4 * Copyright (C) 2005 David Brownell
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 #include <linux/kernel.h>
22 #include <linux/device.h>
23 #include <linux/init.h>
24 #include <linux/cache.h>
25 #include <linux/mutex.h>
26 #include <linux/of_device.h>
27 #include <linux/slab.h>
28 #include <linux/mod_devicetable.h>
29 #include <linux/spi/spi.h>
30 #include <linux/of_spi.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/export.h>
33 #include <linux/sched.h>
34 #include <linux/delay.h>
35 #include <linux/kthread.h>
37 static void spidev_release(struct device
*dev
)
39 struct spi_device
*spi
= to_spi_device(dev
);
41 /* spi masters may cleanup for released devices */
42 if (spi
->master
->cleanup
)
43 spi
->master
->cleanup(spi
);
45 spi_master_put(spi
->master
);
50 modalias_show(struct device
*dev
, struct device_attribute
*a
, char *buf
)
52 const struct spi_device
*spi
= to_spi_device(dev
);
54 return sprintf(buf
, "%s\n", spi
->modalias
);
57 static struct device_attribute spi_dev_attrs
[] = {
62 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
63 * and the sysfs version makes coldplug work too.
66 static const struct spi_device_id
*spi_match_id(const struct spi_device_id
*id
,
67 const struct spi_device
*sdev
)
70 if (!strcmp(sdev
->modalias
, id
->name
))
77 const struct spi_device_id
*spi_get_device_id(const struct spi_device
*sdev
)
79 const struct spi_driver
*sdrv
= to_spi_driver(sdev
->dev
.driver
);
81 return spi_match_id(sdrv
->id_table
, sdev
);
83 EXPORT_SYMBOL_GPL(spi_get_device_id
);
85 static int spi_match_device(struct device
*dev
, struct device_driver
*drv
)
87 const struct spi_device
*spi
= to_spi_device(dev
);
88 const struct spi_driver
*sdrv
= to_spi_driver(drv
);
90 /* Attempt an OF style match */
91 if (of_driver_match_device(dev
, drv
))
95 return !!spi_match_id(sdrv
->id_table
, spi
);
97 return strcmp(spi
->modalias
, drv
->name
) == 0;
100 static int spi_uevent(struct device
*dev
, struct kobj_uevent_env
*env
)
102 const struct spi_device
*spi
= to_spi_device(dev
);
104 add_uevent_var(env
, "MODALIAS=%s%s", SPI_MODULE_PREFIX
, spi
->modalias
);
108 #ifdef CONFIG_PM_SLEEP
109 static int spi_legacy_suspend(struct device
*dev
, pm_message_t message
)
112 struct spi_driver
*drv
= to_spi_driver(dev
->driver
);
114 /* suspend will stop irqs and dma; no more i/o */
117 value
= drv
->suspend(to_spi_device(dev
), message
);
119 dev_dbg(dev
, "... can't suspend\n");
124 static int spi_legacy_resume(struct device
*dev
)
127 struct spi_driver
*drv
= to_spi_driver(dev
->driver
);
129 /* resume may restart the i/o queue */
132 value
= drv
->resume(to_spi_device(dev
));
134 dev_dbg(dev
, "... can't resume\n");
139 static int spi_pm_suspend(struct device
*dev
)
141 const struct dev_pm_ops
*pm
= dev
->driver
? dev
->driver
->pm
: NULL
;
144 return pm_generic_suspend(dev
);
146 return spi_legacy_suspend(dev
, PMSG_SUSPEND
);
149 static int spi_pm_resume(struct device
*dev
)
151 const struct dev_pm_ops
*pm
= dev
->driver
? dev
->driver
->pm
: NULL
;
154 return pm_generic_resume(dev
);
156 return spi_legacy_resume(dev
);
159 static int spi_pm_freeze(struct device
*dev
)
161 const struct dev_pm_ops
*pm
= dev
->driver
? dev
->driver
->pm
: NULL
;
164 return pm_generic_freeze(dev
);
166 return spi_legacy_suspend(dev
, PMSG_FREEZE
);
169 static int spi_pm_thaw(struct device
*dev
)
171 const struct dev_pm_ops
*pm
= dev
->driver
? dev
->driver
->pm
: NULL
;
174 return pm_generic_thaw(dev
);
176 return spi_legacy_resume(dev
);
179 static int spi_pm_poweroff(struct device
*dev
)
181 const struct dev_pm_ops
*pm
= dev
->driver
? dev
->driver
->pm
: NULL
;
184 return pm_generic_poweroff(dev
);
186 return spi_legacy_suspend(dev
, PMSG_HIBERNATE
);
189 static int spi_pm_restore(struct device
*dev
)
191 const struct dev_pm_ops
*pm
= dev
->driver
? dev
->driver
->pm
: NULL
;
194 return pm_generic_restore(dev
);
196 return spi_legacy_resume(dev
);
199 #define spi_pm_suspend NULL
200 #define spi_pm_resume NULL
201 #define spi_pm_freeze NULL
202 #define spi_pm_thaw NULL
203 #define spi_pm_poweroff NULL
204 #define spi_pm_restore NULL
207 static const struct dev_pm_ops spi_pm
= {
208 .suspend
= spi_pm_suspend
,
209 .resume
= spi_pm_resume
,
210 .freeze
= spi_pm_freeze
,
212 .poweroff
= spi_pm_poweroff
,
213 .restore
= spi_pm_restore
,
215 pm_generic_runtime_suspend
,
216 pm_generic_runtime_resume
,
217 pm_generic_runtime_idle
221 struct bus_type spi_bus_type
= {
223 .dev_attrs
= spi_dev_attrs
,
224 .match
= spi_match_device
,
225 .uevent
= spi_uevent
,
228 EXPORT_SYMBOL_GPL(spi_bus_type
);
231 static int spi_drv_probe(struct device
*dev
)
233 const struct spi_driver
*sdrv
= to_spi_driver(dev
->driver
);
235 return sdrv
->probe(to_spi_device(dev
));
238 static int spi_drv_remove(struct device
*dev
)
240 const struct spi_driver
*sdrv
= to_spi_driver(dev
->driver
);
242 return sdrv
->remove(to_spi_device(dev
));
245 static void spi_drv_shutdown(struct device
*dev
)
247 const struct spi_driver
*sdrv
= to_spi_driver(dev
->driver
);
249 sdrv
->shutdown(to_spi_device(dev
));
253 * spi_register_driver - register a SPI driver
254 * @sdrv: the driver to register
257 int spi_register_driver(struct spi_driver
*sdrv
)
259 sdrv
->driver
.bus
= &spi_bus_type
;
261 sdrv
->driver
.probe
= spi_drv_probe
;
263 sdrv
->driver
.remove
= spi_drv_remove
;
265 sdrv
->driver
.shutdown
= spi_drv_shutdown
;
266 return driver_register(&sdrv
->driver
);
268 EXPORT_SYMBOL_GPL(spi_register_driver
);
270 /*-------------------------------------------------------------------------*/
272 /* SPI devices should normally not be created by SPI device drivers; that
273 * would make them board-specific. Similarly with SPI master drivers.
274 * Device registration normally goes into like arch/.../mach.../board-YYY.c
275 * with other readonly (flashable) information about mainboard devices.
279 struct list_head list
;
280 struct spi_board_info board_info
;
283 static LIST_HEAD(board_list
);
284 static LIST_HEAD(spi_master_list
);
287 * Used to protect add/del opertion for board_info list and
288 * spi_master list, and their matching process
290 static DEFINE_MUTEX(board_lock
);
293 * spi_alloc_device - Allocate a new SPI device
294 * @master: Controller to which device is connected
297 * Allows a driver to allocate and initialize a spi_device without
298 * registering it immediately. This allows a driver to directly
299 * fill the spi_device with device parameters before calling
300 * spi_add_device() on it.
302 * Caller is responsible to call spi_add_device() on the returned
303 * spi_device structure to add it to the SPI master. If the caller
304 * needs to discard the spi_device without adding it, then it should
305 * call spi_dev_put() on it.
307 * Returns a pointer to the new device, or NULL.
309 struct spi_device
*spi_alloc_device(struct spi_master
*master
)
311 struct spi_device
*spi
;
312 struct device
*dev
= master
->dev
.parent
;
314 if (!spi_master_get(master
))
317 spi
= kzalloc(sizeof *spi
, GFP_KERNEL
);
319 dev_err(dev
, "cannot alloc spi_device\n");
320 spi_master_put(master
);
324 spi
->master
= master
;
325 spi
->dev
.parent
= &master
->dev
;
326 spi
->dev
.bus
= &spi_bus_type
;
327 spi
->dev
.release
= spidev_release
;
328 device_initialize(&spi
->dev
);
331 EXPORT_SYMBOL_GPL(spi_alloc_device
);
334 * spi_add_device - Add spi_device allocated with spi_alloc_device
335 * @spi: spi_device to register
337 * Companion function to spi_alloc_device. Devices allocated with
338 * spi_alloc_device can be added onto the spi bus with this function.
340 * Returns 0 on success; negative errno on failure
342 int spi_add_device(struct spi_device
*spi
)
344 static DEFINE_MUTEX(spi_add_lock
);
345 struct device
*dev
= spi
->master
->dev
.parent
;
349 /* Chipselects are numbered 0..max; validate. */
350 if (spi
->chip_select
>= spi
->master
->num_chipselect
) {
351 dev_err(dev
, "cs%d >= max %d\n",
353 spi
->master
->num_chipselect
);
357 /* Set the bus ID string */
358 dev_set_name(&spi
->dev
, "%s.%u", dev_name(&spi
->master
->dev
),
362 /* We need to make sure there's no other device with this
363 * chipselect **BEFORE** we call setup(), else we'll trash
364 * its configuration. Lock against concurrent add() calls.
366 mutex_lock(&spi_add_lock
);
368 d
= bus_find_device_by_name(&spi_bus_type
, NULL
, dev_name(&spi
->dev
));
370 dev_err(dev
, "chipselect %d already in use\n",
377 /* Drivers may modify this initial i/o setup, but will
378 * normally rely on the device being setup. Devices
379 * using SPI_CS_HIGH can't coexist well otherwise...
381 status
= spi_setup(spi
);
383 dev_err(dev
, "can't setup %s, status %d\n",
384 dev_name(&spi
->dev
), status
);
388 /* Device may be bound to an active driver when this returns */
389 status
= device_add(&spi
->dev
);
391 dev_err(dev
, "can't add %s, status %d\n",
392 dev_name(&spi
->dev
), status
);
394 dev_dbg(dev
, "registered child %s\n", dev_name(&spi
->dev
));
397 mutex_unlock(&spi_add_lock
);
400 EXPORT_SYMBOL_GPL(spi_add_device
);
403 * spi_new_device - instantiate one new SPI device
404 * @master: Controller to which device is connected
405 * @chip: Describes the SPI device
408 * On typical mainboards, this is purely internal; and it's not needed
409 * after board init creates the hard-wired devices. Some development
410 * platforms may not be able to use spi_register_board_info though, and
411 * this is exported so that for example a USB or parport based adapter
412 * driver could add devices (which it would learn about out-of-band).
414 * Returns the new device, or NULL.
416 struct spi_device
*spi_new_device(struct spi_master
*master
,
417 struct spi_board_info
*chip
)
419 struct spi_device
*proxy
;
422 /* NOTE: caller did any chip->bus_num checks necessary.
424 * Also, unless we change the return value convention to use
425 * error-or-pointer (not NULL-or-pointer), troubleshootability
426 * suggests syslogged diagnostics are best here (ugh).
429 proxy
= spi_alloc_device(master
);
433 WARN_ON(strlen(chip
->modalias
) >= sizeof(proxy
->modalias
));
435 proxy
->chip_select
= chip
->chip_select
;
436 proxy
->max_speed_hz
= chip
->max_speed_hz
;
437 proxy
->mode
= chip
->mode
;
438 proxy
->irq
= chip
->irq
;
439 strlcpy(proxy
->modalias
, chip
->modalias
, sizeof(proxy
->modalias
));
440 proxy
->dev
.platform_data
= (void *) chip
->platform_data
;
441 proxy
->controller_data
= chip
->controller_data
;
442 proxy
->controller_state
= NULL
;
444 status
= spi_add_device(proxy
);
452 EXPORT_SYMBOL_GPL(spi_new_device
);
454 static void spi_match_master_to_boardinfo(struct spi_master
*master
,
455 struct spi_board_info
*bi
)
457 struct spi_device
*dev
;
459 if (master
->bus_num
!= bi
->bus_num
)
462 dev
= spi_new_device(master
, bi
);
464 dev_err(master
->dev
.parent
, "can't create new device for %s\n",
469 * spi_register_board_info - register SPI devices for a given board
470 * @info: array of chip descriptors
471 * @n: how many descriptors are provided
474 * Board-specific early init code calls this (probably during arch_initcall)
475 * with segments of the SPI device table. Any device nodes are created later,
476 * after the relevant parent SPI controller (bus_num) is defined. We keep
477 * this table of devices forever, so that reloading a controller driver will
478 * not make Linux forget about these hard-wired devices.
480 * Other code can also call this, e.g. a particular add-on board might provide
481 * SPI devices through its expansion connector, so code initializing that board
482 * would naturally declare its SPI devices.
484 * The board info passed can safely be __initdata ... but be careful of
485 * any embedded pointers (platform_data, etc), they're copied as-is.
488 spi_register_board_info(struct spi_board_info
const *info
, unsigned n
)
490 struct boardinfo
*bi
;
493 bi
= kzalloc(n
* sizeof(*bi
), GFP_KERNEL
);
497 for (i
= 0; i
< n
; i
++, bi
++, info
++) {
498 struct spi_master
*master
;
500 memcpy(&bi
->board_info
, info
, sizeof(*info
));
501 mutex_lock(&board_lock
);
502 list_add_tail(&bi
->list
, &board_list
);
503 list_for_each_entry(master
, &spi_master_list
, list
)
504 spi_match_master_to_boardinfo(master
, &bi
->board_info
);
505 mutex_unlock(&board_lock
);
511 /*-------------------------------------------------------------------------*/
514 * spi_pump_messages - kthread work function which processes spi message queue
515 * @work: pointer to kthread work struct contained in the master struct
517 * This function checks if there is any spi message in the queue that
518 * needs processing and if so call out to the driver to initialize hardware
519 * and transfer each message.
522 static void spi_pump_messages(struct kthread_work
*work
)
524 struct spi_master
*master
=
525 container_of(work
, struct spi_master
, pump_messages
);
527 bool was_busy
= false;
530 /* Lock queue and check for queue work */
531 spin_lock_irqsave(&master
->queue_lock
, flags
);
532 if (list_empty(&master
->queue
) || !master
->running
) {
534 ret
= master
->unprepare_transfer_hardware(master
);
536 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
537 dev_err(&master
->dev
,
538 "failed to unprepare transfer hardware\n");
542 master
->busy
= false;
543 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
547 /* Make sure we are not already running a message */
548 if (master
->cur_msg
) {
549 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
552 /* Extract head of queue */
554 list_entry(master
->queue
.next
, struct spi_message
, queue
);
556 list_del_init(&master
->cur_msg
->queue
);
561 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
564 ret
= master
->prepare_transfer_hardware(master
);
566 dev_err(&master
->dev
,
567 "failed to prepare transfer hardware\n");
572 ret
= master
->transfer_one_message(master
, master
->cur_msg
);
574 dev_err(&master
->dev
,
575 "failed to transfer one message from queue\n");
580 static int spi_init_queue(struct spi_master
*master
)
582 struct sched_param param
= { .sched_priority
= MAX_RT_PRIO
- 1 };
584 INIT_LIST_HEAD(&master
->queue
);
585 spin_lock_init(&master
->queue_lock
);
587 master
->running
= false;
588 master
->busy
= false;
590 init_kthread_worker(&master
->kworker
);
591 master
->kworker_task
= kthread_run(kthread_worker_fn
,
593 dev_name(&master
->dev
));
594 if (IS_ERR(master
->kworker_task
)) {
595 dev_err(&master
->dev
, "failed to create message pump task\n");
598 init_kthread_work(&master
->pump_messages
, spi_pump_messages
);
601 * Master config will indicate if this controller should run the
602 * message pump with high (realtime) priority to reduce the transfer
603 * latency on the bus by minimising the delay between a transfer
604 * request and the scheduling of the message pump thread. Without this
605 * setting the message pump thread will remain at default priority.
608 dev_info(&master
->dev
,
609 "will run message pump with realtime priority\n");
610 sched_setscheduler(master
->kworker_task
, SCHED_FIFO
, ¶m
);
617 * spi_get_next_queued_message() - called by driver to check for queued
619 * @master: the master to check for queued messages
621 * If there are more messages in the queue, the next message is returned from
624 struct spi_message
*spi_get_next_queued_message(struct spi_master
*master
)
626 struct spi_message
*next
;
629 /* get a pointer to the next message, if any */
630 spin_lock_irqsave(&master
->queue_lock
, flags
);
631 if (list_empty(&master
->queue
))
634 next
= list_entry(master
->queue
.next
,
635 struct spi_message
, queue
);
636 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
640 EXPORT_SYMBOL_GPL(spi_get_next_queued_message
);
643 * spi_finalize_current_message() - the current message is complete
644 * @master: the master to return the message to
646 * Called by the driver to notify the core that the message in the front of the
647 * queue is complete and can be removed from the queue.
649 void spi_finalize_current_message(struct spi_master
*master
)
651 struct spi_message
*mesg
;
654 spin_lock_irqsave(&master
->queue_lock
, flags
);
655 mesg
= master
->cur_msg
;
656 master
->cur_msg
= NULL
;
658 queue_kthread_work(&master
->kworker
, &master
->pump_messages
);
659 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
663 mesg
->complete(mesg
->context
);
665 EXPORT_SYMBOL_GPL(spi_finalize_current_message
);
667 static int spi_start_queue(struct spi_master
*master
)
671 spin_lock_irqsave(&master
->queue_lock
, flags
);
673 if (master
->running
|| master
->busy
) {
674 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
678 master
->running
= true;
679 master
->cur_msg
= NULL
;
680 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
682 queue_kthread_work(&master
->kworker
, &master
->pump_messages
);
687 static int spi_stop_queue(struct spi_master
*master
)
690 unsigned limit
= 500;
693 spin_lock_irqsave(&master
->queue_lock
, flags
);
696 * This is a bit lame, but is optimized for the common execution path.
697 * A wait_queue on the master->busy could be used, but then the common
698 * execution path (pump_messages) would be required to call wake_up or
699 * friends on every SPI message. Do this instead.
701 while ((!list_empty(&master
->queue
) || master
->busy
) && limit
--) {
702 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
704 spin_lock_irqsave(&master
->queue_lock
, flags
);
707 if (!list_empty(&master
->queue
) || master
->busy
)
710 master
->running
= false;
712 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
715 dev_warn(&master
->dev
,
716 "could not stop message queue\n");
722 static int spi_destroy_queue(struct spi_master
*master
)
726 ret
= spi_stop_queue(master
);
729 * flush_kthread_worker will block until all work is done.
730 * If the reason that stop_queue timed out is that the work will never
731 * finish, then it does no good to call flush/stop thread, so
735 dev_err(&master
->dev
, "problem destroying queue\n");
739 flush_kthread_worker(&master
->kworker
);
740 kthread_stop(master
->kworker_task
);
746 * spi_queued_transfer - transfer function for queued transfers
747 * @spi: spi device which is requesting transfer
748 * @msg: spi message which is to handled is queued to driver queue
750 static int spi_queued_transfer(struct spi_device
*spi
, struct spi_message
*msg
)
752 struct spi_master
*master
= spi
->master
;
755 spin_lock_irqsave(&master
->queue_lock
, flags
);
757 if (!master
->running
) {
758 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
761 msg
->actual_length
= 0;
762 msg
->status
= -EINPROGRESS
;
764 list_add_tail(&msg
->queue
, &master
->queue
);
765 if (master
->running
&& !master
->busy
)
766 queue_kthread_work(&master
->kworker
, &master
->pump_messages
);
768 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
772 static int spi_master_initialize_queue(struct spi_master
*master
)
776 master
->queued
= true;
777 master
->transfer
= spi_queued_transfer
;
779 /* Initialize and start queue */
780 ret
= spi_init_queue(master
);
782 dev_err(&master
->dev
, "problem initializing queue\n");
785 ret
= spi_start_queue(master
);
787 dev_err(&master
->dev
, "problem starting queue\n");
788 goto err_start_queue
;
795 spi_destroy_queue(master
);
799 /*-------------------------------------------------------------------------*/
801 static void spi_master_release(struct device
*dev
)
803 struct spi_master
*master
;
805 master
= container_of(dev
, struct spi_master
, dev
);
809 static struct class spi_master_class
= {
810 .name
= "spi_master",
811 .owner
= THIS_MODULE
,
812 .dev_release
= spi_master_release
,
818 * spi_alloc_master - allocate SPI master controller
819 * @dev: the controller, possibly using the platform_bus
820 * @size: how much zeroed driver-private data to allocate; the pointer to this
821 * memory is in the driver_data field of the returned device,
822 * accessible with spi_master_get_devdata().
825 * This call is used only by SPI master controller drivers, which are the
826 * only ones directly touching chip registers. It's how they allocate
827 * an spi_master structure, prior to calling spi_register_master().
829 * This must be called from context that can sleep. It returns the SPI
830 * master structure on success, else NULL.
832 * The caller is responsible for assigning the bus number and initializing
833 * the master's methods before calling spi_register_master(); and (after errors
834 * adding the device) calling spi_master_put() and kfree() to prevent a memory
837 struct spi_master
*spi_alloc_master(struct device
*dev
, unsigned size
)
839 struct spi_master
*master
;
844 master
= kzalloc(size
+ sizeof *master
, GFP_KERNEL
);
848 device_initialize(&master
->dev
);
849 master
->dev
.class = &spi_master_class
;
850 master
->dev
.parent
= get_device(dev
);
851 spi_master_set_devdata(master
, &master
[1]);
855 EXPORT_SYMBOL_GPL(spi_alloc_master
);
858 * spi_register_master - register SPI master controller
859 * @master: initialized master, originally from spi_alloc_master()
862 * SPI master controllers connect to their drivers using some non-SPI bus,
863 * such as the platform bus. The final stage of probe() in that code
864 * includes calling spi_register_master() to hook up to this SPI bus glue.
866 * SPI controllers use board specific (often SOC specific) bus numbers,
867 * and board-specific addressing for SPI devices combines those numbers
868 * with chip select numbers. Since SPI does not directly support dynamic
869 * device identification, boards need configuration tables telling which
870 * chip is at which address.
872 * This must be called from context that can sleep. It returns zero on
873 * success, else a negative error code (dropping the master's refcount).
874 * After a successful return, the caller is responsible for calling
875 * spi_unregister_master().
877 int spi_register_master(struct spi_master
*master
)
879 static atomic_t dyn_bus_id
= ATOMIC_INIT((1<<15) - 1);
880 struct device
*dev
= master
->dev
.parent
;
881 struct boardinfo
*bi
;
882 int status
= -ENODEV
;
888 /* even if it's just one always-selected device, there must
889 * be at least one chipselect
891 if (master
->num_chipselect
== 0)
894 /* convention: dynamically assigned bus IDs count down from the max */
895 if (master
->bus_num
< 0) {
896 /* FIXME switch to an IDR based scheme, something like
897 * I2C now uses, so we can't run out of "dynamic" IDs
899 master
->bus_num
= atomic_dec_return(&dyn_bus_id
);
903 spin_lock_init(&master
->bus_lock_spinlock
);
904 mutex_init(&master
->bus_lock_mutex
);
905 master
->bus_lock_flag
= 0;
907 /* register the device, then userspace will see it.
908 * registration fails if the bus ID is in use.
910 dev_set_name(&master
->dev
, "spi%u", master
->bus_num
);
911 status
= device_add(&master
->dev
);
914 dev_dbg(dev
, "registered master %s%s\n", dev_name(&master
->dev
),
915 dynamic
? " (dynamic)" : "");
917 /* If we're using a queued driver, start the queue */
918 if (master
->transfer
)
919 dev_info(dev
, "master is unqueued, this is deprecated\n");
921 status
= spi_master_initialize_queue(master
);
923 device_unregister(&master
->dev
);
928 mutex_lock(&board_lock
);
929 list_add_tail(&master
->list
, &spi_master_list
);
930 list_for_each_entry(bi
, &board_list
, list
)
931 spi_match_master_to_boardinfo(master
, &bi
->board_info
);
932 mutex_unlock(&board_lock
);
934 /* Register devices from the device tree */
935 of_register_spi_devices(master
);
939 EXPORT_SYMBOL_GPL(spi_register_master
);
941 static int __unregister(struct device
*dev
, void *null
)
943 spi_unregister_device(to_spi_device(dev
));
948 * spi_unregister_master - unregister SPI master controller
949 * @master: the master being unregistered
952 * This call is used only by SPI master controller drivers, which are the
953 * only ones directly touching chip registers.
955 * This must be called from context that can sleep.
957 void spi_unregister_master(struct spi_master
*master
)
961 if (master
->queued
) {
962 if (spi_destroy_queue(master
))
963 dev_err(&master
->dev
, "queue remove failed\n");
966 mutex_lock(&board_lock
);
967 list_del(&master
->list
);
968 mutex_unlock(&board_lock
);
970 dummy
= device_for_each_child(&master
->dev
, NULL
, __unregister
);
971 device_unregister(&master
->dev
);
973 EXPORT_SYMBOL_GPL(spi_unregister_master
);
975 int spi_master_suspend(struct spi_master
*master
)
979 /* Basically no-ops for non-queued masters */
983 ret
= spi_stop_queue(master
);
985 dev_err(&master
->dev
, "queue stop failed\n");
989 EXPORT_SYMBOL_GPL(spi_master_suspend
);
991 int spi_master_resume(struct spi_master
*master
)
998 ret
= spi_start_queue(master
);
1000 dev_err(&master
->dev
, "queue restart failed\n");
1004 EXPORT_SYMBOL_GPL(spi_master_resume
);
1006 static int __spi_master_match(struct device
*dev
, void *data
)
1008 struct spi_master
*m
;
1009 u16
*bus_num
= data
;
1011 m
= container_of(dev
, struct spi_master
, dev
);
1012 return m
->bus_num
== *bus_num
;
1016 * spi_busnum_to_master - look up master associated with bus_num
1017 * @bus_num: the master's bus number
1018 * Context: can sleep
1020 * This call may be used with devices that are registered after
1021 * arch init time. It returns a refcounted pointer to the relevant
1022 * spi_master (which the caller must release), or NULL if there is
1023 * no such master registered.
1025 struct spi_master
*spi_busnum_to_master(u16 bus_num
)
1028 struct spi_master
*master
= NULL
;
1030 dev
= class_find_device(&spi_master_class
, NULL
, &bus_num
,
1031 __spi_master_match
);
1033 master
= container_of(dev
, struct spi_master
, dev
);
1034 /* reference got in class_find_device */
1037 EXPORT_SYMBOL_GPL(spi_busnum_to_master
);
1040 /*-------------------------------------------------------------------------*/
1042 /* Core methods for SPI master protocol drivers. Some of the
1043 * other core methods are currently defined as inline functions.
1047 * spi_setup - setup SPI mode and clock rate
1048 * @spi: the device whose settings are being modified
1049 * Context: can sleep, and no requests are queued to the device
1051 * SPI protocol drivers may need to update the transfer mode if the
1052 * device doesn't work with its default. They may likewise need
1053 * to update clock rates or word sizes from initial values. This function
1054 * changes those settings, and must be called from a context that can sleep.
1055 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
1056 * effect the next time the device is selected and data is transferred to
1057 * or from it. When this function returns, the spi device is deselected.
1059 * Note that this call will fail if the protocol driver specifies an option
1060 * that the underlying controller or its driver does not support. For
1061 * example, not all hardware supports wire transfers using nine bit words,
1062 * LSB-first wire encoding, or active-high chipselects.
1064 int spi_setup(struct spi_device
*spi
)
1069 /* help drivers fail *cleanly* when they need options
1070 * that aren't supported with their current master
1072 bad_bits
= spi
->mode
& ~spi
->master
->mode_bits
;
1074 dev_err(&spi
->dev
, "setup: unsupported mode bits %x\n",
1079 if (!spi
->bits_per_word
)
1080 spi
->bits_per_word
= 8;
1082 status
= spi
->master
->setup(spi
);
1084 dev_dbg(&spi
->dev
, "setup mode %d, %s%s%s%s"
1085 "%u bits/w, %u Hz max --> %d\n",
1086 (int) (spi
->mode
& (SPI_CPOL
| SPI_CPHA
)),
1087 (spi
->mode
& SPI_CS_HIGH
) ? "cs_high, " : "",
1088 (spi
->mode
& SPI_LSB_FIRST
) ? "lsb, " : "",
1089 (spi
->mode
& SPI_3WIRE
) ? "3wire, " : "",
1090 (spi
->mode
& SPI_LOOP
) ? "loopback, " : "",
1091 spi
->bits_per_word
, spi
->max_speed_hz
,
1096 EXPORT_SYMBOL_GPL(spi_setup
);
1098 static int __spi_async(struct spi_device
*spi
, struct spi_message
*message
)
1100 struct spi_master
*master
= spi
->master
;
1102 /* Half-duplex links include original MicroWire, and ones with
1103 * only one data pin like SPI_3WIRE (switches direction) or where
1104 * either MOSI or MISO is missing. They can also be caused by
1105 * software limitations.
1107 if ((master
->flags
& SPI_MASTER_HALF_DUPLEX
)
1108 || (spi
->mode
& SPI_3WIRE
)) {
1109 struct spi_transfer
*xfer
;
1110 unsigned flags
= master
->flags
;
1112 list_for_each_entry(xfer
, &message
->transfers
, transfer_list
) {
1113 if (xfer
->rx_buf
&& xfer
->tx_buf
)
1115 if ((flags
& SPI_MASTER_NO_TX
) && xfer
->tx_buf
)
1117 if ((flags
& SPI_MASTER_NO_RX
) && xfer
->rx_buf
)
1123 message
->status
= -EINPROGRESS
;
1124 return master
->transfer(spi
, message
);
1128 * spi_async - asynchronous SPI transfer
1129 * @spi: device with which data will be exchanged
1130 * @message: describes the data transfers, including completion callback
1131 * Context: any (irqs may be blocked, etc)
1133 * This call may be used in_irq and other contexts which can't sleep,
1134 * as well as from task contexts which can sleep.
1136 * The completion callback is invoked in a context which can't sleep.
1137 * Before that invocation, the value of message->status is undefined.
1138 * When the callback is issued, message->status holds either zero (to
1139 * indicate complete success) or a negative error code. After that
1140 * callback returns, the driver which issued the transfer request may
1141 * deallocate the associated memory; it's no longer in use by any SPI
1142 * core or controller driver code.
1144 * Note that although all messages to a spi_device are handled in
1145 * FIFO order, messages may go to different devices in other orders.
1146 * Some device might be higher priority, or have various "hard" access
1147 * time requirements, for example.
1149 * On detection of any fault during the transfer, processing of
1150 * the entire message is aborted, and the device is deselected.
1151 * Until returning from the associated message completion callback,
1152 * no other spi_message queued to that device will be processed.
1153 * (This rule applies equally to all the synchronous transfer calls,
1154 * which are wrappers around this core asynchronous primitive.)
1156 int spi_async(struct spi_device
*spi
, struct spi_message
*message
)
1158 struct spi_master
*master
= spi
->master
;
1160 unsigned long flags
;
1162 spin_lock_irqsave(&master
->bus_lock_spinlock
, flags
);
1164 if (master
->bus_lock_flag
)
1167 ret
= __spi_async(spi
, message
);
1169 spin_unlock_irqrestore(&master
->bus_lock_spinlock
, flags
);
1173 EXPORT_SYMBOL_GPL(spi_async
);
1176 * spi_async_locked - version of spi_async with exclusive bus usage
1177 * @spi: device with which data will be exchanged
1178 * @message: describes the data transfers, including completion callback
1179 * Context: any (irqs may be blocked, etc)
1181 * This call may be used in_irq and other contexts which can't sleep,
1182 * as well as from task contexts which can sleep.
1184 * The completion callback is invoked in a context which can't sleep.
1185 * Before that invocation, the value of message->status is undefined.
1186 * When the callback is issued, message->status holds either zero (to
1187 * indicate complete success) or a negative error code. After that
1188 * callback returns, the driver which issued the transfer request may
1189 * deallocate the associated memory; it's no longer in use by any SPI
1190 * core or controller driver code.
1192 * Note that although all messages to a spi_device are handled in
1193 * FIFO order, messages may go to different devices in other orders.
1194 * Some device might be higher priority, or have various "hard" access
1195 * time requirements, for example.
1197 * On detection of any fault during the transfer, processing of
1198 * the entire message is aborted, and the device is deselected.
1199 * Until returning from the associated message completion callback,
1200 * no other spi_message queued to that device will be processed.
1201 * (This rule applies equally to all the synchronous transfer calls,
1202 * which are wrappers around this core asynchronous primitive.)
1204 int spi_async_locked(struct spi_device
*spi
, struct spi_message
*message
)
1206 struct spi_master
*master
= spi
->master
;
1208 unsigned long flags
;
1210 spin_lock_irqsave(&master
->bus_lock_spinlock
, flags
);
1212 ret
= __spi_async(spi
, message
);
1214 spin_unlock_irqrestore(&master
->bus_lock_spinlock
, flags
);
1219 EXPORT_SYMBOL_GPL(spi_async_locked
);
1222 /*-------------------------------------------------------------------------*/
1224 /* Utility methods for SPI master protocol drivers, layered on
1225 * top of the core. Some other utility methods are defined as
1229 static void spi_complete(void *arg
)
1234 static int __spi_sync(struct spi_device
*spi
, struct spi_message
*message
,
1237 DECLARE_COMPLETION_ONSTACK(done
);
1239 struct spi_master
*master
= spi
->master
;
1241 message
->complete
= spi_complete
;
1242 message
->context
= &done
;
1245 mutex_lock(&master
->bus_lock_mutex
);
1247 status
= spi_async_locked(spi
, message
);
1250 mutex_unlock(&master
->bus_lock_mutex
);
1253 wait_for_completion(&done
);
1254 status
= message
->status
;
1256 message
->context
= NULL
;
1261 * spi_sync - blocking/synchronous SPI data transfers
1262 * @spi: device with which data will be exchanged
1263 * @message: describes the data transfers
1264 * Context: can sleep
1266 * This call may only be used from a context that may sleep. The sleep
1267 * is non-interruptible, and has no timeout. Low-overhead controller
1268 * drivers may DMA directly into and out of the message buffers.
1270 * Note that the SPI device's chip select is active during the message,
1271 * and then is normally disabled between messages. Drivers for some
1272 * frequently-used devices may want to minimize costs of selecting a chip,
1273 * by leaving it selected in anticipation that the next message will go
1274 * to the same chip. (That may increase power usage.)
1276 * Also, the caller is guaranteeing that the memory associated with the
1277 * message will not be freed before this call returns.
1279 * It returns zero on success, else a negative error code.
1281 int spi_sync(struct spi_device
*spi
, struct spi_message
*message
)
1283 return __spi_sync(spi
, message
, 0);
1285 EXPORT_SYMBOL_GPL(spi_sync
);
1288 * spi_sync_locked - version of spi_sync with exclusive bus usage
1289 * @spi: device with which data will be exchanged
1290 * @message: describes the data transfers
1291 * Context: can sleep
1293 * This call may only be used from a context that may sleep. The sleep
1294 * is non-interruptible, and has no timeout. Low-overhead controller
1295 * drivers may DMA directly into and out of the message buffers.
1297 * This call should be used by drivers that require exclusive access to the
1298 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
1299 * be released by a spi_bus_unlock call when the exclusive access is over.
1301 * It returns zero on success, else a negative error code.
1303 int spi_sync_locked(struct spi_device
*spi
, struct spi_message
*message
)
1305 return __spi_sync(spi
, message
, 1);
1307 EXPORT_SYMBOL_GPL(spi_sync_locked
);
1310 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
1311 * @master: SPI bus master that should be locked for exclusive bus access
1312 * Context: can sleep
1314 * This call may only be used from a context that may sleep. The sleep
1315 * is non-interruptible, and has no timeout.
1317 * This call should be used by drivers that require exclusive access to the
1318 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
1319 * exclusive access is over. Data transfer must be done by spi_sync_locked
1320 * and spi_async_locked calls when the SPI bus lock is held.
1322 * It returns zero on success, else a negative error code.
1324 int spi_bus_lock(struct spi_master
*master
)
1326 unsigned long flags
;
1328 mutex_lock(&master
->bus_lock_mutex
);
1330 spin_lock_irqsave(&master
->bus_lock_spinlock
, flags
);
1331 master
->bus_lock_flag
= 1;
1332 spin_unlock_irqrestore(&master
->bus_lock_spinlock
, flags
);
1334 /* mutex remains locked until spi_bus_unlock is called */
1338 EXPORT_SYMBOL_GPL(spi_bus_lock
);
1341 * spi_bus_unlock - release the lock for exclusive SPI bus usage
1342 * @master: SPI bus master that was locked for exclusive bus access
1343 * Context: can sleep
1345 * This call may only be used from a context that may sleep. The sleep
1346 * is non-interruptible, and has no timeout.
1348 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
1351 * It returns zero on success, else a negative error code.
1353 int spi_bus_unlock(struct spi_master
*master
)
1355 master
->bus_lock_flag
= 0;
1357 mutex_unlock(&master
->bus_lock_mutex
);
1361 EXPORT_SYMBOL_GPL(spi_bus_unlock
);
1363 /* portable code must never pass more than 32 bytes */
1364 #define SPI_BUFSIZ max(32,SMP_CACHE_BYTES)
1369 * spi_write_then_read - SPI synchronous write followed by read
1370 * @spi: device with which data will be exchanged
1371 * @txbuf: data to be written (need not be dma-safe)
1372 * @n_tx: size of txbuf, in bytes
1373 * @rxbuf: buffer into which data will be read (need not be dma-safe)
1374 * @n_rx: size of rxbuf, in bytes
1375 * Context: can sleep
1377 * This performs a half duplex MicroWire style transaction with the
1378 * device, sending txbuf and then reading rxbuf. The return value
1379 * is zero for success, else a negative errno status code.
1380 * This call may only be used from a context that may sleep.
1382 * Parameters to this routine are always copied using a small buffer;
1383 * portable code should never use this for more than 32 bytes.
1384 * Performance-sensitive or bulk transfer code should instead use
1385 * spi_{async,sync}() calls with dma-safe buffers.
1387 int spi_write_then_read(struct spi_device
*spi
,
1388 const void *txbuf
, unsigned n_tx
,
1389 void *rxbuf
, unsigned n_rx
)
1391 static DEFINE_MUTEX(lock
);
1394 struct spi_message message
;
1395 struct spi_transfer x
[2];
1398 /* Use preallocated DMA-safe buffer. We can't avoid copying here,
1399 * (as a pure convenience thing), but we can keep heap costs
1400 * out of the hot path ...
1402 if ((n_tx
+ n_rx
) > SPI_BUFSIZ
)
1405 spi_message_init(&message
);
1406 memset(x
, 0, sizeof x
);
1409 spi_message_add_tail(&x
[0], &message
);
1413 spi_message_add_tail(&x
[1], &message
);
1416 /* ... unless someone else is using the pre-allocated buffer */
1417 if (!mutex_trylock(&lock
)) {
1418 local_buf
= kmalloc(SPI_BUFSIZ
, GFP_KERNEL
);
1424 memcpy(local_buf
, txbuf
, n_tx
);
1425 x
[0].tx_buf
= local_buf
;
1426 x
[1].rx_buf
= local_buf
+ n_tx
;
1429 status
= spi_sync(spi
, &message
);
1431 memcpy(rxbuf
, x
[1].rx_buf
, n_rx
);
1433 if (x
[0].tx_buf
== buf
)
1434 mutex_unlock(&lock
);
1440 EXPORT_SYMBOL_GPL(spi_write_then_read
);
1442 /*-------------------------------------------------------------------------*/
1444 static int __init
spi_init(void)
1448 buf
= kmalloc(SPI_BUFSIZ
, GFP_KERNEL
);
1454 status
= bus_register(&spi_bus_type
);
1458 status
= class_register(&spi_master_class
);
1464 bus_unregister(&spi_bus_type
);
1472 /* board_info is normally registered in arch_initcall(),
1473 * but even essential drivers wait till later
1475 * REVISIT only boardinfo really needs static linking. the rest (device and
1476 * driver registration) _could_ be dynamically linked (modular) ... costs
1477 * include needing to have boardinfo data structures be much more public.
1479 postcore_initcall(spi_init
);