1 /*******************************************************************************
2 * Filename: target_core_transport.c
4 * This file contains the Generic Target Engine Core.
6 * Copyright (c) 2002, 2003, 2004, 2005 PyX Technologies, Inc.
7 * Copyright (c) 2005, 2006, 2007 SBE, Inc.
8 * Copyright (c) 2007-2010 Rising Tide Systems
9 * Copyright (c) 2008-2010 Linux-iSCSI.org
11 * Nicholas A. Bellinger <nab@kernel.org>
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
27 ******************************************************************************/
29 #include <linux/net.h>
30 #include <linux/delay.h>
31 #include <linux/string.h>
32 #include <linux/timer.h>
33 #include <linux/slab.h>
34 #include <linux/blkdev.h>
35 #include <linux/spinlock.h>
36 #include <linux/kthread.h>
38 #include <linux/cdrom.h>
39 #include <linux/module.h>
40 #include <linux/ratelimit.h>
41 #include <asm/unaligned.h>
44 #include <scsi/scsi.h>
45 #include <scsi/scsi_cmnd.h>
46 #include <scsi/scsi_tcq.h>
48 #include <target/target_core_base.h>
49 #include <target/target_core_backend.h>
50 #include <target/target_core_fabric.h>
51 #include <target/target_core_configfs.h>
53 #include "target_core_internal.h"
54 #include "target_core_alua.h"
55 #include "target_core_pr.h"
56 #include "target_core_ua.h"
58 static int sub_api_initialized
;
60 static struct workqueue_struct
*target_completion_wq
;
61 static struct kmem_cache
*se_sess_cache
;
62 struct kmem_cache
*se_ua_cache
;
63 struct kmem_cache
*t10_pr_reg_cache
;
64 struct kmem_cache
*t10_alua_lu_gp_cache
;
65 struct kmem_cache
*t10_alua_lu_gp_mem_cache
;
66 struct kmem_cache
*t10_alua_tg_pt_gp_cache
;
67 struct kmem_cache
*t10_alua_tg_pt_gp_mem_cache
;
69 static int transport_generic_write_pending(struct se_cmd
*);
70 static int transport_processing_thread(void *param
);
71 static int __transport_execute_tasks(struct se_device
*dev
, struct se_cmd
*);
72 static void transport_complete_task_attr(struct se_cmd
*cmd
);
73 static void transport_handle_queue_full(struct se_cmd
*cmd
,
74 struct se_device
*dev
);
75 static void transport_free_dev_tasks(struct se_cmd
*cmd
);
76 static int transport_generic_get_mem(struct se_cmd
*cmd
);
77 static void transport_put_cmd(struct se_cmd
*cmd
);
78 static void transport_remove_cmd_from_queue(struct se_cmd
*cmd
);
79 static int transport_set_sense_codes(struct se_cmd
*cmd
, u8 asc
, u8 ascq
);
80 static void target_complete_ok_work(struct work_struct
*work
);
82 int init_se_kmem_caches(void)
84 se_sess_cache
= kmem_cache_create("se_sess_cache",
85 sizeof(struct se_session
), __alignof__(struct se_session
),
88 pr_err("kmem_cache_create() for struct se_session"
92 se_ua_cache
= kmem_cache_create("se_ua_cache",
93 sizeof(struct se_ua
), __alignof__(struct se_ua
),
96 pr_err("kmem_cache_create() for struct se_ua failed\n");
97 goto out_free_sess_cache
;
99 t10_pr_reg_cache
= kmem_cache_create("t10_pr_reg_cache",
100 sizeof(struct t10_pr_registration
),
101 __alignof__(struct t10_pr_registration
), 0, NULL
);
102 if (!t10_pr_reg_cache
) {
103 pr_err("kmem_cache_create() for struct t10_pr_registration"
105 goto out_free_ua_cache
;
107 t10_alua_lu_gp_cache
= kmem_cache_create("t10_alua_lu_gp_cache",
108 sizeof(struct t10_alua_lu_gp
), __alignof__(struct t10_alua_lu_gp
),
110 if (!t10_alua_lu_gp_cache
) {
111 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
113 goto out_free_pr_reg_cache
;
115 t10_alua_lu_gp_mem_cache
= kmem_cache_create("t10_alua_lu_gp_mem_cache",
116 sizeof(struct t10_alua_lu_gp_member
),
117 __alignof__(struct t10_alua_lu_gp_member
), 0, NULL
);
118 if (!t10_alua_lu_gp_mem_cache
) {
119 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
121 goto out_free_lu_gp_cache
;
123 t10_alua_tg_pt_gp_cache
= kmem_cache_create("t10_alua_tg_pt_gp_cache",
124 sizeof(struct t10_alua_tg_pt_gp
),
125 __alignof__(struct t10_alua_tg_pt_gp
), 0, NULL
);
126 if (!t10_alua_tg_pt_gp_cache
) {
127 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
129 goto out_free_lu_gp_mem_cache
;
131 t10_alua_tg_pt_gp_mem_cache
= kmem_cache_create(
132 "t10_alua_tg_pt_gp_mem_cache",
133 sizeof(struct t10_alua_tg_pt_gp_member
),
134 __alignof__(struct t10_alua_tg_pt_gp_member
),
136 if (!t10_alua_tg_pt_gp_mem_cache
) {
137 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
139 goto out_free_tg_pt_gp_cache
;
142 target_completion_wq
= alloc_workqueue("target_completion",
144 if (!target_completion_wq
)
145 goto out_free_tg_pt_gp_mem_cache
;
149 out_free_tg_pt_gp_mem_cache
:
150 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache
);
151 out_free_tg_pt_gp_cache
:
152 kmem_cache_destroy(t10_alua_tg_pt_gp_cache
);
153 out_free_lu_gp_mem_cache
:
154 kmem_cache_destroy(t10_alua_lu_gp_mem_cache
);
155 out_free_lu_gp_cache
:
156 kmem_cache_destroy(t10_alua_lu_gp_cache
);
157 out_free_pr_reg_cache
:
158 kmem_cache_destroy(t10_pr_reg_cache
);
160 kmem_cache_destroy(se_ua_cache
);
162 kmem_cache_destroy(se_sess_cache
);
167 void release_se_kmem_caches(void)
169 destroy_workqueue(target_completion_wq
);
170 kmem_cache_destroy(se_sess_cache
);
171 kmem_cache_destroy(se_ua_cache
);
172 kmem_cache_destroy(t10_pr_reg_cache
);
173 kmem_cache_destroy(t10_alua_lu_gp_cache
);
174 kmem_cache_destroy(t10_alua_lu_gp_mem_cache
);
175 kmem_cache_destroy(t10_alua_tg_pt_gp_cache
);
176 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache
);
179 /* This code ensures unique mib indexes are handed out. */
180 static DEFINE_SPINLOCK(scsi_mib_index_lock
);
181 static u32 scsi_mib_index
[SCSI_INDEX_TYPE_MAX
];
184 * Allocate a new row index for the entry type specified
186 u32
scsi_get_new_index(scsi_index_t type
)
190 BUG_ON((type
< 0) || (type
>= SCSI_INDEX_TYPE_MAX
));
192 spin_lock(&scsi_mib_index_lock
);
193 new_index
= ++scsi_mib_index
[type
];
194 spin_unlock(&scsi_mib_index_lock
);
199 static void transport_init_queue_obj(struct se_queue_obj
*qobj
)
201 atomic_set(&qobj
->queue_cnt
, 0);
202 INIT_LIST_HEAD(&qobj
->qobj_list
);
203 init_waitqueue_head(&qobj
->thread_wq
);
204 spin_lock_init(&qobj
->cmd_queue_lock
);
207 void transport_subsystem_check_init(void)
211 if (sub_api_initialized
)
214 ret
= request_module("target_core_iblock");
216 pr_err("Unable to load target_core_iblock\n");
218 ret
= request_module("target_core_file");
220 pr_err("Unable to load target_core_file\n");
222 ret
= request_module("target_core_pscsi");
224 pr_err("Unable to load target_core_pscsi\n");
226 ret
= request_module("target_core_stgt");
228 pr_err("Unable to load target_core_stgt\n");
230 sub_api_initialized
= 1;
234 struct se_session
*transport_init_session(void)
236 struct se_session
*se_sess
;
238 se_sess
= kmem_cache_zalloc(se_sess_cache
, GFP_KERNEL
);
240 pr_err("Unable to allocate struct se_session from"
242 return ERR_PTR(-ENOMEM
);
244 INIT_LIST_HEAD(&se_sess
->sess_list
);
245 INIT_LIST_HEAD(&se_sess
->sess_acl_list
);
246 INIT_LIST_HEAD(&se_sess
->sess_cmd_list
);
247 INIT_LIST_HEAD(&se_sess
->sess_wait_list
);
248 spin_lock_init(&se_sess
->sess_cmd_lock
);
249 kref_init(&se_sess
->sess_kref
);
253 EXPORT_SYMBOL(transport_init_session
);
256 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
258 void __transport_register_session(
259 struct se_portal_group
*se_tpg
,
260 struct se_node_acl
*se_nacl
,
261 struct se_session
*se_sess
,
262 void *fabric_sess_ptr
)
264 unsigned char buf
[PR_REG_ISID_LEN
];
266 se_sess
->se_tpg
= se_tpg
;
267 se_sess
->fabric_sess_ptr
= fabric_sess_ptr
;
269 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
271 * Only set for struct se_session's that will actually be moving I/O.
272 * eg: *NOT* discovery sessions.
276 * If the fabric module supports an ISID based TransportID,
277 * save this value in binary from the fabric I_T Nexus now.
279 if (se_tpg
->se_tpg_tfo
->sess_get_initiator_sid
!= NULL
) {
280 memset(&buf
[0], 0, PR_REG_ISID_LEN
);
281 se_tpg
->se_tpg_tfo
->sess_get_initiator_sid(se_sess
,
282 &buf
[0], PR_REG_ISID_LEN
);
283 se_sess
->sess_bin_isid
= get_unaligned_be64(&buf
[0]);
285 kref_get(&se_nacl
->acl_kref
);
287 spin_lock_irq(&se_nacl
->nacl_sess_lock
);
289 * The se_nacl->nacl_sess pointer will be set to the
290 * last active I_T Nexus for each struct se_node_acl.
292 se_nacl
->nacl_sess
= se_sess
;
294 list_add_tail(&se_sess
->sess_acl_list
,
295 &se_nacl
->acl_sess_list
);
296 spin_unlock_irq(&se_nacl
->nacl_sess_lock
);
298 list_add_tail(&se_sess
->sess_list
, &se_tpg
->tpg_sess_list
);
300 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
301 se_tpg
->se_tpg_tfo
->get_fabric_name(), se_sess
->fabric_sess_ptr
);
303 EXPORT_SYMBOL(__transport_register_session
);
305 void transport_register_session(
306 struct se_portal_group
*se_tpg
,
307 struct se_node_acl
*se_nacl
,
308 struct se_session
*se_sess
,
309 void *fabric_sess_ptr
)
313 spin_lock_irqsave(&se_tpg
->session_lock
, flags
);
314 __transport_register_session(se_tpg
, se_nacl
, se_sess
, fabric_sess_ptr
);
315 spin_unlock_irqrestore(&se_tpg
->session_lock
, flags
);
317 EXPORT_SYMBOL(transport_register_session
);
319 static void target_release_session(struct kref
*kref
)
321 struct se_session
*se_sess
= container_of(kref
,
322 struct se_session
, sess_kref
);
323 struct se_portal_group
*se_tpg
= se_sess
->se_tpg
;
325 se_tpg
->se_tpg_tfo
->close_session(se_sess
);
328 void target_get_session(struct se_session
*se_sess
)
330 kref_get(&se_sess
->sess_kref
);
332 EXPORT_SYMBOL(target_get_session
);
334 int target_put_session(struct se_session
*se_sess
)
336 return kref_put(&se_sess
->sess_kref
, target_release_session
);
338 EXPORT_SYMBOL(target_put_session
);
340 static void target_complete_nacl(struct kref
*kref
)
342 struct se_node_acl
*nacl
= container_of(kref
,
343 struct se_node_acl
, acl_kref
);
345 complete(&nacl
->acl_free_comp
);
348 void target_put_nacl(struct se_node_acl
*nacl
)
350 kref_put(&nacl
->acl_kref
, target_complete_nacl
);
353 void transport_deregister_session_configfs(struct se_session
*se_sess
)
355 struct se_node_acl
*se_nacl
;
358 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
360 se_nacl
= se_sess
->se_node_acl
;
362 spin_lock_irqsave(&se_nacl
->nacl_sess_lock
, flags
);
363 if (se_nacl
->acl_stop
== 0)
364 list_del(&se_sess
->sess_acl_list
);
366 * If the session list is empty, then clear the pointer.
367 * Otherwise, set the struct se_session pointer from the tail
368 * element of the per struct se_node_acl active session list.
370 if (list_empty(&se_nacl
->acl_sess_list
))
371 se_nacl
->nacl_sess
= NULL
;
373 se_nacl
->nacl_sess
= container_of(
374 se_nacl
->acl_sess_list
.prev
,
375 struct se_session
, sess_acl_list
);
377 spin_unlock_irqrestore(&se_nacl
->nacl_sess_lock
, flags
);
380 EXPORT_SYMBOL(transport_deregister_session_configfs
);
382 void transport_free_session(struct se_session
*se_sess
)
384 kmem_cache_free(se_sess_cache
, se_sess
);
386 EXPORT_SYMBOL(transport_free_session
);
388 void transport_deregister_session(struct se_session
*se_sess
)
390 struct se_portal_group
*se_tpg
= se_sess
->se_tpg
;
391 struct target_core_fabric_ops
*se_tfo
;
392 struct se_node_acl
*se_nacl
;
394 bool comp_nacl
= true;
397 transport_free_session(se_sess
);
400 se_tfo
= se_tpg
->se_tpg_tfo
;
402 spin_lock_irqsave(&se_tpg
->session_lock
, flags
);
403 list_del(&se_sess
->sess_list
);
404 se_sess
->se_tpg
= NULL
;
405 se_sess
->fabric_sess_ptr
= NULL
;
406 spin_unlock_irqrestore(&se_tpg
->session_lock
, flags
);
409 * Determine if we need to do extra work for this initiator node's
410 * struct se_node_acl if it had been previously dynamically generated.
412 se_nacl
= se_sess
->se_node_acl
;
414 spin_lock_irqsave(&se_tpg
->acl_node_lock
, flags
);
415 if (se_nacl
&& se_nacl
->dynamic_node_acl
) {
416 if (!se_tfo
->tpg_check_demo_mode_cache(se_tpg
)) {
417 list_del(&se_nacl
->acl_list
);
418 se_tpg
->num_node_acls
--;
419 spin_unlock_irqrestore(&se_tpg
->acl_node_lock
, flags
);
420 core_tpg_wait_for_nacl_pr_ref(se_nacl
);
421 core_free_device_list_for_node(se_nacl
, se_tpg
);
422 se_tfo
->tpg_release_fabric_acl(se_tpg
, se_nacl
);
425 spin_lock_irqsave(&se_tpg
->acl_node_lock
, flags
);
428 spin_unlock_irqrestore(&se_tpg
->acl_node_lock
, flags
);
430 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
431 se_tpg
->se_tpg_tfo
->get_fabric_name());
433 * If last kref is dropping now for an explict NodeACL, awake sleeping
434 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
437 if (se_nacl
&& comp_nacl
== true)
438 target_put_nacl(se_nacl
);
440 transport_free_session(se_sess
);
442 EXPORT_SYMBOL(transport_deregister_session
);
445 * Called with cmd->t_state_lock held.
447 static void transport_all_task_dev_remove_state(struct se_cmd
*cmd
)
449 struct se_device
*dev
= cmd
->se_dev
;
450 struct se_task
*task
;
456 list_for_each_entry(task
, &cmd
->t_task_list
, t_list
) {
457 if (task
->task_flags
& TF_ACTIVE
)
460 spin_lock_irqsave(&dev
->execute_task_lock
, flags
);
461 if (task
->t_state_active
) {
462 pr_debug("Removed ITT: 0x%08x dev: %p task[%p]\n",
463 cmd
->se_tfo
->get_task_tag(cmd
), dev
, task
);
465 list_del(&task
->t_state_list
);
466 atomic_dec(&cmd
->t_task_cdbs_ex_left
);
467 task
->t_state_active
= false;
469 spin_unlock_irqrestore(&dev
->execute_task_lock
, flags
);
474 /* transport_cmd_check_stop():
476 * 'transport_off = 1' determines if CMD_T_ACTIVE should be cleared.
477 * 'transport_off = 2' determines if task_dev_state should be removed.
479 * A non-zero u8 t_state sets cmd->t_state.
480 * Returns 1 when command is stopped, else 0.
482 static int transport_cmd_check_stop(
489 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
491 * Determine if IOCTL context caller in requesting the stopping of this
492 * command for LUN shutdown purposes.
494 if (cmd
->transport_state
& CMD_T_LUN_STOP
) {
495 pr_debug("%s:%d CMD_T_LUN_STOP for ITT: 0x%08x\n",
496 __func__
, __LINE__
, cmd
->se_tfo
->get_task_tag(cmd
));
498 cmd
->transport_state
&= ~CMD_T_ACTIVE
;
499 if (transport_off
== 2)
500 transport_all_task_dev_remove_state(cmd
);
501 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
503 complete(&cmd
->transport_lun_stop_comp
);
507 * Determine if frontend context caller is requesting the stopping of
508 * this command for frontend exceptions.
510 if (cmd
->transport_state
& CMD_T_STOP
) {
511 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n",
513 cmd
->se_tfo
->get_task_tag(cmd
));
515 if (transport_off
== 2)
516 transport_all_task_dev_remove_state(cmd
);
519 * Clear struct se_cmd->se_lun before the transport_off == 2 handoff
522 if (transport_off
== 2)
524 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
526 complete(&cmd
->t_transport_stop_comp
);
530 cmd
->transport_state
&= ~CMD_T_ACTIVE
;
531 if (transport_off
== 2) {
532 transport_all_task_dev_remove_state(cmd
);
534 * Clear struct se_cmd->se_lun before the transport_off == 2
535 * handoff to fabric module.
539 * Some fabric modules like tcm_loop can release
540 * their internally allocated I/O reference now and
543 * Fabric modules are expected to return '1' here if the
544 * se_cmd being passed is released at this point,
545 * or zero if not being released.
547 if (cmd
->se_tfo
->check_stop_free
!= NULL
) {
548 spin_unlock_irqrestore(
549 &cmd
->t_state_lock
, flags
);
551 return cmd
->se_tfo
->check_stop_free(cmd
);
554 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
558 cmd
->t_state
= t_state
;
559 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
564 static int transport_cmd_check_stop_to_fabric(struct se_cmd
*cmd
)
566 return transport_cmd_check_stop(cmd
, 2, 0);
569 static void transport_lun_remove_cmd(struct se_cmd
*cmd
)
571 struct se_lun
*lun
= cmd
->se_lun
;
577 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
578 if (cmd
->transport_state
& CMD_T_DEV_ACTIVE
) {
579 cmd
->transport_state
&= ~CMD_T_DEV_ACTIVE
;
580 transport_all_task_dev_remove_state(cmd
);
582 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
584 spin_lock_irqsave(&lun
->lun_cmd_lock
, flags
);
585 if (!list_empty(&cmd
->se_lun_node
))
586 list_del_init(&cmd
->se_lun_node
);
587 spin_unlock_irqrestore(&lun
->lun_cmd_lock
, flags
);
590 void transport_cmd_finish_abort(struct se_cmd
*cmd
, int remove
)
592 if (!(cmd
->se_cmd_flags
& SCF_SCSI_TMR_CDB
))
593 transport_lun_remove_cmd(cmd
);
595 if (transport_cmd_check_stop_to_fabric(cmd
))
598 transport_remove_cmd_from_queue(cmd
);
599 transport_put_cmd(cmd
);
603 static void transport_add_cmd_to_queue(struct se_cmd
*cmd
, int t_state
,
606 struct se_device
*dev
= cmd
->se_dev
;
607 struct se_queue_obj
*qobj
= &dev
->dev_queue_obj
;
611 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
612 cmd
->t_state
= t_state
;
613 cmd
->transport_state
|= CMD_T_ACTIVE
;
614 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
617 spin_lock_irqsave(&qobj
->cmd_queue_lock
, flags
);
619 /* If the cmd is already on the list, remove it before we add it */
620 if (!list_empty(&cmd
->se_queue_node
))
621 list_del(&cmd
->se_queue_node
);
623 atomic_inc(&qobj
->queue_cnt
);
626 list_add(&cmd
->se_queue_node
, &qobj
->qobj_list
);
628 list_add_tail(&cmd
->se_queue_node
, &qobj
->qobj_list
);
629 cmd
->transport_state
|= CMD_T_QUEUED
;
630 spin_unlock_irqrestore(&qobj
->cmd_queue_lock
, flags
);
632 wake_up_interruptible(&qobj
->thread_wq
);
635 static struct se_cmd
*
636 transport_get_cmd_from_queue(struct se_queue_obj
*qobj
)
641 spin_lock_irqsave(&qobj
->cmd_queue_lock
, flags
);
642 if (list_empty(&qobj
->qobj_list
)) {
643 spin_unlock_irqrestore(&qobj
->cmd_queue_lock
, flags
);
646 cmd
= list_first_entry(&qobj
->qobj_list
, struct se_cmd
, se_queue_node
);
648 cmd
->transport_state
&= ~CMD_T_QUEUED
;
649 list_del_init(&cmd
->se_queue_node
);
650 atomic_dec(&qobj
->queue_cnt
);
651 spin_unlock_irqrestore(&qobj
->cmd_queue_lock
, flags
);
656 static void transport_remove_cmd_from_queue(struct se_cmd
*cmd
)
658 struct se_queue_obj
*qobj
= &cmd
->se_dev
->dev_queue_obj
;
661 spin_lock_irqsave(&qobj
->cmd_queue_lock
, flags
);
662 if (!(cmd
->transport_state
& CMD_T_QUEUED
)) {
663 spin_unlock_irqrestore(&qobj
->cmd_queue_lock
, flags
);
666 cmd
->transport_state
&= ~CMD_T_QUEUED
;
667 atomic_dec(&qobj
->queue_cnt
);
668 list_del_init(&cmd
->se_queue_node
);
669 spin_unlock_irqrestore(&qobj
->cmd_queue_lock
, flags
);
673 * Completion function used by TCM subsystem plugins (such as FILEIO)
674 * for queueing up response from struct se_subsystem_api->do_task()
676 void transport_complete_sync_cache(struct se_cmd
*cmd
, int good
)
678 struct se_task
*task
= list_entry(cmd
->t_task_list
.next
,
679 struct se_task
, t_list
);
682 cmd
->scsi_status
= SAM_STAT_GOOD
;
683 task
->task_scsi_status
= GOOD
;
685 task
->task_scsi_status
= SAM_STAT_CHECK_CONDITION
;
686 task
->task_se_cmd
->scsi_sense_reason
=
687 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
691 transport_complete_task(task
, good
);
693 EXPORT_SYMBOL(transport_complete_sync_cache
);
695 static void target_complete_failure_work(struct work_struct
*work
)
697 struct se_cmd
*cmd
= container_of(work
, struct se_cmd
, work
);
699 transport_generic_request_failure(cmd
);
702 /* transport_complete_task():
704 * Called from interrupt and non interrupt context depending
705 * on the transport plugin.
707 void transport_complete_task(struct se_task
*task
, int success
)
709 struct se_cmd
*cmd
= task
->task_se_cmd
;
710 struct se_device
*dev
= cmd
->se_dev
;
713 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
714 task
->task_flags
&= ~TF_ACTIVE
;
717 * See if any sense data exists, if so set the TASK_SENSE flag.
718 * Also check for any other post completion work that needs to be
719 * done by the plugins.
721 if (dev
&& dev
->transport
->transport_complete
) {
722 if (dev
->transport
->transport_complete(task
) != 0) {
723 cmd
->se_cmd_flags
|= SCF_TRANSPORT_TASK_SENSE
;
724 task
->task_flags
|= TF_HAS_SENSE
;
730 * See if we are waiting for outstanding struct se_task
731 * to complete for an exception condition
733 if (task
->task_flags
& TF_REQUEST_STOP
) {
734 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
735 complete(&task
->task_stop_comp
);
740 cmd
->transport_state
|= CMD_T_FAILED
;
743 * Decrement the outstanding t_task_cdbs_left count. The last
744 * struct se_task from struct se_cmd will complete itself into the
745 * device queue depending upon int success.
747 if (!atomic_dec_and_test(&cmd
->t_task_cdbs_left
)) {
748 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
752 * Check for case where an explict ABORT_TASK has been received
753 * and transport_wait_for_tasks() will be waiting for completion..
755 if (cmd
->transport_state
& CMD_T_ABORTED
&&
756 cmd
->transport_state
& CMD_T_STOP
) {
757 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
758 complete(&cmd
->t_transport_stop_comp
);
760 } else if (cmd
->transport_state
& CMD_T_FAILED
) {
761 cmd
->scsi_sense_reason
= TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
762 INIT_WORK(&cmd
->work
, target_complete_failure_work
);
764 INIT_WORK(&cmd
->work
, target_complete_ok_work
);
767 cmd
->t_state
= TRANSPORT_COMPLETE
;
768 cmd
->transport_state
|= (CMD_T_COMPLETE
| CMD_T_ACTIVE
);
769 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
771 queue_work(target_completion_wq
, &cmd
->work
);
773 EXPORT_SYMBOL(transport_complete_task
);
776 * Called by transport_add_tasks_from_cmd() once a struct se_cmd's
777 * struct se_task list are ready to be added to the active execution list
780 * Called with se_dev_t->execute_task_lock called.
782 static inline int transport_add_task_check_sam_attr(
783 struct se_task
*task
,
784 struct se_task
*task_prev
,
785 struct se_device
*dev
)
788 * No SAM Task attribute emulation enabled, add to tail of
791 if (dev
->dev_task_attr_type
!= SAM_TASK_ATTR_EMULATED
) {
792 list_add_tail(&task
->t_execute_list
, &dev
->execute_task_list
);
796 * HEAD_OF_QUEUE attribute for received CDB, which means
797 * the first task that is associated with a struct se_cmd goes to
798 * head of the struct se_device->execute_task_list, and task_prev
799 * after that for each subsequent task
801 if (task
->task_se_cmd
->sam_task_attr
== MSG_HEAD_TAG
) {
802 list_add(&task
->t_execute_list
,
803 (task_prev
!= NULL
) ?
804 &task_prev
->t_execute_list
:
805 &dev
->execute_task_list
);
807 pr_debug("Set HEAD_OF_QUEUE for task CDB: 0x%02x"
808 " in execution queue\n",
809 task
->task_se_cmd
->t_task_cdb
[0]);
813 * For ORDERED, SIMPLE or UNTAGGED attribute tasks once they have been
814 * transitioned from Dermant -> Active state, and are added to the end
815 * of the struct se_device->execute_task_list
817 list_add_tail(&task
->t_execute_list
, &dev
->execute_task_list
);
821 /* __transport_add_task_to_execute_queue():
823 * Called with se_dev_t->execute_task_lock called.
825 static void __transport_add_task_to_execute_queue(
826 struct se_task
*task
,
827 struct se_task
*task_prev
,
828 struct se_device
*dev
)
832 head_of_queue
= transport_add_task_check_sam_attr(task
, task_prev
, dev
);
833 atomic_inc(&dev
->execute_tasks
);
835 if (task
->t_state_active
)
838 * Determine if this task needs to go to HEAD_OF_QUEUE for the
839 * state list as well. Running with SAM Task Attribute emulation
840 * will always return head_of_queue == 0 here
843 list_add(&task
->t_state_list
, (task_prev
) ?
844 &task_prev
->t_state_list
:
845 &dev
->state_task_list
);
847 list_add_tail(&task
->t_state_list
, &dev
->state_task_list
);
849 task
->t_state_active
= true;
851 pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
852 task
->task_se_cmd
->se_tfo
->get_task_tag(task
->task_se_cmd
),
856 static void transport_add_tasks_to_state_queue(struct se_cmd
*cmd
)
858 struct se_device
*dev
= cmd
->se_dev
;
859 struct se_task
*task
;
862 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
863 list_for_each_entry(task
, &cmd
->t_task_list
, t_list
) {
864 spin_lock(&dev
->execute_task_lock
);
865 if (!task
->t_state_active
) {
866 list_add_tail(&task
->t_state_list
,
867 &dev
->state_task_list
);
868 task
->t_state_active
= true;
870 pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
871 task
->task_se_cmd
->se_tfo
->get_task_tag(
872 task
->task_se_cmd
), task
, dev
);
874 spin_unlock(&dev
->execute_task_lock
);
876 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
879 static void __transport_add_tasks_from_cmd(struct se_cmd
*cmd
)
881 struct se_device
*dev
= cmd
->se_dev
;
882 struct se_task
*task
, *task_prev
= NULL
;
884 list_for_each_entry(task
, &cmd
->t_task_list
, t_list
) {
885 if (!list_empty(&task
->t_execute_list
))
888 * __transport_add_task_to_execute_queue() handles the
889 * SAM Task Attribute emulation if enabled
891 __transport_add_task_to_execute_queue(task
, task_prev
, dev
);
896 static void transport_add_tasks_from_cmd(struct se_cmd
*cmd
)
899 struct se_device
*dev
= cmd
->se_dev
;
901 spin_lock_irqsave(&dev
->execute_task_lock
, flags
);
902 __transport_add_tasks_from_cmd(cmd
);
903 spin_unlock_irqrestore(&dev
->execute_task_lock
, flags
);
906 void __transport_remove_task_from_execute_queue(struct se_task
*task
,
907 struct se_device
*dev
)
909 list_del_init(&task
->t_execute_list
);
910 atomic_dec(&dev
->execute_tasks
);
913 static void transport_remove_task_from_execute_queue(
914 struct se_task
*task
,
915 struct se_device
*dev
)
919 if (WARN_ON(list_empty(&task
->t_execute_list
)))
922 spin_lock_irqsave(&dev
->execute_task_lock
, flags
);
923 __transport_remove_task_from_execute_queue(task
, dev
);
924 spin_unlock_irqrestore(&dev
->execute_task_lock
, flags
);
928 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
931 static void target_qf_do_work(struct work_struct
*work
)
933 struct se_device
*dev
= container_of(work
, struct se_device
,
935 LIST_HEAD(qf_cmd_list
);
936 struct se_cmd
*cmd
, *cmd_tmp
;
938 spin_lock_irq(&dev
->qf_cmd_lock
);
939 list_splice_init(&dev
->qf_cmd_list
, &qf_cmd_list
);
940 spin_unlock_irq(&dev
->qf_cmd_lock
);
942 list_for_each_entry_safe(cmd
, cmd_tmp
, &qf_cmd_list
, se_qf_node
) {
943 list_del(&cmd
->se_qf_node
);
944 atomic_dec(&dev
->dev_qf_count
);
945 smp_mb__after_atomic_dec();
947 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
948 " context: %s\n", cmd
->se_tfo
->get_fabric_name(), cmd
,
949 (cmd
->t_state
== TRANSPORT_COMPLETE_QF_OK
) ? "COMPLETE_OK" :
950 (cmd
->t_state
== TRANSPORT_COMPLETE_QF_WP
) ? "WRITE_PENDING"
953 transport_add_cmd_to_queue(cmd
, cmd
->t_state
, true);
957 unsigned char *transport_dump_cmd_direction(struct se_cmd
*cmd
)
959 switch (cmd
->data_direction
) {
962 case DMA_FROM_DEVICE
:
966 case DMA_BIDIRECTIONAL
:
975 void transport_dump_dev_state(
976 struct se_device
*dev
,
980 *bl
+= sprintf(b
+ *bl
, "Status: ");
981 switch (dev
->dev_status
) {
982 case TRANSPORT_DEVICE_ACTIVATED
:
983 *bl
+= sprintf(b
+ *bl
, "ACTIVATED");
985 case TRANSPORT_DEVICE_DEACTIVATED
:
986 *bl
+= sprintf(b
+ *bl
, "DEACTIVATED");
988 case TRANSPORT_DEVICE_SHUTDOWN
:
989 *bl
+= sprintf(b
+ *bl
, "SHUTDOWN");
991 case TRANSPORT_DEVICE_OFFLINE_ACTIVATED
:
992 case TRANSPORT_DEVICE_OFFLINE_DEACTIVATED
:
993 *bl
+= sprintf(b
+ *bl
, "OFFLINE");
996 *bl
+= sprintf(b
+ *bl
, "UNKNOWN=%d", dev
->dev_status
);
1000 *bl
+= sprintf(b
+ *bl
, " Execute/Max Queue Depth: %d/%d",
1001 atomic_read(&dev
->execute_tasks
), dev
->queue_depth
);
1002 *bl
+= sprintf(b
+ *bl
, " SectorSize: %u MaxSectors: %u\n",
1003 dev
->se_sub_dev
->se_dev_attrib
.block_size
, dev
->se_sub_dev
->se_dev_attrib
.max_sectors
);
1004 *bl
+= sprintf(b
+ *bl
, " ");
1007 void transport_dump_vpd_proto_id(
1008 struct t10_vpd
*vpd
,
1009 unsigned char *p_buf
,
1012 unsigned char buf
[VPD_TMP_BUF_SIZE
];
1015 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
1016 len
= sprintf(buf
, "T10 VPD Protocol Identifier: ");
1018 switch (vpd
->protocol_identifier
) {
1020 sprintf(buf
+len
, "Fibre Channel\n");
1023 sprintf(buf
+len
, "Parallel SCSI\n");
1026 sprintf(buf
+len
, "SSA\n");
1029 sprintf(buf
+len
, "IEEE 1394\n");
1032 sprintf(buf
+len
, "SCSI Remote Direct Memory Access"
1036 sprintf(buf
+len
, "Internet SCSI (iSCSI)\n");
1039 sprintf(buf
+len
, "SAS Serial SCSI Protocol\n");
1042 sprintf(buf
+len
, "Automation/Drive Interface Transport"
1046 sprintf(buf
+len
, "AT Attachment Interface ATA/ATAPI\n");
1049 sprintf(buf
+len
, "Unknown 0x%02x\n",
1050 vpd
->protocol_identifier
);
1055 strncpy(p_buf
, buf
, p_buf_len
);
1057 pr_debug("%s", buf
);
1061 transport_set_vpd_proto_id(struct t10_vpd
*vpd
, unsigned char *page_83
)
1064 * Check if the Protocol Identifier Valid (PIV) bit is set..
1066 * from spc3r23.pdf section 7.5.1
1068 if (page_83
[1] & 0x80) {
1069 vpd
->protocol_identifier
= (page_83
[0] & 0xf0);
1070 vpd
->protocol_identifier_set
= 1;
1071 transport_dump_vpd_proto_id(vpd
, NULL
, 0);
1074 EXPORT_SYMBOL(transport_set_vpd_proto_id
);
1076 int transport_dump_vpd_assoc(
1077 struct t10_vpd
*vpd
,
1078 unsigned char *p_buf
,
1081 unsigned char buf
[VPD_TMP_BUF_SIZE
];
1085 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
1086 len
= sprintf(buf
, "T10 VPD Identifier Association: ");
1088 switch (vpd
->association
) {
1090 sprintf(buf
+len
, "addressed logical unit\n");
1093 sprintf(buf
+len
, "target port\n");
1096 sprintf(buf
+len
, "SCSI target device\n");
1099 sprintf(buf
+len
, "Unknown 0x%02x\n", vpd
->association
);
1105 strncpy(p_buf
, buf
, p_buf_len
);
1107 pr_debug("%s", buf
);
1112 int transport_set_vpd_assoc(struct t10_vpd
*vpd
, unsigned char *page_83
)
1115 * The VPD identification association..
1117 * from spc3r23.pdf Section 7.6.3.1 Table 297
1119 vpd
->association
= (page_83
[1] & 0x30);
1120 return transport_dump_vpd_assoc(vpd
, NULL
, 0);
1122 EXPORT_SYMBOL(transport_set_vpd_assoc
);
1124 int transport_dump_vpd_ident_type(
1125 struct t10_vpd
*vpd
,
1126 unsigned char *p_buf
,
1129 unsigned char buf
[VPD_TMP_BUF_SIZE
];
1133 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
1134 len
= sprintf(buf
, "T10 VPD Identifier Type: ");
1136 switch (vpd
->device_identifier_type
) {
1138 sprintf(buf
+len
, "Vendor specific\n");
1141 sprintf(buf
+len
, "T10 Vendor ID based\n");
1144 sprintf(buf
+len
, "EUI-64 based\n");
1147 sprintf(buf
+len
, "NAA\n");
1150 sprintf(buf
+len
, "Relative target port identifier\n");
1153 sprintf(buf
+len
, "SCSI name string\n");
1156 sprintf(buf
+len
, "Unsupported: 0x%02x\n",
1157 vpd
->device_identifier_type
);
1163 if (p_buf_len
< strlen(buf
)+1)
1165 strncpy(p_buf
, buf
, p_buf_len
);
1167 pr_debug("%s", buf
);
1173 int transport_set_vpd_ident_type(struct t10_vpd
*vpd
, unsigned char *page_83
)
1176 * The VPD identifier type..
1178 * from spc3r23.pdf Section 7.6.3.1 Table 298
1180 vpd
->device_identifier_type
= (page_83
[1] & 0x0f);
1181 return transport_dump_vpd_ident_type(vpd
, NULL
, 0);
1183 EXPORT_SYMBOL(transport_set_vpd_ident_type
);
1185 int transport_dump_vpd_ident(
1186 struct t10_vpd
*vpd
,
1187 unsigned char *p_buf
,
1190 unsigned char buf
[VPD_TMP_BUF_SIZE
];
1193 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
1195 switch (vpd
->device_identifier_code_set
) {
1196 case 0x01: /* Binary */
1197 sprintf(buf
, "T10 VPD Binary Device Identifier: %s\n",
1198 &vpd
->device_identifier
[0]);
1200 case 0x02: /* ASCII */
1201 sprintf(buf
, "T10 VPD ASCII Device Identifier: %s\n",
1202 &vpd
->device_identifier
[0]);
1204 case 0x03: /* UTF-8 */
1205 sprintf(buf
, "T10 VPD UTF-8 Device Identifier: %s\n",
1206 &vpd
->device_identifier
[0]);
1209 sprintf(buf
, "T10 VPD Device Identifier encoding unsupported:"
1210 " 0x%02x", vpd
->device_identifier_code_set
);
1216 strncpy(p_buf
, buf
, p_buf_len
);
1218 pr_debug("%s", buf
);
1224 transport_set_vpd_ident(struct t10_vpd
*vpd
, unsigned char *page_83
)
1226 static const char hex_str
[] = "0123456789abcdef";
1227 int j
= 0, i
= 4; /* offset to start of the identifer */
1230 * The VPD Code Set (encoding)
1232 * from spc3r23.pdf Section 7.6.3.1 Table 296
1234 vpd
->device_identifier_code_set
= (page_83
[0] & 0x0f);
1235 switch (vpd
->device_identifier_code_set
) {
1236 case 0x01: /* Binary */
1237 vpd
->device_identifier
[j
++] =
1238 hex_str
[vpd
->device_identifier_type
];
1239 while (i
< (4 + page_83
[3])) {
1240 vpd
->device_identifier
[j
++] =
1241 hex_str
[(page_83
[i
] & 0xf0) >> 4];
1242 vpd
->device_identifier
[j
++] =
1243 hex_str
[page_83
[i
] & 0x0f];
1247 case 0x02: /* ASCII */
1248 case 0x03: /* UTF-8 */
1249 while (i
< (4 + page_83
[3]))
1250 vpd
->device_identifier
[j
++] = page_83
[i
++];
1256 return transport_dump_vpd_ident(vpd
, NULL
, 0);
1258 EXPORT_SYMBOL(transport_set_vpd_ident
);
1260 static void core_setup_task_attr_emulation(struct se_device
*dev
)
1263 * If this device is from Target_Core_Mod/pSCSI, disable the
1264 * SAM Task Attribute emulation.
1266 * This is currently not available in upsream Linux/SCSI Target
1267 * mode code, and is assumed to be disabled while using TCM/pSCSI.
1269 if (dev
->transport
->transport_type
== TRANSPORT_PLUGIN_PHBA_PDEV
) {
1270 dev
->dev_task_attr_type
= SAM_TASK_ATTR_PASSTHROUGH
;
1274 dev
->dev_task_attr_type
= SAM_TASK_ATTR_EMULATED
;
1275 pr_debug("%s: Using SAM_TASK_ATTR_EMULATED for SPC: 0x%02x"
1276 " device\n", dev
->transport
->name
,
1277 dev
->transport
->get_device_rev(dev
));
1280 static void scsi_dump_inquiry(struct se_device
*dev
)
1282 struct t10_wwn
*wwn
= &dev
->se_sub_dev
->t10_wwn
;
1286 * Print Linux/SCSI style INQUIRY formatting to the kernel ring buffer
1288 for (i
= 0; i
< 8; i
++)
1289 if (wwn
->vendor
[i
] >= 0x20)
1290 buf
[i
] = wwn
->vendor
[i
];
1294 pr_debug(" Vendor: %s\n", buf
);
1296 for (i
= 0; i
< 16; i
++)
1297 if (wwn
->model
[i
] >= 0x20)
1298 buf
[i
] = wwn
->model
[i
];
1302 pr_debug(" Model: %s\n", buf
);
1304 for (i
= 0; i
< 4; i
++)
1305 if (wwn
->revision
[i
] >= 0x20)
1306 buf
[i
] = wwn
->revision
[i
];
1310 pr_debug(" Revision: %s\n", buf
);
1312 device_type
= dev
->transport
->get_device_type(dev
);
1313 pr_debug(" Type: %s ", scsi_device_type(device_type
));
1314 pr_debug(" ANSI SCSI revision: %02x\n",
1315 dev
->transport
->get_device_rev(dev
));
1318 struct se_device
*transport_add_device_to_core_hba(
1320 struct se_subsystem_api
*transport
,
1321 struct se_subsystem_dev
*se_dev
,
1323 void *transport_dev
,
1324 struct se_dev_limits
*dev_limits
,
1325 const char *inquiry_prod
,
1326 const char *inquiry_rev
)
1329 struct se_device
*dev
;
1331 dev
= kzalloc(sizeof(struct se_device
), GFP_KERNEL
);
1333 pr_err("Unable to allocate memory for se_dev_t\n");
1337 transport_init_queue_obj(&dev
->dev_queue_obj
);
1338 dev
->dev_flags
= device_flags
;
1339 dev
->dev_status
|= TRANSPORT_DEVICE_DEACTIVATED
;
1340 dev
->dev_ptr
= transport_dev
;
1342 dev
->se_sub_dev
= se_dev
;
1343 dev
->transport
= transport
;
1344 dev
->dev_link_magic
= SE_DEV_LINK_MAGIC
;
1345 INIT_LIST_HEAD(&dev
->dev_list
);
1346 INIT_LIST_HEAD(&dev
->dev_sep_list
);
1347 INIT_LIST_HEAD(&dev
->dev_tmr_list
);
1348 INIT_LIST_HEAD(&dev
->execute_task_list
);
1349 INIT_LIST_HEAD(&dev
->delayed_cmd_list
);
1350 INIT_LIST_HEAD(&dev
->state_task_list
);
1351 INIT_LIST_HEAD(&dev
->qf_cmd_list
);
1352 spin_lock_init(&dev
->execute_task_lock
);
1353 spin_lock_init(&dev
->delayed_cmd_lock
);
1354 spin_lock_init(&dev
->dev_reservation_lock
);
1355 spin_lock_init(&dev
->dev_status_lock
);
1356 spin_lock_init(&dev
->se_port_lock
);
1357 spin_lock_init(&dev
->se_tmr_lock
);
1358 spin_lock_init(&dev
->qf_cmd_lock
);
1359 atomic_set(&dev
->dev_ordered_id
, 0);
1361 se_dev_set_default_attribs(dev
, dev_limits
);
1363 dev
->dev_index
= scsi_get_new_index(SCSI_DEVICE_INDEX
);
1364 dev
->creation_time
= get_jiffies_64();
1365 spin_lock_init(&dev
->stats_lock
);
1367 spin_lock(&hba
->device_lock
);
1368 list_add_tail(&dev
->dev_list
, &hba
->hba_dev_list
);
1370 spin_unlock(&hba
->device_lock
);
1372 * Setup the SAM Task Attribute emulation for struct se_device
1374 core_setup_task_attr_emulation(dev
);
1376 * Force PR and ALUA passthrough emulation with internal object use.
1378 force_pt
= (hba
->hba_flags
& HBA_FLAGS_INTERNAL_USE
);
1380 * Setup the Reservations infrastructure for struct se_device
1382 core_setup_reservations(dev
, force_pt
);
1384 * Setup the Asymmetric Logical Unit Assignment for struct se_device
1386 if (core_setup_alua(dev
, force_pt
) < 0)
1390 * Startup the struct se_device processing thread
1392 dev
->process_thread
= kthread_run(transport_processing_thread
, dev
,
1393 "LIO_%s", dev
->transport
->name
);
1394 if (IS_ERR(dev
->process_thread
)) {
1395 pr_err("Unable to create kthread: LIO_%s\n",
1396 dev
->transport
->name
);
1400 * Setup work_queue for QUEUE_FULL
1402 INIT_WORK(&dev
->qf_work_queue
, target_qf_do_work
);
1404 * Preload the initial INQUIRY const values if we are doing
1405 * anything virtual (IBLOCK, FILEIO, RAMDISK), but not for TCM/pSCSI
1406 * passthrough because this is being provided by the backend LLD.
1407 * This is required so that transport_get_inquiry() copies these
1408 * originals once back into DEV_T10_WWN(dev) for the virtual device
1411 if (dev
->transport
->transport_type
!= TRANSPORT_PLUGIN_PHBA_PDEV
) {
1412 if (!inquiry_prod
|| !inquiry_rev
) {
1413 pr_err("All non TCM/pSCSI plugins require"
1414 " INQUIRY consts\n");
1418 strncpy(&dev
->se_sub_dev
->t10_wwn
.vendor
[0], "LIO-ORG", 8);
1419 strncpy(&dev
->se_sub_dev
->t10_wwn
.model
[0], inquiry_prod
, 16);
1420 strncpy(&dev
->se_sub_dev
->t10_wwn
.revision
[0], inquiry_rev
, 4);
1422 scsi_dump_inquiry(dev
);
1426 kthread_stop(dev
->process_thread
);
1428 spin_lock(&hba
->device_lock
);
1429 list_del(&dev
->dev_list
);
1431 spin_unlock(&hba
->device_lock
);
1433 se_release_vpd_for_dev(dev
);
1439 EXPORT_SYMBOL(transport_add_device_to_core_hba
);
1441 /* transport_generic_prepare_cdb():
1443 * Since the Initiator sees iSCSI devices as LUNs, the SCSI CDB will
1444 * contain the iSCSI LUN in bits 7-5 of byte 1 as per SAM-2.
1445 * The point of this is since we are mapping iSCSI LUNs to
1446 * SCSI Target IDs having a non-zero LUN in the CDB will throw the
1447 * devices and HBAs for a loop.
1449 static inline void transport_generic_prepare_cdb(
1453 case READ_10
: /* SBC - RDProtect */
1454 case READ_12
: /* SBC - RDProtect */
1455 case READ_16
: /* SBC - RDProtect */
1456 case SEND_DIAGNOSTIC
: /* SPC - SELF-TEST Code */
1457 case VERIFY
: /* SBC - VRProtect */
1458 case VERIFY_16
: /* SBC - VRProtect */
1459 case WRITE_VERIFY
: /* SBC - VRProtect */
1460 case WRITE_VERIFY_12
: /* SBC - VRProtect */
1461 case MAINTENANCE_IN
: /* SPC - Parameter Data Format for SA RTPG */
1464 cdb
[1] &= 0x1f; /* clear logical unit number */
1469 static struct se_task
*
1470 transport_generic_get_task(struct se_cmd
*cmd
,
1471 enum dma_data_direction data_direction
)
1473 struct se_task
*task
;
1474 struct se_device
*dev
= cmd
->se_dev
;
1476 task
= dev
->transport
->alloc_task(cmd
->t_task_cdb
);
1478 pr_err("Unable to allocate struct se_task\n");
1482 INIT_LIST_HEAD(&task
->t_list
);
1483 INIT_LIST_HEAD(&task
->t_execute_list
);
1484 INIT_LIST_HEAD(&task
->t_state_list
);
1485 init_completion(&task
->task_stop_comp
);
1486 task
->task_se_cmd
= cmd
;
1487 task
->task_data_direction
= data_direction
;
1492 static int transport_generic_cmd_sequencer(struct se_cmd
*, unsigned char *);
1495 * Used by fabric modules containing a local struct se_cmd within their
1496 * fabric dependent per I/O descriptor.
1498 void transport_init_se_cmd(
1500 struct target_core_fabric_ops
*tfo
,
1501 struct se_session
*se_sess
,
1505 unsigned char *sense_buffer
)
1507 INIT_LIST_HEAD(&cmd
->se_lun_node
);
1508 INIT_LIST_HEAD(&cmd
->se_delayed_node
);
1509 INIT_LIST_HEAD(&cmd
->se_qf_node
);
1510 INIT_LIST_HEAD(&cmd
->se_queue_node
);
1511 INIT_LIST_HEAD(&cmd
->se_cmd_list
);
1512 INIT_LIST_HEAD(&cmd
->t_task_list
);
1513 init_completion(&cmd
->transport_lun_fe_stop_comp
);
1514 init_completion(&cmd
->transport_lun_stop_comp
);
1515 init_completion(&cmd
->t_transport_stop_comp
);
1516 init_completion(&cmd
->cmd_wait_comp
);
1517 spin_lock_init(&cmd
->t_state_lock
);
1518 cmd
->transport_state
= CMD_T_DEV_ACTIVE
;
1521 cmd
->se_sess
= se_sess
;
1522 cmd
->data_length
= data_length
;
1523 cmd
->data_direction
= data_direction
;
1524 cmd
->sam_task_attr
= task_attr
;
1525 cmd
->sense_buffer
= sense_buffer
;
1527 EXPORT_SYMBOL(transport_init_se_cmd
);
1529 static int transport_check_alloc_task_attr(struct se_cmd
*cmd
)
1532 * Check if SAM Task Attribute emulation is enabled for this
1533 * struct se_device storage object
1535 if (cmd
->se_dev
->dev_task_attr_type
!= SAM_TASK_ATTR_EMULATED
)
1538 if (cmd
->sam_task_attr
== MSG_ACA_TAG
) {
1539 pr_debug("SAM Task Attribute ACA"
1540 " emulation is not supported\n");
1544 * Used to determine when ORDERED commands should go from
1545 * Dormant to Active status.
1547 cmd
->se_ordered_id
= atomic_inc_return(&cmd
->se_dev
->dev_ordered_id
);
1548 smp_mb__after_atomic_inc();
1549 pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1550 cmd
->se_ordered_id
, cmd
->sam_task_attr
,
1551 cmd
->se_dev
->transport
->name
);
1555 /* transport_generic_allocate_tasks():
1557 * Called from fabric RX Thread.
1559 int transport_generic_allocate_tasks(
1565 transport_generic_prepare_cdb(cdb
);
1567 * Ensure that the received CDB is less than the max (252 + 8) bytes
1568 * for VARIABLE_LENGTH_CMD
1570 if (scsi_command_size(cdb
) > SCSI_MAX_VARLEN_CDB_SIZE
) {
1571 pr_err("Received SCSI CDB with command_size: %d that"
1572 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1573 scsi_command_size(cdb
), SCSI_MAX_VARLEN_CDB_SIZE
);
1574 cmd
->se_cmd_flags
|= SCF_SCSI_CDB_EXCEPTION
;
1575 cmd
->scsi_sense_reason
= TCM_INVALID_CDB_FIELD
;
1579 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1580 * allocate the additional extended CDB buffer now.. Otherwise
1581 * setup the pointer from __t_task_cdb to t_task_cdb.
1583 if (scsi_command_size(cdb
) > sizeof(cmd
->__t_task_cdb
)) {
1584 cmd
->t_task_cdb
= kzalloc(scsi_command_size(cdb
),
1586 if (!cmd
->t_task_cdb
) {
1587 pr_err("Unable to allocate cmd->t_task_cdb"
1588 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1589 scsi_command_size(cdb
),
1590 (unsigned long)sizeof(cmd
->__t_task_cdb
));
1591 cmd
->se_cmd_flags
|= SCF_SCSI_CDB_EXCEPTION
;
1592 cmd
->scsi_sense_reason
=
1593 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
1597 cmd
->t_task_cdb
= &cmd
->__t_task_cdb
[0];
1599 * Copy the original CDB into cmd->
1601 memcpy(cmd
->t_task_cdb
, cdb
, scsi_command_size(cdb
));
1603 * Setup the received CDB based on SCSI defined opcodes and
1604 * perform unit attention, persistent reservations and ALUA
1605 * checks for virtual device backends. The cmd->t_task_cdb
1606 * pointer is expected to be setup before we reach this point.
1608 ret
= transport_generic_cmd_sequencer(cmd
, cdb
);
1612 * Check for SAM Task Attribute Emulation
1614 if (transport_check_alloc_task_attr(cmd
) < 0) {
1615 cmd
->se_cmd_flags
|= SCF_SCSI_CDB_EXCEPTION
;
1616 cmd
->scsi_sense_reason
= TCM_INVALID_CDB_FIELD
;
1619 spin_lock(&cmd
->se_lun
->lun_sep_lock
);
1620 if (cmd
->se_lun
->lun_sep
)
1621 cmd
->se_lun
->lun_sep
->sep_stats
.cmd_pdus
++;
1622 spin_unlock(&cmd
->se_lun
->lun_sep_lock
);
1625 EXPORT_SYMBOL(transport_generic_allocate_tasks
);
1628 * Used by fabric module frontends to queue tasks directly.
1629 * Many only be used from process context only
1631 int transport_handle_cdb_direct(
1638 pr_err("cmd->se_lun is NULL\n");
1641 if (in_interrupt()) {
1643 pr_err("transport_generic_handle_cdb cannot be called"
1644 " from interrupt context\n");
1648 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE following
1649 * transport_generic_handle_cdb*() -> transport_add_cmd_to_queue()
1650 * in existing usage to ensure that outstanding descriptors are handled
1651 * correctly during shutdown via transport_wait_for_tasks()
1653 * Also, we don't take cmd->t_state_lock here as we only expect
1654 * this to be called for initial descriptor submission.
1656 cmd
->t_state
= TRANSPORT_NEW_CMD
;
1657 cmd
->transport_state
|= CMD_T_ACTIVE
;
1660 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1661 * so follow TRANSPORT_NEW_CMD processing thread context usage
1662 * and call transport_generic_request_failure() if necessary..
1664 ret
= transport_generic_new_cmd(cmd
);
1666 transport_generic_request_failure(cmd
);
1670 EXPORT_SYMBOL(transport_handle_cdb_direct
);
1673 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1675 * @se_cmd: command descriptor to submit
1676 * @se_sess: associated se_sess for endpoint
1677 * @cdb: pointer to SCSI CDB
1678 * @sense: pointer to SCSI sense buffer
1679 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1680 * @data_length: fabric expected data transfer length
1681 * @task_addr: SAM task attribute
1682 * @data_dir: DMA data direction
1683 * @flags: flags for command submission from target_sc_flags_tables
1685 * This may only be called from process context, and also currently
1686 * assumes internal allocation of fabric payload buffer by target-core.
1688 void target_submit_cmd(struct se_cmd
*se_cmd
, struct se_session
*se_sess
,
1689 unsigned char *cdb
, unsigned char *sense
, u32 unpacked_lun
,
1690 u32 data_length
, int task_attr
, int data_dir
, int flags
)
1692 struct se_portal_group
*se_tpg
;
1695 se_tpg
= se_sess
->se_tpg
;
1697 BUG_ON(se_cmd
->se_tfo
|| se_cmd
->se_sess
);
1698 BUG_ON(in_interrupt());
1700 * Initialize se_cmd for target operation. From this point
1701 * exceptions are handled by sending exception status via
1702 * target_core_fabric_ops->queue_status() callback
1704 transport_init_se_cmd(se_cmd
, se_tpg
->se_tpg_tfo
, se_sess
,
1705 data_length
, data_dir
, task_attr
, sense
);
1707 * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1708 * se_sess->sess_cmd_list. A second kref_get here is necessary
1709 * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1710 * kref_put() to happen during fabric packet acknowledgement.
1712 target_get_sess_cmd(se_sess
, se_cmd
, (flags
& TARGET_SCF_ACK_KREF
));
1714 * Signal bidirectional data payloads to target-core
1716 if (flags
& TARGET_SCF_BIDI_OP
)
1717 se_cmd
->se_cmd_flags
|= SCF_BIDI
;
1719 * Locate se_lun pointer and attach it to struct se_cmd
1721 if (transport_lookup_cmd_lun(se_cmd
, unpacked_lun
) < 0) {
1722 transport_send_check_condition_and_sense(se_cmd
,
1723 se_cmd
->scsi_sense_reason
, 0);
1724 target_put_sess_cmd(se_sess
, se_cmd
);
1728 * Sanitize CDBs via transport_generic_cmd_sequencer() and
1729 * allocate the necessary tasks to complete the received CDB+data
1731 rc
= transport_generic_allocate_tasks(se_cmd
, cdb
);
1733 transport_generic_request_failure(se_cmd
);
1737 * Dispatch se_cmd descriptor to se_lun->lun_se_dev backend
1738 * for immediate execution of READs, otherwise wait for
1739 * transport_generic_handle_data() to be called for WRITEs
1740 * when fabric has filled the incoming buffer.
1742 transport_handle_cdb_direct(se_cmd
);
1745 EXPORT_SYMBOL(target_submit_cmd
);
1747 static void target_complete_tmr_failure(struct work_struct
*work
)
1749 struct se_cmd
*se_cmd
= container_of(work
, struct se_cmd
, work
);
1751 se_cmd
->se_tmr_req
->response
= TMR_LUN_DOES_NOT_EXIST
;
1752 se_cmd
->se_tfo
->queue_tm_rsp(se_cmd
);
1754 transport_cmd_check_stop_to_fabric(se_cmd
);
1758 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1761 * @se_cmd: command descriptor to submit
1762 * @se_sess: associated se_sess for endpoint
1763 * @sense: pointer to SCSI sense buffer
1764 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1765 * @fabric_context: fabric context for TMR req
1766 * @tm_type: Type of TM request
1767 * @gfp: gfp type for caller
1768 * @tag: referenced task tag for TMR_ABORT_TASK
1769 * @flags: submit cmd flags
1771 * Callable from all contexts.
1774 int target_submit_tmr(struct se_cmd
*se_cmd
, struct se_session
*se_sess
,
1775 unsigned char *sense
, u32 unpacked_lun
,
1776 void *fabric_tmr_ptr
, unsigned char tm_type
,
1777 gfp_t gfp
, unsigned int tag
, int flags
)
1779 struct se_portal_group
*se_tpg
;
1782 se_tpg
= se_sess
->se_tpg
;
1785 transport_init_se_cmd(se_cmd
, se_tpg
->se_tpg_tfo
, se_sess
,
1786 0, DMA_NONE
, MSG_SIMPLE_TAG
, sense
);
1788 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1789 * allocation failure.
1791 ret
= core_tmr_alloc_req(se_cmd
, fabric_tmr_ptr
, tm_type
, gfp
);
1795 if (tm_type
== TMR_ABORT_TASK
)
1796 se_cmd
->se_tmr_req
->ref_task_tag
= tag
;
1798 /* See target_submit_cmd for commentary */
1799 target_get_sess_cmd(se_sess
, se_cmd
, (flags
& TARGET_SCF_ACK_KREF
));
1801 ret
= transport_lookup_tmr_lun(se_cmd
, unpacked_lun
);
1804 * For callback during failure handling, push this work off
1805 * to process context with TMR_LUN_DOES_NOT_EXIST status.
1807 INIT_WORK(&se_cmd
->work
, target_complete_tmr_failure
);
1808 schedule_work(&se_cmd
->work
);
1811 transport_generic_handle_tmr(se_cmd
);
1814 EXPORT_SYMBOL(target_submit_tmr
);
1817 * Used by fabric module frontends defining a TFO->new_cmd_map() caller
1818 * to queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD_MAP in order to
1819 * complete setup in TCM process context w/ TFO->new_cmd_map().
1821 int transport_generic_handle_cdb_map(
1826 pr_err("cmd->se_lun is NULL\n");
1830 transport_add_cmd_to_queue(cmd
, TRANSPORT_NEW_CMD_MAP
, false);
1833 EXPORT_SYMBOL(transport_generic_handle_cdb_map
);
1835 /* transport_generic_handle_data():
1839 int transport_generic_handle_data(
1843 * For the software fabric case, then we assume the nexus is being
1844 * failed/shutdown when signals are pending from the kthread context
1845 * caller, so we return a failure. For the HW target mode case running
1846 * in interrupt code, the signal_pending() check is skipped.
1848 if (!in_interrupt() && signal_pending(current
))
1851 * If the received CDB has aleady been ABORTED by the generic
1852 * target engine, we now call transport_check_aborted_status()
1853 * to queue any delated TASK_ABORTED status for the received CDB to the
1854 * fabric module as we are expecting no further incoming DATA OUT
1855 * sequences at this point.
1857 if (transport_check_aborted_status(cmd
, 1) != 0)
1860 transport_add_cmd_to_queue(cmd
, TRANSPORT_PROCESS_WRITE
, false);
1863 EXPORT_SYMBOL(transport_generic_handle_data
);
1865 /* transport_generic_handle_tmr():
1869 int transport_generic_handle_tmr(
1872 transport_add_cmd_to_queue(cmd
, TRANSPORT_PROCESS_TMR
, false);
1875 EXPORT_SYMBOL(transport_generic_handle_tmr
);
1878 * If the task is active, request it to be stopped and sleep until it
1881 bool target_stop_task(struct se_task
*task
, unsigned long *flags
)
1883 struct se_cmd
*cmd
= task
->task_se_cmd
;
1884 bool was_active
= false;
1886 if (task
->task_flags
& TF_ACTIVE
) {
1887 task
->task_flags
|= TF_REQUEST_STOP
;
1888 spin_unlock_irqrestore(&cmd
->t_state_lock
, *flags
);
1890 pr_debug("Task %p waiting to complete\n", task
);
1891 wait_for_completion(&task
->task_stop_comp
);
1892 pr_debug("Task %p stopped successfully\n", task
);
1894 spin_lock_irqsave(&cmd
->t_state_lock
, *flags
);
1895 atomic_dec(&cmd
->t_task_cdbs_left
);
1896 task
->task_flags
&= ~(TF_ACTIVE
| TF_REQUEST_STOP
);
1903 static int transport_stop_tasks_for_cmd(struct se_cmd
*cmd
)
1905 struct se_task
*task
, *task_tmp
;
1906 unsigned long flags
;
1909 pr_debug("ITT[0x%08x] - Stopping tasks\n",
1910 cmd
->se_tfo
->get_task_tag(cmd
));
1913 * No tasks remain in the execution queue
1915 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
1916 list_for_each_entry_safe(task
, task_tmp
,
1917 &cmd
->t_task_list
, t_list
) {
1918 pr_debug("Processing task %p\n", task
);
1920 * If the struct se_task has not been sent and is not active,
1921 * remove the struct se_task from the execution queue.
1923 if (!(task
->task_flags
& (TF_ACTIVE
| TF_SENT
))) {
1924 spin_unlock_irqrestore(&cmd
->t_state_lock
,
1926 transport_remove_task_from_execute_queue(task
,
1929 pr_debug("Task %p removed from execute queue\n", task
);
1930 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
1934 if (!target_stop_task(task
, &flags
)) {
1935 pr_debug("Task %p - did nothing\n", task
);
1939 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
1945 * Handle SAM-esque emulation for generic transport request failures.
1947 void transport_generic_request_failure(struct se_cmd
*cmd
)
1951 pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
1952 " CDB: 0x%02x\n", cmd
, cmd
->se_tfo
->get_task_tag(cmd
),
1953 cmd
->t_task_cdb
[0]);
1954 pr_debug("-----[ i_state: %d t_state: %d scsi_sense_reason: %d\n",
1955 cmd
->se_tfo
->get_cmd_state(cmd
),
1956 cmd
->t_state
, cmd
->scsi_sense_reason
);
1957 pr_debug("-----[ t_tasks: %d t_task_cdbs_left: %d"
1958 " t_task_cdbs_sent: %d t_task_cdbs_ex_left: %d --"
1959 " CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n",
1960 cmd
->t_task_list_num
,
1961 atomic_read(&cmd
->t_task_cdbs_left
),
1962 atomic_read(&cmd
->t_task_cdbs_sent
),
1963 atomic_read(&cmd
->t_task_cdbs_ex_left
),
1964 (cmd
->transport_state
& CMD_T_ACTIVE
) != 0,
1965 (cmd
->transport_state
& CMD_T_STOP
) != 0,
1966 (cmd
->transport_state
& CMD_T_SENT
) != 0);
1969 * For SAM Task Attribute emulation for failed struct se_cmd
1971 if (cmd
->se_dev
->dev_task_attr_type
== SAM_TASK_ATTR_EMULATED
)
1972 transport_complete_task_attr(cmd
);
1974 switch (cmd
->scsi_sense_reason
) {
1975 case TCM_NON_EXISTENT_LUN
:
1976 case TCM_UNSUPPORTED_SCSI_OPCODE
:
1977 case TCM_INVALID_CDB_FIELD
:
1978 case TCM_INVALID_PARAMETER_LIST
:
1979 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
:
1980 case TCM_UNKNOWN_MODE_PAGE
:
1981 case TCM_WRITE_PROTECTED
:
1982 case TCM_ADDRESS_OUT_OF_RANGE
:
1983 case TCM_CHECK_CONDITION_ABORT_CMD
:
1984 case TCM_CHECK_CONDITION_UNIT_ATTENTION
:
1985 case TCM_CHECK_CONDITION_NOT_READY
:
1987 case TCM_RESERVATION_CONFLICT
:
1989 * No SENSE Data payload for this case, set SCSI Status
1990 * and queue the response to $FABRIC_MOD.
1992 * Uses linux/include/scsi/scsi.h SAM status codes defs
1994 cmd
->scsi_status
= SAM_STAT_RESERVATION_CONFLICT
;
1996 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1997 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
2000 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
2003 cmd
->se_dev
->se_sub_dev
->se_dev_attrib
.emulate_ua_intlck_ctrl
== 2)
2004 core_scsi3_ua_allocate(cmd
->se_sess
->se_node_acl
,
2005 cmd
->orig_fe_lun
, 0x2C,
2006 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS
);
2008 ret
= cmd
->se_tfo
->queue_status(cmd
);
2009 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
2013 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
2014 cmd
->t_task_cdb
[0], cmd
->scsi_sense_reason
);
2015 cmd
->scsi_sense_reason
= TCM_UNSUPPORTED_SCSI_OPCODE
;
2019 * If a fabric does not define a cmd->se_tfo->new_cmd_map caller,
2020 * make the call to transport_send_check_condition_and_sense()
2021 * directly. Otherwise expect the fabric to make the call to
2022 * transport_send_check_condition_and_sense() after handling
2023 * possible unsoliticied write data payloads.
2025 ret
= transport_send_check_condition_and_sense(cmd
,
2026 cmd
->scsi_sense_reason
, 0);
2027 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
2031 transport_lun_remove_cmd(cmd
);
2032 if (!transport_cmd_check_stop_to_fabric(cmd
))
2037 cmd
->t_state
= TRANSPORT_COMPLETE_QF_OK
;
2038 transport_handle_queue_full(cmd
, cmd
->se_dev
);
2040 EXPORT_SYMBOL(transport_generic_request_failure
);
2042 static inline u32
transport_lba_21(unsigned char *cdb
)
2044 return ((cdb
[1] & 0x1f) << 16) | (cdb
[2] << 8) | cdb
[3];
2047 static inline u32
transport_lba_32(unsigned char *cdb
)
2049 return (cdb
[2] << 24) | (cdb
[3] << 16) | (cdb
[4] << 8) | cdb
[5];
2052 static inline unsigned long long transport_lba_64(unsigned char *cdb
)
2054 unsigned int __v1
, __v2
;
2056 __v1
= (cdb
[2] << 24) | (cdb
[3] << 16) | (cdb
[4] << 8) | cdb
[5];
2057 __v2
= (cdb
[6] << 24) | (cdb
[7] << 16) | (cdb
[8] << 8) | cdb
[9];
2059 return ((unsigned long long)__v2
) | (unsigned long long)__v1
<< 32;
2063 * For VARIABLE_LENGTH_CDB w/ 32 byte extended CDBs
2065 static inline unsigned long long transport_lba_64_ext(unsigned char *cdb
)
2067 unsigned int __v1
, __v2
;
2069 __v1
= (cdb
[12] << 24) | (cdb
[13] << 16) | (cdb
[14] << 8) | cdb
[15];
2070 __v2
= (cdb
[16] << 24) | (cdb
[17] << 16) | (cdb
[18] << 8) | cdb
[19];
2072 return ((unsigned long long)__v2
) | (unsigned long long)__v1
<< 32;
2075 static void transport_set_supported_SAM_opcode(struct se_cmd
*se_cmd
)
2077 unsigned long flags
;
2079 spin_lock_irqsave(&se_cmd
->t_state_lock
, flags
);
2080 se_cmd
->se_cmd_flags
|= SCF_SUPPORTED_SAM_OPCODE
;
2081 spin_unlock_irqrestore(&se_cmd
->t_state_lock
, flags
);
2085 * Called from Fabric Module context from transport_execute_tasks()
2087 * The return of this function determins if the tasks from struct se_cmd
2088 * get added to the execution queue in transport_execute_tasks(),
2089 * or are added to the delayed or ordered lists here.
2091 static inline int transport_execute_task_attr(struct se_cmd
*cmd
)
2093 if (cmd
->se_dev
->dev_task_attr_type
!= SAM_TASK_ATTR_EMULATED
)
2096 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
2097 * to allow the passed struct se_cmd list of tasks to the front of the list.
2099 if (cmd
->sam_task_attr
== MSG_HEAD_TAG
) {
2100 pr_debug("Added HEAD_OF_QUEUE for CDB:"
2101 " 0x%02x, se_ordered_id: %u\n",
2103 cmd
->se_ordered_id
);
2105 } else if (cmd
->sam_task_attr
== MSG_ORDERED_TAG
) {
2106 atomic_inc(&cmd
->se_dev
->dev_ordered_sync
);
2107 smp_mb__after_atomic_inc();
2109 pr_debug("Added ORDERED for CDB: 0x%02x to ordered"
2110 " list, se_ordered_id: %u\n",
2112 cmd
->se_ordered_id
);
2114 * Add ORDERED command to tail of execution queue if
2115 * no other older commands exist that need to be
2118 if (!atomic_read(&cmd
->se_dev
->simple_cmds
))
2122 * For SIMPLE and UNTAGGED Task Attribute commands
2124 atomic_inc(&cmd
->se_dev
->simple_cmds
);
2125 smp_mb__after_atomic_inc();
2128 * Otherwise if one or more outstanding ORDERED task attribute exist,
2129 * add the dormant task(s) built for the passed struct se_cmd to the
2130 * execution queue and become in Active state for this struct se_device.
2132 if (atomic_read(&cmd
->se_dev
->dev_ordered_sync
) != 0) {
2134 * Otherwise, add cmd w/ tasks to delayed cmd queue that
2135 * will be drained upon completion of HEAD_OF_QUEUE task.
2137 spin_lock(&cmd
->se_dev
->delayed_cmd_lock
);
2138 cmd
->se_cmd_flags
|= SCF_DELAYED_CMD_FROM_SAM_ATTR
;
2139 list_add_tail(&cmd
->se_delayed_node
,
2140 &cmd
->se_dev
->delayed_cmd_list
);
2141 spin_unlock(&cmd
->se_dev
->delayed_cmd_lock
);
2143 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to"
2144 " delayed CMD list, se_ordered_id: %u\n",
2145 cmd
->t_task_cdb
[0], cmd
->sam_task_attr
,
2146 cmd
->se_ordered_id
);
2148 * Return zero to let transport_execute_tasks() know
2149 * not to add the delayed tasks to the execution list.
2154 * Otherwise, no ORDERED task attributes exist..
2160 * Called from fabric module context in transport_generic_new_cmd() and
2161 * transport_generic_process_write()
2163 static int transport_execute_tasks(struct se_cmd
*cmd
)
2166 struct se_device
*se_dev
= cmd
->se_dev
;
2168 * Call transport_cmd_check_stop() to see if a fabric exception
2169 * has occurred that prevents execution.
2171 if (!transport_cmd_check_stop(cmd
, 0, TRANSPORT_PROCESSING
)) {
2173 * Check for SAM Task Attribute emulation and HEAD_OF_QUEUE
2174 * attribute for the tasks of the received struct se_cmd CDB
2176 add_tasks
= transport_execute_task_attr(cmd
);
2180 * __transport_execute_tasks() -> __transport_add_tasks_from_cmd()
2181 * adds associated se_tasks while holding dev->execute_task_lock
2182 * before I/O dispath to avoid a double spinlock access.
2184 __transport_execute_tasks(se_dev
, cmd
);
2189 __transport_execute_tasks(se_dev
, NULL
);
2194 * Called to check struct se_device tcq depth window, and once open pull struct se_task
2195 * from struct se_device->execute_task_list and
2197 * Called from transport_processing_thread()
2199 static int __transport_execute_tasks(struct se_device
*dev
, struct se_cmd
*new_cmd
)
2202 struct se_cmd
*cmd
= NULL
;
2203 struct se_task
*task
= NULL
;
2204 unsigned long flags
;
2207 spin_lock_irq(&dev
->execute_task_lock
);
2208 if (new_cmd
!= NULL
)
2209 __transport_add_tasks_from_cmd(new_cmd
);
2211 if (list_empty(&dev
->execute_task_list
)) {
2212 spin_unlock_irq(&dev
->execute_task_lock
);
2215 task
= list_first_entry(&dev
->execute_task_list
,
2216 struct se_task
, t_execute_list
);
2217 __transport_remove_task_from_execute_queue(task
, dev
);
2218 spin_unlock_irq(&dev
->execute_task_lock
);
2220 cmd
= task
->task_se_cmd
;
2221 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
2222 task
->task_flags
|= (TF_ACTIVE
| TF_SENT
);
2223 atomic_inc(&cmd
->t_task_cdbs_sent
);
2225 if (atomic_read(&cmd
->t_task_cdbs_sent
) ==
2226 cmd
->t_task_list_num
)
2227 cmd
->transport_state
|= CMD_T_SENT
;
2229 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2231 if (cmd
->execute_task
)
2232 error
= cmd
->execute_task(task
);
2234 error
= dev
->transport
->do_task(task
);
2236 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
2237 task
->task_flags
&= ~TF_ACTIVE
;
2238 cmd
->transport_state
&= ~CMD_T_SENT
;
2239 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2241 transport_stop_tasks_for_cmd(cmd
);
2242 transport_generic_request_failure(cmd
);
2251 static inline u32
transport_get_sectors_6(
2256 struct se_device
*dev
= cmd
->se_dev
;
2259 * Assume TYPE_DISK for non struct se_device objects.
2260 * Use 8-bit sector value.
2266 * Use 24-bit allocation length for TYPE_TAPE.
2268 if (dev
->transport
->get_device_type(dev
) == TYPE_TAPE
)
2269 return (u32
)(cdb
[2] << 16) + (cdb
[3] << 8) + cdb
[4];
2272 * Everything else assume TYPE_DISK Sector CDB location.
2273 * Use 8-bit sector value. SBC-3 says:
2275 * A TRANSFER LENGTH field set to zero specifies that 256
2276 * logical blocks shall be written. Any other value
2277 * specifies the number of logical blocks that shall be
2281 return cdb
[4] ? : 256;
2284 static inline u32
transport_get_sectors_10(
2289 struct se_device
*dev
= cmd
->se_dev
;
2292 * Assume TYPE_DISK for non struct se_device objects.
2293 * Use 16-bit sector value.
2299 * XXX_10 is not defined in SSC, throw an exception
2301 if (dev
->transport
->get_device_type(dev
) == TYPE_TAPE
) {
2307 * Everything else assume TYPE_DISK Sector CDB location.
2308 * Use 16-bit sector value.
2311 return (u32
)(cdb
[7] << 8) + cdb
[8];
2314 static inline u32
transport_get_sectors_12(
2319 struct se_device
*dev
= cmd
->se_dev
;
2322 * Assume TYPE_DISK for non struct se_device objects.
2323 * Use 32-bit sector value.
2329 * XXX_12 is not defined in SSC, throw an exception
2331 if (dev
->transport
->get_device_type(dev
) == TYPE_TAPE
) {
2337 * Everything else assume TYPE_DISK Sector CDB location.
2338 * Use 32-bit sector value.
2341 return (u32
)(cdb
[6] << 24) + (cdb
[7] << 16) + (cdb
[8] << 8) + cdb
[9];
2344 static inline u32
transport_get_sectors_16(
2349 struct se_device
*dev
= cmd
->se_dev
;
2352 * Assume TYPE_DISK for non struct se_device objects.
2353 * Use 32-bit sector value.
2359 * Use 24-bit allocation length for TYPE_TAPE.
2361 if (dev
->transport
->get_device_type(dev
) == TYPE_TAPE
)
2362 return (u32
)(cdb
[12] << 16) + (cdb
[13] << 8) + cdb
[14];
2365 return (u32
)(cdb
[10] << 24) + (cdb
[11] << 16) +
2366 (cdb
[12] << 8) + cdb
[13];
2370 * Used for VARIABLE_LENGTH_CDB WRITE_32 and READ_32 variants
2372 static inline u32
transport_get_sectors_32(
2378 * Assume TYPE_DISK for non struct se_device objects.
2379 * Use 32-bit sector value.
2381 return (u32
)(cdb
[28] << 24) + (cdb
[29] << 16) +
2382 (cdb
[30] << 8) + cdb
[31];
2386 static inline u32
transport_get_size(
2391 struct se_device
*dev
= cmd
->se_dev
;
2393 if (dev
->transport
->get_device_type(dev
) == TYPE_TAPE
) {
2394 if (cdb
[1] & 1) { /* sectors */
2395 return dev
->se_sub_dev
->se_dev_attrib
.block_size
* sectors
;
2400 pr_debug("Returning block_size: %u, sectors: %u == %u for"
2401 " %s object\n", dev
->se_sub_dev
->se_dev_attrib
.block_size
, sectors
,
2402 dev
->se_sub_dev
->se_dev_attrib
.block_size
* sectors
,
2403 dev
->transport
->name
);
2405 return dev
->se_sub_dev
->se_dev_attrib
.block_size
* sectors
;
2408 static void transport_xor_callback(struct se_cmd
*cmd
)
2410 unsigned char *buf
, *addr
;
2411 struct scatterlist
*sg
;
2412 unsigned int offset
;
2416 * From sbc3r22.pdf section 5.48 XDWRITEREAD (10) command
2418 * 1) read the specified logical block(s);
2419 * 2) transfer logical blocks from the data-out buffer;
2420 * 3) XOR the logical blocks transferred from the data-out buffer with
2421 * the logical blocks read, storing the resulting XOR data in a buffer;
2422 * 4) if the DISABLE WRITE bit is set to zero, then write the logical
2423 * blocks transferred from the data-out buffer; and
2424 * 5) transfer the resulting XOR data to the data-in buffer.
2426 buf
= kmalloc(cmd
->data_length
, GFP_KERNEL
);
2428 pr_err("Unable to allocate xor_callback buf\n");
2432 * Copy the scatterlist WRITE buffer located at cmd->t_data_sg
2433 * into the locally allocated *buf
2435 sg_copy_to_buffer(cmd
->t_data_sg
,
2441 * Now perform the XOR against the BIDI read memory located at
2442 * cmd->t_mem_bidi_list
2446 for_each_sg(cmd
->t_bidi_data_sg
, sg
, cmd
->t_bidi_data_nents
, count
) {
2447 addr
= kmap_atomic(sg_page(sg
));
2451 for (i
= 0; i
< sg
->length
; i
++)
2452 *(addr
+ sg
->offset
+ i
) ^= *(buf
+ offset
+ i
);
2454 offset
+= sg
->length
;
2455 kunmap_atomic(addr
);
2463 * Used to obtain Sense Data from underlying Linux/SCSI struct scsi_cmnd
2465 static int transport_get_sense_data(struct se_cmd
*cmd
)
2467 unsigned char *buffer
= cmd
->sense_buffer
, *sense_buffer
= NULL
;
2468 struct se_device
*dev
= cmd
->se_dev
;
2469 struct se_task
*task
= NULL
, *task_tmp
;
2470 unsigned long flags
;
2473 WARN_ON(!cmd
->se_lun
);
2478 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
2479 if (cmd
->se_cmd_flags
& SCF_SENT_CHECK_CONDITION
) {
2480 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2484 list_for_each_entry_safe(task
, task_tmp
,
2485 &cmd
->t_task_list
, t_list
) {
2486 if (!(task
->task_flags
& TF_HAS_SENSE
))
2489 if (!dev
->transport
->get_sense_buffer
) {
2490 pr_err("dev->transport->get_sense_buffer"
2495 sense_buffer
= dev
->transport
->get_sense_buffer(task
);
2496 if (!sense_buffer
) {
2497 pr_err("ITT[0x%08x]_TASK[%p]: Unable to locate"
2498 " sense buffer for task with sense\n",
2499 cmd
->se_tfo
->get_task_tag(cmd
), task
);
2502 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2504 offset
= cmd
->se_tfo
->set_fabric_sense_len(cmd
,
2505 TRANSPORT_SENSE_BUFFER
);
2507 memcpy(&buffer
[offset
], sense_buffer
,
2508 TRANSPORT_SENSE_BUFFER
);
2509 cmd
->scsi_status
= task
->task_scsi_status
;
2510 /* Automatically padded */
2511 cmd
->scsi_sense_length
=
2512 (TRANSPORT_SENSE_BUFFER
+ offset
);
2514 pr_debug("HBA_[%u]_PLUG[%s]: Set SAM STATUS: 0x%02x"
2516 dev
->se_hba
->hba_id
, dev
->transport
->name
,
2520 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2525 static inline long long transport_dev_end_lba(struct se_device
*dev
)
2527 return dev
->transport
->get_blocks(dev
) + 1;
2530 static int transport_cmd_get_valid_sectors(struct se_cmd
*cmd
)
2532 struct se_device
*dev
= cmd
->se_dev
;
2535 if (dev
->transport
->get_device_type(dev
) != TYPE_DISK
)
2538 sectors
= (cmd
->data_length
/ dev
->se_sub_dev
->se_dev_attrib
.block_size
);
2540 if ((cmd
->t_task_lba
+ sectors
) > transport_dev_end_lba(dev
)) {
2541 pr_err("LBA: %llu Sectors: %u exceeds"
2542 " transport_dev_end_lba(): %llu\n",
2543 cmd
->t_task_lba
, sectors
,
2544 transport_dev_end_lba(dev
));
2551 static int target_check_write_same_discard(unsigned char *flags
, struct se_device
*dev
)
2554 * Determine if the received WRITE_SAME is used to for direct
2555 * passthrough into Linux/SCSI with struct request via TCM/pSCSI
2556 * or we are signaling the use of internal WRITE_SAME + UNMAP=1
2557 * emulation for -> Linux/BLOCK disbard with TCM/IBLOCK code.
2559 int passthrough
= (dev
->transport
->transport_type
==
2560 TRANSPORT_PLUGIN_PHBA_PDEV
);
2563 if ((flags
[0] & 0x04) || (flags
[0] & 0x02)) {
2564 pr_err("WRITE_SAME PBDATA and LBDATA"
2565 " bits not supported for Block Discard"
2570 * Currently for the emulated case we only accept
2571 * tpws with the UNMAP=1 bit set.
2573 if (!(flags
[0] & 0x08)) {
2574 pr_err("WRITE_SAME w/o UNMAP bit not"
2575 " supported for Block Discard Emulation\n");
2583 /* transport_generic_cmd_sequencer():
2585 * Generic Command Sequencer that should work for most DAS transport
2588 * Called from transport_generic_allocate_tasks() in the $FABRIC_MOD
2591 * FIXME: Need to support other SCSI OPCODES where as well.
2593 static int transport_generic_cmd_sequencer(
2597 struct se_device
*dev
= cmd
->se_dev
;
2598 struct se_subsystem_dev
*su_dev
= dev
->se_sub_dev
;
2599 int ret
= 0, sector_ret
= 0, passthrough
;
2600 u32 sectors
= 0, size
= 0, pr_reg_type
= 0;
2604 * Check for an existing UNIT ATTENTION condition
2606 if (core_scsi3_ua_check(cmd
, cdb
) < 0) {
2607 cmd
->se_cmd_flags
|= SCF_SCSI_CDB_EXCEPTION
;
2608 cmd
->scsi_sense_reason
= TCM_CHECK_CONDITION_UNIT_ATTENTION
;
2612 * Check status of Asymmetric Logical Unit Assignment port
2614 ret
= su_dev
->t10_alua
.alua_state_check(cmd
, cdb
, &alua_ascq
);
2617 * Set SCSI additional sense code (ASC) to 'LUN Not Accessible';
2618 * The ALUA additional sense code qualifier (ASCQ) is determined
2619 * by the ALUA primary or secondary access state..
2623 pr_debug("[%s]: ALUA TG Port not available,"
2624 " SenseKey: NOT_READY, ASC/ASCQ: 0x04/0x%02x\n",
2625 cmd
->se_tfo
->get_fabric_name(), alua_ascq
);
2627 transport_set_sense_codes(cmd
, 0x04, alua_ascq
);
2628 cmd
->se_cmd_flags
|= SCF_SCSI_CDB_EXCEPTION
;
2629 cmd
->scsi_sense_reason
= TCM_CHECK_CONDITION_NOT_READY
;
2632 goto out_invalid_cdb_field
;
2635 * Check status for SPC-3 Persistent Reservations
2637 if (su_dev
->t10_pr
.pr_ops
.t10_reservation_check(cmd
, &pr_reg_type
) != 0) {
2638 if (su_dev
->t10_pr
.pr_ops
.t10_seq_non_holder(
2639 cmd
, cdb
, pr_reg_type
) != 0) {
2640 cmd
->se_cmd_flags
|= SCF_SCSI_CDB_EXCEPTION
;
2641 cmd
->se_cmd_flags
|= SCF_SCSI_RESERVATION_CONFLICT
;
2642 cmd
->scsi_status
= SAM_STAT_RESERVATION_CONFLICT
;
2643 cmd
->scsi_sense_reason
= TCM_RESERVATION_CONFLICT
;
2647 * This means the CDB is allowed for the SCSI Initiator port
2648 * when said port is *NOT* holding the legacy SPC-2 or
2649 * SPC-3 Persistent Reservation.
2654 * If we operate in passthrough mode we skip most CDB emulation and
2655 * instead hand the commands down to the physical SCSI device.
2658 (dev
->transport
->transport_type
== TRANSPORT_PLUGIN_PHBA_PDEV
);
2662 sectors
= transport_get_sectors_6(cdb
, cmd
, §or_ret
);
2664 goto out_unsupported_cdb
;
2665 size
= transport_get_size(sectors
, cdb
, cmd
);
2666 cmd
->t_task_lba
= transport_lba_21(cdb
);
2667 cmd
->se_cmd_flags
|= SCF_SCSI_DATA_SG_IO_CDB
;
2670 sectors
= transport_get_sectors_10(cdb
, cmd
, §or_ret
);
2672 goto out_unsupported_cdb
;
2673 size
= transport_get_size(sectors
, cdb
, cmd
);
2674 cmd
->t_task_lba
= transport_lba_32(cdb
);
2675 cmd
->se_cmd_flags
|= SCF_SCSI_DATA_SG_IO_CDB
;
2678 sectors
= transport_get_sectors_12(cdb
, cmd
, §or_ret
);
2680 goto out_unsupported_cdb
;
2681 size
= transport_get_size(sectors
, cdb
, cmd
);
2682 cmd
->t_task_lba
= transport_lba_32(cdb
);
2683 cmd
->se_cmd_flags
|= SCF_SCSI_DATA_SG_IO_CDB
;
2686 sectors
= transport_get_sectors_16(cdb
, cmd
, §or_ret
);
2688 goto out_unsupported_cdb
;
2689 size
= transport_get_size(sectors
, cdb
, cmd
);
2690 cmd
->t_task_lba
= transport_lba_64(cdb
);
2691 cmd
->se_cmd_flags
|= SCF_SCSI_DATA_SG_IO_CDB
;
2694 sectors
= transport_get_sectors_6(cdb
, cmd
, §or_ret
);
2696 goto out_unsupported_cdb
;
2697 size
= transport_get_size(sectors
, cdb
, cmd
);
2698 cmd
->t_task_lba
= transport_lba_21(cdb
);
2699 cmd
->se_cmd_flags
|= SCF_SCSI_DATA_SG_IO_CDB
;
2702 sectors
= transport_get_sectors_10(cdb
, cmd
, §or_ret
);
2704 goto out_unsupported_cdb
;
2705 size
= transport_get_size(sectors
, cdb
, cmd
);
2706 cmd
->t_task_lba
= transport_lba_32(cdb
);
2708 cmd
->se_cmd_flags
|= SCF_FUA
;
2709 cmd
->se_cmd_flags
|= SCF_SCSI_DATA_SG_IO_CDB
;
2712 sectors
= transport_get_sectors_12(cdb
, cmd
, §or_ret
);
2714 goto out_unsupported_cdb
;
2715 size
= transport_get_size(sectors
, cdb
, cmd
);
2716 cmd
->t_task_lba
= transport_lba_32(cdb
);
2718 cmd
->se_cmd_flags
|= SCF_FUA
;
2719 cmd
->se_cmd_flags
|= SCF_SCSI_DATA_SG_IO_CDB
;
2722 sectors
= transport_get_sectors_16(cdb
, cmd
, §or_ret
);
2724 goto out_unsupported_cdb
;
2725 size
= transport_get_size(sectors
, cdb
, cmd
);
2726 cmd
->t_task_lba
= transport_lba_64(cdb
);
2728 cmd
->se_cmd_flags
|= SCF_FUA
;
2729 cmd
->se_cmd_flags
|= SCF_SCSI_DATA_SG_IO_CDB
;
2731 case XDWRITEREAD_10
:
2732 if ((cmd
->data_direction
!= DMA_TO_DEVICE
) ||
2733 !(cmd
->se_cmd_flags
& SCF_BIDI
))
2734 goto out_invalid_cdb_field
;
2735 sectors
= transport_get_sectors_10(cdb
, cmd
, §or_ret
);
2737 goto out_unsupported_cdb
;
2738 size
= transport_get_size(sectors
, cdb
, cmd
);
2739 cmd
->t_task_lba
= transport_lba_32(cdb
);
2740 cmd
->se_cmd_flags
|= SCF_SCSI_DATA_SG_IO_CDB
;
2743 * Do now allow BIDI commands for passthrough mode.
2746 goto out_unsupported_cdb
;
2749 * Setup BIDI XOR callback to be run after I/O completion.
2751 cmd
->transport_complete_callback
= &transport_xor_callback
;
2753 cmd
->se_cmd_flags
|= SCF_FUA
;
2755 case VARIABLE_LENGTH_CMD
:
2756 service_action
= get_unaligned_be16(&cdb
[8]);
2757 switch (service_action
) {
2758 case XDWRITEREAD_32
:
2759 sectors
= transport_get_sectors_32(cdb
, cmd
, §or_ret
);
2761 goto out_unsupported_cdb
;
2762 size
= transport_get_size(sectors
, cdb
, cmd
);
2764 * Use WRITE_32 and READ_32 opcodes for the emulated
2765 * XDWRITE_READ_32 logic.
2767 cmd
->t_task_lba
= transport_lba_64_ext(cdb
);
2768 cmd
->se_cmd_flags
|= SCF_SCSI_DATA_SG_IO_CDB
;
2771 * Do now allow BIDI commands for passthrough mode.
2774 goto out_unsupported_cdb
;
2777 * Setup BIDI XOR callback to be run during after I/O
2780 cmd
->transport_complete_callback
= &transport_xor_callback
;
2782 cmd
->se_cmd_flags
|= SCF_FUA
;
2785 sectors
= transport_get_sectors_32(cdb
, cmd
, §or_ret
);
2787 goto out_unsupported_cdb
;
2790 size
= transport_get_size(1, cdb
, cmd
);
2792 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not"
2794 goto out_invalid_cdb_field
;
2797 cmd
->t_task_lba
= get_unaligned_be64(&cdb
[12]);
2798 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
2800 if (target_check_write_same_discard(&cdb
[10], dev
) < 0)
2801 goto out_unsupported_cdb
;
2803 cmd
->execute_task
= target_emulate_write_same
;
2806 pr_err("VARIABLE_LENGTH_CMD service action"
2807 " 0x%04x not supported\n", service_action
);
2808 goto out_unsupported_cdb
;
2811 case MAINTENANCE_IN
:
2812 if (dev
->transport
->get_device_type(dev
) != TYPE_ROM
) {
2813 /* MAINTENANCE_IN from SCC-2 */
2815 * Check for emulated MI_REPORT_TARGET_PGS.
2817 if ((cdb
[1] & 0x1f) == MI_REPORT_TARGET_PGS
&&
2818 su_dev
->t10_alua
.alua_type
== SPC3_ALUA_EMULATED
) {
2820 target_emulate_report_target_port_groups
;
2822 size
= (cdb
[6] << 24) | (cdb
[7] << 16) |
2823 (cdb
[8] << 8) | cdb
[9];
2825 /* GPCMD_SEND_KEY from multi media commands */
2826 size
= (cdb
[8] << 8) + cdb
[9];
2828 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
2832 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
2834 case MODE_SELECT_10
:
2835 size
= (cdb
[7] << 8) + cdb
[8];
2836 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
2840 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
2842 cmd
->execute_task
= target_emulate_modesense
;
2845 size
= (cdb
[7] << 8) + cdb
[8];
2846 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
2848 cmd
->execute_task
= target_emulate_modesense
;
2850 case GPCMD_READ_BUFFER_CAPACITY
:
2851 case GPCMD_SEND_OPC
:
2854 size
= (cdb
[7] << 8) + cdb
[8];
2855 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
2857 case READ_BLOCK_LIMITS
:
2858 size
= READ_BLOCK_LEN
;
2859 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
2861 case GPCMD_GET_CONFIGURATION
:
2862 case GPCMD_READ_FORMAT_CAPACITIES
:
2863 case GPCMD_READ_DISC_INFO
:
2864 case GPCMD_READ_TRACK_RZONE_INFO
:
2865 size
= (cdb
[7] << 8) + cdb
[8];
2866 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
2868 case PERSISTENT_RESERVE_IN
:
2869 if (su_dev
->t10_pr
.res_type
== SPC3_PERSISTENT_RESERVATIONS
)
2870 cmd
->execute_task
= target_scsi3_emulate_pr_in
;
2871 size
= (cdb
[7] << 8) + cdb
[8];
2872 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
2874 case PERSISTENT_RESERVE_OUT
:
2875 if (su_dev
->t10_pr
.res_type
== SPC3_PERSISTENT_RESERVATIONS
)
2876 cmd
->execute_task
= target_scsi3_emulate_pr_out
;
2877 size
= (cdb
[7] << 8) + cdb
[8];
2878 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
2880 case GPCMD_MECHANISM_STATUS
:
2881 case GPCMD_READ_DVD_STRUCTURE
:
2882 size
= (cdb
[8] << 8) + cdb
[9];
2883 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
2886 size
= READ_POSITION_LEN
;
2887 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
2889 case MAINTENANCE_OUT
:
2890 if (dev
->transport
->get_device_type(dev
) != TYPE_ROM
) {
2891 /* MAINTENANCE_OUT from SCC-2
2893 * Check for emulated MO_SET_TARGET_PGS.
2895 if (cdb
[1] == MO_SET_TARGET_PGS
&&
2896 su_dev
->t10_alua
.alua_type
== SPC3_ALUA_EMULATED
) {
2898 target_emulate_set_target_port_groups
;
2901 size
= (cdb
[6] << 24) | (cdb
[7] << 16) |
2902 (cdb
[8] << 8) | cdb
[9];
2904 /* GPCMD_REPORT_KEY from multi media commands */
2905 size
= (cdb
[8] << 8) + cdb
[9];
2907 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
2910 size
= (cdb
[3] << 8) + cdb
[4];
2912 * Do implict HEAD_OF_QUEUE processing for INQUIRY.
2913 * See spc4r17 section 5.3
2915 if (cmd
->se_dev
->dev_task_attr_type
== SAM_TASK_ATTR_EMULATED
)
2916 cmd
->sam_task_attr
= MSG_HEAD_TAG
;
2917 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
2919 cmd
->execute_task
= target_emulate_inquiry
;
2922 size
= (cdb
[6] << 16) + (cdb
[7] << 8) + cdb
[8];
2923 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
2926 size
= READ_CAP_LEN
;
2927 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
2929 cmd
->execute_task
= target_emulate_readcapacity
;
2931 case READ_MEDIA_SERIAL_NUMBER
:
2932 case SECURITY_PROTOCOL_IN
:
2933 case SECURITY_PROTOCOL_OUT
:
2934 size
= (cdb
[6] << 24) | (cdb
[7] << 16) | (cdb
[8] << 8) | cdb
[9];
2935 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
2937 case SERVICE_ACTION_IN
:
2938 switch (cmd
->t_task_cdb
[1] & 0x1f) {
2939 case SAI_READ_CAPACITY_16
:
2942 target_emulate_readcapacity_16
;
2948 pr_err("Unsupported SA: 0x%02x\n",
2949 cmd
->t_task_cdb
[1] & 0x1f);
2950 goto out_invalid_cdb_field
;
2953 case ACCESS_CONTROL_IN
:
2954 case ACCESS_CONTROL_OUT
:
2956 case READ_ATTRIBUTE
:
2957 case RECEIVE_COPY_RESULTS
:
2958 case WRITE_ATTRIBUTE
:
2959 size
= (cdb
[10] << 24) | (cdb
[11] << 16) |
2960 (cdb
[12] << 8) | cdb
[13];
2961 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
2963 case RECEIVE_DIAGNOSTIC
:
2964 case SEND_DIAGNOSTIC
:
2965 size
= (cdb
[3] << 8) | cdb
[4];
2966 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
2968 /* #warning FIXME: Figure out correct GPCMD_READ_CD blocksize. */
2971 sectors
= (cdb
[6] << 16) + (cdb
[7] << 8) + cdb
[8];
2972 size
= (2336 * sectors
);
2973 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
2978 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
2982 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
2984 cmd
->execute_task
= target_emulate_request_sense
;
2986 case READ_ELEMENT_STATUS
:
2987 size
= 65536 * cdb
[7] + 256 * cdb
[8] + cdb
[9];
2988 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
2991 size
= (cdb
[6] << 16) + (cdb
[7] << 8) + cdb
[8];
2992 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
2997 * The SPC-2 RESERVE does not contain a size in the SCSI CDB.
2998 * Assume the passthrough or $FABRIC_MOD will tell us about it.
3000 if (cdb
[0] == RESERVE_10
)
3001 size
= (cdb
[7] << 8) | cdb
[8];
3003 size
= cmd
->data_length
;
3006 * Setup the legacy emulated handler for SPC-2 and
3007 * >= SPC-3 compatible reservation handling (CRH=1)
3008 * Otherwise, we assume the underlying SCSI logic is
3009 * is running in SPC_PASSTHROUGH, and wants reservations
3010 * emulation disabled.
3012 if (su_dev
->t10_pr
.res_type
!= SPC_PASSTHROUGH
)
3013 cmd
->execute_task
= target_scsi2_reservation_reserve
;
3014 cmd
->se_cmd_flags
|= SCF_SCSI_NON_DATA_CDB
;
3019 * The SPC-2 RELEASE does not contain a size in the SCSI CDB.
3020 * Assume the passthrough or $FABRIC_MOD will tell us about it.
3022 if (cdb
[0] == RELEASE_10
)
3023 size
= (cdb
[7] << 8) | cdb
[8];
3025 size
= cmd
->data_length
;
3027 if (su_dev
->t10_pr
.res_type
!= SPC_PASSTHROUGH
)
3028 cmd
->execute_task
= target_scsi2_reservation_release
;
3029 cmd
->se_cmd_flags
|= SCF_SCSI_NON_DATA_CDB
;
3031 case SYNCHRONIZE_CACHE
:
3032 case SYNCHRONIZE_CACHE_16
:
3034 * Extract LBA and range to be flushed for emulated SYNCHRONIZE_CACHE
3036 if (cdb
[0] == SYNCHRONIZE_CACHE
) {
3037 sectors
= transport_get_sectors_10(cdb
, cmd
, §or_ret
);
3038 cmd
->t_task_lba
= transport_lba_32(cdb
);
3040 sectors
= transport_get_sectors_16(cdb
, cmd
, §or_ret
);
3041 cmd
->t_task_lba
= transport_lba_64(cdb
);
3044 goto out_unsupported_cdb
;
3046 size
= transport_get_size(sectors
, cdb
, cmd
);
3047 cmd
->se_cmd_flags
|= SCF_SCSI_NON_DATA_CDB
;
3053 * Check to ensure that LBA + Range does not exceed past end of
3054 * device for IBLOCK and FILEIO ->do_sync_cache() backend calls
3056 if ((cmd
->t_task_lba
!= 0) || (sectors
!= 0)) {
3057 if (transport_cmd_get_valid_sectors(cmd
) < 0)
3058 goto out_invalid_cdb_field
;
3060 cmd
->execute_task
= target_emulate_synchronize_cache
;
3063 size
= get_unaligned_be16(&cdb
[7]);
3064 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
3066 cmd
->execute_task
= target_emulate_unmap
;
3069 sectors
= transport_get_sectors_16(cdb
, cmd
, §or_ret
);
3071 goto out_unsupported_cdb
;
3074 size
= transport_get_size(1, cdb
, cmd
);
3076 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
3077 goto out_invalid_cdb_field
;
3080 cmd
->t_task_lba
= get_unaligned_be64(&cdb
[2]);
3081 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
3083 if (target_check_write_same_discard(&cdb
[1], dev
) < 0)
3084 goto out_unsupported_cdb
;
3086 cmd
->execute_task
= target_emulate_write_same
;
3089 sectors
= transport_get_sectors_10(cdb
, cmd
, §or_ret
);
3091 goto out_unsupported_cdb
;
3094 size
= transport_get_size(1, cdb
, cmd
);
3096 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
3097 goto out_invalid_cdb_field
;
3100 cmd
->t_task_lba
= get_unaligned_be32(&cdb
[2]);
3101 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
3103 * Follow sbcr26 with WRITE_SAME (10) and check for the existence
3104 * of byte 1 bit 3 UNMAP instead of original reserved field
3106 if (target_check_write_same_discard(&cdb
[1], dev
) < 0)
3107 goto out_unsupported_cdb
;
3109 cmd
->execute_task
= target_emulate_write_same
;
3111 case ALLOW_MEDIUM_REMOVAL
:
3117 case TEST_UNIT_READY
:
3119 case WRITE_FILEMARKS
:
3120 cmd
->se_cmd_flags
|= SCF_SCSI_NON_DATA_CDB
;
3122 cmd
->execute_task
= target_emulate_noop
;
3124 case GPCMD_CLOSE_TRACK
:
3125 case INITIALIZE_ELEMENT_STATUS
:
3126 case GPCMD_LOAD_UNLOAD
:
3127 case GPCMD_SET_SPEED
:
3129 cmd
->se_cmd_flags
|= SCF_SCSI_NON_DATA_CDB
;
3132 cmd
->execute_task
= target_report_luns
;
3133 size
= (cdb
[6] << 24) | (cdb
[7] << 16) | (cdb
[8] << 8) | cdb
[9];
3135 * Do implict HEAD_OF_QUEUE processing for REPORT_LUNS
3136 * See spc4r17 section 5.3
3138 if (cmd
->se_dev
->dev_task_attr_type
== SAM_TASK_ATTR_EMULATED
)
3139 cmd
->sam_task_attr
= MSG_HEAD_TAG
;
3140 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
3143 pr_warn("TARGET_CORE[%s]: Unsupported SCSI Opcode"
3144 " 0x%02x, sending CHECK_CONDITION.\n",
3145 cmd
->se_tfo
->get_fabric_name(), cdb
[0]);
3146 goto out_unsupported_cdb
;
3149 if (size
!= cmd
->data_length
) {
3150 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
3151 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
3152 " 0x%02x\n", cmd
->se_tfo
->get_fabric_name(),
3153 cmd
->data_length
, size
, cdb
[0]);
3155 cmd
->cmd_spdtl
= size
;
3157 if (cmd
->data_direction
== DMA_TO_DEVICE
) {
3158 pr_err("Rejecting underflow/overflow"
3160 goto out_invalid_cdb_field
;
3163 * Reject READ_* or WRITE_* with overflow/underflow for
3164 * type SCF_SCSI_DATA_SG_IO_CDB.
3166 if (!ret
&& (dev
->se_sub_dev
->se_dev_attrib
.block_size
!= 512)) {
3167 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
3168 " CDB on non 512-byte sector setup subsystem"
3169 " plugin: %s\n", dev
->transport
->name
);
3170 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
3171 goto out_invalid_cdb_field
;
3174 * For the overflow case keep the existing fabric provided
3175 * ->data_length. Otherwise for the underflow case, reset
3176 * ->data_length to the smaller SCSI expected data transfer
3179 if (size
> cmd
->data_length
) {
3180 cmd
->se_cmd_flags
|= SCF_OVERFLOW_BIT
;
3181 cmd
->residual_count
= (size
- cmd
->data_length
);
3183 cmd
->se_cmd_flags
|= SCF_UNDERFLOW_BIT
;
3184 cmd
->residual_count
= (cmd
->data_length
- size
);
3185 cmd
->data_length
= size
;
3189 if (cmd
->se_cmd_flags
& SCF_SCSI_DATA_SG_IO_CDB
&&
3190 sectors
> dev
->se_sub_dev
->se_dev_attrib
.fabric_max_sectors
) {
3191 printk_ratelimited(KERN_ERR
"SCSI OP %02xh with too big sectors %u\n",
3193 goto out_invalid_cdb_field
;
3196 /* reject any command that we don't have a handler for */
3197 if (!(passthrough
|| cmd
->execute_task
||
3198 (cmd
->se_cmd_flags
& SCF_SCSI_DATA_SG_IO_CDB
)))
3199 goto out_unsupported_cdb
;
3201 transport_set_supported_SAM_opcode(cmd
);
3204 out_unsupported_cdb
:
3205 cmd
->se_cmd_flags
|= SCF_SCSI_CDB_EXCEPTION
;
3206 cmd
->scsi_sense_reason
= TCM_UNSUPPORTED_SCSI_OPCODE
;
3208 out_invalid_cdb_field
:
3209 cmd
->se_cmd_flags
|= SCF_SCSI_CDB_EXCEPTION
;
3210 cmd
->scsi_sense_reason
= TCM_INVALID_CDB_FIELD
;
3215 * Called from I/O completion to determine which dormant/delayed
3216 * and ordered cmds need to have their tasks added to the execution queue.
3218 static void transport_complete_task_attr(struct se_cmd
*cmd
)
3220 struct se_device
*dev
= cmd
->se_dev
;
3221 struct se_cmd
*cmd_p
, *cmd_tmp
;
3222 int new_active_tasks
= 0;
3224 if (cmd
->sam_task_attr
== MSG_SIMPLE_TAG
) {
3225 atomic_dec(&dev
->simple_cmds
);
3226 smp_mb__after_atomic_dec();
3227 dev
->dev_cur_ordered_id
++;
3228 pr_debug("Incremented dev->dev_cur_ordered_id: %u for"
3229 " SIMPLE: %u\n", dev
->dev_cur_ordered_id
,
3230 cmd
->se_ordered_id
);
3231 } else if (cmd
->sam_task_attr
== MSG_HEAD_TAG
) {
3232 dev
->dev_cur_ordered_id
++;
3233 pr_debug("Incremented dev_cur_ordered_id: %u for"
3234 " HEAD_OF_QUEUE: %u\n", dev
->dev_cur_ordered_id
,
3235 cmd
->se_ordered_id
);
3236 } else if (cmd
->sam_task_attr
== MSG_ORDERED_TAG
) {
3237 atomic_dec(&dev
->dev_ordered_sync
);
3238 smp_mb__after_atomic_dec();
3240 dev
->dev_cur_ordered_id
++;
3241 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:"
3242 " %u\n", dev
->dev_cur_ordered_id
, cmd
->se_ordered_id
);
3245 * Process all commands up to the last received
3246 * ORDERED task attribute which requires another blocking
3249 spin_lock(&dev
->delayed_cmd_lock
);
3250 list_for_each_entry_safe(cmd_p
, cmd_tmp
,
3251 &dev
->delayed_cmd_list
, se_delayed_node
) {
3253 list_del(&cmd_p
->se_delayed_node
);
3254 spin_unlock(&dev
->delayed_cmd_lock
);
3256 pr_debug("Calling add_tasks() for"
3257 " cmd_p: 0x%02x Task Attr: 0x%02x"
3258 " Dormant -> Active, se_ordered_id: %u\n",
3259 cmd_p
->t_task_cdb
[0],
3260 cmd_p
->sam_task_attr
, cmd_p
->se_ordered_id
);
3262 transport_add_tasks_from_cmd(cmd_p
);
3265 spin_lock(&dev
->delayed_cmd_lock
);
3266 if (cmd_p
->sam_task_attr
== MSG_ORDERED_TAG
)
3269 spin_unlock(&dev
->delayed_cmd_lock
);
3271 * If new tasks have become active, wake up the transport thread
3272 * to do the processing of the Active tasks.
3274 if (new_active_tasks
!= 0)
3275 wake_up_interruptible(&dev
->dev_queue_obj
.thread_wq
);
3278 static void transport_complete_qf(struct se_cmd
*cmd
)
3282 if (cmd
->se_dev
->dev_task_attr_type
== SAM_TASK_ATTR_EMULATED
)
3283 transport_complete_task_attr(cmd
);
3285 if (cmd
->se_cmd_flags
& SCF_TRANSPORT_TASK_SENSE
) {
3286 ret
= cmd
->se_tfo
->queue_status(cmd
);
3291 switch (cmd
->data_direction
) {
3292 case DMA_FROM_DEVICE
:
3293 ret
= cmd
->se_tfo
->queue_data_in(cmd
);
3296 if (cmd
->t_bidi_data_sg
) {
3297 ret
= cmd
->se_tfo
->queue_data_in(cmd
);
3301 /* Fall through for DMA_TO_DEVICE */
3303 ret
= cmd
->se_tfo
->queue_status(cmd
);
3311 transport_handle_queue_full(cmd
, cmd
->se_dev
);
3314 transport_lun_remove_cmd(cmd
);
3315 transport_cmd_check_stop_to_fabric(cmd
);
3318 static void transport_handle_queue_full(
3320 struct se_device
*dev
)
3322 spin_lock_irq(&dev
->qf_cmd_lock
);
3323 list_add_tail(&cmd
->se_qf_node
, &cmd
->se_dev
->qf_cmd_list
);
3324 atomic_inc(&dev
->dev_qf_count
);
3325 smp_mb__after_atomic_inc();
3326 spin_unlock_irq(&cmd
->se_dev
->qf_cmd_lock
);
3328 schedule_work(&cmd
->se_dev
->qf_work_queue
);
3331 static void target_complete_ok_work(struct work_struct
*work
)
3333 struct se_cmd
*cmd
= container_of(work
, struct se_cmd
, work
);
3334 int reason
= 0, ret
;
3337 * Check if we need to move delayed/dormant tasks from cmds on the
3338 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
3341 if (cmd
->se_dev
->dev_task_attr_type
== SAM_TASK_ATTR_EMULATED
)
3342 transport_complete_task_attr(cmd
);
3344 * Check to schedule QUEUE_FULL work, or execute an existing
3345 * cmd->transport_qf_callback()
3347 if (atomic_read(&cmd
->se_dev
->dev_qf_count
) != 0)
3348 schedule_work(&cmd
->se_dev
->qf_work_queue
);
3351 * Check if we need to retrieve a sense buffer from
3352 * the struct se_cmd in question.
3354 if (cmd
->se_cmd_flags
& SCF_TRANSPORT_TASK_SENSE
) {
3355 if (transport_get_sense_data(cmd
) < 0)
3356 reason
= TCM_NON_EXISTENT_LUN
;
3359 * Only set when an struct se_task->task_scsi_status returned
3360 * a non GOOD status.
3362 if (cmd
->scsi_status
) {
3363 ret
= transport_send_check_condition_and_sense(
3365 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
3368 transport_lun_remove_cmd(cmd
);
3369 transport_cmd_check_stop_to_fabric(cmd
);
3374 * Check for a callback, used by amongst other things
3375 * XDWRITE_READ_10 emulation.
3377 if (cmd
->transport_complete_callback
)
3378 cmd
->transport_complete_callback(cmd
);
3380 switch (cmd
->data_direction
) {
3381 case DMA_FROM_DEVICE
:
3382 spin_lock(&cmd
->se_lun
->lun_sep_lock
);
3383 if (cmd
->se_lun
->lun_sep
) {
3384 cmd
->se_lun
->lun_sep
->sep_stats
.tx_data_octets
+=
3387 spin_unlock(&cmd
->se_lun
->lun_sep_lock
);
3389 ret
= cmd
->se_tfo
->queue_data_in(cmd
);
3390 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
3394 spin_lock(&cmd
->se_lun
->lun_sep_lock
);
3395 if (cmd
->se_lun
->lun_sep
) {
3396 cmd
->se_lun
->lun_sep
->sep_stats
.rx_data_octets
+=
3399 spin_unlock(&cmd
->se_lun
->lun_sep_lock
);
3401 * Check if we need to send READ payload for BIDI-COMMAND
3403 if (cmd
->t_bidi_data_sg
) {
3404 spin_lock(&cmd
->se_lun
->lun_sep_lock
);
3405 if (cmd
->se_lun
->lun_sep
) {
3406 cmd
->se_lun
->lun_sep
->sep_stats
.tx_data_octets
+=
3409 spin_unlock(&cmd
->se_lun
->lun_sep_lock
);
3410 ret
= cmd
->se_tfo
->queue_data_in(cmd
);
3411 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
3415 /* Fall through for DMA_TO_DEVICE */
3417 ret
= cmd
->se_tfo
->queue_status(cmd
);
3418 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
3425 transport_lun_remove_cmd(cmd
);
3426 transport_cmd_check_stop_to_fabric(cmd
);
3430 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
3431 " data_direction: %d\n", cmd
, cmd
->data_direction
);
3432 cmd
->t_state
= TRANSPORT_COMPLETE_QF_OK
;
3433 transport_handle_queue_full(cmd
, cmd
->se_dev
);
3436 static void transport_free_dev_tasks(struct se_cmd
*cmd
)
3438 struct se_task
*task
, *task_tmp
;
3439 unsigned long flags
;
3440 LIST_HEAD(dispose_list
);
3442 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3443 list_for_each_entry_safe(task
, task_tmp
,
3444 &cmd
->t_task_list
, t_list
) {
3445 if (!(task
->task_flags
& TF_ACTIVE
))
3446 list_move_tail(&task
->t_list
, &dispose_list
);
3448 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3450 while (!list_empty(&dispose_list
)) {
3451 task
= list_first_entry(&dispose_list
, struct se_task
, t_list
);
3453 if (task
->task_sg
!= cmd
->t_data_sg
&&
3454 task
->task_sg
!= cmd
->t_bidi_data_sg
)
3455 kfree(task
->task_sg
);
3457 list_del(&task
->t_list
);
3459 cmd
->se_dev
->transport
->free_task(task
);
3463 static inline void transport_free_sgl(struct scatterlist
*sgl
, int nents
)
3465 struct scatterlist
*sg
;
3468 for_each_sg(sgl
, sg
, nents
, count
)
3469 __free_page(sg_page(sg
));
3474 static inline void transport_free_pages(struct se_cmd
*cmd
)
3476 if (cmd
->se_cmd_flags
& SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC
)
3479 transport_free_sgl(cmd
->t_data_sg
, cmd
->t_data_nents
);
3480 cmd
->t_data_sg
= NULL
;
3481 cmd
->t_data_nents
= 0;
3483 transport_free_sgl(cmd
->t_bidi_data_sg
, cmd
->t_bidi_data_nents
);
3484 cmd
->t_bidi_data_sg
= NULL
;
3485 cmd
->t_bidi_data_nents
= 0;
3489 * transport_release_cmd - free a command
3490 * @cmd: command to free
3492 * This routine unconditionally frees a command, and reference counting
3493 * or list removal must be done in the caller.
3495 static void transport_release_cmd(struct se_cmd
*cmd
)
3497 BUG_ON(!cmd
->se_tfo
);
3499 if (cmd
->se_cmd_flags
& SCF_SCSI_TMR_CDB
)
3500 core_tmr_release_req(cmd
->se_tmr_req
);
3501 if (cmd
->t_task_cdb
!= cmd
->__t_task_cdb
)
3502 kfree(cmd
->t_task_cdb
);
3504 * If this cmd has been setup with target_get_sess_cmd(), drop
3505 * the kref and call ->release_cmd() in kref callback.
3507 if (cmd
->check_release
!= 0) {
3508 target_put_sess_cmd(cmd
->se_sess
, cmd
);
3511 cmd
->se_tfo
->release_cmd(cmd
);
3515 * transport_put_cmd - release a reference to a command
3516 * @cmd: command to release
3518 * This routine releases our reference to the command and frees it if possible.
3520 static void transport_put_cmd(struct se_cmd
*cmd
)
3522 unsigned long flags
;
3525 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3526 if (atomic_read(&cmd
->t_fe_count
)) {
3527 if (!atomic_dec_and_test(&cmd
->t_fe_count
))
3531 if (atomic_read(&cmd
->t_se_count
)) {
3532 if (!atomic_dec_and_test(&cmd
->t_se_count
))
3536 if (cmd
->transport_state
& CMD_T_DEV_ACTIVE
) {
3537 cmd
->transport_state
&= ~CMD_T_DEV_ACTIVE
;
3538 transport_all_task_dev_remove_state(cmd
);
3541 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3543 if (free_tasks
!= 0)
3544 transport_free_dev_tasks(cmd
);
3546 transport_free_pages(cmd
);
3547 transport_release_cmd(cmd
);
3550 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3554 * transport_generic_map_mem_to_cmd - Use fabric-alloced pages instead of
3555 * allocating in the core.
3556 * @cmd: Associated se_cmd descriptor
3557 * @mem: SGL style memory for TCM WRITE / READ
3558 * @sg_mem_num: Number of SGL elements
3559 * @mem_bidi_in: SGL style memory for TCM BIDI READ
3560 * @sg_mem_bidi_num: Number of BIDI READ SGL elements
3562 * Return: nonzero return cmd was rejected for -ENOMEM or inproper usage
3565 int transport_generic_map_mem_to_cmd(
3567 struct scatterlist
*sgl
,
3569 struct scatterlist
*sgl_bidi
,
3572 if (!sgl
|| !sgl_count
)
3575 if ((cmd
->se_cmd_flags
& SCF_SCSI_DATA_SG_IO_CDB
) ||
3576 (cmd
->se_cmd_flags
& SCF_SCSI_CONTROL_SG_IO_CDB
)) {
3578 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
3579 * scatterlists already have been set to follow what the fabric
3580 * passes for the original expected data transfer length.
3582 if (cmd
->se_cmd_flags
& SCF_OVERFLOW_BIT
) {
3583 pr_warn("Rejecting SCSI DATA overflow for fabric using"
3584 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
3585 cmd
->se_cmd_flags
|= SCF_SCSI_CDB_EXCEPTION
;
3586 cmd
->scsi_sense_reason
= TCM_INVALID_CDB_FIELD
;
3590 cmd
->t_data_sg
= sgl
;
3591 cmd
->t_data_nents
= sgl_count
;
3593 if (sgl_bidi
&& sgl_bidi_count
) {
3594 cmd
->t_bidi_data_sg
= sgl_bidi
;
3595 cmd
->t_bidi_data_nents
= sgl_bidi_count
;
3597 cmd
->se_cmd_flags
|= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC
;
3602 EXPORT_SYMBOL(transport_generic_map_mem_to_cmd
);
3604 void *transport_kmap_data_sg(struct se_cmd
*cmd
)
3606 struct scatterlist
*sg
= cmd
->t_data_sg
;
3607 struct page
**pages
;
3612 * We need to take into account a possible offset here for fabrics like
3613 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
3614 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
3616 if (!cmd
->t_data_nents
)
3618 else if (cmd
->t_data_nents
== 1)
3619 return kmap(sg_page(sg
)) + sg
->offset
;
3621 /* >1 page. use vmap */
3622 pages
= kmalloc(sizeof(*pages
) * cmd
->t_data_nents
, GFP_KERNEL
);
3626 /* convert sg[] to pages[] */
3627 for_each_sg(cmd
->t_data_sg
, sg
, cmd
->t_data_nents
, i
) {
3628 pages
[i
] = sg_page(sg
);
3631 cmd
->t_data_vmap
= vmap(pages
, cmd
->t_data_nents
, VM_MAP
, PAGE_KERNEL
);
3633 if (!cmd
->t_data_vmap
)
3636 return cmd
->t_data_vmap
+ cmd
->t_data_sg
[0].offset
;
3638 EXPORT_SYMBOL(transport_kmap_data_sg
);
3640 void transport_kunmap_data_sg(struct se_cmd
*cmd
)
3642 if (!cmd
->t_data_nents
) {
3644 } else if (cmd
->t_data_nents
== 1) {
3645 kunmap(sg_page(cmd
->t_data_sg
));
3649 vunmap(cmd
->t_data_vmap
);
3650 cmd
->t_data_vmap
= NULL
;
3652 EXPORT_SYMBOL(transport_kunmap_data_sg
);
3655 transport_generic_get_mem(struct se_cmd
*cmd
)
3657 u32 length
= cmd
->data_length
;
3663 nents
= DIV_ROUND_UP(length
, PAGE_SIZE
);
3664 cmd
->t_data_sg
= kmalloc(sizeof(struct scatterlist
) * nents
, GFP_KERNEL
);
3665 if (!cmd
->t_data_sg
)
3668 cmd
->t_data_nents
= nents
;
3669 sg_init_table(cmd
->t_data_sg
, nents
);
3671 zero_flag
= cmd
->se_cmd_flags
& SCF_SCSI_DATA_SG_IO_CDB
? 0 : __GFP_ZERO
;
3674 u32 page_len
= min_t(u32
, length
, PAGE_SIZE
);
3675 page
= alloc_page(GFP_KERNEL
| zero_flag
);
3679 sg_set_page(&cmd
->t_data_sg
[i
], page
, page_len
, 0);
3688 __free_page(sg_page(&cmd
->t_data_sg
[i
]));
3690 kfree(cmd
->t_data_sg
);
3691 cmd
->t_data_sg
= NULL
;
3695 /* Reduce sectors if they are too long for the device */
3696 static inline sector_t
transport_limit_task_sectors(
3697 struct se_device
*dev
,
3698 unsigned long long lba
,
3701 sectors
= min_t(sector_t
, sectors
, dev
->se_sub_dev
->se_dev_attrib
.max_sectors
);
3703 if (dev
->transport
->get_device_type(dev
) == TYPE_DISK
)
3704 if ((lba
+ sectors
) > transport_dev_end_lba(dev
))
3705 sectors
= ((transport_dev_end_lba(dev
) - lba
) + 1);
3712 * This function can be used by HW target mode drivers to create a linked
3713 * scatterlist from all contiguously allocated struct se_task->task_sg[].
3714 * This is intended to be called during the completion path by TCM Core
3715 * when struct target_core_fabric_ops->check_task_sg_chaining is enabled.
3717 void transport_do_task_sg_chain(struct se_cmd
*cmd
)
3719 struct scatterlist
*sg_first
= NULL
;
3720 struct scatterlist
*sg_prev
= NULL
;
3721 int sg_prev_nents
= 0;
3722 struct scatterlist
*sg
;
3723 struct se_task
*task
;
3724 u32 chained_nents
= 0;
3727 BUG_ON(!cmd
->se_tfo
->task_sg_chaining
);
3730 * Walk the struct se_task list and setup scatterlist chains
3731 * for each contiguously allocated struct se_task->task_sg[].
3733 list_for_each_entry(task
, &cmd
->t_task_list
, t_list
) {
3738 sg_first
= task
->task_sg
;
3739 chained_nents
= task
->task_sg_nents
;
3741 sg_chain(sg_prev
, sg_prev_nents
, task
->task_sg
);
3742 chained_nents
+= task
->task_sg_nents
;
3745 * For the padded tasks, use the extra SGL vector allocated
3746 * in transport_allocate_data_tasks() for the sg_prev_nents
3747 * offset into sg_chain() above.
3749 * We do not need the padding for the last task (or a single
3750 * task), but in that case we will never use the sg_prev_nents
3751 * value below which would be incorrect.
3753 sg_prev_nents
= (task
->task_sg_nents
+ 1);
3754 sg_prev
= task
->task_sg
;
3757 * Setup the starting pointer and total t_tasks_sg_linked_no including
3758 * padding SGs for linking and to mark the end.
3760 cmd
->t_tasks_sg_chained
= sg_first
;
3761 cmd
->t_tasks_sg_chained_no
= chained_nents
;
3763 pr_debug("Setup cmd: %p cmd->t_tasks_sg_chained: %p and"
3764 " t_tasks_sg_chained_no: %u\n", cmd
, cmd
->t_tasks_sg_chained
,
3765 cmd
->t_tasks_sg_chained_no
);
3767 for_each_sg(cmd
->t_tasks_sg_chained
, sg
,
3768 cmd
->t_tasks_sg_chained_no
, i
) {
3770 pr_debug("SG[%d]: %p page: %p length: %d offset: %d\n",
3771 i
, sg
, sg_page(sg
), sg
->length
, sg
->offset
);
3772 if (sg_is_chain(sg
))
3773 pr_debug("SG: %p sg_is_chain=1\n", sg
);
3775 pr_debug("SG: %p sg_is_last=1\n", sg
);
3778 EXPORT_SYMBOL(transport_do_task_sg_chain
);
3781 * Break up cmd into chunks transport can handle
3784 transport_allocate_data_tasks(struct se_cmd
*cmd
,
3785 enum dma_data_direction data_direction
,
3786 struct scatterlist
*cmd_sg
, unsigned int sgl_nents
)
3788 struct se_device
*dev
= cmd
->se_dev
;
3790 unsigned long long lba
;
3791 sector_t sectors
, dev_max_sectors
;
3794 if (transport_cmd_get_valid_sectors(cmd
) < 0)
3797 dev_max_sectors
= dev
->se_sub_dev
->se_dev_attrib
.max_sectors
;
3798 sector_size
= dev
->se_sub_dev
->se_dev_attrib
.block_size
;
3800 WARN_ON(cmd
->data_length
% sector_size
);
3802 lba
= cmd
->t_task_lba
;
3803 sectors
= DIV_ROUND_UP(cmd
->data_length
, sector_size
);
3804 task_count
= DIV_ROUND_UP_SECTOR_T(sectors
, dev_max_sectors
);
3807 * If we need just a single task reuse the SG list in the command
3808 * and avoid a lot of work.
3810 if (task_count
== 1) {
3811 struct se_task
*task
;
3812 unsigned long flags
;
3814 task
= transport_generic_get_task(cmd
, data_direction
);
3818 task
->task_sg
= cmd_sg
;
3819 task
->task_sg_nents
= sgl_nents
;
3821 task
->task_lba
= lba
;
3822 task
->task_sectors
= sectors
;
3823 task
->task_size
= task
->task_sectors
* sector_size
;
3825 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3826 list_add_tail(&task
->t_list
, &cmd
->t_task_list
);
3827 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3832 for (i
= 0; i
< task_count
; i
++) {
3833 struct se_task
*task
;
3834 unsigned int task_size
, task_sg_nents_padded
;
3835 struct scatterlist
*sg
;
3836 unsigned long flags
;
3839 task
= transport_generic_get_task(cmd
, data_direction
);
3843 task
->task_lba
= lba
;
3844 task
->task_sectors
= min(sectors
, dev_max_sectors
);
3845 task
->task_size
= task
->task_sectors
* sector_size
;
3848 * This now assumes that passed sg_ents are in PAGE_SIZE chunks
3849 * in order to calculate the number per task SGL entries
3851 task
->task_sg_nents
= DIV_ROUND_UP(task
->task_size
, PAGE_SIZE
);
3853 * Check if the fabric module driver is requesting that all
3854 * struct se_task->task_sg[] be chained together.. If so,
3855 * then allocate an extra padding SG entry for linking and
3856 * marking the end of the chained SGL for every task except
3857 * the last one for (task_count > 1) operation, or skipping
3858 * the extra padding for the (task_count == 1) case.
3860 if (cmd
->se_tfo
->task_sg_chaining
&& (i
< (task_count
- 1))) {
3861 task_sg_nents_padded
= (task
->task_sg_nents
+ 1);
3863 task_sg_nents_padded
= task
->task_sg_nents
;
3865 task
->task_sg
= kmalloc(sizeof(struct scatterlist
) *
3866 task_sg_nents_padded
, GFP_KERNEL
);
3867 if (!task
->task_sg
) {
3868 cmd
->se_dev
->transport
->free_task(task
);
3872 sg_init_table(task
->task_sg
, task_sg_nents_padded
);
3874 task_size
= task
->task_size
;
3876 /* Build new sgl, only up to task_size */
3877 for_each_sg(task
->task_sg
, sg
, task
->task_sg_nents
, count
) {
3878 if (cmd_sg
->length
> task_size
)
3882 task_size
-= cmd_sg
->length
;
3883 cmd_sg
= sg_next(cmd_sg
);
3886 lba
+= task
->task_sectors
;
3887 sectors
-= task
->task_sectors
;
3889 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3890 list_add_tail(&task
->t_list
, &cmd
->t_task_list
);
3891 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3898 transport_allocate_control_task(struct se_cmd
*cmd
)
3900 struct se_task
*task
;
3901 unsigned long flags
;
3903 /* Workaround for handling zero-length control CDBs */
3904 if ((cmd
->se_cmd_flags
& SCF_SCSI_CONTROL_SG_IO_CDB
) &&
3908 task
= transport_generic_get_task(cmd
, cmd
->data_direction
);
3912 task
->task_sg
= cmd
->t_data_sg
;
3913 task
->task_size
= cmd
->data_length
;
3914 task
->task_sg_nents
= cmd
->t_data_nents
;
3916 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3917 list_add_tail(&task
->t_list
, &cmd
->t_task_list
);
3918 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3920 /* Success! Return number of tasks allocated */
3925 * Allocate any required ressources to execute the command, and either place
3926 * it on the execution queue if possible. For writes we might not have the
3927 * payload yet, thus notify the fabric via a call to ->write_pending instead.
3929 int transport_generic_new_cmd(struct se_cmd
*cmd
)
3931 struct se_device
*dev
= cmd
->se_dev
;
3932 int task_cdbs
, task_cdbs_bidi
= 0;
3937 * Determine is the TCM fabric module has already allocated physical
3938 * memory, and is directly calling transport_generic_map_mem_to_cmd()
3941 if (!(cmd
->se_cmd_flags
& SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC
) &&
3943 ret
= transport_generic_get_mem(cmd
);
3949 * For BIDI command set up the read tasks first.
3951 if (cmd
->t_bidi_data_sg
&&
3952 dev
->transport
->transport_type
!= TRANSPORT_PLUGIN_PHBA_PDEV
) {
3953 BUG_ON(!(cmd
->se_cmd_flags
& SCF_SCSI_DATA_SG_IO_CDB
));
3955 task_cdbs_bidi
= transport_allocate_data_tasks(cmd
,
3956 DMA_FROM_DEVICE
, cmd
->t_bidi_data_sg
,
3957 cmd
->t_bidi_data_nents
);
3958 if (task_cdbs_bidi
<= 0)
3961 atomic_inc(&cmd
->t_fe_count
);
3962 atomic_inc(&cmd
->t_se_count
);
3966 if (cmd
->se_cmd_flags
& SCF_SCSI_DATA_SG_IO_CDB
) {
3967 task_cdbs
= transport_allocate_data_tasks(cmd
,
3968 cmd
->data_direction
, cmd
->t_data_sg
,
3971 task_cdbs
= transport_allocate_control_task(cmd
);
3976 else if (!task_cdbs
&& (cmd
->se_cmd_flags
& SCF_SCSI_DATA_SG_IO_CDB
)) {
3977 spin_lock_irq(&cmd
->t_state_lock
);
3978 cmd
->t_state
= TRANSPORT_COMPLETE
;
3979 cmd
->transport_state
|= CMD_T_ACTIVE
;
3980 spin_unlock_irq(&cmd
->t_state_lock
);
3982 if (cmd
->t_task_cdb
[0] == REQUEST_SENSE
) {
3983 u8 ua_asc
= 0, ua_ascq
= 0;
3985 core_scsi3_ua_clear_for_request_sense(cmd
,
3989 INIT_WORK(&cmd
->work
, target_complete_ok_work
);
3990 queue_work(target_completion_wq
, &cmd
->work
);
3995 atomic_inc(&cmd
->t_fe_count
);
3996 atomic_inc(&cmd
->t_se_count
);
3999 cmd
->t_task_list_num
= (task_cdbs
+ task_cdbs_bidi
);
4000 atomic_set(&cmd
->t_task_cdbs_left
, cmd
->t_task_list_num
);
4001 atomic_set(&cmd
->t_task_cdbs_ex_left
, cmd
->t_task_list_num
);
4004 * For WRITEs, let the fabric know its buffer is ready..
4005 * This WRITE struct se_cmd (and all of its associated struct se_task's)
4006 * will be added to the struct se_device execution queue after its WRITE
4007 * data has arrived. (ie: It gets handled by the transport processing
4008 * thread a second time)
4010 if (cmd
->data_direction
== DMA_TO_DEVICE
) {
4011 transport_add_tasks_to_state_queue(cmd
);
4012 return transport_generic_write_pending(cmd
);
4015 * Everything else but a WRITE, add the struct se_cmd's struct se_task's
4016 * to the execution queue.
4018 transport_execute_tasks(cmd
);
4022 cmd
->se_cmd_flags
|= SCF_SCSI_CDB_EXCEPTION
;
4023 cmd
->scsi_sense_reason
= TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
4026 EXPORT_SYMBOL(transport_generic_new_cmd
);
4028 /* transport_generic_process_write():
4032 void transport_generic_process_write(struct se_cmd
*cmd
)
4034 transport_execute_tasks(cmd
);
4036 EXPORT_SYMBOL(transport_generic_process_write
);
4038 static void transport_write_pending_qf(struct se_cmd
*cmd
)
4042 ret
= cmd
->se_tfo
->write_pending(cmd
);
4043 if (ret
== -EAGAIN
|| ret
== -ENOMEM
) {
4044 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
4046 transport_handle_queue_full(cmd
, cmd
->se_dev
);
4050 static int transport_generic_write_pending(struct se_cmd
*cmd
)
4052 unsigned long flags
;
4055 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
4056 cmd
->t_state
= TRANSPORT_WRITE_PENDING
;
4057 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
4060 * Clear the se_cmd for WRITE_PENDING status in order to set
4061 * CMD_T_ACTIVE so that transport_generic_handle_data can be called
4062 * from HW target mode interrupt code. This is safe to be called
4063 * with transport_off=1 before the cmd->se_tfo->write_pending
4064 * because the se_cmd->se_lun pointer is not being cleared.
4066 transport_cmd_check_stop(cmd
, 1, 0);
4069 * Call the fabric write_pending function here to let the
4070 * frontend know that WRITE buffers are ready.
4072 ret
= cmd
->se_tfo
->write_pending(cmd
);
4073 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
4081 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd
);
4082 cmd
->t_state
= TRANSPORT_COMPLETE_QF_WP
;
4083 transport_handle_queue_full(cmd
, cmd
->se_dev
);
4087 void transport_generic_free_cmd(struct se_cmd
*cmd
, int wait_for_tasks
)
4089 if (!(cmd
->se_cmd_flags
& SCF_SE_LUN_CMD
)) {
4090 if (wait_for_tasks
&& (cmd
->se_cmd_flags
& SCF_SCSI_TMR_CDB
))
4091 transport_wait_for_tasks(cmd
);
4093 transport_release_cmd(cmd
);
4096 transport_wait_for_tasks(cmd
);
4098 core_dec_lacl_count(cmd
->se_sess
->se_node_acl
, cmd
);
4101 transport_lun_remove_cmd(cmd
);
4103 transport_free_dev_tasks(cmd
);
4105 transport_put_cmd(cmd
);
4108 EXPORT_SYMBOL(transport_generic_free_cmd
);
4110 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
4111 * @se_sess: session to reference
4112 * @se_cmd: command descriptor to add
4113 * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd()
4115 void target_get_sess_cmd(struct se_session
*se_sess
, struct se_cmd
*se_cmd
,
4118 unsigned long flags
;
4120 kref_init(&se_cmd
->cmd_kref
);
4122 * Add a second kref if the fabric caller is expecting to handle
4123 * fabric acknowledgement that requires two target_put_sess_cmd()
4124 * invocations before se_cmd descriptor release.
4126 if (ack_kref
== true) {
4127 kref_get(&se_cmd
->cmd_kref
);
4128 se_cmd
->se_cmd_flags
|= SCF_ACK_KREF
;
4131 spin_lock_irqsave(&se_sess
->sess_cmd_lock
, flags
);
4132 list_add_tail(&se_cmd
->se_cmd_list
, &se_sess
->sess_cmd_list
);
4133 se_cmd
->check_release
= 1;
4134 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
4136 EXPORT_SYMBOL(target_get_sess_cmd
);
4138 static void target_release_cmd_kref(struct kref
*kref
)
4140 struct se_cmd
*se_cmd
= container_of(kref
, struct se_cmd
, cmd_kref
);
4141 struct se_session
*se_sess
= se_cmd
->se_sess
;
4142 unsigned long flags
;
4144 spin_lock_irqsave(&se_sess
->sess_cmd_lock
, flags
);
4145 if (list_empty(&se_cmd
->se_cmd_list
)) {
4146 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
4147 se_cmd
->se_tfo
->release_cmd(se_cmd
);
4150 if (se_sess
->sess_tearing_down
&& se_cmd
->cmd_wait_set
) {
4151 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
4152 complete(&se_cmd
->cmd_wait_comp
);
4155 list_del(&se_cmd
->se_cmd_list
);
4156 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
4158 se_cmd
->se_tfo
->release_cmd(se_cmd
);
4161 /* target_put_sess_cmd - Check for active I/O shutdown via kref_put
4162 * @se_sess: session to reference
4163 * @se_cmd: command descriptor to drop
4165 int target_put_sess_cmd(struct se_session
*se_sess
, struct se_cmd
*se_cmd
)
4167 return kref_put(&se_cmd
->cmd_kref
, target_release_cmd_kref
);
4169 EXPORT_SYMBOL(target_put_sess_cmd
);
4171 /* target_splice_sess_cmd_list - Split active cmds into sess_wait_list
4172 * @se_sess: session to split
4174 void target_splice_sess_cmd_list(struct se_session
*se_sess
)
4176 struct se_cmd
*se_cmd
;
4177 unsigned long flags
;
4179 WARN_ON(!list_empty(&se_sess
->sess_wait_list
));
4180 INIT_LIST_HEAD(&se_sess
->sess_wait_list
);
4182 spin_lock_irqsave(&se_sess
->sess_cmd_lock
, flags
);
4183 se_sess
->sess_tearing_down
= 1;
4185 list_splice_init(&se_sess
->sess_cmd_list
, &se_sess
->sess_wait_list
);
4187 list_for_each_entry(se_cmd
, &se_sess
->sess_wait_list
, se_cmd_list
)
4188 se_cmd
->cmd_wait_set
= 1;
4190 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
4192 EXPORT_SYMBOL(target_splice_sess_cmd_list
);
4194 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
4195 * @se_sess: session to wait for active I/O
4196 * @wait_for_tasks: Make extra transport_wait_for_tasks call
4198 void target_wait_for_sess_cmds(
4199 struct se_session
*se_sess
,
4202 struct se_cmd
*se_cmd
, *tmp_cmd
;
4205 list_for_each_entry_safe(se_cmd
, tmp_cmd
,
4206 &se_sess
->sess_wait_list
, se_cmd_list
) {
4207 list_del(&se_cmd
->se_cmd_list
);
4209 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
4210 " %d\n", se_cmd
, se_cmd
->t_state
,
4211 se_cmd
->se_tfo
->get_cmd_state(se_cmd
));
4213 if (wait_for_tasks
) {
4214 pr_debug("Calling transport_wait_for_tasks se_cmd: %p t_state: %d,"
4215 " fabric state: %d\n", se_cmd
, se_cmd
->t_state
,
4216 se_cmd
->se_tfo
->get_cmd_state(se_cmd
));
4218 rc
= transport_wait_for_tasks(se_cmd
);
4220 pr_debug("After transport_wait_for_tasks se_cmd: %p t_state: %d,"
4221 " fabric state: %d\n", se_cmd
, se_cmd
->t_state
,
4222 se_cmd
->se_tfo
->get_cmd_state(se_cmd
));
4226 wait_for_completion(&se_cmd
->cmd_wait_comp
);
4227 pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
4228 " fabric state: %d\n", se_cmd
, se_cmd
->t_state
,
4229 se_cmd
->se_tfo
->get_cmd_state(se_cmd
));
4232 se_cmd
->se_tfo
->release_cmd(se_cmd
);
4235 EXPORT_SYMBOL(target_wait_for_sess_cmds
);
4237 /* transport_lun_wait_for_tasks():
4239 * Called from ConfigFS context to stop the passed struct se_cmd to allow
4240 * an struct se_lun to be successfully shutdown.
4242 static int transport_lun_wait_for_tasks(struct se_cmd
*cmd
, struct se_lun
*lun
)
4244 unsigned long flags
;
4247 * If the frontend has already requested this struct se_cmd to
4248 * be stopped, we can safely ignore this struct se_cmd.
4250 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
4251 if (cmd
->transport_state
& CMD_T_STOP
) {
4252 cmd
->transport_state
&= ~CMD_T_LUN_STOP
;
4254 pr_debug("ConfigFS ITT[0x%08x] - CMD_T_STOP, skipping\n",
4255 cmd
->se_tfo
->get_task_tag(cmd
));
4256 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
4257 transport_cmd_check_stop(cmd
, 1, 0);
4260 cmd
->transport_state
|= CMD_T_LUN_FE_STOP
;
4261 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
4263 wake_up_interruptible(&cmd
->se_dev
->dev_queue_obj
.thread_wq
);
4265 ret
= transport_stop_tasks_for_cmd(cmd
);
4267 pr_debug("ConfigFS: cmd: %p t_tasks: %d stop tasks ret:"
4268 " %d\n", cmd
, cmd
->t_task_list_num
, ret
);
4270 pr_debug("ConfigFS: ITT[0x%08x] - stopping cmd....\n",
4271 cmd
->se_tfo
->get_task_tag(cmd
));
4272 wait_for_completion(&cmd
->transport_lun_stop_comp
);
4273 pr_debug("ConfigFS: ITT[0x%08x] - stopped cmd....\n",
4274 cmd
->se_tfo
->get_task_tag(cmd
));
4276 transport_remove_cmd_from_queue(cmd
);
4281 static void __transport_clear_lun_from_sessions(struct se_lun
*lun
)
4283 struct se_cmd
*cmd
= NULL
;
4284 unsigned long lun_flags
, cmd_flags
;
4286 * Do exception processing and return CHECK_CONDITION status to the
4289 spin_lock_irqsave(&lun
->lun_cmd_lock
, lun_flags
);
4290 while (!list_empty(&lun
->lun_cmd_list
)) {
4291 cmd
= list_first_entry(&lun
->lun_cmd_list
,
4292 struct se_cmd
, se_lun_node
);
4293 list_del_init(&cmd
->se_lun_node
);
4296 * This will notify iscsi_target_transport.c:
4297 * transport_cmd_check_stop() that a LUN shutdown is in
4298 * progress for the iscsi_cmd_t.
4300 spin_lock(&cmd
->t_state_lock
);
4301 pr_debug("SE_LUN[%d] - Setting cmd->transport"
4302 "_lun_stop for ITT: 0x%08x\n",
4303 cmd
->se_lun
->unpacked_lun
,
4304 cmd
->se_tfo
->get_task_tag(cmd
));
4305 cmd
->transport_state
|= CMD_T_LUN_STOP
;
4306 spin_unlock(&cmd
->t_state_lock
);
4308 spin_unlock_irqrestore(&lun
->lun_cmd_lock
, lun_flags
);
4311 pr_err("ITT: 0x%08x, [i,t]_state: %u/%u\n",
4312 cmd
->se_tfo
->get_task_tag(cmd
),
4313 cmd
->se_tfo
->get_cmd_state(cmd
), cmd
->t_state
);
4317 * If the Storage engine still owns the iscsi_cmd_t, determine
4318 * and/or stop its context.
4320 pr_debug("SE_LUN[%d] - ITT: 0x%08x before transport"
4321 "_lun_wait_for_tasks()\n", cmd
->se_lun
->unpacked_lun
,
4322 cmd
->se_tfo
->get_task_tag(cmd
));
4324 if (transport_lun_wait_for_tasks(cmd
, cmd
->se_lun
) < 0) {
4325 spin_lock_irqsave(&lun
->lun_cmd_lock
, lun_flags
);
4329 pr_debug("SE_LUN[%d] - ITT: 0x%08x after transport_lun"
4330 "_wait_for_tasks(): SUCCESS\n",
4331 cmd
->se_lun
->unpacked_lun
,
4332 cmd
->se_tfo
->get_task_tag(cmd
));
4334 spin_lock_irqsave(&cmd
->t_state_lock
, cmd_flags
);
4335 if (!(cmd
->transport_state
& CMD_T_DEV_ACTIVE
)) {
4336 spin_unlock_irqrestore(&cmd
->t_state_lock
, cmd_flags
);
4339 cmd
->transport_state
&= ~CMD_T_DEV_ACTIVE
;
4340 transport_all_task_dev_remove_state(cmd
);
4341 spin_unlock_irqrestore(&cmd
->t_state_lock
, cmd_flags
);
4343 transport_free_dev_tasks(cmd
);
4345 * The Storage engine stopped this struct se_cmd before it was
4346 * send to the fabric frontend for delivery back to the
4347 * Initiator Node. Return this SCSI CDB back with an
4348 * CHECK_CONDITION status.
4351 transport_send_check_condition_and_sense(cmd
,
4352 TCM_NON_EXISTENT_LUN
, 0);
4354 * If the fabric frontend is waiting for this iscsi_cmd_t to
4355 * be released, notify the waiting thread now that LU has
4356 * finished accessing it.
4358 spin_lock_irqsave(&cmd
->t_state_lock
, cmd_flags
);
4359 if (cmd
->transport_state
& CMD_T_LUN_FE_STOP
) {
4360 pr_debug("SE_LUN[%d] - Detected FE stop for"
4361 " struct se_cmd: %p ITT: 0x%08x\n",
4363 cmd
, cmd
->se_tfo
->get_task_tag(cmd
));
4365 spin_unlock_irqrestore(&cmd
->t_state_lock
,
4367 transport_cmd_check_stop(cmd
, 1, 0);
4368 complete(&cmd
->transport_lun_fe_stop_comp
);
4369 spin_lock_irqsave(&lun
->lun_cmd_lock
, lun_flags
);
4372 pr_debug("SE_LUN[%d] - ITT: 0x%08x finished processing\n",
4373 lun
->unpacked_lun
, cmd
->se_tfo
->get_task_tag(cmd
));
4375 spin_unlock_irqrestore(&cmd
->t_state_lock
, cmd_flags
);
4376 spin_lock_irqsave(&lun
->lun_cmd_lock
, lun_flags
);
4378 spin_unlock_irqrestore(&lun
->lun_cmd_lock
, lun_flags
);
4381 static int transport_clear_lun_thread(void *p
)
4383 struct se_lun
*lun
= p
;
4385 __transport_clear_lun_from_sessions(lun
);
4386 complete(&lun
->lun_shutdown_comp
);
4391 int transport_clear_lun_from_sessions(struct se_lun
*lun
)
4393 struct task_struct
*kt
;
4395 kt
= kthread_run(transport_clear_lun_thread
, lun
,
4396 "tcm_cl_%u", lun
->unpacked_lun
);
4398 pr_err("Unable to start clear_lun thread\n");
4401 wait_for_completion(&lun
->lun_shutdown_comp
);
4407 * transport_wait_for_tasks - wait for completion to occur
4408 * @cmd: command to wait
4410 * Called from frontend fabric context to wait for storage engine
4411 * to pause and/or release frontend generated struct se_cmd.
4413 bool transport_wait_for_tasks(struct se_cmd
*cmd
)
4415 unsigned long flags
;
4417 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
4418 if (!(cmd
->se_cmd_flags
& SCF_SE_LUN_CMD
) &&
4419 !(cmd
->se_cmd_flags
& SCF_SCSI_TMR_CDB
)) {
4420 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
4424 * Only perform a possible wait_for_tasks if SCF_SUPPORTED_SAM_OPCODE
4425 * has been set in transport_set_supported_SAM_opcode().
4427 if (!(cmd
->se_cmd_flags
& SCF_SUPPORTED_SAM_OPCODE
) &&
4428 !(cmd
->se_cmd_flags
& SCF_SCSI_TMR_CDB
)) {
4429 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
4433 * If we are already stopped due to an external event (ie: LUN shutdown)
4434 * sleep until the connection can have the passed struct se_cmd back.
4435 * The cmd->transport_lun_stopped_sem will be upped by
4436 * transport_clear_lun_from_sessions() once the ConfigFS context caller
4437 * has completed its operation on the struct se_cmd.
4439 if (cmd
->transport_state
& CMD_T_LUN_STOP
) {
4440 pr_debug("wait_for_tasks: Stopping"
4441 " wait_for_completion(&cmd->t_tasktransport_lun_fe"
4442 "_stop_comp); for ITT: 0x%08x\n",
4443 cmd
->se_tfo
->get_task_tag(cmd
));
4445 * There is a special case for WRITES where a FE exception +
4446 * LUN shutdown means ConfigFS context is still sleeping on
4447 * transport_lun_stop_comp in transport_lun_wait_for_tasks().
4448 * We go ahead and up transport_lun_stop_comp just to be sure
4451 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
4452 complete(&cmd
->transport_lun_stop_comp
);
4453 wait_for_completion(&cmd
->transport_lun_fe_stop_comp
);
4454 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
4456 transport_all_task_dev_remove_state(cmd
);
4458 * At this point, the frontend who was the originator of this
4459 * struct se_cmd, now owns the structure and can be released through
4460 * normal means below.
4462 pr_debug("wait_for_tasks: Stopped"
4463 " wait_for_completion(&cmd->t_tasktransport_lun_fe_"
4464 "stop_comp); for ITT: 0x%08x\n",
4465 cmd
->se_tfo
->get_task_tag(cmd
));
4467 cmd
->transport_state
&= ~CMD_T_LUN_STOP
;
4470 if (!(cmd
->transport_state
& CMD_T_ACTIVE
)) {
4471 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
4475 cmd
->transport_state
|= CMD_T_STOP
;
4477 pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x"
4478 " i_state: %d, t_state: %d, CMD_T_STOP\n",
4479 cmd
, cmd
->se_tfo
->get_task_tag(cmd
),
4480 cmd
->se_tfo
->get_cmd_state(cmd
), cmd
->t_state
);
4482 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
4484 wake_up_interruptible(&cmd
->se_dev
->dev_queue_obj
.thread_wq
);
4486 wait_for_completion(&cmd
->t_transport_stop_comp
);
4488 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
4489 cmd
->transport_state
&= ~(CMD_T_ACTIVE
| CMD_T_STOP
);
4491 pr_debug("wait_for_tasks: Stopped wait_for_compltion("
4492 "&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
4493 cmd
->se_tfo
->get_task_tag(cmd
));
4495 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
4499 EXPORT_SYMBOL(transport_wait_for_tasks
);
4501 static int transport_get_sense_codes(
4506 *asc
= cmd
->scsi_asc
;
4507 *ascq
= cmd
->scsi_ascq
;
4512 static int transport_set_sense_codes(
4517 cmd
->scsi_asc
= asc
;
4518 cmd
->scsi_ascq
= ascq
;
4523 int transport_send_check_condition_and_sense(
4528 unsigned char *buffer
= cmd
->sense_buffer
;
4529 unsigned long flags
;
4531 u8 asc
= 0, ascq
= 0;
4533 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
4534 if (cmd
->se_cmd_flags
& SCF_SENT_CHECK_CONDITION
) {
4535 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
4538 cmd
->se_cmd_flags
|= SCF_SENT_CHECK_CONDITION
;
4539 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
4541 if (!reason
&& from_transport
)
4544 if (!from_transport
)
4545 cmd
->se_cmd_flags
|= SCF_EMULATED_TASK_SENSE
;
4547 * Data Segment and SenseLength of the fabric response PDU.
4549 * TRANSPORT_SENSE_BUFFER is now set to SCSI_SENSE_BUFFERSIZE
4550 * from include/scsi/scsi_cmnd.h
4552 offset
= cmd
->se_tfo
->set_fabric_sense_len(cmd
,
4553 TRANSPORT_SENSE_BUFFER
);
4555 * Actual SENSE DATA, see SPC-3 7.23.2 SPC_SENSE_KEY_OFFSET uses
4556 * SENSE KEY values from include/scsi/scsi.h
4559 case TCM_NON_EXISTENT_LUN
:
4561 buffer
[offset
] = 0x70;
4562 buffer
[offset
+SPC_ADD_SENSE_LEN_OFFSET
] = 10;
4563 /* ILLEGAL REQUEST */
4564 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = ILLEGAL_REQUEST
;
4565 /* LOGICAL UNIT NOT SUPPORTED */
4566 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x25;
4568 case TCM_UNSUPPORTED_SCSI_OPCODE
:
4569 case TCM_SECTOR_COUNT_TOO_MANY
:
4571 buffer
[offset
] = 0x70;
4572 buffer
[offset
+SPC_ADD_SENSE_LEN_OFFSET
] = 10;
4573 /* ILLEGAL REQUEST */
4574 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = ILLEGAL_REQUEST
;
4575 /* INVALID COMMAND OPERATION CODE */
4576 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x20;
4578 case TCM_UNKNOWN_MODE_PAGE
:
4580 buffer
[offset
] = 0x70;
4581 buffer
[offset
+SPC_ADD_SENSE_LEN_OFFSET
] = 10;
4582 /* ILLEGAL REQUEST */
4583 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = ILLEGAL_REQUEST
;
4584 /* INVALID FIELD IN CDB */
4585 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x24;
4587 case TCM_CHECK_CONDITION_ABORT_CMD
:
4589 buffer
[offset
] = 0x70;
4590 buffer
[offset
+SPC_ADD_SENSE_LEN_OFFSET
] = 10;
4591 /* ABORTED COMMAND */
4592 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = ABORTED_COMMAND
;
4593 /* BUS DEVICE RESET FUNCTION OCCURRED */
4594 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x29;
4595 buffer
[offset
+SPC_ASCQ_KEY_OFFSET
] = 0x03;
4597 case TCM_INCORRECT_AMOUNT_OF_DATA
:
4599 buffer
[offset
] = 0x70;
4600 buffer
[offset
+SPC_ADD_SENSE_LEN_OFFSET
] = 10;
4601 /* ABORTED COMMAND */
4602 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = ABORTED_COMMAND
;
4604 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x0c;
4605 /* NOT ENOUGH UNSOLICITED DATA */
4606 buffer
[offset
+SPC_ASCQ_KEY_OFFSET
] = 0x0d;
4608 case TCM_INVALID_CDB_FIELD
:
4610 buffer
[offset
] = 0x70;
4611 buffer
[offset
+SPC_ADD_SENSE_LEN_OFFSET
] = 10;
4612 /* ILLEGAL REQUEST */
4613 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = ILLEGAL_REQUEST
;
4614 /* INVALID FIELD IN CDB */
4615 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x24;
4617 case TCM_INVALID_PARAMETER_LIST
:
4619 buffer
[offset
] = 0x70;
4620 buffer
[offset
+SPC_ADD_SENSE_LEN_OFFSET
] = 10;
4621 /* ILLEGAL REQUEST */
4622 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = ILLEGAL_REQUEST
;
4623 /* INVALID FIELD IN PARAMETER LIST */
4624 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x26;
4626 case TCM_UNEXPECTED_UNSOLICITED_DATA
:
4628 buffer
[offset
] = 0x70;
4629 buffer
[offset
+SPC_ADD_SENSE_LEN_OFFSET
] = 10;
4630 /* ABORTED COMMAND */
4631 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = ABORTED_COMMAND
;
4633 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x0c;
4634 /* UNEXPECTED_UNSOLICITED_DATA */
4635 buffer
[offset
+SPC_ASCQ_KEY_OFFSET
] = 0x0c;
4637 case TCM_SERVICE_CRC_ERROR
:
4639 buffer
[offset
] = 0x70;
4640 buffer
[offset
+SPC_ADD_SENSE_LEN_OFFSET
] = 10;
4641 /* ABORTED COMMAND */
4642 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = ABORTED_COMMAND
;
4643 /* PROTOCOL SERVICE CRC ERROR */
4644 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x47;
4646 buffer
[offset
+SPC_ASCQ_KEY_OFFSET
] = 0x05;
4648 case TCM_SNACK_REJECTED
:
4650 buffer
[offset
] = 0x70;
4651 buffer
[offset
+SPC_ADD_SENSE_LEN_OFFSET
] = 10;
4652 /* ABORTED COMMAND */
4653 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = ABORTED_COMMAND
;
4655 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x11;
4656 /* FAILED RETRANSMISSION REQUEST */
4657 buffer
[offset
+SPC_ASCQ_KEY_OFFSET
] = 0x13;
4659 case TCM_WRITE_PROTECTED
:
4661 buffer
[offset
] = 0x70;
4662 buffer
[offset
+SPC_ADD_SENSE_LEN_OFFSET
] = 10;
4664 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = DATA_PROTECT
;
4665 /* WRITE PROTECTED */
4666 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x27;
4668 case TCM_ADDRESS_OUT_OF_RANGE
:
4670 buffer
[offset
] = 0x70;
4671 buffer
[offset
+SPC_ADD_SENSE_LEN_OFFSET
] = 10;
4672 /* ILLEGAL REQUEST */
4673 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = ILLEGAL_REQUEST
;
4674 /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
4675 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x21;
4677 case TCM_CHECK_CONDITION_UNIT_ATTENTION
:
4679 buffer
[offset
] = 0x70;
4680 buffer
[offset
+SPC_ADD_SENSE_LEN_OFFSET
] = 10;
4681 /* UNIT ATTENTION */
4682 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = UNIT_ATTENTION
;
4683 core_scsi3_ua_for_check_condition(cmd
, &asc
, &ascq
);
4684 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = asc
;
4685 buffer
[offset
+SPC_ASCQ_KEY_OFFSET
] = ascq
;
4687 case TCM_CHECK_CONDITION_NOT_READY
:
4689 buffer
[offset
] = 0x70;
4690 buffer
[offset
+SPC_ADD_SENSE_LEN_OFFSET
] = 10;
4692 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = NOT_READY
;
4693 transport_get_sense_codes(cmd
, &asc
, &ascq
);
4694 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = asc
;
4695 buffer
[offset
+SPC_ASCQ_KEY_OFFSET
] = ascq
;
4697 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
:
4700 buffer
[offset
] = 0x70;
4701 buffer
[offset
+SPC_ADD_SENSE_LEN_OFFSET
] = 10;
4702 /* ILLEGAL REQUEST */
4703 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = ILLEGAL_REQUEST
;
4704 /* LOGICAL UNIT COMMUNICATION FAILURE */
4705 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x08;
4709 * This code uses linux/include/scsi/scsi.h SAM status codes!
4711 cmd
->scsi_status
= SAM_STAT_CHECK_CONDITION
;
4713 * Automatically padded, this value is encoded in the fabric's
4714 * data_length response PDU containing the SCSI defined sense data.
4716 cmd
->scsi_sense_length
= TRANSPORT_SENSE_BUFFER
+ offset
;
4719 return cmd
->se_tfo
->queue_status(cmd
);
4721 EXPORT_SYMBOL(transport_send_check_condition_and_sense
);
4723 int transport_check_aborted_status(struct se_cmd
*cmd
, int send_status
)
4727 if (cmd
->transport_state
& CMD_T_ABORTED
) {
4729 (cmd
->se_cmd_flags
& SCF_SENT_DELAYED_TAS
))
4732 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED"
4733 " status for CDB: 0x%02x ITT: 0x%08x\n",
4735 cmd
->se_tfo
->get_task_tag(cmd
));
4737 cmd
->se_cmd_flags
|= SCF_SENT_DELAYED_TAS
;
4738 cmd
->se_tfo
->queue_status(cmd
);
4743 EXPORT_SYMBOL(transport_check_aborted_status
);
4745 void transport_send_task_abort(struct se_cmd
*cmd
)
4747 unsigned long flags
;
4749 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
4750 if (cmd
->se_cmd_flags
& SCF_SENT_CHECK_CONDITION
) {
4751 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
4754 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
4757 * If there are still expected incoming fabric WRITEs, we wait
4758 * until until they have completed before sending a TASK_ABORTED
4759 * response. This response with TASK_ABORTED status will be
4760 * queued back to fabric module by transport_check_aborted_status().
4762 if (cmd
->data_direction
== DMA_TO_DEVICE
) {
4763 if (cmd
->se_tfo
->write_pending_status(cmd
) != 0) {
4764 cmd
->transport_state
|= CMD_T_ABORTED
;
4765 smp_mb__after_atomic_inc();
4768 cmd
->scsi_status
= SAM_STAT_TASK_ABORTED
;
4770 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
4771 " ITT: 0x%08x\n", cmd
->t_task_cdb
[0],
4772 cmd
->se_tfo
->get_task_tag(cmd
));
4774 cmd
->se_tfo
->queue_status(cmd
);
4777 static int transport_generic_do_tmr(struct se_cmd
*cmd
)
4779 struct se_device
*dev
= cmd
->se_dev
;
4780 struct se_tmr_req
*tmr
= cmd
->se_tmr_req
;
4783 switch (tmr
->function
) {
4784 case TMR_ABORT_TASK
:
4785 core_tmr_abort_task(dev
, tmr
, cmd
->se_sess
);
4787 case TMR_ABORT_TASK_SET
:
4789 case TMR_CLEAR_TASK_SET
:
4790 tmr
->response
= TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED
;
4793 ret
= core_tmr_lun_reset(dev
, tmr
, NULL
, NULL
);
4794 tmr
->response
= (!ret
) ? TMR_FUNCTION_COMPLETE
:
4795 TMR_FUNCTION_REJECTED
;
4797 case TMR_TARGET_WARM_RESET
:
4798 tmr
->response
= TMR_FUNCTION_REJECTED
;
4800 case TMR_TARGET_COLD_RESET
:
4801 tmr
->response
= TMR_FUNCTION_REJECTED
;
4804 pr_err("Uknown TMR function: 0x%02x.\n",
4806 tmr
->response
= TMR_FUNCTION_REJECTED
;
4810 cmd
->t_state
= TRANSPORT_ISTATE_PROCESSING
;
4811 cmd
->se_tfo
->queue_tm_rsp(cmd
);
4813 transport_cmd_check_stop_to_fabric(cmd
);
4817 /* transport_processing_thread():
4821 static int transport_processing_thread(void *param
)
4825 struct se_device
*dev
= param
;
4827 while (!kthread_should_stop()) {
4828 ret
= wait_event_interruptible(dev
->dev_queue_obj
.thread_wq
,
4829 atomic_read(&dev
->dev_queue_obj
.queue_cnt
) ||
4830 kthread_should_stop());
4835 cmd
= transport_get_cmd_from_queue(&dev
->dev_queue_obj
);
4839 switch (cmd
->t_state
) {
4840 case TRANSPORT_NEW_CMD
:
4843 case TRANSPORT_NEW_CMD_MAP
:
4844 if (!cmd
->se_tfo
->new_cmd_map
) {
4845 pr_err("cmd->se_tfo->new_cmd_map is"
4846 " NULL for TRANSPORT_NEW_CMD_MAP\n");
4849 ret
= cmd
->se_tfo
->new_cmd_map(cmd
);
4851 transport_generic_request_failure(cmd
);
4854 ret
= transport_generic_new_cmd(cmd
);
4856 transport_generic_request_failure(cmd
);
4860 case TRANSPORT_PROCESS_WRITE
:
4861 transport_generic_process_write(cmd
);
4863 case TRANSPORT_PROCESS_TMR
:
4864 transport_generic_do_tmr(cmd
);
4866 case TRANSPORT_COMPLETE_QF_WP
:
4867 transport_write_pending_qf(cmd
);
4869 case TRANSPORT_COMPLETE_QF_OK
:
4870 transport_complete_qf(cmd
);
4873 pr_err("Unknown t_state: %d for ITT: 0x%08x "
4874 "i_state: %d on SE LUN: %u\n",
4876 cmd
->se_tfo
->get_task_tag(cmd
),
4877 cmd
->se_tfo
->get_cmd_state(cmd
),
4878 cmd
->se_lun
->unpacked_lun
);
4886 WARN_ON(!list_empty(&dev
->state_task_list
));
4887 WARN_ON(!list_empty(&dev
->dev_queue_obj
.qobj_list
));
4888 dev
->process_thread
= NULL
;