2 * scsi_lib.c Copyright (C) 1999 Eric Youngdale
4 * SCSI queueing library.
5 * Initial versions: Eric Youngdale (eric@andante.org).
6 * Based upon conversations with large numbers
7 * of people at Linux Expo.
10 #include <linux/bio.h>
11 #include <linux/bitops.h>
12 #include <linux/blkdev.h>
13 #include <linux/completion.h>
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/mempool.h>
17 #include <linux/slab.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
24 #include <scsi/scsi.h>
25 #include <scsi/scsi_cmnd.h>
26 #include <scsi/scsi_dbg.h>
27 #include <scsi/scsi_device.h>
28 #include <scsi/scsi_driver.h>
29 #include <scsi/scsi_eh.h>
30 #include <scsi/scsi_host.h>
32 #include "scsi_priv.h"
33 #include "scsi_logging.h"
36 #define SG_MEMPOOL_NR ARRAY_SIZE(scsi_sg_pools)
37 #define SG_MEMPOOL_SIZE 2
39 struct scsi_host_sg_pool
{
42 struct kmem_cache
*slab
;
46 #define SP(x) { x, "sgpool-" __stringify(x) }
47 #if (SCSI_MAX_SG_SEGMENTS < 32)
48 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
50 static struct scsi_host_sg_pool scsi_sg_pools
[] = {
53 #if (SCSI_MAX_SG_SEGMENTS > 32)
55 #if (SCSI_MAX_SG_SEGMENTS > 64)
57 #if (SCSI_MAX_SG_SEGMENTS > 128)
59 #if (SCSI_MAX_SG_SEGMENTS > 256)
60 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
65 SP(SCSI_MAX_SG_SEGMENTS
)
69 struct kmem_cache
*scsi_sdb_cache
;
72 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
73 * not change behaviour from the previous unplug mechanism, experimentation
74 * may prove this needs changing.
76 #define SCSI_QUEUE_DELAY 3
79 * Function: scsi_unprep_request()
81 * Purpose: Remove all preparation done for a request, including its
82 * associated scsi_cmnd, so that it can be requeued.
84 * Arguments: req - request to unprepare
86 * Lock status: Assumed that no locks are held upon entry.
90 static void scsi_unprep_request(struct request
*req
)
92 struct scsi_cmnd
*cmd
= req
->special
;
94 blk_unprep_request(req
);
97 scsi_put_command(cmd
);
101 * __scsi_queue_insert - private queue insertion
102 * @cmd: The SCSI command being requeued
103 * @reason: The reason for the requeue
104 * @unbusy: Whether the queue should be unbusied
106 * This is a private queue insertion. The public interface
107 * scsi_queue_insert() always assumes the queue should be unbusied
108 * because it's always called before the completion. This function is
109 * for a requeue after completion, which should only occur in this
112 static int __scsi_queue_insert(struct scsi_cmnd
*cmd
, int reason
, int unbusy
)
114 struct Scsi_Host
*host
= cmd
->device
->host
;
115 struct scsi_device
*device
= cmd
->device
;
116 struct scsi_target
*starget
= scsi_target(device
);
117 struct request_queue
*q
= device
->request_queue
;
121 printk("Inserting command %p into mlqueue\n", cmd
));
124 * Set the appropriate busy bit for the device/host.
126 * If the host/device isn't busy, assume that something actually
127 * completed, and that we should be able to queue a command now.
129 * Note that the prior mid-layer assumption that any host could
130 * always queue at least one command is now broken. The mid-layer
131 * will implement a user specifiable stall (see
132 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
133 * if a command is requeued with no other commands outstanding
134 * either for the device or for the host.
137 case SCSI_MLQUEUE_HOST_BUSY
:
138 host
->host_blocked
= host
->max_host_blocked
;
140 case SCSI_MLQUEUE_DEVICE_BUSY
:
141 case SCSI_MLQUEUE_EH_RETRY
:
142 device
->device_blocked
= device
->max_device_blocked
;
144 case SCSI_MLQUEUE_TARGET_BUSY
:
145 starget
->target_blocked
= starget
->max_target_blocked
;
150 * Decrement the counters, since these commands are no longer
151 * active on the host/device.
154 scsi_device_unbusy(device
);
157 * Requeue this command. It will go before all other commands
158 * that are already in the queue.
160 spin_lock_irqsave(q
->queue_lock
, flags
);
161 blk_requeue_request(q
, cmd
->request
);
162 spin_unlock_irqrestore(q
->queue_lock
, flags
);
164 kblockd_schedule_work(q
, &device
->requeue_work
);
170 * Function: scsi_queue_insert()
172 * Purpose: Insert a command in the midlevel queue.
174 * Arguments: cmd - command that we are adding to queue.
175 * reason - why we are inserting command to queue.
177 * Lock status: Assumed that lock is not held upon entry.
181 * Notes: We do this for one of two cases. Either the host is busy
182 * and it cannot accept any more commands for the time being,
183 * or the device returned QUEUE_FULL and can accept no more
185 * Notes: This could be called either from an interrupt context or a
186 * normal process context.
188 int scsi_queue_insert(struct scsi_cmnd
*cmd
, int reason
)
190 return __scsi_queue_insert(cmd
, reason
, 1);
193 * scsi_execute - insert request and wait for the result
196 * @data_direction: data direction
197 * @buffer: data buffer
198 * @bufflen: len of buffer
199 * @sense: optional sense buffer
200 * @timeout: request timeout in seconds
201 * @retries: number of times to retry request
202 * @flags: or into request flags;
203 * @resid: optional residual length
205 * returns the req->errors value which is the scsi_cmnd result
208 int scsi_execute(struct scsi_device
*sdev
, const unsigned char *cmd
,
209 int data_direction
, void *buffer
, unsigned bufflen
,
210 unsigned char *sense
, int timeout
, int retries
, int flags
,
214 int write
= (data_direction
== DMA_TO_DEVICE
);
215 int ret
= DRIVER_ERROR
<< 24;
217 req
= blk_get_request(sdev
->request_queue
, write
, __GFP_WAIT
);
221 if (bufflen
&& blk_rq_map_kern(sdev
->request_queue
, req
,
222 buffer
, bufflen
, __GFP_WAIT
))
225 req
->cmd_len
= COMMAND_SIZE(cmd
[0]);
226 memcpy(req
->cmd
, cmd
, req
->cmd_len
);
229 req
->retries
= retries
;
230 req
->timeout
= timeout
;
231 req
->cmd_type
= REQ_TYPE_BLOCK_PC
;
232 req
->cmd_flags
|= flags
| REQ_QUIET
| REQ_PREEMPT
;
235 * head injection *required* here otherwise quiesce won't work
237 blk_execute_rq(req
->q
, NULL
, req
, 1);
240 * Some devices (USB mass-storage in particular) may transfer
241 * garbage data together with a residue indicating that the data
242 * is invalid. Prevent the garbage from being misinterpreted
243 * and prevent security leaks by zeroing out the excess data.
245 if (unlikely(req
->resid_len
> 0 && req
->resid_len
<= bufflen
))
246 memset(buffer
+ (bufflen
- req
->resid_len
), 0, req
->resid_len
);
249 *resid
= req
->resid_len
;
252 blk_put_request(req
);
256 EXPORT_SYMBOL(scsi_execute
);
259 int scsi_execute_req(struct scsi_device
*sdev
, const unsigned char *cmd
,
260 int data_direction
, void *buffer
, unsigned bufflen
,
261 struct scsi_sense_hdr
*sshdr
, int timeout
, int retries
,
268 sense
= kzalloc(SCSI_SENSE_BUFFERSIZE
, GFP_NOIO
);
270 return DRIVER_ERROR
<< 24;
272 result
= scsi_execute(sdev
, cmd
, data_direction
, buffer
, bufflen
,
273 sense
, timeout
, retries
, 0, resid
);
275 scsi_normalize_sense(sense
, SCSI_SENSE_BUFFERSIZE
, sshdr
);
280 EXPORT_SYMBOL(scsi_execute_req
);
283 * Function: scsi_init_cmd_errh()
285 * Purpose: Initialize cmd fields related to error handling.
287 * Arguments: cmd - command that is ready to be queued.
289 * Notes: This function has the job of initializing a number of
290 * fields related to error handling. Typically this will
291 * be called once for each command, as required.
293 static void scsi_init_cmd_errh(struct scsi_cmnd
*cmd
)
295 cmd
->serial_number
= 0;
296 scsi_set_resid(cmd
, 0);
297 memset(cmd
->sense_buffer
, 0, SCSI_SENSE_BUFFERSIZE
);
298 if (cmd
->cmd_len
== 0)
299 cmd
->cmd_len
= scsi_command_size(cmd
->cmnd
);
302 void scsi_device_unbusy(struct scsi_device
*sdev
)
304 struct Scsi_Host
*shost
= sdev
->host
;
305 struct scsi_target
*starget
= scsi_target(sdev
);
308 spin_lock_irqsave(shost
->host_lock
, flags
);
310 starget
->target_busy
--;
311 if (unlikely(scsi_host_in_recovery(shost
) &&
312 (shost
->host_failed
|| shost
->host_eh_scheduled
)))
313 scsi_eh_wakeup(shost
);
314 spin_unlock(shost
->host_lock
);
315 spin_lock(sdev
->request_queue
->queue_lock
);
317 spin_unlock_irqrestore(sdev
->request_queue
->queue_lock
, flags
);
321 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
322 * and call blk_run_queue for all the scsi_devices on the target -
323 * including current_sdev first.
325 * Called with *no* scsi locks held.
327 static void scsi_single_lun_run(struct scsi_device
*current_sdev
)
329 struct Scsi_Host
*shost
= current_sdev
->host
;
330 struct scsi_device
*sdev
, *tmp
;
331 struct scsi_target
*starget
= scsi_target(current_sdev
);
334 spin_lock_irqsave(shost
->host_lock
, flags
);
335 starget
->starget_sdev_user
= NULL
;
336 spin_unlock_irqrestore(shost
->host_lock
, flags
);
339 * Call blk_run_queue for all LUNs on the target, starting with
340 * current_sdev. We race with others (to set starget_sdev_user),
341 * but in most cases, we will be first. Ideally, each LU on the
342 * target would get some limited time or requests on the target.
344 blk_run_queue(current_sdev
->request_queue
);
346 spin_lock_irqsave(shost
->host_lock
, flags
);
347 if (starget
->starget_sdev_user
)
349 list_for_each_entry_safe(sdev
, tmp
, &starget
->devices
,
350 same_target_siblings
) {
351 if (sdev
== current_sdev
)
353 if (scsi_device_get(sdev
))
356 spin_unlock_irqrestore(shost
->host_lock
, flags
);
357 blk_run_queue(sdev
->request_queue
);
358 spin_lock_irqsave(shost
->host_lock
, flags
);
360 scsi_device_put(sdev
);
363 spin_unlock_irqrestore(shost
->host_lock
, flags
);
366 static inline int scsi_device_is_busy(struct scsi_device
*sdev
)
368 if (sdev
->device_busy
>= sdev
->queue_depth
|| sdev
->device_blocked
)
374 static inline int scsi_target_is_busy(struct scsi_target
*starget
)
376 return ((starget
->can_queue
> 0 &&
377 starget
->target_busy
>= starget
->can_queue
) ||
378 starget
->target_blocked
);
381 static inline int scsi_host_is_busy(struct Scsi_Host
*shost
)
383 if ((shost
->can_queue
> 0 && shost
->host_busy
>= shost
->can_queue
) ||
384 shost
->host_blocked
|| shost
->host_self_blocked
)
391 * Function: scsi_run_queue()
393 * Purpose: Select a proper request queue to serve next
395 * Arguments: q - last request's queue
399 * Notes: The previous command was completely finished, start
400 * a new one if possible.
402 static void scsi_run_queue(struct request_queue
*q
)
404 struct scsi_device
*sdev
= q
->queuedata
;
405 struct Scsi_Host
*shost
;
406 LIST_HEAD(starved_list
);
410 if (scsi_target(sdev
)->single_lun
)
411 scsi_single_lun_run(sdev
);
413 spin_lock_irqsave(shost
->host_lock
, flags
);
414 list_splice_init(&shost
->starved_list
, &starved_list
);
416 while (!list_empty(&starved_list
)) {
418 * As long as shost is accepting commands and we have
419 * starved queues, call blk_run_queue. scsi_request_fn
420 * drops the queue_lock and can add us back to the
423 * host_lock protects the starved_list and starved_entry.
424 * scsi_request_fn must get the host_lock before checking
425 * or modifying starved_list or starved_entry.
427 if (scsi_host_is_busy(shost
))
430 sdev
= list_entry(starved_list
.next
,
431 struct scsi_device
, starved_entry
);
432 list_del_init(&sdev
->starved_entry
);
433 if (scsi_target_is_busy(scsi_target(sdev
))) {
434 list_move_tail(&sdev
->starved_entry
,
435 &shost
->starved_list
);
439 spin_unlock(shost
->host_lock
);
440 spin_lock(sdev
->request_queue
->queue_lock
);
441 __blk_run_queue(sdev
->request_queue
);
442 spin_unlock(sdev
->request_queue
->queue_lock
);
443 spin_lock(shost
->host_lock
);
445 /* put any unprocessed entries back */
446 list_splice(&starved_list
, &shost
->starved_list
);
447 spin_unlock_irqrestore(shost
->host_lock
, flags
);
452 void scsi_requeue_run_queue(struct work_struct
*work
)
454 struct scsi_device
*sdev
;
455 struct request_queue
*q
;
457 sdev
= container_of(work
, struct scsi_device
, requeue_work
);
458 q
= sdev
->request_queue
;
463 * Function: scsi_requeue_command()
465 * Purpose: Handle post-processing of completed commands.
467 * Arguments: q - queue to operate on
468 * cmd - command that may need to be requeued.
472 * Notes: After command completion, there may be blocks left
473 * over which weren't finished by the previous command
474 * this can be for a number of reasons - the main one is
475 * I/O errors in the middle of the request, in which case
476 * we need to request the blocks that come after the bad
478 * Notes: Upon return, cmd is a stale pointer.
480 static void scsi_requeue_command(struct request_queue
*q
, struct scsi_cmnd
*cmd
)
482 struct scsi_device
*sdev
= cmd
->device
;
483 struct request
*req
= cmd
->request
;
487 * We need to hold a reference on the device to avoid the queue being
488 * killed after the unlock and before scsi_run_queue is invoked which
489 * may happen because scsi_unprep_request() puts the command which
490 * releases its reference on the device.
492 get_device(&sdev
->sdev_gendev
);
494 spin_lock_irqsave(q
->queue_lock
, flags
);
495 scsi_unprep_request(req
);
496 blk_requeue_request(q
, req
);
497 spin_unlock_irqrestore(q
->queue_lock
, flags
);
501 put_device(&sdev
->sdev_gendev
);
504 void scsi_next_command(struct scsi_cmnd
*cmd
)
506 struct scsi_device
*sdev
= cmd
->device
;
507 struct request_queue
*q
= sdev
->request_queue
;
509 /* need to hold a reference on the device before we let go of the cmd */
510 get_device(&sdev
->sdev_gendev
);
512 scsi_put_command(cmd
);
515 /* ok to remove device now */
516 put_device(&sdev
->sdev_gendev
);
519 void scsi_run_host_queues(struct Scsi_Host
*shost
)
521 struct scsi_device
*sdev
;
523 shost_for_each_device(sdev
, shost
)
524 scsi_run_queue(sdev
->request_queue
);
527 static void __scsi_release_buffers(struct scsi_cmnd
*, int);
530 * Function: scsi_end_request()
532 * Purpose: Post-processing of completed commands (usually invoked at end
533 * of upper level post-processing and scsi_io_completion).
535 * Arguments: cmd - command that is complete.
536 * error - 0 if I/O indicates success, < 0 for I/O error.
537 * bytes - number of bytes of completed I/O
538 * requeue - indicates whether we should requeue leftovers.
540 * Lock status: Assumed that lock is not held upon entry.
542 * Returns: cmd if requeue required, NULL otherwise.
544 * Notes: This is called for block device requests in order to
545 * mark some number of sectors as complete.
547 * We are guaranteeing that the request queue will be goosed
548 * at some point during this call.
549 * Notes: If cmd was requeued, upon return it will be a stale pointer.
551 static struct scsi_cmnd
*scsi_end_request(struct scsi_cmnd
*cmd
, int error
,
552 int bytes
, int requeue
)
554 struct request_queue
*q
= cmd
->device
->request_queue
;
555 struct request
*req
= cmd
->request
;
558 * If there are blocks left over at the end, set up the command
559 * to queue the remainder of them.
561 if (blk_end_request(req
, error
, bytes
)) {
562 /* kill remainder if no retrys */
563 if (error
&& scsi_noretry_cmd(cmd
))
564 blk_end_request_all(req
, error
);
568 * Bleah. Leftovers again. Stick the
569 * leftovers in the front of the
570 * queue, and goose the queue again.
572 scsi_release_buffers(cmd
);
573 scsi_requeue_command(q
, cmd
);
581 * This will goose the queue request function at the end, so we don't
582 * need to worry about launching another command.
584 __scsi_release_buffers(cmd
, 0);
585 scsi_next_command(cmd
);
589 static inline unsigned int scsi_sgtable_index(unsigned short nents
)
593 BUG_ON(nents
> SCSI_MAX_SG_SEGMENTS
);
598 index
= get_count_order(nents
) - 3;
603 static void scsi_sg_free(struct scatterlist
*sgl
, unsigned int nents
)
605 struct scsi_host_sg_pool
*sgp
;
607 sgp
= scsi_sg_pools
+ scsi_sgtable_index(nents
);
608 mempool_free(sgl
, sgp
->pool
);
611 static struct scatterlist
*scsi_sg_alloc(unsigned int nents
, gfp_t gfp_mask
)
613 struct scsi_host_sg_pool
*sgp
;
615 sgp
= scsi_sg_pools
+ scsi_sgtable_index(nents
);
616 return mempool_alloc(sgp
->pool
, gfp_mask
);
619 static int scsi_alloc_sgtable(struct scsi_data_buffer
*sdb
, int nents
,
626 ret
= __sg_alloc_table(&sdb
->table
, nents
, SCSI_MAX_SG_SEGMENTS
,
627 gfp_mask
, scsi_sg_alloc
);
629 __sg_free_table(&sdb
->table
, SCSI_MAX_SG_SEGMENTS
,
635 static void scsi_free_sgtable(struct scsi_data_buffer
*sdb
)
637 __sg_free_table(&sdb
->table
, SCSI_MAX_SG_SEGMENTS
, scsi_sg_free
);
640 static void __scsi_release_buffers(struct scsi_cmnd
*cmd
, int do_bidi_check
)
643 if (cmd
->sdb
.table
.nents
)
644 scsi_free_sgtable(&cmd
->sdb
);
646 memset(&cmd
->sdb
, 0, sizeof(cmd
->sdb
));
648 if (do_bidi_check
&& scsi_bidi_cmnd(cmd
)) {
649 struct scsi_data_buffer
*bidi_sdb
=
650 cmd
->request
->next_rq
->special
;
651 scsi_free_sgtable(bidi_sdb
);
652 kmem_cache_free(scsi_sdb_cache
, bidi_sdb
);
653 cmd
->request
->next_rq
->special
= NULL
;
656 if (scsi_prot_sg_count(cmd
))
657 scsi_free_sgtable(cmd
->prot_sdb
);
661 * Function: scsi_release_buffers()
663 * Purpose: Completion processing for block device I/O requests.
665 * Arguments: cmd - command that we are bailing.
667 * Lock status: Assumed that no lock is held upon entry.
671 * Notes: In the event that an upper level driver rejects a
672 * command, we must release resources allocated during
673 * the __init_io() function. Primarily this would involve
674 * the scatter-gather table, and potentially any bounce
677 void scsi_release_buffers(struct scsi_cmnd
*cmd
)
679 __scsi_release_buffers(cmd
, 1);
681 EXPORT_SYMBOL(scsi_release_buffers
);
683 static int __scsi_error_from_host_byte(struct scsi_cmnd
*cmd
, int result
)
687 switch(host_byte(result
)) {
688 case DID_TRANSPORT_FAILFAST
:
691 case DID_TARGET_FAILURE
:
692 set_host_byte(cmd
, DID_OK
);
695 case DID_NEXUS_FAILURE
:
696 set_host_byte(cmd
, DID_OK
);
708 * Function: scsi_io_completion()
710 * Purpose: Completion processing for block device I/O requests.
712 * Arguments: cmd - command that is finished.
714 * Lock status: Assumed that no lock is held upon entry.
718 * Notes: This function is matched in terms of capabilities to
719 * the function that created the scatter-gather list.
720 * In other words, if there are no bounce buffers
721 * (the normal case for most drivers), we don't need
722 * the logic to deal with cleaning up afterwards.
724 * We must call scsi_end_request(). This will finish off
725 * the specified number of sectors. If we are done, the
726 * command block will be released and the queue function
727 * will be goosed. If we are not done then we have to
728 * figure out what to do next:
730 * a) We can call scsi_requeue_command(). The request
731 * will be unprepared and put back on the queue. Then
732 * a new command will be created for it. This should
733 * be used if we made forward progress, or if we want
734 * to switch from READ(10) to READ(6) for example.
736 * b) We can call scsi_queue_insert(). The request will
737 * be put back on the queue and retried using the same
738 * command as before, possibly after a delay.
740 * c) We can call blk_end_request() with -EIO to fail
741 * the remainder of the request.
743 void scsi_io_completion(struct scsi_cmnd
*cmd
, unsigned int good_bytes
)
745 int result
= cmd
->result
;
746 struct request_queue
*q
= cmd
->device
->request_queue
;
747 struct request
*req
= cmd
->request
;
749 struct scsi_sense_hdr sshdr
;
751 int sense_deferred
= 0;
752 enum {ACTION_FAIL
, ACTION_REPREP
, ACTION_RETRY
,
753 ACTION_DELAYED_RETRY
} action
;
754 char *description
= NULL
;
757 sense_valid
= scsi_command_normalize_sense(cmd
, &sshdr
);
759 sense_deferred
= scsi_sense_is_deferred(&sshdr
);
762 if (req
->cmd_type
== REQ_TYPE_BLOCK_PC
) { /* SG_IO ioctl from block level */
764 if (sense_valid
&& req
->sense
) {
766 * SG_IO wants current and deferred errors
768 int len
= 8 + cmd
->sense_buffer
[7];
770 if (len
> SCSI_SENSE_BUFFERSIZE
)
771 len
= SCSI_SENSE_BUFFERSIZE
;
772 memcpy(req
->sense
, cmd
->sense_buffer
, len
);
773 req
->sense_len
= len
;
776 error
= __scsi_error_from_host_byte(cmd
, result
);
779 * __scsi_error_from_host_byte may have reset the host_byte
781 req
->errors
= cmd
->result
;
783 req
->resid_len
= scsi_get_resid(cmd
);
785 if (scsi_bidi_cmnd(cmd
)) {
787 * Bidi commands Must be complete as a whole,
788 * both sides at once.
790 req
->next_rq
->resid_len
= scsi_in(cmd
)->resid
;
792 scsi_release_buffers(cmd
);
793 blk_end_request_all(req
, 0);
795 scsi_next_command(cmd
);
798 } else if (blk_rq_bytes(req
) == 0 && result
&& !sense_deferred
) {
800 * Certain non BLOCK_PC requests are commands that don't
801 * actually transfer anything (FLUSH), so cannot use
802 * good_bytes != blk_rq_bytes(req) as the signal for an error.
803 * This sets the error explicitly for the problem case.
805 error
= __scsi_error_from_host_byte(cmd
, result
);
808 /* no bidi support for !REQ_TYPE_BLOCK_PC yet */
809 BUG_ON(blk_bidi_rq(req
));
812 * Next deal with any sectors which we were able to correctly
815 SCSI_LOG_HLCOMPLETE(1, printk("%u sectors total, "
817 blk_rq_sectors(req
), good_bytes
));
820 * Recovered errors need reporting, but they're always treated
821 * as success, so fiddle the result code here. For BLOCK_PC
822 * we already took a copy of the original into rq->errors which
823 * is what gets returned to the user
825 if (sense_valid
&& (sshdr
.sense_key
== RECOVERED_ERROR
)) {
826 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
827 * print since caller wants ATA registers. Only occurs on
828 * SCSI ATA PASS_THROUGH commands when CK_COND=1
830 if ((sshdr
.asc
== 0x0) && (sshdr
.ascq
== 0x1d))
832 else if (!(req
->cmd_flags
& REQ_QUIET
))
833 scsi_print_sense("", cmd
);
835 /* BLOCK_PC may have set error */
840 * A number of bytes were successfully read. If there
841 * are leftovers and there is some kind of error
842 * (result != 0), retry the rest.
844 if (scsi_end_request(cmd
, error
, good_bytes
, result
== 0) == NULL
)
847 error
= __scsi_error_from_host_byte(cmd
, result
);
849 if (host_byte(result
) == DID_RESET
) {
850 /* Third party bus reset or reset for error recovery
851 * reasons. Just retry the command and see what
854 action
= ACTION_RETRY
;
855 } else if (sense_valid
&& !sense_deferred
) {
856 switch (sshdr
.sense_key
) {
858 if (cmd
->device
->removable
) {
859 /* Detected disc change. Set a bit
860 * and quietly refuse further access.
862 cmd
->device
->changed
= 1;
863 description
= "Media Changed";
864 action
= ACTION_FAIL
;
866 /* Must have been a power glitch, or a
867 * bus reset. Could not have been a
868 * media change, so we just retry the
869 * command and see what happens.
871 action
= ACTION_RETRY
;
874 case ILLEGAL_REQUEST
:
875 /* If we had an ILLEGAL REQUEST returned, then
876 * we may have performed an unsupported
877 * command. The only thing this should be
878 * would be a ten byte read where only a six
879 * byte read was supported. Also, on a system
880 * where READ CAPACITY failed, we may have
881 * read past the end of the disk.
883 if ((cmd
->device
->use_10_for_rw
&&
884 sshdr
.asc
== 0x20 && sshdr
.ascq
== 0x00) &&
885 (cmd
->cmnd
[0] == READ_10
||
886 cmd
->cmnd
[0] == WRITE_10
)) {
887 /* This will issue a new 6-byte command. */
888 cmd
->device
->use_10_for_rw
= 0;
889 action
= ACTION_REPREP
;
890 } else if (sshdr
.asc
== 0x10) /* DIX */ {
891 description
= "Host Data Integrity Failure";
892 action
= ACTION_FAIL
;
894 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
895 } else if ((sshdr
.asc
== 0x20 || sshdr
.asc
== 0x24) &&
896 (cmd
->cmnd
[0] == UNMAP
||
897 cmd
->cmnd
[0] == WRITE_SAME_16
||
898 cmd
->cmnd
[0] == WRITE_SAME
)) {
899 description
= "Discard failure";
900 action
= ACTION_FAIL
;
903 action
= ACTION_FAIL
;
905 case ABORTED_COMMAND
:
906 action
= ACTION_FAIL
;
907 if (sshdr
.asc
== 0x10) { /* DIF */
908 description
= "Target Data Integrity Failure";
913 /* If the device is in the process of becoming
914 * ready, or has a temporary blockage, retry.
916 if (sshdr
.asc
== 0x04) {
917 switch (sshdr
.ascq
) {
918 case 0x01: /* becoming ready */
919 case 0x04: /* format in progress */
920 case 0x05: /* rebuild in progress */
921 case 0x06: /* recalculation in progress */
922 case 0x07: /* operation in progress */
923 case 0x08: /* Long write in progress */
924 case 0x09: /* self test in progress */
925 case 0x14: /* space allocation in progress */
926 action
= ACTION_DELAYED_RETRY
;
929 description
= "Device not ready";
930 action
= ACTION_FAIL
;
934 description
= "Device not ready";
935 action
= ACTION_FAIL
;
938 case VOLUME_OVERFLOW
:
939 /* See SSC3rXX or current. */
940 action
= ACTION_FAIL
;
943 description
= "Unhandled sense code";
944 action
= ACTION_FAIL
;
948 description
= "Unhandled error code";
949 action
= ACTION_FAIL
;
954 /* Give up and fail the remainder of the request */
955 scsi_release_buffers(cmd
);
956 if (!(req
->cmd_flags
& REQ_QUIET
)) {
958 scmd_printk(KERN_INFO
, cmd
, "%s\n",
960 scsi_print_result(cmd
);
961 if (driver_byte(result
) & DRIVER_SENSE
)
962 scsi_print_sense("", cmd
);
963 scsi_print_command(cmd
);
965 if (blk_end_request_err(req
, error
))
966 scsi_requeue_command(q
, cmd
);
968 scsi_next_command(cmd
);
971 /* Unprep the request and put it back at the head of the queue.
972 * A new command will be prepared and issued.
974 scsi_release_buffers(cmd
);
975 scsi_requeue_command(q
, cmd
);
978 /* Retry the same command immediately */
979 __scsi_queue_insert(cmd
, SCSI_MLQUEUE_EH_RETRY
, 0);
981 case ACTION_DELAYED_RETRY
:
982 /* Retry the same command after a delay */
983 __scsi_queue_insert(cmd
, SCSI_MLQUEUE_DEVICE_BUSY
, 0);
988 static int scsi_init_sgtable(struct request
*req
, struct scsi_data_buffer
*sdb
,
994 * If sg table allocation fails, requeue request later.
996 if (unlikely(scsi_alloc_sgtable(sdb
, req
->nr_phys_segments
,
998 return BLKPREP_DEFER
;
1004 * Next, walk the list, and fill in the addresses and sizes of
1007 count
= blk_rq_map_sg(req
->q
, req
, sdb
->table
.sgl
);
1008 BUG_ON(count
> sdb
->table
.nents
);
1009 sdb
->table
.nents
= count
;
1010 sdb
->length
= blk_rq_bytes(req
);
1015 * Function: scsi_init_io()
1017 * Purpose: SCSI I/O initialize function.
1019 * Arguments: cmd - Command descriptor we wish to initialize
1021 * Returns: 0 on success
1022 * BLKPREP_DEFER if the failure is retryable
1023 * BLKPREP_KILL if the failure is fatal
1025 int scsi_init_io(struct scsi_cmnd
*cmd
, gfp_t gfp_mask
)
1027 struct request
*rq
= cmd
->request
;
1029 int error
= scsi_init_sgtable(rq
, &cmd
->sdb
, gfp_mask
);
1033 if (blk_bidi_rq(rq
)) {
1034 struct scsi_data_buffer
*bidi_sdb
= kmem_cache_zalloc(
1035 scsi_sdb_cache
, GFP_ATOMIC
);
1037 error
= BLKPREP_DEFER
;
1041 rq
->next_rq
->special
= bidi_sdb
;
1042 error
= scsi_init_sgtable(rq
->next_rq
, bidi_sdb
, GFP_ATOMIC
);
1047 if (blk_integrity_rq(rq
)) {
1048 struct scsi_data_buffer
*prot_sdb
= cmd
->prot_sdb
;
1051 BUG_ON(prot_sdb
== NULL
);
1052 ivecs
= blk_rq_count_integrity_sg(rq
->q
, rq
->bio
);
1054 if (scsi_alloc_sgtable(prot_sdb
, ivecs
, gfp_mask
)) {
1055 error
= BLKPREP_DEFER
;
1059 count
= blk_rq_map_integrity_sg(rq
->q
, rq
->bio
,
1060 prot_sdb
->table
.sgl
);
1061 BUG_ON(unlikely(count
> ivecs
));
1062 BUG_ON(unlikely(count
> queue_max_integrity_segments(rq
->q
)));
1064 cmd
->prot_sdb
= prot_sdb
;
1065 cmd
->prot_sdb
->table
.nents
= count
;
1071 scsi_release_buffers(cmd
);
1072 cmd
->request
->special
= NULL
;
1073 scsi_put_command(cmd
);
1076 EXPORT_SYMBOL(scsi_init_io
);
1078 static struct scsi_cmnd
*scsi_get_cmd_from_req(struct scsi_device
*sdev
,
1079 struct request
*req
)
1081 struct scsi_cmnd
*cmd
;
1083 if (!req
->special
) {
1084 cmd
= scsi_get_command(sdev
, GFP_ATOMIC
);
1092 /* pull a tag out of the request if we have one */
1093 cmd
->tag
= req
->tag
;
1096 cmd
->cmnd
= req
->cmd
;
1097 cmd
->prot_op
= SCSI_PROT_NORMAL
;
1102 int scsi_setup_blk_pc_cmnd(struct scsi_device
*sdev
, struct request
*req
)
1104 struct scsi_cmnd
*cmd
;
1105 int ret
= scsi_prep_state_check(sdev
, req
);
1107 if (ret
!= BLKPREP_OK
)
1110 cmd
= scsi_get_cmd_from_req(sdev
, req
);
1112 return BLKPREP_DEFER
;
1115 * BLOCK_PC requests may transfer data, in which case they must
1116 * a bio attached to them. Or they might contain a SCSI command
1117 * that does not transfer data, in which case they may optionally
1118 * submit a request without an attached bio.
1123 BUG_ON(!req
->nr_phys_segments
);
1125 ret
= scsi_init_io(cmd
, GFP_ATOMIC
);
1129 BUG_ON(blk_rq_bytes(req
));
1131 memset(&cmd
->sdb
, 0, sizeof(cmd
->sdb
));
1135 cmd
->cmd_len
= req
->cmd_len
;
1136 if (!blk_rq_bytes(req
))
1137 cmd
->sc_data_direction
= DMA_NONE
;
1138 else if (rq_data_dir(req
) == WRITE
)
1139 cmd
->sc_data_direction
= DMA_TO_DEVICE
;
1141 cmd
->sc_data_direction
= DMA_FROM_DEVICE
;
1143 cmd
->transfersize
= blk_rq_bytes(req
);
1144 cmd
->allowed
= req
->retries
;
1147 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd
);
1150 * Setup a REQ_TYPE_FS command. These are simple read/write request
1151 * from filesystems that still need to be translated to SCSI CDBs from
1154 int scsi_setup_fs_cmnd(struct scsi_device
*sdev
, struct request
*req
)
1156 struct scsi_cmnd
*cmd
;
1157 int ret
= scsi_prep_state_check(sdev
, req
);
1159 if (ret
!= BLKPREP_OK
)
1162 if (unlikely(sdev
->scsi_dh_data
&& sdev
->scsi_dh_data
->scsi_dh
1163 && sdev
->scsi_dh_data
->scsi_dh
->prep_fn
)) {
1164 ret
= sdev
->scsi_dh_data
->scsi_dh
->prep_fn(sdev
, req
);
1165 if (ret
!= BLKPREP_OK
)
1170 * Filesystem requests must transfer data.
1172 BUG_ON(!req
->nr_phys_segments
);
1174 cmd
= scsi_get_cmd_from_req(sdev
, req
);
1176 return BLKPREP_DEFER
;
1178 memset(cmd
->cmnd
, 0, BLK_MAX_CDB
);
1179 return scsi_init_io(cmd
, GFP_ATOMIC
);
1181 EXPORT_SYMBOL(scsi_setup_fs_cmnd
);
1183 int scsi_prep_state_check(struct scsi_device
*sdev
, struct request
*req
)
1185 int ret
= BLKPREP_OK
;
1188 * If the device is not in running state we will reject some
1191 if (unlikely(sdev
->sdev_state
!= SDEV_RUNNING
)) {
1192 switch (sdev
->sdev_state
) {
1195 * If the device is offline we refuse to process any
1196 * commands. The device must be brought online
1197 * before trying any recovery commands.
1199 sdev_printk(KERN_ERR
, sdev
,
1200 "rejecting I/O to offline device\n");
1205 * If the device is fully deleted, we refuse to
1206 * process any commands as well.
1208 sdev_printk(KERN_ERR
, sdev
,
1209 "rejecting I/O to dead device\n");
1214 case SDEV_CREATED_BLOCK
:
1216 * If the devices is blocked we defer normal commands.
1218 if (!(req
->cmd_flags
& REQ_PREEMPT
))
1219 ret
= BLKPREP_DEFER
;
1223 * For any other not fully online state we only allow
1224 * special commands. In particular any user initiated
1225 * command is not allowed.
1227 if (!(req
->cmd_flags
& REQ_PREEMPT
))
1234 EXPORT_SYMBOL(scsi_prep_state_check
);
1236 int scsi_prep_return(struct request_queue
*q
, struct request
*req
, int ret
)
1238 struct scsi_device
*sdev
= q
->queuedata
;
1242 req
->errors
= DID_NO_CONNECT
<< 16;
1243 /* release the command and kill it */
1245 struct scsi_cmnd
*cmd
= req
->special
;
1246 scsi_release_buffers(cmd
);
1247 scsi_put_command(cmd
);
1248 req
->special
= NULL
;
1253 * If we defer, the blk_peek_request() returns NULL, but the
1254 * queue must be restarted, so we schedule a callback to happen
1257 if (sdev
->device_busy
== 0)
1258 blk_delay_queue(q
, SCSI_QUEUE_DELAY
);
1261 req
->cmd_flags
|= REQ_DONTPREP
;
1266 EXPORT_SYMBOL(scsi_prep_return
);
1268 int scsi_prep_fn(struct request_queue
*q
, struct request
*req
)
1270 struct scsi_device
*sdev
= q
->queuedata
;
1271 int ret
= BLKPREP_KILL
;
1273 if (req
->cmd_type
== REQ_TYPE_BLOCK_PC
)
1274 ret
= scsi_setup_blk_pc_cmnd(sdev
, req
);
1275 return scsi_prep_return(q
, req
, ret
);
1277 EXPORT_SYMBOL(scsi_prep_fn
);
1280 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1283 * Called with the queue_lock held.
1285 static inline int scsi_dev_queue_ready(struct request_queue
*q
,
1286 struct scsi_device
*sdev
)
1288 if (sdev
->device_busy
== 0 && sdev
->device_blocked
) {
1290 * unblock after device_blocked iterates to zero
1292 if (--sdev
->device_blocked
== 0) {
1294 sdev_printk(KERN_INFO
, sdev
,
1295 "unblocking device at zero depth\n"));
1297 blk_delay_queue(q
, SCSI_QUEUE_DELAY
);
1301 if (scsi_device_is_busy(sdev
))
1309 * scsi_target_queue_ready: checks if there we can send commands to target
1310 * @sdev: scsi device on starget to check.
1312 * Called with the host lock held.
1314 static inline int scsi_target_queue_ready(struct Scsi_Host
*shost
,
1315 struct scsi_device
*sdev
)
1317 struct scsi_target
*starget
= scsi_target(sdev
);
1319 if (starget
->single_lun
) {
1320 if (starget
->starget_sdev_user
&&
1321 starget
->starget_sdev_user
!= sdev
)
1323 starget
->starget_sdev_user
= sdev
;
1326 if (starget
->target_busy
== 0 && starget
->target_blocked
) {
1328 * unblock after target_blocked iterates to zero
1330 if (--starget
->target_blocked
== 0) {
1331 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO
, starget
,
1332 "unblocking target at zero depth\n"));
1337 if (scsi_target_is_busy(starget
)) {
1338 list_move_tail(&sdev
->starved_entry
, &shost
->starved_list
);
1346 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1347 * return 0. We must end up running the queue again whenever 0 is
1348 * returned, else IO can hang.
1350 * Called with host_lock held.
1352 static inline int scsi_host_queue_ready(struct request_queue
*q
,
1353 struct Scsi_Host
*shost
,
1354 struct scsi_device
*sdev
)
1356 if (scsi_host_in_recovery(shost
))
1358 if (shost
->host_busy
== 0 && shost
->host_blocked
) {
1360 * unblock after host_blocked iterates to zero
1362 if (--shost
->host_blocked
== 0) {
1364 printk("scsi%d unblocking host at zero depth\n",
1370 if (scsi_host_is_busy(shost
)) {
1371 if (list_empty(&sdev
->starved_entry
))
1372 list_add_tail(&sdev
->starved_entry
, &shost
->starved_list
);
1376 /* We're OK to process the command, so we can't be starved */
1377 if (!list_empty(&sdev
->starved_entry
))
1378 list_del_init(&sdev
->starved_entry
);
1384 * Busy state exporting function for request stacking drivers.
1386 * For efficiency, no lock is taken to check the busy state of
1387 * shost/starget/sdev, since the returned value is not guaranteed and
1388 * may be changed after request stacking drivers call the function,
1389 * regardless of taking lock or not.
1391 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1392 * needs to return 'not busy'. Otherwise, request stacking drivers
1393 * may hold requests forever.
1395 static int scsi_lld_busy(struct request_queue
*q
)
1397 struct scsi_device
*sdev
= q
->queuedata
;
1398 struct Scsi_Host
*shost
;
1400 if (blk_queue_dead(q
))
1406 * Ignore host/starget busy state.
1407 * Since block layer does not have a concept of fairness across
1408 * multiple queues, congestion of host/starget needs to be handled
1411 if (scsi_host_in_recovery(shost
) || scsi_device_is_busy(sdev
))
1418 * Kill a request for a dead device
1420 static void scsi_kill_request(struct request
*req
, struct request_queue
*q
)
1422 struct scsi_cmnd
*cmd
= req
->special
;
1423 struct scsi_device
*sdev
;
1424 struct scsi_target
*starget
;
1425 struct Scsi_Host
*shost
;
1427 blk_start_request(req
);
1429 scmd_printk(KERN_INFO
, cmd
, "killing request\n");
1432 starget
= scsi_target(sdev
);
1434 scsi_init_cmd_errh(cmd
);
1435 cmd
->result
= DID_NO_CONNECT
<< 16;
1436 atomic_inc(&cmd
->device
->iorequest_cnt
);
1439 * SCSI request completion path will do scsi_device_unbusy(),
1440 * bump busy counts. To bump the counters, we need to dance
1441 * with the locks as normal issue path does.
1443 sdev
->device_busy
++;
1444 spin_unlock(sdev
->request_queue
->queue_lock
);
1445 spin_lock(shost
->host_lock
);
1447 starget
->target_busy
++;
1448 spin_unlock(shost
->host_lock
);
1449 spin_lock(sdev
->request_queue
->queue_lock
);
1451 blk_complete_request(req
);
1454 static void scsi_softirq_done(struct request
*rq
)
1456 struct scsi_cmnd
*cmd
= rq
->special
;
1457 unsigned long wait_for
= (cmd
->allowed
+ 1) * rq
->timeout
;
1460 INIT_LIST_HEAD(&cmd
->eh_entry
);
1462 atomic_inc(&cmd
->device
->iodone_cnt
);
1464 atomic_inc(&cmd
->device
->ioerr_cnt
);
1466 disposition
= scsi_decide_disposition(cmd
);
1467 if (disposition
!= SUCCESS
&&
1468 time_before(cmd
->jiffies_at_alloc
+ wait_for
, jiffies
)) {
1469 sdev_printk(KERN_ERR
, cmd
->device
,
1470 "timing out command, waited %lus\n",
1472 disposition
= SUCCESS
;
1475 scsi_log_completion(cmd
, disposition
);
1477 switch (disposition
) {
1479 scsi_finish_command(cmd
);
1482 scsi_queue_insert(cmd
, SCSI_MLQUEUE_EH_RETRY
);
1484 case ADD_TO_MLQUEUE
:
1485 scsi_queue_insert(cmd
, SCSI_MLQUEUE_DEVICE_BUSY
);
1488 if (!scsi_eh_scmd_add(cmd
, 0))
1489 scsi_finish_command(cmd
);
1494 * Function: scsi_request_fn()
1496 * Purpose: Main strategy routine for SCSI.
1498 * Arguments: q - Pointer to actual queue.
1502 * Lock status: IO request lock assumed to be held when called.
1504 static void scsi_request_fn(struct request_queue
*q
)
1506 struct scsi_device
*sdev
= q
->queuedata
;
1507 struct Scsi_Host
*shost
;
1508 struct scsi_cmnd
*cmd
;
1509 struct request
*req
;
1511 if(!get_device(&sdev
->sdev_gendev
))
1512 /* We must be tearing the block queue down already */
1516 * To start with, we keep looping until the queue is empty, or until
1517 * the host is no longer able to accept any more requests.
1523 * get next queueable request. We do this early to make sure
1524 * that the request is fully prepared even if we cannot
1527 req
= blk_peek_request(q
);
1528 if (!req
|| !scsi_dev_queue_ready(q
, sdev
))
1531 if (unlikely(!scsi_device_online(sdev
))) {
1532 sdev_printk(KERN_ERR
, sdev
,
1533 "rejecting I/O to offline device\n");
1534 scsi_kill_request(req
, q
);
1540 * Remove the request from the request list.
1542 if (!(blk_queue_tagged(q
) && !blk_queue_start_tag(q
, req
)))
1543 blk_start_request(req
);
1544 sdev
->device_busy
++;
1546 spin_unlock(q
->queue_lock
);
1548 if (unlikely(cmd
== NULL
)) {
1549 printk(KERN_CRIT
"impossible request in %s.\n"
1550 "please mail a stack trace to "
1551 "linux-scsi@vger.kernel.org\n",
1553 blk_dump_rq_flags(req
, "foo");
1556 spin_lock(shost
->host_lock
);
1559 * We hit this when the driver is using a host wide
1560 * tag map. For device level tag maps the queue_depth check
1561 * in the device ready fn would prevent us from trying
1562 * to allocate a tag. Since the map is a shared host resource
1563 * we add the dev to the starved list so it eventually gets
1564 * a run when a tag is freed.
1566 if (blk_queue_tagged(q
) && !blk_rq_tagged(req
)) {
1567 if (list_empty(&sdev
->starved_entry
))
1568 list_add_tail(&sdev
->starved_entry
,
1569 &shost
->starved_list
);
1573 if (!scsi_target_queue_ready(shost
, sdev
))
1576 if (!scsi_host_queue_ready(q
, shost
, sdev
))
1579 scsi_target(sdev
)->target_busy
++;
1583 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1584 * take the lock again.
1586 spin_unlock_irq(shost
->host_lock
);
1589 * Finally, initialize any error handling parameters, and set up
1590 * the timers for timeouts.
1592 scsi_init_cmd_errh(cmd
);
1595 * Dispatch the command to the low-level driver.
1597 rtn
= scsi_dispatch_cmd(cmd
);
1598 spin_lock_irq(q
->queue_lock
);
1606 spin_unlock_irq(shost
->host_lock
);
1609 * lock q, handle tag, requeue req, and decrement device_busy. We
1610 * must return with queue_lock held.
1612 * Decrementing device_busy without checking it is OK, as all such
1613 * cases (host limits or settings) should run the queue at some
1616 spin_lock_irq(q
->queue_lock
);
1617 blk_requeue_request(q
, req
);
1618 sdev
->device_busy
--;
1620 if (sdev
->device_busy
== 0)
1621 blk_delay_queue(q
, SCSI_QUEUE_DELAY
);
1623 /* must be careful here...if we trigger the ->remove() function
1624 * we cannot be holding the q lock */
1625 spin_unlock_irq(q
->queue_lock
);
1626 put_device(&sdev
->sdev_gendev
);
1627 spin_lock_irq(q
->queue_lock
);
1630 u64
scsi_calculate_bounce_limit(struct Scsi_Host
*shost
)
1632 struct device
*host_dev
;
1633 u64 bounce_limit
= 0xffffffff;
1635 if (shost
->unchecked_isa_dma
)
1636 return BLK_BOUNCE_ISA
;
1638 * Platforms with virtual-DMA translation
1639 * hardware have no practical limit.
1641 if (!PCI_DMA_BUS_IS_PHYS
)
1642 return BLK_BOUNCE_ANY
;
1644 host_dev
= scsi_get_device(shost
);
1645 if (host_dev
&& host_dev
->dma_mask
)
1646 bounce_limit
= *host_dev
->dma_mask
;
1648 return bounce_limit
;
1650 EXPORT_SYMBOL(scsi_calculate_bounce_limit
);
1652 struct request_queue
*__scsi_alloc_queue(struct Scsi_Host
*shost
,
1653 request_fn_proc
*request_fn
)
1655 struct request_queue
*q
;
1656 struct device
*dev
= shost
->dma_dev
;
1658 q
= blk_init_queue(request_fn
, NULL
);
1663 * this limit is imposed by hardware restrictions
1665 blk_queue_max_segments(q
, min_t(unsigned short, shost
->sg_tablesize
,
1666 SCSI_MAX_SG_CHAIN_SEGMENTS
));
1668 if (scsi_host_prot_dma(shost
)) {
1669 shost
->sg_prot_tablesize
=
1670 min_not_zero(shost
->sg_prot_tablesize
,
1671 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS
);
1672 BUG_ON(shost
->sg_prot_tablesize
< shost
->sg_tablesize
);
1673 blk_queue_max_integrity_segments(q
, shost
->sg_prot_tablesize
);
1676 blk_queue_max_hw_sectors(q
, shost
->max_sectors
);
1677 blk_queue_bounce_limit(q
, scsi_calculate_bounce_limit(shost
));
1678 blk_queue_segment_boundary(q
, shost
->dma_boundary
);
1679 dma_set_seg_boundary(dev
, shost
->dma_boundary
);
1681 blk_queue_max_segment_size(q
, dma_get_max_seg_size(dev
));
1683 if (!shost
->use_clustering
)
1684 q
->limits
.cluster
= 0;
1687 * set a reasonable default alignment on word boundaries: the
1688 * host and device may alter it using
1689 * blk_queue_update_dma_alignment() later.
1691 blk_queue_dma_alignment(q
, 0x03);
1695 EXPORT_SYMBOL(__scsi_alloc_queue
);
1697 struct request_queue
*scsi_alloc_queue(struct scsi_device
*sdev
)
1699 struct request_queue
*q
;
1701 q
= __scsi_alloc_queue(sdev
->host
, scsi_request_fn
);
1705 blk_queue_prep_rq(q
, scsi_prep_fn
);
1706 blk_queue_softirq_done(q
, scsi_softirq_done
);
1707 blk_queue_rq_timed_out(q
, scsi_times_out
);
1708 blk_queue_lld_busy(q
, scsi_lld_busy
);
1713 * Function: scsi_block_requests()
1715 * Purpose: Utility function used by low-level drivers to prevent further
1716 * commands from being queued to the device.
1718 * Arguments: shost - Host in question
1722 * Lock status: No locks are assumed held.
1724 * Notes: There is no timer nor any other means by which the requests
1725 * get unblocked other than the low-level driver calling
1726 * scsi_unblock_requests().
1728 void scsi_block_requests(struct Scsi_Host
*shost
)
1730 shost
->host_self_blocked
= 1;
1732 EXPORT_SYMBOL(scsi_block_requests
);
1735 * Function: scsi_unblock_requests()
1737 * Purpose: Utility function used by low-level drivers to allow further
1738 * commands from being queued to the device.
1740 * Arguments: shost - Host in question
1744 * Lock status: No locks are assumed held.
1746 * Notes: There is no timer nor any other means by which the requests
1747 * get unblocked other than the low-level driver calling
1748 * scsi_unblock_requests().
1750 * This is done as an API function so that changes to the
1751 * internals of the scsi mid-layer won't require wholesale
1752 * changes to drivers that use this feature.
1754 void scsi_unblock_requests(struct Scsi_Host
*shost
)
1756 shost
->host_self_blocked
= 0;
1757 scsi_run_host_queues(shost
);
1759 EXPORT_SYMBOL(scsi_unblock_requests
);
1761 int __init
scsi_init_queue(void)
1765 scsi_sdb_cache
= kmem_cache_create("scsi_data_buffer",
1766 sizeof(struct scsi_data_buffer
),
1768 if (!scsi_sdb_cache
) {
1769 printk(KERN_ERR
"SCSI: can't init scsi sdb cache\n");
1773 for (i
= 0; i
< SG_MEMPOOL_NR
; i
++) {
1774 struct scsi_host_sg_pool
*sgp
= scsi_sg_pools
+ i
;
1775 int size
= sgp
->size
* sizeof(struct scatterlist
);
1777 sgp
->slab
= kmem_cache_create(sgp
->name
, size
, 0,
1778 SLAB_HWCACHE_ALIGN
, NULL
);
1780 printk(KERN_ERR
"SCSI: can't init sg slab %s\n",
1785 sgp
->pool
= mempool_create_slab_pool(SG_MEMPOOL_SIZE
,
1788 printk(KERN_ERR
"SCSI: can't init sg mempool %s\n",
1797 for (i
= 0; i
< SG_MEMPOOL_NR
; i
++) {
1798 struct scsi_host_sg_pool
*sgp
= scsi_sg_pools
+ i
;
1800 mempool_destroy(sgp
->pool
);
1802 kmem_cache_destroy(sgp
->slab
);
1804 kmem_cache_destroy(scsi_sdb_cache
);
1809 void scsi_exit_queue(void)
1813 kmem_cache_destroy(scsi_sdb_cache
);
1815 for (i
= 0; i
< SG_MEMPOOL_NR
; i
++) {
1816 struct scsi_host_sg_pool
*sgp
= scsi_sg_pools
+ i
;
1817 mempool_destroy(sgp
->pool
);
1818 kmem_cache_destroy(sgp
->slab
);
1823 * scsi_mode_select - issue a mode select
1824 * @sdev: SCSI device to be queried
1825 * @pf: Page format bit (1 == standard, 0 == vendor specific)
1826 * @sp: Save page bit (0 == don't save, 1 == save)
1827 * @modepage: mode page being requested
1828 * @buffer: request buffer (may not be smaller than eight bytes)
1829 * @len: length of request buffer.
1830 * @timeout: command timeout
1831 * @retries: number of retries before failing
1832 * @data: returns a structure abstracting the mode header data
1833 * @sshdr: place to put sense data (or NULL if no sense to be collected).
1834 * must be SCSI_SENSE_BUFFERSIZE big.
1836 * Returns zero if successful; negative error number or scsi
1841 scsi_mode_select(struct scsi_device
*sdev
, int pf
, int sp
, int modepage
,
1842 unsigned char *buffer
, int len
, int timeout
, int retries
,
1843 struct scsi_mode_data
*data
, struct scsi_sense_hdr
*sshdr
)
1845 unsigned char cmd
[10];
1846 unsigned char *real_buffer
;
1849 memset(cmd
, 0, sizeof(cmd
));
1850 cmd
[1] = (pf
? 0x10 : 0) | (sp
? 0x01 : 0);
1852 if (sdev
->use_10_for_ms
) {
1855 real_buffer
= kmalloc(8 + len
, GFP_KERNEL
);
1858 memcpy(real_buffer
+ 8, buffer
, len
);
1862 real_buffer
[2] = data
->medium_type
;
1863 real_buffer
[3] = data
->device_specific
;
1864 real_buffer
[4] = data
->longlba
? 0x01 : 0;
1866 real_buffer
[6] = data
->block_descriptor_length
>> 8;
1867 real_buffer
[7] = data
->block_descriptor_length
;
1869 cmd
[0] = MODE_SELECT_10
;
1873 if (len
> 255 || data
->block_descriptor_length
> 255 ||
1877 real_buffer
= kmalloc(4 + len
, GFP_KERNEL
);
1880 memcpy(real_buffer
+ 4, buffer
, len
);
1883 real_buffer
[1] = data
->medium_type
;
1884 real_buffer
[2] = data
->device_specific
;
1885 real_buffer
[3] = data
->block_descriptor_length
;
1888 cmd
[0] = MODE_SELECT
;
1892 ret
= scsi_execute_req(sdev
, cmd
, DMA_TO_DEVICE
, real_buffer
, len
,
1893 sshdr
, timeout
, retries
, NULL
);
1897 EXPORT_SYMBOL_GPL(scsi_mode_select
);
1900 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1901 * @sdev: SCSI device to be queried
1902 * @dbd: set if mode sense will allow block descriptors to be returned
1903 * @modepage: mode page being requested
1904 * @buffer: request buffer (may not be smaller than eight bytes)
1905 * @len: length of request buffer.
1906 * @timeout: command timeout
1907 * @retries: number of retries before failing
1908 * @data: returns a structure abstracting the mode header data
1909 * @sshdr: place to put sense data (or NULL if no sense to be collected).
1910 * must be SCSI_SENSE_BUFFERSIZE big.
1912 * Returns zero if unsuccessful, or the header offset (either 4
1913 * or 8 depending on whether a six or ten byte command was
1914 * issued) if successful.
1917 scsi_mode_sense(struct scsi_device
*sdev
, int dbd
, int modepage
,
1918 unsigned char *buffer
, int len
, int timeout
, int retries
,
1919 struct scsi_mode_data
*data
, struct scsi_sense_hdr
*sshdr
)
1921 unsigned char cmd
[12];
1925 struct scsi_sense_hdr my_sshdr
;
1927 memset(data
, 0, sizeof(*data
));
1928 memset(&cmd
[0], 0, 12);
1929 cmd
[1] = dbd
& 0x18; /* allows DBD and LLBA bits */
1932 /* caller might not be interested in sense, but we need it */
1937 use_10_for_ms
= sdev
->use_10_for_ms
;
1939 if (use_10_for_ms
) {
1943 cmd
[0] = MODE_SENSE_10
;
1950 cmd
[0] = MODE_SENSE
;
1955 memset(buffer
, 0, len
);
1957 result
= scsi_execute_req(sdev
, cmd
, DMA_FROM_DEVICE
, buffer
, len
,
1958 sshdr
, timeout
, retries
, NULL
);
1960 /* This code looks awful: what it's doing is making sure an
1961 * ILLEGAL REQUEST sense return identifies the actual command
1962 * byte as the problem. MODE_SENSE commands can return
1963 * ILLEGAL REQUEST if the code page isn't supported */
1965 if (use_10_for_ms
&& !scsi_status_is_good(result
) &&
1966 (driver_byte(result
) & DRIVER_SENSE
)) {
1967 if (scsi_sense_valid(sshdr
)) {
1968 if ((sshdr
->sense_key
== ILLEGAL_REQUEST
) &&
1969 (sshdr
->asc
== 0x20) && (sshdr
->ascq
== 0)) {
1971 * Invalid command operation code
1973 sdev
->use_10_for_ms
= 0;
1979 if(scsi_status_is_good(result
)) {
1980 if (unlikely(buffer
[0] == 0x86 && buffer
[1] == 0x0b &&
1981 (modepage
== 6 || modepage
== 8))) {
1982 /* Initio breakage? */
1985 data
->medium_type
= 0;
1986 data
->device_specific
= 0;
1988 data
->block_descriptor_length
= 0;
1989 } else if(use_10_for_ms
) {
1990 data
->length
= buffer
[0]*256 + buffer
[1] + 2;
1991 data
->medium_type
= buffer
[2];
1992 data
->device_specific
= buffer
[3];
1993 data
->longlba
= buffer
[4] & 0x01;
1994 data
->block_descriptor_length
= buffer
[6]*256
1997 data
->length
= buffer
[0] + 1;
1998 data
->medium_type
= buffer
[1];
1999 data
->device_specific
= buffer
[2];
2000 data
->block_descriptor_length
= buffer
[3];
2002 data
->header_length
= header_length
;
2007 EXPORT_SYMBOL(scsi_mode_sense
);
2010 * scsi_test_unit_ready - test if unit is ready
2011 * @sdev: scsi device to change the state of.
2012 * @timeout: command timeout
2013 * @retries: number of retries before failing
2014 * @sshdr_external: Optional pointer to struct scsi_sense_hdr for
2015 * returning sense. Make sure that this is cleared before passing
2018 * Returns zero if unsuccessful or an error if TUR failed. For
2019 * removable media, UNIT_ATTENTION sets ->changed flag.
2022 scsi_test_unit_ready(struct scsi_device
*sdev
, int timeout
, int retries
,
2023 struct scsi_sense_hdr
*sshdr_external
)
2026 TEST_UNIT_READY
, 0, 0, 0, 0, 0,
2028 struct scsi_sense_hdr
*sshdr
;
2031 if (!sshdr_external
)
2032 sshdr
= kzalloc(sizeof(*sshdr
), GFP_KERNEL
);
2034 sshdr
= sshdr_external
;
2036 /* try to eat the UNIT_ATTENTION if there are enough retries */
2038 result
= scsi_execute_req(sdev
, cmd
, DMA_NONE
, NULL
, 0, sshdr
,
2039 timeout
, retries
, NULL
);
2040 if (sdev
->removable
&& scsi_sense_valid(sshdr
) &&
2041 sshdr
->sense_key
== UNIT_ATTENTION
)
2043 } while (scsi_sense_valid(sshdr
) &&
2044 sshdr
->sense_key
== UNIT_ATTENTION
&& --retries
);
2046 if (!sshdr_external
)
2050 EXPORT_SYMBOL(scsi_test_unit_ready
);
2053 * scsi_device_set_state - Take the given device through the device state model.
2054 * @sdev: scsi device to change the state of.
2055 * @state: state to change to.
2057 * Returns zero if unsuccessful or an error if the requested
2058 * transition is illegal.
2061 scsi_device_set_state(struct scsi_device
*sdev
, enum scsi_device_state state
)
2063 enum scsi_device_state oldstate
= sdev
->sdev_state
;
2065 if (state
== oldstate
)
2071 case SDEV_CREATED_BLOCK
:
2115 case SDEV_CREATED_BLOCK
:
2122 case SDEV_CREATED_BLOCK
:
2157 sdev
->sdev_state
= state
;
2161 SCSI_LOG_ERROR_RECOVERY(1,
2162 sdev_printk(KERN_ERR
, sdev
,
2163 "Illegal state transition %s->%s\n",
2164 scsi_device_state_name(oldstate
),
2165 scsi_device_state_name(state
))
2169 EXPORT_SYMBOL(scsi_device_set_state
);
2172 * sdev_evt_emit - emit a single SCSI device uevent
2173 * @sdev: associated SCSI device
2174 * @evt: event to emit
2176 * Send a single uevent (scsi_event) to the associated scsi_device.
2178 static void scsi_evt_emit(struct scsi_device
*sdev
, struct scsi_event
*evt
)
2183 switch (evt
->evt_type
) {
2184 case SDEV_EVT_MEDIA_CHANGE
:
2185 envp
[idx
++] = "SDEV_MEDIA_CHANGE=1";
2195 kobject_uevent_env(&sdev
->sdev_gendev
.kobj
, KOBJ_CHANGE
, envp
);
2199 * sdev_evt_thread - send a uevent for each scsi event
2200 * @work: work struct for scsi_device
2202 * Dispatch queued events to their associated scsi_device kobjects
2205 void scsi_evt_thread(struct work_struct
*work
)
2207 struct scsi_device
*sdev
;
2208 LIST_HEAD(event_list
);
2210 sdev
= container_of(work
, struct scsi_device
, event_work
);
2213 struct scsi_event
*evt
;
2214 struct list_head
*this, *tmp
;
2215 unsigned long flags
;
2217 spin_lock_irqsave(&sdev
->list_lock
, flags
);
2218 list_splice_init(&sdev
->event_list
, &event_list
);
2219 spin_unlock_irqrestore(&sdev
->list_lock
, flags
);
2221 if (list_empty(&event_list
))
2224 list_for_each_safe(this, tmp
, &event_list
) {
2225 evt
= list_entry(this, struct scsi_event
, node
);
2226 list_del(&evt
->node
);
2227 scsi_evt_emit(sdev
, evt
);
2234 * sdev_evt_send - send asserted event to uevent thread
2235 * @sdev: scsi_device event occurred on
2236 * @evt: event to send
2238 * Assert scsi device event asynchronously.
2240 void sdev_evt_send(struct scsi_device
*sdev
, struct scsi_event
*evt
)
2242 unsigned long flags
;
2245 /* FIXME: currently this check eliminates all media change events
2246 * for polled devices. Need to update to discriminate between AN
2247 * and polled events */
2248 if (!test_bit(evt
->evt_type
, sdev
->supported_events
)) {
2254 spin_lock_irqsave(&sdev
->list_lock
, flags
);
2255 list_add_tail(&evt
->node
, &sdev
->event_list
);
2256 schedule_work(&sdev
->event_work
);
2257 spin_unlock_irqrestore(&sdev
->list_lock
, flags
);
2259 EXPORT_SYMBOL_GPL(sdev_evt_send
);
2262 * sdev_evt_alloc - allocate a new scsi event
2263 * @evt_type: type of event to allocate
2264 * @gfpflags: GFP flags for allocation
2266 * Allocates and returns a new scsi_event.
2268 struct scsi_event
*sdev_evt_alloc(enum scsi_device_event evt_type
,
2271 struct scsi_event
*evt
= kzalloc(sizeof(struct scsi_event
), gfpflags
);
2275 evt
->evt_type
= evt_type
;
2276 INIT_LIST_HEAD(&evt
->node
);
2278 /* evt_type-specific initialization, if any */
2280 case SDEV_EVT_MEDIA_CHANGE
:
2288 EXPORT_SYMBOL_GPL(sdev_evt_alloc
);
2291 * sdev_evt_send_simple - send asserted event to uevent thread
2292 * @sdev: scsi_device event occurred on
2293 * @evt_type: type of event to send
2294 * @gfpflags: GFP flags for allocation
2296 * Assert scsi device event asynchronously, given an event type.
2298 void sdev_evt_send_simple(struct scsi_device
*sdev
,
2299 enum scsi_device_event evt_type
, gfp_t gfpflags
)
2301 struct scsi_event
*evt
= sdev_evt_alloc(evt_type
, gfpflags
);
2303 sdev_printk(KERN_ERR
, sdev
, "event %d eaten due to OOM\n",
2308 sdev_evt_send(sdev
, evt
);
2310 EXPORT_SYMBOL_GPL(sdev_evt_send_simple
);
2313 * scsi_device_quiesce - Block user issued commands.
2314 * @sdev: scsi device to quiesce.
2316 * This works by trying to transition to the SDEV_QUIESCE state
2317 * (which must be a legal transition). When the device is in this
2318 * state, only special requests will be accepted, all others will
2319 * be deferred. Since special requests may also be requeued requests,
2320 * a successful return doesn't guarantee the device will be
2321 * totally quiescent.
2323 * Must be called with user context, may sleep.
2325 * Returns zero if unsuccessful or an error if not.
2328 scsi_device_quiesce(struct scsi_device
*sdev
)
2330 int err
= scsi_device_set_state(sdev
, SDEV_QUIESCE
);
2334 scsi_run_queue(sdev
->request_queue
);
2335 while (sdev
->device_busy
) {
2336 msleep_interruptible(200);
2337 scsi_run_queue(sdev
->request_queue
);
2341 EXPORT_SYMBOL(scsi_device_quiesce
);
2344 * scsi_device_resume - Restart user issued commands to a quiesced device.
2345 * @sdev: scsi device to resume.
2347 * Moves the device from quiesced back to running and restarts the
2350 * Must be called with user context, may sleep.
2353 scsi_device_resume(struct scsi_device
*sdev
)
2355 if(scsi_device_set_state(sdev
, SDEV_RUNNING
))
2357 scsi_run_queue(sdev
->request_queue
);
2359 EXPORT_SYMBOL(scsi_device_resume
);
2362 device_quiesce_fn(struct scsi_device
*sdev
, void *data
)
2364 scsi_device_quiesce(sdev
);
2368 scsi_target_quiesce(struct scsi_target
*starget
)
2370 starget_for_each_device(starget
, NULL
, device_quiesce_fn
);
2372 EXPORT_SYMBOL(scsi_target_quiesce
);
2375 device_resume_fn(struct scsi_device
*sdev
, void *data
)
2377 scsi_device_resume(sdev
);
2381 scsi_target_resume(struct scsi_target
*starget
)
2383 starget_for_each_device(starget
, NULL
, device_resume_fn
);
2385 EXPORT_SYMBOL(scsi_target_resume
);
2388 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2389 * @sdev: device to block
2391 * Block request made by scsi lld's to temporarily stop all
2392 * scsi commands on the specified device. Called from interrupt
2393 * or normal process context.
2395 * Returns zero if successful or error if not
2398 * This routine transitions the device to the SDEV_BLOCK state
2399 * (which must be a legal transition). When the device is in this
2400 * state, all commands are deferred until the scsi lld reenables
2401 * the device with scsi_device_unblock or device_block_tmo fires.
2402 * This routine assumes the host_lock is held on entry.
2405 scsi_internal_device_block(struct scsi_device
*sdev
)
2407 struct request_queue
*q
= sdev
->request_queue
;
2408 unsigned long flags
;
2411 err
= scsi_device_set_state(sdev
, SDEV_BLOCK
);
2413 err
= scsi_device_set_state(sdev
, SDEV_CREATED_BLOCK
);
2420 * The device has transitioned to SDEV_BLOCK. Stop the
2421 * block layer from calling the midlayer with this device's
2424 spin_lock_irqsave(q
->queue_lock
, flags
);
2426 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2430 EXPORT_SYMBOL_GPL(scsi_internal_device_block
);
2433 * scsi_internal_device_unblock - resume a device after a block request
2434 * @sdev: device to resume
2436 * Called by scsi lld's or the midlayer to restart the device queue
2437 * for the previously suspended scsi device. Called from interrupt or
2438 * normal process context.
2440 * Returns zero if successful or error if not.
2443 * This routine transitions the device to the SDEV_RUNNING state
2444 * (which must be a legal transition) allowing the midlayer to
2445 * goose the queue for this device. This routine assumes the
2446 * host_lock is held upon entry.
2449 scsi_internal_device_unblock(struct scsi_device
*sdev
)
2451 struct request_queue
*q
= sdev
->request_queue
;
2452 unsigned long flags
;
2455 * Try to transition the scsi device to SDEV_RUNNING
2456 * and goose the device queue if successful.
2458 if (sdev
->sdev_state
== SDEV_BLOCK
)
2459 sdev
->sdev_state
= SDEV_RUNNING
;
2460 else if (sdev
->sdev_state
== SDEV_CREATED_BLOCK
)
2461 sdev
->sdev_state
= SDEV_CREATED
;
2462 else if (sdev
->sdev_state
!= SDEV_CANCEL
&&
2463 sdev
->sdev_state
!= SDEV_OFFLINE
)
2466 spin_lock_irqsave(q
->queue_lock
, flags
);
2468 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2472 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock
);
2475 device_block(struct scsi_device
*sdev
, void *data
)
2477 scsi_internal_device_block(sdev
);
2481 target_block(struct device
*dev
, void *data
)
2483 if (scsi_is_target_device(dev
))
2484 starget_for_each_device(to_scsi_target(dev
), NULL
,
2490 scsi_target_block(struct device
*dev
)
2492 if (scsi_is_target_device(dev
))
2493 starget_for_each_device(to_scsi_target(dev
), NULL
,
2496 device_for_each_child(dev
, NULL
, target_block
);
2498 EXPORT_SYMBOL_GPL(scsi_target_block
);
2501 device_unblock(struct scsi_device
*sdev
, void *data
)
2503 scsi_internal_device_unblock(sdev
);
2507 target_unblock(struct device
*dev
, void *data
)
2509 if (scsi_is_target_device(dev
))
2510 starget_for_each_device(to_scsi_target(dev
), NULL
,
2516 scsi_target_unblock(struct device
*dev
)
2518 if (scsi_is_target_device(dev
))
2519 starget_for_each_device(to_scsi_target(dev
), NULL
,
2522 device_for_each_child(dev
, NULL
, target_unblock
);
2524 EXPORT_SYMBOL_GPL(scsi_target_unblock
);
2527 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2528 * @sgl: scatter-gather list
2529 * @sg_count: number of segments in sg
2530 * @offset: offset in bytes into sg, on return offset into the mapped area
2531 * @len: bytes to map, on return number of bytes mapped
2533 * Returns virtual address of the start of the mapped page
2535 void *scsi_kmap_atomic_sg(struct scatterlist
*sgl
, int sg_count
,
2536 size_t *offset
, size_t *len
)
2539 size_t sg_len
= 0, len_complete
= 0;
2540 struct scatterlist
*sg
;
2543 WARN_ON(!irqs_disabled());
2545 for_each_sg(sgl
, sg
, sg_count
, i
) {
2546 len_complete
= sg_len
; /* Complete sg-entries */
2547 sg_len
+= sg
->length
;
2548 if (sg_len
> *offset
)
2552 if (unlikely(i
== sg_count
)) {
2553 printk(KERN_ERR
"%s: Bytes in sg: %zu, requested offset %zu, "
2555 __func__
, sg_len
, *offset
, sg_count
);
2560 /* Offset starting from the beginning of first page in this sg-entry */
2561 *offset
= *offset
- len_complete
+ sg
->offset
;
2563 /* Assumption: contiguous pages can be accessed as "page + i" */
2564 page
= nth_page(sg_page(sg
), (*offset
>> PAGE_SHIFT
));
2565 *offset
&= ~PAGE_MASK
;
2567 /* Bytes in this sg-entry from *offset to the end of the page */
2568 sg_len
= PAGE_SIZE
- *offset
;
2572 return kmap_atomic(page
);
2574 EXPORT_SYMBOL(scsi_kmap_atomic_sg
);
2577 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2578 * @virt: virtual address to be unmapped
2580 void scsi_kunmap_atomic_sg(void *virt
)
2582 kunmap_atomic(virt
);
2584 EXPORT_SYMBOL(scsi_kunmap_atomic_sg
);