1 /* ePAPR hypervisor byte channel device driver
3 * Copyright 2009-2011 Freescale Semiconductor, Inc.
5 * Author: Timur Tabi <timur@freescale.com>
7 * This file is licensed under the terms of the GNU General Public License
8 * version 2. This program is licensed "as is" without any warranty of any
9 * kind, whether express or implied.
11 * This driver support three distinct interfaces, all of which are related to
12 * ePAPR hypervisor byte channels.
14 * 1) An early-console (udbg) driver. This provides early console output
15 * through a byte channel. The byte channel handle must be specified in a
18 * 2) A normal console driver. Output is sent to the byte channel designated
19 * for stdout in the device tree. The console driver is for handling kernel
22 * 3) A tty driver, which is used to handle user-space input and output. The
23 * byte channel used for the console is designated as the default tty.
26 #include <linux/module.h>
27 #include <linux/init.h>
28 #include <linux/slab.h>
29 #include <linux/err.h>
30 #include <linux/interrupt.h>
32 #include <linux/poll.h>
33 #include <asm/epapr_hcalls.h>
35 #include <linux/platform_device.h>
36 #include <linux/cdev.h>
37 #include <linux/console.h>
38 #include <linux/tty.h>
39 #include <linux/tty_flip.h>
40 #include <linux/circ_buf.h>
43 /* The size of the transmit circular buffer. This must be a power of two. */
46 /* Per-byte channel private data */
54 spinlock_t lock
; /* lock for transmit buffer */
55 unsigned char buf
[BUF_SIZE
]; /* transmit circular buffer */
56 unsigned int head
; /* circular buffer head */
57 unsigned int tail
; /* circular buffer tail */
59 int tx_irq_enabled
; /* true == TX interrupt is enabled */
62 /* Array of byte channel objects */
63 static struct ehv_bc_data
*bcs
;
65 /* Byte channel handle for stdout (and stdin), taken from device tree */
66 static unsigned int stdout_bc
;
68 /* Virtual IRQ for the byte channel handle for stdin, taken from device tree */
69 static unsigned int stdout_irq
;
71 /**************************** SUPPORT FUNCTIONS ****************************/
74 * Enable the transmit interrupt
76 * Unlike a serial device, byte channels have no mechanism for disabling their
77 * own receive or transmit interrupts. To emulate that feature, we toggle
78 * the IRQ in the kernel.
80 * We cannot just blindly call enable_irq() or disable_irq(), because these
81 * calls are reference counted. This means that we cannot call enable_irq()
82 * if interrupts are already enabled. This can happen in two situations:
84 * 1. The tty layer makes two back-to-back calls to ehv_bc_tty_write()
85 * 2. A transmit interrupt occurs while executing ehv_bc_tx_dequeue()
87 * To work around this, we keep a flag to tell us if the IRQ is enabled or not.
89 static void enable_tx_interrupt(struct ehv_bc_data
*bc
)
91 if (!bc
->tx_irq_enabled
) {
92 enable_irq(bc
->tx_irq
);
93 bc
->tx_irq_enabled
= 1;
97 static void disable_tx_interrupt(struct ehv_bc_data
*bc
)
99 if (bc
->tx_irq_enabled
) {
100 disable_irq_nosync(bc
->tx_irq
);
101 bc
->tx_irq_enabled
= 0;
106 * find the byte channel handle to use for the console
108 * The byte channel to be used for the console is specified via a "stdout"
109 * property in the /chosen node.
111 * For compatible with legacy device trees, we also look for a "stdout" alias.
113 static int find_console_handle(void)
115 struct device_node
*np
, *np2
;
116 const char *sprop
= NULL
;
117 const uint32_t *iprop
;
119 np
= of_find_node_by_path("/chosen");
121 sprop
= of_get_property(np
, "stdout-path", NULL
);
125 np
= of_find_node_by_name(NULL
, "aliases");
127 sprop
= of_get_property(np
, "stdout", NULL
);
135 /* We don't care what the aliased node is actually called. We only
136 * care if it's compatible with "epapr,hv-byte-channel", because that
137 * indicates that it's a byte channel node. We use a temporary
138 * variable, 'np2', because we can't release 'np' until we're done with
141 np2
= of_find_node_by_path(sprop
);
145 pr_warning("ehv-bc: stdout node '%s' does not exist\n", sprop
);
149 /* Is it a byte channel? */
150 if (!of_device_is_compatible(np
, "epapr,hv-byte-channel")) {
155 stdout_irq
= irq_of_parse_and_map(np
, 0);
156 if (stdout_irq
== NO_IRQ
) {
157 pr_err("ehv-bc: no 'interrupts' property in %s node\n", sprop
);
163 * The 'hv-handle' property contains the handle for this byte channel.
165 iprop
= of_get_property(np
, "hv-handle", NULL
);
167 pr_err("ehv-bc: no 'hv-handle' property in %s node\n",
172 stdout_bc
= be32_to_cpu(*iprop
);
178 /*************************** EARLY CONSOLE DRIVER ***************************/
180 #ifdef CONFIG_PPC_EARLY_DEBUG_EHV_BC
183 * send a byte to a byte channel, wait if necessary
185 * This function sends a byte to a byte channel, and it waits and
186 * retries if the byte channel is full. It returns if the character
187 * has been sent, or if some error has occurred.
190 static void byte_channel_spin_send(const char data
)
196 ret
= ev_byte_channel_send(CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE
,
198 } while (ret
== EV_EAGAIN
);
202 * The udbg subsystem calls this function to display a single character.
203 * We convert CR to a CR/LF.
205 static void ehv_bc_udbg_putc(char c
)
208 byte_channel_spin_send('\r');
210 byte_channel_spin_send(c
);
214 * early console initialization
216 * PowerPC kernels support an early printk console, also known as udbg.
217 * This function must be called via the ppc_md.init_early function pointer.
218 * At this point, the device tree has been unflattened, so we can obtain the
219 * byte channel handle for stdout.
221 * We only support displaying of characters (putc). We do not support
224 void __init
udbg_init_ehv_bc(void)
226 unsigned int rx_count
, tx_count
;
229 /* Verify the byte channel handle */
230 ret
= ev_byte_channel_poll(CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE
,
231 &rx_count
, &tx_count
);
235 udbg_putc
= ehv_bc_udbg_putc
;
236 register_early_udbg_console();
238 udbg_printf("ehv-bc: early console using byte channel handle %u\n",
239 CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE
);
244 /****************************** CONSOLE DRIVER ******************************/
246 static struct tty_driver
*ehv_bc_driver
;
249 * Byte channel console sending worker function.
251 * For consoles, if the output buffer is full, we should just spin until it
254 static int ehv_bc_console_byte_channel_send(unsigned int handle
, const char *s
,
261 len
= min_t(unsigned int, count
, EV_BYTE_CHANNEL_MAX_BYTES
);
263 ret
= ev_byte_channel_send(handle
, &len
, s
);
264 } while (ret
== EV_EAGAIN
);
273 * write a string to the console
275 * This function gets called to write a string from the kernel, typically from
276 * a printk(). This function spins until all data is written.
278 * We copy the data to a temporary buffer because we need to insert a \r in
279 * front of every \n. It's more efficient to copy the data to the buffer than
280 * it is to make multiple hcalls for each character or each newline.
282 static void ehv_bc_console_write(struct console
*co
, const char *s
,
285 char s2
[EV_BYTE_CHANNEL_MAX_BYTES
];
286 unsigned int i
, j
= 0;
289 for (i
= 0; i
< count
; i
++) {
296 if (j
>= (EV_BYTE_CHANNEL_MAX_BYTES
- 1)) {
297 if (ehv_bc_console_byte_channel_send(stdout_bc
, s2
, j
))
304 ehv_bc_console_byte_channel_send(stdout_bc
, s2
, j
);
308 * When /dev/console is opened, the kernel iterates the console list looking
309 * for one with ->device and then calls that method. On success, it expects
310 * the passed-in int* to contain the minor number to use.
312 static struct tty_driver
*ehv_bc_console_device(struct console
*co
, int *index
)
316 return ehv_bc_driver
;
319 static struct console ehv_bc_console
= {
321 .write
= ehv_bc_console_write
,
322 .device
= ehv_bc_console_device
,
323 .flags
= CON_PRINTBUFFER
| CON_ENABLED
,
327 * Console initialization
329 * This is the first function that is called after the device tree is
330 * available, so here is where we determine the byte channel handle and IRQ for
331 * stdout/stdin, even though that information is used by the tty and character
334 static int __init
ehv_bc_console_init(void)
336 if (!find_console_handle()) {
337 pr_debug("ehv-bc: stdout is not a byte channel\n");
341 #ifdef CONFIG_PPC_EARLY_DEBUG_EHV_BC
342 /* Print a friendly warning if the user chose the wrong byte channel
345 if (stdout_bc
!= CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE
)
346 pr_warning("ehv-bc: udbg handle %u is not the stdout handle\n",
347 CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE
);
350 /* add_preferred_console() must be called before register_console(),
351 otherwise it won't work. However, we don't want to enumerate all the
352 byte channels here, either, since we only care about one. */
354 add_preferred_console(ehv_bc_console
.name
, ehv_bc_console
.index
, NULL
);
355 register_console(&ehv_bc_console
);
357 pr_info("ehv-bc: registered console driver for byte channel %u\n",
362 console_initcall(ehv_bc_console_init
);
364 /******************************** TTY DRIVER ********************************/
367 * byte channel receive interupt handler
369 * This ISR is called whenever data is available on a byte channel.
371 static irqreturn_t
ehv_bc_tty_rx_isr(int irq
, void *data
)
373 struct ehv_bc_data
*bc
= data
;
374 struct tty_struct
*ttys
= tty_port_tty_get(&bc
->port
);
375 unsigned int rx_count
, tx_count
, len
;
377 char buffer
[EV_BYTE_CHANNEL_MAX_BYTES
];
380 /* ttys could be NULL during a hangup */
384 /* Find out how much data needs to be read, and then ask the TTY layer
385 * if it can handle that much. We want to ensure that every byte we
386 * read from the byte channel will be accepted by the TTY layer.
388 ev_byte_channel_poll(bc
->handle
, &rx_count
, &tx_count
);
389 count
= tty_buffer_request_room(ttys
, rx_count
);
391 /* 'count' is the maximum amount of data the TTY layer can accept at
392 * this time. However, during testing, I was never able to get 'count'
393 * to be less than 'rx_count'. I'm not sure whether I'm calling it
398 len
= min_t(unsigned int, count
, sizeof(buffer
));
400 /* Read some data from the byte channel. This function will
401 * never return more than EV_BYTE_CHANNEL_MAX_BYTES bytes.
403 ev_byte_channel_receive(bc
->handle
, &len
, buffer
);
405 /* 'len' is now the amount of data that's been received. 'len'
406 * can't be zero, and most likely it's equal to one.
409 /* Pass the received data to the tty layer. */
410 ret
= tty_insert_flip_string(ttys
, buffer
, len
);
412 /* 'ret' is the number of bytes that the TTY layer accepted.
413 * If it's not equal to 'len', then it means the buffer is
414 * full, which should never happen. If it does happen, we can
415 * exit gracefully, but we drop the last 'len - ret' characters
416 * that we read from the byte channel.
424 /* Tell the tty layer that we're done. */
425 tty_flip_buffer_push(ttys
);
433 * dequeue the transmit buffer to the hypervisor
435 * This function, which can be called in interrupt context, dequeues as much
436 * data as possible from the transmit buffer to the byte channel.
438 static void ehv_bc_tx_dequeue(struct ehv_bc_data
*bc
)
441 unsigned int len
, ret
;
445 spin_lock_irqsave(&bc
->lock
, flags
);
446 len
= min_t(unsigned int,
447 CIRC_CNT_TO_END(bc
->head
, bc
->tail
, BUF_SIZE
),
448 EV_BYTE_CHANNEL_MAX_BYTES
);
450 ret
= ev_byte_channel_send(bc
->handle
, &len
, bc
->buf
+ bc
->tail
);
452 /* 'len' is valid only if the return code is 0 or EV_EAGAIN */
453 if (!ret
|| (ret
== EV_EAGAIN
))
454 bc
->tail
= (bc
->tail
+ len
) & (BUF_SIZE
- 1);
456 count
= CIRC_CNT(bc
->head
, bc
->tail
, BUF_SIZE
);
457 spin_unlock_irqrestore(&bc
->lock
, flags
);
458 } while (count
&& !ret
);
460 spin_lock_irqsave(&bc
->lock
, flags
);
461 if (CIRC_CNT(bc
->head
, bc
->tail
, BUF_SIZE
))
463 * If we haven't emptied the buffer, then enable the TX IRQ.
464 * We'll get an interrupt when there's more room in the
465 * hypervisor's output buffer.
467 enable_tx_interrupt(bc
);
469 disable_tx_interrupt(bc
);
470 spin_unlock_irqrestore(&bc
->lock
, flags
);
474 * byte channel transmit interupt handler
476 * This ISR is called whenever space becomes available for transmitting
477 * characters on a byte channel.
479 static irqreturn_t
ehv_bc_tty_tx_isr(int irq
, void *data
)
481 struct ehv_bc_data
*bc
= data
;
482 struct tty_struct
*ttys
= tty_port_tty_get(&bc
->port
);
484 ehv_bc_tx_dequeue(bc
);
494 * This function is called when the tty layer has data for us send. We store
495 * the data first in a circular buffer, and then dequeue as much of that data
498 * We don't need to worry about whether there is enough room in the buffer for
499 * all the data. The purpose of ehv_bc_tty_write_room() is to tell the tty
500 * layer how much data it can safely send to us. We guarantee that
501 * ehv_bc_tty_write_room() will never lie, so the tty layer will never send us
504 static int ehv_bc_tty_write(struct tty_struct
*ttys
, const unsigned char *s
,
507 struct ehv_bc_data
*bc
= ttys
->driver_data
;
510 unsigned int written
= 0;
513 spin_lock_irqsave(&bc
->lock
, flags
);
514 len
= CIRC_SPACE_TO_END(bc
->head
, bc
->tail
, BUF_SIZE
);
518 memcpy(bc
->buf
+ bc
->head
, s
, len
);
519 bc
->head
= (bc
->head
+ len
) & (BUF_SIZE
- 1);
521 spin_unlock_irqrestore(&bc
->lock
, flags
);
530 ehv_bc_tx_dequeue(bc
);
536 * This function can be called multiple times for a given tty_struct, which is
537 * why we initialize bc->ttys in ehv_bc_tty_port_activate() instead.
539 * The tty layer will still call this function even if the device was not
540 * registered (i.e. tty_register_device() was not called). This happens
541 * because tty_register_device() is optional and some legacy drivers don't
542 * use it. So we need to check for that.
544 static int ehv_bc_tty_open(struct tty_struct
*ttys
, struct file
*filp
)
546 struct ehv_bc_data
*bc
= &bcs
[ttys
->index
];
551 return tty_port_open(&bc
->port
, ttys
, filp
);
555 * Amazingly, if ehv_bc_tty_open() returns an error code, the tty layer will
556 * still call this function to close the tty device. So we can't assume that
557 * the tty port has been initialized.
559 static void ehv_bc_tty_close(struct tty_struct
*ttys
, struct file
*filp
)
561 struct ehv_bc_data
*bc
= &bcs
[ttys
->index
];
564 tty_port_close(&bc
->port
, ttys
, filp
);
568 * Return the amount of space in the output buffer
570 * This is actually a contract between the driver and the tty layer outlining
571 * how much write room the driver can guarantee will be sent OR BUFFERED. This
572 * driver MUST honor the return value.
574 static int ehv_bc_tty_write_room(struct tty_struct
*ttys
)
576 struct ehv_bc_data
*bc
= ttys
->driver_data
;
580 spin_lock_irqsave(&bc
->lock
, flags
);
581 count
= CIRC_SPACE(bc
->head
, bc
->tail
, BUF_SIZE
);
582 spin_unlock_irqrestore(&bc
->lock
, flags
);
588 * Stop sending data to the tty layer
590 * This function is called when the tty layer's input buffers are getting full,
591 * so the driver should stop sending it data. The easiest way to do this is to
592 * disable the RX IRQ, which will prevent ehv_bc_tty_rx_isr() from being
595 * The hypervisor will continue to queue up any incoming data. If there is any
596 * data in the queue when the RX interrupt is enabled, we'll immediately get an
599 static void ehv_bc_tty_throttle(struct tty_struct
*ttys
)
601 struct ehv_bc_data
*bc
= ttys
->driver_data
;
603 disable_irq(bc
->rx_irq
);
607 * Resume sending data to the tty layer
609 * This function is called after previously calling ehv_bc_tty_throttle(). The
610 * tty layer's input buffers now have more room, so the driver can resume
613 static void ehv_bc_tty_unthrottle(struct tty_struct
*ttys
)
615 struct ehv_bc_data
*bc
= ttys
->driver_data
;
617 /* If there is any data in the queue when the RX interrupt is enabled,
618 * we'll immediately get an RX interrupt.
620 enable_irq(bc
->rx_irq
);
623 static void ehv_bc_tty_hangup(struct tty_struct
*ttys
)
625 struct ehv_bc_data
*bc
= ttys
->driver_data
;
627 ehv_bc_tx_dequeue(bc
);
628 tty_port_hangup(&bc
->port
);
632 * TTY driver operations
634 * If we could ask the hypervisor how much data is still in the TX buffer, or
635 * at least how big the TX buffers are, then we could implement the
636 * .wait_until_sent and .chars_in_buffer functions.
638 static const struct tty_operations ehv_bc_ops
= {
639 .open
= ehv_bc_tty_open
,
640 .close
= ehv_bc_tty_close
,
641 .write
= ehv_bc_tty_write
,
642 .write_room
= ehv_bc_tty_write_room
,
643 .throttle
= ehv_bc_tty_throttle
,
644 .unthrottle
= ehv_bc_tty_unthrottle
,
645 .hangup
= ehv_bc_tty_hangup
,
649 * initialize the TTY port
651 * This function will only be called once, no matter how many times
652 * ehv_bc_tty_open() is called. That's why we register the ISR here, and also
653 * why we initialize tty_struct-related variables here.
655 static int ehv_bc_tty_port_activate(struct tty_port
*port
,
656 struct tty_struct
*ttys
)
658 struct ehv_bc_data
*bc
= container_of(port
, struct ehv_bc_data
, port
);
661 ttys
->driver_data
= bc
;
663 ret
= request_irq(bc
->rx_irq
, ehv_bc_tty_rx_isr
, 0, "ehv-bc", bc
);
665 dev_err(bc
->dev
, "could not request rx irq %u (ret=%i)\n",
670 /* request_irq also enables the IRQ */
671 bc
->tx_irq_enabled
= 1;
673 ret
= request_irq(bc
->tx_irq
, ehv_bc_tty_tx_isr
, 0, "ehv-bc", bc
);
675 dev_err(bc
->dev
, "could not request tx irq %u (ret=%i)\n",
677 free_irq(bc
->rx_irq
, bc
);
681 /* The TX IRQ is enabled only when we can't write all the data to the
682 * byte channel at once, so by default it's disabled.
684 disable_tx_interrupt(bc
);
689 static void ehv_bc_tty_port_shutdown(struct tty_port
*port
)
691 struct ehv_bc_data
*bc
= container_of(port
, struct ehv_bc_data
, port
);
693 free_irq(bc
->tx_irq
, bc
);
694 free_irq(bc
->rx_irq
, bc
);
697 static const struct tty_port_operations ehv_bc_tty_port_ops
= {
698 .activate
= ehv_bc_tty_port_activate
,
699 .shutdown
= ehv_bc_tty_port_shutdown
,
702 static int __devinit
ehv_bc_tty_probe(struct platform_device
*pdev
)
704 struct device_node
*np
= pdev
->dev
.of_node
;
705 struct ehv_bc_data
*bc
;
706 const uint32_t *iprop
;
709 static unsigned int index
= 1;
712 iprop
= of_get_property(np
, "hv-handle", NULL
);
714 dev_err(&pdev
->dev
, "no 'hv-handle' property in %s node\n",
719 /* We already told the console layer that the index for the console
720 * device is zero, so we need to make sure that we use that index when
721 * we probe the console byte channel node.
723 handle
= be32_to_cpu(*iprop
);
724 i
= (handle
== stdout_bc
) ? 0 : index
++;
730 spin_lock_init(&bc
->lock
);
732 bc
->rx_irq
= irq_of_parse_and_map(np
, 0);
733 bc
->tx_irq
= irq_of_parse_and_map(np
, 1);
734 if ((bc
->rx_irq
== NO_IRQ
) || (bc
->tx_irq
== NO_IRQ
)) {
735 dev_err(&pdev
->dev
, "no 'interrupts' property in %s node\n",
741 bc
->dev
= tty_register_device(ehv_bc_driver
, i
, &pdev
->dev
);
742 if (IS_ERR(bc
->dev
)) {
743 ret
= PTR_ERR(bc
->dev
);
744 dev_err(&pdev
->dev
, "could not register tty (ret=%i)\n", ret
);
748 tty_port_init(&bc
->port
);
749 bc
->port
.ops
= &ehv_bc_tty_port_ops
;
751 dev_set_drvdata(&pdev
->dev
, bc
);
753 dev_info(&pdev
->dev
, "registered /dev/%s%u for byte channel %u\n",
754 ehv_bc_driver
->name
, i
, bc
->handle
);
759 irq_dispose_mapping(bc
->tx_irq
);
760 irq_dispose_mapping(bc
->rx_irq
);
762 memset(bc
, 0, sizeof(struct ehv_bc_data
));
766 static int ehv_bc_tty_remove(struct platform_device
*pdev
)
768 struct ehv_bc_data
*bc
= dev_get_drvdata(&pdev
->dev
);
770 tty_unregister_device(ehv_bc_driver
, bc
- bcs
);
772 irq_dispose_mapping(bc
->tx_irq
);
773 irq_dispose_mapping(bc
->rx_irq
);
778 static const struct of_device_id ehv_bc_tty_of_ids
[] = {
779 { .compatible
= "epapr,hv-byte-channel" },
783 static struct platform_driver ehv_bc_tty_driver
= {
785 .owner
= THIS_MODULE
,
787 .of_match_table
= ehv_bc_tty_of_ids
,
789 .probe
= ehv_bc_tty_probe
,
790 .remove
= ehv_bc_tty_remove
,
794 * ehv_bc_init - ePAPR hypervisor byte channel driver initialization
796 * This function is called when this module is loaded.
798 static int __init
ehv_bc_init(void)
800 struct device_node
*np
;
801 unsigned int count
= 0; /* Number of elements in bcs[] */
804 pr_info("ePAPR hypervisor byte channel driver\n");
806 /* Count the number of byte channels */
807 for_each_compatible_node(np
, NULL
, "epapr,hv-byte-channel")
813 /* The array index of an element in bcs[] is the same as the tty index
814 * for that element. If you know the address of an element in the
815 * array, then you can use pointer math (e.g. "bc - bcs") to get its
818 bcs
= kzalloc(count
* sizeof(struct ehv_bc_data
), GFP_KERNEL
);
822 ehv_bc_driver
= alloc_tty_driver(count
);
823 if (!ehv_bc_driver
) {
828 ehv_bc_driver
->driver_name
= "ehv-bc";
829 ehv_bc_driver
->name
= ehv_bc_console
.name
;
830 ehv_bc_driver
->type
= TTY_DRIVER_TYPE_CONSOLE
;
831 ehv_bc_driver
->subtype
= SYSTEM_TYPE_CONSOLE
;
832 ehv_bc_driver
->init_termios
= tty_std_termios
;
833 ehv_bc_driver
->flags
= TTY_DRIVER_REAL_RAW
| TTY_DRIVER_DYNAMIC_DEV
;
834 tty_set_operations(ehv_bc_driver
, &ehv_bc_ops
);
836 ret
= tty_register_driver(ehv_bc_driver
);
838 pr_err("ehv-bc: could not register tty driver (ret=%i)\n", ret
);
842 ret
= platform_driver_register(&ehv_bc_tty_driver
);
844 pr_err("ehv-bc: could not register platform driver (ret=%i)\n",
853 tty_unregister_driver(ehv_bc_driver
);
854 put_tty_driver(ehv_bc_driver
);
864 * ehv_bc_exit - ePAPR hypervisor byte channel driver termination
866 * This function is called when this driver is unloaded.
868 static void __exit
ehv_bc_exit(void)
870 tty_unregister_driver(ehv_bc_driver
);
871 put_tty_driver(ehv_bc_driver
);
875 module_init(ehv_bc_init
);
876 module_exit(ehv_bc_exit
);
878 MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
879 MODULE_DESCRIPTION("ePAPR hypervisor byte channel driver");
880 MODULE_LICENSE("GPL v2");