Linux 3.4.102
[linux/fpc-iii.git] / drivers / scsi / scsi_lib.c
blobac99b46dc4a4535a3f6605e0612891a33860f00b
1 /*
2 * scsi_lib.c Copyright (C) 1999 Eric Youngdale
4 * SCSI queueing library.
5 * Initial versions: Eric Youngdale (eric@andante.org).
6 * Based upon conversations with large numbers
7 * of people at Linux Expo.
8 */
10 #include <linux/bio.h>
11 #include <linux/bitops.h>
12 #include <linux/blkdev.h>
13 #include <linux/completion.h>
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/mempool.h>
17 #include <linux/slab.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
24 #include <scsi/scsi.h>
25 #include <scsi/scsi_cmnd.h>
26 #include <scsi/scsi_dbg.h>
27 #include <scsi/scsi_device.h>
28 #include <scsi/scsi_driver.h>
29 #include <scsi/scsi_eh.h>
30 #include <scsi/scsi_host.h>
32 #include "scsi_priv.h"
33 #include "scsi_logging.h"
36 #define SG_MEMPOOL_NR ARRAY_SIZE(scsi_sg_pools)
37 #define SG_MEMPOOL_SIZE 2
39 struct scsi_host_sg_pool {
40 size_t size;
41 char *name;
42 struct kmem_cache *slab;
43 mempool_t *pool;
46 #define SP(x) { x, "sgpool-" __stringify(x) }
47 #if (SCSI_MAX_SG_SEGMENTS < 32)
48 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
49 #endif
50 static struct scsi_host_sg_pool scsi_sg_pools[] = {
51 SP(8),
52 SP(16),
53 #if (SCSI_MAX_SG_SEGMENTS > 32)
54 SP(32),
55 #if (SCSI_MAX_SG_SEGMENTS > 64)
56 SP(64),
57 #if (SCSI_MAX_SG_SEGMENTS > 128)
58 SP(128),
59 #if (SCSI_MAX_SG_SEGMENTS > 256)
60 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
61 #endif
62 #endif
63 #endif
64 #endif
65 SP(SCSI_MAX_SG_SEGMENTS)
67 #undef SP
69 struct kmem_cache *scsi_sdb_cache;
72 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
73 * not change behaviour from the previous unplug mechanism, experimentation
74 * may prove this needs changing.
76 #define SCSI_QUEUE_DELAY 3
79 * Function: scsi_unprep_request()
81 * Purpose: Remove all preparation done for a request, including its
82 * associated scsi_cmnd, so that it can be requeued.
84 * Arguments: req - request to unprepare
86 * Lock status: Assumed that no locks are held upon entry.
88 * Returns: Nothing.
90 static void scsi_unprep_request(struct request *req)
92 struct scsi_cmnd *cmd = req->special;
94 blk_unprep_request(req);
95 req->special = NULL;
97 scsi_put_command(cmd);
101 * __scsi_queue_insert - private queue insertion
102 * @cmd: The SCSI command being requeued
103 * @reason: The reason for the requeue
104 * @unbusy: Whether the queue should be unbusied
106 * This is a private queue insertion. The public interface
107 * scsi_queue_insert() always assumes the queue should be unbusied
108 * because it's always called before the completion. This function is
109 * for a requeue after completion, which should only occur in this
110 * file.
112 static int __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
114 struct Scsi_Host *host = cmd->device->host;
115 struct scsi_device *device = cmd->device;
116 struct scsi_target *starget = scsi_target(device);
117 struct request_queue *q = device->request_queue;
118 unsigned long flags;
120 SCSI_LOG_MLQUEUE(1,
121 printk("Inserting command %p into mlqueue\n", cmd));
124 * Set the appropriate busy bit for the device/host.
126 * If the host/device isn't busy, assume that something actually
127 * completed, and that we should be able to queue a command now.
129 * Note that the prior mid-layer assumption that any host could
130 * always queue at least one command is now broken. The mid-layer
131 * will implement a user specifiable stall (see
132 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
133 * if a command is requeued with no other commands outstanding
134 * either for the device or for the host.
136 switch (reason) {
137 case SCSI_MLQUEUE_HOST_BUSY:
138 host->host_blocked = host->max_host_blocked;
139 break;
140 case SCSI_MLQUEUE_DEVICE_BUSY:
141 case SCSI_MLQUEUE_EH_RETRY:
142 device->device_blocked = device->max_device_blocked;
143 break;
144 case SCSI_MLQUEUE_TARGET_BUSY:
145 starget->target_blocked = starget->max_target_blocked;
146 break;
150 * Decrement the counters, since these commands are no longer
151 * active on the host/device.
153 if (unbusy)
154 scsi_device_unbusy(device);
157 * Requeue this command. It will go before all other commands
158 * that are already in the queue.
160 spin_lock_irqsave(q->queue_lock, flags);
161 blk_requeue_request(q, cmd->request);
162 spin_unlock_irqrestore(q->queue_lock, flags);
164 kblockd_schedule_work(q, &device->requeue_work);
166 return 0;
170 * Function: scsi_queue_insert()
172 * Purpose: Insert a command in the midlevel queue.
174 * Arguments: cmd - command that we are adding to queue.
175 * reason - why we are inserting command to queue.
177 * Lock status: Assumed that lock is not held upon entry.
179 * Returns: Nothing.
181 * Notes: We do this for one of two cases. Either the host is busy
182 * and it cannot accept any more commands for the time being,
183 * or the device returned QUEUE_FULL and can accept no more
184 * commands.
185 * Notes: This could be called either from an interrupt context or a
186 * normal process context.
188 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
190 return __scsi_queue_insert(cmd, reason, 1);
193 * scsi_execute - insert request and wait for the result
194 * @sdev: scsi device
195 * @cmd: scsi command
196 * @data_direction: data direction
197 * @buffer: data buffer
198 * @bufflen: len of buffer
199 * @sense: optional sense buffer
200 * @timeout: request timeout in seconds
201 * @retries: number of times to retry request
202 * @flags: or into request flags;
203 * @resid: optional residual length
205 * returns the req->errors value which is the scsi_cmnd result
206 * field.
208 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
209 int data_direction, void *buffer, unsigned bufflen,
210 unsigned char *sense, int timeout, int retries, int flags,
211 int *resid)
213 struct request *req;
214 int write = (data_direction == DMA_TO_DEVICE);
215 int ret = DRIVER_ERROR << 24;
217 req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
218 if (!req)
219 return ret;
221 if (bufflen && blk_rq_map_kern(sdev->request_queue, req,
222 buffer, bufflen, __GFP_WAIT))
223 goto out;
225 req->cmd_len = COMMAND_SIZE(cmd[0]);
226 memcpy(req->cmd, cmd, req->cmd_len);
227 req->sense = sense;
228 req->sense_len = 0;
229 req->retries = retries;
230 req->timeout = timeout;
231 req->cmd_type = REQ_TYPE_BLOCK_PC;
232 req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
235 * head injection *required* here otherwise quiesce won't work
237 blk_execute_rq(req->q, NULL, req, 1);
240 * Some devices (USB mass-storage in particular) may transfer
241 * garbage data together with a residue indicating that the data
242 * is invalid. Prevent the garbage from being misinterpreted
243 * and prevent security leaks by zeroing out the excess data.
245 if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
246 memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
248 if (resid)
249 *resid = req->resid_len;
250 ret = req->errors;
251 out:
252 blk_put_request(req);
254 return ret;
256 EXPORT_SYMBOL(scsi_execute);
259 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
260 int data_direction, void *buffer, unsigned bufflen,
261 struct scsi_sense_hdr *sshdr, int timeout, int retries,
262 int *resid)
264 char *sense = NULL;
265 int result;
267 if (sshdr) {
268 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
269 if (!sense)
270 return DRIVER_ERROR << 24;
272 result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
273 sense, timeout, retries, 0, resid);
274 if (sshdr)
275 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
277 kfree(sense);
278 return result;
280 EXPORT_SYMBOL(scsi_execute_req);
283 * Function: scsi_init_cmd_errh()
285 * Purpose: Initialize cmd fields related to error handling.
287 * Arguments: cmd - command that is ready to be queued.
289 * Notes: This function has the job of initializing a number of
290 * fields related to error handling. Typically this will
291 * be called once for each command, as required.
293 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
295 cmd->serial_number = 0;
296 scsi_set_resid(cmd, 0);
297 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
298 if (cmd->cmd_len == 0)
299 cmd->cmd_len = scsi_command_size(cmd->cmnd);
302 void scsi_device_unbusy(struct scsi_device *sdev)
304 struct Scsi_Host *shost = sdev->host;
305 struct scsi_target *starget = scsi_target(sdev);
306 unsigned long flags;
308 spin_lock_irqsave(shost->host_lock, flags);
309 shost->host_busy--;
310 starget->target_busy--;
311 if (unlikely(scsi_host_in_recovery(shost) &&
312 (shost->host_failed || shost->host_eh_scheduled)))
313 scsi_eh_wakeup(shost);
314 spin_unlock(shost->host_lock);
315 spin_lock(sdev->request_queue->queue_lock);
316 sdev->device_busy--;
317 spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
321 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
322 * and call blk_run_queue for all the scsi_devices on the target -
323 * including current_sdev first.
325 * Called with *no* scsi locks held.
327 static void scsi_single_lun_run(struct scsi_device *current_sdev)
329 struct Scsi_Host *shost = current_sdev->host;
330 struct scsi_device *sdev, *tmp;
331 struct scsi_target *starget = scsi_target(current_sdev);
332 unsigned long flags;
334 spin_lock_irqsave(shost->host_lock, flags);
335 starget->starget_sdev_user = NULL;
336 spin_unlock_irqrestore(shost->host_lock, flags);
339 * Call blk_run_queue for all LUNs on the target, starting with
340 * current_sdev. We race with others (to set starget_sdev_user),
341 * but in most cases, we will be first. Ideally, each LU on the
342 * target would get some limited time or requests on the target.
344 blk_run_queue(current_sdev->request_queue);
346 spin_lock_irqsave(shost->host_lock, flags);
347 if (starget->starget_sdev_user)
348 goto out;
349 list_for_each_entry_safe(sdev, tmp, &starget->devices,
350 same_target_siblings) {
351 if (sdev == current_sdev)
352 continue;
353 if (scsi_device_get(sdev))
354 continue;
356 spin_unlock_irqrestore(shost->host_lock, flags);
357 blk_run_queue(sdev->request_queue);
358 spin_lock_irqsave(shost->host_lock, flags);
360 scsi_device_put(sdev);
362 out:
363 spin_unlock_irqrestore(shost->host_lock, flags);
366 static inline int scsi_device_is_busy(struct scsi_device *sdev)
368 if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked)
369 return 1;
371 return 0;
374 static inline int scsi_target_is_busy(struct scsi_target *starget)
376 return ((starget->can_queue > 0 &&
377 starget->target_busy >= starget->can_queue) ||
378 starget->target_blocked);
381 static inline int scsi_host_is_busy(struct Scsi_Host *shost)
383 if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
384 shost->host_blocked || shost->host_self_blocked)
385 return 1;
387 return 0;
391 * Function: scsi_run_queue()
393 * Purpose: Select a proper request queue to serve next
395 * Arguments: q - last request's queue
397 * Returns: Nothing
399 * Notes: The previous command was completely finished, start
400 * a new one if possible.
402 static void scsi_run_queue(struct request_queue *q)
404 struct scsi_device *sdev = q->queuedata;
405 struct Scsi_Host *shost;
406 LIST_HEAD(starved_list);
407 unsigned long flags;
409 shost = sdev->host;
410 if (scsi_target(sdev)->single_lun)
411 scsi_single_lun_run(sdev);
413 spin_lock_irqsave(shost->host_lock, flags);
414 list_splice_init(&shost->starved_list, &starved_list);
416 while (!list_empty(&starved_list)) {
418 * As long as shost is accepting commands and we have
419 * starved queues, call blk_run_queue. scsi_request_fn
420 * drops the queue_lock and can add us back to the
421 * starved_list.
423 * host_lock protects the starved_list and starved_entry.
424 * scsi_request_fn must get the host_lock before checking
425 * or modifying starved_list or starved_entry.
427 if (scsi_host_is_busy(shost))
428 break;
430 sdev = list_entry(starved_list.next,
431 struct scsi_device, starved_entry);
432 list_del_init(&sdev->starved_entry);
433 if (scsi_target_is_busy(scsi_target(sdev))) {
434 list_move_tail(&sdev->starved_entry,
435 &shost->starved_list);
436 continue;
439 spin_unlock(shost->host_lock);
440 spin_lock(sdev->request_queue->queue_lock);
441 __blk_run_queue(sdev->request_queue);
442 spin_unlock(sdev->request_queue->queue_lock);
443 spin_lock(shost->host_lock);
445 /* put any unprocessed entries back */
446 list_splice(&starved_list, &shost->starved_list);
447 spin_unlock_irqrestore(shost->host_lock, flags);
449 blk_run_queue(q);
452 void scsi_requeue_run_queue(struct work_struct *work)
454 struct scsi_device *sdev;
455 struct request_queue *q;
457 sdev = container_of(work, struct scsi_device, requeue_work);
458 q = sdev->request_queue;
459 scsi_run_queue(q);
463 * Function: scsi_requeue_command()
465 * Purpose: Handle post-processing of completed commands.
467 * Arguments: q - queue to operate on
468 * cmd - command that may need to be requeued.
470 * Returns: Nothing
472 * Notes: After command completion, there may be blocks left
473 * over which weren't finished by the previous command
474 * this can be for a number of reasons - the main one is
475 * I/O errors in the middle of the request, in which case
476 * we need to request the blocks that come after the bad
477 * sector.
478 * Notes: Upon return, cmd is a stale pointer.
480 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
482 struct scsi_device *sdev = cmd->device;
483 struct request *req = cmd->request;
484 unsigned long flags;
487 * We need to hold a reference on the device to avoid the queue being
488 * killed after the unlock and before scsi_run_queue is invoked which
489 * may happen because scsi_unprep_request() puts the command which
490 * releases its reference on the device.
492 get_device(&sdev->sdev_gendev);
494 spin_lock_irqsave(q->queue_lock, flags);
495 scsi_unprep_request(req);
496 blk_requeue_request(q, req);
497 spin_unlock_irqrestore(q->queue_lock, flags);
499 scsi_run_queue(q);
501 put_device(&sdev->sdev_gendev);
504 void scsi_next_command(struct scsi_cmnd *cmd)
506 struct scsi_device *sdev = cmd->device;
507 struct request_queue *q = sdev->request_queue;
509 /* need to hold a reference on the device before we let go of the cmd */
510 get_device(&sdev->sdev_gendev);
512 scsi_put_command(cmd);
513 scsi_run_queue(q);
515 /* ok to remove device now */
516 put_device(&sdev->sdev_gendev);
519 void scsi_run_host_queues(struct Scsi_Host *shost)
521 struct scsi_device *sdev;
523 shost_for_each_device(sdev, shost)
524 scsi_run_queue(sdev->request_queue);
527 static void __scsi_release_buffers(struct scsi_cmnd *, int);
530 * Function: scsi_end_request()
532 * Purpose: Post-processing of completed commands (usually invoked at end
533 * of upper level post-processing and scsi_io_completion).
535 * Arguments: cmd - command that is complete.
536 * error - 0 if I/O indicates success, < 0 for I/O error.
537 * bytes - number of bytes of completed I/O
538 * requeue - indicates whether we should requeue leftovers.
540 * Lock status: Assumed that lock is not held upon entry.
542 * Returns: cmd if requeue required, NULL otherwise.
544 * Notes: This is called for block device requests in order to
545 * mark some number of sectors as complete.
547 * We are guaranteeing that the request queue will be goosed
548 * at some point during this call.
549 * Notes: If cmd was requeued, upon return it will be a stale pointer.
551 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error,
552 int bytes, int requeue)
554 struct request_queue *q = cmd->device->request_queue;
555 struct request *req = cmd->request;
558 * If there are blocks left over at the end, set up the command
559 * to queue the remainder of them.
561 if (blk_end_request(req, error, bytes)) {
562 /* kill remainder if no retrys */
563 if (error && scsi_noretry_cmd(cmd))
564 blk_end_request_all(req, error);
565 else {
566 if (requeue) {
568 * Bleah. Leftovers again. Stick the
569 * leftovers in the front of the
570 * queue, and goose the queue again.
572 scsi_release_buffers(cmd);
573 scsi_requeue_command(q, cmd);
574 cmd = NULL;
576 return cmd;
581 * This will goose the queue request function at the end, so we don't
582 * need to worry about launching another command.
584 __scsi_release_buffers(cmd, 0);
585 scsi_next_command(cmd);
586 return NULL;
589 static inline unsigned int scsi_sgtable_index(unsigned short nents)
591 unsigned int index;
593 BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
595 if (nents <= 8)
596 index = 0;
597 else
598 index = get_count_order(nents) - 3;
600 return index;
603 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
605 struct scsi_host_sg_pool *sgp;
607 sgp = scsi_sg_pools + scsi_sgtable_index(nents);
608 mempool_free(sgl, sgp->pool);
611 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
613 struct scsi_host_sg_pool *sgp;
615 sgp = scsi_sg_pools + scsi_sgtable_index(nents);
616 return mempool_alloc(sgp->pool, gfp_mask);
619 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
620 gfp_t gfp_mask)
622 int ret;
624 BUG_ON(!nents);
626 ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
627 gfp_mask, scsi_sg_alloc);
628 if (unlikely(ret))
629 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
630 scsi_sg_free);
632 return ret;
635 static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
637 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
640 static void __scsi_release_buffers(struct scsi_cmnd *cmd, int do_bidi_check)
643 if (cmd->sdb.table.nents)
644 scsi_free_sgtable(&cmd->sdb);
646 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
648 if (do_bidi_check && scsi_bidi_cmnd(cmd)) {
649 struct scsi_data_buffer *bidi_sdb =
650 cmd->request->next_rq->special;
651 scsi_free_sgtable(bidi_sdb);
652 kmem_cache_free(scsi_sdb_cache, bidi_sdb);
653 cmd->request->next_rq->special = NULL;
656 if (scsi_prot_sg_count(cmd))
657 scsi_free_sgtable(cmd->prot_sdb);
661 * Function: scsi_release_buffers()
663 * Purpose: Completion processing for block device I/O requests.
665 * Arguments: cmd - command that we are bailing.
667 * Lock status: Assumed that no lock is held upon entry.
669 * Returns: Nothing
671 * Notes: In the event that an upper level driver rejects a
672 * command, we must release resources allocated during
673 * the __init_io() function. Primarily this would involve
674 * the scatter-gather table, and potentially any bounce
675 * buffers.
677 void scsi_release_buffers(struct scsi_cmnd *cmd)
679 __scsi_release_buffers(cmd, 1);
681 EXPORT_SYMBOL(scsi_release_buffers);
683 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
685 int error = 0;
687 switch(host_byte(result)) {
688 case DID_TRANSPORT_FAILFAST:
689 error = -ENOLINK;
690 break;
691 case DID_TARGET_FAILURE:
692 set_host_byte(cmd, DID_OK);
693 error = -EREMOTEIO;
694 break;
695 case DID_NEXUS_FAILURE:
696 set_host_byte(cmd, DID_OK);
697 error = -EBADE;
698 break;
699 default:
700 error = -EIO;
701 break;
704 return error;
708 * Function: scsi_io_completion()
710 * Purpose: Completion processing for block device I/O requests.
712 * Arguments: cmd - command that is finished.
714 * Lock status: Assumed that no lock is held upon entry.
716 * Returns: Nothing
718 * Notes: This function is matched in terms of capabilities to
719 * the function that created the scatter-gather list.
720 * In other words, if there are no bounce buffers
721 * (the normal case for most drivers), we don't need
722 * the logic to deal with cleaning up afterwards.
724 * We must call scsi_end_request(). This will finish off
725 * the specified number of sectors. If we are done, the
726 * command block will be released and the queue function
727 * will be goosed. If we are not done then we have to
728 * figure out what to do next:
730 * a) We can call scsi_requeue_command(). The request
731 * will be unprepared and put back on the queue. Then
732 * a new command will be created for it. This should
733 * be used if we made forward progress, or if we want
734 * to switch from READ(10) to READ(6) for example.
736 * b) We can call scsi_queue_insert(). The request will
737 * be put back on the queue and retried using the same
738 * command as before, possibly after a delay.
740 * c) We can call blk_end_request() with -EIO to fail
741 * the remainder of the request.
743 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
745 int result = cmd->result;
746 struct request_queue *q = cmd->device->request_queue;
747 struct request *req = cmd->request;
748 int error = 0;
749 struct scsi_sense_hdr sshdr;
750 int sense_valid = 0;
751 int sense_deferred = 0;
752 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
753 ACTION_DELAYED_RETRY} action;
754 char *description = NULL;
756 if (result) {
757 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
758 if (sense_valid)
759 sense_deferred = scsi_sense_is_deferred(&sshdr);
762 if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
763 if (result) {
764 if (sense_valid && req->sense) {
766 * SG_IO wants current and deferred errors
768 int len = 8 + cmd->sense_buffer[7];
770 if (len > SCSI_SENSE_BUFFERSIZE)
771 len = SCSI_SENSE_BUFFERSIZE;
772 memcpy(req->sense, cmd->sense_buffer, len);
773 req->sense_len = len;
775 if (!sense_deferred)
776 error = __scsi_error_from_host_byte(cmd, result);
779 * __scsi_error_from_host_byte may have reset the host_byte
781 req->errors = cmd->result;
783 req->resid_len = scsi_get_resid(cmd);
785 if (scsi_bidi_cmnd(cmd)) {
787 * Bidi commands Must be complete as a whole,
788 * both sides at once.
790 req->next_rq->resid_len = scsi_in(cmd)->resid;
792 scsi_release_buffers(cmd);
793 blk_end_request_all(req, 0);
795 scsi_next_command(cmd);
796 return;
798 } else if (blk_rq_bytes(req) == 0 && result && !sense_deferred) {
800 * Certain non BLOCK_PC requests are commands that don't
801 * actually transfer anything (FLUSH), so cannot use
802 * good_bytes != blk_rq_bytes(req) as the signal for an error.
803 * This sets the error explicitly for the problem case.
805 error = __scsi_error_from_host_byte(cmd, result);
808 /* no bidi support for !REQ_TYPE_BLOCK_PC yet */
809 BUG_ON(blk_bidi_rq(req));
812 * Next deal with any sectors which we were able to correctly
813 * handle.
815 SCSI_LOG_HLCOMPLETE(1, printk("%u sectors total, "
816 "%d bytes done.\n",
817 blk_rq_sectors(req), good_bytes));
820 * Recovered errors need reporting, but they're always treated
821 * as success, so fiddle the result code here. For BLOCK_PC
822 * we already took a copy of the original into rq->errors which
823 * is what gets returned to the user
825 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
826 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
827 * print since caller wants ATA registers. Only occurs on
828 * SCSI ATA PASS_THROUGH commands when CK_COND=1
830 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
832 else if (!(req->cmd_flags & REQ_QUIET))
833 scsi_print_sense("", cmd);
834 result = 0;
835 /* BLOCK_PC may have set error */
836 error = 0;
840 * A number of bytes were successfully read. If there
841 * are leftovers and there is some kind of error
842 * (result != 0), retry the rest.
844 if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL)
845 return;
847 error = __scsi_error_from_host_byte(cmd, result);
849 if (host_byte(result) == DID_RESET) {
850 /* Third party bus reset or reset for error recovery
851 * reasons. Just retry the command and see what
852 * happens.
854 action = ACTION_RETRY;
855 } else if (sense_valid && !sense_deferred) {
856 switch (sshdr.sense_key) {
857 case UNIT_ATTENTION:
858 if (cmd->device->removable) {
859 /* Detected disc change. Set a bit
860 * and quietly refuse further access.
862 cmd->device->changed = 1;
863 description = "Media Changed";
864 action = ACTION_FAIL;
865 } else {
866 /* Must have been a power glitch, or a
867 * bus reset. Could not have been a
868 * media change, so we just retry the
869 * command and see what happens.
871 action = ACTION_RETRY;
873 break;
874 case ILLEGAL_REQUEST:
875 /* If we had an ILLEGAL REQUEST returned, then
876 * we may have performed an unsupported
877 * command. The only thing this should be
878 * would be a ten byte read where only a six
879 * byte read was supported. Also, on a system
880 * where READ CAPACITY failed, we may have
881 * read past the end of the disk.
883 if ((cmd->device->use_10_for_rw &&
884 sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
885 (cmd->cmnd[0] == READ_10 ||
886 cmd->cmnd[0] == WRITE_10)) {
887 /* This will issue a new 6-byte command. */
888 cmd->device->use_10_for_rw = 0;
889 action = ACTION_REPREP;
890 } else if (sshdr.asc == 0x10) /* DIX */ {
891 description = "Host Data Integrity Failure";
892 action = ACTION_FAIL;
893 error = -EILSEQ;
894 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
895 } else if ((sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
896 (cmd->cmnd[0] == UNMAP ||
897 cmd->cmnd[0] == WRITE_SAME_16 ||
898 cmd->cmnd[0] == WRITE_SAME)) {
899 description = "Discard failure";
900 action = ACTION_FAIL;
901 error = -EREMOTEIO;
902 } else
903 action = ACTION_FAIL;
904 break;
905 case ABORTED_COMMAND:
906 action = ACTION_FAIL;
907 if (sshdr.asc == 0x10) { /* DIF */
908 description = "Target Data Integrity Failure";
909 error = -EILSEQ;
911 break;
912 case NOT_READY:
913 /* If the device is in the process of becoming
914 * ready, or has a temporary blockage, retry.
916 if (sshdr.asc == 0x04) {
917 switch (sshdr.ascq) {
918 case 0x01: /* becoming ready */
919 case 0x04: /* format in progress */
920 case 0x05: /* rebuild in progress */
921 case 0x06: /* recalculation in progress */
922 case 0x07: /* operation in progress */
923 case 0x08: /* Long write in progress */
924 case 0x09: /* self test in progress */
925 case 0x14: /* space allocation in progress */
926 action = ACTION_DELAYED_RETRY;
927 break;
928 default:
929 description = "Device not ready";
930 action = ACTION_FAIL;
931 break;
933 } else {
934 description = "Device not ready";
935 action = ACTION_FAIL;
937 break;
938 case VOLUME_OVERFLOW:
939 /* See SSC3rXX or current. */
940 action = ACTION_FAIL;
941 break;
942 default:
943 description = "Unhandled sense code";
944 action = ACTION_FAIL;
945 break;
947 } else {
948 description = "Unhandled error code";
949 action = ACTION_FAIL;
952 switch (action) {
953 case ACTION_FAIL:
954 /* Give up and fail the remainder of the request */
955 scsi_release_buffers(cmd);
956 if (!(req->cmd_flags & REQ_QUIET)) {
957 if (description)
958 scmd_printk(KERN_INFO, cmd, "%s\n",
959 description);
960 scsi_print_result(cmd);
961 if (driver_byte(result) & DRIVER_SENSE)
962 scsi_print_sense("", cmd);
963 scsi_print_command(cmd);
965 if (blk_end_request_err(req, error))
966 scsi_requeue_command(q, cmd);
967 else
968 scsi_next_command(cmd);
969 break;
970 case ACTION_REPREP:
971 /* Unprep the request and put it back at the head of the queue.
972 * A new command will be prepared and issued.
974 scsi_release_buffers(cmd);
975 scsi_requeue_command(q, cmd);
976 break;
977 case ACTION_RETRY:
978 /* Retry the same command immediately */
979 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
980 break;
981 case ACTION_DELAYED_RETRY:
982 /* Retry the same command after a delay */
983 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
984 break;
988 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
989 gfp_t gfp_mask)
991 int count;
994 * If sg table allocation fails, requeue request later.
996 if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
997 gfp_mask))) {
998 return BLKPREP_DEFER;
1001 req->buffer = NULL;
1004 * Next, walk the list, and fill in the addresses and sizes of
1005 * each segment.
1007 count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1008 BUG_ON(count > sdb->table.nents);
1009 sdb->table.nents = count;
1010 sdb->length = blk_rq_bytes(req);
1011 return BLKPREP_OK;
1015 * Function: scsi_init_io()
1017 * Purpose: SCSI I/O initialize function.
1019 * Arguments: cmd - Command descriptor we wish to initialize
1021 * Returns: 0 on success
1022 * BLKPREP_DEFER if the failure is retryable
1023 * BLKPREP_KILL if the failure is fatal
1025 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
1027 struct request *rq = cmd->request;
1029 int error = scsi_init_sgtable(rq, &cmd->sdb, gfp_mask);
1030 if (error)
1031 goto err_exit;
1033 if (blk_bidi_rq(rq)) {
1034 struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
1035 scsi_sdb_cache, GFP_ATOMIC);
1036 if (!bidi_sdb) {
1037 error = BLKPREP_DEFER;
1038 goto err_exit;
1041 rq->next_rq->special = bidi_sdb;
1042 error = scsi_init_sgtable(rq->next_rq, bidi_sdb, GFP_ATOMIC);
1043 if (error)
1044 goto err_exit;
1047 if (blk_integrity_rq(rq)) {
1048 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1049 int ivecs, count;
1051 BUG_ON(prot_sdb == NULL);
1052 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1054 if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) {
1055 error = BLKPREP_DEFER;
1056 goto err_exit;
1059 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1060 prot_sdb->table.sgl);
1061 BUG_ON(unlikely(count > ivecs));
1062 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1064 cmd->prot_sdb = prot_sdb;
1065 cmd->prot_sdb->table.nents = count;
1068 return BLKPREP_OK ;
1070 err_exit:
1071 scsi_release_buffers(cmd);
1072 cmd->request->special = NULL;
1073 scsi_put_command(cmd);
1074 return error;
1076 EXPORT_SYMBOL(scsi_init_io);
1078 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1079 struct request *req)
1081 struct scsi_cmnd *cmd;
1083 if (!req->special) {
1084 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1085 if (unlikely(!cmd))
1086 return NULL;
1087 req->special = cmd;
1088 } else {
1089 cmd = req->special;
1092 /* pull a tag out of the request if we have one */
1093 cmd->tag = req->tag;
1094 cmd->request = req;
1096 cmd->cmnd = req->cmd;
1097 cmd->prot_op = SCSI_PROT_NORMAL;
1099 return cmd;
1102 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1104 struct scsi_cmnd *cmd;
1105 int ret = scsi_prep_state_check(sdev, req);
1107 if (ret != BLKPREP_OK)
1108 return ret;
1110 cmd = scsi_get_cmd_from_req(sdev, req);
1111 if (unlikely(!cmd))
1112 return BLKPREP_DEFER;
1115 * BLOCK_PC requests may transfer data, in which case they must
1116 * a bio attached to them. Or they might contain a SCSI command
1117 * that does not transfer data, in which case they may optionally
1118 * submit a request without an attached bio.
1120 if (req->bio) {
1121 int ret;
1123 BUG_ON(!req->nr_phys_segments);
1125 ret = scsi_init_io(cmd, GFP_ATOMIC);
1126 if (unlikely(ret))
1127 return ret;
1128 } else {
1129 BUG_ON(blk_rq_bytes(req));
1131 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1132 req->buffer = NULL;
1135 cmd->cmd_len = req->cmd_len;
1136 if (!blk_rq_bytes(req))
1137 cmd->sc_data_direction = DMA_NONE;
1138 else if (rq_data_dir(req) == WRITE)
1139 cmd->sc_data_direction = DMA_TO_DEVICE;
1140 else
1141 cmd->sc_data_direction = DMA_FROM_DEVICE;
1143 cmd->transfersize = blk_rq_bytes(req);
1144 cmd->allowed = req->retries;
1145 return BLKPREP_OK;
1147 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1150 * Setup a REQ_TYPE_FS command. These are simple read/write request
1151 * from filesystems that still need to be translated to SCSI CDBs from
1152 * the ULD.
1154 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1156 struct scsi_cmnd *cmd;
1157 int ret = scsi_prep_state_check(sdev, req);
1159 if (ret != BLKPREP_OK)
1160 return ret;
1162 if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1163 && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1164 ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1165 if (ret != BLKPREP_OK)
1166 return ret;
1170 * Filesystem requests must transfer data.
1172 BUG_ON(!req->nr_phys_segments);
1174 cmd = scsi_get_cmd_from_req(sdev, req);
1175 if (unlikely(!cmd))
1176 return BLKPREP_DEFER;
1178 memset(cmd->cmnd, 0, BLK_MAX_CDB);
1179 return scsi_init_io(cmd, GFP_ATOMIC);
1181 EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1183 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1185 int ret = BLKPREP_OK;
1188 * If the device is not in running state we will reject some
1189 * or all commands.
1191 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1192 switch (sdev->sdev_state) {
1193 case SDEV_OFFLINE:
1195 * If the device is offline we refuse to process any
1196 * commands. The device must be brought online
1197 * before trying any recovery commands.
1199 sdev_printk(KERN_ERR, sdev,
1200 "rejecting I/O to offline device\n");
1201 ret = BLKPREP_KILL;
1202 break;
1203 case SDEV_DEL:
1205 * If the device is fully deleted, we refuse to
1206 * process any commands as well.
1208 sdev_printk(KERN_ERR, sdev,
1209 "rejecting I/O to dead device\n");
1210 ret = BLKPREP_KILL;
1211 break;
1212 case SDEV_QUIESCE:
1213 case SDEV_BLOCK:
1214 case SDEV_CREATED_BLOCK:
1216 * If the devices is blocked we defer normal commands.
1218 if (!(req->cmd_flags & REQ_PREEMPT))
1219 ret = BLKPREP_DEFER;
1220 break;
1221 default:
1223 * For any other not fully online state we only allow
1224 * special commands. In particular any user initiated
1225 * command is not allowed.
1227 if (!(req->cmd_flags & REQ_PREEMPT))
1228 ret = BLKPREP_KILL;
1229 break;
1232 return ret;
1234 EXPORT_SYMBOL(scsi_prep_state_check);
1236 int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1238 struct scsi_device *sdev = q->queuedata;
1240 switch (ret) {
1241 case BLKPREP_KILL:
1242 req->errors = DID_NO_CONNECT << 16;
1243 /* release the command and kill it */
1244 if (req->special) {
1245 struct scsi_cmnd *cmd = req->special;
1246 scsi_release_buffers(cmd);
1247 scsi_put_command(cmd);
1248 req->special = NULL;
1250 break;
1251 case BLKPREP_DEFER:
1253 * If we defer, the blk_peek_request() returns NULL, but the
1254 * queue must be restarted, so we schedule a callback to happen
1255 * shortly.
1257 if (sdev->device_busy == 0)
1258 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1259 break;
1260 default:
1261 req->cmd_flags |= REQ_DONTPREP;
1264 return ret;
1266 EXPORT_SYMBOL(scsi_prep_return);
1268 int scsi_prep_fn(struct request_queue *q, struct request *req)
1270 struct scsi_device *sdev = q->queuedata;
1271 int ret = BLKPREP_KILL;
1273 if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1274 ret = scsi_setup_blk_pc_cmnd(sdev, req);
1275 return scsi_prep_return(q, req, ret);
1277 EXPORT_SYMBOL(scsi_prep_fn);
1280 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1281 * return 0.
1283 * Called with the queue_lock held.
1285 static inline int scsi_dev_queue_ready(struct request_queue *q,
1286 struct scsi_device *sdev)
1288 if (sdev->device_busy == 0 && sdev->device_blocked) {
1290 * unblock after device_blocked iterates to zero
1292 if (--sdev->device_blocked == 0) {
1293 SCSI_LOG_MLQUEUE(3,
1294 sdev_printk(KERN_INFO, sdev,
1295 "unblocking device at zero depth\n"));
1296 } else {
1297 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1298 return 0;
1301 if (scsi_device_is_busy(sdev))
1302 return 0;
1304 return 1;
1309 * scsi_target_queue_ready: checks if there we can send commands to target
1310 * @sdev: scsi device on starget to check.
1312 * Called with the host lock held.
1314 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1315 struct scsi_device *sdev)
1317 struct scsi_target *starget = scsi_target(sdev);
1319 if (starget->single_lun) {
1320 if (starget->starget_sdev_user &&
1321 starget->starget_sdev_user != sdev)
1322 return 0;
1323 starget->starget_sdev_user = sdev;
1326 if (starget->target_busy == 0 && starget->target_blocked) {
1328 * unblock after target_blocked iterates to zero
1330 if (--starget->target_blocked == 0) {
1331 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1332 "unblocking target at zero depth\n"));
1333 } else
1334 return 0;
1337 if (scsi_target_is_busy(starget)) {
1338 list_move_tail(&sdev->starved_entry, &shost->starved_list);
1339 return 0;
1342 return 1;
1346 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1347 * return 0. We must end up running the queue again whenever 0 is
1348 * returned, else IO can hang.
1350 * Called with host_lock held.
1352 static inline int scsi_host_queue_ready(struct request_queue *q,
1353 struct Scsi_Host *shost,
1354 struct scsi_device *sdev)
1356 if (scsi_host_in_recovery(shost))
1357 return 0;
1358 if (shost->host_busy == 0 && shost->host_blocked) {
1360 * unblock after host_blocked iterates to zero
1362 if (--shost->host_blocked == 0) {
1363 SCSI_LOG_MLQUEUE(3,
1364 printk("scsi%d unblocking host at zero depth\n",
1365 shost->host_no));
1366 } else {
1367 return 0;
1370 if (scsi_host_is_busy(shost)) {
1371 if (list_empty(&sdev->starved_entry))
1372 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1373 return 0;
1376 /* We're OK to process the command, so we can't be starved */
1377 if (!list_empty(&sdev->starved_entry))
1378 list_del_init(&sdev->starved_entry);
1380 return 1;
1384 * Busy state exporting function for request stacking drivers.
1386 * For efficiency, no lock is taken to check the busy state of
1387 * shost/starget/sdev, since the returned value is not guaranteed and
1388 * may be changed after request stacking drivers call the function,
1389 * regardless of taking lock or not.
1391 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1392 * needs to return 'not busy'. Otherwise, request stacking drivers
1393 * may hold requests forever.
1395 static int scsi_lld_busy(struct request_queue *q)
1397 struct scsi_device *sdev = q->queuedata;
1398 struct Scsi_Host *shost;
1400 if (blk_queue_dead(q))
1401 return 0;
1403 shost = sdev->host;
1406 * Ignore host/starget busy state.
1407 * Since block layer does not have a concept of fairness across
1408 * multiple queues, congestion of host/starget needs to be handled
1409 * in SCSI layer.
1411 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1412 return 1;
1414 return 0;
1418 * Kill a request for a dead device
1420 static void scsi_kill_request(struct request *req, struct request_queue *q)
1422 struct scsi_cmnd *cmd = req->special;
1423 struct scsi_device *sdev;
1424 struct scsi_target *starget;
1425 struct Scsi_Host *shost;
1427 blk_start_request(req);
1429 scmd_printk(KERN_INFO, cmd, "killing request\n");
1431 sdev = cmd->device;
1432 starget = scsi_target(sdev);
1433 shost = sdev->host;
1434 scsi_init_cmd_errh(cmd);
1435 cmd->result = DID_NO_CONNECT << 16;
1436 atomic_inc(&cmd->device->iorequest_cnt);
1439 * SCSI request completion path will do scsi_device_unbusy(),
1440 * bump busy counts. To bump the counters, we need to dance
1441 * with the locks as normal issue path does.
1443 sdev->device_busy++;
1444 spin_unlock(sdev->request_queue->queue_lock);
1445 spin_lock(shost->host_lock);
1446 shost->host_busy++;
1447 starget->target_busy++;
1448 spin_unlock(shost->host_lock);
1449 spin_lock(sdev->request_queue->queue_lock);
1451 blk_complete_request(req);
1454 static void scsi_softirq_done(struct request *rq)
1456 struct scsi_cmnd *cmd = rq->special;
1457 unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1458 int disposition;
1460 INIT_LIST_HEAD(&cmd->eh_entry);
1462 atomic_inc(&cmd->device->iodone_cnt);
1463 if (cmd->result)
1464 atomic_inc(&cmd->device->ioerr_cnt);
1466 disposition = scsi_decide_disposition(cmd);
1467 if (disposition != SUCCESS &&
1468 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1469 sdev_printk(KERN_ERR, cmd->device,
1470 "timing out command, waited %lus\n",
1471 wait_for/HZ);
1472 disposition = SUCCESS;
1475 scsi_log_completion(cmd, disposition);
1477 switch (disposition) {
1478 case SUCCESS:
1479 scsi_finish_command(cmd);
1480 break;
1481 case NEEDS_RETRY:
1482 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1483 break;
1484 case ADD_TO_MLQUEUE:
1485 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1486 break;
1487 default:
1488 if (!scsi_eh_scmd_add(cmd, 0))
1489 scsi_finish_command(cmd);
1494 * Function: scsi_request_fn()
1496 * Purpose: Main strategy routine for SCSI.
1498 * Arguments: q - Pointer to actual queue.
1500 * Returns: Nothing
1502 * Lock status: IO request lock assumed to be held when called.
1504 static void scsi_request_fn(struct request_queue *q)
1506 struct scsi_device *sdev = q->queuedata;
1507 struct Scsi_Host *shost;
1508 struct scsi_cmnd *cmd;
1509 struct request *req;
1511 if(!get_device(&sdev->sdev_gendev))
1512 /* We must be tearing the block queue down already */
1513 return;
1516 * To start with, we keep looping until the queue is empty, or until
1517 * the host is no longer able to accept any more requests.
1519 shost = sdev->host;
1520 for (;;) {
1521 int rtn;
1523 * get next queueable request. We do this early to make sure
1524 * that the request is fully prepared even if we cannot
1525 * accept it.
1527 req = blk_peek_request(q);
1528 if (!req || !scsi_dev_queue_ready(q, sdev))
1529 break;
1531 if (unlikely(!scsi_device_online(sdev))) {
1532 sdev_printk(KERN_ERR, sdev,
1533 "rejecting I/O to offline device\n");
1534 scsi_kill_request(req, q);
1535 continue;
1540 * Remove the request from the request list.
1542 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1543 blk_start_request(req);
1544 sdev->device_busy++;
1546 spin_unlock(q->queue_lock);
1547 cmd = req->special;
1548 if (unlikely(cmd == NULL)) {
1549 printk(KERN_CRIT "impossible request in %s.\n"
1550 "please mail a stack trace to "
1551 "linux-scsi@vger.kernel.org\n",
1552 __func__);
1553 blk_dump_rq_flags(req, "foo");
1554 BUG();
1556 spin_lock(shost->host_lock);
1559 * We hit this when the driver is using a host wide
1560 * tag map. For device level tag maps the queue_depth check
1561 * in the device ready fn would prevent us from trying
1562 * to allocate a tag. Since the map is a shared host resource
1563 * we add the dev to the starved list so it eventually gets
1564 * a run when a tag is freed.
1566 if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
1567 if (list_empty(&sdev->starved_entry))
1568 list_add_tail(&sdev->starved_entry,
1569 &shost->starved_list);
1570 goto not_ready;
1573 if (!scsi_target_queue_ready(shost, sdev))
1574 goto not_ready;
1576 if (!scsi_host_queue_ready(q, shost, sdev))
1577 goto not_ready;
1579 scsi_target(sdev)->target_busy++;
1580 shost->host_busy++;
1583 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1584 * take the lock again.
1586 spin_unlock_irq(shost->host_lock);
1589 * Finally, initialize any error handling parameters, and set up
1590 * the timers for timeouts.
1592 scsi_init_cmd_errh(cmd);
1595 * Dispatch the command to the low-level driver.
1597 rtn = scsi_dispatch_cmd(cmd);
1598 spin_lock_irq(q->queue_lock);
1599 if (rtn)
1600 goto out_delay;
1603 goto out;
1605 not_ready:
1606 spin_unlock_irq(shost->host_lock);
1609 * lock q, handle tag, requeue req, and decrement device_busy. We
1610 * must return with queue_lock held.
1612 * Decrementing device_busy without checking it is OK, as all such
1613 * cases (host limits or settings) should run the queue at some
1614 * later time.
1616 spin_lock_irq(q->queue_lock);
1617 blk_requeue_request(q, req);
1618 sdev->device_busy--;
1619 out_delay:
1620 if (sdev->device_busy == 0)
1621 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1622 out:
1623 /* must be careful here...if we trigger the ->remove() function
1624 * we cannot be holding the q lock */
1625 spin_unlock_irq(q->queue_lock);
1626 put_device(&sdev->sdev_gendev);
1627 spin_lock_irq(q->queue_lock);
1630 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1632 struct device *host_dev;
1633 u64 bounce_limit = 0xffffffff;
1635 if (shost->unchecked_isa_dma)
1636 return BLK_BOUNCE_ISA;
1638 * Platforms with virtual-DMA translation
1639 * hardware have no practical limit.
1641 if (!PCI_DMA_BUS_IS_PHYS)
1642 return BLK_BOUNCE_ANY;
1644 host_dev = scsi_get_device(shost);
1645 if (host_dev && host_dev->dma_mask)
1646 bounce_limit = *host_dev->dma_mask;
1648 return bounce_limit;
1650 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1652 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1653 request_fn_proc *request_fn)
1655 struct request_queue *q;
1656 struct device *dev = shost->dma_dev;
1658 q = blk_init_queue(request_fn, NULL);
1659 if (!q)
1660 return NULL;
1663 * this limit is imposed by hardware restrictions
1665 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1666 SCSI_MAX_SG_CHAIN_SEGMENTS));
1668 if (scsi_host_prot_dma(shost)) {
1669 shost->sg_prot_tablesize =
1670 min_not_zero(shost->sg_prot_tablesize,
1671 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1672 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1673 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1676 blk_queue_max_hw_sectors(q, shost->max_sectors);
1677 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1678 blk_queue_segment_boundary(q, shost->dma_boundary);
1679 dma_set_seg_boundary(dev, shost->dma_boundary);
1681 blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1683 if (!shost->use_clustering)
1684 q->limits.cluster = 0;
1687 * set a reasonable default alignment on word boundaries: the
1688 * host and device may alter it using
1689 * blk_queue_update_dma_alignment() later.
1691 blk_queue_dma_alignment(q, 0x03);
1693 return q;
1695 EXPORT_SYMBOL(__scsi_alloc_queue);
1697 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1699 struct request_queue *q;
1701 q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1702 if (!q)
1703 return NULL;
1705 blk_queue_prep_rq(q, scsi_prep_fn);
1706 blk_queue_softirq_done(q, scsi_softirq_done);
1707 blk_queue_rq_timed_out(q, scsi_times_out);
1708 blk_queue_lld_busy(q, scsi_lld_busy);
1709 return q;
1713 * Function: scsi_block_requests()
1715 * Purpose: Utility function used by low-level drivers to prevent further
1716 * commands from being queued to the device.
1718 * Arguments: shost - Host in question
1720 * Returns: Nothing
1722 * Lock status: No locks are assumed held.
1724 * Notes: There is no timer nor any other means by which the requests
1725 * get unblocked other than the low-level driver calling
1726 * scsi_unblock_requests().
1728 void scsi_block_requests(struct Scsi_Host *shost)
1730 shost->host_self_blocked = 1;
1732 EXPORT_SYMBOL(scsi_block_requests);
1735 * Function: scsi_unblock_requests()
1737 * Purpose: Utility function used by low-level drivers to allow further
1738 * commands from being queued to the device.
1740 * Arguments: shost - Host in question
1742 * Returns: Nothing
1744 * Lock status: No locks are assumed held.
1746 * Notes: There is no timer nor any other means by which the requests
1747 * get unblocked other than the low-level driver calling
1748 * scsi_unblock_requests().
1750 * This is done as an API function so that changes to the
1751 * internals of the scsi mid-layer won't require wholesale
1752 * changes to drivers that use this feature.
1754 void scsi_unblock_requests(struct Scsi_Host *shost)
1756 shost->host_self_blocked = 0;
1757 scsi_run_host_queues(shost);
1759 EXPORT_SYMBOL(scsi_unblock_requests);
1761 int __init scsi_init_queue(void)
1763 int i;
1765 scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1766 sizeof(struct scsi_data_buffer),
1767 0, 0, NULL);
1768 if (!scsi_sdb_cache) {
1769 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1770 return -ENOMEM;
1773 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1774 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1775 int size = sgp->size * sizeof(struct scatterlist);
1777 sgp->slab = kmem_cache_create(sgp->name, size, 0,
1778 SLAB_HWCACHE_ALIGN, NULL);
1779 if (!sgp->slab) {
1780 printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1781 sgp->name);
1782 goto cleanup_sdb;
1785 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1786 sgp->slab);
1787 if (!sgp->pool) {
1788 printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1789 sgp->name);
1790 goto cleanup_sdb;
1794 return 0;
1796 cleanup_sdb:
1797 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1798 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1799 if (sgp->pool)
1800 mempool_destroy(sgp->pool);
1801 if (sgp->slab)
1802 kmem_cache_destroy(sgp->slab);
1804 kmem_cache_destroy(scsi_sdb_cache);
1806 return -ENOMEM;
1809 void scsi_exit_queue(void)
1811 int i;
1813 kmem_cache_destroy(scsi_sdb_cache);
1815 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1816 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1817 mempool_destroy(sgp->pool);
1818 kmem_cache_destroy(sgp->slab);
1823 * scsi_mode_select - issue a mode select
1824 * @sdev: SCSI device to be queried
1825 * @pf: Page format bit (1 == standard, 0 == vendor specific)
1826 * @sp: Save page bit (0 == don't save, 1 == save)
1827 * @modepage: mode page being requested
1828 * @buffer: request buffer (may not be smaller than eight bytes)
1829 * @len: length of request buffer.
1830 * @timeout: command timeout
1831 * @retries: number of retries before failing
1832 * @data: returns a structure abstracting the mode header data
1833 * @sshdr: place to put sense data (or NULL if no sense to be collected).
1834 * must be SCSI_SENSE_BUFFERSIZE big.
1836 * Returns zero if successful; negative error number or scsi
1837 * status on error
1841 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1842 unsigned char *buffer, int len, int timeout, int retries,
1843 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1845 unsigned char cmd[10];
1846 unsigned char *real_buffer;
1847 int ret;
1849 memset(cmd, 0, sizeof(cmd));
1850 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1852 if (sdev->use_10_for_ms) {
1853 if (len > 65535)
1854 return -EINVAL;
1855 real_buffer = kmalloc(8 + len, GFP_KERNEL);
1856 if (!real_buffer)
1857 return -ENOMEM;
1858 memcpy(real_buffer + 8, buffer, len);
1859 len += 8;
1860 real_buffer[0] = 0;
1861 real_buffer[1] = 0;
1862 real_buffer[2] = data->medium_type;
1863 real_buffer[3] = data->device_specific;
1864 real_buffer[4] = data->longlba ? 0x01 : 0;
1865 real_buffer[5] = 0;
1866 real_buffer[6] = data->block_descriptor_length >> 8;
1867 real_buffer[7] = data->block_descriptor_length;
1869 cmd[0] = MODE_SELECT_10;
1870 cmd[7] = len >> 8;
1871 cmd[8] = len;
1872 } else {
1873 if (len > 255 || data->block_descriptor_length > 255 ||
1874 data->longlba)
1875 return -EINVAL;
1877 real_buffer = kmalloc(4 + len, GFP_KERNEL);
1878 if (!real_buffer)
1879 return -ENOMEM;
1880 memcpy(real_buffer + 4, buffer, len);
1881 len += 4;
1882 real_buffer[0] = 0;
1883 real_buffer[1] = data->medium_type;
1884 real_buffer[2] = data->device_specific;
1885 real_buffer[3] = data->block_descriptor_length;
1888 cmd[0] = MODE_SELECT;
1889 cmd[4] = len;
1892 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1893 sshdr, timeout, retries, NULL);
1894 kfree(real_buffer);
1895 return ret;
1897 EXPORT_SYMBOL_GPL(scsi_mode_select);
1900 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1901 * @sdev: SCSI device to be queried
1902 * @dbd: set if mode sense will allow block descriptors to be returned
1903 * @modepage: mode page being requested
1904 * @buffer: request buffer (may not be smaller than eight bytes)
1905 * @len: length of request buffer.
1906 * @timeout: command timeout
1907 * @retries: number of retries before failing
1908 * @data: returns a structure abstracting the mode header data
1909 * @sshdr: place to put sense data (or NULL if no sense to be collected).
1910 * must be SCSI_SENSE_BUFFERSIZE big.
1912 * Returns zero if unsuccessful, or the header offset (either 4
1913 * or 8 depending on whether a six or ten byte command was
1914 * issued) if successful.
1917 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1918 unsigned char *buffer, int len, int timeout, int retries,
1919 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1921 unsigned char cmd[12];
1922 int use_10_for_ms;
1923 int header_length;
1924 int result;
1925 struct scsi_sense_hdr my_sshdr;
1927 memset(data, 0, sizeof(*data));
1928 memset(&cmd[0], 0, 12);
1929 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */
1930 cmd[2] = modepage;
1932 /* caller might not be interested in sense, but we need it */
1933 if (!sshdr)
1934 sshdr = &my_sshdr;
1936 retry:
1937 use_10_for_ms = sdev->use_10_for_ms;
1939 if (use_10_for_ms) {
1940 if (len < 8)
1941 len = 8;
1943 cmd[0] = MODE_SENSE_10;
1944 cmd[8] = len;
1945 header_length = 8;
1946 } else {
1947 if (len < 4)
1948 len = 4;
1950 cmd[0] = MODE_SENSE;
1951 cmd[4] = len;
1952 header_length = 4;
1955 memset(buffer, 0, len);
1957 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1958 sshdr, timeout, retries, NULL);
1960 /* This code looks awful: what it's doing is making sure an
1961 * ILLEGAL REQUEST sense return identifies the actual command
1962 * byte as the problem. MODE_SENSE commands can return
1963 * ILLEGAL REQUEST if the code page isn't supported */
1965 if (use_10_for_ms && !scsi_status_is_good(result) &&
1966 (driver_byte(result) & DRIVER_SENSE)) {
1967 if (scsi_sense_valid(sshdr)) {
1968 if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1969 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1971 * Invalid command operation code
1973 sdev->use_10_for_ms = 0;
1974 goto retry;
1979 if(scsi_status_is_good(result)) {
1980 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1981 (modepage == 6 || modepage == 8))) {
1982 /* Initio breakage? */
1983 header_length = 0;
1984 data->length = 13;
1985 data->medium_type = 0;
1986 data->device_specific = 0;
1987 data->longlba = 0;
1988 data->block_descriptor_length = 0;
1989 } else if(use_10_for_ms) {
1990 data->length = buffer[0]*256 + buffer[1] + 2;
1991 data->medium_type = buffer[2];
1992 data->device_specific = buffer[3];
1993 data->longlba = buffer[4] & 0x01;
1994 data->block_descriptor_length = buffer[6]*256
1995 + buffer[7];
1996 } else {
1997 data->length = buffer[0] + 1;
1998 data->medium_type = buffer[1];
1999 data->device_specific = buffer[2];
2000 data->block_descriptor_length = buffer[3];
2002 data->header_length = header_length;
2005 return result;
2007 EXPORT_SYMBOL(scsi_mode_sense);
2010 * scsi_test_unit_ready - test if unit is ready
2011 * @sdev: scsi device to change the state of.
2012 * @timeout: command timeout
2013 * @retries: number of retries before failing
2014 * @sshdr_external: Optional pointer to struct scsi_sense_hdr for
2015 * returning sense. Make sure that this is cleared before passing
2016 * in.
2018 * Returns zero if unsuccessful or an error if TUR failed. For
2019 * removable media, UNIT_ATTENTION sets ->changed flag.
2022 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2023 struct scsi_sense_hdr *sshdr_external)
2025 char cmd[] = {
2026 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2028 struct scsi_sense_hdr *sshdr;
2029 int result;
2031 if (!sshdr_external)
2032 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2033 else
2034 sshdr = sshdr_external;
2036 /* try to eat the UNIT_ATTENTION if there are enough retries */
2037 do {
2038 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2039 timeout, retries, NULL);
2040 if (sdev->removable && scsi_sense_valid(sshdr) &&
2041 sshdr->sense_key == UNIT_ATTENTION)
2042 sdev->changed = 1;
2043 } while (scsi_sense_valid(sshdr) &&
2044 sshdr->sense_key == UNIT_ATTENTION && --retries);
2046 if (!sshdr_external)
2047 kfree(sshdr);
2048 return result;
2050 EXPORT_SYMBOL(scsi_test_unit_ready);
2053 * scsi_device_set_state - Take the given device through the device state model.
2054 * @sdev: scsi device to change the state of.
2055 * @state: state to change to.
2057 * Returns zero if unsuccessful or an error if the requested
2058 * transition is illegal.
2061 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2063 enum scsi_device_state oldstate = sdev->sdev_state;
2065 if (state == oldstate)
2066 return 0;
2068 switch (state) {
2069 case SDEV_CREATED:
2070 switch (oldstate) {
2071 case SDEV_CREATED_BLOCK:
2072 break;
2073 default:
2074 goto illegal;
2076 break;
2078 case SDEV_RUNNING:
2079 switch (oldstate) {
2080 case SDEV_CREATED:
2081 case SDEV_OFFLINE:
2082 case SDEV_QUIESCE:
2083 case SDEV_BLOCK:
2084 break;
2085 default:
2086 goto illegal;
2088 break;
2090 case SDEV_QUIESCE:
2091 switch (oldstate) {
2092 case SDEV_RUNNING:
2093 case SDEV_OFFLINE:
2094 break;
2095 default:
2096 goto illegal;
2098 break;
2100 case SDEV_OFFLINE:
2101 switch (oldstate) {
2102 case SDEV_CREATED:
2103 case SDEV_RUNNING:
2104 case SDEV_QUIESCE:
2105 case SDEV_BLOCK:
2106 break;
2107 default:
2108 goto illegal;
2110 break;
2112 case SDEV_BLOCK:
2113 switch (oldstate) {
2114 case SDEV_RUNNING:
2115 case SDEV_CREATED_BLOCK:
2116 break;
2117 default:
2118 goto illegal;
2120 break;
2122 case SDEV_CREATED_BLOCK:
2123 switch (oldstate) {
2124 case SDEV_CREATED:
2125 break;
2126 default:
2127 goto illegal;
2129 break;
2131 case SDEV_CANCEL:
2132 switch (oldstate) {
2133 case SDEV_CREATED:
2134 case SDEV_RUNNING:
2135 case SDEV_QUIESCE:
2136 case SDEV_OFFLINE:
2137 case SDEV_BLOCK:
2138 break;
2139 default:
2140 goto illegal;
2142 break;
2144 case SDEV_DEL:
2145 switch (oldstate) {
2146 case SDEV_CREATED:
2147 case SDEV_RUNNING:
2148 case SDEV_OFFLINE:
2149 case SDEV_CANCEL:
2150 break;
2151 default:
2152 goto illegal;
2154 break;
2157 sdev->sdev_state = state;
2158 return 0;
2160 illegal:
2161 SCSI_LOG_ERROR_RECOVERY(1,
2162 sdev_printk(KERN_ERR, sdev,
2163 "Illegal state transition %s->%s\n",
2164 scsi_device_state_name(oldstate),
2165 scsi_device_state_name(state))
2167 return -EINVAL;
2169 EXPORT_SYMBOL(scsi_device_set_state);
2172 * sdev_evt_emit - emit a single SCSI device uevent
2173 * @sdev: associated SCSI device
2174 * @evt: event to emit
2176 * Send a single uevent (scsi_event) to the associated scsi_device.
2178 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2180 int idx = 0;
2181 char *envp[3];
2183 switch (evt->evt_type) {
2184 case SDEV_EVT_MEDIA_CHANGE:
2185 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2186 break;
2188 default:
2189 /* do nothing */
2190 break;
2193 envp[idx++] = NULL;
2195 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2199 * sdev_evt_thread - send a uevent for each scsi event
2200 * @work: work struct for scsi_device
2202 * Dispatch queued events to their associated scsi_device kobjects
2203 * as uevents.
2205 void scsi_evt_thread(struct work_struct *work)
2207 struct scsi_device *sdev;
2208 LIST_HEAD(event_list);
2210 sdev = container_of(work, struct scsi_device, event_work);
2212 while (1) {
2213 struct scsi_event *evt;
2214 struct list_head *this, *tmp;
2215 unsigned long flags;
2217 spin_lock_irqsave(&sdev->list_lock, flags);
2218 list_splice_init(&sdev->event_list, &event_list);
2219 spin_unlock_irqrestore(&sdev->list_lock, flags);
2221 if (list_empty(&event_list))
2222 break;
2224 list_for_each_safe(this, tmp, &event_list) {
2225 evt = list_entry(this, struct scsi_event, node);
2226 list_del(&evt->node);
2227 scsi_evt_emit(sdev, evt);
2228 kfree(evt);
2234 * sdev_evt_send - send asserted event to uevent thread
2235 * @sdev: scsi_device event occurred on
2236 * @evt: event to send
2238 * Assert scsi device event asynchronously.
2240 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2242 unsigned long flags;
2244 #if 0
2245 /* FIXME: currently this check eliminates all media change events
2246 * for polled devices. Need to update to discriminate between AN
2247 * and polled events */
2248 if (!test_bit(evt->evt_type, sdev->supported_events)) {
2249 kfree(evt);
2250 return;
2252 #endif
2254 spin_lock_irqsave(&sdev->list_lock, flags);
2255 list_add_tail(&evt->node, &sdev->event_list);
2256 schedule_work(&sdev->event_work);
2257 spin_unlock_irqrestore(&sdev->list_lock, flags);
2259 EXPORT_SYMBOL_GPL(sdev_evt_send);
2262 * sdev_evt_alloc - allocate a new scsi event
2263 * @evt_type: type of event to allocate
2264 * @gfpflags: GFP flags for allocation
2266 * Allocates and returns a new scsi_event.
2268 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2269 gfp_t gfpflags)
2271 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2272 if (!evt)
2273 return NULL;
2275 evt->evt_type = evt_type;
2276 INIT_LIST_HEAD(&evt->node);
2278 /* evt_type-specific initialization, if any */
2279 switch (evt_type) {
2280 case SDEV_EVT_MEDIA_CHANGE:
2281 default:
2282 /* do nothing */
2283 break;
2286 return evt;
2288 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2291 * sdev_evt_send_simple - send asserted event to uevent thread
2292 * @sdev: scsi_device event occurred on
2293 * @evt_type: type of event to send
2294 * @gfpflags: GFP flags for allocation
2296 * Assert scsi device event asynchronously, given an event type.
2298 void sdev_evt_send_simple(struct scsi_device *sdev,
2299 enum scsi_device_event evt_type, gfp_t gfpflags)
2301 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2302 if (!evt) {
2303 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2304 evt_type);
2305 return;
2308 sdev_evt_send(sdev, evt);
2310 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2313 * scsi_device_quiesce - Block user issued commands.
2314 * @sdev: scsi device to quiesce.
2316 * This works by trying to transition to the SDEV_QUIESCE state
2317 * (which must be a legal transition). When the device is in this
2318 * state, only special requests will be accepted, all others will
2319 * be deferred. Since special requests may also be requeued requests,
2320 * a successful return doesn't guarantee the device will be
2321 * totally quiescent.
2323 * Must be called with user context, may sleep.
2325 * Returns zero if unsuccessful or an error if not.
2328 scsi_device_quiesce(struct scsi_device *sdev)
2330 int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2331 if (err)
2332 return err;
2334 scsi_run_queue(sdev->request_queue);
2335 while (sdev->device_busy) {
2336 msleep_interruptible(200);
2337 scsi_run_queue(sdev->request_queue);
2339 return 0;
2341 EXPORT_SYMBOL(scsi_device_quiesce);
2344 * scsi_device_resume - Restart user issued commands to a quiesced device.
2345 * @sdev: scsi device to resume.
2347 * Moves the device from quiesced back to running and restarts the
2348 * queues.
2350 * Must be called with user context, may sleep.
2352 void
2353 scsi_device_resume(struct scsi_device *sdev)
2355 if(scsi_device_set_state(sdev, SDEV_RUNNING))
2356 return;
2357 scsi_run_queue(sdev->request_queue);
2359 EXPORT_SYMBOL(scsi_device_resume);
2361 static void
2362 device_quiesce_fn(struct scsi_device *sdev, void *data)
2364 scsi_device_quiesce(sdev);
2367 void
2368 scsi_target_quiesce(struct scsi_target *starget)
2370 starget_for_each_device(starget, NULL, device_quiesce_fn);
2372 EXPORT_SYMBOL(scsi_target_quiesce);
2374 static void
2375 device_resume_fn(struct scsi_device *sdev, void *data)
2377 scsi_device_resume(sdev);
2380 void
2381 scsi_target_resume(struct scsi_target *starget)
2383 starget_for_each_device(starget, NULL, device_resume_fn);
2385 EXPORT_SYMBOL(scsi_target_resume);
2388 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2389 * @sdev: device to block
2391 * Block request made by scsi lld's to temporarily stop all
2392 * scsi commands on the specified device. Called from interrupt
2393 * or normal process context.
2395 * Returns zero if successful or error if not
2397 * Notes:
2398 * This routine transitions the device to the SDEV_BLOCK state
2399 * (which must be a legal transition). When the device is in this
2400 * state, all commands are deferred until the scsi lld reenables
2401 * the device with scsi_device_unblock or device_block_tmo fires.
2402 * This routine assumes the host_lock is held on entry.
2405 scsi_internal_device_block(struct scsi_device *sdev)
2407 struct request_queue *q = sdev->request_queue;
2408 unsigned long flags;
2409 int err = 0;
2411 err = scsi_device_set_state(sdev, SDEV_BLOCK);
2412 if (err) {
2413 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2415 if (err)
2416 return err;
2420 * The device has transitioned to SDEV_BLOCK. Stop the
2421 * block layer from calling the midlayer with this device's
2422 * request queue.
2424 spin_lock_irqsave(q->queue_lock, flags);
2425 blk_stop_queue(q);
2426 spin_unlock_irqrestore(q->queue_lock, flags);
2428 return 0;
2430 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2433 * scsi_internal_device_unblock - resume a device after a block request
2434 * @sdev: device to resume
2436 * Called by scsi lld's or the midlayer to restart the device queue
2437 * for the previously suspended scsi device. Called from interrupt or
2438 * normal process context.
2440 * Returns zero if successful or error if not.
2442 * Notes:
2443 * This routine transitions the device to the SDEV_RUNNING state
2444 * (which must be a legal transition) allowing the midlayer to
2445 * goose the queue for this device. This routine assumes the
2446 * host_lock is held upon entry.
2449 scsi_internal_device_unblock(struct scsi_device *sdev)
2451 struct request_queue *q = sdev->request_queue;
2452 unsigned long flags;
2455 * Try to transition the scsi device to SDEV_RUNNING
2456 * and goose the device queue if successful.
2458 if (sdev->sdev_state == SDEV_BLOCK)
2459 sdev->sdev_state = SDEV_RUNNING;
2460 else if (sdev->sdev_state == SDEV_CREATED_BLOCK)
2461 sdev->sdev_state = SDEV_CREATED;
2462 else if (sdev->sdev_state != SDEV_CANCEL &&
2463 sdev->sdev_state != SDEV_OFFLINE)
2464 return -EINVAL;
2466 spin_lock_irqsave(q->queue_lock, flags);
2467 blk_start_queue(q);
2468 spin_unlock_irqrestore(q->queue_lock, flags);
2470 return 0;
2472 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2474 static void
2475 device_block(struct scsi_device *sdev, void *data)
2477 scsi_internal_device_block(sdev);
2480 static int
2481 target_block(struct device *dev, void *data)
2483 if (scsi_is_target_device(dev))
2484 starget_for_each_device(to_scsi_target(dev), NULL,
2485 device_block);
2486 return 0;
2489 void
2490 scsi_target_block(struct device *dev)
2492 if (scsi_is_target_device(dev))
2493 starget_for_each_device(to_scsi_target(dev), NULL,
2494 device_block);
2495 else
2496 device_for_each_child(dev, NULL, target_block);
2498 EXPORT_SYMBOL_GPL(scsi_target_block);
2500 static void
2501 device_unblock(struct scsi_device *sdev, void *data)
2503 scsi_internal_device_unblock(sdev);
2506 static int
2507 target_unblock(struct device *dev, void *data)
2509 if (scsi_is_target_device(dev))
2510 starget_for_each_device(to_scsi_target(dev), NULL,
2511 device_unblock);
2512 return 0;
2515 void
2516 scsi_target_unblock(struct device *dev)
2518 if (scsi_is_target_device(dev))
2519 starget_for_each_device(to_scsi_target(dev), NULL,
2520 device_unblock);
2521 else
2522 device_for_each_child(dev, NULL, target_unblock);
2524 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2527 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2528 * @sgl: scatter-gather list
2529 * @sg_count: number of segments in sg
2530 * @offset: offset in bytes into sg, on return offset into the mapped area
2531 * @len: bytes to map, on return number of bytes mapped
2533 * Returns virtual address of the start of the mapped page
2535 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2536 size_t *offset, size_t *len)
2538 int i;
2539 size_t sg_len = 0, len_complete = 0;
2540 struct scatterlist *sg;
2541 struct page *page;
2543 WARN_ON(!irqs_disabled());
2545 for_each_sg(sgl, sg, sg_count, i) {
2546 len_complete = sg_len; /* Complete sg-entries */
2547 sg_len += sg->length;
2548 if (sg_len > *offset)
2549 break;
2552 if (unlikely(i == sg_count)) {
2553 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2554 "elements %d\n",
2555 __func__, sg_len, *offset, sg_count);
2556 WARN_ON(1);
2557 return NULL;
2560 /* Offset starting from the beginning of first page in this sg-entry */
2561 *offset = *offset - len_complete + sg->offset;
2563 /* Assumption: contiguous pages can be accessed as "page + i" */
2564 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2565 *offset &= ~PAGE_MASK;
2567 /* Bytes in this sg-entry from *offset to the end of the page */
2568 sg_len = PAGE_SIZE - *offset;
2569 if (*len > sg_len)
2570 *len = sg_len;
2572 return kmap_atomic(page);
2574 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2577 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2578 * @virt: virtual address to be unmapped
2580 void scsi_kunmap_atomic_sg(void *virt)
2582 kunmap_atomic(virt);
2584 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);