2 * Driver for Cirrus Logic EP93xx SPI controller.
4 * Copyright (C) 2010-2011 Mika Westerberg
6 * Explicit FIFO handling code was inspired by amba-pl022 driver.
8 * Chip select support using other than built-in GPIOs by H. Hartley Sweeten.
10 * For more information about the SPI controller see documentation on Cirrus
12 * http://www.cirrus.com/en/pubs/manual/EP93xx_Users_Guide_UM1.pdf
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License version 2 as
16 * published by the Free Software Foundation.
20 #include <linux/clk.h>
21 #include <linux/err.h>
22 #include <linux/delay.h>
23 #include <linux/device.h>
24 #include <linux/dmaengine.h>
25 #include <linux/bitops.h>
26 #include <linux/interrupt.h>
27 #include <linux/module.h>
28 #include <linux/platform_device.h>
29 #include <linux/workqueue.h>
30 #include <linux/sched.h>
31 #include <linux/scatterlist.h>
32 #include <linux/spi/spi.h>
35 #include <mach/ep93xx_spi.h>
38 #define SSPCR0_MODE_SHIFT 6
39 #define SSPCR0_SCR_SHIFT 8
42 #define SSPCR1_RIE BIT(0)
43 #define SSPCR1_TIE BIT(1)
44 #define SSPCR1_RORIE BIT(2)
45 #define SSPCR1_LBM BIT(3)
46 #define SSPCR1_SSE BIT(4)
47 #define SSPCR1_MS BIT(5)
48 #define SSPCR1_SOD BIT(6)
53 #define SSPSR_TFE BIT(0)
54 #define SSPSR_TNF BIT(1)
55 #define SSPSR_RNE BIT(2)
56 #define SSPSR_RFF BIT(3)
57 #define SSPSR_BSY BIT(4)
58 #define SSPCPSR 0x0010
61 #define SSPIIR_RIS BIT(0)
62 #define SSPIIR_TIS BIT(1)
63 #define SSPIIR_RORIS BIT(2)
66 /* timeout in milliseconds */
68 /* maximum depth of RX/TX FIFO */
69 #define SPI_FIFO_SIZE 8
72 * struct ep93xx_spi - EP93xx SPI controller structure
73 * @lock: spinlock that protects concurrent accesses to fields @running,
74 * @current_msg and @msg_queue
75 * @pdev: pointer to platform device
76 * @clk: clock for the controller
77 * @regs_base: pointer to ioremap()'d registers
78 * @sspdr_phys: physical address of the SSPDR register
79 * @irq: IRQ number used by the driver
80 * @min_rate: minimum clock rate (in Hz) supported by the controller
81 * @max_rate: maximum clock rate (in Hz) supported by the controller
82 * @running: is the queue running
83 * @wq: workqueue used by the driver
84 * @msg_work: work that is queued for the driver
85 * @wait: wait here until given transfer is completed
86 * @msg_queue: queue for the messages
87 * @current_msg: message that is currently processed (or %NULL if none)
88 * @tx: current byte in transfer to transmit
89 * @rx: current byte in transfer to receive
90 * @fifo_level: how full is FIFO (%0..%SPI_FIFO_SIZE - %1). Receiving one
91 * frame decreases this level and sending one frame increases it.
92 * @dma_rx: RX DMA channel
93 * @dma_tx: TX DMA channel
94 * @dma_rx_data: RX parameters passed to the DMA engine
95 * @dma_tx_data: TX parameters passed to the DMA engine
96 * @rx_sgt: sg table for RX transfers
97 * @tx_sgt: sg table for TX transfers
98 * @zeropage: dummy page used as RX buffer when only TX buffer is passed in by
101 * This structure holds EP93xx SPI controller specific information. When
102 * @running is %true, driver accepts transfer requests from protocol drivers.
103 * @current_msg is used to hold pointer to the message that is currently
104 * processed. If @current_msg is %NULL, it means that no processing is going
107 * Most of the fields are only written once and they can be accessed without
108 * taking the @lock. Fields that are accessed concurrently are: @current_msg,
109 * @running, and @msg_queue.
113 const struct platform_device
*pdev
;
115 void __iomem
*regs_base
;
116 unsigned long sspdr_phys
;
118 unsigned long min_rate
;
119 unsigned long max_rate
;
121 struct workqueue_struct
*wq
;
122 struct work_struct msg_work
;
123 struct completion wait
;
124 struct list_head msg_queue
;
125 struct spi_message
*current_msg
;
129 struct dma_chan
*dma_rx
;
130 struct dma_chan
*dma_tx
;
131 struct ep93xx_dma_data dma_rx_data
;
132 struct ep93xx_dma_data dma_tx_data
;
133 struct sg_table rx_sgt
;
134 struct sg_table tx_sgt
;
139 * struct ep93xx_spi_chip - SPI device hardware settings
140 * @spi: back pointer to the SPI device
141 * @rate: max rate in hz this chip supports
142 * @div_cpsr: cpsr (pre-scaler) divider
143 * @div_scr: scr divider
144 * @dss: bits per word (4 - 16 bits)
145 * @ops: private chip operations
147 * This structure is used to store hardware register specific settings for each
148 * SPI device. Settings are written to hardware by function
149 * ep93xx_spi_chip_setup().
151 struct ep93xx_spi_chip
{
152 const struct spi_device
*spi
;
157 struct ep93xx_spi_chip_ops
*ops
;
160 /* converts bits per word to CR0.DSS value */
161 #define bits_per_word_to_dss(bpw) ((bpw) - 1)
164 ep93xx_spi_write_u8(const struct ep93xx_spi
*espi
, u16 reg
, u8 value
)
166 __raw_writeb(value
, espi
->regs_base
+ reg
);
170 ep93xx_spi_read_u8(const struct ep93xx_spi
*spi
, u16 reg
)
172 return __raw_readb(spi
->regs_base
+ reg
);
176 ep93xx_spi_write_u16(const struct ep93xx_spi
*espi
, u16 reg
, u16 value
)
178 __raw_writew(value
, espi
->regs_base
+ reg
);
182 ep93xx_spi_read_u16(const struct ep93xx_spi
*spi
, u16 reg
)
184 return __raw_readw(spi
->regs_base
+ reg
);
187 static int ep93xx_spi_enable(const struct ep93xx_spi
*espi
)
192 err
= clk_enable(espi
->clk
);
196 regval
= ep93xx_spi_read_u8(espi
, SSPCR1
);
197 regval
|= SSPCR1_SSE
;
198 ep93xx_spi_write_u8(espi
, SSPCR1
, regval
);
203 static void ep93xx_spi_disable(const struct ep93xx_spi
*espi
)
207 regval
= ep93xx_spi_read_u8(espi
, SSPCR1
);
208 regval
&= ~SSPCR1_SSE
;
209 ep93xx_spi_write_u8(espi
, SSPCR1
, regval
);
211 clk_disable(espi
->clk
);
214 static void ep93xx_spi_enable_interrupts(const struct ep93xx_spi
*espi
)
218 regval
= ep93xx_spi_read_u8(espi
, SSPCR1
);
219 regval
|= (SSPCR1_RORIE
| SSPCR1_TIE
| SSPCR1_RIE
);
220 ep93xx_spi_write_u8(espi
, SSPCR1
, regval
);
223 static void ep93xx_spi_disable_interrupts(const struct ep93xx_spi
*espi
)
227 regval
= ep93xx_spi_read_u8(espi
, SSPCR1
);
228 regval
&= ~(SSPCR1_RORIE
| SSPCR1_TIE
| SSPCR1_RIE
);
229 ep93xx_spi_write_u8(espi
, SSPCR1
, regval
);
233 * ep93xx_spi_calc_divisors() - calculates SPI clock divisors
234 * @espi: ep93xx SPI controller struct
235 * @chip: divisors are calculated for this chip
236 * @rate: desired SPI output clock rate
238 * Function calculates cpsr (clock pre-scaler) and scr divisors based on
239 * given @rate and places them to @chip->div_cpsr and @chip->div_scr. If,
240 * for some reason, divisors cannot be calculated nothing is stored and
241 * %-EINVAL is returned.
243 static int ep93xx_spi_calc_divisors(const struct ep93xx_spi
*espi
,
244 struct ep93xx_spi_chip
*chip
,
247 unsigned long spi_clk_rate
= clk_get_rate(espi
->clk
);
251 * Make sure that max value is between values supported by the
252 * controller. Note that minimum value is already checked in
253 * ep93xx_spi_transfer().
255 rate
= clamp(rate
, espi
->min_rate
, espi
->max_rate
);
258 * Calculate divisors so that we can get speed according the
260 * rate = spi_clock_rate / (cpsr * (1 + scr))
262 * cpsr must be even number and starts from 2, scr can be any number
265 for (cpsr
= 2; cpsr
<= 254; cpsr
+= 2) {
266 for (scr
= 0; scr
<= 255; scr
++) {
267 if ((spi_clk_rate
/ (cpsr
* (scr
+ 1))) <= rate
) {
268 chip
->div_scr
= (u8
)scr
;
269 chip
->div_cpsr
= (u8
)cpsr
;
278 static void ep93xx_spi_cs_control(struct spi_device
*spi
, bool control
)
280 struct ep93xx_spi_chip
*chip
= spi_get_ctldata(spi
);
281 int value
= (spi
->mode
& SPI_CS_HIGH
) ? control
: !control
;
283 if (chip
->ops
&& chip
->ops
->cs_control
)
284 chip
->ops
->cs_control(spi
, value
);
288 * ep93xx_spi_setup() - setup an SPI device
289 * @spi: SPI device to setup
291 * This function sets up SPI device mode, speed etc. Can be called multiple
292 * times for a single device. Returns %0 in case of success, negative error in
293 * case of failure. When this function returns success, the device is
296 static int ep93xx_spi_setup(struct spi_device
*spi
)
298 struct ep93xx_spi
*espi
= spi_master_get_devdata(spi
->master
);
299 struct ep93xx_spi_chip
*chip
;
301 if (spi
->bits_per_word
< 4 || spi
->bits_per_word
> 16) {
302 dev_err(&espi
->pdev
->dev
, "invalid bits per word %d\n",
307 chip
= spi_get_ctldata(spi
);
309 dev_dbg(&espi
->pdev
->dev
, "initial setup for %s\n",
312 chip
= kzalloc(sizeof(*chip
), GFP_KERNEL
);
317 chip
->ops
= spi
->controller_data
;
319 if (chip
->ops
&& chip
->ops
->setup
) {
320 int ret
= chip
->ops
->setup(spi
);
327 spi_set_ctldata(spi
, chip
);
330 if (spi
->max_speed_hz
!= chip
->rate
) {
333 err
= ep93xx_spi_calc_divisors(espi
, chip
, spi
->max_speed_hz
);
335 spi_set_ctldata(spi
, NULL
);
339 chip
->rate
= spi
->max_speed_hz
;
342 chip
->dss
= bits_per_word_to_dss(spi
->bits_per_word
);
344 ep93xx_spi_cs_control(spi
, false);
349 * ep93xx_spi_transfer() - queue message to be transferred
350 * @spi: target SPI device
351 * @msg: message to be transferred
353 * This function is called by SPI device drivers when they are going to transfer
354 * a new message. It simply puts the message in the queue and schedules
355 * workqueue to perform the actual transfer later on.
357 * Returns %0 on success and negative error in case of failure.
359 static int ep93xx_spi_transfer(struct spi_device
*spi
, struct spi_message
*msg
)
361 struct ep93xx_spi
*espi
= spi_master_get_devdata(spi
->master
);
362 struct spi_transfer
*t
;
365 if (!msg
|| !msg
->complete
)
368 /* first validate each transfer */
369 list_for_each_entry(t
, &msg
->transfers
, transfer_list
) {
370 if (t
->bits_per_word
) {
371 if (t
->bits_per_word
< 4 || t
->bits_per_word
> 16)
374 if (t
->speed_hz
&& t
->speed_hz
< espi
->min_rate
)
379 * Now that we own the message, let's initialize it so that it is
380 * suitable for us. We use @msg->status to signal whether there was
381 * error in transfer and @msg->state is used to hold pointer to the
382 * current transfer (or %NULL if no active current transfer).
386 msg
->actual_length
= 0;
388 spin_lock_irqsave(&espi
->lock
, flags
);
389 if (!espi
->running
) {
390 spin_unlock_irqrestore(&espi
->lock
, flags
);
393 list_add_tail(&msg
->queue
, &espi
->msg_queue
);
394 queue_work(espi
->wq
, &espi
->msg_work
);
395 spin_unlock_irqrestore(&espi
->lock
, flags
);
401 * ep93xx_spi_cleanup() - cleans up master controller specific state
402 * @spi: SPI device to cleanup
404 * This function releases master controller specific state for given @spi
407 static void ep93xx_spi_cleanup(struct spi_device
*spi
)
409 struct ep93xx_spi_chip
*chip
;
411 chip
= spi_get_ctldata(spi
);
413 if (chip
->ops
&& chip
->ops
->cleanup
)
414 chip
->ops
->cleanup(spi
);
415 spi_set_ctldata(spi
, NULL
);
421 * ep93xx_spi_chip_setup() - configures hardware according to given @chip
422 * @espi: ep93xx SPI controller struct
423 * @chip: chip specific settings
425 * This function sets up the actual hardware registers with settings given in
426 * @chip. Note that no validation is done so make sure that callers validate
427 * settings before calling this.
429 static void ep93xx_spi_chip_setup(const struct ep93xx_spi
*espi
,
430 const struct ep93xx_spi_chip
*chip
)
434 cr0
= chip
->div_scr
<< SSPCR0_SCR_SHIFT
;
435 cr0
|= (chip
->spi
->mode
& (SPI_CPHA
|SPI_CPOL
)) << SSPCR0_MODE_SHIFT
;
438 dev_dbg(&espi
->pdev
->dev
, "setup: mode %d, cpsr %d, scr %d, dss %d\n",
439 chip
->spi
->mode
, chip
->div_cpsr
, chip
->div_scr
, chip
->dss
);
440 dev_dbg(&espi
->pdev
->dev
, "setup: cr0 %#x", cr0
);
442 ep93xx_spi_write_u8(espi
, SSPCPSR
, chip
->div_cpsr
);
443 ep93xx_spi_write_u16(espi
, SSPCR0
, cr0
);
446 static inline int bits_per_word(const struct ep93xx_spi
*espi
)
448 struct spi_message
*msg
= espi
->current_msg
;
449 struct spi_transfer
*t
= msg
->state
;
451 return t
->bits_per_word
? t
->bits_per_word
: msg
->spi
->bits_per_word
;
454 static void ep93xx_do_write(struct ep93xx_spi
*espi
, struct spi_transfer
*t
)
456 if (bits_per_word(espi
) > 8) {
460 tx_val
= ((u16
*)t
->tx_buf
)[espi
->tx
];
461 ep93xx_spi_write_u16(espi
, SSPDR
, tx_val
);
462 espi
->tx
+= sizeof(tx_val
);
467 tx_val
= ((u8
*)t
->tx_buf
)[espi
->tx
];
468 ep93xx_spi_write_u8(espi
, SSPDR
, tx_val
);
469 espi
->tx
+= sizeof(tx_val
);
473 static void ep93xx_do_read(struct ep93xx_spi
*espi
, struct spi_transfer
*t
)
475 if (bits_per_word(espi
) > 8) {
478 rx_val
= ep93xx_spi_read_u16(espi
, SSPDR
);
480 ((u16
*)t
->rx_buf
)[espi
->rx
] = rx_val
;
481 espi
->rx
+= sizeof(rx_val
);
485 rx_val
= ep93xx_spi_read_u8(espi
, SSPDR
);
487 ((u8
*)t
->rx_buf
)[espi
->rx
] = rx_val
;
488 espi
->rx
+= sizeof(rx_val
);
493 * ep93xx_spi_read_write() - perform next RX/TX transfer
494 * @espi: ep93xx SPI controller struct
496 * This function transfers next bytes (or half-words) to/from RX/TX FIFOs. If
497 * called several times, the whole transfer will be completed. Returns
498 * %-EINPROGRESS when current transfer was not yet completed otherwise %0.
500 * When this function is finished, RX FIFO should be empty and TX FIFO should be
503 static int ep93xx_spi_read_write(struct ep93xx_spi
*espi
)
505 struct spi_message
*msg
= espi
->current_msg
;
506 struct spi_transfer
*t
= msg
->state
;
508 /* read as long as RX FIFO has frames in it */
509 while ((ep93xx_spi_read_u8(espi
, SSPSR
) & SSPSR_RNE
)) {
510 ep93xx_do_read(espi
, t
);
514 /* write as long as TX FIFO has room */
515 while (espi
->fifo_level
< SPI_FIFO_SIZE
&& espi
->tx
< t
->len
) {
516 ep93xx_do_write(espi
, t
);
520 if (espi
->rx
== t
->len
)
526 static void ep93xx_spi_pio_transfer(struct ep93xx_spi
*espi
)
529 * Now everything is set up for the current transfer. We prime the TX
530 * FIFO, enable interrupts, and wait for the transfer to complete.
532 if (ep93xx_spi_read_write(espi
)) {
533 ep93xx_spi_enable_interrupts(espi
);
534 wait_for_completion(&espi
->wait
);
539 * ep93xx_spi_dma_prepare() - prepares a DMA transfer
540 * @espi: ep93xx SPI controller struct
541 * @dir: DMA transfer direction
543 * Function configures the DMA, maps the buffer and prepares the DMA
544 * descriptor. Returns a valid DMA descriptor in case of success and ERR_PTR
545 * in case of failure.
547 static struct dma_async_tx_descriptor
*
548 ep93xx_spi_dma_prepare(struct ep93xx_spi
*espi
, enum dma_transfer_direction dir
)
550 struct spi_transfer
*t
= espi
->current_msg
->state
;
551 struct dma_async_tx_descriptor
*txd
;
552 enum dma_slave_buswidth buswidth
;
553 struct dma_slave_config conf
;
554 struct scatterlist
*sg
;
555 struct sg_table
*sgt
;
556 struct dma_chan
*chan
;
557 const void *buf
, *pbuf
;
561 if (bits_per_word(espi
) > 8)
562 buswidth
= DMA_SLAVE_BUSWIDTH_2_BYTES
;
564 buswidth
= DMA_SLAVE_BUSWIDTH_1_BYTE
;
566 memset(&conf
, 0, sizeof(conf
));
567 conf
.direction
= dir
;
569 if (dir
== DMA_DEV_TO_MEM
) {
574 conf
.src_addr
= espi
->sspdr_phys
;
575 conf
.src_addr_width
= buswidth
;
581 conf
.dst_addr
= espi
->sspdr_phys
;
582 conf
.dst_addr_width
= buswidth
;
585 ret
= dmaengine_slave_config(chan
, &conf
);
590 * We need to split the transfer into PAGE_SIZE'd chunks. This is
591 * because we are using @espi->zeropage to provide a zero RX buffer
592 * for the TX transfers and we have only allocated one page for that.
594 * For performance reasons we allocate a new sg_table only when
595 * needed. Otherwise we will re-use the current one. Eventually the
596 * last sg_table is released in ep93xx_spi_release_dma().
599 nents
= DIV_ROUND_UP(len
, PAGE_SIZE
);
600 if (nents
!= sgt
->nents
) {
603 ret
= sg_alloc_table(sgt
, nents
, GFP_KERNEL
);
609 for_each_sg(sgt
->sgl
, sg
, sgt
->nents
, i
) {
610 size_t bytes
= min_t(size_t, len
, PAGE_SIZE
);
613 sg_set_page(sg
, virt_to_page(pbuf
), bytes
,
614 offset_in_page(pbuf
));
616 sg_set_page(sg
, virt_to_page(espi
->zeropage
),
625 dev_warn(&espi
->pdev
->dev
, "len = %d expected 0!", len
);
626 return ERR_PTR(-EINVAL
);
629 nents
= dma_map_sg(chan
->device
->dev
, sgt
->sgl
, sgt
->nents
, dir
);
631 return ERR_PTR(-ENOMEM
);
633 txd
= dmaengine_prep_slave_sg(chan
, sgt
->sgl
, nents
, dir
, DMA_CTRL_ACK
);
635 dma_unmap_sg(chan
->device
->dev
, sgt
->sgl
, sgt
->nents
, dir
);
636 return ERR_PTR(-ENOMEM
);
642 * ep93xx_spi_dma_finish() - finishes with a DMA transfer
643 * @espi: ep93xx SPI controller struct
644 * @dir: DMA transfer direction
646 * Function finishes with the DMA transfer. After this, the DMA buffer is
649 static void ep93xx_spi_dma_finish(struct ep93xx_spi
*espi
,
650 enum dma_transfer_direction dir
)
652 struct dma_chan
*chan
;
653 struct sg_table
*sgt
;
655 if (dir
== DMA_DEV_TO_MEM
) {
663 dma_unmap_sg(chan
->device
->dev
, sgt
->sgl
, sgt
->nents
, dir
);
666 static void ep93xx_spi_dma_callback(void *callback_param
)
668 complete(callback_param
);
671 static void ep93xx_spi_dma_transfer(struct ep93xx_spi
*espi
)
673 struct spi_message
*msg
= espi
->current_msg
;
674 struct dma_async_tx_descriptor
*rxd
, *txd
;
676 rxd
= ep93xx_spi_dma_prepare(espi
, DMA_DEV_TO_MEM
);
678 dev_err(&espi
->pdev
->dev
, "DMA RX failed: %ld\n", PTR_ERR(rxd
));
679 msg
->status
= PTR_ERR(rxd
);
683 txd
= ep93xx_spi_dma_prepare(espi
, DMA_MEM_TO_DEV
);
685 ep93xx_spi_dma_finish(espi
, DMA_DEV_TO_MEM
);
686 dev_err(&espi
->pdev
->dev
, "DMA TX failed: %ld\n", PTR_ERR(rxd
));
687 msg
->status
= PTR_ERR(txd
);
691 /* We are ready when RX is done */
692 rxd
->callback
= ep93xx_spi_dma_callback
;
693 rxd
->callback_param
= &espi
->wait
;
695 /* Now submit both descriptors and wait while they finish */
696 dmaengine_submit(rxd
);
697 dmaengine_submit(txd
);
699 dma_async_issue_pending(espi
->dma_rx
);
700 dma_async_issue_pending(espi
->dma_tx
);
702 wait_for_completion(&espi
->wait
);
704 ep93xx_spi_dma_finish(espi
, DMA_MEM_TO_DEV
);
705 ep93xx_spi_dma_finish(espi
, DMA_DEV_TO_MEM
);
709 * ep93xx_spi_process_transfer() - processes one SPI transfer
710 * @espi: ep93xx SPI controller struct
711 * @msg: current message
712 * @t: transfer to process
714 * This function processes one SPI transfer given in @t. Function waits until
715 * transfer is complete (may sleep) and updates @msg->status based on whether
716 * transfer was successfully processed or not.
718 static void ep93xx_spi_process_transfer(struct ep93xx_spi
*espi
,
719 struct spi_message
*msg
,
720 struct spi_transfer
*t
)
722 struct ep93xx_spi_chip
*chip
= spi_get_ctldata(msg
->spi
);
727 * Handle any transfer specific settings if needed. We use
728 * temporary chip settings here and restore original later when
729 * the transfer is finished.
731 if (t
->speed_hz
|| t
->bits_per_word
) {
732 struct ep93xx_spi_chip tmp_chip
= *chip
;
737 err
= ep93xx_spi_calc_divisors(espi
, &tmp_chip
,
740 dev_err(&espi
->pdev
->dev
,
741 "failed to adjust speed\n");
747 if (t
->bits_per_word
)
748 tmp_chip
.dss
= bits_per_word_to_dss(t
->bits_per_word
);
751 * Set up temporary new hw settings for this transfer.
753 ep93xx_spi_chip_setup(espi
, &tmp_chip
);
760 * There is no point of setting up DMA for the transfers which will
761 * fit into the FIFO and can be transferred with a single interrupt.
762 * So in these cases we will be using PIO and don't bother for DMA.
764 if (espi
->dma_rx
&& t
->len
> SPI_FIFO_SIZE
)
765 ep93xx_spi_dma_transfer(espi
);
767 ep93xx_spi_pio_transfer(espi
);
770 * In case of error during transmit, we bail out from processing
776 msg
->actual_length
+= t
->len
;
779 * After this transfer is finished, perform any possible
780 * post-transfer actions requested by the protocol driver.
782 if (t
->delay_usecs
) {
783 set_current_state(TASK_UNINTERRUPTIBLE
);
784 schedule_timeout(usecs_to_jiffies(t
->delay_usecs
));
787 if (!list_is_last(&t
->transfer_list
, &msg
->transfers
)) {
789 * In case protocol driver is asking us to drop the
790 * chipselect briefly, we let the scheduler to handle
793 ep93xx_spi_cs_control(msg
->spi
, false);
795 ep93xx_spi_cs_control(msg
->spi
, true);
799 if (t
->speed_hz
|| t
->bits_per_word
)
800 ep93xx_spi_chip_setup(espi
, chip
);
804 * ep93xx_spi_process_message() - process one SPI message
805 * @espi: ep93xx SPI controller struct
806 * @msg: message to process
808 * This function processes a single SPI message. We go through all transfers in
809 * the message and pass them to ep93xx_spi_process_transfer(). Chipselect is
810 * asserted during the whole message (unless per transfer cs_change is set).
812 * @msg->status contains %0 in case of success or negative error code in case of
815 static void ep93xx_spi_process_message(struct ep93xx_spi
*espi
,
816 struct spi_message
*msg
)
818 unsigned long timeout
;
819 struct spi_transfer
*t
;
823 * Enable the SPI controller and its clock.
825 err
= ep93xx_spi_enable(espi
);
827 dev_err(&espi
->pdev
->dev
, "failed to enable SPI controller\n");
833 * Just to be sure: flush any data from RX FIFO.
835 timeout
= jiffies
+ msecs_to_jiffies(SPI_TIMEOUT
);
836 while (ep93xx_spi_read_u16(espi
, SSPSR
) & SSPSR_RNE
) {
837 if (time_after(jiffies
, timeout
)) {
838 dev_warn(&espi
->pdev
->dev
,
839 "timeout while flushing RX FIFO\n");
840 msg
->status
= -ETIMEDOUT
;
843 ep93xx_spi_read_u16(espi
, SSPDR
);
847 * We explicitly handle FIFO level. This way we don't have to check TX
848 * FIFO status using %SSPSR_TNF bit which may cause RX FIFO overruns.
850 espi
->fifo_level
= 0;
853 * Update SPI controller registers according to spi device and assert
856 ep93xx_spi_chip_setup(espi
, spi_get_ctldata(msg
->spi
));
857 ep93xx_spi_cs_control(msg
->spi
, true);
859 list_for_each_entry(t
, &msg
->transfers
, transfer_list
) {
860 ep93xx_spi_process_transfer(espi
, msg
, t
);
866 * Now the whole message is transferred (or failed for some reason). We
867 * deselect the device and disable the SPI controller.
869 ep93xx_spi_cs_control(msg
->spi
, false);
870 ep93xx_spi_disable(espi
);
873 #define work_to_espi(work) (container_of((work), struct ep93xx_spi, msg_work))
876 * ep93xx_spi_work() - EP93xx SPI workqueue worker function
879 * Workqueue worker function. This function is called when there are new
880 * SPI messages to be processed. Message is taken out from the queue and then
881 * passed to ep93xx_spi_process_message().
883 * After message is transferred, protocol driver is notified by calling
884 * @msg->complete(). In case of error, @msg->status is set to negative error
885 * number, otherwise it contains zero (and @msg->actual_length is updated).
887 static void ep93xx_spi_work(struct work_struct
*work
)
889 struct ep93xx_spi
*espi
= work_to_espi(work
);
890 struct spi_message
*msg
;
892 spin_lock_irq(&espi
->lock
);
893 if (!espi
->running
|| espi
->current_msg
||
894 list_empty(&espi
->msg_queue
)) {
895 spin_unlock_irq(&espi
->lock
);
898 msg
= list_first_entry(&espi
->msg_queue
, struct spi_message
, queue
);
899 list_del_init(&msg
->queue
);
900 espi
->current_msg
= msg
;
901 spin_unlock_irq(&espi
->lock
);
903 ep93xx_spi_process_message(espi
, msg
);
906 * Update the current message and re-schedule ourselves if there are
907 * more messages in the queue.
909 spin_lock_irq(&espi
->lock
);
910 espi
->current_msg
= NULL
;
911 if (espi
->running
&& !list_empty(&espi
->msg_queue
))
912 queue_work(espi
->wq
, &espi
->msg_work
);
913 spin_unlock_irq(&espi
->lock
);
915 /* notify the protocol driver that we are done with this message */
916 msg
->complete(msg
->context
);
919 static irqreturn_t
ep93xx_spi_interrupt(int irq
, void *dev_id
)
921 struct ep93xx_spi
*espi
= dev_id
;
922 u8 irq_status
= ep93xx_spi_read_u8(espi
, SSPIIR
);
925 * If we got ROR (receive overrun) interrupt we know that something is
926 * wrong. Just abort the message.
928 if (unlikely(irq_status
& SSPIIR_RORIS
)) {
929 /* clear the overrun interrupt */
930 ep93xx_spi_write_u8(espi
, SSPICR
, 0);
931 dev_warn(&espi
->pdev
->dev
,
932 "receive overrun, aborting the message\n");
933 espi
->current_msg
->status
= -EIO
;
936 * Interrupt is either RX (RIS) or TX (TIS). For both cases we
937 * simply execute next data transfer.
939 if (ep93xx_spi_read_write(espi
)) {
941 * In normal case, there still is some processing left
942 * for current transfer. Let's wait for the next
950 * Current transfer is finished, either with error or with success. In
951 * any case we disable interrupts and notify the worker to handle
952 * any post-processing of the message.
954 ep93xx_spi_disable_interrupts(espi
);
955 complete(&espi
->wait
);
959 static bool ep93xx_spi_dma_filter(struct dma_chan
*chan
, void *filter_param
)
961 if (ep93xx_dma_chan_is_m2p(chan
))
964 chan
->private = filter_param
;
968 static int ep93xx_spi_setup_dma(struct ep93xx_spi
*espi
)
973 espi
->zeropage
= (void *)get_zeroed_page(GFP_KERNEL
);
978 dma_cap_set(DMA_SLAVE
, mask
);
980 espi
->dma_rx_data
.port
= EP93XX_DMA_SSP
;
981 espi
->dma_rx_data
.direction
= DMA_DEV_TO_MEM
;
982 espi
->dma_rx_data
.name
= "ep93xx-spi-rx";
984 espi
->dma_rx
= dma_request_channel(mask
, ep93xx_spi_dma_filter
,
991 espi
->dma_tx_data
.port
= EP93XX_DMA_SSP
;
992 espi
->dma_tx_data
.direction
= DMA_MEM_TO_DEV
;
993 espi
->dma_tx_data
.name
= "ep93xx-spi-tx";
995 espi
->dma_tx
= dma_request_channel(mask
, ep93xx_spi_dma_filter
,
999 goto fail_release_rx
;
1005 dma_release_channel(espi
->dma_rx
);
1006 espi
->dma_rx
= NULL
;
1008 free_page((unsigned long)espi
->zeropage
);
1013 static void ep93xx_spi_release_dma(struct ep93xx_spi
*espi
)
1016 dma_release_channel(espi
->dma_rx
);
1017 sg_free_table(&espi
->rx_sgt
);
1020 dma_release_channel(espi
->dma_tx
);
1021 sg_free_table(&espi
->tx_sgt
);
1025 free_page((unsigned long)espi
->zeropage
);
1028 static int __devinit
ep93xx_spi_probe(struct platform_device
*pdev
)
1030 struct spi_master
*master
;
1031 struct ep93xx_spi_info
*info
;
1032 struct ep93xx_spi
*espi
;
1033 struct resource
*res
;
1036 info
= pdev
->dev
.platform_data
;
1038 master
= spi_alloc_master(&pdev
->dev
, sizeof(*espi
));
1040 dev_err(&pdev
->dev
, "failed to allocate spi master\n");
1044 master
->setup
= ep93xx_spi_setup
;
1045 master
->transfer
= ep93xx_spi_transfer
;
1046 master
->cleanup
= ep93xx_spi_cleanup
;
1047 master
->bus_num
= pdev
->id
;
1048 master
->num_chipselect
= info
->num_chipselect
;
1049 master
->mode_bits
= SPI_CPOL
| SPI_CPHA
| SPI_CS_HIGH
;
1051 platform_set_drvdata(pdev
, master
);
1053 espi
= spi_master_get_devdata(master
);
1055 espi
->clk
= clk_get(&pdev
->dev
, NULL
);
1056 if (IS_ERR(espi
->clk
)) {
1057 dev_err(&pdev
->dev
, "unable to get spi clock\n");
1058 error
= PTR_ERR(espi
->clk
);
1059 goto fail_release_master
;
1062 spin_lock_init(&espi
->lock
);
1063 init_completion(&espi
->wait
);
1066 * Calculate maximum and minimum supported clock rates
1067 * for the controller.
1069 espi
->max_rate
= clk_get_rate(espi
->clk
) / 2;
1070 espi
->min_rate
= clk_get_rate(espi
->clk
) / (254 * 256);
1073 espi
->irq
= platform_get_irq(pdev
, 0);
1074 if (espi
->irq
< 0) {
1076 dev_err(&pdev
->dev
, "failed to get irq resources\n");
1077 goto fail_put_clock
;
1080 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1082 dev_err(&pdev
->dev
, "unable to get iomem resource\n");
1084 goto fail_put_clock
;
1087 res
= request_mem_region(res
->start
, resource_size(res
), pdev
->name
);
1089 dev_err(&pdev
->dev
, "unable to request iomem resources\n");
1091 goto fail_put_clock
;
1094 espi
->sspdr_phys
= res
->start
+ SSPDR
;
1095 espi
->regs_base
= ioremap(res
->start
, resource_size(res
));
1096 if (!espi
->regs_base
) {
1097 dev_err(&pdev
->dev
, "failed to map resources\n");
1102 error
= request_irq(espi
->irq
, ep93xx_spi_interrupt
, 0,
1103 "ep93xx-spi", espi
);
1105 dev_err(&pdev
->dev
, "failed to request irq\n");
1106 goto fail_unmap_regs
;
1109 if (info
->use_dma
&& ep93xx_spi_setup_dma(espi
))
1110 dev_warn(&pdev
->dev
, "DMA setup failed. Falling back to PIO\n");
1112 espi
->wq
= create_singlethread_workqueue("ep93xx_spid");
1114 dev_err(&pdev
->dev
, "unable to create workqueue\n");
1117 INIT_WORK(&espi
->msg_work
, ep93xx_spi_work
);
1118 INIT_LIST_HEAD(&espi
->msg_queue
);
1119 espi
->running
= true;
1121 /* make sure that the hardware is disabled */
1122 ep93xx_spi_write_u8(espi
, SSPCR1
, 0);
1124 error
= spi_register_master(master
);
1126 dev_err(&pdev
->dev
, "failed to register SPI master\n");
1127 goto fail_free_queue
;
1130 dev_info(&pdev
->dev
, "EP93xx SPI Controller at 0x%08lx irq %d\n",
1131 (unsigned long)res
->start
, espi
->irq
);
1136 destroy_workqueue(espi
->wq
);
1138 ep93xx_spi_release_dma(espi
);
1139 free_irq(espi
->irq
, espi
);
1141 iounmap(espi
->regs_base
);
1143 release_mem_region(res
->start
, resource_size(res
));
1146 fail_release_master
:
1147 spi_master_put(master
);
1148 platform_set_drvdata(pdev
, NULL
);
1153 static int __devexit
ep93xx_spi_remove(struct platform_device
*pdev
)
1155 struct spi_master
*master
= platform_get_drvdata(pdev
);
1156 struct ep93xx_spi
*espi
= spi_master_get_devdata(master
);
1157 struct resource
*res
;
1159 spin_lock_irq(&espi
->lock
);
1160 espi
->running
= false;
1161 spin_unlock_irq(&espi
->lock
);
1163 destroy_workqueue(espi
->wq
);
1166 * Complete remaining messages with %-ESHUTDOWN status.
1168 spin_lock_irq(&espi
->lock
);
1169 while (!list_empty(&espi
->msg_queue
)) {
1170 struct spi_message
*msg
;
1172 msg
= list_first_entry(&espi
->msg_queue
,
1173 struct spi_message
, queue
);
1174 list_del_init(&msg
->queue
);
1175 msg
->status
= -ESHUTDOWN
;
1176 spin_unlock_irq(&espi
->lock
);
1177 msg
->complete(msg
->context
);
1178 spin_lock_irq(&espi
->lock
);
1180 spin_unlock_irq(&espi
->lock
);
1182 ep93xx_spi_release_dma(espi
);
1183 free_irq(espi
->irq
, espi
);
1184 iounmap(espi
->regs_base
);
1185 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1186 release_mem_region(res
->start
, resource_size(res
));
1188 platform_set_drvdata(pdev
, NULL
);
1190 spi_unregister_master(master
);
1194 static struct platform_driver ep93xx_spi_driver
= {
1196 .name
= "ep93xx-spi",
1197 .owner
= THIS_MODULE
,
1199 .probe
= ep93xx_spi_probe
,
1200 .remove
= __devexit_p(ep93xx_spi_remove
),
1202 module_platform_driver(ep93xx_spi_driver
);
1204 MODULE_DESCRIPTION("EP93xx SPI Controller driver");
1205 MODULE_AUTHOR("Mika Westerberg <mika.westerberg@iki.fi>");
1206 MODULE_LICENSE("GPL");
1207 MODULE_ALIAS("platform:ep93xx-spi");