATTR(suspend_disk_mode, 0444,
559 regulator_suspend_disk_mode_show, NULL);
561 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
562 struct device_attribute *attr, char *buf)
564 struct regulator_dev *rdev = dev_get_drvdata(dev);
566 return regulator_print_opmode(buf,
567 rdev->constraints->state_standby.mode);
569 static DEVICE_ATTR(suspend_standby_mode, 0444,
570 regulator_suspend_standby_mode_show, NULL);
572 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
573 struct device_attribute *attr, char *buf)
575 struct regulator_dev *rdev = dev_get_drvdata(dev);
577 return regulator_print_state(buf,
578 rdev->constraints->state_mem.enabled);
580 static DEVICE_ATTR(suspend_mem_state, 0444,
581 regulator_suspend_mem_state_show, NULL);
583 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
584 struct device_attribute *attr, char *buf)
586 struct regulator_dev *rdev = dev_get_drvdata(dev);
588 return regulator_print_state(buf,
589 rdev->constraints->state_disk.enabled);
591 static DEVICE_ATTR(suspend_disk_state, 0444,
592 regulator_suspend_disk_state_show, NULL);
594 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
595 struct device_attribute *attr, char *buf)
597 struct regulator_dev *rdev = dev_get_drvdata(dev);
599 return regulator_print_state(buf,
600 rdev->constraints->state_standby.enabled);
602 static DEVICE_ATTR(suspend_standby_state, 0444,
603 regulator_suspend_standby_state_show, NULL);
607 * These are the only attributes are present for all regulators.
608 * Other attributes are a function of regulator functionality.
610 static struct device_attribute regulator_dev_attrs[] = {
611 __ATTR(name, 0444, regulator_name_show, NULL),
612 __ATTR(num_users, 0444, regulator_num_users_show, NULL),
613 __ATTR(type, 0444, regulator_type_show, NULL),
614 __ATTR_NULL,
617 static void regulator_dev_release(struct device *dev)
619 struct regulator_dev *rdev = dev_get_drvdata(dev);
620 kfree(rdev);
623 static struct class regulator_class = {
624 .name = "regulator",
625 .dev_release = regulator_dev_release,
626 .dev_attrs = regulator_dev_attrs,
629 /* Calculate the new optimum regulator operating mode based on the new total
630 * consumer load. All locks held by caller */
631 static void drms_uA_update(struct regulator_dev *rdev)
633 struct regulator *sibling;
634 int current_uA = 0, output_uV, input_uV, err;
635 unsigned int mode;
637 err = regulator_check_drms(rdev);
638 if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
639 (!rdev->desc->ops->get_voltage &&
640 !rdev->desc->ops->get_voltage_sel) ||
641 !rdev->desc->ops->set_mode)
642 return;
644 /* get output voltage */
645 output_uV = _regulator_get_voltage(rdev);
646 if (output_uV <= 0)
647 return;
649 /* get input voltage */
650 input_uV = 0;
651 if (rdev->supply)
652 input_uV = _regulator_get_voltage(rdev);
653 if (input_uV <= 0)
654 input_uV = rdev->constraints->input_uV;
655 if (input_uV <= 0)
656 return;
658 /* calc total requested load */
659 list_for_each_entry(sibling, &rdev->consumer_list, list)
660 current_uA += sibling->uA_load;
662 /* now get the optimum mode for our new total regulator load */
663 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
664 output_uV, current_uA);
666 /* check the new mode is allowed */
667 err = regulator_mode_constrain(rdev, &mode);
668 if (err == 0)
669 rdev->desc->ops->set_mode(rdev, mode);
672 static int suspend_set_state(struct regulator_dev *rdev,
673 struct regulator_state *rstate)
675 int ret = 0;
676 bool can_set_state;
678 can_set_state = rdev->desc->ops->set_suspend_enable &&
679 rdev->desc->ops->set_suspend_disable;
681 /* If we have no suspend mode configration don't set anything;
682 * only warn if the driver actually makes the suspend mode
683 * configurable.
685 if (!rstate->enabled && !rstate->disabled) {
686 if (can_set_state)
687 rdev_warn(rdev, "No configuration\n");
688 return 0;
691 if (rstate->enabled && rstate->disabled) {
692 rdev_err(rdev, "invalid configuration\n");
693 return -EINVAL;
696 if (!can_set_state) {
697 rdev_err(rdev, "no way to set suspend state\n");
698 return -EINVAL;
701 if (rstate->enabled)
702 ret = rdev->desc->ops->set_suspend_enable(rdev);
703 else
704 ret = rdev->desc->ops->set_suspend_disable(rdev);
705 if (ret < 0) {
706 rdev_err(rdev, "failed to enabled/disable\n");
707 return ret;
710 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
711 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
712 if (ret < 0) {
713 rdev_err(rdev, "failed to set voltage\n");
714 return ret;
718 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
719 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
720 if (ret < 0) {
721 rdev_err(rdev, "failed to set mode\n");
722 return ret;
725 return ret;
728 /* locks held by caller */
729 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
731 if (!rdev->constraints)
732 return -EINVAL;
734 switch (state) {
735 case PM_SUSPEND_STANDBY:
736 return suspend_set_state(rdev,
737 &rdev->constraints->state_standby);
738 case PM_SUSPEND_MEM:
739 return suspend_set_state(rdev,
740 &rdev->constraints->state_mem);
741 case PM_SUSPEND_MAX:
742 return suspend_set_state(rdev,
743 &rdev->constraints->state_disk);
744 default:
745 return -EINVAL;
749 static void print_constraints(struct regulator_dev *rdev)
751 struct regulation_constraints *constraints = rdev->constraints;
752 char buf[80] = "";
753 int count = 0;
754 int ret;
756 if (constraints->min_uV && constraints->max_uV) {
757 if (constraints->min_uV == constraints->max_uV)
758 count += sprintf(buf + count, "%d mV ",
759 constraints->min_uV / 1000);
760 else
761 count += sprintf(buf + count, "%d <--> %d mV ",
762 constraints->min_uV / 1000,
763 constraints->max_uV / 1000);
766 if (!constraints->min_uV ||
767 constraints->min_uV != constraints->max_uV) {
768 ret = _regulator_get_voltage(rdev);
769 if (ret > 0)
770 count += sprintf(buf + count, "at %d mV ", ret / 1000);
773 if (constraints->uV_offset)
774 count += sprintf(buf, "%dmV offset ",
775 constraints->uV_offset / 1000);
777 if (constraints->min_uA && constraints->max_uA) {
778 if (constraints->min_uA == constraints->max_uA)
779 count += sprintf(buf + count, "%d mA ",
780 constraints->min_uA / 1000);
781 else
782 count += sprintf(buf + count, "%d <--> %d mA ",
783 constraints->min_uA / 1000,
784 constraints->max_uA / 1000);
787 if (!constraints->min_uA ||
788 constraints->min_uA != constraints->max_uA) {
789 ret = _regulator_get_current_limit(rdev);
790 if (ret > 0)
791 count += sprintf(buf + count, "at %d mA ", ret / 1000);
794 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
795 count += sprintf(buf + count, "fast ");
796 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
797 count += sprintf(buf + count, "normal ");
798 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
799 count += sprintf(buf + count, "idle ");
800 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
801 count += sprintf(buf + count, "standby");
803 rdev_info(rdev, "%s\n", buf);
805 if ((constraints->min_uV != constraints->max_uV) &&
806 !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
807 rdev_warn(rdev,
808 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
811 static int machine_constraints_voltage(struct regulator_dev *rdev,
812 struct regulation_constraints *constraints)
814 struct regulator_ops *ops = rdev->desc->ops;
815 int ret;
817 /* do we need to apply the constraint voltage */
818 if (rdev->constraints->apply_uV &&
819 rdev->constraints->min_uV == rdev->constraints->max_uV) {
820 ret = _regulator_do_set_voltage(rdev,
821 rdev->constraints->min_uV,
822 rdev->constraints->max_uV);
823 if (ret < 0) {
824 rdev_err(rdev, "failed to apply %duV constraint\n",
825 rdev->constraints->min_uV);
826 return ret;
830 /* constrain machine-level voltage specs to fit
831 * the actual range supported by this regulator.
833 if (ops->list_voltage && rdev->desc->n_voltages) {
834 int count = rdev->desc->n_voltages;
835 int i;
836 int min_uV = INT_MAX;
837 int max_uV = INT_MIN;
838 int cmin = constraints->min_uV;
839 int cmax = constraints->max_uV;
841 /* it's safe to autoconfigure fixed-voltage supplies
842 and the constraints are used by list_voltage. */
843 if (count == 1 && !cmin) {
844 cmin = 1;
845 cmax = INT_MAX;
846 constraints->min_uV = cmin;
847 constraints->max_uV = cmax;
850 /* voltage constraints are optional */
851 if ((cmin == 0) && (cmax == 0))
852 return 0;
854 /* else require explicit machine-level constraints */
855 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
856 rdev_err(rdev, "invalid voltage constraints\n");
857 return -EINVAL;
860 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
861 for (i = 0; i < count; i++) {
862 int value;
864 value = ops->list_voltage(rdev, i);
865 if (value <= 0)
866 continue;
868 /* maybe adjust [min_uV..max_uV] */
869 if (value >= cmin && value < min_uV)
870 min_uV = value;
871 if (value <= cmax && value > max_uV)
872 max_uV = value;
875 /* final: [min_uV..max_uV] valid iff constraints valid */
876 if (max_uV < min_uV) {
877 rdev_err(rdev, "unsupportable voltage constraints\n");
878 return -EINVAL;
881 /* use regulator's subset of machine constraints */
882 if (constraints->min_uV < min_uV) {
883 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
884 constraints->min_uV, min_uV);
885 constraints->min_uV = min_uV;
887 if (constraints->max_uV > max_uV) {
888 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
889 constraints->max_uV, max_uV);
890 constraints->max_uV = max_uV;
894 return 0;
898 * set_machine_constraints - sets regulator constraints
899 * @rdev: regulator source
900 * @constraints: constraints to apply
902 * Allows platform initialisation code to define and constrain
903 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
904 * Constraints *must* be set by platform code in order for some
905 * regulator operations to proceed i.e. set_voltage, set_current_limit,
906 * set_mode.
908 static int set_machine_constraints(struct regulator_dev *rdev,
909 const struct regulation_constraints *constraints)
911 int ret = 0;
912 struct regulator_ops *ops = rdev->desc->ops;
914 if (constraints)
915 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
916 GFP_KERNEL);
917 else
918 rdev->constraints = kzalloc(sizeof(*constraints),
919 GFP_KERNEL);
920 if (!rdev->constraints)
921 return -ENOMEM;
923 ret = machine_constraints_voltage(rdev, rdev->constraints);
924 if (ret != 0)
925 goto out;
927 /* do we need to setup our suspend state */
928 if (rdev->constraints->initial_state) {
929 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
930 if (ret < 0) {
931 rdev_err(rdev, "failed to set suspend state\n");
932 goto out;
936 if (rdev->constraints->initial_mode) {
937 if (!ops->set_mode) {
938 rdev_err(rdev, "no set_mode operation\n");
939 ret = -EINVAL;
940 goto out;
943 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
944 if (ret < 0) {
945 rdev_err(rdev, "failed to set initial mode: %d\n", ret);
946 goto out;
950 /* If the constraints say the regulator should be on at this point
951 * and we have control then make sure it is enabled.
953 if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
954 ops->enable) {
955 ret = ops->enable(rdev);
956 if (ret < 0) {
957 rdev_err(rdev, "failed to enable\n");
958 goto out;
962 print_constraints(rdev);
963 return 0;
964 out:
965 kfree(rdev->constraints);
966 rdev->constraints = NULL;
967 return ret;
971 * set_supply - set regulator supply regulator
972 * @rdev: regulator name
973 * @supply_rdev: supply regulator name
975 * Called by platform initialisation code to set the supply regulator for this
976 * regulator. This ensures that a regulators supply will also be enabled by the
977 * core if it's child is enabled.
979 static int set_supply(struct regulator_dev *rdev,
980 struct regulator_dev *supply_rdev)
982 int err;
984 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
986 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
987 if (rdev->supply == NULL) {
988 err = -ENOMEM;
989 return err;
992 return 0;
996 * set_consumer_device_supply - Bind a regulator to a symbolic supply
997 * @rdev: regulator source
998 * @consumer_dev_name: dev_name() string for device supply applies to
999 * @supply: symbolic name for supply
1001 * Allows platform initialisation code to map physical regulator
1002 * sources to symbolic names for supplies for use by devices. Devices
1003 * should use these symbolic names to request regulators, avoiding the
1004 * need to provide board-specific regulator names as platform data.
1006 static int set_consumer_device_supply(struct regulator_dev *rdev,
1007 const char *consumer_dev_name,
1008 const char *supply)
1010 struct regulator_map *node;
1011 int has_dev;
1013 if (supply == NULL)
1014 return -EINVAL;
1016 if (consumer_dev_name != NULL)
1017 has_dev = 1;
1018 else
1019 has_dev = 0;
1021 list_for_each_entry(node, &regulator_map_list, list) {
1022 if (node->dev_name && consumer_dev_name) {
1023 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1024 continue;
1025 } else if (node->dev_name || consumer_dev_name) {
1026 continue;
1029 if (strcmp(node->supply, supply) != 0)
1030 continue;
1032 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1033 consumer_dev_name,
1034 dev_name(&node->regulator->dev),
1035 node->regulator->desc->name,
1036 supply,
1037 dev_name(&rdev->dev), rdev_get_name(rdev));
1038 return -EBUSY;
1041 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1042 if (node == NULL)
1043 return -ENOMEM;
1045 node->regulator = rdev;
1046 node->supply = supply;
1048 if (has_dev) {
1049 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1050 if (node->dev_name == NULL) {
1051 kfree(node);
1052 return -ENOMEM;
1056 list_add(&node->list, &regulator_map_list);
1057 return 0;
1060 static void unset_regulator_supplies(struct regulator_dev *rdev)
1062 struct regulator_map *node, *n;
1064 list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1065 if (rdev == node->regulator) {
1066 list_del(&node->list);
1067 kfree(node->dev_name);
1068 kfree(node);
1073 #define REG_STR_SIZE 64
1075 static struct regulator *create_regulator(struct regulator_dev *rdev,
1076 struct device *dev,
1077 const char *supply_name)
1079 struct regulator *regulator;
1080 char buf[REG_STR_SIZE];
1081 int err, size;
1083 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1084 if (regulator == NULL)
1085 return NULL;
1087 mutex_lock(&rdev->mutex);
1088 regulator->rdev = rdev;
1089 list_add(&regulator->list, &rdev->consumer_list);
1091 if (dev) {
1092 /* create a 'requested_microamps_name' sysfs entry */
1093 size = scnprintf(buf, REG_STR_SIZE,
1094 "microamps_requested_%s-%s",
1095 dev_name(dev), supply_name);
1096 if (size >= REG_STR_SIZE)
1097 goto overflow_err;
1099 regulator->dev = dev;
1100 sysfs_attr_init(&regulator->dev_attr.attr);
1101 regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1102 if (regulator->dev_attr.attr.name == NULL)
1103 goto attr_name_err;
1105 regulator->dev_attr.attr.mode = 0444;
1106 regulator->dev_attr.show = device_requested_uA_show;
1107 err = device_create_file(dev, &regulator->dev_attr);
1108 if (err < 0) {
1109 rdev_warn(rdev, "could not add regulator_dev requested microamps sysfs entry\n");
1110 goto attr_name_err;
1113 /* also add a link to the device sysfs entry */
1114 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1115 dev->kobj.name, supply_name);
1116 if (size >= REG_STR_SIZE)
1117 goto attr_err;
1119 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1120 if (regulator->supply_name == NULL)
1121 goto attr_err;
1123 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1124 buf);
1125 if (err) {
1126 rdev_warn(rdev, "could not add device link %s err %d\n",
1127 dev->kobj.name, err);
1128 goto link_name_err;
1130 } else {
1131 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1132 if (regulator->supply_name == NULL)
1133 goto attr_err;
1136 regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1137 rdev->debugfs);
1138 if (!regulator->debugfs) {
1139 rdev_warn(rdev, "Failed to create debugfs directory\n");
1140 } else {
1141 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1142 &regulator->uA_load);
1143 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1144 &regulator->min_uV);
1145 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1146 &regulator->max_uV);
1149 mutex_unlock(&rdev->mutex);
1150 return regulator;
1151 link_name_err:
1152 kfree(regulator->supply_name);
1153 attr_err:
1154 device_remove_file(regulator->dev, &regulator->dev_attr);
1155 attr_name_err:
1156 kfree(regulator->dev_attr.attr.name);
1157 overflow_err:
1158 list_del(&regulator->list);
1159 kfree(regulator);
1160 mutex_unlock(&rdev->mutex);
1161 return NULL;
1164 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1166 if (!rdev->desc->ops->enable_time)
1167 return 0;
1168 return rdev->desc->ops->enable_time(rdev);
1171 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1172 const char *supply)
1174 struct regulator_dev *r;
1175 struct device_node *node;
1177 /* first do a dt based lookup */
1178 if (dev && dev->of_node) {
1179 node = of_get_regulator(dev, supply);
1180 if (node)
1181 list_for_each_entry(r, &regulator_list, list)
1182 if (r->dev.parent &&
1183 node == r->dev.of_node)
1184 return r;
1187 /* if not found, try doing it non-dt way */
1188 list_for_each_entry(r, &regulator_list, list)
1189 if (strcmp(rdev_get_name(r), supply) == 0)
1190 return r;
1192 return NULL;
1195 /* Internal regulator request function */
1196 static struct regulator *_regulator_get(struct device *dev, const char *id,
1197 int exclusive)
1199 struct regulator_dev *rdev;
1200 struct regulator_map *map;
1201 struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1202 const char *devname = NULL;
1203 int ret;
1205 if (id == NULL) {
1206 pr_err("get() with no identifier\n");
1207 return regulator;
1210 if (dev)
1211 devname = dev_name(dev);
1213 mutex_lock(&regulator_list_mutex);
1215 rdev = regulator_dev_lookup(dev, id);
1216 if (rdev)
1217 goto found;
1219 list_for_each_entry(map, &regulator_map_list, list) {
1220 /* If the mapping has a device set up it must match */
1221 if (map->dev_name &&
1222 (!devname || strcmp(map->dev_name, devname)))
1223 continue;
1225 if (strcmp(map->supply, id) == 0) {
1226 rdev = map->regulator;
1227 goto found;
1231 if (board_wants_dummy_regulator) {
1232 rdev = dummy_regulator_rdev;
1233 goto found;
1236 #ifdef CONFIG_REGULATOR_DUMMY
1237 if (!devname)
1238 devname = "deviceless";
1240 /* If the board didn't flag that it was fully constrained then
1241 * substitute in a dummy regulator so consumers can continue.
1243 if (!has_full_constraints) {
1244 pr_warn("%s supply %s not found, using dummy regulator\n",
1245 devname, id);
1246 rdev = dummy_regulator_rdev;
1247 goto found;
1249 #endif
1251 mutex_unlock(&regulator_list_mutex);
1252 return regulator;
1254 found:
1255 if (rdev->exclusive) {
1256 regulator = ERR_PTR(-EPERM);
1257 goto out;
1260 if (exclusive && rdev->open_count) {
1261 regulator = ERR_PTR(-EBUSY);
1262 goto out;
1265 if (!try_module_get(rdev->owner))
1266 goto out;
1268 regulator = create_regulator(rdev, dev, id);
1269 if (regulator == NULL) {
1270 regulator = ERR_PTR(-ENOMEM);
1271 module_put(rdev->owner);
1272 goto out;
1275 rdev->open_count++;
1276 if (exclusive) {
1277 rdev->exclusive = 1;
1279 ret = _regulator_is_enabled(rdev);
1280 if (ret > 0)
1281 rdev->use_count = 1;
1282 else
1283 rdev->use_count = 0;
1286 out:
1287 mutex_unlock(&regulator_list_mutex);
1289 return regulator;
1293 * regulator_get - lookup and obtain a reference to a regulator.
1294 * @dev: device for regulator "consumer"
1295 * @id: Supply name or regulator ID.
1297 * Returns a struct regulator corresponding to the regulator producer,
1298 * or IS_ERR() condition containing errno.
1300 * Use of supply names configured via regulator_set_device_supply() is
1301 * strongly encouraged. It is recommended that the supply name used
1302 * should match the name used for the supply and/or the relevant
1303 * device pins in the datasheet.
1305 struct regulator *regulator_get(struct device *dev, const char *id)
1307 return _regulator_get(dev, id, 0);
1309 EXPORT_SYMBOL_GPL(regulator_get);
1311 static void devm_regulator_release(struct device *dev, void *res)
1313 regulator_put(*(struct regulator **)res);
1317 * devm_regulator_get - Resource managed regulator_get()
1318 * @dev: device for regulator "consumer"
1319 * @id: Supply name or regulator ID.
1321 * Managed regulator_get(). Regulators returned from this function are
1322 * automatically regulator_put() on driver detach. See regulator_get() for more
1323 * information.
1325 struct regulator *devm_regulator_get(struct device *dev, const char *id)
1327 struct regulator **ptr, *regulator;
1329 ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL);
1330 if (!ptr)
1331 return ERR_PTR(-ENOMEM);
1333 regulator = regulator_get(dev, id);
1334 if (!IS_ERR(regulator)) {
1335 *ptr = regulator;
1336 devres_add(dev, ptr);
1337 } else {
1338 devres_free(ptr);
1341 return regulator;
1343 EXPORT_SYMBOL_GPL(devm_regulator_get);
1346 * regulator_get_exclusive - obtain exclusive access to a regulator.
1347 * @dev: device for regulator "consumer"
1348 * @id: Supply name or regulator ID.
1350 * Returns a struct regulator corresponding to the regulator producer,
1351 * or IS_ERR() condition containing errno. Other consumers will be
1352 * unable to obtain this reference is held and the use count for the
1353 * regulator will be initialised to reflect the current state of the
1354 * regulator.
1356 * This is intended for use by consumers which cannot tolerate shared
1357 * use of the regulator such as those which need to force the
1358 * regulator off for correct operation of the hardware they are
1359 * controlling.
1361 * Use of supply names configured via regulator_set_device_supply() is
1362 * strongly encouraged. It is recommended that the supply name used
1363 * should match the name used for the supply and/or the relevant
1364 * device pins in the datasheet.
1366 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1368 return _regulator_get(dev, id, 1);
1370 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1373 * regulator_put - "free" the regulator source
1374 * @regulator: regulator source
1376 * Note: drivers must ensure that all regulator_enable calls made on this
1377 * regulator source are balanced by regulator_disable calls prior to calling
1378 * this function.
1380 void regulator_put(struct regulator *regulator)
1382 struct regulator_dev *rdev;
1384 if (regulator == NULL || IS_ERR(regulator))
1385 return;
1387 mutex_lock(&regulator_list_mutex);
1388 rdev = regulator->rdev;
1390 debugfs_remove_recursive(regulator->debugfs);
1392 /* remove any sysfs entries */
1393 if (regulator->dev) {
1394 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1395 device_remove_file(regulator->dev, &regulator->dev_attr);
1396 kfree(regulator->dev_attr.attr.name);
1398 kfree(regulator->supply_name);
1399 list_del(&regulator->list);
1400 kfree(regulator);
1402 rdev->open_count--;
1403 rdev->exclusive = 0;
1405 module_put(rdev->owner);
1406 mutex_unlock(&regulator_list_mutex);
1408 EXPORT_SYMBOL_GPL(regulator_put);
1410 static int devm_regulator_match(struct device *dev, void *res, void *data)
1412 struct regulator **r = res;
1413 if (!r || !*r) {
1414 WARN_ON(!r || !*r);
1415 return 0;
1417 return *r == data;
1421 * devm_regulator_put - Resource managed regulator_put()
1422 * @regulator: regulator to free
1424 * Deallocate a regulator allocated with devm_regulator_get(). Normally
1425 * this function will not need to be called and the resource management
1426 * code will ensure that the resource is freed.
1428 void devm_regulator_put(struct regulator *regulator)
1430 int rc;
1432 rc = devres_destroy(regulator->dev, devm_regulator_release,
1433 devm_regulator_match, regulator);
1434 if (rc == 0)
1435 regulator_put(regulator);
1436 else
1437 WARN_ON(rc);
1439 EXPORT_SYMBOL_GPL(devm_regulator_put);
1441 static int _regulator_can_change_status(struct regulator_dev *rdev)
1443 if (!rdev->constraints)
1444 return 0;
1446 if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
1447 return 1;
1448 else
1449 return 0;
1452 /* locks held by regulator_enable() */
1453 static int _regulator_enable(struct regulator_dev *rdev)
1455 int ret, delay;
1457 /* check voltage and requested load before enabling */
1458 if (rdev->constraints &&
1459 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1460 drms_uA_update(rdev);
1462 if (rdev->use_count == 0) {
1463 /* The regulator may on if it's not switchable or left on */
1464 ret = _regulator_is_enabled(rdev);
1465 if (ret == -EINVAL || ret == 0) {
1466 if (!_regulator_can_change_status(rdev))
1467 return -EPERM;
1469 if (!rdev->desc->ops->enable)
1470 return -EINVAL;
1472 /* Query before enabling in case configuration
1473 * dependent. */
1474 ret = _regulator_get_enable_time(rdev);
1475 if (ret >= 0) {
1476 delay = ret;
1477 } else {
1478 rdev_warn(rdev, "enable_time() failed: %d\n",
1479 ret);
1480 delay = 0;
1483 trace_regulator_enable(rdev_get_name(rdev));
1485 /* Allow the regulator to ramp; it would be useful
1486 * to extend this for bulk operations so that the
1487 * regulators can ramp together. */
1488 ret = rdev->desc->ops->enable(rdev);
1489 if (ret < 0)
1490 return ret;
1492 trace_regulator_enable_delay(rdev_get_name(rdev));
1494 if (delay >= 1000) {
1495 mdelay(delay / 1000);
1496 udelay(delay % 1000);
1497 } else if (delay) {
1498 udelay(delay);
1501 trace_regulator_enable_complete(rdev_get_name(rdev));
1503 } else if (ret < 0) {
1504 rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1505 return ret;
1507 /* Fallthrough on positive return values - already enabled */
1510 rdev->use_count++;
1512 return 0;
1516 * regulator_enable - enable regulator output
1517 * @regulator: regulator source
1519 * Request that the regulator be enabled with the regulator output at
1520 * the predefined voltage or current value. Calls to regulator_enable()
1521 * must be balanced with calls to regulator_disable().
1523 * NOTE: the output value can be set by other drivers, boot loader or may be
1524 * hardwired in the regulator.
1526 int regulator_enable(struct regulator *regulator)
1528 struct regulator_dev *rdev = regulator->rdev;
1529 int ret = 0;
1531 if (rdev->supply) {
1532 ret = regulator_enable(rdev->supply);
1533 if (ret != 0)
1534 return ret;
1537 mutex_lock(&rdev->mutex);
1538 ret = _regulator_enable(rdev);
1539 mutex_unlock(&rdev->mutex);
1541 if (ret != 0 && rdev->supply)
1542 regulator_disable(rdev->supply);
1544 return ret;
1546 EXPORT_SYMBOL_GPL(regulator_enable);
1548 /* locks held by regulator_disable() */
1549 static int _regulator_disable(struct regulator_dev *rdev)
1551 int ret = 0;
1553 if (WARN(rdev->use_count <= 0,
1554 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1555 return -EIO;
1557 /* are we the last user and permitted to disable ? */
1558 if (rdev->use_count == 1 &&
1559 (rdev->constraints && !rdev->constraints->always_on)) {
1561 /* we are last user */
1562 if (_regulator_can_change_status(rdev) &&
1563 rdev->desc->ops->disable) {
1564 trace_regulator_disable(rdev_get_name(rdev));
1566 ret = rdev->desc->ops->disable(rdev);
1567 if (ret < 0) {
1568 rdev_err(rdev, "failed to disable\n");
1569 return ret;
1572 trace_regulator_disable_complete(rdev_get_name(rdev));
1574 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1575 NULL);
1578 rdev->use_count = 0;
1579 } else if (rdev->use_count > 1) {
1581 if (rdev->constraints &&
1582 (rdev->constraints->valid_ops_mask &
1583 REGULATOR_CHANGE_DRMS))
1584 drms_uA_update(rdev);
1586 rdev->use_count--;
1589 return ret;
1593 * regulator_disable - disable regulator output
1594 * @regulator: regulator source
1596 * Disable the regulator output voltage or current. Calls to
1597 * regulator_enable() must be balanced with calls to
1598 * regulator_disable().
1600 * NOTE: this will only disable the regulator output if no other consumer
1601 * devices have it enabled, the regulator device supports disabling and
1602 * machine constraints permit this operation.
1604 int regulator_disable(struct regulator *regulator)
1606 struct regulator_dev *rdev = regulator->rdev;
1607 int ret = 0;
1609 mutex_lock(&rdev->mutex);
1610 ret = _regulator_disable(rdev);
1611 mutex_unlock(&rdev->mutex);
1613 if (ret == 0 && rdev->supply)
1614 regulator_disable(rdev->supply);
1616 return ret;
1618 EXPORT_SYMBOL_GPL(regulator_disable);
1620 /* locks held by regulator_force_disable() */
1621 static int _regulator_force_disable(struct regulator_dev *rdev)
1623 int ret = 0;
1625 /* force disable */
1626 if (rdev->desc->ops->disable) {
1627 /* ah well, who wants to live forever... */
1628 ret = rdev->desc->ops->disable(rdev);
1629 if (ret < 0) {
1630 rdev_err(rdev, "failed to force disable\n");
1631 return ret;
1633 /* notify other consumers that power has been forced off */
1634 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1635 REGULATOR_EVENT_DISABLE, NULL);
1638 return ret;
1642 * regulator_force_disable - force disable regulator output
1643 * @regulator: regulator source
1645 * Forcibly disable the regulator output voltage or current.
1646 * NOTE: this *will* disable the regulator output even if other consumer
1647 * devices have it enabled. This should be used for situations when device
1648 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1650 int regulator_force_disable(struct regulator *regulator)
1652 struct regulator_dev *rdev = regulator->rdev;
1653 int ret;
1655 mutex_lock(&rdev->mutex);
1656 regulator->uA_load = 0;
1657 ret = _regulator_force_disable(regulator->rdev);
1658 mutex_unlock(&rdev->mutex);
1660 if (rdev->supply)
1661 while (rdev->open_count--)
1662 regulator_disable(rdev->supply);
1664 return ret;
1666 EXPORT_SYMBOL_GPL(regulator_force_disable);
1668 static void regulator_disable_work(struct work_struct *work)
1670 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
1671 disable_work.work);
1672 int count, i, ret;
1674 mutex_lock(&rdev->mutex);
1676 BUG_ON(!rdev->deferred_disables);
1678 count = rdev->deferred_disables;
1679 rdev->deferred_disables = 0;
1681 for (i = 0; i < count; i++) {
1682 ret = _regulator_disable(rdev);
1683 if (ret != 0)
1684 rdev_err(rdev, "Deferred disable failed: %d\n", ret);
1687 mutex_unlock(&rdev->mutex);
1689 if (rdev->supply) {
1690 for (i = 0; i < count; i++) {
1691 ret = regulator_disable(rdev->supply);
1692 if (ret != 0) {
1693 rdev_err(rdev,
1694 "Supply disable failed: %d\n", ret);
1701 * regulator_disable_deferred - disable regulator output with delay
1702 * @regulator: regulator source
1703 * @ms: miliseconds until the regulator is disabled
1705 * Execute regulator_disable() on the regulator after a delay. This
1706 * is intended for use with devices that require some time to quiesce.
1708 * NOTE: this will only disable the regulator output if no other consumer
1709 * devices have it enabled, the regulator device supports disabling and
1710 * machine constraints permit this operation.
1712 int regulator_disable_deferred(struct regulator *regulator, int ms)
1714 struct regulator_dev *rdev = regulator->rdev;
1715 int ret;
1717 mutex_lock(&rdev->mutex);
1718 rdev->deferred_disables++;
1719 mutex_unlock(&rdev->mutex);
1721 ret = schedule_delayed_work(&rdev->disable_work,
1722 msecs_to_jiffies(ms));
1723 if (ret < 0)
1724 return ret;
1725 else
1726 return 0;
1728 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
1730 static int _regulator_is_enabled(struct regulator_dev *rdev)
1732 /* If we don't know then assume that the regulator is always on */
1733 if (!rdev->desc->ops->is_enabled)
1734 return 1;
1736 return rdev->desc->ops->is_enabled(rdev);
1740 * regulator_is_enabled - is the regulator output enabled
1741 * @regulator: regulator source
1743 * Returns positive if the regulator driver backing the source/client
1744 * has requested that the device be enabled, zero if it hasn't, else a
1745 * negative errno code.
1747 * Note that the device backing this regulator handle can have multiple
1748 * users, so it might be enabled even if regulator_enable() was never
1749 * called for this particular source.
1751 int regulator_is_enabled(struct regulator *regulator)
1753 int ret;
1755 mutex_lock(&regulator->rdev->mutex);
1756 ret = _regulator_is_enabled(regulator->rdev);
1757 mutex_unlock(&regulator->rdev->mutex);
1759 return ret;
1761 EXPORT_SYMBOL_GPL(regulator_is_enabled);
1764 * regulator_count_voltages - count regulator_list_voltage() selectors
1765 * @regulator: regulator source
1767 * Returns number of selectors, or negative errno. Selectors are
1768 * numbered starting at zero, and typically correspond to bitfields
1769 * in hardware registers.
1771 int regulator_count_voltages(struct regulator *regulator)
1773 struct regulator_dev *rdev = regulator->rdev;
1775 return rdev->desc->n_voltages ? : -EINVAL;
1777 EXPORT_SYMBOL_GPL(regulator_count_voltages);
1780 * regulator_list_voltage - enumerate supported voltages
1781 * @regulator: regulator source
1782 * @selector: identify voltage to list
1783 * Context: can sleep
1785 * Returns a voltage that can be passed to @regulator_set_voltage(),
1786 * zero if this selector code can't be used on this system, or a
1787 * negative errno.
1789 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1791 struct regulator_dev *rdev = regulator->rdev;
1792 struct regulator_ops *ops = rdev->desc->ops;
1793 int ret;
1795 if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1796 return -EINVAL;
1798 mutex_lock(&rdev->mutex);
1799 ret = ops->list_voltage(rdev, selector);
1800 mutex_unlock(&rdev->mutex);
1802 if (ret > 0) {
1803 if (ret < rdev->constraints->min_uV)
1804 ret = 0;
1805 else if (ret > rdev->constraints->max_uV)
1806 ret = 0;
1809 return ret;
1811 EXPORT_SYMBOL_GPL(regulator_list_voltage);
1814 * regulator_is_supported_voltage - check if a voltage range can be supported
1816 * @regulator: Regulator to check.
1817 * @min_uV: Minimum required voltage in uV.
1818 * @max_uV: Maximum required voltage in uV.
1820 * Returns a boolean or a negative error code.
1822 int regulator_is_supported_voltage(struct regulator *regulator,
1823 int min_uV, int max_uV)
1825 int i, voltages, ret;
1827 ret = regulator_count_voltages(regulator);
1828 if (ret < 0)
1829 return ret;
1830 voltages = ret;
1832 for (i = 0; i < voltages; i++) {
1833 ret = regulator_list_voltage(regulator, i);
1835 if (ret >= min_uV && ret <= max_uV)
1836 return 1;
1839 return 0;
1841 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
1843 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
1844 int min_uV, int max_uV)
1846 int ret;
1847 int delay = 0;
1848 unsigned int selector;
1850 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
1852 min_uV += rdev->constraints->uV_offset;
1853 max_uV += rdev->constraints->uV_offset;
1855 if (rdev->desc->ops->set_voltage) {
1856 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
1857 &selector);
1859 if (rdev->desc->ops->list_voltage)
1860 selector = rdev->desc->ops->list_voltage(rdev,
1861 selector);
1862 else
1863 selector = -1;
1864 } else if (rdev->desc->ops->set_voltage_sel) {
1865 int best_val = INT_MAX;
1866 int i;
1868 selector = 0;
1870 /* Find the smallest voltage that falls within the specified
1871 * range.
1873 for (i = 0; i < rdev->desc->n_voltages; i++) {
1874 ret = rdev->desc->ops->list_voltage(rdev, i);
1875 if (ret < 0)
1876 continue;
1878 if (ret < best_val && ret >= min_uV && ret <= max_uV) {
1879 best_val = ret;
1880 selector = i;
1885 * If we can't obtain the old selector there is not enough
1886 * info to call set_voltage_time_sel().
1888 if (rdev->desc->ops->set_voltage_time_sel &&
1889 rdev->desc->ops->get_voltage_sel) {
1890 unsigned int old_selector = 0;
1892 ret = rdev->desc->ops->get_voltage_sel(rdev);
1893 if (ret < 0)
1894 return ret;
1895 old_selector = ret;
1896 ret = rdev->desc->ops->set_voltage_time_sel(rdev,
1897 old_selector, selector);
1898 if (ret < 0)
1899 rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n", ret);
1900 else
1901 delay = ret;
1904 if (best_val != INT_MAX) {
1905 ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
1906 selector = best_val;
1907 } else {
1908 ret = -EINVAL;
1910 } else {
1911 ret = -EINVAL;
1914 /* Insert any necessary delays */
1915 if (delay >= 1000) {
1916 mdelay(delay / 1000);
1917 udelay(delay % 1000);
1918 } else if (delay) {
1919 udelay(delay);
1922 if (ret == 0)
1923 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
1924 NULL);
1926 trace_regulator_set_voltage_complete(rdev_get_name(rdev), selector);
1928 return ret;
1932 * regulator_set_voltage - set regulator output voltage
1933 * @regulator: regulator source
1934 * @min_uV: Minimum required voltage in uV
1935 * @max_uV: Maximum acceptable voltage in uV
1937 * Sets a voltage regulator to the desired output voltage. This can be set
1938 * during any regulator state. IOW, regulator can be disabled or enabled.
1940 * If the regulator is enabled then the voltage will change to the new value
1941 * immediately otherwise if the regulator is disabled the regulator will
1942 * output at the new voltage when enabled.
1944 * NOTE: If the regulator is shared between several devices then the lowest
1945 * request voltage that meets the system constraints will be used.
1946 * Regulator system constraints must be set for this regulator before
1947 * calling this function otherwise this call will fail.
1949 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1951 struct regulator_dev *rdev = regulator->rdev;
1952 int ret = 0;
1954 mutex_lock(&rdev->mutex);
1956 /* If we're setting the same range as last time the change
1957 * should be a noop (some cpufreq implementations use the same
1958 * voltage for multiple frequencies, for example).
1960 if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
1961 goto out;
1963 /* sanity check */
1964 if (!rdev->desc->ops->set_voltage &&
1965 !rdev->desc->ops->set_voltage_sel) {
1966 ret = -EINVAL;
1967 goto out;
1970 /* constraints check */
1971 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1972 if (ret < 0)
1973 goto out;
1974 regulator->min_uV = min_uV;
1975 regulator->max_uV = max_uV;
1977 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
1978 if (ret < 0)
1979 goto out;
1981 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
1983 out:
1984 mutex_unlock(&rdev->mutex);
1985 return ret;
1987 EXPORT_SYMBOL_GPL(regulator_set_voltage);
1990 * regulator_set_voltage_time - get raise/fall time
1991 * @regulator: regulator source
1992 * @old_uV: starting voltage in microvolts
1993 * @new_uV: target voltage in microvolts
1995 * Provided with the starting and ending voltage, this function attempts to
1996 * calculate the time in microseconds required to rise or fall to this new
1997 * voltage.
1999 int regulator_set_voltage_time(struct regulator *regulator,
2000 int old_uV, int new_uV)
2002 struct regulator_dev *rdev = regulator->rdev;
2003 struct regulator_ops *ops = rdev->desc->ops;
2004 int old_sel = -1;
2005 int new_sel = -1;
2006 int voltage;
2007 int i;
2009 /* Currently requires operations to do this */
2010 if (!ops->list_voltage || !ops->set_voltage_time_sel
2011 || !rdev->desc->n_voltages)
2012 return -EINVAL;
2014 for (i = 0; i < rdev->desc->n_voltages; i++) {
2015 /* We only look for exact voltage matches here */
2016 voltage = regulator_list_voltage(regulator, i);
2017 if (voltage < 0)
2018 return -EINVAL;
2019 if (voltage == 0)
2020 continue;
2021 if (voltage == old_uV)
2022 old_sel = i;
2023 if (voltage == new_uV)
2024 new_sel = i;
2027 if (old_sel < 0 || new_sel < 0)
2028 return -EINVAL;
2030 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2032 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2035 * regulator_sync_voltage - re-apply last regulator output voltage
2036 * @regulator: regulator source
2038 * Re-apply the last configured voltage. This is intended to be used
2039 * where some external control source the consumer is cooperating with
2040 * has caused the configured voltage to change.
2042 int regulator_sync_voltage(struct regulator *regulator)
2044 struct regulator_dev *rdev = regulator->rdev;
2045 int ret, min_uV, max_uV;
2047 mutex_lock(&rdev->mutex);
2049 if (!rdev->desc->ops->set_voltage &&
2050 !rdev->desc->ops->set_voltage_sel) {
2051 ret = -EINVAL;
2052 goto out;
2055 /* This is only going to work if we've had a voltage configured. */
2056 if (!regulator->min_uV && !regulator->max_uV) {
2057 ret = -EINVAL;
2058 goto out;
2061 min_uV = regulator->min_uV;
2062 max_uV = regulator->max_uV;
2064 /* This should be a paranoia check... */
2065 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2066 if (ret < 0)
2067 goto out;
2069 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2070 if (ret < 0)
2071 goto out;
2073 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2075 out:
2076 mutex_unlock(&rdev->mutex);
2077 return ret;
2079 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2081 static int _regulator_get_voltage(struct regulator_dev *rdev)
2083 int sel, ret;
2085 if (rdev->desc->ops->get_voltage_sel) {
2086 sel = rdev->desc->ops->get_voltage_sel(rdev);
2087 if (sel < 0)
2088 return sel;
2089 ret = rdev->desc->ops->list_voltage(rdev, sel);
2090 } else if (rdev->desc->ops->get_voltage) {
2091 ret = rdev->desc->ops->get_voltage(rdev);
2092 } else {
2093 return -EINVAL;
2096 if (ret < 0)
2097 return ret;
2098 return ret - rdev->constraints->uV_offset;
2102 * regulator_get_voltage - get regulator output voltage
2103 * @regulator: regulator source
2105 * This returns the current regulator voltage in uV.
2107 * NOTE: If the regulator is disabled it will return the voltage value. This
2108 * function should not be used to determine regulator state.
2110 int regulator_get_voltage(struct regulator *regulator)
2112 int ret;
2114 mutex_lock(&regulator->rdev->mutex);
2116 ret = _regulator_get_voltage(regulator->rdev);
2118 mutex_unlock(&regulator->rdev->mutex);
2120 return ret;
2122 EXPORT_SYMBOL_GPL(regulator_get_voltage);
2125 * regulator_set_current_limit - set regulator output current limit
2126 * @regulator: regulator source
2127 * @min_uA: Minimuum supported current in uA
2128 * @max_uA: Maximum supported current in uA
2130 * Sets current sink to the desired output current. This can be set during
2131 * any regulator state. IOW, regulator can be disabled or enabled.
2133 * If the regulator is enabled then the current will change to the new value
2134 * immediately otherwise if the regulator is disabled the regulator will
2135 * output at the new current when enabled.
2137 * NOTE: Regulator system constraints must be set for this regulator before
2138 * calling this function otherwise this call will fail.
2140 int regulator_set_current_limit(struct regulator *regulator,
2141 int min_uA, int max_uA)
2143 struct regulator_dev *rdev = regulator->rdev;
2144 int ret;
2146 mutex_lock(&rdev->mutex);
2148 /* sanity check */
2149 if (!rdev->desc->ops->set_current_limit) {
2150 ret = -EINVAL;
2151 goto out;
2154 /* constraints check */
2155 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2156 if (ret < 0)
2157 goto out;
2159 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2160 out:
2161 mutex_unlock(&rdev->mutex);
2162 return ret;
2164 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2166 static int _regulator_get_current_limit(struct regulator_dev *rdev)
2168 int ret;
2170 mutex_lock(&rdev->mutex);
2172 /* sanity check */
2173 if (!rdev->desc->ops->get_current_limit) {
2174 ret = -EINVAL;
2175 goto out;
2178 ret = rdev->desc->ops->get_current_limit(rdev);
2179 out:
2180 mutex_unlock(&rdev->mutex);
2181 return ret;
2185 * regulator_get_current_limit - get regulator output current
2186 * @regulator: regulator source
2188 * This returns the current supplied by the specified current sink in uA.
2190 * NOTE: If the regulator is disabled it will return the current value. This
2191 * function should not be used to determine regulator state.
2193 int regulator_get_current_limit(struct regulator *regulator)
2195 return _regulator_get_current_limit(regulator->rdev);
2197 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2200 * regulator_set_mode - set regulator operating mode
2201 * @regulator: regulator source
2202 * @mode: operating mode - one of the REGULATOR_MODE constants
2204 * Set regulator operating mode to increase regulator efficiency or improve
2205 * regulation performance.
2207 * NOTE: Regulator system constraints must be set for this regulator before
2208 * calling this function otherwise this call will fail.
2210 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2212 struct regulator_dev *rdev = regulator->rdev;
2213 int ret;
2214 int regulator_curr_mode;
2216 mutex_lock(&rdev->mutex);
2218 /* sanity check */
2219 if (!rdev->desc->ops->set_mode) {
2220 ret = -EINVAL;
2221 goto out;
2224 /* return if the same mode is requested */
2225 if (rdev->desc->ops->get_mode) {
2226 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2227 if (regulator_curr_mode == mode) {
2228 ret = 0;
2229 goto out;
2233 /* constraints check */
2234 ret = regulator_mode_constrain(rdev, &mode);
2235 if (ret < 0)
2236 goto out;
2238 ret = rdev->desc->ops->set_mode(rdev, mode);
2239 out:
2240 mutex_unlock(&rdev->mutex);
2241 return ret;
2243 EXPORT_SYMBOL_GPL(regulator_set_mode);
2245 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2247 int ret;
2249 mutex_lock(&rdev->mutex);
2251 /* sanity check */
2252 if (!rdev->desc->ops->get_mode) {
2253 ret = -EINVAL;
2254 goto out;
2257 ret = rdev->desc->ops->get_mode(rdev);
2258 out:
2259 mutex_unlock(&rdev->mutex);
2260 return ret;
2264 * regulator_get_mode - get regulator operating mode
2265 * @regulator: regulator source
2267 * Get the current regulator operating mode.
2269 unsigned int regulator_get_mode(struct regulator *regulator)
2271 return _regulator_get_mode(regulator->rdev);
2273 EXPORT_SYMBOL_GPL(regulator_get_mode);
2276 * regulator_set_optimum_mode - set regulator optimum operating mode
2277 * @regulator: regulator source
2278 * @uA_load: load current
2280 * Notifies the regulator core of a new device load. This is then used by
2281 * DRMS (if enabled by constraints) to set the most efficient regulator
2282 * operating mode for the new regulator loading.
2284 * Consumer devices notify their supply regulator of the maximum power
2285 * they will require (can be taken from device datasheet in the power
2286 * consumption tables) when they change operational status and hence power
2287 * state. Examples of operational state changes that can affect power
2288 * consumption are :-
2290 * o Device is opened / closed.
2291 * o Device I/O is about to begin or has just finished.
2292 * o Device is idling in between work.
2294 * This information is also exported via sysfs to userspace.
2296 * DRMS will sum the total requested load on the regulator and change
2297 * to the most efficient operating mode if platform constraints allow.
2299 * Returns the new regulator mode or error.
2301 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2303 struct regulator_dev *rdev = regulator->rdev;
2304 struct regulator *consumer;
2305 int ret, output_uV, input_uV, total_uA_load = 0;
2306 unsigned int mode;
2308 mutex_lock(&rdev->mutex);
2311 * first check to see if we can set modes at all, otherwise just
2312 * tell the consumer everything is OK.
2314 regulator->uA_load = uA_load;
2315 ret = regulator_check_drms(rdev);
2316 if (ret < 0) {
2317 ret = 0;
2318 goto out;
2321 if (!rdev->desc->ops->get_optimum_mode)
2322 goto out;
2325 * we can actually do this so any errors are indicators of
2326 * potential real failure.
2328 ret = -EINVAL;
2330 /* get output voltage */
2331 output_uV = _regulator_get_voltage(rdev);
2332 if (output_uV <= 0) {
2333 rdev_err(rdev, "invalid output voltage found\n");
2334 goto out;
2337 /* get input voltage */
2338 input_uV = 0;
2339 if (rdev->supply)
2340 input_uV = regulator_get_voltage(rdev->supply);
2341 if (input_uV <= 0)
2342 input_uV = rdev->constraints->input_uV;
2343 if (input_uV <= 0) {
2344 rdev_err(rdev, "invalid input voltage found\n");
2345 goto out;
2348 /* calc total requested load for this regulator */
2349 list_for_each_entry(consumer, &rdev->consumer_list, list)
2350 total_uA_load += consumer->uA_load;
2352 mode = rdev->desc->ops->get_optimum_mode(rdev,
2353 input_uV, output_uV,
2354 total_uA_load);
2355 ret = regulator_mode_constrain(rdev, &mode);
2356 if (ret < 0) {
2357 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2358 total_uA_load, input_uV, output_uV);
2359 goto out;
2362 ret = rdev->desc->ops->set_mode(rdev, mode);
2363 if (ret < 0) {
2364 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2365 goto out;
2367 ret = mode;
2368 out:
2369 mutex_unlock(&rdev->mutex);
2370 return ret;
2372 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2375 * regulator_register_notifier - register regulator event notifier
2376 * @regulator: regulator source
2377 * @nb: notifier block
2379 * Register notifier block to receive regulator events.
2381 int regulator_register_notifier(struct regulator *regulator,
2382 struct notifier_block *nb)
2384 return blocking_notifier_chain_register(&regulator->rdev->notifier,
2385 nb);
2387 EXPORT_SYMBOL_GPL(regulator_register_notifier);
2390 * regulator_unregister_notifier - unregister regulator event notifier
2391 * @regulator: regulator source
2392 * @nb: notifier block
2394 * Unregister regulator event notifier block.
2396 int regulator_unregister_notifier(struct regulator *regulator,
2397 struct notifier_block *nb)
2399 return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2400 nb);
2402 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2404 /* notify regulator consumers and downstream regulator consumers.
2405 * Note mutex must be held by caller.
2407 static void _notifier_call_chain(struct regulator_dev *rdev,
2408 unsigned long event, void *data)
2410 /* call rdev chain first */
2411 blocking_notifier_call_chain(&rdev->notifier, event, NULL);
2415 * regulator_bulk_get - get multiple regulator consumers
2417 * @dev: Device to supply
2418 * @num_consumers: Number of consumers to register
2419 * @consumers: Configuration of consumers; clients are stored here.
2421 * @return 0 on success, an errno on failure.
2423 * This helper function allows drivers to get several regulator
2424 * consumers in one operation. If any of the regulators cannot be
2425 * acquired then any regulators that were allocated will be freed
2426 * before returning to the caller.
2428 int regulator_bulk_get(struct device *dev, int num_consumers,
2429 struct regulator_bulk_data *consumers)
2431 int i;
2432 int ret;
2434 for (i = 0; i < num_consumers; i++)
2435 consumers[i].consumer = NULL;
2437 for (i = 0; i < num_consumers; i++) {
2438 consumers[i].consumer = regulator_get(dev,
2439 consumers[i].supply);
2440 if (IS_ERR(consumers[i].consumer)) {
2441 ret = PTR_ERR(consumers[i].consumer);
2442 dev_err(dev, "Failed to get supply '%s': %d\n",
2443 consumers[i].supply, ret);
2444 consumers[i].consumer = NULL;
2445 goto err;
2449 return 0;
2451 err:
2452 while (--i >= 0)
2453 regulator_put(consumers[i].consumer);
2455 return ret;
2457 EXPORT_SYMBOL_GPL(regulator_bulk_get);
2460 * devm_regulator_bulk_get - managed get multiple regulator consumers
2462 * @dev: Device to supply
2463 * @num_consumers: Number of consumers to register
2464 * @consumers: Configuration of consumers; clients are stored here.
2466 * @return 0 on success, an errno on failure.
2468 * This helper function allows drivers to get several regulator
2469 * consumers in one operation with management, the regulators will
2470 * automatically be freed when the device is unbound. If any of the
2471 * regulators cannot be acquired then any regulators that were
2472 * allocated will be freed before returning to the caller.
2474 int devm_regulator_bulk_get(struct device *dev, int num_consumers,
2475 struct regulator_bulk_data *consumers)
2477 int i;
2478 int ret;
2480 for (i = 0; i < num_consumers; i++)
2481 consumers[i].consumer = NULL;
2483 for (i = 0; i < num_consumers; i++) {
2484 consumers[i].consumer = devm_regulator_get(dev,
2485 consumers[i].supply);
2486 if (IS_ERR(consumers[i].consumer)) {
2487 ret = PTR_ERR(consumers[i].consumer);
2488 dev_err(dev, "Failed to get supply '%s': %d\n",
2489 consumers[i].supply, ret);
2490 consumers[i].consumer = NULL;
2491 goto err;
2495 return 0;
2497 err:
2498 for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2499 devm_regulator_put(consumers[i].consumer);
2501 return ret;
2503 EXPORT_SYMBOL_GPL(devm_regulator_bulk_get);
2505 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
2507 struct regulator_bulk_data *bulk = data;
2509 bulk->ret = regulator_enable(bulk->consumer);
2513 * regulator_bulk_enable - enable multiple regulator consumers
2515 * @num_consumers: Number of consumers
2516 * @consumers: Consumer data; clients are stored here.
2517 * @return 0 on success, an errno on failure
2519 * This convenience API allows consumers to enable multiple regulator
2520 * clients in a single API call. If any consumers cannot be enabled
2521 * then any others that were enabled will be disabled again prior to
2522 * return.
2524 int regulator_bulk_enable(int num_consumers,
2525 struct regulator_bulk_data *consumers)
2527 LIST_HEAD(async_domain);
2528 int i;
2529 int ret = 0;
2531 for (i = 0; i < num_consumers; i++)
2532 async_schedule_domain(regulator_bulk_enable_async,
2533 &consumers[i], &async_domain);
2535 async_synchronize_full_domain(&async_domain);
2537 /* If any consumer failed we need to unwind any that succeeded */
2538 for (i = 0; i < num_consumers; i++) {
2539 if (consumers[i].ret != 0) {
2540 ret = consumers[i].ret;
2541 goto err;
2545 return 0;
2547 err:
2548 pr_err("Failed to enable %s: %d\n", consumers[i].supply, ret);
2549 while (--i >= 0)
2550 regulator_disable(consumers[i].consumer);
2552 return ret;
2554 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2557 * regulator_bulk_disable - disable multiple regulator consumers
2559 * @num_consumers: Number of consumers
2560 * @consumers: Consumer data; clients are stored here.
2561 * @return 0 on success, an errno on failure
2563 * This convenience API allows consumers to disable multiple regulator
2564 * clients in a single API call. If any consumers cannot be disabled
2565 * then any others that were disabled will be enabled again prior to
2566 * return.
2568 int regulator_bulk_disable(int num_consumers,
2569 struct regulator_bulk_data *consumers)
2571 int i;
2572 int ret;
2574 for (i = num_consumers - 1; i >= 0; --i) {
2575 ret = regulator_disable(consumers[i].consumer);
2576 if (ret != 0)
2577 goto err;
2580 return 0;
2582 err:
2583 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
2584 for (++i; i < num_consumers; ++i)
2585 regulator_enable(consumers[i].consumer);
2587 return ret;
2589 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2592 * regulator_bulk_force_disable - force disable multiple regulator consumers
2594 * @num_consumers: Number of consumers
2595 * @consumers: Consumer data; clients are stored here.
2596 * @return 0 on success, an errno on failure
2598 * This convenience API allows consumers to forcibly disable multiple regulator
2599 * clients in a single API call.
2600 * NOTE: This should be used for situations when device damage will
2601 * likely occur if the regulators are not disabled (e.g. over temp).
2602 * Although regulator_force_disable function call for some consumers can
2603 * return error numbers, the function is called for all consumers.
2605 int regulator_bulk_force_disable(int num_consumers,
2606 struct regulator_bulk_data *consumers)
2608 int i;
2609 int ret;
2611 for (i = 0; i < num_consumers; i++)
2612 consumers[i].ret =
2613 regulator_force_disable(consumers[i].consumer);
2615 for (i = 0; i < num_consumers; i++) {
2616 if (consumers[i].ret != 0) {
2617 ret = consumers[i].ret;
2618 goto out;
2622 return 0;
2623 out:
2624 return ret;
2626 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
2629 * regulator_bulk_free - free multiple regulator consumers
2631 * @num_consumers: Number of consumers
2632 * @consumers: Consumer data; clients are stored here.
2634 * This convenience API allows consumers to free multiple regulator
2635 * clients in a single API call.
2637 void regulator_bulk_free(int num_consumers,
2638 struct regulator_bulk_data *consumers)
2640 int i;
2642 for (i = 0; i < num_consumers; i++) {
2643 regulator_put(consumers[i].consumer);
2644 consumers[i].consumer = NULL;
2647 EXPORT_SYMBOL_GPL(regulator_bulk_free);
2650 * regulator_notifier_call_chain - call regulator event notifier
2651 * @rdev: regulator source
2652 * @event: notifier block
2653 * @data: callback-specific data.
2655 * Called by regulator drivers to notify clients a regulator event has
2656 * occurred. We also notify regulator clients downstream.
2657 * Note lock must be held by caller.
2659 int regulator_notifier_call_chain(struct regulator_dev *rdev,
2660 unsigned long event, void *data)
2662 _notifier_call_chain(rdev, event, data);
2663 return NOTIFY_DONE;
2666 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2669 * regulator_mode_to_status - convert a regulator mode into a status
2671 * @mode: Mode to convert
2673 * Convert a regulator mode into a status.
2675 int regulator_mode_to_status(unsigned int mode)
2677 switch (mode) {
2678 case REGULATOR_MODE_FAST:
2679 return REGULATOR_STATUS_FAST;
2680 case REGULATOR_MODE_NORMAL:
2681 return REGULATOR_STATUS_NORMAL;
2682 case REGULATOR_MODE_IDLE:
2683 return REGULATOR_STATUS_IDLE;
2684 case REGULATOR_STATUS_STANDBY:
2685 return REGULATOR_STATUS_STANDBY;
2686 default:
2687 return 0;
2690 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2693 * To avoid cluttering sysfs (and memory) with useless state, only
2694 * create attributes that can be meaningfully displayed.
2696 static int add_regulator_attributes(struct regulator_dev *rdev)
2698 struct device *dev = &rdev->dev;
2699 struct regulator_ops *ops = rdev->desc->ops;
2700 int status = 0;
2702 /* some attributes need specific methods to be displayed */
2703 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
2704 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0)) {
2705 status = device_create_file(dev, &dev_attr_microvolts);
2706 if (status < 0)
2707 return status;
2709 if (ops->get_current_limit) {
2710 status = device_create_file(dev, &dev_attr_microamps);
2711 if (status < 0)
2712 return status;
2714 if (ops->get_mode) {
2715 status = device_create_file(dev, &dev_attr_opmode);
2716 if (status < 0)
2717 return status;
2719 if (ops->is_enabled) {
2720 status = device_create_file(dev, &dev_attr_state);
2721 if (status < 0)
2722 return status;
2724 if (ops->get_status) {
2725 status = device_create_file(dev, &dev_attr_status);
2726 if (status < 0)
2727 return status;
2730 /* some attributes are type-specific */
2731 if (rdev->desc->type == REGULATOR_CURRENT) {
2732 status = device_create_file(dev, &dev_attr_requested_microamps);
2733 if (status < 0)
2734 return status;
2737 /* all the other attributes exist to support constraints;
2738 * don't show them if there are no constraints, or if the
2739 * relevant supporting methods are missing.
2741 if (!rdev->constraints)
2742 return status;
2744 /* constraints need specific supporting methods */
2745 if (ops->set_voltage || ops->set_voltage_sel) {
2746 status = device_create_file(dev, &dev_attr_min_microvolts);
2747 if (status < 0)
2748 return status;
2749 status = device_create_file(dev, &dev_attr_max_microvolts);
2750 if (status < 0)
2751 return status;
2753 if (ops->set_current_limit) {
2754 status = device_create_file(dev, &dev_attr_min_microamps);
2755 if (status < 0)
2756 return status;
2757 status = device_create_file(dev, &dev_attr_max_microamps);
2758 if (status < 0)
2759 return status;
2762 /* suspend mode constraints need multiple supporting methods */
2763 if (!(ops->set_suspend_enable && ops->set_suspend_disable))
2764 return status;
2766 status = device_create_file(dev, &dev_attr_suspend_standby_state);
2767 if (status < 0)
2768 return status;
2769 status = device_create_file(dev, &dev_attr_suspend_mem_state);
2770 if (status < 0)
2771 return status;
2772 status = device_create_file(dev, &dev_attr_suspend_disk_state);
2773 if (status < 0)
2774 return status;
2776 if (ops->set_suspend_voltage) {
2777 status = device_create_file(dev,
2778 &dev_attr_suspend_standby_microvolts);
2779 if (status < 0)
2780 return status;
2781 status = device_create_file(dev,
2782 &dev_attr_suspend_mem_microvolts);
2783 if (status < 0)
2784 return status;
2785 status = device_create_file(dev,
2786 &dev_attr_suspend_disk_microvolts);
2787 if (status < 0)
2788 return status;
2791 if (ops->set_suspend_mode) {
2792 status = device_create_file(dev,
2793 &dev_attr_suspend_standby_mode);
2794 if (status < 0)
2795 return status;
2796 status = device_create_file(dev,
2797 &dev_attr_suspend_mem_mode);
2798 if (status < 0)
2799 return status;
2800 status = device_create_file(dev,
2801 &dev_attr_suspend_disk_mode);
2802 if (status < 0)
2803 return status;
2806 return status;
2809 static void rdev_init_debugfs(struct regulator_dev *rdev)
2811 rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
2812 if (!rdev->debugfs) {
2813 rdev_warn(rdev, "Failed to create debugfs directory\n");
2814 return;
2817 debugfs_create_u32("use_count", 0444, rdev->debugfs,
2818 &rdev->use_count);
2819 debugfs_create_u32("open_count", 0444, rdev->debugfs,
2820 &rdev->open_count);
2824 * regulator_register - register regulator
2825 * @regulator_desc: regulator to register
2826 * @dev: struct device for the regulator
2827 * @init_data: platform provided init data, passed through by driver
2828 * @driver_data: private regulator data
2829 * @of_node: OpenFirmware node to parse for device tree bindings (may be
2830 * NULL).
2832 * Called by regulator drivers to register a regulator.
2833 * Returns 0 on success.
2835 struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2836 struct device *dev, const struct regulator_init_data *init_data,
2837 void *driver_data, struct device_node *of_node)
2839 const struct regulation_constraints *constraints = NULL;
2840 static atomic_t regulator_no = ATOMIC_INIT(0);
2841 struct regulator_dev *rdev;
2842 int ret, i;
2843 const char *supply = NULL;
2845 if (regulator_desc == NULL)
2846 return ERR_PTR(-EINVAL);
2848 if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2849 return ERR_PTR(-EINVAL);
2851 if (regulator_desc->type != REGULATOR_VOLTAGE &&
2852 regulator_desc->type != REGULATOR_CURRENT)
2853 return ERR_PTR(-EINVAL);
2855 /* Only one of each should be implemented */
2856 WARN_ON(regulator_desc->ops->get_voltage &&
2857 regulator_desc->ops->get_voltage_sel);
2858 WARN_ON(regulator_desc->ops->set_voltage &&
2859 regulator_desc->ops->set_voltage_sel);
2861 /* If we're using selectors we must implement list_voltage. */
2862 if (regulator_desc->ops->get_voltage_sel &&
2863 !regulator_desc->ops->list_voltage) {
2864 return ERR_PTR(-EINVAL);
2866 if (regulator_desc->ops->set_voltage_sel &&
2867 !regulator_desc->ops->list_voltage) {
2868 return ERR_PTR(-EINVAL);
2871 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2872 if (rdev == NULL)
2873 return ERR_PTR(-ENOMEM);
2875 mutex_lock(&regulator_list_mutex);
2877 mutex_init(&rdev->mutex);
2878 rdev->reg_data = driver_data;
2879 rdev->owner = regulator_desc->owner;
2880 rdev->desc = regulator_desc;
2881 INIT_LIST_HEAD(&rdev->consumer_list);
2882 INIT_LIST_HEAD(&rdev->list);
2883 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2884 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
2886 /* preform any regulator specific init */
2887 if (init_data && init_data->regulator_init) {
2888 ret = init_data->regulator_init(rdev->reg_data);
2889 if (ret < 0)
2890 goto clean;
2893 /* register with sysfs */
2894 rdev->dev.class = &regulator_class;
2895 rdev->dev.of_node = of_node;
2896 rdev->dev.parent = dev;
2897 dev_set_name(&rdev->dev, "regulator.%d",
2898 atomic_inc_return(&regulator_no) - 1);
2899 ret = device_register(&rdev->dev);
2900 if (ret != 0) {
2901 put_device(&rdev->dev);
2902 goto clean;
2905 dev_set_drvdata(&rdev->dev, rdev);
2907 /* set regulator constraints */
2908 if (init_data)
2909 constraints = &init_data->constraints;
2911 ret = set_machine_constraints(rdev, constraints);
2912 if (ret < 0)
2913 goto scrub;
2915 /* add attributes supported by this regulator */
2916 ret = add_regulator_attributes(rdev);
2917 if (ret < 0)
2918 goto scrub;
2920 if (init_data && init_data->supply_regulator)
2921 supply = init_data->supply_regulator;
2922 else if (regulator_desc->supply_name)
2923 supply = regulator_desc->supply_name;
2925 if (supply) {
2926 struct regulator_dev *r;
2928 r = regulator_dev_lookup(dev, supply);
2930 if (!r) {
2931 dev_err(dev, "Failed to find supply %s\n", supply);
2932 ret = -EPROBE_DEFER;
2933 goto scrub;
2936 ret = set_supply(rdev, r);
2937 if (ret < 0)
2938 goto scrub;
2940 /* Enable supply if rail is enabled */
2941 if (rdev->desc->ops->is_enabled &&
2942 rdev->desc->ops->is_enabled(rdev)) {
2943 ret = regulator_enable(rdev->supply);
2944 if (ret < 0)
2945 goto scrub;
2949 /* add consumers devices */
2950 if (init_data) {
2951 for (i = 0; i < init_data->num_consumer_supplies; i++) {
2952 ret = set_consumer_device_supply(rdev,
2953 init_data->consumer_supplies[i].dev_name,
2954 init_data->consumer_supplies[i].supply);
2955 if (ret < 0) {
2956 dev_err(dev, "Failed to set supply %s\n",
2957 init_data->consumer_supplies[i].supply);
2958 goto unset_supplies;
2963 list_add(&rdev->list, &regulator_list);
2965 rdev_init_debugfs(rdev);
2966 out:
2967 mutex_unlock(&regulator_list_mutex);
2968 return rdev;
2970 unset_supplies:
2971 unset_regulator_supplies(rdev);
2973 scrub:
2974 if (rdev->supply)
2975 regulator_put(rdev->supply);
2976 kfree(rdev->constraints);
2977 device_unregister(&rdev->dev);
2978 /* device core frees rdev */
2979 rdev = ERR_PTR(ret);
2980 goto out;
2982 clean:
2983 kfree(rdev);
2984 rdev = ERR_PTR(ret);
2985 goto out;
2987 EXPORT_SYMBOL_GPL(regulator_register);
2990 * regulator_unregister - unregister regulator
2991 * @rdev: regulator to unregister
2993 * Called by regulator drivers to unregister a regulator.
2995 void regulator_unregister(struct regulator_dev *rdev)
2997 if (rdev == NULL)
2998 return;
3000 if (rdev->supply)
3001 regulator_put(rdev->supply);
3002 mutex_lock(&regulator_list_mutex);
3003 debugfs_remove_recursive(rdev->debugfs);
3004 flush_work_sync(&rdev->disable_work.work);
3005 WARN_ON(rdev->open_count);
3006 unset_regulator_supplies(rdev);
3007 list_del(&rdev->list);
3008 kfree(rdev->constraints);
3009 device_unregister(&rdev->dev);
3010 mutex_unlock(&regulator_list_mutex);
3012 EXPORT_SYMBOL_GPL(regulator_unregister);
3015 * regulator_suspend_prepare - prepare regulators for system wide suspend
3016 * @state: system suspend state
3018 * Configure each regulator with it's suspend operating parameters for state.
3019 * This will usually be called by machine suspend code prior to supending.
3021 int regulator_suspend_prepare(suspend_state_t state)
3023 struct regulator_dev *rdev;
3024 int ret = 0;
3026 /* ON is handled by regulator active state */
3027 if (state == PM_SUSPEND_ON)
3028 return -EINVAL;
3030 mutex_lock(&regulator_list_mutex);
3031 list_for_each_entry(rdev, &regulator_list, list) {
3033 mutex_lock(&rdev->mutex);
3034 ret = suspend_prepare(rdev, state);
3035 mutex_unlock(&rdev->mutex);
3037 if (ret < 0) {
3038 rdev_err(rdev, "failed to prepare\n");
3039 goto out;
3042 out:
3043 mutex_unlock(&regulator_list_mutex);
3044 return ret;
3046 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3049 * regulator_suspend_finish - resume regulators from system wide suspend
3051 * Turn on regulators that might be turned off by regulator_suspend_prepare
3052 * and that should be turned on according to the regulators properties.
3054 int regulator_suspend_finish(void)
3056 struct regulator_dev *rdev;
3057 int ret = 0, error;
3059 mutex_lock(&regulator_list_mutex);
3060 list_for_each_entry(rdev, &regulator_list, list) {
3061 struct regulator_ops *ops = rdev->desc->ops;
3063 mutex_lock(&rdev->mutex);
3064 if ((rdev->use_count > 0 || rdev->constraints->always_on) &&
3065 ops->enable) {
3066 error = ops->enable(rdev);
3067 if (error)
3068 ret = error;
3069 } else {
3070 if (!has_full_constraints)
3071 goto unlock;
3072 if (!ops->disable)
3073 goto unlock;
3074 if (ops->is_enabled && !ops->is_enabled(rdev))
3075 goto unlock;
3077 error = ops->disable(rdev);
3078 if (error)
3079 ret = error;
3081 unlock:
3082 mutex_unlock(&rdev->mutex);
3084 mutex_unlock(&regulator_list_mutex);
3085 return ret;
3087 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3090 * regulator_has_full_constraints - the system has fully specified constraints
3092 * Calling this function will cause the regulator API to disable all
3093 * regulators which have a zero use count and don't have an always_on
3094 * constraint in a late_initcall.
3096 * The intention is that this will become the default behaviour in a
3097 * future kernel release so users are encouraged to use this facility
3098 * now.
3100 void regulator_has_full_constraints(void)
3102 has_full_constraints = 1;
3104 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3107 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
3109 * Calling this function will cause the regulator API to provide a
3110 * dummy regulator to consumers if no physical regulator is found,
3111 * allowing most consumers to proceed as though a regulator were
3112 * configured. This allows systems such as those with software
3113 * controllable regulators for the CPU core only to be brought up more
3114 * readily.
3116 void regulator_use_dummy_regulator(void)
3118 board_wants_dummy_regulator = true;
3120 EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
3123 * rdev_get_drvdata - get rdev regulator driver data
3124 * @rdev: regulator
3126 * Get rdev regulator driver private data. This call can be used in the
3127 * regulator driver context.
3129 void *rdev_get_drvdata(struct regulator_dev *rdev)
3131 return rdev->reg_data;
3133 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3136 * regulator_get_drvdata - get regulator driver data
3137 * @regulator: regulator
3139 * Get regulator driver private data. This call can be used in the consumer
3140 * driver context when non API regulator specific functions need to be called.
3142 void *regulator_get_drvdata(struct regulator *regulator)
3144 return regulator->rdev->reg_data;
3146 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3149 * regulator_set_drvdata - set regulator driver data
3150 * @regulator: regulator
3151 * @data: data
3153 void regulator_set_drvdata(struct regulator *regulator, void *data)
3155 regulator->rdev->reg_data = data;
3157 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3160 * regulator_get_id - get regulator ID
3161 * @rdev: regulator
3163 int rdev_get_id(struct regulator_dev *rdev)
3165 return rdev->desc->id;
3167 EXPORT_SYMBOL_GPL(rdev_get_id);
3169 struct device *rdev_get_dev(struct regulator_dev *rdev)
3171 return &rdev->dev;
3173 EXPORT_SYMBOL_GPL(rdev_get_dev);
3175 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3177 return reg_init_data->driver_data;
3179 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3181 #ifdef CONFIG_DEBUG_FS
3182 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3183 size_t count, loff_t *ppos)
3185 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3186 ssize_t len, ret = 0;
3187 struct regulator_map *map;
3189 if (!buf)
3190 return -ENOMEM;
3192 list_for_each_entry(map, &regulator_map_list, list) {
3193 len = snprintf(buf + ret, PAGE_SIZE - ret,
3194 "%s -> %s.%s\n",
3195 rdev_get_name(map->regulator), map->dev_name,
3196 map->supply);
3197 if (len >= 0)
3198 ret += len;
3199 if (ret > PAGE_SIZE) {
3200 ret = PAGE_SIZE;
3201 break;
3205 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3207 kfree(buf);
3209 return ret;
3211 #endif
3213 static const struct file_operations supply_map_fops = {
3214 #ifdef CONFIG_DEBUG_FS
3215 .read = supply_map_read_file,
3216 .llseek = default_llseek,
3217 #endif
3220 static int __init regulator_init(void)
3222 int ret;
3224 ret = class_register(&regulator_class);
3226 debugfs_root = debugfs_create_dir("regulator", NULL);
3227 if (!debugfs_root)
3228 pr_warn("regulator: Failed to create debugfs directory\n");
3230 debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3231 &supply_map_fops);
3233 regulator_dummy_init();
3235 return ret;
3238 /* init early to allow our consumers to complete system booting */
3239 core_initcall(regulator_init);
3241 static int __init regulator_init_complete(void)
3243 struct regulator_dev *rdev;
3244 struct regulator_ops *ops;
3245 struct regulation_constraints *c;
3246 int enabled, ret;
3248 mutex_lock(&regulator_list_mutex);
3250 /* If we have a full configuration then disable any regulators
3251 * which are not in use or always_on. This will become the
3252 * default behaviour in the future.
3254 list_for_each_entry(rdev, &regulator_list, list) {
3255 ops = rdev->desc->ops;
3256 c = rdev->constraints;
3258 if (!ops->disable || (c && c->always_on))
3259 continue;
3261 mutex_lock(&rdev->mutex);
3263 if (rdev->use_count)
3264 goto unlock;
3266 /* If we can't read the status assume it's on. */
3267 if (ops->is_enabled)
3268 enabled = ops->is_enabled(rdev);
3269 else
3270 enabled = 1;
3272 if (!enabled)
3273 goto unlock;
3275 if (has_full_constraints) {
3276 /* We log since this may kill the system if it
3277 * goes wrong. */
3278 rdev_info(rdev, "disabling\n");
3279 ret = ops->disable(rdev);
3280 if (ret != 0) {
3281 rdev_err(rdev, "couldn't disable: %d\n", ret);
3283 } else {
3284 /* The intention is that in future we will
3285 * assume that full constraints are provided
3286 * so warn even if we aren't going to do
3287 * anything here.
3289 rdev_warn(rdev, "incomplete constraints, leaving on\n");
3292 unlock:
3293 mutex_unlock(&rdev->mutex);
3296 mutex_unlock(&regulator_list_mutex);
3298 return 0;
3300 late_initcall(regulator_init_complete);